WO2009150954A1 - Process for producing layered product and layered product produced by the process - Google Patents

Process for producing layered product and layered product produced by the process Download PDF

Info

Publication number
WO2009150954A1
WO2009150954A1 PCT/JP2009/060014 JP2009060014W WO2009150954A1 WO 2009150954 A1 WO2009150954 A1 WO 2009150954A1 JP 2009060014 W JP2009060014 W JP 2009060014W WO 2009150954 A1 WO2009150954 A1 WO 2009150954A1
Authority
WO
WIPO (PCT)
Prior art keywords
active energy
energy ray
composition
curable
curable composition
Prior art date
Application number
PCT/JP2009/060014
Other languages
French (fr)
Japanese (ja)
Inventor
睦弘 下口
裕介 田原
健吉 矢野
博之 川村
太 高橋
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2009553861A priority Critical patent/JP4955073B2/en
Publication of WO2009150954A1 publication Critical patent/WO2009150954A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/544No clear coat specified the first layer is let to dry at least partially before applying the second layer

Definitions

  • the present invention relates to a method for producing a laminate having an active energy ray-curable coating film having excellent hardness, scratch resistance and adhesion, and a laminate produced by the production method.
  • base materials such as paper, wood, plastic, metal, and glass is coated to protect the surface by providing various performances such as hardness, scratch resistance, friction resistance, and chemical resistance. ing.
  • the active energy ray-curable composition is mainly used as the coating agent. This is because the surface is more excellent in scratch resistance and friction resistance than when a thermoplastic resin or a thermosetting resin is used.
  • the adhesion between the layers decreases due to volume shrinkage during curing of the active energy ray-curable composition, and adhesion Defects occur.
  • an intermediate layer called a primer layer or an anchor layer may be provided to improve the adhesion between the layers.
  • Thermosetting resins and thermoplastic resins are used as these primers and anchors, but they are inferior in physical properties such as hardness, scratch resistance, friction resistance, chemical resistance, etc., and can be used as the outermost layer. Absent.
  • an active energy ray-curable aqueous resin composition mainly comprising an aqueous emulsion resin as a first protective layer and an active energy ray-curable aqueous resin composition not containing an aqueous emulsion resin as a second protective layer.
  • a surface-reinforced decorative paper is known.
  • the first protective layer is an active energy curable composition, but when it is an aqueous emulsion system, the hardness that can be used as the outermost layer is not sufficient, and therefore a second protective layer is provided to increase the surface hardness and durability. (See Patent Document 2).
  • an example using a heat-drying ionizing radiation curable resin for an intermediate layer is also known.
  • These resins are aqueous emulsions having ionizing radiation-reactive double bonds, or water-soluble or solvent-soluble resins having electron-radiation-reactive double bonds, and the resin has a Tg of 40 ° C. or higher, preferably It is a thing of 60 degreeC or more.
  • the intermediate layer is an active energy ray-curable composition, since it is an aqueous emulsion system, there is no hardness that can be used as the outermost layer, and a top coat layer is provided to improve the surface hardness (see Patent Document 3).
  • a transfer coating topcoat agent As an example of use as a transfer coating topcoat agent, there is known a transfer sheet in which an acrylic ionizing radiation curable resin protective layer is formed and a pattern layer is formed before electron beam irradiation.
  • a transfer sheet in which an acrylic ionizing radiation curable resin protective layer is formed and a pattern layer is formed before electron beam irradiation.
  • a non-crosslinked thermoplastic acrylic resin is essential for ionizing radiation, and sufficient hardness cannot be obtained (see Patent Document 4).
  • an ultraviolet absorber layer or an adhesive layer is formed.
  • a topcoat agent for transfer composition after forming a urethane-based curable resin protective layer, after irradiating with ultraviolet rays to cure the coating film, an ultraviolet absorber layer or an adhesive layer is formed.
  • an ultraviolet absorber layer or an adhesive layer is formed.
  • Patent Document 5 There is a known method (see Patent Document 5).
  • JP-A-8-281896 JP-A-9-290487 Japanese Patent Laid-Open No. 10-119226 Japanese Patent Laid-Open No. 7-314995 JP 2008-6708 A
  • An object of the present invention is to provide a method for producing a laminate having a coating film having excellent hardness, scratch resistance and interlayer adhesion, and a laminate obtained by the production method.
  • the present invention firstly (1) on a substrate, (a) has a urethane bond in the main skeleton, (b) has a softening point of 40-150 ° C., and (c) a weight average molecular weight of 5 (D) a step of applying an active energy ray-curable composition containing an active energy ray-curable resin soluble in an organic solvent, and (2) no irradiation with active energy rays.
  • a drying step (3) a step of applying a composition containing one or more selected from the group consisting of a thermoplastic composition, a thermosetting composition and an active energy ray-curable composition, over the entire surface or partially, ( 4)
  • a method for producing a laminate which includes a curing step of irradiating active energy rays in this order.
  • the present invention secondly provides a laminate obtained by the above-described production method.
  • the laminate produced by the production method of the present invention has a urethane bond in the main skeleton (a) on the above-mentioned (1) substrate for use in a decorative sheet structure that functions as an undercoat layer.
  • the cured layer of the energy beam curable composition has a sufficient hardness as a base, and also ensures adhesion with the upper layer. Also, even when used in a transfer sheet structure that functions as an overcoat layer, it has excellent surface hardness and scratch resistance, especially because the cured layer constitutes the surface while having sufficient adhesion to the lower layer. Can be secured.
  • the present invention comprises (1) a substrate having (a) a urethane bond in the main skeleton, (b) a softening point of 40 to 150 ° C., and (c) a weight average molecular weight of 5,000 to 1,000.
  • D an active energy ray-curable composition containing an active energy ray-curable resin soluble in an organic solvent (hereinafter referred to as an active energy ray-curable composition containing a tack-free urethane resin).
  • an active energy ray-curable composition containing an active energy ray-curable resin soluble in an organic solvent hereinafter referred to as an active energy ray-curable composition containing a tack-free urethane resin.
  • Examples of the structure of the laminate obtained by the production method of the present invention include a transfer sheet structure and a decorative sheet structure.
  • a transfer sheet structure In the case of a transfer sheet structure, (1) a step of applying an active energy ray-curable composition containing a tack-free urethane resin as a topcoat layer to a PET raw material subjected to a release treatment, 2) a drying step not involving active energy ray irradiation, (3) a composition containing at least one selected from the group consisting of a thermoplastic composition, a thermosetting composition and an active energy ray curable composition as an anchor layer.
  • a transfer sheet is constituted by a step of applying an object, a drying step without irradiation with active energy rays, and a step of applying an adhesive layer, and (4) a step of transferring and molding using this transfer sheet, 5)
  • a molded product is formed by a curing step of irradiating active energy rays.
  • the active energy ray-curable composition containing the tack-free urethane resin described above is applied to dry the coating film with heat, air, etc. When evaporated, it becomes a tack-free coating. Thereby, the layer of the next process can be applied thereon without the need to cure the same layer with active energy rays.
  • Tack-free means that the surface of the coating film is dry to the extent that no stickiness is felt due to finger touch or the like.
  • the active energy ray-curable composition used in the present invention is an active energy ray-curable composition containing a tack-free urethane resin.
  • the tack-free urethane resin is a urethane resin having a softening point of 40 to 150 ° C. and a weight average molecular weight of 5,000 to 1,000,000 and being soluble in an organic solvent.
  • the softening point is preferably 60 ° C to 150 ° C, more preferably 70 ° C to 150 ° C.
  • the weight average molecular weight is preferably 10,000 to 600,000, more preferably 50,000 to 600,00.
  • organic solvents examples include alcohol solvents such as methanol, ethanol, isopropyl alcohol and butanol, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ester solvents such as ethyl acetate and butyl acetate, methyl cellosolve and ethyl cellosolve.
  • Ether solvents such as toluene, hydrocarbon solvents such as toluene, hexane and cyclohexane, organic solvents such as tetrahydrofuran, and mixed solvents thereof can be used, but in consideration of dissolution of thermoplastic organic compounds, ketone solvents or esters System solvents are preferred.
  • the active energy ray-curable composition containing a tack-free urethane resin used in the production method of the present invention thus obtained can be used in various ways within a range that does not depart from the object of the present invention.
  • Additives such as lubricants, plasticizers, antifoaming agents, antioxidants, UV absorbers, light stabilizers, coupling agents, surfactants, organic solvents and chelating agents, inorganic fillers and organic fillers can be added. .
  • Examples of the coating method of the coating film forming composition in the production method of the present invention include offset printing, flexographic printing, roll coating, gravure coating, bar coater and the like.
  • the active energy ray-curable composition containing the tack-free urethane resin used in the production method of the present invention and the active energy ray-curable composition applied in the next step are an ionizing radiation such as an electron beam, an ultraviolet ray, or a ⁇ ray. Irradiate to cure.
  • an ionizing radiation such as an electron beam, an ultraviolet ray, or a ⁇ ray.
  • a known ultraviolet irradiation device equipped with a high-pressure mercury lamp, excimer lamp, metal halide lamp, or the like can be used.
  • the amount of ultraviolet irradiation during curing is preferably 30 to 1500 mJ / cm 2 . When the irradiation amount is less than 30 mJ / cm 2 , curing is not sufficient, and when it exceeds 1500 mJ / cm 2 , yellowing of the coating film or damage to the substrate due to heat may occur.
  • the electron beam dose during curing is preferably 10 to 100 kGy. If the irradiation dose is less than 10 kGy, curing is not sufficient, and if it exceeds 100 kGy, damage to the coating film and the substrate may occur.
  • a photo (polymerization) initiator that generates radicals and the like upon irradiation with ultraviolet rays is added in an amount of 0.1 to 20 masses with respect to 100 parts by mass of the active energy ray-curable compound. It is preferable to add about 1 part.
  • Radical generation photo (polymerization) initiators include hydrogen abstraction types such as benzyl, benzophenone, Michler's ketone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, benzoin ethyl ether, diethoxyacetophenone, benzylmethyl ketal, hydroxy
  • photocleavage types such as cyclohexyl phenyl ketone and 2-hydroxy-2-methylphenyl ketone. These can be used alone or in combination.
  • anchor layer formation in the transfer sheet structure examples include acrylic resin, polyester resin, urethane resin, epoxy resin, and melamine resin, and these can be used alone or in combination. Moreover, various active energy ray hardening-type compositions, various polyisocyanate, etc. can also be mixed and used for these.
  • topcoat layer for example, various active energy ray-curable compositions can be used.
  • Table 1 gives examples of transfer sheet structures. Table 1 shows the coating composition and evaluation results of Examples and Comparative Examples.
  • Table 2 gives examples of decorative sheet structures. Table 2 shows the coating composition and evaluation results of Example 3 and Comparative Examples 3 and 4.
  • Table 1 and Table 2 The raw materials of Table 1 and Table 2 are as follows.
  • Art Resin AH-51M40 A tack-free urethane acrylate manufactured by Negami Kogyo Co., Ltd.
  • Dianal BR85 Acrylic resin (Tg of about 100 ° C.) manufactured by Mitsubishi Rayon Co., Ltd.
  • Aronix M-402 Dipentaerythritol hexaacrylate manufactured by Toa Gosei Co., Ltd.
  • Acrydic A-814 An acrylic polyol manufactured by DIC Corporation.
  • Death Module L-75 Polyisocyanate manufactured by Sumitomo Bayer Urethane Co., Ltd.
  • Paraloid B-72 Rohm and Haas acrylic resin (Tg of about 40 ° C.).
  • Irgacure 184 Photopolymerization initiator manufactured by Ciba Specialty Chemicals Co., Ltd.
  • Siloid 7000 Silica manufactured by Grace Japan Co., Ltd. (average particle size of about 5 ⁇ m).
  • Sample preparation conditions are as follows. The first layer was coated on the entire surface of the raw material with a bar coater and dried at 100 ° C. for about 60 seconds to volatilize the solvent. In the case of Examples 1 and 2 and Comparative Examples 1 and 2, the second layer was coated on the entire surface of the first layer, and in Example 3 and Comparative Examples 4 and 5, it was partially coated with a bar coater. The solvent was volatilized by drying at 100 ° C. for about 60 seconds. The entire coating film was cured under the curing conditions described in Tables 1 and 2. Curing conditions were UV: high pressure mercury lamp 120 W / cm 1 lamp 10 m / min 1 pass irradiation. When performing thermosetting, it was left to stand at 60 ° C. for 3 days.
  • Tack-free property After heat drying at 100 ° C. for about 60 seconds, tack is evaluated by finger touch.
  • Blocking resistance A PET film (Toyobo Co., Ltd. 5101, 25 ⁇ m) is placed on the coated product, and allowed to stand at 100 g / cm 2, 40 ° C. for 24 hours, and the state of the setback to the PET film is evaluated.
  • Bending property The coated product is bent 180 °, and the state of cracking of the coating film is evaluated.
  • MEK rubbing MEK is added to absorbent cotton and the state of the coating film is evaluated when the coated surface is double rubbed 100 times.
  • Example 1 the first layer was applied and dried with hot air. However, the stickiness of the surface of the coating film disappeared (tack-free), and the second layer as the anchor layer could be applied smoothly. did it.
  • a third adhesive layer was applied and dried by ultraviolet irradiation after transfer, excellent properties such as adhesion to the anchor layer and surface steel wool resistance were exhibited.
  • the topcoat layer (second layer) exhibits good adhesion to the anchor layer (first layer), has good solvent resistance against MEK rubbing and steel wool, and is good Surface hardness.
  • the method for producing a laminate of the present invention can be applied to a method for producing a laminate such as a transfer sheet or a decorative sheet having a coating film having excellent hardness, solvent resistance, scratch resistance and adhesion.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

A process for producing a layered product having coating films excellent in hardness, marring resistance, and interlaminar adhesion; and a layered product obtained by the process.  The process for layered-product production is characterized by comprising, in the following order: (1) a step in which a base is coated with an actinic-energy-ray-curable composition containing an actinic-energy-ray-curable resin which has (a) a urethane bond in the backbone, (b) a softening point of 40-150°C, and (c) a weight-average molecular weight of 5,000-1,000,000 and which is (d) soluble in organic solvents; (2) a drying step not including irradiation with actinic energy rays; (3) a step in which the resultant coating is wholly or partly coated with a composition comprising one or more members selected from a group consisting of a thermoplastic composition, a thermosetting composition, and an actinic-energy-ray-curable composition; and (4) a curing step in which the coated base is irradiated with actinic energy rays.

Description

積層体の製造方法及び該方法で製造された積層体LAMINATE MANUFACTURING METHOD AND LAMINATE PRODUCED BY THE METHOD
 本発明は、硬度、耐傷付き性及び密着性に優れる活性エネルギー線硬化性塗膜を有する積層体の製造方法、及び、該製造方法で製造される積層体に関する。 The present invention relates to a method for producing a laminate having an active energy ray-curable coating film having excellent hardness, scratch resistance and adhesion, and a laminate produced by the production method.
 紙、木材、プラスチック、金属、ガラス等の基材の表面には、硬度、耐擦り傷性、耐摩擦性、耐薬品性等の様々な性能を付与して表面を保護するためにコーティングが行われている。 The surface of base materials such as paper, wood, plastic, metal, and glass is coated to protect the surface by providing various performances such as hardness, scratch resistance, friction resistance, and chemical resistance. ing.
 コーティング剤としては活性エネルギー線硬化性組成物が主として使用されている。これは熱可塑性樹脂あるいは熱硬化性樹脂を使用する場合に比べて、表面の耐擦り傷性、耐摩擦性がより優れるためである。 The active energy ray-curable composition is mainly used as the coating agent. This is because the surface is more excellent in scratch resistance and friction resistance than when a thermoplastic resin or a thermosetting resin is used.
 各種基材あるいは基材上に形成された絵柄層に活性エネルギー線硬化性組成物を直接塗布すると、活性エネルギー線硬化性組成物の硬化時の体積収縮等により層間の密着性が低下し、密着不良が発生する。 When the active energy ray-curable composition is directly applied to various substrates or pattern layers formed on the substrate, the adhesion between the layers decreases due to volume shrinkage during curing of the active energy ray-curable composition, and adhesion Defects occur.
 前記密着不良の問題を解決する為に、プライマー層乃至はアンカー層と呼ばれる中間層を設け、層間の密着を向上させる方法が取られる場合がある。これらプライマー、アンカーとしては熱硬化性樹脂や熱可塑性樹脂等が用いられるが、これらは硬度、耐擦り傷性、耐摩擦性、耐薬品性等の物性に劣るため、最外層として使用することが出来ない。 In order to solve the problem of the adhesion failure, an intermediate layer called a primer layer or an anchor layer may be provided to improve the adhesion between the layers. Thermosetting resins and thermoplastic resins are used as these primers and anchors, but they are inferior in physical properties such as hardness, scratch resistance, friction resistance, chemical resistance, etc., and can be used as the outermost layer. Absent.
 化粧シート分野で、熱乾燥でタックフリーとなる、熱または電子線で完全に硬化するアンカー剤の使用が知られている。しかしながら、熱硬化型または電子線硬化型アンカー剤も、それのみでは硬度や耐傷付き性は十分ではないために、艶消し剤を含有する電子線硬化型樹脂からなるトップコート層を全面に設ける例が示されている。しかしながら相応しいアンカー剤の組成が特定されていない(特許文献1参照)。 In the field of decorative sheets, it is known to use an anchor agent that is tack-free by heat drying and is completely cured by heat or electron beam. However, since a thermosetting or electron beam curable anchor agent alone is not sufficient in hardness and scratch resistance, a top coat layer made of an electron beam curable resin containing a matting agent is provided on the entire surface. It is shown. However, a suitable anchor agent composition has not been specified (see Patent Document 1).
 同分野で、第一保護層として水性エマルジョン樹脂を主成分とする活性エネルギー線硬化型水性樹脂組成物と、第二保護層として水性エマルジョン樹脂を含有しない活性エネルギー線硬化型水性樹脂組成物とからなる表面強化化粧紙が知られている。第一保護層は活性エネルギー硬化性組成物であるが、水性エマルジョン系である場合、最外層として使用できる硬度は十分で無く、そのために第二保護層を設けて表面硬度や耐久性を高めている(特許文献2参照)。 In the same field, an active energy ray-curable aqueous resin composition mainly comprising an aqueous emulsion resin as a first protective layer and an active energy ray-curable aqueous resin composition not containing an aqueous emulsion resin as a second protective layer. A surface-reinforced decorative paper is known. The first protective layer is an active energy curable composition, but when it is an aqueous emulsion system, the hardness that can be used as the outermost layer is not sufficient, and therefore a second protective layer is provided to increase the surface hardness and durability. (See Patent Document 2).
 更に、中間層用熱乾燥型電離放射線硬化樹脂を用いる例も知られている。これ等の樹脂は、電離放射線反応性の二重結合を有する水性エマルジョン、あるいは電子放射線反応性の二重結合を有する水溶性あるいは溶剤可溶性樹脂等であり、樹脂のTgが40℃以上、好ましくは60℃以上のものである。中間層が活性エネルギー線硬化性組成物であっても、水性エマルジョン系であるので最外層として使用できる硬度は無く、トップコート層を設けて表面硬度を向上させている(特許文献3参照)。 Furthermore, an example using a heat-drying ionizing radiation curable resin for an intermediate layer is also known. These resins are aqueous emulsions having ionizing radiation-reactive double bonds, or water-soluble or solvent-soluble resins having electron-radiation-reactive double bonds, and the resin has a Tg of 40 ° C. or higher, preferably It is a thing of 60 degreeC or more. Even if the intermediate layer is an active energy ray-curable composition, since it is an aqueous emulsion system, there is no hardness that can be used as the outermost layer, and a top coat layer is provided to improve the surface hardness (see Patent Document 3).
 転写構成用トップコート剤としての使用の例として、アクリル系の電離放射線硬化型樹脂保護層を形成後に、電子線照射前に絵柄層を形成した転写シートが知られている。しかしながら、電子線照射前のタックフリー性発現のために、電離放射線に対して非架橋型の熱可塑性アクリル樹脂を必須としており、十分な硬度が得られない(特許文献4参照)。 As an example of use as a transfer coating topcoat agent, there is known a transfer sheet in which an acrylic ionizing radiation curable resin protective layer is formed and a pattern layer is formed before electron beam irradiation. However, in order to develop tack-free properties before electron beam irradiation, a non-crosslinked thermoplastic acrylic resin is essential for ionizing radiation, and sufficient hardness cannot be obtained (see Patent Document 4).
 転写構成用トップコート剤としての使用の例として、更に、ウレタン系の硬化型樹脂保護層を形成後に、紫外線照射し、塗膜を硬化させた後、紫外線吸収剤層乃至は接着剤層を形成する方式が知られている(特許文献5参照)。 As an example of use as a topcoat agent for transfer composition, after forming a urethane-based curable resin protective layer, after irradiating with ultraviolet rays to cure the coating film, an ultraviolet absorber layer or an adhesive layer is formed. There is a known method (see Patent Document 5).
 しかしながら、活性エネルギー線硬化性塗膜を有する積層体であって、表面硬度、耐傷付き性及び密着性を十分に満足するものは得られていない。 However, a laminate having an active energy ray-curable coating film that does not sufficiently satisfy surface hardness, scratch resistance, and adhesion has not been obtained.
特開平8-281896号公報JP-A-8-281896 特開平9-290487号公報JP-A-9-290487 特開平10-119226号公報Japanese Patent Laid-Open No. 10-119226 特開平7-314995号公報Japanese Patent Laid-Open No. 7-314995 特開2008-6708号公報JP 2008-6708 A
 本発明の課題は、塗膜が優れた硬度、耐傷付き性及び層間密着性を有する積層体の製造方法、及び、該製造方法で得られる積層体を提供することにある。 An object of the present invention is to provide a method for producing a laminate having a coating film having excellent hardness, scratch resistance and interlayer adhesion, and a laminate obtained by the production method.
 塗膜の硬化性を十分に発現させ、更に重ね塗布を行った際の層間密着性得るため、活性エネルギー線硬化性組成物にタックフリー型のウレタン樹脂を含有させることで、上記の課題を達成するに至り、本発明を完成させた。すなわち、本発明は、第一に、(1)基材上に、(a)主骨格にウレタン結合を有し、(b)軟化点が40-150℃で、(c)重量平均分子量が5,000-1,000,000で、(d)有機溶剤に可溶の活性エネルギー線硬化性樹脂を含有する活性エネルギー線硬化性組成物を塗布する工程、(2)活性エネルギー線照射を伴わない乾燥工程、(3)熱可塑性組成物、熱硬化性組成物及び活性エネルギー線硬化性組成物からなる群から選ばれる1種以上を含有する組成物を全面あるいは部分的に重ね塗布する工程、(4)活性エネルギー線を照射する硬化工程をこの順に有することを特徴とする積層体の製造方法を提供する。 In order to fully develop the curability of the coating film and to obtain interlayer adhesion when performing repeated coating, the above-mentioned problems are achieved by including a tack-free urethane resin in the active energy ray-curable composition. As a result, the present invention has been completed. That is, the present invention firstly (1) on a substrate, (a) has a urethane bond in the main skeleton, (b) has a softening point of 40-150 ° C., and (c) a weight average molecular weight of 5 (D) a step of applying an active energy ray-curable composition containing an active energy ray-curable resin soluble in an organic solvent, and (2) no irradiation with active energy rays. A drying step, (3) a step of applying a composition containing one or more selected from the group consisting of a thermoplastic composition, a thermosetting composition and an active energy ray-curable composition, over the entire surface or partially, ( 4) Provided is a method for producing a laminate, which includes a curing step of irradiating active energy rays in this order.
 更に、本発明は第二に、前記した製造方法で得られる積層体を提供する。 Furthermore, the present invention secondly provides a laminate obtained by the above-described production method.
 本発明の製造方法によって製造される積層体は、下塗り層として機能する化粧シート構造での使用にあっては、前記した(1)基材上に、(a)主骨格にウレタン結合を有し、(b)軟化点が40-150℃で、(c)重量平均分子量が5,000-1,000,000で、(d)有機溶剤に可溶の活性エネルギー線硬化性樹脂を含有する活性エネルギー線硬化性組成物の硬化層が、土台として十分な硬度を有し、且つ、上層との密着性も確保している。又、上塗り層として機能する転写シート構造での使用であっても、下層との十分な密着性を有しつつ、特に、同硬化層が表面を構成するため、優れた表面硬度、耐傷付き性を確保できる。 The laminate produced by the production method of the present invention has a urethane bond in the main skeleton (a) on the above-mentioned (1) substrate for use in a decorative sheet structure that functions as an undercoat layer. (B) an active energy ray-curable resin having a softening point of 40 to 150 ° C., (c) a weight average molecular weight of 5,000 to 1,000,000, and soluble in an organic solvent. The cured layer of the energy beam curable composition has a sufficient hardness as a base, and also ensures adhesion with the upper layer. Also, even when used in a transfer sheet structure that functions as an overcoat layer, it has excellent surface hardness and scratch resistance, especially because the cured layer constitutes the surface while having sufficient adhesion to the lower layer. Can be secured.
 本発明は、(1)基材上に、(a)主骨格にウレタン結合を有し、(b)軟化点が40-150℃で、(c)重量平均分子量が5,000-1,000,000で、(d)有機溶剤に可溶の活性エネルギー線硬化性樹脂を含有する活性エネルギー線硬化性組成物(以下、タックフリー型ウレタン樹脂を含有する活性エネルギー線硬化性組成物)を塗布する工程、(2)活性エネルギー線照射を伴わない乾燥工程、(3)熱可塑性組成物、熱硬化性組成物及び活性エネルギー線硬化性組成物からなる群から選ばれる1種以上を含有する組成物を塗布する工程、(4)活性エネルギー線を照射する硬化工程をこの順に有することを特徴とする積層体の製造方法を提供するものである。 The present invention comprises (1) a substrate having (a) a urethane bond in the main skeleton, (b) a softening point of 40 to 150 ° C., and (c) a weight average molecular weight of 5,000 to 1,000. (D) an active energy ray-curable composition containing an active energy ray-curable resin soluble in an organic solvent (hereinafter referred to as an active energy ray-curable composition containing a tack-free urethane resin). (2) a drying step not involving active energy ray irradiation, (3) a composition containing at least one selected from the group consisting of a thermoplastic composition, a thermosetting composition and an active energy ray curable composition. The manufacturing method of the laminated body characterized by having the process of apply | coating a thing, and the hardening process which irradiates an active energy ray in this order (4).
 本発明の製造方法で得られる積層体の構造としては、例えば、転写シート構造、化粧シート構造が挙げられる。 Examples of the structure of the laminate obtained by the production method of the present invention include a transfer sheet structure and a decorative sheet structure.
 転写シート構造の場合、離型処理を施されたPET原反等に、(1)トップコート層として、前記したタックフリー型ウレタン樹脂を含有する活性エネルギー線硬化性組成物を塗布する工程、(2)活性エネルギー線照射を伴わない乾燥工程、(3)アンカー層として、熱可塑性組成物、熱硬化性組成物及び活性エネルギー線硬化性組成物からなる群から選ばれる1種以上を含有する組成物を塗布する工程、更に、活性エネルギー線照射を伴わない乾燥工程を経て、接着層を塗布する工程により転写シートが構成され、この転写シートを用いて(4)転写および成型をする工程、(5)活性エネルギー線を照射する硬化工程によって、成型物が形成される。 In the case of a transfer sheet structure, (1) a step of applying an active energy ray-curable composition containing a tack-free urethane resin as a topcoat layer to a PET raw material subjected to a release treatment, 2) a drying step not involving active energy ray irradiation, (3) a composition containing at least one selected from the group consisting of a thermoplastic composition, a thermosetting composition and an active energy ray curable composition as an anchor layer. A transfer sheet is constituted by a step of applying an object, a drying step without irradiation with active energy rays, and a step of applying an adhesive layer, and (4) a step of transferring and molding using this transfer sheet, 5) A molded product is formed by a curing step of irradiating active energy rays.
 化粧シート構造の場合、薄紙、プラスチックシート等の原反に、(1)アンカー層として、前記したタックフリー型ウレタン樹脂を含有する活性エネルギー線硬化性組成物を塗布する工程、(2)活性エネルギー線照射を伴わない乾燥工程、(3)トップコート層として、活性エネルギー線硬化性組成物を含有する組成物を塗布する工程、(4)活性エネルギー線を照射する硬化工程によって、化粧シートが形成される。 In the case of a decorative sheet structure, (1) a step of applying an active energy ray-curable composition containing the tack-free urethane resin as an anchor layer to an original fabric such as thin paper or plastic sheet; (2) active energy A decorative sheet is formed by a drying process without irradiation with radiation, (3) a step of applying a composition containing an active energy ray-curable composition as a topcoat layer, and (4) a curing step of irradiating active energy rays. Is done.
 転写シート構造の場合も、化粧シート構造の場合も、前記したタックフリー型ウレタン樹脂を含有する活性エネルギー線硬化性組成物は、塗布後、塗膜を熱、風等で乾燥して溶剤分を蒸発させるとタックフリーの塗膜になる。これにより同層を活性エネルギー線で硬化する必要なく、その上に、次工程の層を塗布することができる。これは特にグラビア方式で塗布する場合には塗工ユニット毎に活性エネルギー線照射装置を設置することなく重ね塗工する事ができる等の理由で有利である。尚、タックフリーとは、塗膜の表面が指触等によりべたつきが感じられない程度に乾いていることを言う。 In the case of both the transfer sheet structure and the decorative sheet structure, the active energy ray-curable composition containing the tack-free urethane resin described above is applied to dry the coating film with heat, air, etc. When evaporated, it becomes a tack-free coating. Thereby, the layer of the next process can be applied thereon without the need to cure the same layer with active energy rays. This is particularly advantageous in the case of coating by a gravure method because it can be applied repeatedly without installing an active energy ray irradiation device for each coating unit. Tack-free means that the surface of the coating film is dry to the extent that no stickiness is felt due to finger touch or the like.
 本発明に用いる活性エネルギー線硬化性組成物は、タックフリー型ウレタン樹脂を含有する活性エネルギー線硬化性組成物である。タックフリー型ウレタン樹脂は、軟化点が40-150℃で、重量平均分子量が5,000-1,000,000で、有機溶剤に可溶のウレタン樹脂である。好ましい軟化点は、60℃~150℃であり、より好ましくは70℃~150℃である。重量平均分子量は好ましくは10,000~600,000であり、より好ましくは50,000~600,00である。有機溶剤としては、メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、メチルセルソルブ、エチルセルソルブ、等のエーテル系溶剤、トルエン、ヘキサン、シクロヘキサン等の炭化水素系溶剤、テトラヒドロフラン等の有機溶剤およびこれらの混合溶剤が使用できるが、熱可塑性有機化合物の溶解を考慮した場合、ケトン系溶剤あるいはエステル系溶剤が好ましい。 The active energy ray-curable composition used in the present invention is an active energy ray-curable composition containing a tack-free urethane resin. The tack-free urethane resin is a urethane resin having a softening point of 40 to 150 ° C. and a weight average molecular weight of 5,000 to 1,000,000 and being soluble in an organic solvent. The softening point is preferably 60 ° C to 150 ° C, more preferably 70 ° C to 150 ° C. The weight average molecular weight is preferably 10,000 to 600,000, more preferably 50,000 to 600,00. Examples of organic solvents include alcohol solvents such as methanol, ethanol, isopropyl alcohol and butanol, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ester solvents such as ethyl acetate and butyl acetate, methyl cellosolve and ethyl cellosolve. Ether solvents such as toluene, hydrocarbon solvents such as toluene, hexane and cyclohexane, organic solvents such as tetrahydrofuran, and mixed solvents thereof can be used, but in consideration of dissolution of thermoplastic organic compounds, ketone solvents or esters System solvents are preferred.
 このようにして得られる本発明の製造方法に用いる、タックフリー型ウレタン樹脂を含有する活性エネルギー線硬化性組成物には、さらに必要に応じて、本発明の目的を逸脱しない範囲内で、各種の機能を付与するため、活性エネルギー線硬化型モノマー、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート等の活性エネルギー線硬化型オリゴマー、アクリルアクリレート等の活性エネルギー線硬化型ポリマー、着色剤、体質顔料、シリコーン、滑剤、可塑剤、消泡剤、酸化防止剤、紫外線吸収剤、光安定剤、カップリング剤、界面活性剤、有機溶剤及びキレート剤、無機フィラー、有機フィラーなどの添加剤を添加することができる。 The active energy ray-curable composition containing a tack-free urethane resin used in the production method of the present invention thus obtained can be used in various ways within a range that does not depart from the object of the present invention. Active energy ray curable monomers, active energy ray curable oligomers such as urethane acrylate, polyester acrylate, and epoxy acrylate, active energy ray curable polymers such as acrylic acrylate, colorants, extender pigments, silicone, Additives such as lubricants, plasticizers, antifoaming agents, antioxidants, UV absorbers, light stabilizers, coupling agents, surfactants, organic solvents and chelating agents, inorganic fillers and organic fillers can be added. .
 本発明の製造方法における塗膜形成用組成物の塗布方法としては、オフセット印刷、フレキソ印刷、ロールコート、グラビアコート、バーコーター等が挙げられる。 Examples of the coating method of the coating film forming composition in the production method of the present invention include offset printing, flexographic printing, roll coating, gravure coating, bar coater and the like.
 本発明の製造方法に用いるタックフリー型ウレタン樹脂を含有する活性エネルギー線硬化性組成物及び次工程で塗布する活性エネルギー線硬化性組成物は、電子線、紫外線、あるいはγ線等の電離放射線等を照射して硬化させる。紫外線で硬化させる場合、高圧水銀灯、エキシマランプ、メタルハライドランプ等を備えた公知の紫外線照射装置を使用することができる。硬化の際の紫外線照射量は、好ましくは30~1500mJ/cmである。照射量が30mJ/cm未満では硬化が十分ではなく、1500mJ/cmを超えると塗膜の黄変、熱による基材の損傷などが起こる可能性がある。 The active energy ray-curable composition containing the tack-free urethane resin used in the production method of the present invention and the active energy ray-curable composition applied in the next step are an ionizing radiation such as an electron beam, an ultraviolet ray, or a γ ray. Irradiate to cure. In the case of curing with ultraviolet rays, a known ultraviolet irradiation device equipped with a high-pressure mercury lamp, excimer lamp, metal halide lamp, or the like can be used. The amount of ultraviolet irradiation during curing is preferably 30 to 1500 mJ / cm 2 . When the irradiation amount is less than 30 mJ / cm 2 , curing is not sufficient, and when it exceeds 1500 mJ / cm 2 , yellowing of the coating film or damage to the substrate due to heat may occur.
 電子線で硬化させる場合、公知の電子線照射装置を使用することができる。硬化の際の電子線照射量は、好ましくは10~100kGyである。照射量が10kGy未満では硬化が十分ではなく、100kGyを超えると塗膜、基材の損傷などが起こる可能性がある。 When curing with an electron beam, a known electron beam irradiation device can be used. The electron beam dose during curing is preferably 10 to 100 kGy. If the irradiation dose is less than 10 kGy, curing is not sufficient, and if it exceeds 100 kGy, damage to the coating film and the substrate may occur.
 紫外線を照射して硬化させる場合には、必要に応じて、紫外線の照射によりラジカル等を発生する光(重合)開始剤を活性エネルギー線硬化性化合物100質量部に対して0.1~20質量部程度添加することが好ましい。 In the case of curing by irradiating with ultraviolet rays, a photo (polymerization) initiator that generates radicals and the like upon irradiation with ultraviolet rays is added in an amount of 0.1 to 20 masses with respect to 100 parts by mass of the active energy ray-curable compound. It is preferable to add about 1 part.
 ラジカル発生型の光(重合)開始剤としては、ベンジル、ベンゾフェノン、ミヒラーズケトン、2-クロロチオキサントン、2,4-ジエチルチオキサントン等の水素引き抜きタイプや、ベンゾインエチルエーテル、ジエトキシアセトフェノン、ベンジルメチルケタール、ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチルフェニルケトン等の光開裂タイプが挙げられる。これらの中から単独あるいは複数のものを組み合わせて使用することが出来る。 Radical generation photo (polymerization) initiators include hydrogen abstraction types such as benzyl, benzophenone, Michler's ketone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, benzoin ethyl ether, diethoxyacetophenone, benzylmethyl ketal, hydroxy Examples include photocleavage types such as cyclohexyl phenyl ketone and 2-hydroxy-2-methylphenyl ketone. These can be used alone or in combination.
 転写シート構造における、アンカー層形成には、例えば、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、メラミン樹脂が挙げられ、これらの中から単独あるいは複数のものを組み合わせて使用することが出来る。また、これらに各種活性エネルギー線硬化型組成物や各種ポリイソシアネート等を混合して使用することも出来る。 Examples of the anchor layer formation in the transfer sheet structure include acrylic resin, polyester resin, urethane resin, epoxy resin, and melamine resin, and these can be used alone or in combination. Moreover, various active energy ray hardening-type compositions, various polyisocyanate, etc. can also be mixed and used for these.
 化粧シート構造における、トップコート層形成には、例えば、各種活性エネルギー線硬化型組成物等を用いることが出来る。 For forming the topcoat layer in the decorative sheet structure, for example, various active energy ray-curable compositions can be used.
 次に、本発明を、実施例を挙げて更に具体的に説明する。尚、本明細書では特に断りのない限り、部および%は質量基準である。表1に、転写シート構造の例を挙げる。実施例および比較例の塗膜組成および評価結果を表1に示す。 Next, the present invention will be described more specifically with reference to examples. In the present specification, unless otherwise specified, parts and% are based on mass. Table 1 gives examples of transfer sheet structures. Table 1 shows the coating composition and evaluation results of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表2に、化粧シート構造の例を挙げる。実施例3および比較例3,4の塗膜組成および評価結果を表2に示す。 Table 2 gives examples of decorative sheet structures. Table 2 shows the coating composition and evaluation results of Example 3 and Comparative Examples 3 and 4.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および表2の原料は以下の通りである。
(1)アートレジンAH-51M40・・・根上工業株式会社製タックフリー型ウレタンアクリレート。
(2)紫光UV1700B・・・日本合成化学株式会社製(液状)ウレタンアクリレート。
(3)ダイヤナールBR85・・・三菱レーヨン株式会社製アクリル樹脂(Tg約100℃)。
(4)アロニックスM-402・・・東亜合成株式会社製ジペンタエリスリトールヘキサアクリレート。
(5)アクリディックA-814・・・DIC株式会社製アクリルポリオール。
(6)デスモジュール L-75・・・住友バイエルウレタン株式会社製ポリイソシアネート。
(7)パラロイドB-72・・・ロームアンドハース製アクリル樹脂(Tg約40℃)。(8)イルガキュア184・・・チバ・スペシャリティー・ケミカルズ株式会社製光重合開始剤。
(9)サイロイド7000・・・グレースジャパン株式会社製シリカ(平均粒径約5μm)。
The raw materials of Table 1 and Table 2 are as follows.
(1) Art Resin AH-51M40: A tack-free urethane acrylate manufactured by Negami Kogyo Co., Ltd.
(2) Purple light UV1700B ... (liquid) urethane acrylate manufactured by Nippon Synthetic Chemical Co., Ltd.
(3) Dianal BR85: Acrylic resin (Tg of about 100 ° C.) manufactured by Mitsubishi Rayon Co., Ltd.
(4) Aronix M-402: Dipentaerythritol hexaacrylate manufactured by Toa Gosei Co., Ltd.
(5) Acrydic A-814: An acrylic polyol manufactured by DIC Corporation.
(6) Death Module L-75: Polyisocyanate manufactured by Sumitomo Bayer Urethane Co., Ltd.
(7) Paraloid B-72: Rohm and Haas acrylic resin (Tg of about 40 ° C.). (8) Irgacure 184: Photopolymerization initiator manufactured by Ciba Specialty Chemicals Co., Ltd.
(9) Siloid 7000: Silica manufactured by Grace Japan Co., Ltd. (average particle size of about 5 μm).
 サンプル作成条件は以下の通りである。
1層目をバーコーターにて原反全面に塗工し、100℃、約60秒乾燥し溶剤を揮発させた。2層目は1層目の上に実施例1、2、比較例1,2の場合は全面に、実施例3、比較例4,5の場合は部分的にバーコーターにて塗工し、100℃、約60秒乾燥し溶剤を揮発させた。表1及び表2に記載の硬化条件にて塗膜全体を硬化させた。硬化条件は、UV:高圧水銀灯 120W/cm 1灯 10m/分 1パス照射した。熱硬化を行う場合は60℃で3日間静置した。
Sample preparation conditions are as follows.
The first layer was coated on the entire surface of the raw material with a bar coater and dried at 100 ° C. for about 60 seconds to volatilize the solvent. In the case of Examples 1 and 2 and Comparative Examples 1 and 2, the second layer was coated on the entire surface of the first layer, and in Example 3 and Comparative Examples 4 and 5, it was partially coated with a bar coater. The solvent was volatilized by drying at 100 ° C. for about 60 seconds. The entire coating film was cured under the curing conditions described in Tables 1 and 2. Curing conditions were UV: high pressure mercury lamp 120 W / cm 1 lamp 10 m / min 1 pass irradiation. When performing thermosetting, it was left to stand at 60 ° C. for 3 days.
 (評価方法)
タックフリー性・・・100℃、約60秒の熱乾燥後、指触にてタックを評価する。
耐ブロッキング性・・・PETフィルム(東洋坊製え5101、25μm)を塗工物上に設置し、100g/cm2、40℃、24時間放置し、PETフィルムへの裏移りの状態を評価する。
折り曲げ性・・・塗工物を180°折り曲げ、塗膜の割れの状態を評価する。
MEKラビング・・・脱脂綿にMEKを含ませ、塗工物表面を100回ダブルラビングした時の塗膜状態を評価する。
(Evaluation methods)
Tack-free property: After heat drying at 100 ° C. for about 60 seconds, tack is evaluated by finger touch.
Blocking resistance: A PET film (Toyobo Co., Ltd. 5101, 25 μm) is placed on the coated product, and allowed to stand at 100 g / cm 2, 40 ° C. for 24 hours, and the state of the setback to the PET film is evaluated.
Bending property: The coated product is bent 180 °, and the state of cracking of the coating film is evaluated.
MEK rubbing: MEK is added to absorbent cotton and the state of the coating film is evaluated when the coated surface is double rubbed 100 times.
 実施例1,2において、1層目を塗布して熱風で乾燥させたが、いずれも塗膜の表面のべたつきが無くなり(タックフリー)、アンカー層としての2層目をスムーズに塗布することができた。また3層目の接着剤層を塗布し、転写後に紫外線照射で乾燥させたところ、アンカー層との密着性、表面の耐スチールウール性、等の優れた特性を示した。 In Examples 1 and 2, the first layer was applied and dried with hot air. However, the stickiness of the surface of the coating film disappeared (tack-free), and the second layer as the anchor layer could be applied smoothly. did it. When a third adhesive layer was applied and dried by ultraviolet irradiation after transfer, excellent properties such as adhesion to the anchor layer and surface steel wool resistance were exhibited.
 実施例3では、上塗り層(2層目)が、アンカー層(1層目)と良好な密着性を呈し、MEKラビング及び耐スチールウールに対し、良好な耐溶剤性を持ちつつ、且つ、良好な表面硬度を示した。 In Example 3, the topcoat layer (second layer) exhibits good adhesion to the anchor layer (first layer), has good solvent resistance against MEK rubbing and steel wool, and is good Surface hardness.
 本発明の積層体の製造方法は、塗膜が優れた硬度、耐溶剤性、耐傷付き性及び密着性を有する転写シート、化粧シート等の積層体の製造方法に適用できる。 The method for producing a laminate of the present invention can be applied to a method for producing a laminate such as a transfer sheet or a decorative sheet having a coating film having excellent hardness, solvent resistance, scratch resistance and adhesion.

Claims (3)

  1. (1)基材上に、(a)主骨格にウレタン結合を有し、(b)軟化点が40-150℃で、(c)重量平均分子量が5,000-1,000,000で、(d)有機溶剤に可溶の活性エネルギー線硬化性樹脂を含有する活性エネルギー線硬化性組成物を塗布する工程、(2)活性エネルギー線照射を伴わない乾燥工程、(3)熱可塑性組成物、熱硬化性組成物及び活性エネルギー線硬化性組成物からなる群から選ばれる1種以上を含有する組成物を全面あるいは部分的に重ね塗布する工程、(4)活性エネルギー線を照射する硬化工程をこの順に有することを特徴とする積層体の製造方法。 (1) On a substrate, (a) having a urethane bond in the main skeleton, (b) a softening point of 40-150 ° C., (c) a weight average molecular weight of 5,000-1,000,000, (D) a step of applying an active energy ray-curable composition containing an active energy ray-curable resin soluble in an organic solvent, (2) a drying step not involving active energy ray irradiation, and (3) a thermoplastic composition. , A step of applying a composition containing one or more selected from the group consisting of a thermosetting composition and an active energy ray curable composition, over the entire surface or in part, and (4) a curing step of irradiating active energy rays. In this order, the manufacturing method of the laminated body characterized by the above-mentioned.
  2. 前記した、(a)主骨格にウレタン結合を有し、(b)軟化点が40-150℃で、(c)重量平均分子量が5,000-1,000,000で、(d)有機溶剤に可溶の活性エネルギー線硬化性樹脂を含有する活性エネルギー線硬化性組成物が、平均粒径20μm以下の無機系フィラーを含有する請求項1に記載の積層体の製造方法。 (A) having a urethane bond in the main skeleton, (b) a softening point of 40 to 150 ° C., (c) a weight average molecular weight of 5,000 to 1,000,000, and (d) an organic solvent. The manufacturing method of the laminated body of Claim 1 in which the active energy ray-curable composition containing the active energy ray-curable resin soluble in contains an inorganic type filler with an average particle diameter of 20 micrometers or less.
  3. 基材上に、活性エネルギー線硬化性組成物の硬化層及び、熱可塑性組成物、熱硬化性組成物及び活性エネルギー線硬化性組成物からなる群から選ばれる1種以上を含有する組成物の硬化層とを有する積層体であって、
    (1)基材上に、(a)主骨格にウレタン結合を有し、(b)軟化点が40-150℃で、(c)重量平均分子量が5,000-1,000,000で、(d)有機溶剤に可溶の活性エネルギー線硬化性樹脂を含有する活性エネルギー線硬化性組成物を塗布する工程、(2)活性エネルギー線照射を伴わない乾燥工程、(3)熱可塑性組成物、熱硬化性組成物及び活性エネルギー線硬化性組成物からなる群から選ばれる1種以上を含有する組成物を全面あるいは部分的に重ね塗布する工程、(4)活性エネルギー線を照射する硬化工程によって製造されることを特徴とする積層体。
    A composition containing at least one selected from the group consisting of a cured layer of an active energy ray-curable composition and a thermoplastic composition, a thermosetting composition and an active energy ray-curable composition on a substrate. A laminate having a cured layer,
    (1) On a substrate, (a) having a urethane bond in the main skeleton, (b) a softening point of 40-150 ° C., (c) a weight average molecular weight of 5,000-1,000,000, (D) a step of applying an active energy ray-curable composition containing an active energy ray-curable resin soluble in an organic solvent, (2) a drying step not involving active energy ray irradiation, and (3) a thermoplastic composition. , A step of applying a composition containing one or more selected from the group consisting of a thermosetting composition and an active energy ray curable composition, over the entire surface or in part, and (4) a curing step of irradiating active energy rays. It is manufactured by the laminate.
PCT/JP2009/060014 2008-06-13 2009-06-02 Process for producing layered product and layered product produced by the process WO2009150954A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009553861A JP4955073B2 (en) 2008-06-13 2009-06-02 LAMINATE MANUFACTURING METHOD AND LAMINATE PRODUCED BY THE METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-155239 2008-06-13
JP2008155239 2008-06-13

Publications (1)

Publication Number Publication Date
WO2009150954A1 true WO2009150954A1 (en) 2009-12-17

Family

ID=41416665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060014 WO2009150954A1 (en) 2008-06-13 2009-06-02 Process for producing layered product and layered product produced by the process

Country Status (3)

Country Link
JP (1) JP4955073B2 (en)
TW (1) TWI461291B (en)
WO (1) WO2009150954A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046568A1 (en) * 2013-09-30 2015-04-02 大日本印刷株式会社 Decorative sheet, decorative resin molded article, and manufacturing method for decorative resin molded article
JP2016068557A (en) * 2014-09-26 2016-05-09 セーレン株式会社 Laminated sheet and molded body, and methods for producing them
JP2016190329A (en) * 2015-03-30 2016-11-10 大日本印刷株式会社 Decorative sheet and production method thereof
JP2019022999A (en) * 2018-11-19 2019-02-14 大日本印刷株式会社 Decorative sheet and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229666A (en) * 2006-03-02 2007-09-13 Chugoku Marine Paints Ltd Multilayer coating film, substrate comprising multilayer coating film, and method for preparing them
JP2007276212A (en) * 2006-04-04 2007-10-25 Mitsubishi Chemicals Corp Laminate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229666A (en) * 2006-03-02 2007-09-13 Chugoku Marine Paints Ltd Multilayer coating film, substrate comprising multilayer coating film, and method for preparing them
JP2007276212A (en) * 2006-04-04 2007-10-25 Mitsubishi Chemicals Corp Laminate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046568A1 (en) * 2013-09-30 2015-04-02 大日本印刷株式会社 Decorative sheet, decorative resin molded article, and manufacturing method for decorative resin molded article
JPWO2015046568A1 (en) * 2013-09-30 2017-03-09 大日本印刷株式会社 Decorative sheet, decorative resin molded product, and method for producing decorative resin molded product
JP2019089347A (en) * 2013-09-30 2019-06-13 大日本印刷株式会社 Decorative sheet, decorative resin molding, and method for producing decorative resin molding
JP2016068557A (en) * 2014-09-26 2016-05-09 セーレン株式会社 Laminated sheet and molded body, and methods for producing them
US10926440B2 (en) * 2014-09-26 2021-02-23 Seiren Co., Ltd. Laminate sheet and molded body, and methods for producing the same
JP2016190329A (en) * 2015-03-30 2016-11-10 大日本印刷株式会社 Decorative sheet and production method thereof
JP2019022999A (en) * 2018-11-19 2019-02-14 大日本印刷株式会社 Decorative sheet and method for producing the same

Also Published As

Publication number Publication date
JPWO2009150954A1 (en) 2011-11-10
JP4955073B2 (en) 2012-06-20
TWI461291B (en) 2014-11-21
TW201002518A (en) 2010-01-16

Similar Documents

Publication Publication Date Title
JP4952910B2 (en) Active energy ray-curable resin composition and use thereof
JP5601189B2 (en) Active energy ray-curable transfer sheet and method for producing the same
JP6164456B2 (en) Urethane resin composition, primer, laminate and image display device
JP2626801B2 (en) Transfer foil
WO2000020228A1 (en) Transfer material, surface-protective sheet, and process for producing molded article with these
JP4955073B2 (en) LAMINATE MANUFACTURING METHOD AND LAMINATE PRODUCED BY THE METHOD
JP3153349B2 (en) Decorative sheet and method for producing the decorative sheet
TWI440681B (en) Base coat coating composition, and composite coating film and manufacturing method thereof
JP2010194796A (en) Active energy ray curable transfer sheet
JPS6059878B2 (en) Transfer painting method
JP2007084598A (en) Coating composition for amorphous polyolefin substrate, and amorphous polyolefin film or sheet having cured film of the same
JP5453971B2 (en) Method for producing active energy ray-curable transfer sheet
JP2014083800A (en) Laminate and image display apparatus
JP4561977B2 (en) Photocurable resin composition and method for producing laminate using the same
JP4352847B2 (en) Composition for hologram recording material, relief hologram and method for producing hologram
JP2004314615A (en) Highly antifouling thin decorative sheet using primer and its production method
JP2018109660A (en) Acrylic resin film and manufacturing method therefor
JP2022145359A (en) Laminate and transparent electrode film
JP4304737B2 (en) Ultraviolet shielding active energy ray curable composition, curable coating material, and molded article coated with them
JP4904979B2 (en) Laminated body
JP5963229B2 (en) Active energy ray-curable coating composition
US7087297B2 (en) Protective film transfer sheet for photo masks and a method for transferring a protective film using the same
TWI572886B (en) Protection film, film laminate and polarizing plate
JP2008246710A (en) Decorative sheet and its manufacturing method
TWI465530B (en) And a method for producing a coating material, a laminate, and a laminate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009553861

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09762384

Country of ref document: EP

Kind code of ref document: A1