WO2009153446A2 - Device for projecting structured light using vcsels and phase diffractive optical components - Google Patents

Device for projecting structured light using vcsels and phase diffractive optical components Download PDF

Info

Publication number
WO2009153446A2
WO2009153446A2 PCT/FR2009/000705 FR2009000705W WO2009153446A2 WO 2009153446 A2 WO2009153446 A2 WO 2009153446A2 FR 2009000705 W FR2009000705 W FR 2009000705W WO 2009153446 A2 WO2009153446 A2 WO 2009153446A2
Authority
WO
WIPO (PCT)
Prior art keywords
diffractive
vcsel
elements
diffractive optical
optical
Prior art date
Application number
PCT/FR2009/000705
Other languages
French (fr)
Other versions
WO2009153446A4 (en
WO2009153446A3 (en
Inventor
Sylvain Becker
Idriss El Hafidi
Joël Fontaine
Ana Helman
Bernard Kress
Bruno Serio
Patrice Twardowski
Original Assignee
Universite De Strasbourg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite De Strasbourg filed Critical Universite De Strasbourg
Publication of WO2009153446A2 publication Critical patent/WO2009153446A2/en
Publication of WO2009153446A3 publication Critical patent/WO2009153446A3/en
Publication of WO2009153446A4 publication Critical patent/WO2009153446A4/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • G02B5/1871Transmissive phase gratings

Definitions

  • the present invention relates to a light projection device structured by means of laser sources, such as vertical cavity-emitting laser diodes (VCSELs) and elements diffractive. More particularly, the invention relates to a light projection optical head structured in the form of fringes or other patterns and can be used to perform a scanning or a three-dimensional measurement of subjects by volume, such as for example an object or a human body.
  • laser sources such as vertical cavity-emitting laser diodes (VCSELs) and elements diffractive.
  • VCSELs vertical cavity-emitting laser diodes
  • elements diffractive diffractive
  • the invention relates to a light projection optical head structured in the form of fringes or other patterns and can be used to perform a scanning or a three-dimensional measurement of subjects by volume, such as for example an object or a human body.
  • Structured light projection means the creation of a far-field diffraction pattern, this figure being in the form of a pattern.
  • the three-dimensional measurement and control of volume is usually done by the projection of structured light in the form of fringes on the analyzed subject then the fringes deformed by the subject are recorded by means of an optical camera and analyzed by techniques of image processing to go back to a three-dimensional structure of the subject to be modeled.
  • the projection of fringes is usually done by means of optical systems comprising conventional scanning laser sources or a projector with a white source.
  • optical systems comprising conventional scanning laser sources or a projector with a white source.
  • three-dimensional volume measurement techniques by spatial structuring of light can be classified into three families:
  • the acquisition time is very long, generally greater than ten seconds, the scanning requires a mechanical movement, the calibration is long and delicate, a focus of the optical elements is necessary and the light energies used are at the limit of safety standards.
  • the international standard IEC 60825-1 and the corresponding European standard EN 60825-1 specify the maximum permissible exposure (EMP) according to the wavelength and the nature of the source (pulsed or continuous). Below this threshold, it is considered that laser radiation is not dangerous to the eye and does not produce harmful effects in the short or long term.
  • the white-source systems make it possible to easily comply with the safety standards, but they have numerous drawbacks such as an acquisition time that is too long, generally of the order of a few seconds, a fringe contrast that is too low, and an angle of limited projection.
  • these systems use lenses and therefore require optical focusing.
  • the energy used is also very important, causing problems of heat dissipation and noise.
  • the object of the invention is to provide a new device for Structured light projection which notably allows a high speed of acquisition, a lack of focus and a high contrast of the projected patterns while respecting safety standards.
  • the device according to the invention proposes to use surface-emitting vertical cavity laser diodes, also called VCSELs and diffractive phase optical elements.
  • VCSELs are low-cost laser sources that can be produced in a matrix fashion. Associating VCSELs with surface-enhanced phase diffractive optical elements allowing great flexibility in projected intensity distributions and replicable at low cost on plastic substrates provides an inexpensive structured light projection optical head and having many advantages. These advantages include the following:
  • the optical head according to the invention is an integrated device that does not have fragile parts with delicate adjustment and offers great robustness of use.
  • the structured light projection device according to the invention does not require a dedicated cabin. It is easily transportable.
  • the device according to the invention has a low power consumption because the VCSEL have a low threshold current.
  • the device according to the invention has an effective heat dissipation because the VCSEL are mounted on a support (silicon or other) which is a good thermal conductor.
  • the projection device is a light source with a high modulation frequency. In use, it therefore allows a high speed of acquisition.
  • the projection device allows noise minimization by averaging measurements from different sources of the matrix.
  • the projection of the patterns is carried out with a wide angle, because instead of deforming the image of a periodic object, is structured in the useful area of measurement a laser source intensity distribution periodically through optical elements diffractive.
  • VCSEL emitting a Gaussian light beam, circular and moderately divergent (typically 8 °), with a circular intensity distribution without the need to use correction optics such as transforming an elliptical beam into a beam circular shape, which allows the formation of diffraction patterns of good quality.
  • the device of the invention is perfectly satisfactory. Indeed, the system of the invention allows the dispersion of energy from a source of about 1 mW on a surface of the order of m 2 , thus easily complying with safety standards.
  • integrated projection device is meant a projection device in which all the constituent elements, namely the VCSEL sources and the optical elements, are assembled so as to form a unitary unitary unit.
  • FIG. 1 is a schematic overall view of a device for digitizing a subject in three dimensions
  • FIG. 2 is a diagrammatic detail view in vertical section of a bar of twelve VCSELs according to the invention.
  • FIG. 3 is a diagrammatic view from above of an example of the implantation with the electrical connections of a bar of twelve VCSELs according to the invention
  • FIG. 4 is a diagrammatic view from above of a (3 ⁇ 12) VCSEL matrix according to the invention.
  • Figure 5 is an exploded schematic view of the constituent matrix elements of the invention.
  • the device according to the present invention will now be described in detail with reference to FIGS. 1 to 5.
  • the elements The equivalents shown in the different figures will bear the same numerical references.
  • the invention relates to an optical head 1 projecting patterns of structured light 2. Its preferred use is in the field of scanning a subject 3 in three dimensions, although it can be used in other fields .
  • Figure 1 schematically shows a scanning device 4 of a subject 3 in three dimensions with its constituent elements.
  • the acquisition of the digital images is carried out by one or more digital cameras 6.
  • four or more cameras 6 and more are preferably used and at least two optical heads 1 while two cameras 6 and 6 are minus an optical head 1 are sufficient to analyze a half volume.
  • the images deformed by the subject 3 are then collected by an acquisition system 7, for example by an acquisition card determined according to the choice of the cameras 6.
  • the digital data are then processed within a processing unit.
  • image 8 (for example a computer) using a suitable analysis algorithm which makes it possible to obtain the three-dimensional shape of the subject 3 and to visualize the subject 3 in three dimensions.
  • the invention relates to an improved optical head 1, namely a new structured light projection device 2 having surface-emitting vertical cavity laser diodes (VCSEL) 9.
  • VCSEL vertical cavity laser diodes
  • FIG. 1 successively comprises three elements mounted on a support: a laser source 10, a diffractive optical collimation element 11 and a diffractive optical element for structuring the light 12.
  • the first element is the laser source 10 itself.
  • This laser source 10 comprises VCSELs 9, preferably in the form of at least one matrix 13 of VCSEL 9.
  • the VCSELs 9 are generally available in the form of strips 14 comprising several (N) VCSELs 9 which can be addressed independently .
  • a matrix 13 is made by combining M bars 14 in order to obtain (M x N) VCSEL V MN arranged on a plane as shown in FIGS. 4 and 5. It is also possible to manufacture the VCSEL 9 directly in matrix form 13 monolithically on the same substrate.
  • the matrix 13 of VCSEL 9 comprises three strips 14 of twelve VCSELs 9.
  • the VCSEL VMNs of the matrix 13 can be monochromatic or of variable wavelengths, depending on the intended application .
  • FIG. 2 An example of implantation of a strip 14 of VCSEL 9 is shown in section in FIG. 2 and in plan in FIG. 3.
  • the strip 14 of VCSEL 9 is bonded to a layer of thermal and electrical conductive material 15, for example indium. It is then positioned on a support 16 whose material is a good thermal conductor, for example silicon or a ceramic with a thermal coefficient adapted to the VCSEL substrate.
  • the power supply of each VCSEL of the strip 14 is made by electrical connections 17 made of an electrically conductive material, for example gold, and connected to a suitable power supply (not shown).
  • This conductive material may for example be deposited in a thin layer by the various techniques known in microelectronics. As shown in Fig.
  • each VCSEL 9 of the bar 14 can be connected to the overall power supply and control unit 5, or to a second power supply and control unit.
  • the second and third elements 11, 12 are phase diffractive optical elements which have the function of transforming the light emitted by the source into a structured light pattern 2 which will illuminate the subject 3 to be analyzed.
  • this projected light pattern 2 is formed of periodic fringes 19, that is to say of parallel strips. It can also be in the form of geometric figures or various symbols.
  • the first diffractive element 11 is an optical phase element whose purpose is to collimate the incident beam emitted by each VCSEL.
  • This diffractive element can be provided in such a way that the combination of the diffractive elements 11 and 12 produces in the far field a structured light 2 with the desired intensity distribution.
  • This diffractive collimation element 11 is placed in front of each VCSEL 9 of the laser source 10.
  • diffractive collimation element 11 is composed of N diffractive collimation sub-elements 21 realizing the intensity distribution as indicated in the paragraph above.
  • the diffractive collimation element 11 is itself preferably composed of at least one matrix 20 of (M x N) diffractive collimation optical sub-elements 21, C M N arranged on a plane as shown in FIG. 5.
  • the beam leaving a laser source such as a VCSEL 9 is divergent and has a Gaussian intensity distribution.
  • the structured light 2 projected by the second diffractive element 12 would not be uniform over the entire surface of the subject 3 and complicate the numerical analysis of the data.
  • the intensity remains constant.
  • a "clear" zone is constituted by a more or less dense undergrowth of luminous patterns whereas a "dark” zone contains only very few, ideally none.
  • Each diffractive collimation element 11 thus serves as a collimation lens for each VCSEL 9. It is calculated and optimized taking into account the optical and geometrical parameters of the laser source 10 used, such as the wavelength used, the aperture necessary number, the desired intensity distribution, etc. .
  • An improvement of the device could for example consist in performing an antireflection treatment on one of the faces of the component to minimize the reflection of the incident energy towards the emitting region of the VCSEL.
  • the diffractive collimation element 11 may for example be made by optical lithography and monolithically integrated on the VCSEL 9 or manufactured separately and then mounted in correspondence of the VCSEL 9 of the laser source 10 as shown in FIG. 2.
  • the diffractive collimation element 11 is mounted on pads 22 remote from the VCSELs 9, this distance substantially corresponding to the focal length.
  • These studs 22 are preferably made of resin (for example from MicroChem's SU8 resin) which is deposited by centrifugation (spinning), which makes it possible to adjust the height of the deposit. A layer of approximately 500 ⁇ m of resin is thus deposited on the matrix 13 of VCSEL 9. This layer is eliminated in places by lithography in order to locally release the VCSELs 9 and the electrical contacts 17. The remaining resin zones then form blocks. 22 which advantageously serve to mount the diffractive collimation element 11 at a precise distance from the VCSEL 9.
  • the diffractive collimation element 11 is preferably bonded to the resin pads 22, for example by means of a glue adapted, or using a pressure bonding technique at a temperature above the temperature of the glass transition of the resin.
  • the second diffractive element 12 placed after the diffractive collimation element 11, performs the far-field projection on the illuminated useful area of the subject 3 of the structured light patterns 2, for example periodic fringes 19 of offset type or of type Gray code.
  • this second diffractive element 12 by the term of diffractive element of structuring of the light 12. It will be noted that, in the case of the periodic fringes 19 of offset type or of Gray code type, the combination of the diffractive elements 11 and 12 produces a far-field structured light 2 with a uniform desired intensity distribution.
  • the diffractive structuring element 12 is itself preferably composed of at least one matrix 23 of (M ⁇ N) ) diffractive light-structuring optical sub-elements 14, SMN arranged on a plane as shown in FIG. 5.
  • a diffractive optical sub-element for structuring the light 24, SMN is preferably mounted in front of each VCSEL 9 , V M N of the laser source 10 after the diffractive optical collimation element 11.
  • the matrix 23 of light-structuring diffractive optical sub-elements 24 is designed to include the sequences necessary for the projection of the phase shift patterns (Su, S 12 , Si 3 , etc.). The same sequence can be replicated several times in matrix 23 of diffractive light structuring sub-elements 24, SMN to reduce the effect of speckle (or scab), as explained hereinafter.
  • a sequence consisting of three phase shift patterns 2 generated by the diffractive sub-elements Su, S 12 and Si 3 can be considered .
  • S 31 Sn
  • S 32 Si 2
  • the noise due to speckle is reduced by averaging several images of the same pattern 2 from separate VCSEL 9s. The average is performed either at the projection, for example by simultaneously lighting the VCSEL Vu with V 3 - I , V 12 with V32, etc., or at the image acquisition by integrating several images corresponding to the same pattern.
  • the important aspect of this configuration using matrices 13 of VCSEL 9 is the improvement of the signal to noise ratio by projection of the same pattern 2 by different VCSEL 9s.
  • the diffusion effects of the coherent source are reduced by projecting the same pattern 2 several times and collecting the corresponding patterns deformed by the subject 3.
  • the improvement of this signal / noise ratio follows the behavior in n 1/2 where n is the number of measurements made by a camera recording 6 (during the integration time for an image).
  • VCSEL 9 with high power (> 100 mW) with a high density (spacing between VCSEL ⁇ 100 ⁇ m)
  • the matrix configuration of the diffractive structuring element 12 offers indeed a great flexibility in the drawing and one can envisage a large number of possible configurations.
  • the diffractive structuring element 12 serving to project the patterns 2 operates in transmission, that is to say that the majority of the incident energy is diffracted in the transmitted diffraction order +1 (or -1 according to the chosen convention).
  • Each component performs a computationally optimized phase modulation and can be made of glass, plastic, semiconductor, metal, dielectric or any other material that achieves the desired phase modulation. This is achieved either by modulating the thickness of the material whose refractive index is constant but different from the external medium; or by modulating the refractive index of the material, the thickness being constant. We can also consider a variant that would be a combination of the two modulations.
  • each component is first produced by micro-lithography on a quartz substrate, for example with four or eight phase levels (the index being constant). This component can then serve as a master matrix for replication on a low-cost plastic substrate.
  • the diffractive structuring element 12 can then be glued to the outer surface of the diffractive collimation element 11, for example by means of an optical glue. It is also possible to envisage a particularly advantageous embodiment by which the diffractive collimation element 11 and the structuring element 12 are made in one piece, ideally obtained at low cost by molding in a transparent plastic material. In this case, we obtain a single diffractive element integrating both the collimation function and the structuring function.
  • the optical head 1 In the case where the optical head 1 is intended to be used in the context of an analysis based on the phase shift technique, it is necessary to project several patterns 2 shifted by a certain value of the phase between 0 and 2 ⁇ . This is done by projecting, for example, sinusoidal periodic fringes 19 with an offset of 0, ⁇ / 2, ⁇ and 3 ⁇ / 2.
  • the advantage of using VCSEL 9 arranged in a matrix manner and individually addressable is, in this case, obvious.
  • a different pattern 2 can be projected with a frequency limited by the modulation speed of the sources (of the order of 10 Gbps for the VCSELs) and that of the acquisition system 7. thus a system for projecting structured light sequences operating at high speed. It is obvious that the same configuration makes it possible to project more complex patterns such as fringes with a break in periodicity (Gray codes) or others without departing from the scope or scope of the invention. Depending on the intended image processing system, the use of complex patterns may improve resolution of the measurements.
  • one or more specific diffractive optical elements 11, 12 are associated with each VCSEL 9 of the matrix 13 to perform the functions. according to the characteristics of the sources (intensity profile, numerical aperture, wavelength, etc.), the desired intensity distribution on the subject 3 and the intended application.
  • optical light projection head 1 By preferentially joining the diffractive optical elements 11, 12 to the matrix 13 of VCSEL 9, it is advantageous to obtain integrated optical light projection head 1 that is integrated, inexpensive, easy to produce and does not require any prior adjustment before use. optical adjustments having been made during the manufacture of the assembly.
  • the optical heads 1 according to the preferred embodiment of the invention are therefore completely new and offer incomparable advantages over the prior art.
  • the use of the diffractive elements 11, 12 producing a structured light 2 in the far field, projected onto the subject 3 to be analyzed, is advantageous because the positioning of the subject 3 with respect to the optical head 1 is not critical. There is no need to adjust or focus before starting the measurement. A sequence of images without a subject serving as a reference for the cameras 6 may however be necessary to calibrate the system.
  • at least one, preferably two or more digital cameras 6 are positioned so as to collect the images. 3.
  • the use of the cameras 6 which record the patterns synchronously with the sources 10 makes it possible to digitally reconstruct the three-dimensional profile of the subject 3.
  • parameters such as speed and acquisition time, the projection of several patterns simultaneously, or the same pattern several times, the adjustment of intensity and wavelengths (for polychromatic sources ) are adjustable to improve resolution, contrast and signal-to-noise ratio.
  • the extraction of the three-dimensional profile from the deformation of structured light patterns 2 is done within an image processing unit 8 using a unwrapping algorithm.
  • Optimized algorithms can be used to dramatically reduce measurement time and enable real-time acquisition. It is obviously possible to implement different algorithms for unwinding the phase.
  • the acquisition time is typically less than 500 ms for the complete volume corresponding to the size of a human, which allows an almost real-time visualization of the subject.
  • the high contrast achieved by the invention it is possible to make measurements on subjects of any color.
  • Such a system comprising an optical head 1 according to the invention therefore allows accurate and fast measurements.
  • a projection of patterns 2 according to a suitable period and one or more acquisition cameras 6 having a sufficient resolution it is possible to obtain a precision of the three-dimensional measurement of the order of one millimeter with measurement sequences. of the order of the second, which is about ten to one hundred times faster than current systems.
  • the optical head 1 can nevertheless be used for many other applications.
  • a matrix 13 of VCSEL 9 associated with diffractive elements 11, 12 according to the invention could for example also be used for facial recognition for security applications.
  • the optical head 1 of the invention can be used to produce a color display which makes it possible to display an image composed of a matrix of pixels, each pixel being generated by the combination of three monochromatic beams (for example of length wave corresponding to the colors red, blue and green).
  • three monochromatic beams for example of length wave corresponding to the colors red, blue and green.
  • one or two diffractive elements are placed in front of each source and have the function of superimposing or juxtaposing the three beams to form the pixel.
  • the desired color is obtained by the intensity modulation of each of the three sources.
  • This application requires visible VCSELs that are not yet visible marketed.
  • the optical head 1 of the invention can also be used for lighting applications requiring a specific intensity distribution.
  • the diffractive element or elements placed opposite the source are designed to obtain at the operating distance, the desired intensity distribution.
  • the lighting can be monochromatic or polychromatic, in the latter case we use as before VCSEL sources emitting in the visible.
  • the lighting can also be variable over time by driving the various sources dynamically.
  • the optical head 1 of the invention can be used to project light patterns that can be used, for example, for artistic and entertainment applications.
  • the diffractive element or elements placed opposite the source are designed to obtain at the distance of use, the desired patterns. It is possible, as indicated above, to obtain a static or dynamic behavior.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Semiconductor Lasers (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

The invention relates to a device for projecting structured light in the form of fringes or other patterns using laser sources, which includes an optical head (1) including three consecutive elements mounted on a substrate, i.e. a laser source (10) including VCSELs (9), a collimation diffractive optical element (11) and a light-structuring diffractive optical element (12). The laser source includes at least one VCSEL matrix obtained by combining M bars (14) of N VCSELs in order to obtain (M x N) VCSELs. The diffractive optical elements are phase diffractive optical elements that convert the light emitted by the laser source into a structured light pattern (2). They are made of matrices of (M x N) diffractive optical sub-elements mounted in front of each VCSEL, and are connected to the laser source in order to define an integrated optical head.

Description

Dispositif de projection de lumière structurée au moyen de VCSEL et de composants optiques diffractifs de phase Structured light projection apparatus using VCSEL and phase diffractive optical components
La présente invention concerne un dispositif de projection de lumière structurée au moyen de sources lasers, telles que les diodes lasers à cavité verticale émettant par la surface (désignées par l'acronyme anglais VCSEL : vertical-cavity surface-emitting lasers) et d'éléments diffractifs. Plus particulièrement, l'invention se rapporte à une tête optique de projection de lumière structurée sous la forme de franges ou d'autres motifs et pouvant être utilisée pour réaliser une numérisation ou une mensuration tridimensionnelle de sujets en volume, tels que par exemple un objet ou un corps humain.The present invention relates to a light projection device structured by means of laser sources, such as vertical cavity-emitting laser diodes (VCSELs) and elements diffractive. More particularly, the invention relates to a light projection optical head structured in the form of fringes or other patterns and can be used to perform a scanning or a three-dimensional measurement of subjects by volume, such as for example an object or a human body.
Par projection de lumière structurée, on entend la création d'une figure de diffraction en champ lointain, cette figure étant sous la forme d'un motif.Structured light projection means the creation of a far-field diffraction pattern, this figure being in the form of a pattern.
De nos jours, la mesure et le contrôle tridimensionnels de volume se font habituellement par projection de lumière structurée sous la forme de franges sur le sujet analysé puis les franges déformées par le sujet sont enregistrées au moyen d'une caméra optique et analysées par des techniques de traitement d'image afin de remonter à une structure en trois dimensions du sujet à modéliser.Nowadays, the three-dimensional measurement and control of volume is usually done by the projection of structured light in the form of fringes on the analyzed subject then the fringes deformed by the subject are recorded by means of an optical camera and analyzed by techniques of image processing to go back to a three-dimensional structure of the subject to be modeled.
Dans l'art antérieur, la projection de franges se fait habituellement au moyen de systèmes optiques comportant des sources lasers classiques en balayage ou un projecteur avec une source blanche. Actuellement, les techniques de mesure de volume tridimensionnel par structuration spatiale de lumière peuvent se classer en trois familles :In the prior art, the projection of fringes is usually done by means of optical systems comprising conventional scanning laser sources or a projector with a white source. Currently, three-dimensional volume measurement techniques by spatial structuring of light can be classified into three families:
• la projection de franges par une lumière spatialement cohérente dont le faisceau de sortie est divisé en deux faisceaux lumineux que l'on fait interférer sur le volume étudié de façon à produire des franges d'interférence déformées (WO2005049840) ;• the projection of fringes by a spatially coherent light whose output beam is divided into two light beams that are interfered on the volume studied so as to produce deformed interference fringes (WO2005049840);
• la projection de franges par un dispositif optique comme par exemple un vidéoprojecteur ; les franges étant préalablement définies et crées à l'aide du vidéoprojecteur, la source étant une lumière blanche incohérente spatialement et polychromatique (US2002126295) ; etThe projection of fringes by an optical device such as a video projector; the fringes being previously defined and created using the video projector, the source being spatially and polychromatically incoherent white light (US2002126295); and
• la projection d'une ligne ou frange unitaire par une lumière cohérente spatialement que l'on déplace de façon régulière sur le volume tridimensionnel à mesurer.• the projection of a line or unitary fringe by a coherent light spatially that one moves in a regular way on the three-dimensional volume to be measured.
Ces franges ou motifs déformés sont repris par une ou plusieurs caméras optiques de type CCD (à couplage de charges) ou CMOS et le traitement des images permet d'extraire les dimensions du volume tridimensionnel étudié.These deformed fringes or patterns are taken up by one or more CCD (charge-coupled) or CMOS type optical cameras and the image processing makes it possible to extract the dimensions of the three-dimensional volume studied.
Il existe des techniques dérivées de celles-ci comme la projection avec plusieurs couleurs, la projection de grilles ou encore la projection avec changement de polarisation (DE19743811 , US5003187, DE3938714, EP1531318).There are techniques derived from these, such as multi-color projection, grid projection or polarization-changing projection (DE19743811, US5003187, DE3938714, EP1531318).
Parmi les techniques de reconstruction du profil tridimensionnel les plus répandues, on peut citer la projection de franges Moiré et le décalage de phase.Among the most common three-dimensional profile reconstruction techniques are Moiré fringe projection and phase shift.
Ces techniques souffrent cependant de nombreux désavantages.These techniques, however, suffer from many disadvantages.
Pour les systèmes à laser classique, le temps d'acquisition est très long, généralement supérieur à dix secondes, le balayage nécessite un déplacement mécanique, la calibration est longue et délicate, une mise au point des éléments optiques est nécessaire et les énergies lumineuses employées sont à la limite des normes de sécurité. En effet, le problème inhérent aux sources lasers classiques est celui des normes de sécurité. La norme internationale IEC 60825-1 ainsi que la norme européenne correspondante EN 60825-1 précisent l'exposition maximale permise (EMP) en fonction de la longueur d'onde et de la nature de la source (puisée ou continue). Au dessous de ce seuil, il est considéré que la radiation laser ne présente pas de danger pour l'œil et ne produit pas d'effets nuisibles à court ou à long terme.For conventional laser systems, the acquisition time is very long, generally greater than ten seconds, the scanning requires a mechanical movement, the calibration is long and delicate, a focus of the optical elements is necessary and the light energies used are at the limit of safety standards. Indeed, the problem inherent in conventional laser sources is that of safety standards. The international standard IEC 60825-1 and the corresponding European standard EN 60825-1 specify the maximum permissible exposure (EMP) according to the wavelength and the nature of the source (pulsed or continuous). Below this threshold, it is considered that laser radiation is not dangerous to the eye and does not produce harmful effects in the short or long term.
Les systèmes à source blanche permettent de respecter aisément les normes de sécurité, mais ils présentent de nombreux inconvénients tels qu'un temps d'acquisition trop long, généralement de l'ordre de quelques secondes, un contraste de franges trop faible et un angle de projection limité. En outre, ces systèmes utilisent des lentilles et nécessitent donc une mise au point optique. L'énergie mise en œuvre est de plus très importante, provoquant des problèmes de dissipation thermique et de bruit.The white-source systems make it possible to easily comply with the safety standards, but they have numerous drawbacks such as an acquisition time that is too long, generally of the order of a few seconds, a fringe contrast that is too low, and an angle of limited projection. In addition, these systems use lenses and therefore require optical focusing. The energy used is also very important, causing problems of heat dissipation and noise.
Le but de l'invention est de fournir un nouveau dispositif de projection de lumière structurée qui permette notamment une grande vitesse d'acquisition, une absence de mise au point et un fort contraste des motifs projetés tout en respectant les normes de sécurité.The object of the invention is to provide a new device for Structured light projection which notably allows a high speed of acquisition, a lack of focus and a high contrast of the projected patterns while respecting safety standards.
Pour résoudre ces problèmes techniques, le dispositif selon l'invention propose d'utiliser des diodes laser à cavité verticale émettant par la surface, également appelées VCSEL et des éléments optiques diffractifs de phase.To solve these technical problems, the device according to the invention proposes to use surface-emitting vertical cavity laser diodes, also called VCSELs and diffractive phase optical elements.
Les VCSEL sont des sources laser à faible coût et qui peuvent être produites de façon matricielle. Associer des VCSEL avec des éléments optiques diffractifs de phase à relief de surface permettant une grande flexibilité dans les distributions d'intensité projetées et pouvant être répliqués à faible coût sur des substrats plastiques permet d'obtenir une tête optique de projection de lumière structurée peu coûteuse et présentant de nombreux avantages. Parmi ces avantages, on peut notamment citer les atouts suivants :VCSELs are low-cost laser sources that can be produced in a matrix fashion. Associating VCSELs with surface-enhanced phase diffractive optical elements allowing great flexibility in projected intensity distributions and replicable at low cost on plastic substrates provides an inexpensive structured light projection optical head and having many advantages. These advantages include the following:
• La tête optique selon l'invention est un dispositif intégré qui ne comporte pas de pièces fragiles au réglage délicat et qui offre une grande robustesse d'utilisation.• The optical head according to the invention is an integrated device that does not have fragile parts with delicate adjustment and offers great robustness of use.
• Aucune mise au point optique n'est nécessaire avant utilisation car tous les éléments optiques sont intégrés et alignés de manière fixe au moment de la fabrication du dispositif de projection.• No optical focusing is necessary before use because all the optical elements are integrated and aligned in a fixed manner at the time of manufacture of the projection device.
• Le dispositif de projection de lumière structurée selon l'invention ne nécessite pas de cabine dédiée. Il est facilement transportable.• The structured light projection device according to the invention does not require a dedicated cabin. It is easily transportable.
• Le dispositif selon l'invention présente une faible consommation électrique car les VCSEL présentent un faible courant de seuil.• The device according to the invention has a low power consumption because the VCSEL have a low threshold current.
• Le dispositif selon l'invention présente une dissipation thermique efficace car les VCSEL sont montés sur un support (silicium ou autre) qui est un bon conducteur thermique.• The device according to the invention has an effective heat dissipation because the VCSEL are mounted on a support (silicon or other) which is a good thermal conductor.
• Le dispositif de projection constitue une source lumineuse avec une fréquence de modulation élevée. En utilisation, il permet donc une grande vitesse d'acquisition.• The projection device is a light source with a high modulation frequency. In use, it therefore allows a high speed of acquisition.
• Parce qu'il comprend plusieurs VCSEL, le dispositif de projection selon l'invention permet une minimisation du bruit en faisant la moyenne des mesures provenant de différentes sources de la matrice.• Because it includes several VCSEL, the projection device according to the invention allows noise minimization by averaging measurements from different sources of the matrix.
• Par le choix des sources VCSEL et de filtres sur les caméras, le contraste des motifs optiques est fortement amélioré et il est possible de faire des mesures sur des sujets de couleur quelconque.• By the choice of VCSEL sources and filters on the cameras, the The contrast of the optical patterns is greatly improved and it is possible to make measurements on subjects of any color.
• La projection des motifs est réalisée avec un grand angle, car au lieu de déformer l'image d'un objet périodique, on structure dans la zone utile de mesure une distribution d'intensité de sources lasers de façon périodique grâce à des éléments optiques diffractifs.• The projection of the patterns is carried out with a wide angle, because instead of deforming the image of a periodic object, is structured in the useful area of measurement a laser source intensity distribution periodically through optical elements diffractive.
• Les VCSEL émettant un faisceau lumineux gaussien, circulaire et moyennement divergent (typiquement 8°), avec une distribution d'intensité circulaire sans la nécessité d'utiliser des optiques de correction comme par exemple de transformation d'un faisceau de forme elliptique en faisceau de forme circulaire, ce qui permet la formation de motifs de diffraction de bonne qualité.• VCSEL emitting a Gaussian light beam, circular and moderately divergent (typically 8 °), with a circular intensity distribution without the need to use correction optics such as transforming an elliptical beam into a beam circular shape, which allows the formation of diffraction patterns of good quality.
• Du point de vue de la sécurité, le dispositif de l'invention est parfaitement satisfaisant. En effet, le système de l'invention permet la dispersion d'énergie d'une source d'environ 1 mW sur une surface de l'ordre du m2, respectant ainsi aisément les normes de sécurité.From the point of view of safety, the device of the invention is perfectly satisfactory. Indeed, the system of the invention allows the dispersion of energy from a source of about 1 mW on a surface of the order of m 2 , thus easily complying with safety standards.
Par dispositif de projection intégré on entend un dispositif de projection dont tous les éléments constituants, à savoir les sources VCSEL et les éléments optiques, sont assemblés de manière à former un tout unitaire monobloc.By integrated projection device is meant a projection device in which all the constituent elements, namely the VCSEL sources and the optical elements, are assembled so as to form a unitary unitary unit.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui va suivre, description faite en référence aux dessins annexés, dans lesquels :Other features and advantages of the invention will appear on reading the detailed description which follows, description made with reference to the accompanying drawings, in which:
• la figure 1 est une vue schématique d'ensemble d'un dispositif de numérisation d'un sujet en trois dimensions ;FIG. 1 is a schematic overall view of a device for digitizing a subject in three dimensions;
• la figure 2 est une vue de détail schématique en coupe verticale d'une barrette de douze VCSEL selon l'invention ;FIG. 2 is a diagrammatic detail view in vertical section of a bar of twelve VCSELs according to the invention;
• la figure 3 est une vue schématique de dessus d'un exemple de l'implantation avec les connexions électriques d'une barrette de douze VCSEL selon l'invention ;FIG. 3 is a diagrammatic view from above of an example of the implantation with the electrical connections of a bar of twelve VCSELs according to the invention;
• la figure 4 est une vue schématique de dessus d'une matrice de (3 x 12) VCSEL selon l'invention ; etFIG. 4 is a diagrammatic view from above of a (3 × 12) VCSEL matrix according to the invention; and
• la figure 5 est une vue schématique éclatée des éléments matriciels constitutifs de l'invention. Le dispositif selon la présente invention va maintenant être décrit de façon détaillée en référence aux figures 1 à 5. Les éléments équivalents représentés sur les différentes figures porteront les mêmes références numériques.• Figure 5 is an exploded schematic view of the constituent matrix elements of the invention. The device according to the present invention will now be described in detail with reference to FIGS. 1 to 5. The elements The equivalents shown in the different figures will bear the same numerical references.
On définira dans la suite de cette description les notions de haut et de bas, d'inférieur et de supérieur, etc. en fonction de l'orientation adoptée par le dispositif représenté sur les différentes figures. Il est évident que cette orientation ne sera pas forcément conservée en utilisation.In the rest of this description we shall define the notions of high and low, of inferior and superior, etc. according to the orientation adopted by the device shown in the various figures. It is obvious that this orientation will not necessarily be kept in use.
L'invention se rapporte à une tête optique 1 projetant des motifs de lumière structurée 2. Son utilisation préférée se situe dans le domaine de la numérisation d'un sujet 3 en trois dimensions, bien qu'elle puisse être utilisée dans d'autres domaines.The invention relates to an optical head 1 projecting patterns of structured light 2. Its preferred use is in the field of scanning a subject 3 in three dimensions, although it can be used in other fields .
La figure 1 représente de façon schématique un dispositif de numérisation 4 d'un sujet 3 en trois dimensions avec ses éléments constitutifs. Une unité d'alimentation et de commande électrique 5, par exemple sous la forme d'une carte électronique de commande et de synchronisation, définit les séquences des motifs 2 projetées par la tête optique 1 et synchronise la projection avec l'acquisition d'une ou plusieurs caméras 6. L'acquisition des images numériques est réalisée par une ou plusieurs caméras numériques 6. Pour une analyse du volume complet, on utilise préférentiellement quatre caméras 6 ou plus et au moins deux têtes optiques 1 alors que deux caméras 6 et au moins une tête optique 1 sont suffisantes pour analyser un demi-volume. Les images déformées par le sujet 3 sont ensuite collectées par un système d'acquisition 7, par exemple par une carte d'acquisition déterminée en fonction du choix des caméras 6. Les données numériques sont ensuite traitées au sein d'une unité de traitement d'image 8 (par exemple un ordinateur) en utilisant un algorithme d'analyse adéquat qui permet d'obtenir la forme tridimensionnelle du sujet 3 et de visualiser le sujet 3 en trois dimensions.Figure 1 schematically shows a scanning device 4 of a subject 3 in three dimensions with its constituent elements. A power supply and electrical control unit 5, for example in the form of an electronic control and synchronization card, defines the sequences of the patterns 2 projected by the optical head 1 and synchronizes the projection with the acquisition of a or several cameras 6. The acquisition of the digital images is carried out by one or more digital cameras 6. For a complete volume analysis, four or more cameras 6 and more are preferably used and at least two optical heads 1 while two cameras 6 and 6 are minus an optical head 1 are sufficient to analyze a half volume. The images deformed by the subject 3 are then collected by an acquisition system 7, for example by an acquisition card determined according to the choice of the cameras 6. The digital data are then processed within a processing unit. image 8 (for example a computer) using a suitable analysis algorithm which makes it possible to obtain the three-dimensional shape of the subject 3 and to visualize the subject 3 in three dimensions.
L'invention se rapporte à une tête optique 1 améliorée, à savoir un nouveau dispositif de projection de lumière structurée 2 comportant des diodes lasers à cavité verticale émettant par la surface (VCSEL) 9. Comme on le voit sur la figure 2, la tête optique 1 selon l'invention comprend successivement trois éléments montés sur un support : une source laser 10, un élément optique diffractif de collimation 11 et un élément optique diffractif de structuration de la lumière 12.The invention relates to an improved optical head 1, namely a new structured light projection device 2 having surface-emitting vertical cavity laser diodes (VCSEL) 9. As seen in FIG. 1 according to the invention successively comprises three elements mounted on a support: a laser source 10, a diffractive optical collimation element 11 and a diffractive optical element for structuring the light 12.
Le premier élément est la source laser 10 proprement dite. Cette source laser 10 comprend des VCSEL 9, se présentant préférentiellement sous la forme d'au moins une matrice 13 de VCSEL 9. Les VCSEL 9 sont généralement disponibles sous la forme de barrettes 14 comportant plusieurs (N) VCSEL 9 qui peuvent être adressés indépendamment. Une matrice 13 est réalisée en combinant M barrettes 14 afin d'obtenir (M x N) VCSEL VMN disposés sur un plan comme représenté sur les figures 4 et 5. Il est aussi possible de fabriquer les VCSEL 9 directement sous forme de matrice 13 de façon monolithique sur le même substrat.The first element is the laser source 10 itself. This laser source 10 comprises VCSELs 9, preferably in the form of at least one matrix 13 of VCSEL 9. The VCSELs 9 are generally available in the form of strips 14 comprising several (N) VCSELs 9 which can be addressed independently . A matrix 13 is made by combining M bars 14 in order to obtain (M x N) VCSEL V MN arranged on a plane as shown in FIGS. 4 and 5. It is also possible to manufacture the VCSEL 9 directly in matrix form 13 monolithically on the same substrate.
Sur la figure 4, nous avons représenté le cas préféré où la matrice 13 de VCSEL 9 comprend trois barrettes 14 de douze VCSEL 9. Les VCSEL VMN de la matrice 13 peuvent être monochromatiques ou de longueurs d'onde variable, selon l'application envisagée.In FIG. 4, we have shown the preferred case where the matrix 13 of VCSEL 9 comprises three strips 14 of twelve VCSELs 9. The VCSEL VMNs of the matrix 13 can be monochromatic or of variable wavelengths, depending on the intended application .
Un exemple d'implantation d'une barrette 14 de VCSEL 9 est représenté en coupe sur la figure 2 et en plan sur la figure 3. Sur ces figures, la barrette 14 de VCSEL 9 est collée sur une couche de matière conductrice thermique et électrique 15, par exemple de l'indium. Elle est ensuite positionnée sur un support 16 dont la matière est un bon conducteur thermique, par exemple du silicium ou une céramique avec un coefficient thermique adapté au substrat des VCSEL. L'alimentation électrique de chaque VCSEL de la barrette 14 est réalisée par des connexions électriques 17 réalisées en une matière conductrice électrique, par exemple en or, et raccordées à une alimentation électrique adaptée (non représentée). Cette matière conductrice peut par exemple être déposée en couche mince par les différentes techniques connues en microélectronique. Comme représenté sur la figure 3, les connexions électriques 17 sont prévues de sorte que chaque VCSEL 9 de la barrette 14 puisse être raccordé à l'unité d'alimentation et de commande électrique 5 globale, ou à une deuxième unité d'alimentation et de commande électrique spécifique 18 distincte, qui est avantageusement prévue afin de permettre de commander et de moduler individuellement chaque VCSEL 9. Les second et troisième éléments 11, 12 sont des éléments optiques diffractifs de phase qui ont la fonction de transformer la lumière émise par la source en un motif de lumière structurée 2 qui va éclairer le sujet 3 à analyser. Habituellement, ce motif lumineux projeté 2 est formé de franges périodiques 19, c'est-à-dire de bandes parallèles. Il peut également se présenter sous la forme de figures géométriques ou de symboles divers. De nos jours, il est parfaitement possible de projeter une lumière structurée 2 présentant des motifs extrêmement fins et/ou complexes.An example of implantation of a strip 14 of VCSEL 9 is shown in section in FIG. 2 and in plan in FIG. 3. In these figures, the strip 14 of VCSEL 9 is bonded to a layer of thermal and electrical conductive material 15, for example indium. It is then positioned on a support 16 whose material is a good thermal conductor, for example silicon or a ceramic with a thermal coefficient adapted to the VCSEL substrate. The power supply of each VCSEL of the strip 14 is made by electrical connections 17 made of an electrically conductive material, for example gold, and connected to a suitable power supply (not shown). This conductive material may for example be deposited in a thin layer by the various techniques known in microelectronics. As shown in Fig. 3, the electrical connections 17 are provided such that each VCSEL 9 of the bar 14 can be connected to the overall power supply and control unit 5, or to a second power supply and control unit. separate specific electrical control 18, which is advantageously provided to allow each VCSEL 9 to be individually controlled and modulated. The second and third elements 11, 12 are phase diffractive optical elements which have the function of transforming the light emitted by the source into a structured light pattern 2 which will illuminate the subject 3 to be analyzed. Usually, this projected light pattern 2 is formed of periodic fringes 19, that is to say of parallel strips. It can also be in the form of geometric figures or various symbols. Nowadays it is perfectly possible to project a structured light 2 having extremely fine and / or complex patterns.
Le premier élément diffractif 11 est un élément optique de phase dont le but est de collimater le faisceau incident émis par chaque VCSEL. Cet élément diffractif peut être prévu de telle sorte que la combinaison des éléments diffractifs 11 et 12 produise en champ lointain une lumière structurée 2 avec la distribution souhaitée de l'intensité. Nous désignerons ce premier élément diffractif par le terme d'élément diffractif de collimation 11.On place cet élément diffractif de collimation 11 devant chaque VCSEL 9 de la source laser 10. Dans le cas où on utilise une barrette 14 comptant N VCSEL 9, l'élément diffractif de collimation 11 est composé de N sous-éléments diffractifs de collimation 21 réalisant la distribution d'intensité comme indiqué dans le paragraphe ci-dessus.The first diffractive element 11 is an optical phase element whose purpose is to collimate the incident beam emitted by each VCSEL. This diffractive element can be provided in such a way that the combination of the diffractive elements 11 and 12 produces in the far field a structured light 2 with the desired intensity distribution. We will designate this first diffractive element by the term diffractive collimation element 11. This diffractive collimation element 11 is placed in front of each VCSEL 9 of the laser source 10. In the case where a strip 14 containing N VCSEL 9 is used, diffractive collimation element 11 is composed of N diffractive collimation sub-elements 21 realizing the intensity distribution as indicated in the paragraph above.
Dans le cas préféré où la source laser 10 est constituée de matrices 13 réalisées en combinant M barrettes 14, c'est-à-dire (M x N) VCSEL 9, l'élément diffractif de collimation 11 est lui-même préférentiellement constitué d'au moins une matrice 20 de (M x N) sous- éléments optiques diffractifs de collimation 21 , CMN disposés sur un plan comme cela est représenté sur la figure 5.In the preferred case where the laser source 10 consists of matrices 13 made by combining M bars 14, that is to say (M x N) VCSEL 9, the diffractive collimation element 11 is itself preferably composed of at least one matrix 20 of (M x N) diffractive collimation optical sub-elements 21, C M N arranged on a plane as shown in FIG. 5.
On rappelle que le faisceau sortant d'une source laser telle qu'un VCSEL 9 est divergent et présente une distribution d'intensité Gaussienne. Sans collimation préalable, la lumière structurée 2 projetée par le deuxième élément diffractif 12 ne serait pas uniforme sur toute la surface du sujet 3 et compliquerait l'analyse numérique des données. Dans le cas de la projection de franges sinusoïdales, dans la direction perpendiculaire au profil sinusoïdal d'intensité, l'intensité reste constante. Pour les motifs binaires du code Gray on définit des zones « claires » et des zones « sombres ». Typiquement, une zone « claire » est constituée par une sous grille plus ou moins dense de motifs lumineux alors qu'une zone « sombre » n'en contient que très peu, idéalement aucune. Par des moyens d'analyse et de traitement des images, on détermine par la suite pour chaque pixel de l'image enregistrée s'il appartient à une zone claire ou sombre.It is recalled that the beam leaving a laser source such as a VCSEL 9 is divergent and has a Gaussian intensity distribution. Without prior collimation, the structured light 2 projected by the second diffractive element 12 would not be uniform over the entire surface of the subject 3 and complicate the numerical analysis of the data. In the case of the projection of sinusoidal fringes, in the direction perpendicular to the sinusoidal intensity profile, the intensity remains constant. For the binary patterns of the Gray code "clear" areas and "dark" areas are defined. Typically, a "clear" zone is constituted by a more or less dense undergrowth of luminous patterns whereas a "dark" zone contains only very few, ideally none. By means of analysis and image processing, it is subsequently determined for each pixel of the recorded image whether it belongs to a light or dark area.
Chaque élément diffractif de collimation 11 sert donc de lentille de collimation pour chaque VCSEL 9. Il est calculé et optimisé en tenant compte des paramètres optiques et géométriques de la source laser 10 utilisée, comme par exemple la longueur d'onde utilisée, l'ouverture numérique nécessaire, la distribution d'intensité souhaitée, etc. . Une amélioration du dispositif pourrait par exemple consister à réaliser un traitement antireflet sur une des faces du composant pour minimiser la réflexion de l'énergie incidente vers la région émettrice du VCSEL. L'élément diffractif de collimation 11 peut par exemple être réalisé par lithographie optique et intégré de façon monolithique sur le VCSEL 9 ou fabriqué séparément puis monté en correspondance des VCSEL 9 de la source laser 10 comme représenté sur la figure 2.Each diffractive collimation element 11 thus serves as a collimation lens for each VCSEL 9. It is calculated and optimized taking into account the optical and geometrical parameters of the laser source 10 used, such as the wavelength used, the aperture necessary number, the desired intensity distribution, etc. . An improvement of the device could for example consist in performing an antireflection treatment on one of the faces of the component to minimize the reflection of the incident energy towards the emitting region of the VCSEL. The diffractive collimation element 11 may for example be made by optical lithography and monolithically integrated on the VCSEL 9 or manufactured separately and then mounted in correspondence of the VCSEL 9 of the laser source 10 as shown in FIG. 2.
Sur la figure 2, correspondant à un mode de réalisation préféré de l'invention, l'élément diffractif de collimation 11 est monté sur des plots 22 à distance des VCSEL 9, cette distance correspondant sensiblement à la distance focale. Ces plots 22 sont préférentiellement réalisés en résine (par exemple en résine SU8 de chez MicroChem) qui est déposée par centrifugation (spinning), ce qui permet d'ajuster la hauteur du dépôt. On dépose ainsi une couche d'environ 500 μm de résine sur la matrice 13 de VCSEL 9. Cette couche est éliminée par endroit par lithographie afin de libérer localement les VCSEL 9 et les contacts électriques 17. Les zones de résine restantes forment alors des plots 22 qui servent avantageusement à monter l'élément diffractif de collimation 11 à une distance précise des VCSEL 9. On peut aussi utiliser des plots rapportés constitués en verre, plastique, métal ou tout autre matériau avec un faible coefficient de dilatation thermique de telle sorte que la séparation reste quasi constante malgré les variations thermiques environnantes. L'élément diffractif de collimation 11 est préférentiellement collé sur les plots en résine 22, par exemple au moyen d'une colle adaptée, ou en utilisant une technique de collage par pression à une température supérieure à la température de la transition vitreuse de la résine.In FIG. 2, corresponding to a preferred embodiment of the invention, the diffractive collimation element 11 is mounted on pads 22 remote from the VCSELs 9, this distance substantially corresponding to the focal length. These studs 22 are preferably made of resin (for example from MicroChem's SU8 resin) which is deposited by centrifugation (spinning), which makes it possible to adjust the height of the deposit. A layer of approximately 500 μm of resin is thus deposited on the matrix 13 of VCSEL 9. This layer is eliminated in places by lithography in order to locally release the VCSELs 9 and the electrical contacts 17. The remaining resin zones then form blocks. 22 which advantageously serve to mount the diffractive collimation element 11 at a precise distance from the VCSEL 9. It is also possible to use add-on studs made of glass, plastic, metal or any other material with a low coefficient of thermal expansion, so that the separation remains almost constant despite the surrounding thermal variations. The diffractive collimation element 11 is preferably bonded to the resin pads 22, for example by means of a glue adapted, or using a pressure bonding technique at a temperature above the temperature of the glass transition of the resin.
Le second élément diffractif 12, placé après l'élément diffractif de collimation 11 , réalise la projection en champ lointain sur la zone utile éclairée du sujet 3 des motifs de lumière structurée 2, comme par exemple des franges périodiques 19 de type décalées ou de type code Gray. Nous désignerons ce second élément diffractif 12 par le terme d'élément diffractif de structuration de la lumière 12. On notera que, dans le cas des franges périodiques 19 de type décalées ou de type code Gray, la combinaison des éléments diffractifs 11 et 12 produit une lumière structurée 2 en champ lointain avec une distribution d'intensité souhaitée uniforme.The second diffractive element 12, placed after the diffractive collimation element 11, performs the far-field projection on the illuminated useful area of the subject 3 of the structured light patterns 2, for example periodic fringes 19 of offset type or of type Gray code. We will designate this second diffractive element 12 by the term of diffractive element of structuring of the light 12. It will be noted that, in the case of the periodic fringes 19 of offset type or of Gray code type, the combination of the diffractive elements 11 and 12 produces a far-field structured light 2 with a uniform desired intensity distribution.
Dans le cas préféré où la source optique 1 est constituée de matrices 13 réalisées en combinant (M x N) VCSEL 9, l'élément diffractif de structuration 12 est lui-même préférentiellement constitué d'au moins une matrice 23 de (M x N) sous-éléments optiques diffractifs de structuration de la lumière 14, SMN disposés sur un plan comme cela est représenté sur la figure 5. Ainsi, un sous-élément optique diffractif de structuration de la lumière 24, SMN est préférentiellement monté devant chaque VCSEL 9, VMN de la source laser 10 après l'élément optique diffractif de collimation 11.In the preferred case where the optical source 1 consists of matrices 13 made by combining (M x N) VCSEL 9, the diffractive structuring element 12 is itself preferably composed of at least one matrix 23 of (M × N) ) diffractive light-structuring optical sub-elements 14, SMN arranged on a plane as shown in FIG. 5. Thus, a diffractive optical sub-element for structuring the light 24, SMN is preferably mounted in front of each VCSEL 9 , V M N of the laser source 10 after the diffractive optical collimation element 11.
En effet, selon un mode de réalisation préféré de l'invention, la matrice 23 de sous-éléments optiques diffractifs de structuration de la lumière 24 est conçue de façon à inclure les séquences nécessaires pour la projection des motifs de décalage de phase (Su, S12, Si3, etc.). La même séquence peut être répliquée plusieurs fois dans la matrice 23 de sous-éléments optiques diffractifs de structuration de la lumière 24, SMN afin de réduire l'effet du speckle (ou tavelures), comme expliqué ci-après.Indeed, according to a preferred embodiment of the invention, the matrix 23 of light-structuring diffractive optical sub-elements 24 is designed to include the sequences necessary for the projection of the phase shift patterns (Su, S 12 , Si 3 , etc.). The same sequence can be replicated several times in matrix 23 of diffractive light structuring sub-elements 24, SMN to reduce the effect of speckle (or scab), as explained hereinafter.
A titre d'exemple, on peut considérer une séquence constituée de trois motifs de décalage de phase 2 générés par les sous- éléments diffractifs Su, S12 et Si3. En posant S31=Sn, S32=Si2, S33=S13 on obtient la même séquence avec une distribution de speckle différente. Le bruit dû au speckle est réduit en faisant la moyenne de plusieurs images du même motif 2 provenant de VCSEL 9 distincts. La moyenne est effectuée soit au niveau de la projection, par exemple en allumant simultanément les VCSEL Vu avec V3-I, V12 avec V32 etc., soit au niveau de l'acquisition d'image en intégrant plusieurs images correspondant au même motif. L'aspect important de cette configuration utilisant des matrices 13 de VCSEL 9 est l'amélioration du rapport du signal sur bruit par projection du même motif 2 par des VCSEL 9 différentes. Dans ce cas les effets de diffusion de la source cohérente sont réduits en projetant plusieurs fois le même motif 2 et en collectant les motifs correspondants déformés par le sujet 3. L'amélioration de ce rapport signal/bruit suit le comportement en n1/2 où n est le nombre de mesures réalisées par un enregistrement sur caméra 6 (durant le temps d'intégration pour une image).By way of example, a sequence consisting of three phase shift patterns 2 generated by the diffractive sub-elements Su, S 12 and Si 3 can be considered . By putting S 31 = Sn, S 32 = Si 2 , S 33 = S 13 we obtain the same sequence with a different speckle distribution. The noise due to speckle is reduced by averaging several images of the same pattern 2 from separate VCSEL 9s. The average is performed either at the projection, for example by simultaneously lighting the VCSEL Vu with V 3 - I , V 12 with V32, etc., or at the image acquisition by integrating several images corresponding to the same pattern. The important aspect of this configuration using matrices 13 of VCSEL 9 is the improvement of the signal to noise ratio by projection of the same pattern 2 by different VCSEL 9s. In this case, the diffusion effects of the coherent source are reduced by projecting the same pattern 2 several times and collecting the corresponding patterns deformed by the subject 3. The improvement of this signal / noise ratio follows the behavior in n 1/2 where n is the number of measurements made by a camera recording 6 (during the integration time for an image).
Dans le cas de l'utilisation de VCSEL 9 de forte puissance (> 100 mW) avec une grande densité (espacement entre les VCSEL < 100 μm), il est préférable de ne pas utiliser simultanément deux VCSEL 9 adjacents pour éviter les éventuels effets de type crosstalk thermique. Il suffit alors d'en tenir compte dans le dessin de la matrice 23 de sous- éléments optiques diffractifs de structuration de la lumière 24 et d'espacer suffisamment les sous-éléments de structuration de la lumière 24 qui vont fonctionner simultanément. La configuration matricielle de l'élément diffractif de structuration 12 offre en effet une grande flexibilité dans le dessin et on peut envisager un grand nombre de configurations possibles. Selon un mode de réalisation préféré de l'invention, tout comme l'élément diffractif de collimation 11 , l'élément diffractif de structuration 12 servant à la projection des motifs 2 fonctionne en transmission, c'est-à-dire que la majorité de l'énergie incidente est diffractée dans l'ordre de diffraction transmis +1 (ou -1 suivant la convention choisie). Chaque composant réalise une modulation de phase optimisée par calcul et peut être réalisé en verre, plastique, semiconducteur, métal, diélectrique ou tout autre matériau réalisant la modulation de phase voulue. Celle-ci est réalisée soit en modulant l'épaisseur du matériau dont l'indice de réfraction est constant mais différent du milieu extérieur ; soit en modulant l'indice de réfraction du matériau, l'épaisseur étant constante. On peut également envisager une variante qui serait une combinaison des deux modulations. Selon un mode de réalisation préféré de l'invention, chaque composant est d'abord fabriqué par micro-lithographie sur un substrat en quartz, par exemple avec quatre ou huit niveaux de phase (l'indice étant constant). Ce composant peut ensuite servir de matrice maître pour la réplication sur un substrat en plastique à bas coût.In the case of using VCSEL 9 with high power (> 100 mW) with a high density (spacing between VCSEL <100 μm), it is preferable not to use two adjacent VCSEL 9 simultaneously to avoid the possible effects of thermal crosstalk type. It suffices then to take it into account in the design of the matrix 23 of diffractive optical sub-elements for structuring the light 24 and to sufficiently space out the light structuring sub-elements 24 which will operate simultaneously. The matrix configuration of the diffractive structuring element 12 offers indeed a great flexibility in the drawing and one can envisage a large number of possible configurations. According to a preferred embodiment of the invention, just like the diffractive collimation element 11, the diffractive structuring element 12 serving to project the patterns 2 operates in transmission, that is to say that the majority of the incident energy is diffracted in the transmitted diffraction order +1 (or -1 according to the chosen convention). Each component performs a computationally optimized phase modulation and can be made of glass, plastic, semiconductor, metal, dielectric or any other material that achieves the desired phase modulation. This is achieved either by modulating the thickness of the material whose refractive index is constant but different from the external medium; or by modulating the refractive index of the material, the thickness being constant. We can also consider a variant that would be a combination of the two modulations. According to a preferred embodiment of the invention, each component is first produced by micro-lithography on a quartz substrate, for example with four or eight phase levels (the index being constant). This component can then serve as a master matrix for replication on a low-cost plastic substrate.
L'élément diffractif de structuration 12 peut alors être collé sur la surface externe de l'élément diffractif de collimation 11 par exemple au moyen d'une colle optique. On peut également envisager un mode de réalisation particulièrement avantageux par lequel l'élément diffractif de collimation 11 et celui de structuration 12 seraient fabriqués d'une seule pièce monobloc, idéalement obtenue à bas coût par moulage en matière plastique transparente. Dans ce cas, on obtient un seul élément diffractif intégrant à la fois la fonction de collimation et celle de structuration.The diffractive structuring element 12 can then be glued to the outer surface of the diffractive collimation element 11, for example by means of an optical glue. It is also possible to envisage a particularly advantageous embodiment by which the diffractive collimation element 11 and the structuring element 12 are made in one piece, ideally obtained at low cost by molding in a transparent plastic material. In this case, we obtain a single diffractive element integrating both the collimation function and the structuring function.
Dans le cas où la tête optique 1 est prévue pour être utilisée dans le cadre d'une analyse basée sur la technique de décalage de phase, il convient de projeter plusieurs motifs 2 décalés d'une certaine valeur de la phase comprise entre 0 et 2π. Ceci est réalisé en projetant, par exemple, des franges périodiques 19 sinusoïdales avec un décalage de 0, π/2, π et 3π/2. L'avantage de l'utilisation de VCSEL 9 disposés de façon matricielle et adressables individuellement est, dans ce cas, évident.In the case where the optical head 1 is intended to be used in the context of an analysis based on the phase shift technique, it is necessary to project several patterns 2 shifted by a certain value of the phase between 0 and 2π . This is done by projecting, for example, sinusoidal periodic fringes 19 with an offset of 0, π / 2, π and 3π / 2. The advantage of using VCSEL 9 arranged in a matrix manner and individually addressable is, in this case, obvious.
Pour chaque VCSEL 9 de la matrice 13, un motif différent 2 peut être projeté avec une fréquence limitée par la vitesse de modulation des sources (de l'ordre de 10 Gbps pour les VCSEL) et celle du système d'acquisition 7. On obtient ainsi un système de projection des séquences de lumière structurée fonctionnant à haute vitesse. Il est évident que la même configuration permet de projeter des motifs plus complexes tels que des franges avec une rupture de périodicité (codes Gray) ou autres sans sortir ni de la portée ni du cadre de l'invention. Selon le système de traitement d'image prévu, l'utilisation de motifs complexes pourrait améliorer la résolution des mesures.For each VCSEL 9 of the matrix 13, a different pattern 2 can be projected with a frequency limited by the modulation speed of the sources (of the order of 10 Gbps for the VCSELs) and that of the acquisition system 7. thus a system for projecting structured light sequences operating at high speed. It is obvious that the same configuration makes it possible to project more complex patterns such as fringes with a break in periodicity (Gray codes) or others without departing from the scope or scope of the invention. Depending on the intended image processing system, the use of complex patterns may improve resolution of the measurements.
Ainsi, selon un mode de réalisation préféré de l'invention, un ou plusieurs éléments optiques diffractifs spécifiques 11, 12 sont associés à chaque VCSEL 9 de la matrice 13 pour réaliser les fonctions précitées selon les caractéristiques des sources (profil d'intensité, ouverture numérique, longueur d'onde, etc.), la distribution d'intensité souhaitée sur le sujet 3 et l'application envisagée.Thus, according to a preferred embodiment of the invention, one or more specific diffractive optical elements 11, 12 are associated with each VCSEL 9 of the matrix 13 to perform the functions. according to the characteristics of the sources (intensity profile, numerical aperture, wavelength, etc.), the desired intensity distribution on the subject 3 and the intended application.
En solidarisant préférentiellement les éléments optiques diffractifs 11 , 12 à la matrice 13 de VCSEL 9, on obtient avantageusement des têtes optiques 1 de projection de lumière structurée 2 intégrées, peu coûteuses, faciles à produire et ne nécessitant aucun réglage préalable avant utilisation, les différents réglages optiques ayant été effectués lors de la fabrication de l'ensemble. Les têtes optiques 1 selon le mode de réalisation préféré de l'invention sont donc totalement nouvelles et offrent des avantages incomparables par rapport à l'art antérieur.By preferentially joining the diffractive optical elements 11, 12 to the matrix 13 of VCSEL 9, it is advantageous to obtain integrated optical light projection head 1 that is integrated, inexpensive, easy to produce and does not require any prior adjustment before use. optical adjustments having been made during the manufacture of the assembly. The optical heads 1 according to the preferred embodiment of the invention are therefore completely new and offer incomparable advantages over the prior art.
L'utilisation des éléments diffractifs 11 , 12 produisant une lumière structurée 2 en champ lointain, projetée sur le sujet 3 à analyser, est avantageuse car le positionnement du sujet 3 par rapport à la tête optique 1 n'est pas critique. Il n'y a donc pas besoin d'effectuer de réglages ou une mise au point avant de commencer la mesure. Une séquence d'images sans sujet servant de référence pour les caméras 6 peut cependant être nécessaire pour calibrer le système. Dans le cas d'une utilisation de l'invention pour la numérisation d'un sujet 3 en trois dimensions, tel que représenté sur la figure 1 , au moins une, préférablement deux ou plusieurs caméras numériques 6 sont positionnées de façon à collecter les images des motifs déformés par le sujet 3. L'utilisation des caméras 6 qui enregistrent les motifs de façon synchronisée avec les sources 10 permet de reconstruire numériquement le profil en trois dimensions du sujet 3.The use of the diffractive elements 11, 12 producing a structured light 2 in the far field, projected onto the subject 3 to be analyzed, is advantageous because the positioning of the subject 3 with respect to the optical head 1 is not critical. There is no need to adjust or focus before starting the measurement. A sequence of images without a subject serving as a reference for the cameras 6 may however be necessary to calibrate the system. In the case of a use of the invention for the digitization of a subject 3 in three dimensions, as shown in FIG. 1, at least one, preferably two or more digital cameras 6 are positioned so as to collect the images. 3. The use of the cameras 6 which record the patterns synchronously with the sources 10 makes it possible to digitally reconstruct the three-dimensional profile of the subject 3.
On peut dans ce cas prévoir un système de synchronisation de l'acquisition des images par les caméras 6 et de la modulation des VCSEL 9 de la matrice 13 par l'unité d'alimentation et de commande électrique 5, 18 des VCSEL 9. Selon l'application souhaitée, les paramètres tels que la vitesse et le temps d'acquisition, la projection de plusieurs motifs simultanément, ou du même motif plusieurs fois, l'ajustement de l'intensité et des longueurs d'onde (pour des sources polychromatiques) sont ajustables afin d'améliorer la résolution, le contraste et le rapport signal sur bruit.In this case, it is possible to provide a system for synchronizing the acquisition of the images by the cameras 6 and the modulation of the VCSEL 9s of the matrix 13 by the electrical power supply and control unit 5, 18 of the VCSEL 9. According to the desired application, parameters such as speed and acquisition time, the projection of several patterns simultaneously, or the same pattern several times, the adjustment of intensity and wavelengths (for polychromatic sources ) are adjustable to improve resolution, contrast and signal-to-noise ratio.
L'extraction du profil tridimensionnel à partir de la déformation de motifs de lumière structurée 2 se fait au sein d'une unité de traitement d'image 8 en utilisant un algorithme de déroulement de la phase (unwrapping). Des algorithmes optimisés peuvent être utilisés pour réduire considérablement le temps de mesure et permettre une acquisition en temps réel. Il est évidemment possible d'implémenter différents algorithmes de déroulement de la phase.The extraction of the three-dimensional profile from the deformation of structured light patterns 2 is done within an image processing unit 8 using a unwrapping algorithm. Optimized algorithms can be used to dramatically reduce measurement time and enable real-time acquisition. It is obviously possible to implement different algorithms for unwinding the phase.
Avec un tel système, le temps d'acquisition est typiquement inférieur à 500 ms pour le volume complet correspondant à la taille d'un humain, ce qui permet une visualisation quasiment en temps réel du sujet. En outre, en raison du fort contraste obtenu grâce à l'invention, il est possible de faire des mesures sur des sujets de couleur quelconque.With such a system, the acquisition time is typically less than 500 ms for the complete volume corresponding to the size of a human, which allows an almost real-time visualization of the subject. In addition, because of the high contrast achieved by the invention, it is possible to make measurements on subjects of any color.
Un tel système comprenant une tête optique 1 selon l'invention permet donc des mesures précises et rapides. Ainsi, grâce à une projection de motifs 2 selon une période adaptée et une ou plusieurs caméras d'acquisition 6 présentant une résolution suffisante, il est possible d'obtenir une précision de la mesure tridimensionnelle de l'ordre du millimètre avec des séquences de mesure de l'ordre de la seconde, ce qui est environ dix à cent fois plus rapide que les systèmes actuels.Such a system comprising an optical head 1 according to the invention therefore allows accurate and fast measurements. Thus, thanks to a projection of patterns 2 according to a suitable period and one or more acquisition cameras 6 having a sufficient resolution, it is possible to obtain a precision of the three-dimensional measurement of the order of one millimeter with measurement sequences. of the order of the second, which is about ten to one hundred times faster than current systems.
Bien que conçue avantageusement pour projeter une lumière structurée utilisée pour réaliser une numérisation ou une mensuration tridimensionnelle de sujets 3 en volume, la tête optique 1 selon l'invention peut néanmoins servir à de nombreuses autres applications. En effet, une matrice 13 de VCSEL 9 associée à des éléments diffractifs 11 , 12 selon l'invention pourrait par exemple également servir à la reconnaissance faciale pour des applications sécuritaires.Although advantageously designed to project a structured light used to perform digitization or three-dimensional measurement of subjects in volume, the optical head 1 according to the invention can nevertheless be used for many other applications. Indeed, a matrix 13 of VCSEL 9 associated with diffractive elements 11, 12 according to the invention could for example also be used for facial recognition for security applications.
De même, la tête optique 1 de l'invention peut être employée pour réaliser un afficheur couleur qui permet d'afficher une image composée d'une matrice de pixels, chaque pixel étant généré par la combinaison de trois faisceaux monochromatiques (par exemple de longueur d'onde correspondant aux couleurs rouge, bleu et vert). Dans ce cas, un ou deux éléments diffractifs sont placés devant chaque source et ont pour fonction de superposer ou de juxtaposer les trois faisceaux pour former le pixel. La couleur souhaitée est obtenue par la modulation en intensité de chacune des trois sources. Cette application nécessite des VCSEL émettant dans le visible qui ne sont pas encore commercialisés.Similarly, the optical head 1 of the invention can be used to produce a color display which makes it possible to display an image composed of a matrix of pixels, each pixel being generated by the combination of three monochromatic beams (for example of length wave corresponding to the colors red, blue and green). In this case, one or two diffractive elements are placed in front of each source and have the function of superimposing or juxtaposing the three beams to form the pixel. The desired color is obtained by the intensity modulation of each of the three sources. This application requires visible VCSELs that are not yet visible marketed.
La tête optique 1 de l'invention peut également être employée pour des applications d'éclairage nécessitant une distribution d'intensité spécifique. Dans ce cas, le ou les éléments diffractifs placées en regard de la source, sont conçus afin d'obtenir à la distance d'utilisation, la distribution d'intensité souhaitée. L'éclairage peut être monochromatique ou polychromatique, dans ce dernier cas on utilise comme auparavant des sources VCSEL émettant dans le visible. L'éclairage peut aussi être variable dans le temps en pilotant les différentes sources de façon dynamique.En outre, la tête optique 1 de l'invention peut être employée pour projeter des motifs lumineux utilisables par exemple pour des applications artistiques et de divertissement. Dans ce cas, le ou les éléments diffractifs placés en regard de la source, sont conçus afin d'obtenir à la distance d'utilisation, les motifs souhaités. On peut, comme indiqué ci-dessus, obtenir un comportement statique ou dynamique.The optical head 1 of the invention can also be used for lighting applications requiring a specific intensity distribution. In this case, the diffractive element or elements placed opposite the source, are designed to obtain at the operating distance, the desired intensity distribution. The lighting can be monochromatic or polychromatic, in the latter case we use as before VCSEL sources emitting in the visible. The lighting can also be variable over time by driving the various sources dynamically. In addition, the optical head 1 of the invention can be used to project light patterns that can be used, for example, for artistic and entertainment applications. In this case, the diffractive element or elements placed opposite the source, are designed to obtain at the distance of use, the desired patterns. It is possible, as indicated above, to obtain a static or dynamic behavior.
De manière évidente, l'invention ne se limite pas aux modes de réalisation préférentiels décrits précédemment et représentés sur les différentes figures, l'homme du métier pouvant y apporter de nombreuses modifications et imaginer d'autres variantes et utilisations sans sortir ni de la portée, ni du cadre de l'invention. Obviously, the invention is not limited to the preferred embodiments described above and shown in the various figures, the skilled person can make many modifications and imagine other variants and uses without leaving the scope neither of the scope of the invention.

Claims

REVENDICATIONS
1. Dispositif de projection de lumière structurée sous la forme de franges ou d'autres motifs au moyen de sources laser, caractérisé en ce qu'il comporte une tête optique (1) comprenant successivement :1. Apparatus for projecting structured light in the form of fringes or other patterns by means of laser sources, characterized in that it comprises an optical head (1) successively comprising:
. une source laser (10) comprenant des VCSEL (9), . un élément optique diffractif de collimation (11), et . un élément optique diffractif de structuration de la lumière (12) ; caractérisé en ce que les éléments optiques diffractifs (11, 12) sont des éléments optiques diffractifs de phase transformant la lumière émise par la source laser (10) en un motif de lumière structurée (2), en ce que les éléments optiques diffractifs (11 , 12) diffractent la majorité de l'énergie incidente dans l'ordre de diffraction transmis +1 (ou -1 suivant la convention choisie) ; et en ce que ces éléments optiques diffractifs (11, 12) sont solidarisés à la source laser (10) de manière à former une tête optique (1) intégrée.. a laser source (10) comprising VCSEL (9), a collimating diffractive optical element (11), and a diffractive light structuring optical element (12); characterized in that the diffractive optical elements (11, 12) are phase diffractive optical elements transforming the light emitted by the laser source (10) into a structured light pattern (2), in that the diffractive optical elements (11) , 12) diffract the majority of the incident energy in the transmitted diffraction order +1 (or -1 according to the chosen convention); and in that said diffractive optical elements (11, 12) are secured to the laser source (10) so as to form an integrated optical head (1).
2. Dispositif selon la revendication 1 , caractérisé en ce que la source laser (10) comprend au moins une matrice (13) de VCSEL (9).2. Device according to claim 1, characterized in that the laser source (10) comprises at least one matrix (13) of VCSEL (9).
3. Dispositif selon la revendication précédente, caractérisé en ce que la matrice (13) de VCSEL (9) est réalisée en combinant M barrettes (14) de N VCSEL (9) afin d'obtenir (M x N) VCSEL (9, VMN). 4. Dispositif selon la revendication 1, caractérisé en ce que chaque VCSEL (9) est raccordé à une unité d'alimentation et de commande électrique (5, 18) permettant de le commander et de la moduler individuellement.3. Device according to the preceding claim, characterized in that the matrix (13) of VCSEL (9) is produced by combining M bars (14) of N VCSEL (9) in order to obtain (M x N) VCSEL (9, V MN ). 4. Device according to claim 1, characterized in that each VCSEL (9) is connected to a power supply unit and electrical control (5, 18) for controlling and modulating individually.
5. Dispositif selon la revendication 1 , caractérisé en ce que le motif de lumière structuré (2) est formé de franges périodiques5. Device according to claim 1, characterized in that the pattern of structured light (2) is formed of periodic fringes
(19).(19).
6. Dispositif selon la revendication précédente, caractérisé en ce que les franges périodiques (19) sont de type décalées ou de type code Gray. 7. Dispositif selon la revendication 1 , caractérisé en ce que le motif de lumière structuré (2) est une figure géométrique ou des symboles divers.6. Device according to the preceding claim, characterized in that the periodic fringes (19) are offset type or gray code type. Device according to claim 1, characterized in that the structured light pattern (2) is a geometrical figure or various symbols.
8. Dispositif selon la revendication 1 , caractérisé en ce que l'élément optique diffractif de collimation (11) est un élément optique de phase qui collimate le faisceau incident émis par chaque VCSEL de telle sorte que la combinaison des éléments diffractifs 11 et 12 produise en champ lointain une lumière structurée 2 avec la distribution souhaitée de l'intensité.8. Device according to claim 1, characterized in that the diffractive optical collimation element (11) is a phase optical element which collimates the incident beam emitted by each VCSEL so that the combination of the diffractive elements 11 and 12 produces in the far field a structured light 2 with the desired intensity distribution.
9. Dispositif selon la revendication 8, caractérisé en ce que, dans le cas des franges périodiques (19), de type décalées ou de type code Gray, la combinaison des éléments diffractifs 11 et 12 produit une lumière structurée 2 en champ lointain avec une distribution d'intensité souhaitée uniforme.9. Device according to claim 8, characterized in that, in the case of periodic fringes (19), shifted type or Gray code type, the combination of the diffractive elements 11 and 12 produces a structured light 2 far field with a desired uniform intensity distribution.
10. Dispositif selon la revendication 3, caractérisé en ce que l'élément diffractif de collimation (11) est constitué d'au moins une matrice (20) de (M x N) sous-éléments optiques diffractifs de collimation (21 , CMN) et en ce qu'un sous-élément optique diffractif de collimation (21, CMN) est monté devant chaque VCSEL (9, VMN) de la source laser (10).10. Device according to claim 3, characterized in that the diffractive collimation element (11) consists of at least one matrix (20) of (M x N) diffractive collimation optical sub-elements (21, CMN). and in that a diffractive collimation optical sub-element (21, CMN) is mounted in front of each VCSEL (9, V M N) of the laser source (10).
11. Dispositif selon la revendication 3, caractérisé en ce que l'élément diffractif de structuration de la lumière (12) est constitué d'au moins une matrice (23) de (M x N) sous-éléments optiques diffractifs de structuration de la lumière (24, SMN) et en ce qu'un sous-élément optique diffractif de structuration de la lumière (24, SMN) est monté devant chaque VCSEL (9, VMN) de la source laser (10), après l'élément optique diffractif de collimation (11).11. Device according to claim 3, characterized in that the light structuring diffractive element (12) consists of at least one matrix (23) of (M x N) diffractive optical sub-elements structuring the light (24, SMN) and that a light structuring diffractive optical sub-element (24, S M N) is mounted in front of each VCSEL (9, V M N) of the laser source (10), after the diffractive optical collimation element (11).
12. Dispositif selon la revendication précédente, caractérisé en ce que la matrice (23) de sous-éléments optiques diffractifs de structuration de la lumière (24, SMN) comporte les séquences nécessaires pour la projection des motifs de décalage de phase.12. Device according to the preceding claim, characterized in that the matrix (23) of diffractive optical sub-elements of light structuring (24, S MN ) comprises the sequences necessary for the projection of the phase shift patterns.
13. Dispositif selon la revendication 1 , caractérisé en ce que les éléments optiques diffractifs (11 , 12) sont fabriqués par microlithographie sur un substrat en quartz servant ensuite de maître pour la réplication sur un substrat en plastique. 14. Dispositif selon la revendication 1 , caractérisé en ce que les éléments optiques diffractifs (11 , 12) forment un ensemble d'une seule pièce monobloc.13. Device according to claim 1, characterized in that the diffractive optical elements (11, 12) are manufactured by microlithography on a quartz substrate which then serves as a master for replication on a plastic substrate. 14. Device according to claim 1, characterized in that the diffractive optical elements (11, 12) form a set of a single piece.
15. Dispositif selon la revendication 1 , caractérisé en ce que l'élément diffractif de collimation (11) est monté sur des plots (22) à distance des VCSEL (9), cette distance correspondant sensiblement à la distance focale.15. Device according to claim 1, characterized in that the collimating diffractive element (11) is mounted on pads (22) away from the VCSEL (9), this distance substantially corresponding to the focal length.
16. Dispositif selon la revendication précédente et la revendication 2, caractérisé en ce que les plots (22) sont réalisés en résine déposée par centrifugation sur la matrice (13) de VCSEL (9), cette couche de résine étant ensuite éliminée par endroit par lithographie afin de libérer localement les VCSEL (9) et les contacts électriques (17) nécessaires à leur alimentation, les zones de résine restantes formant alors les plots (22).16. Device according to the preceding claim and claim 2, characterized in that the pads (22) are made of resin deposited by centrifugation on the matrix (13) of VCSEL (9), this resin layer is then removed in places by lithography to locally release the VCSEL (9) and the electrical contacts (17) necessary for their supply, the remaining resin areas then forming the pads (22).
17. Dispositif selon la revendication 15 caractérisé en ce que l'élément diffractif de collimation (11) est collé sur les plots (22). 18. Dispositif selon la revendication 1 , caractérisé en ce que l'élément diffractif de structuration (12) est collé sur la surface externe de l'élément diffractif de collimation (11).17. Device according to claim 15 characterized in that the collimating diffractive element (11) is bonded to the pads (22). 18. Device according to claim 1, characterized in that the structuring diffractive element (12) is bonded to the outer surface of the diffractive collimation element (11).
20. Application d'un dispositif de projection de lumière structurée selon l'une quelconque des revendications précédentes dans un système optique de numérisation ou de mensuration tridimensionnelle de sujets en volume. 20. Application of a structured light projection device according to any one of the preceding claims in an optical system for digitizing or three-dimensional measurement of subjects by volume.
PCT/FR2009/000705 2008-06-12 2009-06-11 Device for projecting structured light using vcsels and phase diffractive optical components WO2009153446A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0803291A FR2932562B1 (en) 2008-06-12 2008-06-12 LIGHT PROJECTION DEVICE STRUCTURED BY MEANS OF VCSEL AND PHASE DIFFRACTIVE OPTICAL COMPONENTS.
FR08/03291 2008-06-12

Publications (3)

Publication Number Publication Date
WO2009153446A2 true WO2009153446A2 (en) 2009-12-23
WO2009153446A3 WO2009153446A3 (en) 2010-03-11
WO2009153446A4 WO2009153446A4 (en) 2010-05-14

Family

ID=40332889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/000705 WO2009153446A2 (en) 2008-06-12 2009-06-11 Device for projecting structured light using vcsels and phase diffractive optical components

Country Status (2)

Country Link
FR (1) FR2932562B1 (en)
WO (1) WO2009153446A2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2837907A1 (en) 2013-08-14 2015-02-18 Telmat Industrie (Société Anonyme) Method and device for automatic acquisition of three-dimensional surfaces
WO2015059705A1 (en) * 2013-10-23 2015-04-30 Pebbles Ltd. Three dimensional depth mapping using dynamic structured light
US9057826B2 (en) 2013-01-31 2015-06-16 Google Inc. See-through near-to-eye display with eye prescription
CN105323508A (en) * 2015-11-24 2016-02-10 深圳奥比中光科技有限公司 Image information processing device and laser module used therein
CN105372905A (en) * 2015-11-24 2016-03-02 深圳奥比中光科技有限公司 Laser module and image information acquisition apparatus
CN105450949A (en) * 2015-12-24 2016-03-30 深圳奥比中光科技有限公司 Image information processing device with compact structure and laser module used therein
US9366869B2 (en) 2014-11-10 2016-06-14 Google Inc. Thin curved eyepiece for see-through head wearable display
CN105705964A (en) * 2013-10-09 2016-06-22 微软技术许可有限责任公司 Illumination modules that emit structured light
US20160191867A1 (en) * 2012-03-26 2016-06-30 Mantisvision Ltd. Structured light projector
US9389422B1 (en) 2013-12-23 2016-07-12 Google Inc. Eyepiece for head wearable display using partial and total internal reflections
US9395544B2 (en) 2014-03-13 2016-07-19 Google Inc. Eyepiece with switchable reflector for head wearable display
US9442291B1 (en) 2013-06-28 2016-09-13 Google Inc. Segmented diffractive optical elements for a head wearable display
US9459455B2 (en) 2013-12-19 2016-10-04 Google Inc. See-through eyepiece for head wearable display
EP3076125A1 (en) 2015-03-30 2016-10-05 Telmat Industrie (Société Anonyme) System and method for automatically acquiring and digitally reproducing three-dimensional surfaces
US9553423B2 (en) 2015-02-27 2017-01-24 Princeton Optronics Inc. Miniature structured light illuminator
US9632312B1 (en) 2013-04-30 2017-04-25 Google Inc. Optical combiner with curved diffractive optical element
US9870068B2 (en) 2010-09-19 2018-01-16 Facebook, Inc. Depth mapping with a head mounted display using stereo cameras and structured light
CN107637074A (en) * 2015-03-22 2018-01-26 脸谱公司 Drawn using the depth of stereo camera and the head-mounted display of structured light
WO2018033917A1 (en) * 2016-08-18 2018-02-22 Ramot At Tel-Aviv University Ltd. Structured light projector
US9915823B1 (en) 2014-05-06 2018-03-13 Google Llc Lightguide optical combiner for head wearable display
US9946089B2 (en) 2015-10-21 2018-04-17 Princeton Optronics, Inc. Generation of coded structured light patterns using VCSEL arrays
CN108303757A (en) * 2018-03-12 2018-07-20 广东欧珀移动通信有限公司 Laser projection module, depth camera and electronic device
CN108596145A (en) * 2018-05-09 2018-09-28 深圳阜时科技有限公司 Pattern projecting device, image acquiring device, face identification device and electronic equipment
US10146054B2 (en) 2015-07-06 2018-12-04 Google Llc Adding prescriptive correction to eyepieces for see-through head wearable displays
US10162180B2 (en) 2015-06-04 2018-12-25 Google Llc Efficient thin curved eyepiece for see-through head wearable display
US10288417B2 (en) 2011-08-09 2019-05-14 Apple Inc. Overlapping pattern projector
US10411437B2 (en) 2017-08-31 2019-09-10 Apple Inc. Creating arbitrary patterns on a 2-D uniform grid VCSEL array
US10429646B2 (en) 2015-10-28 2019-10-01 Google Llc Free space optical combiner with prescription integration
US10571709B2 (en) 2010-02-02 2020-02-25 Apple Inc. Integrated structured-light projector
KR20200043952A (en) * 2012-03-15 2020-04-28 애플 인크. Projectors of structured light
US10690488B2 (en) 2011-08-09 2020-06-23 Apple Inc. Projectors of structured light
CN111366906A (en) * 2020-02-01 2020-07-03 上海鲲游光电科技有限公司 Projection apparatus and segmented TOF apparatus, manufacturing method thereof, and electronic apparatus
WO2020216032A1 (en) * 2019-04-23 2020-10-29 维沃移动通信有限公司 Fixing base, laser projection module and electronic device
WO2021069400A1 (en) 2019-10-07 2021-04-15 Trinamix Gmbh Projector for illuminating at least one object
US11396994B1 (en) 2021-02-16 2022-07-26 Ii-Vi Delaware, Inc. Laser light source having diffuser element and light diverging optic
CN115469451A (en) * 2022-09-22 2022-12-13 嘉兴驭光光电科技有限公司 Diffraction optical element of high-uniformity lattice, design method thereof and projector

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105323507B (en) * 2015-11-24 2019-01-18 深圳奥比中光科技有限公司 A kind of image information processing device and it is used for mode of laser group therein
CN110095882A (en) * 2018-01-29 2019-08-06 舜宇光学(浙江)研究院有限公司 Project structured light devices and methods therefor with automatic focusing mechanism
CN108344377B (en) * 2018-03-12 2020-05-15 Oppo广东移动通信有限公司 Laser projection module, depth camera and electronic device
US11949213B2 (en) * 2020-07-08 2024-04-02 Meta Platforms Technologies, Llc VCSEL arrays for generation of linear structured light features

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000013051A1 (en) * 1998-08-31 2000-03-09 Digital Optics Corporation Diffractive vertical cavity surface emitting laser power monitor and system
EP1531318A1 (en) * 2003-11-17 2005-05-18 University of Liege Process and apparatus for measuring a 3D shape of an object
WO2005049840A2 (en) * 2003-11-17 2005-06-02 Universite De Liege Process and apparatus for measuring the three-dimensional shape of an object
US20070263204A1 (en) * 2006-05-15 2007-11-15 Kyungpook National University Industry-Academic Cooperation Foundation Interferometer using vertical-cavity surface-emitting lasers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526076B2 (en) * 2000-12-15 2003-02-25 Agilent Technologies, Inc. Integrated parallel channel optical monitoring for parallel optics transmitter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000013051A1 (en) * 1998-08-31 2000-03-09 Digital Optics Corporation Diffractive vertical cavity surface emitting laser power monitor and system
EP1531318A1 (en) * 2003-11-17 2005-05-18 University of Liege Process and apparatus for measuring a 3D shape of an object
WO2005049840A2 (en) * 2003-11-17 2005-06-02 Universite De Liege Process and apparatus for measuring the three-dimensional shape of an object
US20070263204A1 (en) * 2006-05-15 2007-11-15 Kyungpook National University Industry-Academic Cooperation Foundation Interferometer using vertical-cavity surface-emitting lasers

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10571709B2 (en) 2010-02-02 2020-02-25 Apple Inc. Integrated structured-light projector
US9870068B2 (en) 2010-09-19 2018-01-16 Facebook, Inc. Depth mapping with a head mounted display using stereo cameras and structured light
US10690488B2 (en) 2011-08-09 2020-06-23 Apple Inc. Projectors of structured light
US11060851B2 (en) 2011-08-09 2021-07-13 Apple Inc. Projectors of structured light
US10288417B2 (en) 2011-08-09 2019-05-14 Apple Inc. Overlapping pattern projector
KR20210032359A (en) * 2012-03-15 2021-03-24 애플 인크. Projectors of structured light
KR102231081B1 (en) * 2012-03-15 2021-03-23 애플 인크. Projectors of structured light
KR20200043952A (en) * 2012-03-15 2020-04-28 애플 인크. Projectors of structured light
KR102338174B1 (en) * 2012-03-15 2021-12-10 애플 인크. Projectors of structured light
US20160191867A1 (en) * 2012-03-26 2016-06-30 Mantisvision Ltd. Structured light projector
US9057826B2 (en) 2013-01-31 2015-06-16 Google Inc. See-through near-to-eye display with eye prescription
US9632312B1 (en) 2013-04-30 2017-04-25 Google Inc. Optical combiner with curved diffractive optical element
US9442291B1 (en) 2013-06-28 2016-09-13 Google Inc. Segmented diffractive optical elements for a head wearable display
EP2837907A1 (en) 2013-08-14 2015-02-18 Telmat Industrie (Société Anonyme) Method and device for automatic acquisition of three-dimensional surfaces
CN105705964A (en) * 2013-10-09 2016-06-22 微软技术许可有限责任公司 Illumination modules that emit structured light
US10687047B2 (en) 2013-10-23 2020-06-16 Facebook Technologies, Llc Three dimensional depth mapping using dynamic structured light
US11057610B2 (en) 2013-10-23 2021-07-06 Facebook Technologies, Llc Three dimensional depth mapping using dynamic structured light
CN105659106A (en) * 2013-10-23 2016-06-08 欧库勒斯虚拟现实有限责任公司 Three dimensional depth mapping using dynamic structured light
US20160286202A1 (en) * 2013-10-23 2016-09-29 Oculus Vr, Llc Three Dimensional Depth Mapping Using Dynamic Structured Light
US20180324412A1 (en) * 2013-10-23 2018-11-08 Facebook, Inc. Three dimensional depth mapping using dynamic structured light
US10091494B2 (en) 2013-10-23 2018-10-02 Facebook, Inc. Three dimensional depth mapping using dynamic structured light
US11962748B2 (en) 2013-10-23 2024-04-16 Meta Platforms Technologies, Llc Three dimensional depth mapping using dynamic structured light
US20210297651A1 (en) * 2013-10-23 2021-09-23 Facebook Technologies, Llc Three dimensional depth mapping using dynamic structured light
WO2015059705A1 (en) * 2013-10-23 2015-04-30 Pebbles Ltd. Three dimensional depth mapping using dynamic structured light
US9671614B2 (en) 2013-12-19 2017-06-06 Google Inc. See-through eyepiece for head wearable display
US9459455B2 (en) 2013-12-19 2016-10-04 Google Inc. See-through eyepiece for head wearable display
US9389422B1 (en) 2013-12-23 2016-07-12 Google Inc. Eyepiece for head wearable display using partial and total internal reflections
US9395544B2 (en) 2014-03-13 2016-07-19 Google Inc. Eyepiece with switchable reflector for head wearable display
US9915823B1 (en) 2014-05-06 2018-03-13 Google Llc Lightguide optical combiner for head wearable display
US9366869B2 (en) 2014-11-10 2016-06-14 Google Inc. Thin curved eyepiece for see-through head wearable display
US9553423B2 (en) 2015-02-27 2017-01-24 Princeton Optronics Inc. Miniature structured light illuminator
US10031588B2 (en) 2015-03-22 2018-07-24 Facebook, Inc. Depth mapping with a head mounted display using stereo cameras and structured light
CN107637074A (en) * 2015-03-22 2018-01-26 脸谱公司 Drawn using the depth of stereo camera and the head-mounted display of structured light
EP3076125A1 (en) 2015-03-30 2016-10-05 Telmat Industrie (Société Anonyme) System and method for automatically acquiring and digitally reproducing three-dimensional surfaces
US10162180B2 (en) 2015-06-04 2018-12-25 Google Llc Efficient thin curved eyepiece for see-through head wearable display
US10146054B2 (en) 2015-07-06 2018-12-04 Google Llc Adding prescriptive correction to eyepieces for see-through head wearable displays
US9946089B2 (en) 2015-10-21 2018-04-17 Princeton Optronics, Inc. Generation of coded structured light patterns using VCSEL arrays
US10353215B2 (en) 2015-10-21 2019-07-16 Princeton Optronics, Inc. Generation of coded structured light patterns using VCSEL arrays
US10429646B2 (en) 2015-10-28 2019-10-01 Google Llc Free space optical combiner with prescription integration
CN105323508A (en) * 2015-11-24 2016-02-10 深圳奥比中光科技有限公司 Image information processing device and laser module used therein
CN105372905A (en) * 2015-11-24 2016-03-02 深圳奥比中光科技有限公司 Laser module and image information acquisition apparatus
CN105450949A (en) * 2015-12-24 2016-03-30 深圳奥比中光科技有限公司 Image information processing device with compact structure and laser module used therein
CN105450949B (en) * 2015-12-24 2018-11-30 深圳奥比中光科技有限公司 Compact-sized image information processing device and it is used for mode of laser group therein
US10809056B2 (en) 2016-08-18 2020-10-20 Ramot At Tel-Aviv University Ltd Structured light projector
WO2018033917A1 (en) * 2016-08-18 2018-02-22 Ramot At Tel-Aviv University Ltd. Structured light projector
US10411437B2 (en) 2017-08-31 2019-09-10 Apple Inc. Creating arbitrary patterns on a 2-D uniform grid VCSEL array
CN108303757A (en) * 2018-03-12 2018-07-20 广东欧珀移动通信有限公司 Laser projection module, depth camera and electronic device
CN108596145A (en) * 2018-05-09 2018-09-28 深圳阜时科技有限公司 Pattern projecting device, image acquiring device, face identification device and electronic equipment
WO2020216032A1 (en) * 2019-04-23 2020-10-29 维沃移动通信有限公司 Fixing base, laser projection module and electronic device
WO2021069400A1 (en) 2019-10-07 2021-04-15 Trinamix Gmbh Projector for illuminating at least one object
CN111366906A (en) * 2020-02-01 2020-07-03 上海鲲游光电科技有限公司 Projection apparatus and segmented TOF apparatus, manufacturing method thereof, and electronic apparatus
US11396994B1 (en) 2021-02-16 2022-07-26 Ii-Vi Delaware, Inc. Laser light source having diffuser element and light diverging optic
US20220260233A1 (en) * 2021-02-16 2022-08-18 Ii-Vi Delaware, Inc. Laser Light Source Having Diffuser Element and Light Diverging Optic
CN115469451A (en) * 2022-09-22 2022-12-13 嘉兴驭光光电科技有限公司 Diffraction optical element of high-uniformity lattice, design method thereof and projector

Also Published As

Publication number Publication date
FR2932562B1 (en) 2010-08-27
FR2932562A1 (en) 2009-12-18
WO2009153446A4 (en) 2010-05-14
WO2009153446A3 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
WO2009153446A2 (en) Device for projecting structured light using vcsels and phase diffractive optical components
EP3123233B1 (en) Device for displaying an image sequence and system for displaying a scene
FR3019497A1 (en) OPTICAL SECURITY COMPONENT WITH REFLECTIVE EFFECT, MANUFACTURE OF SUCH A COMPONENT AND SECURE DOCUMENT EQUIPPED WITH SUCH A COMPONENT
EP0880724A1 (en) Display device and flat television screen using this device
FR2957683A1 (en) DIFFRACTIVE COMBINER FOR HIGH COLOR HEAD DISPLAY
EP3376544A1 (en) Optical imaging device
WO2018185265A1 (en) Device and method for multispectral imaging in the infrared
EP2915009B1 (en) Auto-referenced holographic imaging system
CH690463A5 (en) incremental optical encoder.
FR3106419A1 (en) Contact lens for augmented reality and corresponding method
FR2977684A1 (en) METHOD FOR PRINTING A FILTER FOR ELECTROMAGNETIC RADIATION
FR3086399A1 (en) VIRTUAL OR AUGMENTED REALITY VISION SYSTEM WITH EYE IMAGE SENSOR, AND ASSOCIATED METHOD
WO2015162343A1 (en) Display device with integrated photovoltaic cells with improved brightness and reflectivity
FR3092915A1 (en) Optical metasurfaces, associated manufacturing processes and systems
CA2432528A1 (en) Integrated-circuit technology photosensitive sensor
FR2997506A1 (en) SAMPLE IMAGE ACQUISITION DEVICE HAVING A SAMPLE RECEPTION MEDIUM HEATING REGULATION MEMBER AND IMAGING SYSTEM THEREOF
EP2804032A1 (en) Quick-shutter optical device
EP0699310B1 (en) Method for the production of an optically variable image
FR2979435A1 (en) OPTICAL SECURITY COMPONENT, MANUFACTURE OF SUCH A COMPONENT, AND SECURE PRODUCT EQUIPPED WITH SUCH A COMPONENT
WO2024003395A1 (en) Image-projection device with reflection using electrochromic material
EP3982188A1 (en) System for viewing in virtual or augmented reality with eye image sensor
EP0948059A1 (en) Positioning means in a microelectronic device and imaging device using the same
WO2021228744A1 (en) Screen for displaying a projected image comprising a structured coating
FR3098311A1 (en) MATRIX OPTICAL COMPONENT FOR FOCUSING AN INCIDENT LIGHT BEAM ON A SERIES OF POINTS.
EP3646107A1 (en) Diffractive illumination device with increased diffraction angle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766008

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09766008

Country of ref document: EP

Kind code of ref document: A2