WO2009151594A1 - Rasagiline soft gelatin capsules - Google Patents
Rasagiline soft gelatin capsules Download PDFInfo
- Publication number
- WO2009151594A1 WO2009151594A1 PCT/US2009/003488 US2009003488W WO2009151594A1 WO 2009151594 A1 WO2009151594 A1 WO 2009151594A1 US 2009003488 W US2009003488 W US 2009003488W WO 2009151594 A1 WO2009151594 A1 WO 2009151594A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pharmaceutical composition
- rasagiline
- solution
- capsules
- minutes
- Prior art date
Links
- 229960000245 rasagiline Drugs 0.000 title claims description 42
- RUOKEQAAGRXIBM-GFCCVEGCSA-N rasagiline Chemical compound C1=CC=C2[C@H](NCC#C)CCC2=C1 RUOKEQAAGRXIBM-GFCCVEGCSA-N 0.000 title claims description 42
- 239000007903 gelatin capsule Substances 0.000 title description 35
- 239000000203 mixture Substances 0.000 claims abstract description 70
- JDBJJCWRXSVHOQ-UTONKHPSSA-N methanesulfonic acid;(1r)-n-prop-2-ynyl-2,3-dihydro-1h-inden-1-amine Chemical compound CS(O)(=O)=O.C1=CC=C2[C@H](NCC#C)CCC2=C1 JDBJJCWRXSVHOQ-UTONKHPSSA-N 0.000 claims abstract description 41
- 229960001956 rasagiline mesylate Drugs 0.000 claims abstract description 41
- 239000002775 capsule Substances 0.000 claims description 81
- 229920000159 gelatin Polymers 0.000 claims description 65
- 235000019322 gelatine Nutrition 0.000 claims description 65
- 108010010803 Gelatin Proteins 0.000 claims description 61
- 239000008273 gelatin Substances 0.000 claims description 61
- 235000011852 gelatine desserts Nutrition 0.000 claims description 61
- 239000000243 solution Substances 0.000 claims description 61
- 239000008194 pharmaceutical composition Substances 0.000 claims description 47
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 36
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol group Chemical group OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 34
- 239000007788 liquid Substances 0.000 claims description 28
- 239000002904 solvent Substances 0.000 claims description 26
- 238000009505 enteric coating Methods 0.000 claims description 25
- 239000002702 enteric coating Substances 0.000 claims description 25
- 238000004132 cross linking Methods 0.000 claims description 24
- 239000010410 layer Substances 0.000 claims description 21
- 239000004014 plasticizer Substances 0.000 claims description 18
- 239000003963 antioxidant agent Substances 0.000 claims description 15
- 235000006708 antioxidants Nutrition 0.000 claims description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- 229920001223 polyethylene glycol Polymers 0.000 claims description 14
- 235000011187 glycerol Nutrition 0.000 claims description 13
- 239000003112 inhibitor Substances 0.000 claims description 12
- 230000003078 antioxidant effect Effects 0.000 claims description 11
- 239000002202 Polyethylene glycol Substances 0.000 claims description 10
- -1 fatty acid esters Chemical class 0.000 claims description 9
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Natural products NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 8
- 239000008366 buffered solution Substances 0.000 claims description 8
- 239000004255 Butylated hydroxyanisole Substances 0.000 claims description 7
- 235000019282 butylated hydroxyanisole Nutrition 0.000 claims description 7
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 6
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 6
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 6
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 claims description 6
- 239000000600 sorbitol Substances 0.000 claims description 6
- 235000010356 sorbitol Nutrition 0.000 claims description 6
- 239000004094 surface-active agent Substances 0.000 claims description 6
- 239000004322 Butylated hydroxytoluene Substances 0.000 claims description 5
- 239000004471 Glycine Substances 0.000 claims description 5
- 235000010354 butylated hydroxytoluene Nutrition 0.000 claims description 5
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 claims description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 3
- 229920001214 Polysorbate 60 Polymers 0.000 claims description 3
- 235000010323 ascorbic acid Nutrition 0.000 claims description 3
- 239000011668 ascorbic acid Substances 0.000 claims description 3
- 229960005070 ascorbic acid Drugs 0.000 claims description 3
- 239000004359 castor oil Substances 0.000 claims description 3
- 235000019438 castor oil Nutrition 0.000 claims description 3
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 3
- 239000000194 fatty acid Substances 0.000 claims description 3
- 229930195729 fatty acid Natural products 0.000 claims description 3
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 claims description 3
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 claims description 3
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 claims description 3
- 229940068918 polyethylene glycol 400 Drugs 0.000 claims description 3
- 235000010388 propyl gallate Nutrition 0.000 claims description 3
- 239000000473 propyl gallate Substances 0.000 claims description 3
- 229940075579 propyl gallate Drugs 0.000 claims description 3
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 claims description 2
- 229920002845 Poly(methacrylic acid) Polymers 0.000 claims description 2
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 claims description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 claims description 2
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 claims description 2
- 238000009472 formulation Methods 0.000 abstract description 50
- 238000004090 dissolution Methods 0.000 description 65
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 37
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 21
- 239000012729 immediate-release (IR) formulation Substances 0.000 description 20
- 238000000576 coating method Methods 0.000 description 18
- 239000011248 coating agent Substances 0.000 description 16
- 239000000872 buffer Substances 0.000 description 15
- 230000003111 delayed effect Effects 0.000 description 14
- 239000003826 tablet Substances 0.000 description 13
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 12
- 210000002784 stomach Anatomy 0.000 description 12
- 102000010909 Monoamine Oxidase Human genes 0.000 description 11
- 108010062431 Monoamine oxidase Proteins 0.000 description 11
- 239000002552 dosage form Substances 0.000 description 11
- 229940079593 drug Drugs 0.000 description 11
- 239000003814 drug Substances 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 239000012738 dissolution medium Substances 0.000 description 10
- 238000005538 encapsulation Methods 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 230000003139 buffering effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000000499 gel Substances 0.000 description 7
- 210000000936 intestine Anatomy 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000000546 pharmaceutical excipient Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 238000003556 assay Methods 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 239000008363 phosphate buffer Substances 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 208000018737 Parkinson disease Diseases 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 238000004806 packaging method and process Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229920003138 Eudragit® L 30 D-55 Polymers 0.000 description 4
- 229920003134 Eudragit® polymer Polymers 0.000 description 4
- 239000001828 Gelatine Substances 0.000 description 4
- 239000007836 KH2PO4 Substances 0.000 description 4
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- 235000013351 cheese Nutrition 0.000 description 4
- 238000012377 drug delivery Methods 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 4
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 4
- 229920000053 polysorbate 80 Polymers 0.000 description 4
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 4
- 210000000813 small intestine Anatomy 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 229940032147 starch Drugs 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 206010021518 Impaired gastric emptying Diseases 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 239000005662 Paraffin oil Substances 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000007922 dissolution test Methods 0.000 description 3
- 210000001198 duodenum Anatomy 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 210000001630 jejunum Anatomy 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 235000019796 monopotassium phosphate Nutrition 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- 206010012289 Dementia Diseases 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 241000220010 Rhode Species 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 235000010419 agar Nutrition 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002662 enteric coated tablet Substances 0.000 description 2
- GDCRSXZBSIRSFR-UHFFFAOYSA-N ethyl prop-2-enoate;2-methylprop-2-enoic acid Chemical compound CC(=C)C(O)=O.CCOC(=O)C=C GDCRSXZBSIRSFR-UHFFFAOYSA-N 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000005176 gastrointestinal motility Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 229940075507 glyceryl monostearate Drugs 0.000 description 2
- 229940093915 gynecological organic acid Drugs 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 239000006186 oral dosage form Substances 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229940068917 polyethylene glycols Drugs 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- GHBFNMLVSPCDGN-UHFFFAOYSA-N rac-1-monooctanoylglycerol Chemical compound CCCCCCCC(=O)OCC(O)CO GHBFNMLVSPCDGN-UHFFFAOYSA-N 0.000 description 2
- 235000002639 sodium chloride Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007909 solid dosage form Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 208000006096 Attention Deficit Disorder with Hyperactivity Diseases 0.000 description 1
- 208000036864 Attention deficit/hyperactivity disease Diseases 0.000 description 1
- GUBGYTABKSRVRQ-DCSYEGIMSA-N Beta-Lactose Chemical compound OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-DCSYEGIMSA-N 0.000 description 1
- 201000006474 Brain Ischemia Diseases 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- 206010019196 Head injury Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 208000026139 Memory disease Diseases 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 229940124639 Selective inhibitor Drugs 0.000 description 1
- 206010039966 Senile dementia Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- BCKXLBQYZLBQEK-KVVVOXFISA-M Sodium oleate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC([O-])=O BCKXLBQYZLBQEK-KVVVOXFISA-M 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 1
- DZGWFCGJZKJUFP-UHFFFAOYSA-N Tyramine Natural products NCCC1=CC=C(O)C=C1 DZGWFCGJZKJUFP-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 229940023476 agar Drugs 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 1
- 230000000648 anti-parkinson Effects 0.000 description 1
- 229940082992 antihypertensives mao inhibitors Drugs 0.000 description 1
- 239000000939 antiparkinson agent Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000010692 aromatic oil Substances 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 208000015802 attention deficit-hyperactivity disease Diseases 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- 229940092782 bentonite Drugs 0.000 description 1
- 235000012216 bentonite Nutrition 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 239000007894 caplet Substances 0.000 description 1
- 239000007963 capsule composition Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229940105329 carboxymethylcellulose Drugs 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229920001688 coating polymer Polymers 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 229960001681 croscarmellose sodium Drugs 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 229940088679 drug related substance Drugs 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- MVPICKVDHDWCJQ-UHFFFAOYSA-N ethyl 3-pyrrolidin-1-ylpropanoate Chemical compound CCOC(=O)CCN1CCCC1 MVPICKVDHDWCJQ-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000007902 hard capsule Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000001631 hypertensive effect Effects 0.000 description 1
- 229960003943 hypromellose Drugs 0.000 description 1
- 229920003125 hypromellose 2910 Polymers 0.000 description 1
- 229940031672 hypromellose 2910 Drugs 0.000 description 1
- 208000035231 inattentive type attention deficit hyperactivity disease Diseases 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 230000009878 intermolecular interaction Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229960002900 methylcellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 239000002899 monoamine oxidase inhibitor Substances 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 231100000189 neurotoxic Toxicity 0.000 description 1
- 230000002887 neurotoxic effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229940069328 povidone Drugs 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 201000000980 schizophrenia Diseases 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229940045902 sodium stearyl fumarate Drugs 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 239000007916 tablet composition Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 239000001069 triethyl citrate Substances 0.000 description 1
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 1
- 235000013769 triethyl citrate Nutrition 0.000 description 1
- 229960003732 tyramine Drugs 0.000 description 1
- DZGWFCGJZKJUFP-UHFFFAOYSA-O tyraminium Chemical compound [NH3+]CCC1=CC=C(O)C=C1 DZGWFCGJZKJUFP-UHFFFAOYSA-O 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 229930195724 β-lactose Natural products 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/135—Amines having aromatic rings, e.g. ketamine, nortriptyline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4816—Wall or shell material
- A61K9/4825—Proteins, e.g. gelatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4841—Filling excipients; Inactive ingredients
- A61K9/4858—Organic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4841—Filling excipients; Inactive ingredients
- A61K9/4866—Organic macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4891—Coated capsules; Multilayered drug free capsule shells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- R-PAI R(+) -N-propargyl-1-aminoindan
- Rasagiline has been reported to be a selective inhibitor of the B-form of the enzyme monoamine oxidase (“MAO-B”) and is useful in treating Parkinson's disease and various other conditions by inhibition of MAO-B in the brain.
- MAO monoamine oxidase
- Parkinson's disease patients suffer from delayed gastric emptying (Pfeiffer, R. F. and Quigley, E. M. M. "Gastrointestinal motility problems in patients with Parkinson's disease: Epidemiology, pathophysiology, and guidelines for management," CNS-Drugs, 1999, 11(6) : 435-448; Jost, W. H., "Gastrointestinal motility problems in patients with Parkinson's disease: Effects of antiparkinsonian treatment and guidelines for management", Drugs and Aging, 1997, 10(4): 249-258) . Delayed gastric emptying (prolonged gastric residence) can be a cause of increased inhibition of peripheral MAO, and can contribute to the cheese effect.
- Delayed gastric emptying can be a cause of increased inhibition of peripheral MAO, and can contribute to the cheese effect.
- the subject invention provides a pharmaceutical composition
- a pharmaceutical composition comprising a liquid fill which includes an amount of rasagiline mesylate, a shell comprising gelatin surrounding the liquid fill, and an enteric coating surrounding the shell.
- Figure 1 shows typical time-course of dissolution of enteric-coated capsules with improved dissolution characteristics - by the use of a proper plasticizer and subcoat - and without modification of the gelatin shell (no increase of ionic strength, no buffering) .
- Figure 2 shows typical time-course of dissolution of enteric- coated capsules with improved dissolution characteristics - by the use of a proper plasticizer and subcoat - and with modification of the gelatin shell (with increase of ionic strength, buffering to pH 8.5).
- the subject invention provides a pharmaceutical composition
- a pharmaceutical composition comprising a liquid fill which includes an amount of rasagiline mesylate, a shell comprising gelatin surrounding the liquid fill, and an enteric coating surrounding the shell.
- the liquid fill further comprises a hydrophilic or amphiphilic solvent or surfactant.
- the hydrophilic or amphiphilic solvent or surfactant is selected from the group consisting of : polyethylene glycol, propylene glycol, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene castor oil derivatives and ethanol .
- the hydrophilic solvent is polyethylene glycol .
- the hydrophilic solvent is polyethylene glycol 400.
- the pharmaceutical composition is free of propylene glycol.
- the liquid fill further comprises an anti- oxidant.
- the antioxidant is water-soluble. In another embodiment, the antioxidant is selected from the group consisting of: propyl gallate, BHA, BHT and ascorbic acid.
- the antioxidant is BHA.
- the shell further comprises a plasticizer.
- the plasticizer is selected from the group consisting of glycerol and sorbitol or a combination thereof .
- the enteric coating comprises Poly (methacrylic acid, ethyl acrylate) 1 : 1.
- the enteric coating further comprises a plasticizer.
- the plasticizer is polyethylene glycol 20,000.
- a non-enteric subcoat is present between the gelatin shell layer and the enteric coating layer.
- the total weight of the subcoat and enteric coating layer is less than 10% of the total capsule weight . In another embodiment, the weight of the enteric coating layer is less than 8% of the total capsule weight.
- the weight of the enteric coating layer is less than 6% of the total capsule weight.
- the weight of the enteric coating layer is less than 4% of the total capsule weight.
- the gelatin shell layer comprises a cross-linking inhibitor.
- cross-linking inhibitor in the gelatin shell layer is glycine.
- the subcoat comprises hydroxypropyl methyl cellulose.
- the subject invention also provides a pharmaceutical composition
- a pharmaceutical composition comprising a liquid fill which includes an amount of rasagiline mesylate, a shell comprising gelatin surrounding the liquid fill, and an enteric coating surrounding the shell, when placed in a basket apparatus in 500 mL of aqueous 0.1 N HCl at 37°C at 75 revolutions per minute, not more than 10% of the rasagiline is released into solution in 120 minutes and when the composition is subsequently placed in a basket apparatus in 500 mL of aqueous buffered solution at a pH of 6.8 at 37°C at 75 revolutions per minute, not less than 75% of the rasagiline is released into solution within 90 minutes.
- the pharmaceutical composition when placed in a basket apparatus in 500 mL of aqueous 0.1 N HCl at 37°C at 75 revolutions per minute, not more than 10% of the rasagiline is released into solution in 120 minutes and when the composition is subsequently placed in a basket apparatus in 500 mL of aqueous buffered solution at a pH of 5.2 at 37°C at 75 revolutions per minute, not more than 10% of the rasagiline is released into solution within 90 minutes.
- the subject invention further provides a pharmaceutical composition
- a pharmaceutical composition comprising a liquid fill which includes an amount of rasagiline mesylate, a shell comprising gelatin surrounding the liquid fill, and an enteric coating surrounding the shell, when placed in a basket apparatus in 500 mL of aqueous 0.1 N HCl at 37 0 C at 75 revolutions per minute, not more than 10% of the rasagiline is released into solution in 120 minutes and when the composition is subsequently placed in a basket apparatus in 500 mL of aqueous buffered solution at a pH of 6.2 at 37°C at 75 revolutions per minute, not less than 75% of the rasagiline is released into solution within 45 minutes.
- MAO inhibitors that selectively inhibit MAO-B are largely devoid of the potential to cause the "cheese effect". Nonetheless, the possibility exists that delayed gastric emptying of R-PAI may contribute to this phenomenon. Therefore, a main goal in developing the formulations of the current invention was to develop a delayed release, enteric coated formulation comprising rasagiline mesylate in an amount equivalent to 1 mg of rasagiline base which would release the active ingredient in the duodenum and the jejunum, past the stomach.
- the mean pharmacokinetic profile of the formulations of the current invention should match the mean pharmacokinetic profile of the formulations of the known immediate release formulation, with the exception of the tm a x which should be greater for the delayed release formulation than for the immediate release formulation.
- enteric coated capsules having a liquid fill, filled with rasagiline mesylate, with an enteric coating which allows release of the rasagiline mesylate in a specific range of pH.
- This specific pH range would prevent the formulation to release rasagiline mesylate in the stomach, and would allow the formulation to release rasagiline mesylate quickly under the physiological conditions of the intestine.
- enteric- coated rasagiline mesylate pharmaceutical formulations were disclosed.
- methacrylic acid - ethyl acrylate copolymer (1:1) 30% dispersion, known as Eudragit® L-30 D-55 was used.
- these formulations were indeed delayed-release formulations as shown by their dissolution profiles and by the in-vivo data, however, the pharmacokinetic profile, in terms of mean C max did not match the pharmacokinetic profile of the immediate release rasagiline mesylate formulations.
- excipient methacrylic acid - ethyl acrylate copolymer (1:1) 30% dispersion known as Eudragit® L-30 D-55, used in the above-mentioned publication WO 2006/014973, when applied as an aqueous dispersion either on tablets or on spheres prevents dissolution of the coated composition at low acidic pH.
- the structure of this polymer is as follows: CH 3
- the ratio of the free carboxyl groups to the ester groups is approximately 1:1.
- the average molecular weight is approximately 250,000.
- An advantage of the formulation of the instant invention is that the rasagiline mesylate is already dissolved in solution within the capsule, so once the capsule passes into the intestine and the pH rises, the capsule will rapidly break open, releasing dissolved rasagiline mesylate into the intestine, thereby allowing for rapid absorption.
- Qnax of the delayed release formulations are lower than the Cmax in the corresponding immediate release formulations.
- Gelatin capsules used as a pharmaceutical dosage form or with food supplements, consist of a gelatin shell surrounding a core filled with the composition being delivered.
- gel capsules may be a hard capsule, filled with solid or semi-solid fill and formed by two partial moieties of the shell, which are joined in order to create the final shell of the capsule, or a soft capsule, where a liquid or semi-liquid fill is encapsulated by a one piece gelatin shell, and optionally, even so-called caplets, where a modified tablet is covered by gelatin shell .
- Soft gelatin capsules are produced by injecting the liquid or semi-liquid fill between two gelatin strips, either by discontinuous formation or by continuous formation (i.e., rotary-die process) .
- both strips of the gelatin gel have to be lubricated by a suitable lubricant in order to avoid early sticking of the fresh gelatin gel to the machine parts or to each other.
- suitable lubricant agents include pharmaceutical oils, as for example mineral oils (paraffin oil) , synthetic oils (silicone oil) or vegetable oils (coconut oil, corn oil) .
- Liquid or semi-liquid fills for the soft gelatin capsules are divided into two basic groups according to their miscibility with water (Horn and Jimerson, Capsules, Soft. In: Encyclopedia of Pharmaceutical Technology. Vol. 2, Swabrick and Boylan (Eds), Marcel Dekker, New York and Basel, 269-284, 1990; and Lachmann, Theory and Practice of Industrial Pharmacy, 2 nd Ed. Lea and Febiger, Philadelphia, 1986) : 1.
- Capsules with water immiscible liquids as for example, vegetable and aromatic oils, aromatic and aliphatic hydrocarbons, chlorohydrocarbons , ethers, esters, alcohols and high molecular organic acids; and 2.
- Capsules with water miscible liquids as for example, polyethyleneglycols and non-ionogenic surfacial active material (surfactants) .
- the fills containing only the compounds from the first group do not mix with water. After their encapsulation into the fresh gelatin gel, the excess water leaves the gel and enters the inner fill. The excess water is almost completely resorbed by the gelatin shell of the capsule during the drying process, until equilibrium with the surroundings is achieved. Conversely, fills containing compounds from the second group are able to take in and absorb a certain amount of water, which can enter the fill of the capsule after its encapsulation. The resorption process is more difficult for these fills and equilibrium achievement is conditioned by the HLB (hydrophilic to lipophilic balance) value and absorption hysteresis curve for gelatin shells of concrete composition (York, J . Pharm Pharmacol . 33:269-273, 1981).
- HLB hydrophilic to lipophilic balance
- Both the capsules with water immiscible liquids and the capsules with water miscible liquids can be enteric-coated for drug delivery to the small intestine.
- the enteric coating is especially suitable for drugs that have their absorption window rather small (in the proximal intestine) , or, which are susceptible to decomposition in acidic environment of the stomach, and concurrently are formulated in water miscible liquids, as for example, polyethyleneglycols and non-ionogenic surfacial active material (surfactants).
- enteric-coated products for drug delivery to the small intestine dissolve rapidly in the in-vitro dissolution tests (in 40-60 min) .
- enteric-coated products for drug delivery to the small intestine there are two major limitations of practical use of enteric-coated products for drug delivery to the small intestine: 1. the situation in vivo frequently does not reflect the in vitro behaviour, so that such enteric-coated products may take up to 2 hours to disintegrate in in- vivo conditions; and
- enteric-coated solid dosage forms namely tablets and hard gelatin capsules
- thickness of the coating polymer by the appropriate selection of the plasticizer for the coat, and by using two coating layers (the subcoat and the upper coat) .
- gelatin capsules are especially suitable for oral administration of lipophilic active substances.
- the gelatin shell becomes less soluble in an aqueous medium, especially in an acidified water medium.
- the cross-linking delays the disintegration of the gelatin shell, which subsequently delays the dissolution of the inner content of the capsule as compared with a similar capsule not exposed to long time storage or stress-conditions which promote cross-linking .
- the gelatin capsule contains a component which promotes cross-linking in the gelatin shell to prepare a formulation which will not induce delayed disintegration and/or delayed dissolution of the inner content of the capsule following storage or after exposure to stress conditions.
- the shells of both hard and soft gelatin capsules are susceptible to cross-linking.
- Cross-linking has been demonstrated by a prolongation of the dissolution time and release of drug substance. The delay is attributed to only partial dissolution of the gelatin shell (in case of soft gelatin capsules, the dissolved part is the outer layer of shell) .
- the inner layer of the gelatin shell forms a thin film, called a pellicle, which remains intact and envelopes the inner volume of the capsules . This effect is described by Carstensen and Rhodes (Drug Dev. Ind. Pharm, 19(20): 2709-2712, 1993) or Bottom, et al., (J. of Pharm. Sci. , 86(9) : 1057-1061, 1997) .
- the instant invention provides a solution to the problem of peripheral MAO inhibition by providing pharmaceutical dosage forms comprising rasagiline which are adapted to inhibit the release or absorption of rasagiline in the stomach (i.e. delay the release of rasagiline until at least a portion of the dosage form has traversed the stomach) .
- This avoids or minimizes absorption of rasagiline in the stomach, thereby avoiding or minimizing the potential cheese effect.
- the present invention provides a very effective way to prevent the cross-linking of gelatin in soft gelatin capsules by the use of cross-linking inhibitor and inhibitor enhancer.
- the present invention provides an oral pharmaceutical dosage form useful for treating a condition selected from the group consisting of:
- Parkinson's disease brain ischemia, head trauma injury, spinal trauma injury, neurotrauma, neurodegenerative disease, neurotoxic injury, nerve damage, dementia, Alzheimer's type dementia, senile dementia, depression, memory disorders, hyperactive syndrome, attention deficit disorder, multiple sclerosis, schizophrenia, and affective illness, but with a reduced risk of peripheral MAO inhibition that is typically associated with administration of rasagiline with known oral dosage forms.
- Tablets may contain suitable binders, lubricants, disintegrating agents, coloring agents, flavoring agents, flow-inducing agents, melting agents, and plasticizers .
- the active drug component can be combined with an oral, non-toxic, pharmaceutically acceptable, inert carrier such as lactose, gelatin, agar, starch, sucrose, glucose, methyl cellulose, dicalcium phosphate, calcium sulfate, mannitol, sorbitol, microcrystalline cellulose and the like.
- Suitable binders include starch, gelatin, natural sugars such as glucose or beta-lactose, corn starch, natural and synthetic gums such as acacia, tragacanth, or sodium alginate, povidone, carboxymethylcellulose, polyethylene glycol, waxes, and the like.
- Lubricants used in these dosage forms include sodium oleate, sodium stearate, sodium benzoate, sodium acetate, sodium chloride, stearic acid, sodium stearyl fumarate, talc and the like.
- Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum, croscarmellose sodium, sodium starch glycolate and the like, suitable plasticizers include triacetin, triethyl citrate, dibutyl sebacate, polyethylene glycol and the like.
- the basket-type apparatus used in this invention is the apparatus 1 described in the United States Pharmacopeia, 29th Edition, chapter 711.
- the apparatus is constructed as follows :
- the assembly consists of the following: a covered vessel made of glass or other inert, transparent material; a motor; a metallic drive shaft; and a cylindrical basket.
- the vessel is partially immersed in a suitable water bath of any convenient size or placed in a heating jacket.
- the water bath or heating jacket permits holding the temperature inside the vessel at 37 ⁇ 0.5 during the test and keeping the bath fluid in constant, smooth motion.
- the vessel is cylindrical, with a hemispherical bottom and with one of the following dimensions and capacities: for a nominal capacity of 1 L, the height is 160 mm to 210 mm and its inside diameter is 98 mm to 106 mm; for a nominal capacity of 2 L, the height is 280 mm to 300 mm and its inside diameter is 98 mm to 106 mm; and for a nominal capacity of 4 L, the height is 280 mm to 300 mm and its inside diameter is 145 mm to 155 mm. Its sides are flanged at the top. A fitted cover may be used to retard evaporation.
- the shaft is positioned so that its axis is not more than 2 mm at any point from the vertical axis of the vessel and rotates smoothly and without significant wobble.
- a speed-regulating device is used that allows the shaft rotation speed to be selected and maintained at the rate specified in the individual monograph, within ⁇ 4%.
- Shaft and basket components of the stirring element are fabricated of stainless steel type 316 or equivalent.
- dissolution is measured as an average measurement of 6 pharmaceutical dosage forms, for example, capsules or tablets.
- Rasagiline immediate release tablets were prepared using the ingredients listed in Table 1.
- Rasagiline mesylate, mannitol, half of the colloidal silicon dioxide, starch and pregelatinized starch were mixed in a Diosna P-800 mixer for about 5 minutes. Water was added and the mixture was mixed further. The granulate was dried and the remainder of the colloidal silicon dioxide was added. The granulate was ground in a Frewitt mill and stearic acid and talc were added. The granulate was mixed for five minutes in a tumbler and was tableted.
- Example 2 Rasagiline capsules containing enteric coated particles
- Rasagiline capsules were prepared according to example 3 in PCT application publication WO 2006/014973.
- capsules were tested for dissolution in 500 ml of various aqueous acidic media made from phthalate buffer adjusted to the target pH from 2.4 to 3.6 using HCl solution and adjusted to the target pH of 4.2 to 5.2 using NaOH solution.
- the capsule formulation begins to dissolve after 60 minutes in medium with a pH of 5.2. This may explain the lower Cmax value in a single dose, crossover comparative pharmacokinetic study in 12 healthy male volunteers in the fasting state attributed to this formulation when compared to the immediate release formulation of example 1. It is likely that the dissolution of this formulation occurs slowly from the time the formulation enters the duodenum until the formulation proceeds in the intestine to the jejunum. Without being bound by theory, this may be attributed to the fact that the capsule disintegrates in the stomach and the coated pellets travel at different speeds through the intestine, releasing the rasagiline over a longer period of time, over a larger intestinal surface area.
- Rasagiline mesylate Solubility of Rasagiline mesylate was evaluated in various solvents in order to determine which solvents would be suitable for developing a fill for rasagiline mesylate soft gelatin capsules .
- Rasagiline Mesylate was found to be soluble in solvents such as Caprylocaproyl macrogol-8 glyceride, glyceryl mono- & dicaprate, polyoxyethylene sorbitan fatty acid esters, 2- (2-ethoxyethoxy) ethanol, polyoxyethylene castor oil derivatives, polyethylene glycol, propylene glycol, and ethanol .
- solvents such as Caprylocaproyl macrogol-8 glyceride, glyceryl mono- & dicaprate, polyoxyethylene sorbitan fatty acid esters, 2- (2-ethoxyethoxy) ethanol, polyoxyethylene castor oil derivatives, polyethylene glycol, propylene glycol, and ethanol .
- Table 4 Stability of Rasagiline Mesylate in solution with various solvents Rasagiline Mesylate was tested in solutions at accelerated conditions. The numbers represent percent rasagiline in solution by assay.
- a solution was prepared using Rasagiline Mesylate in a concentration of 15.6 mg/g solvent, 10% ethanol, 0.01% BHT, and the remainder was propylene glycol. This solution was placed in accelerated conditions of 40 0 C for 1 month, and 55 0 C for 2 weeks. The solution was found to be stable, and the rasagiline mesylate concentration did not decrease.
- Rasagiline content by assay was found to be stable in solutions C and D. Rasagiline content of solution C decreased by 2.7% after 2 months storage at 40 2 C, but the amount of impurities was significantly lower than it was without antioxidants.
- a new formulation was prepared with addition of Glycerin.
- Glycerin is used as an effective plasticizer for soft gelatin capsules containing hydrophilic fills due to the strong intermolecular interactions between the hydroxy- groups of glycerin and the hydrophilic groups on gelatin. Glycerin and water may migrate from the shell to the hygroscopic fill. In order to balance this migration process and prevent embrittlement of the shell glycerin was added to the filling solution.
- Solution T O 40 2 C, 25 a C, 40 2 C, 25 2 C 40 2 C / 25 2 C IM IM 2M 2M 3M 3M
- Gelatin Capsules were prepared using the following fill:
- the soft gelatin capsule shell was made from the following excipients :
- Capsule preparation itself consists of three steps - fill preparation, gelatin preparation and encapsulation of the fill preparation into the gelatin forming soft gelatin capsules.
- Fill preparation :
- Pre-dried capsules were then transferred on plates and dried for 3 days in a drying room (RH ⁇ 20%; temperature ⁇ 25°C) to achieve content of water in the fill ⁇ 10%. Dried capsules were optically controlled and then washed in appropriate solvent (n- heptan, ethanol, etc.) to remove polishing agent from the surface.
- appropriate solvent n- heptan, ethanol, etc.
- 3-oval capsules (oval shape) weighing 257.7 mg, each containing 1.56 mg of rasagiline mesylate were manufactured. They were subsequently coated with a single layer of the following Eudragit-based coat.
- glyceryl monostearate was added together with Tween 80 and mixed for approx 10 minutes (approx. 4000 rpm) until smooth emulsion was achieved.
- 1 part of Polyethylene glycol 20,000 was mixed with approx 5 parts of water and homogenized for 20 minutes (approx. 150 rpm) .
- Eudragit L30 D55 was poured into appropriate container and slowly neutralized with IN NaOH. After that, the solution containing glyceryl monostearate was added, homogenized for a while and then PEG 20,000 solution was added to complete the coating solution. When it was completed, the admixture was homogenized for approx 20 minutes (approx 250 rpm) .
- Coating was performed in RAMA COTA coater equipped with standard Glatt spray gun. Inlet air 40 ⁇ 5°C, outlet air 30 ⁇ 5°C, atomization air pressure 3 ⁇ 1 bar, drum speed 12 ⁇ 3 rpm. The capsules were sprayed at a low spray rate, of 2- 3g/ min.kg. The coating was applied in various thicknesses.
- the dissolution in 0.1 N HCl was determined, 500 ml, 37°C, 75 rpm; apparatus 2 with sinkers.
- Gelatin Capsules were prepared using the following fill:
- the gelatin coating was made from the following excipients Gelatin composition:
- Gelatin capsules were prepared in the same manner as described in Example 6.
- capsules weighing (248.9 mg) were manufactured.
- the capsules were round to prevent mechanical stress and creation of the pinholes during dissolution which can cause early leakage. Round shape of capsules also helps to get more uniform coat on the capsules.
- Enteric coating These capsules were subsequently coated with either a single layer 8% by weight, based on Eudragit coat (the same as described in Example 6) , or by a double layer, which is 4% of Hypromellose 2910 (Pharmacoat 606) and 4% Eudragit.
- Hypromellose coat - composition
- the dissolution percent in 0.1 N HCl was determined.
- the capsules were in 0.1 N HCl for 120 minutes, then subsequently transferred to phosphate buffer at a pH of 6.8.
- Dissolution was performed in USP Dissolution apparatus 1 (Basket). First 2 hours in 500 ml 0.1 M HCl, then in Dissolution Medium II: 500 ml Buffer pH 6.8.
- the buffer pH 6.8 is prepared as follows: dissolve 27.22 g of KH2PO4 in water and dilute with water to 1000ml; place 250ml of this solution in a 100OmL volumetric flask add 112mL of aqueous NaOH (0.2M), then add water to volume. Time for Dissolution medium II: 90 minutes; stirring rate: 75 rpm.
- these capsules showed some dissolution in 0. IN HCl after 120 minutes.
- the amount of dissolution in the single layer was greater than in the double layer, indicating that a primary non-enteric coating (subcoat) applied directly to the gelatin coating is beneficial in enhancing the acid resistance of the capsules.
- Capsules were prepared in the same way and under the same conditions as described in Example 6.
- the dissolution percent in 0.1 N HCl was determined.
- the capsules were in 0.1 N HCl for 120 minutes, then subsequently transferred to phosphate buffer at a pH of 6.8.
- Dissolution was performed in USP Dissolution apparatus 1 (Basket). First 2 hours in 500 ml 0.1 M HCl, then in Dissolution Medium II: 500 ml Buffer pH 6.8.
- the buffer pH 6.8 is prepared as follows: dissolve 27.22 g of KH2PO4 in water and dilute with water to 1000ml; place 250ml of this solution in a 100OmL volumetric flask add 112mL of aqueous NaOH (0.2M), then add water to volume. Time for Dissolution medium II: 90 minutes; stirring rate: 75 rpm.
- the gelatin shell was made from the following excipients Gelatin composition:
- the capsules are prepared in 5 steps: fill preparation, gelatin preparation, encapsulation and drying, coating and packaging.
- Gelatin preparation Part of water, glycerol and sorbitol were heated up to 88°C in an appropriate bin. Glycine was dissolved in remaining portion of water and pH of the solution was adjusted with sodium hydroxide to pH 8.0+/-0.1. Gelatin was then transferred in to the bin and temperature is maintained at approx. 77.5°C for 20 minutes and the mixture was slowly mixed. The solution was de-aerated whilst vigorously mixing to achieve final viscosity in the range 19,000 - 23,000 mPa.s. The solution was maintained melted in the bin heated up to 6O 0 C.
- Fresh capsules were pre-dried and polished with paraffin oil in tumbler dryer for approx 3 hours (with temperature not exceeded 30 0 C) . Pre-dried capsules were transferred on plates and dried for 3 days in a drying room (RH ⁇ 20%; temperature ⁇ 25°C) to achieve content of water in the fill ⁇ 10%.
- Dried capsules were visually checked and then washed in n- heptan to remove polishing agent from the surface.
- Coating was performed in Glatt GMPC II machine. Capsules were transferred in to a coating drum pre-heated up to 37 0 C. Hypromelose dissolved in water was used as the 1st coat (desired spray rate > 4 g/min.kg or >20 g/min for 5kg batch) . The desired thickness of the 1st coat is approx 2- 3% by weight of the capsules. After the first coat the capsules were dried for max 60 minutes and 37 0 C.
- Eudragit L30D 55 dispersion with plasticizer and glidant was applied; (desired spray rate > 4 g/min.kg or >20 g/min for 5kg batch); and a desired thickness of the second coat of approx 2.8 - 3.8 % by weight, preferably 3.3% by weight was applied (total thickness of 2 coats all together is approx. 5.8 ⁇ 20%) .
- Capsules were dried for max 60 minutes and 37°C and then cooled down below 30 0 C. Coated capsules were subjected to optical control to remove defective capsules.
- Container/closure systems consisting of containers made from various types of material (glass, HDPE, PP, PE, PS, PVC, PVdC, Al etc) with appropriate closure system optionally also equipped with moisture controlling device and optionally additional moisture controlling device enclosed into the container, blister systems consisting from two foils usually made from HDPE, PP, PE, PS, PVC, PVdC, All materials optionally packed in additional moisture protecting container or foil pack.
- container/closure systems consisting of containers made from various types of material (glass, HDPE, PP, PE, PS, PVC, PVdC, Al etc) with appropriate closure system optionally also equipped with moisture controlling device and optionally additional moisture controlling device enclosed into the container
- blister systems consisting from two foils usually made from HDPE, PP, PE, PS, PVC, PVdC, All materials optionally packed in additional moisture protecting container or foil pack.
- Al/Al blisters were packed with capsules after 1 month in accelerated conditions of 40 0 C at 75% relative humidity.
- the capsules were found to have 0.10% total impurities, and a Rasagiline Assay of between 90.0-110.0%.
- the dissolution percent of the capsules was determined.
- the capsules were in 0.1 N HCl for 120 minutes, then subsequently transferred to phosphate buffer at a pH of
- Dissolution was performed in USP Dissolution apparatus 1 (Basket). First 2 hours in 500 ml 0.1 M HCl, then in Dissolution Medium II: 500 ml Buffer pH 6.2.
- the buffer pH 6.2 is prepared as follows: dissolve 20,415g of KH 2 PO 4 in water and 121,5 ml 0.2M NaOH and in volumetric flask add water to volume 3000ml. Time for Dissolution medium II: 90 minutes; stirring rate: 75 rpm.
- the dissolution percent of the capsules was determined.
- the capsules were in 0.1 N HCl for 120 minutes, then subsequently transferred to phosphate buffer at a pH of 6.8.
- Dissolution was performed in USP Dissolution apparatus 1 (Basket). First 2 hours in 500 ml 0.1 M HCl, then in Dissolution Medium II: 500 ml Buffer pH 6.8.
- the buffer pH 6.8 is prepared as follows: dissolve 27.22 g of KH2PO4 in water and dilute with water to 1000ml; place 250ml of this solution in a 100OmL volumetric flask add 112mL of aqueous NaOH (0.2M), then add water to volume. Time for Dissolution medium II: 90 minutes; stirring rate: 75 rpm.
- Example 10 Dissolution of enteric-coated tablets and capsules with improved dissolution characteristics
- Table 11a Typical time-course of dissolution of enteric- coated tablets with improved dissolution characteristics - by the use of a proper plasticizer and subcoat
- Table lib Typical time-course of dissolution of enteric- coated capsules with improved dissolution characteristics - by the use of a proper plasticizer and subcoat - and WITHOUT modification of the gelatin shell (no increase of ionic strength, no buffering)
- the Cm a x of the delayed release formulations are lower than the C max in the corresponding immediate release formulations.
- achieving a delayed-release pharmaceutical formulation in which the C max is similar to the corresponding immediate-release formulation is not trivial.
- cross-linking inhibitor helps to achieve faster disintegration and dissolution of enteric-coated soft gelatin capsules.
- the role of cross-linking inhibitor used herein is not only prevention of cross-linking reaction.
- cross-linking inhibitor modifies the pH and ionic strength of the liquid phase in the gelatin gel. Specifically, it has been found that increased ionic strength and higher buffer capacity of the gelatin shell causes the migration of solvent from the dissolution media to the gelatin shell and/or inner coating layer, which is eroding, swelling and disintegrating faster than without such a modification.
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Neurology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Psychology (AREA)
- Medicinal Preparation (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES09762890T ES2389353T3 (en) | 2008-06-10 | 2009-06-10 | Rasagiline soft gelatin capsules |
AU2009258120A AU2009258120B2 (en) | 2008-06-10 | 2009-06-10 | Rasagiline soft gelatin capsules |
CA2727019A CA2727019A1 (en) | 2008-06-10 | 2009-06-10 | Rasagiline soft gelatin capsules |
JP2011513497A JP2011524353A (en) | 2008-06-10 | 2009-06-10 | Rasagiline soft gelatin capsule |
EP09762890A EP2285214B1 (en) | 2008-06-10 | 2009-06-10 | Rasagiline soft gelatin capsules |
IL209132A IL209132A0 (en) | 2008-06-10 | 2010-11-04 | Rasagiline soft gelatin capsules |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13156608P | 2008-06-10 | 2008-06-10 | |
US61/131,566 | 2008-06-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009151594A1 true WO2009151594A1 (en) | 2009-12-17 |
Family
ID=41417010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/003488 WO2009151594A1 (en) | 2008-06-10 | 2009-06-10 | Rasagiline soft gelatin capsules |
Country Status (8)
Country | Link |
---|---|
US (1) | US20100008983A1 (en) |
EP (1) | EP2285214B1 (en) |
JP (1) | JP2011524353A (en) |
AU (1) | AU2009258120B2 (en) |
CA (1) | CA2727019A1 (en) |
ES (1) | ES2389353T3 (en) |
IL (1) | IL209132A0 (en) |
WO (1) | WO2009151594A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011095973A1 (en) * | 2010-02-03 | 2011-08-11 | Pharma Two B Ltd. | Extended release formulations of rasagiline and uses thereof |
EP2494966A1 (en) * | 2009-10-29 | 2012-09-05 | Chongqing Pharmaceutical Research Institute Co., Ltd. | Stable composition of rasagiline |
US20190000768A1 (en) * | 2015-08-04 | 2019-01-03 | Fuji Capsule Co., Ltd. | Enteric capsule |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006014973A2 (en) * | 2004-07-26 | 2006-02-09 | Teva Pharmaceutical Industries, Ltd. | Pharmaceutical dosage forms including rasagiline |
CN101098685A (en) * | 2004-11-24 | 2008-01-02 | 特瓦制药工业有限公司 | Rasagiline orally disintegrating compositions |
EP1991214B1 (en) * | 2006-02-21 | 2015-08-05 | Teva Pharmaceutical Industries, Ltd. | Use of rasagiline for the treatment of multiple system atrophy |
CN101442997B (en) * | 2006-04-03 | 2012-11-14 | 泰华制药工业有限公司 | Use of rasagiline for the treatment of restless legs syndrome |
EP1892233A1 (en) | 2006-08-18 | 2008-02-27 | Ratiopharm GmbH | New salts of the active component rasagiline |
AU2007334428B2 (en) * | 2006-12-14 | 2014-05-29 | Teva Pharmaceutical Industries, Ltd. | Crystalline solid rasagiline base |
EP2194780A4 (en) * | 2007-09-05 | 2010-10-27 | Teva Pharma | Method of treating glaucoma using rasagiline |
US8188149B2 (en) * | 2007-09-17 | 2012-05-29 | Teva Pharmaceutical Industries, Ltd. | Use of R(+)-N-propargy1-1-aminoindan to treat or prevent hearing loss |
CN101909438A (en) * | 2008-01-11 | 2010-12-08 | 泰华制药工业有限公司 | Rasagiline formulations, their preparation and use |
MX2010013766A (en) * | 2008-06-13 | 2011-03-15 | Teva Pharmaceutical Ind Ltd Star | Rasagiline for parkinson's disease modification. |
WO2009154782A1 (en) * | 2008-06-19 | 2009-12-23 | Teva Pharmaceutical Industries, Ltd. | Process for purifying rasagiline base |
AU2009260728B2 (en) | 2008-06-19 | 2015-01-29 | Teva Pharmaceutical Industries, Ltd. | Process for preparing and drying solid rasagiline base |
US20100189788A1 (en) * | 2009-01-23 | 2010-07-29 | Teva Pharmaceutical Industries, Ltd. | Delayed release rasagiline base formulation |
EP2451771B1 (en) | 2009-07-09 | 2014-06-18 | Ratiopharm GmbH | Salts of rasagiline and pharmaceutical preparations thereof |
US20110152381A1 (en) * | 2009-12-22 | 2011-06-23 | Anton Frenkel | 3-keto-n-propargyl-1-aminoindan |
JP2013537530A (en) | 2010-07-27 | 2013-10-03 | テバ ファーマシューティカル インダストリーズ リミティド | Rasagiline citrate dispersion |
JP2013533287A (en) | 2010-07-27 | 2013-08-22 | テバ ファーマシューティカル インダストリーズ リミティド | Use of rasagiline for the treatment of olfactory dysfunction |
KR20140090996A (en) | 2011-10-10 | 2014-07-18 | 테바 파마슈티컬 인더스트리즈 리미티드 | R(+)-n-formyl-propargyl-aminoindan |
EP2766004A4 (en) | 2011-10-10 | 2015-04-22 | Teva Pharma | R(+)-n-methyl-propargyl-aminoindan |
AR092168A1 (en) | 2012-08-17 | 2015-03-25 | Teva Pharma | PARENTERAL FORMULATIONS OF RASAGILINA |
JP5869735B2 (en) * | 2013-04-23 | 2016-02-24 | ズィーエックス ファーマ,エルエルシー | Enteric coated multiparticulate sustained release peppermint oil composition and related methods |
KR101833280B1 (en) * | 2013-06-28 | 2018-02-28 | 한미약품 주식회사 | Oral soft capsule formulation comprising dutasteride |
CN114469902A (en) | 2020-10-23 | 2022-05-13 | 上海上药中西制药有限公司 | Sublingual film agent of rasagiline or pharmaceutical salt thereof, preparation method and application thereof |
US20230192967A1 (en) * | 2021-12-16 | 2023-06-22 | Solenis Technologies, L.P. | Aqueous dispersions and methods for production |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060018957A1 (en) * | 2004-07-26 | 2006-01-26 | Lerner E I | Pharmaceutical dosage forms including rasagiline |
US20060182796A1 (en) * | 2005-02-03 | 2006-08-17 | Abrika Pharmaceuticals, Inc. | Taste masked pharmaceutical compositions |
US20080107729A1 (en) * | 2004-11-24 | 2008-05-08 | Spi Pharma, Inc. | Orally disintegrating compositions |
Family Cites Families (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL92952A (en) * | 1990-01-03 | 1994-06-24 | Teva Pharma | R-enantiomers of n-propargyl-1-aminoindan compounds, their preparation and pharmaceutical compositions containing them |
US5744500A (en) * | 1990-01-03 | 1998-04-28 | Teva Pharmaceutical Industries, Ltd. | Use of R-enantiomer of N-propargyl-1-aminoindan, salts, and compositions thereof |
IL99759A (en) * | 1991-10-16 | 1997-06-10 | Teva Pharma | Mono-fluorinated derivatives of n-propargyl-1-aminoindan, their preparation and pharmaceutical compositions containing them |
IL118836A (en) * | 1996-07-11 | 2001-01-11 | Teva Pharma | Pharmaceutical compositions comprising s-(-)-n-propargyl-1-aminoindan |
IL130528A (en) * | 1996-12-18 | 2004-12-15 | Teva Pharma | Aminoindan derivatives, pharmaceutical compositions comprising them and uses thereof |
US20030104048A1 (en) * | 1999-02-26 | 2003-06-05 | Lipocine, Inc. | Pharmaceutical dosage forms for highly hydrophilic materials |
US6340473B1 (en) * | 1999-07-07 | 2002-01-22 | R.P. Scherer Technologies, Inc. | Film forming compositions comprising modified starches and iota-carrageenan and methods for manufacturing soft capsules using same |
US20050019399A1 (en) * | 2001-09-21 | 2005-01-27 | Gina Fischer | Controlled release solid dispersions |
ITMI20020731A1 (en) * | 2002-04-08 | 2003-10-08 | Ibsa Inst Biochimique Sa | PHARMACEUTICAL COMPOSITIONS FOR ACETYLSALICYLIC ACID AND OMEGA-3 OILS |
EP2526944B1 (en) * | 2002-11-15 | 2016-06-01 | Teva Pharmaceutical Industries Limited | Use of rasagiline with or without riluzole to treat amyotrophic lateral sclerosis |
ATE399538T1 (en) * | 2003-03-26 | 2008-07-15 | Egalet As | MATRIX PREPARATIONS FOR THE CONTROLLED PRESENTATION OF MEDICINAL MEDICINAL PRODUCTS |
US20050142191A1 (en) * | 2003-06-23 | 2005-06-30 | Neurochem (International) Limited | Pharmaceutical formulations of amyloid inhibiting compounds |
EP1663173A1 (en) * | 2003-09-25 | 2006-06-07 | Natco Pharma Limited | Enteric soft gelatin capsule containing esomeprazole and method of preparation |
US20050152969A1 (en) * | 2004-01-08 | 2005-07-14 | Chiprich Timothy B. | Colored liquid-filled soft capsules and method of manufacture thereof |
CN101098685A (en) * | 2004-11-24 | 2008-01-02 | 特瓦制药工业有限公司 | Rasagiline orally disintegrating compositions |
JP5738509B2 (en) * | 2005-02-23 | 2015-06-24 | テバ ファーマシューティカル インダストリーズ リミティド | Rasagiline formulation with improved content uniformity |
EP1931325A2 (en) * | 2005-10-07 | 2008-06-18 | The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services | Octanol formulations and methods of treatment using the same |
US7491847B2 (en) * | 2005-11-17 | 2009-02-17 | Teva Pharmaceutical Industries, Ltd. | Methods for isolating propargylated aminoindans |
US7572834B1 (en) * | 2005-12-06 | 2009-08-11 | Teva Pharmaceutical Industries, Ltd. | Rasagiline formulations and processes for their preparation |
EP1991214B1 (en) * | 2006-02-21 | 2015-08-05 | Teva Pharmaceutical Industries, Ltd. | Use of rasagiline for the treatment of multiple system atrophy |
US8784886B2 (en) * | 2006-03-09 | 2014-07-22 | GlaxoSmithKline, LLC | Coating capsules with active pharmaceutical ingredients |
CN101442997B (en) * | 2006-04-03 | 2012-11-14 | 泰华制药工业有限公司 | Use of rasagiline for the treatment of restless legs syndrome |
EP1892233A1 (en) * | 2006-08-18 | 2008-02-27 | Ratiopharm GmbH | New salts of the active component rasagiline |
PL2051704T3 (en) * | 2006-08-18 | 2012-09-28 | Evonik Roehm Gmbh | Pharmaceutical composition with controlled active ingredient delivery for active ingredients with good solubility in water |
NZ577623A (en) * | 2006-12-14 | 2011-05-27 | Teva Pharma | Tannate salt of rasagiline |
AU2007334428B2 (en) * | 2006-12-14 | 2014-05-29 | Teva Pharmaceutical Industries, Ltd. | Crystalline solid rasagiline base |
EP1987816A1 (en) * | 2007-04-30 | 2008-11-05 | Ratiopharm GmbH | Adsorbate of a rasagiline salt with a water-soluble inactive ingredient |
EP2194780A4 (en) * | 2007-09-05 | 2010-10-27 | Teva Pharma | Method of treating glaucoma using rasagiline |
US8188149B2 (en) * | 2007-09-17 | 2012-05-29 | Teva Pharmaceutical Industries, Ltd. | Use of R(+)-N-propargy1-1-aminoindan to treat or prevent hearing loss |
CN101909438A (en) * | 2008-01-11 | 2010-12-08 | 泰华制药工业有限公司 | Rasagiline formulations, their preparation and use |
MX2010013766A (en) * | 2008-06-13 | 2011-03-15 | Teva Pharmaceutical Ind Ltd Star | Rasagiline for parkinson's disease modification. |
AU2009260728B2 (en) * | 2008-06-19 | 2015-01-29 | Teva Pharmaceutical Industries, Ltd. | Process for preparing and drying solid rasagiline base |
WO2009154782A1 (en) * | 2008-06-19 | 2009-12-23 | Teva Pharmaceutical Industries, Ltd. | Process for purifying rasagiline base |
EA201170181A1 (en) * | 2008-07-11 | 2011-08-30 | Синтон Бв | POLYMORPHIC FORMS OF RAZAGILINA HYDROCHLORIDE |
US20100029987A1 (en) * | 2008-07-29 | 2010-02-04 | Dipharma Francis S.R.I. | Crystalline Form of Rasagiline and Process for the Preparation Thereof |
DE102008064061A1 (en) * | 2008-12-19 | 2010-06-24 | Ratiopharm Gmbh | Solid composition with the active ingredient rasagiline |
US20100189788A1 (en) * | 2009-01-23 | 2010-07-29 | Teva Pharmaceutical Industries, Ltd. | Delayed release rasagiline base formulation |
EP2485722A1 (en) * | 2009-10-09 | 2012-08-15 | Teva Pharmaceutical Industries, Ltd. | Use of rasagiline for the treatment of progressive supranuclear palsy |
US20110152381A1 (en) * | 2009-12-22 | 2011-06-23 | Anton Frenkel | 3-keto-n-propargyl-1-aminoindan |
JP2013533287A (en) * | 2010-07-27 | 2013-08-22 | テバ ファーマシューティカル インダストリーズ リミティド | Use of rasagiline for the treatment of olfactory dysfunction |
JP2013537530A (en) * | 2010-07-27 | 2013-10-03 | テバ ファーマシューティカル インダストリーズ リミティド | Rasagiline citrate dispersion |
MX2013004598A (en) * | 2010-10-26 | 2013-07-17 | Teva Pharma | Deuterium enriched rasagiline. |
EP2766004A4 (en) * | 2011-10-10 | 2015-04-22 | Teva Pharma | R(+)-n-methyl-propargyl-aminoindan |
KR20140090996A (en) * | 2011-10-10 | 2014-07-18 | 테바 파마슈티컬 인더스트리즈 리미티드 | R(+)-n-formyl-propargyl-aminoindan |
CN103857389A (en) * | 2011-10-10 | 2014-06-11 | 泰华制药工业有限公司 | Rasagiline citramide |
-
2009
- 2009-06-10 EP EP09762890A patent/EP2285214B1/en active Active
- 2009-06-10 JP JP2011513497A patent/JP2011524353A/en active Pending
- 2009-06-10 ES ES09762890T patent/ES2389353T3/en active Active
- 2009-06-10 WO PCT/US2009/003488 patent/WO2009151594A1/en active Application Filing
- 2009-06-10 US US12/455,969 patent/US20100008983A1/en not_active Abandoned
- 2009-06-10 CA CA2727019A patent/CA2727019A1/en not_active Abandoned
- 2009-06-10 AU AU2009258120A patent/AU2009258120B2/en not_active Ceased
-
2010
- 2010-11-04 IL IL209132A patent/IL209132A0/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060018957A1 (en) * | 2004-07-26 | 2006-01-26 | Lerner E I | Pharmaceutical dosage forms including rasagiline |
US20080107729A1 (en) * | 2004-11-24 | 2008-05-08 | Spi Pharma, Inc. | Orally disintegrating compositions |
US20060182796A1 (en) * | 2005-02-03 | 2006-08-17 | Abrika Pharmaceuticals, Inc. | Taste masked pharmaceutical compositions |
Non-Patent Citations (1)
Title |
---|
See also references of EP2285214A4 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2494966A1 (en) * | 2009-10-29 | 2012-09-05 | Chongqing Pharmaceutical Research Institute Co., Ltd. | Stable composition of rasagiline |
EP2494966A4 (en) * | 2009-10-29 | 2013-03-06 | Chongqing Pharm Res Inst Co | Stable composition of rasagiline |
US8859624B2 (en) | 2009-10-29 | 2014-10-14 | Chongqing Pharmaceutical Research Institute Co., Ltd. | Stable rasagiline composition |
EP2494966B2 (en) † | 2009-10-29 | 2020-11-11 | Chongqing Pharmaceutical Research Institute Co., Ltd. | Stable composition of rasagiline |
WO2011095973A1 (en) * | 2010-02-03 | 2011-08-11 | Pharma Two B Ltd. | Extended release formulations of rasagiline and uses thereof |
CN102791258A (en) * | 2010-02-03 | 2012-11-21 | 图必制药公司 | Extended release formulations of rasagiline and uses thereof |
AU2011212068B2 (en) * | 2010-02-03 | 2016-08-18 | Pharma Two B Ltd. | Extended release formulations of rasagiline and uses thereof |
RU2607595C2 (en) * | 2010-02-03 | 2017-01-10 | Фарма Ту Б Лтд. | Rasagiline compositions of prolonged release and use thereof |
US9943489B2 (en) | 2010-02-03 | 2018-04-17 | Pharmatwob Ltd. | Extended release formulations of rasagiline and uses thereof |
EP3517103A1 (en) | 2010-02-03 | 2019-07-31 | Pharma Two B Ltd. | Extended release formulations of rasagiline and uses thereof |
US20190000768A1 (en) * | 2015-08-04 | 2019-01-03 | Fuji Capsule Co., Ltd. | Enteric capsule |
EP3332775A4 (en) * | 2015-08-04 | 2019-05-29 | Fuji Capsule Co., Ltd. | Enteric capsule |
Also Published As
Publication number | Publication date |
---|---|
EP2285214A4 (en) | 2011-06-15 |
US20100008983A1 (en) | 2010-01-14 |
CA2727019A1 (en) | 2009-12-17 |
AU2009258120B2 (en) | 2014-11-27 |
JP2011524353A (en) | 2011-09-01 |
IL209132A0 (en) | 2011-01-31 |
EP2285214A1 (en) | 2011-02-23 |
AU2009258120A1 (en) | 2009-12-17 |
EP2285214B1 (en) | 2012-05-16 |
ES2389353T3 (en) | 2012-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2009258120B2 (en) | Rasagiline soft gelatin capsules | |
JP5248739B2 (en) | Enteric preparation | |
JP3902228B2 (en) | Pharmaceutical dosage forms for colon delivery | |
JP4971159B2 (en) | Sustained release pellet preparation containing pramipexole or a pharmaceutically acceptable salt thereof, its production method and use | |
US10918615B2 (en) | Fumarate esters | |
US20100129446A1 (en) | Solid dosage forms comprising an enteric coating with accelerated drug release | |
CN110891552B (en) | Enteric hard capsule | |
CN103533925A (en) | Combined formulation with improved stability | |
CN105828806A (en) | Formulations | |
BR112016001822B1 (en) | PHARMACEUTICAL TABLET INCLUDING ACETYLSALICYLIC ACID AND CLOPIDOGREL AND THEIR MANUFACTURING PROCESS | |
CA3003644A1 (en) | Extended release film-coated capsules | |
MX2011005687A (en) | Coating material for solid medicine and solid medicine formed with same. | |
TWI484976B (en) | Film-coating agent for solid formulation and solid formulation using the same | |
EP4340847A1 (en) | Composition of mesalazine enteric tablet formulation | |
JP5853699B2 (en) | Coating agent for pharmaceutical solid preparation, film preparation for medical use and coated pharmaceutical solid preparation | |
EP3630074B1 (en) | Multiparticulate oral dosage form providing prolonged release of tapentadol | |
KR101884230B1 (en) | Formulation containing esomeprazole | |
EP3811976B1 (en) | Enteric hard capsule | |
CA3079620A1 (en) | Self-emulsifying compositions of weakly ionizable or non-ionizable active pharmaceutical ingredients | |
Bühler | Kollicoat grades | |
Katakam et al. | Design and evaluation of a novel gas formation-based multiple-unit gastro-retentive floating drug delivery system for quetiapine fumarate | |
TR2023014802T2 (en) | MESALAZINE ENTERIC TABLET FORMULATION COMPOSITION | |
EA040614B1 (en) | COMPOSITIONS | |
WO2015176780A1 (en) | Celecoxib formulations useful for treating colorectal cancer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09762890 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009258120 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009762890 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2727019 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011513497 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2009258120 Country of ref document: AU Date of ref document: 20090610 Kind code of ref document: A |