WO2009149526A1 - Plasma process and reactor for treating metallic pieces - Google Patents
Plasma process and reactor for treating metallic pieces Download PDFInfo
- Publication number
- WO2009149526A1 WO2009149526A1 PCT/BR2009/000165 BR2009000165W WO2009149526A1 WO 2009149526 A1 WO2009149526 A1 WO 2009149526A1 BR 2009000165 W BR2009000165 W BR 2009000165W WO 2009149526 A1 WO2009149526 A1 WO 2009149526A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction chamber
- gaseous
- contaminants
- interior
- plasma
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 230000008569 process Effects 0.000 title claims abstract description 54
- 238000006243 chemical reaction Methods 0.000 claims abstract description 95
- 239000000356 contaminant Substances 0.000 claims abstract description 59
- 238000010438 heat treatment Methods 0.000 claims abstract description 54
- 238000004140 cleaning Methods 0.000 claims abstract description 52
- 238000009834 vaporization Methods 0.000 claims abstract description 9
- 230000008016 vaporization Effects 0.000 claims abstract description 9
- 238000011282 treatment Methods 0.000 claims description 49
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 26
- 239000007789 gas Substances 0.000 claims description 23
- 239000001257 hydrogen Substances 0.000 claims description 23
- 229910052739 hydrogen Inorganic materials 0.000 claims description 23
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 20
- 230000015572 biosynthetic process Effects 0.000 claims description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- 229910052799 carbon Inorganic materials 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 14
- 238000010494 dissociation reaction Methods 0.000 claims description 14
- 230000005593 dissociations Effects 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims description 13
- 150000002500 ions Chemical class 0.000 claims description 11
- 229910052786 argon Inorganic materials 0.000 claims description 10
- 239000008246 gaseous mixture Substances 0.000 claims description 9
- 150000002431 hydrogen Chemical class 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- 238000006396 nitration reaction Methods 0.000 claims description 9
- 230000005855 radiation Effects 0.000 claims description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- 230000009257 reactivity Effects 0.000 claims description 4
- 239000004215 Carbon black (E152) Substances 0.000 claims 2
- 229930195733 hydrocarbon Natural products 0.000 claims 2
- 239000003921 oil Substances 0.000 description 28
- 238000004381 surface treatment Methods 0.000 description 8
- 238000010276 construction Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 238000009833 condensation Methods 0.000 description 5
- 230000005494 condensation Effects 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 238000011109 contamination Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000004663 powder metallurgy Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 239000004071 soot Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- -1 as for example Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000000641 cold extrusion Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000010726 refrigerant oil Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32458—Vessel
- H01J37/32522—Temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32532—Electrodes
- H01J37/32568—Relative arrangement or disposition of electrodes; moving means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32623—Mechanical discharge control means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32798—Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
- H01J37/32816—Pressure
- H01J37/32834—Exhausting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/335—Cleaning
Definitions
- the present invention refers to a plasma process and reactor for the treatment of metallic pieces, particularly porous metallic pieces obtained by powder metallurgy, said treatment comprising a cleaning operation with dissociation and removal of oil and other organic and inorganic contaminants existing on the surface or in the pores of metallic pieces, and generally also an operation of thermochemically treating the surface of said metallic pieces, which operations are effected in a plasma reactive environment and, preferably, in the interior of the same reactor.
- Background of the Invention In most of the cases, the pieces produced by powder metallurgy need to be calibrated after the sintering step due to the dimensional variations that occur during sintering. Lubricant oil is used in the calibration to reduce friction and wear of the machine tools, as well as to facilitate extraction of the pieces from the calibration matrix.
- Oil is likewise used for storing sintered pieces and pieces produced by other manufacturing technique.
- refrigerant oil is used for machining high precision pieces.
- surface thermochemical treatments such as nitration, cementation, carbonitration, etc.
- the presence of oil on the surface and in the pores of the pieces is prejudicial, especially when the thermochemical processing is effected via plasma.
- the oil retained in the pores and on the surface of the pieces produces instabilities in the electrical discharge, contamination of the reactor, inadequate formation of the superficial layers formed (for example, nitrates) and contamination with carbon of the material submitted to treatment by means of an inefficient cleaning.
- the oil must be completely- removed before the thermochemical treatments of surface hardening.
- a chemical cleaning is carried out in ultrasound with organic solvents (for example hexane, petroleum ether or alcohol) further followed by a heat treatment in atmosphere containing hydrogen or oxygen in an industrial electric oven, aiming at eliminating completely all the organic residues from the pieces.
- organic solvents for example hexane, petroleum ether or alcohol
- a heat treatment in atmosphere containing hydrogen or oxygen in an industrial electric oven, aiming at eliminating completely all the organic residues from the pieces.
- the operations of cleaning and thermochemically treating the surfaces are carried out in two separate steps in distinct equipment, which requires a very long processing time, typically 20 hours, leading to low productivity and high cost.
- the generation of gaseous plasma in the interior of the reactor allows the plasma reactive environment formed around the pieces to be used to catalyze the reaction of dissociating the molecules of the oil and of other possible contaminants existing in the pieces, allowing the vaporization of said contaminants and the complete elimination thereof through exhaustion, under vacuum, from the inside of the reactor.
- the heat generated by the plasma, by the collision of fast ions and neutral atoms against the cathode, is usually sufficient to provide vaporization of the molecularly dissociated oil, without requiring relevant changes in the plasma parameters more adequate to catalyze the reactions of interest in each cleaning operation.
- the heat generated by the plasma is not enough to maintain the heating rate and the process temperature required to obtain the desired surface treatment.
- the temperature variations required inside the reactor are obtained as a function of the electrical discharge parameters, but some situations may exist in which the intensity of the electrical discharge required for the production of determined temperatures leads to the formation of electrical arcs in the reaction environment, causing superficial damages (marks on the pieces) and contamination by carbon deposits on the surfaces of the pieces, impairing the subsequent thermochemical treatments, besides the fact that the thermal gradient negatively influences the formation and homogeneity of the formed layer.
- the provision of a resistive heating in plasma reactors is known in the art.
- an external resistive heating for removing the binders and possible contaminants from the pieces obtained by sintering.
- the pieces to be submitted to a treatment for removing binders and contaminants are applied to the reactor cathode, leading to the formation of electric arcs and consequent contamination of the pieces with carbon, which is harmful to the subsequent surface treatments.
- an inner resistive heating to obtain high temperatures sufficient to remove the binders and certain contaminants from the metallic pieces obtained by powder metallurgy and also to provide sintering of the pieces.
- a plasma process for treating metallic pieces in a plasma reactor defining a reaction chamber provided with: a support; an anode-cathode system associated with an electrical power source; an ionizable gaseous charge inlet; and a gaseous charge exhaustion outlet connected to a vacuum system.
- the plasma process for treating metallic pieces of the present invention comprises the following cleaning steps: a) connecting the support to the grounded anode and the cathode to a negative potential of the electric power source; b) positioning the metallic pieces on the support in the interior of the reaction chamber; c) surrounding the support and the metallic pieces with an ionizable gaseous charge fed into the reaction chamber; d) heating the interior of the reaction chamber, from the outer side of the plasma reactor, at vaporization temperatures of contaminants to be dissociated from the metallic pieces being treated in the interior of the reaction chamber; e) applying an electrical discharge to the cathode, in order to provoke the formation of a gaseous plasma of ions with high kinetic energy surrounding the metallic pieces and the support, and a bombardment of electrons in the metallic pieces for molecular dissociation of the contaminants; e f) providing the exhaustion of the gaseous charge and of the contaminants maintained in gaseous state, from the interior of the reaction chamber.
- the plasma process for treating metallic pieces of the present invention comprises, after step "f" of the cleaning operation, the further steps of thermochemically treating the surface of the metallic pieces, in the same reactor, said steps comprising: g- inverting the energization polarity of the anode-cathode system, so that the support, with the metallic pieces, defines the cathode; h- surrounding the support and the metallic pieces with a new ionizable charge fed into the reaction chamber; i- maintaining the interior of the reaction chamber heated, from the outer side of the plasma reactor, and conducting the temperature therein to the levels required in the desired surface thermochemical treatment; j- applying an electrical discharge to the cathode, so as to provoke the formation of a gaseous plasma of ions surrounding the metallic pieces and the support, as well as an ionic bombardment in the metallic pieces; and k- providing the exhaustion of the gaseous charge from the interior of the reaction chamber.
- the present invention also presents a plasma reactor for treating metallic pieces and in which the process steps described above are carried out, said reactor presenting a metallic casing defining, internally, a reaction chamber, as already described, and a heating means mounted externally to the metallic casing, in order to heat the latter and the interior of the reaction chamber.
- the heating means is formed by at least one resistor in thermal contact with the metallic casing.
- the support comprises multiple parallel and spaced apart ordering structures which are electrically coupled to the same electrode of the anode-cathode system and intercalated by conducting elements coupled to the other electrode of the anode-cathode system, each of said ordering structures carrying at least one metallic piece to be treated.
- the metallic casing portions, producing heat radiation to the inside of the reaction chamber are disposed according to a direction orthogonal to the mounting direction of the ordering structures.
- Figure 1 represents, schematically, a plasma reactor constructed according to the present invention, illustrating some metallic pieces provided on a support mounted in the interior of said plasma reactor;
- Figure 2 represents a simplified and rather schematic vertical section view of a plasma reactor constructed according to the present invention and housing, inside the reaction chamber, a piece support comprising a plurality of horizontal ordering structures.
- the invention relates to a plasma process and reactor for treating metallic pieces 1, said process being carried out in a plasma reactor 10 comprising a metallic casing 20, having an ionizable gaseous charge inlet 21e and a gaseous charge exhaustion outlet 22, said metallic casing 20 defining, internally, a reaction chamber 23 inside which is usually positioned a support 30 and an anode-cathode system 40, associated with an electric power source 50 external to the metallic casing 20.
- a reaction chamber 23 is coupled to a vacuum system 60 connected to the outlet 22 of the metallic casing 20.
- the reaction chamber 23 is maintained hermetic for plasma generation therewithin, the inlet 21 is hermetically coupled to an ionizable gas supply source (not illustrated) and the outlet 22 is hermetically coupled to the vacuum system 60.
- the metallic casing 20 is preferably formed in refractory steel (as, for example stainless steel AISI 310 or 309) and the support 30 in refractory steel (as, for example stainless steel AISI 310 or 309) , but other type of material can be used, depending on the adequate process temperatures .
- the metallic casing 20 presents a prismatic shape, for example, a cylinder, having wall extensions 20a which, in the cylindrical shape, comprises a surrounding side wall and an upper end wall 20b.
- the metallic casing 20 is inferiorly open so as to be removably and hermetically seated and locked on a base structure B to which are adequately mounted component parts operatively associated with the reactor and which will be described ahead.
- the plasma reactor 10 of the present invention further comprises a heating means 70 mounted externally to the plasma reactor 10, that is, to its metallic casing 20, in order to heat the latter and the interior of the reaction chamber 23, for example, producing heat radiation from the metallic casing 20 to the interior of the reaction chamber 23.
- the plasma reactor 10 is also externally provided with an outer cover 11, generally made of carbon steel coated with an adequate heat insulating means (aluminade and silicade fibers, for example) presenting an adequate shape so as to surround laterally and superiorly the assembly defined by the metallic casing 20 and by the heating means 70, defining a heating chamber 13 around the metallic casing 20 and inside which is positioned the heating means 70.
- the heating means 70 is generally formed by at least one resistor 71 mounted in thermal contact with the metallic casing 20, inside the heating chamber 13 defined between the metallic casing 20 and the outer cover 11.
- a ventilation system 80 comprising at least one air circulating means 81 generally positioned external to the outer cover 11 and provided with at least one suction nozzle 81a and at least one discharge nozzle 81b that are opened to the interior of the heating chamber 13, said air circulating means 81 being able to produce a circulating airflow in at least part of the interior of the heating chamber 13 and through the suction and discharge nozzles 81a, 81b.
- the ventilation system 80 can further comprise at least one air exchanging means 82, generally with a construction similar to that of the air circulating means 81 and also positioned externally to the outer cover 11.
- the air exchanging means 82 is provided with at least one suction nozzle 82a and at least one discharge nozzle 82b opened to the interior of the heating chamber 13, said air exchanging means 82 being also connected to an air admission duct 83, generally opened to the atmosphere, and to an air exhaustion duct 84, generally opened to the atmosphere.
- the air exchanging means 82 can be constructed in any adequate manner known in the art so as to provide a controlled supply of atmospheric air to the interior of at least one respective region of the heating chamber 13, while it extracts and expels to the atmosphere, through the air exhaustion duct 84, a corresponding amount of heated air removed from at least one respective inner region of the heating chamber 13, allowing effecting a certain heating degree of the inner regions of the heating chamber 13.
- the intensity of the air circulation or air exchange within the heating chamber 13 can be achieved by different ways, such as, for example, by varying the operational speed of a ventilating means, not illustrated, or by varying the positioning of the inner deflecting means, also not illustrated.
- the reaction chamber 23 is provided, superiorly, with an inlet 21 positioned in the vertical axis of the metallic casing 20 of the plasma reactor 10, in order to homogenously distribute the ionizable gaseous charge from said inlet 21.
- the support 30 is formed by a plurality of ordering structures 31 that are horizontally or substantially horizontally disposed, thus defining piece support or mounting planes that are orthogonal to the direction in which the gaseous charge is fed through the inlet 21, said ordering structures 31 having through openings to allow the gaseous charge to reach the pieces mounted in the ordering structures 31 that are more distant from the inlet 21.
- the ionizable gaseous charge is admitted to and exhausted from the reaction chamber 23 by command of control valves, not illustrated, which are automatically driven, for example, commanded by a control unit or other specific control means (not illustrated) , but said control valves can be manually driven.
- the support 30 comprises multiple parallel and spaced apart ordering structures 31 electrically coupled to the same electrode 41 of the anode-cathode system 40 and which are interposed by conducting elements 42 coupled to the other electrode 41 of the anode-cathode system 40, each of said ordering structures 31 carrying at least one metallic piece 1 to be treated.
- the conducting elements 42 coupled to the other electrode 41 are positioned in the interior of the reaction chamber 23, between the ordering structures 31, by using any adequate support structure that can be defined by structural columnar elements 32 of the support 30 itself that carries the ordering structures 31, it being only necessary to mount said conducting elements 42 electrically insulated in relation to the structure of the support 30 provided with the respective ordering structures 31.
- the heating means 70 is arranged so as to heat adjacent wall extensions of said metallic casing 20 and extending according to a direction, usually that coinciding with the direction of the height of the reaction chamber 23 and which is orthogonal to the mounting planes of the ordering structures 31.
- the heat radiated from said wall extensions of the metallic casing 20 to the interior of the reaction chamber 23 follows a direction parallel to the mounting direction of the ordering structures 31, making more efficient the distribution, among the ordering structures 31, of the heat radiated from said wall extensions of the metallic casing 20.
- the anode-cathode system 40 has its electrodes 41 defined by the anode and cathode of said energizing system.
- the electrode 41 which defines the anode of the anode-cathode system 40, is coupled to the ordering structures 31 of the support 30, in which the metallic pieces 1 are positioned, said electrode 41 being grounded, whereas the other electrode 41 which defines the cathode of the anode-cathode system is electrically coupled to the electric power source 50.
- the electrode 41 which defined the anode of the anode-cathode system, is coupled to the power source 50, whereas the other electrode 41 is grounded.
- the present invention allows performing the cleaning and the thermochemical treatment
- the metallic casing 20 is heated jointly with the gaseous charge, which is also submitted to a certain heating degree inside the reaction chamber 23 upon plasma generation.
- the formation of the gaseous plasma of ions contributes to the heating of the interior of the reaction chamber 23 and to the vaporization of the contaminants being dissociated, both in the cleaning operation and in the thermochemical treating operation.
- the external heating of the latter allows the gaseous plasma formed therewithin to be obtained with less energy consumption.
- the resistive heating, provided externally to the reaction chamber 23, avoids the existence of cold walls in the interior of the latter, that is, in the environment in which the metallic pieces 1 are subject to the plasma treating process. It is necessary to avoid the existence of cold walls in the interior of the reaction chamber 23, for example, in the initial phase of heating the metallic pieces 1, since the oil evaporated from the pieces being treated tends to deposit on the not sufficiently heated inner regions of the reaction chamber 23.
- the additional and generally resistive external heating avoids the existence of walls or regions of the reaction chamber 23 presenting temperatures lower than those of vaporization of the contaminants, that is, of the vaporized oil, impeding the condensation and deposition of contaminants in these cooler regions of the reaction chamber 23, before said contaminants are exhausted, by suction, through the vacuum system 60, through the outlet 22 of the metallic casing 20.
- the metallic pieces 1 to be processed are positioned on the ordering structures 31 of the support 30 mounted inside the reaction chamber 23, electrically insulated from its metallic casing 20.
- the support 30 defines the anode of the anode-cathode system 40, which anode is grounded, whereas the conducting elements 42 are connected to an outlet of the electric power source 50, in negative potential, acting as the cathode of the electrical discharge.
- the interior of the reaction chamber 23 is maintained at a sub-atmospheric pressure and with desired values for the formation of plasma in the cleaning operation, by using the vacuum system 60.
- a charge of ionizable gases is fed into the reaction chamber 23, through inlet 21 of the metallic casing 20, before providing the electrical discharge in the cathode of the anode-cathode system 40.
- the ionizable gaseous charge in the cleaning operation, comprises hydrogen, and it can also comprise a gaseous mixture containing hydrogen and at least one of the gases consisting of argon, nitrogen, or a mixture comprising oxygen and other gases, as for example, nitrogen.
- gases consisting of argon, nitrogen, or a mixture comprising oxygen and other gases, as for example, nitrogen.
- the selection of the process gases will depend on the nature of the substance to be eliminated from the metallic piece (for example, oil) .
- the gaseous charge will comprise:
- the main principle of the cleaning operation consists in dissociating the oil molecules by electron bombardment, resulting in lighter molecules or gaseous radicals which are eliminated from the reaction chamber 23 by exhausting the gaseous charge and contaminants from the inside thereof.
- the exhaustion occurs under vacuum, via bombardment through the vacuum system 60, producing an efficient cleaning of the pieces, as well as maintaining the interior of the reaction chamber 23 deprived of oil deposits and other contaminant products, mainly the organic ones, the cleaning operation being effected at low temperatures, in the range of from about 30 0 C to 500°C, depending on the nature of the contaminants to be eliminated.
- the support 30 and the metallic pieces 1 to be treated are surrounded by the plasma generated with the electrical discharge and bombarded mainly by electrons generated in the plasma.
- the second electrode 41 which in the cleaning step receives the electrical discharge and actuates as the cathode, is bombarded mainly by ions and consequently heated.
- the heating means 70 external to the reaction chamber 23, supplies the additional amount of heat necessary to obtain the heating rate and temperature required to avoid condensation of the contaminants on the inner walls of the reaction chamber 23, said heating rate and temperature being programmed independently of the plasma parameters.
- These plasma parameters are adjusted or programmed so as to catalyze the reaction of dissociating the molecules of the contaminant, such as for example, oil.
- the formation of gaseous plasma can also contribute with part of the heating of the interior of the reaction chamber 23 required to avoid condensation of contaminants on the inner walls of the reaction chamber 23.
- the use of a heating means 70, external to the reaction chamber 23, presents the advantage of allowing a homogeneous temperature to be obtained in the interior of the reaction chamber 23, as well as avoiding the deposition of vapors and soot resulting from the plasma reaction in the metallic pieces 1 inside the plasma reactor 10.
- Another advantage, resulting from the geometry used in the confined anode-cathode system 40 is that the species generated in the plasma surround, completely, the metallic pieces 1, leading to an efficient removal of the contaminants, such as oil, from the metallic pieces 1.
- the dissociation of the oil molecules produces lighter radicals and molecules, which maintain the gaseous physical state at the working temperature and are pumped outwardly from the plasma reactor 10 through the vacuum system 60.
- the contaminant vapor is discharged from the reaction chamber 23 jointly with the other gases produced in the plasma operation, upon completion of the cleaning operation of the metallic pieces 1. Since there are no residues inside the reaction chamber 23, because the oil and other contaminants are completely eliminated by the molecular dissociation activated by the active species generated in the plasma, the load of metallic pieces 1 can be treated inside the same plasma reactor 10, upon completion of the cleaning operation of said metallic pieces 1, by raising the temperature in the interior of the reaction chamber 23 to values compatible with those required in a determined thermochemical treatment.
- the plasma reactor 20 further comprises a switching system 90, which allows inverting the polarity between the anode and the cathode of the anode-cathode system 40, so that the metallic pieces 1, which during the cleaning operation with dissociation of oil and contaminants are necessarily connected to the anode, are connected to the cathode of the anode-cathode system 40 for the thermochemical treatment by plasma.
- a switching system 90 which allows inverting the polarity between the anode and the cathode of the anode-cathode system 40, so that the metallic pieces 1, which during the cleaning operation with dissociation of oil and contaminants are necessarily connected to the anode, are connected to the cathode of the anode-cathode system 40 for the thermochemical treatment by plasma.
- the cleaning and thermochemical treatment operations carried out by plasma occur in the same plasma reactor, with no need of interrupting the heating.
- thermochemical treatment operation is started in the same plasma reactor 10, by introducing, through the inlet 21 of the metallic casing 20, a charge of ionizable gases into the interior of the reaction chamber 23, which can be similar to the one used in the cleaning operation or contain determined specific gases for the desired thermochemical treatment, said new ionizable gaseous charge being fed to the interior of the reaction chamber 23, so as to surround the support 30 and the metallic pieces 1.
- the ionizable gases of the thermochemical treatment operation are fed into the interior of the reaction chamber 23, after exhausting the gases and vapors of the cleaning operation therefrom.
- thermochemical treatment process can present alteration in this sequence of steps of feeding a charge of ionizable gases and of inverting the polarity, without changing the result obtained.
- thermochemical treatment process further comprises the steps of: maintaining the interior of the reaction chamber 23 heated from the outer side of the plasma reactor 10 and conducting the temperature therewithin to the levels required in the desired surface thermochemical treatment; applying an electrical discharge to the cathode, in order to provoke the formation of a gaseous plasma of ions surrounding the metallic pieces 1 and the support 30, and an ionic bombardment on the metallic pieces 1; and providing the exhaustion of the gaseous charge from the interior of the reaction chamber 23.
- the gaseous charge supplied to the reaction chamber 23 comprises, for example: a gaseous mixture of hydrogen and nitrogen, when the thermochemical treatment is nitration; a gaseous mixture containing hydrogen, nitrogen and carbon, when the surface thermochemical treatment is nitrocarburization or carbonitration; a mixture containing hydrogen, argon and carbon, when the surface treatment is cementation; and a gaseous mixture containing oxygen, hydrogen, nitrogen, argon and carbon, when the surface thermochemical treatment is oxynitration, oxynitrocarburization or oxycarbonitration.
- gases can be used, depending on the desired thermochemical process.
- the support 30 is connected to the negative potential of the electric power source 50, through the electrode 41 which actuates as the cathode of the electrical discharge, whereas the electrode 41 which had the cathode function before is grounded, actuating as the anode of the electrical discharge.
- the gaseous charge to be ionized in the reaction chamber 23 is submitted and maintained, in each of the cleaning and thermochemical treatment operations, at a sub- atmospheric pressure of the order of 1.33XlO 1 Pascal (0.1 Torr) a 1.33xlO 4 Pascal (100 Torr), which pressures are obtained by action of the vacuum system 60 comprising, for example, a vacuum pump.
- the cleaning and heat treatment operations utilize DC electrical discharge, which can be delivered in an atmosphere under low pressure containing an ionizable gas charge, as defined above, so as to produce electrons and reactive atomic hydrogen or other species, depending on the gases utilized for plasma generation.
- the process of the present invention can be used for metallic pieces 1 produced by powder metallurgy or by other manufacturing processes (for example, machining, stamping, cold extrusion, and others) .
- the process of the present invention promotes a cleaning of the metallic pieces 1 in the plasma reactor 10 of the present invention in a period of time of about 3 hours, with the total time, including the cleaning operation and the thermochemical treatment (for example, nitration) being of about 6 hours.
- This processing time can be changed, for longer or shorter periods of time, as a function of the nature of the contaminant and of the thermochemical process.
- the heating means 70 external to the reaction chamber 23, warms the inner walls of the metallic casing 20, avoiding deposition of contaminants, such as oil drops.
- the temperature in the interior of the reaction chamber 23 is raised, for carrying out the process of thermochemical treatment, to values between about 350 0 C and about 900 0 C.
- thermochemical treatment temperatures higher or lower than the range cited as an example
- the metallic pieces 1 were treated in the plasma reactor 10 in an industrial scale, in which the operations of plasma cleaning and thermochemical treatment, such as plasma nitration, were carried out in the same thermal cycle. Said metallic pieces 1 were analyzed by optical and electronic microscopy, as well as by X-ray diffraction analysis. Results show that the nitrated layer obtained is similar to that obtained by a conventional process, that is, not effected in a single thermal cycle and carrying out the cleaning operation by traditional processes with organic solvents and removing heat using other equipment.
- a further advantage of the present process is related to the use of the confined cathode- anode system 40 which allows smaller distances to be used among the pieces in the support, thereby allowing the provision of a greater amount of pieces in the same volume of the reaction chamber 23 and/or the utilization of equipment with reduced dimensions for the same productivity, as compared to the other known prior art systems.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- Powder Metallurgy (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011512791A JP5722768B2 (en) | 2008-06-11 | 2009-06-09 | Plasma process and reactor for treating metal parts |
EP09761190.9A EP2294598B1 (en) | 2008-06-11 | 2009-06-09 | Plasma process and reactor for treating metallic pieces |
KR1020167003737A KR20160022400A (en) | 2008-06-11 | 2009-06-09 | Plasma process and reactor for treating metallic pieces |
CN200980127588.4A CN102099891B (en) | 2008-06-11 | 2009-06-09 | Plasma process and reactor for treating metallic pieces |
US12/737,125 US8926757B2 (en) | 2008-06-11 | 2009-06-09 | Plasma process and reactor for treating metallic pieces |
US14/558,099 US20150090403A1 (en) | 2008-06-11 | 2014-12-02 | Plasma Process and Reactor for Treating Metallic Pieces |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0803774A BRPI0803774B1 (en) | 2008-06-11 | 2008-06-11 | process and plasma reactor for treatment of metal parts |
BRPI0803774-4 | 2008-06-11 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/737,125 A-371-Of-International US8926757B2 (en) | 2008-06-11 | 2009-06-09 | Plasma process and reactor for treating metallic pieces |
US14/558,099 Division US20150090403A1 (en) | 2008-06-11 | 2014-12-02 | Plasma Process and Reactor for Treating Metallic Pieces |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009149526A1 true WO2009149526A1 (en) | 2009-12-17 |
WO2009149526A8 WO2009149526A8 (en) | 2011-09-15 |
Family
ID=41119449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/BR2009/000165 WO2009149526A1 (en) | 2008-06-11 | 2009-06-09 | Plasma process and reactor for treating metallic pieces |
Country Status (8)
Country | Link |
---|---|
US (2) | US8926757B2 (en) |
EP (1) | EP2294598B1 (en) |
JP (1) | JP5722768B2 (en) |
KR (2) | KR20160022400A (en) |
CN (1) | CN102099891B (en) |
BR (1) | BRPI0803774B1 (en) |
TW (1) | TWI455171B (en) |
WO (1) | WO2009149526A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015006844A1 (en) * | 2013-07-15 | 2015-01-22 | Whirlpool S.A. | Installation and process for the treatment of metallic pieces by a plasma reactor |
WO2016061652A1 (en) | 2014-10-20 | 2016-04-28 | Universidade Federal De Santa Catarina | Plasma process and reactor for the thermochemical treatment of the surface of metallic pieces |
US11072850B2 (en) | 2016-07-19 | 2021-07-27 | Universidade Federal De Santa Catarina | Process for coating a conductive component and conductive component coating |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102443816B (en) * | 2011-12-08 | 2013-07-17 | 南京和澳自动化科技有限公司 | Analytic pretreatment machine for metal material and treatment method for analytic pretreatment machine |
JP2015137774A (en) * | 2014-01-20 | 2015-07-30 | パナソニックIpマネジメント株式会社 | ventilation system |
FR3024057B1 (en) | 2014-07-24 | 2016-08-26 | Adixen Vacuum Products | METHOD AND STATION FOR TREATING A PLASTIC MATERIAL TRANSPORT BOX FOR THE CONVEYANCE AND ATMOSPHERIC STORAGE OF SUBSTRATES |
US11313040B2 (en) * | 2017-03-24 | 2022-04-26 | Embraco Indústria De Compressores E Soluçôes Em Refrigeraçâo Ltda. | Plasma-assisted process of ceramization of polymer precursor on surface, surface comprising ceramic polymer |
CN110899271B (en) * | 2018-09-17 | 2021-10-15 | 北京北方华创微电子装备有限公司 | Adjusting device of remote plasma source and remote plasma source cleaning system |
CN113667924B (en) * | 2021-07-21 | 2022-06-14 | 华南理工大学 | Ion nitriding device and method suitable for strengthening cutting edge of cutter |
CN115338194A (en) * | 2022-08-15 | 2022-11-15 | 广州市鸿利显示电子有限公司 | Plasma cleaning method and cleaning machine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0881662A1 (en) * | 1995-03-16 | 1998-12-02 | Hitachi, Ltd. | Plasma processing apparatus and plasma processing method |
US6024105A (en) * | 1997-08-07 | 2000-02-15 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor manufacturing device and method of removing particles therefrom |
BR0105593A (en) | 2001-11-14 | 2004-03-09 | Feesc Fundacao Do Ensino Da En | Plasma cleaning of parts obtained by powder metallurgy |
WO2006012718A1 (en) * | 2004-08-06 | 2006-02-09 | Lupatech S.A. | Industrial plasma reactor for plasma assisted thermal debinding of powder injection-molded parts |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1055933A (en) * | 1910-01-19 | 1913-03-11 | Joseph H Kopietz | Truck. |
FR2670218B1 (en) * | 1990-12-06 | 1993-02-05 | Innovatique Sa | PROCESS FOR TREATING METALS BY DEPOSIT OF MATERIAL, AND FOR CARRYING OUT SAID METHOD. |
JPH05209279A (en) * | 1991-10-29 | 1993-08-20 | Canon Inc | Metal film forming device and metal film forming method |
US6326597B1 (en) * | 1999-04-15 | 2001-12-04 | Applied Materials, Inc. | Temperature control system for process chamber |
BR9901512A (en) * | 1999-05-27 | 2001-01-09 | Lupatech S A | Binding plasma extraction process |
JP2002057106A (en) * | 2000-08-08 | 2002-02-22 | Tokyo Electron Ltd | Treatment unit and its cleaning method |
SE0201970L (en) * | 2002-06-26 | 2003-12-27 | Foss Tecator Ab | Method and apparatus for spectrophotometric analysis |
US20060177600A1 (en) * | 2005-02-08 | 2006-08-10 | Applied Materials, Inc. | Inductive plasma system with sidewall magnet |
KR100794661B1 (en) * | 2006-08-18 | 2008-01-14 | 삼성전자주식회사 | Substrate treatment apparatus and method |
-
2008
- 2008-06-11 BR BRPI0803774A patent/BRPI0803774B1/en not_active IP Right Cessation
-
2009
- 2009-06-09 KR KR1020167003737A patent/KR20160022400A/en not_active Application Discontinuation
- 2009-06-09 JP JP2011512791A patent/JP5722768B2/en not_active Expired - Fee Related
- 2009-06-09 KR KR1020107029786A patent/KR20110031298A/en active IP Right Grant
- 2009-06-09 CN CN200980127588.4A patent/CN102099891B/en not_active Expired - Fee Related
- 2009-06-09 WO PCT/BR2009/000165 patent/WO2009149526A1/en active Application Filing
- 2009-06-09 EP EP09761190.9A patent/EP2294598B1/en not_active Not-in-force
- 2009-06-09 US US12/737,125 patent/US8926757B2/en active Active
- 2009-06-11 TW TW098119556A patent/TWI455171B/en not_active IP Right Cessation
-
2014
- 2014-12-02 US US14/558,099 patent/US20150090403A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0881662A1 (en) * | 1995-03-16 | 1998-12-02 | Hitachi, Ltd. | Plasma processing apparatus and plasma processing method |
US6024105A (en) * | 1997-08-07 | 2000-02-15 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor manufacturing device and method of removing particles therefrom |
BR0105593A (en) | 2001-11-14 | 2004-03-09 | Feesc Fundacao Do Ensino Da En | Plasma cleaning of parts obtained by powder metallurgy |
WO2006012718A1 (en) * | 2004-08-06 | 2006-02-09 | Lupatech S.A. | Industrial plasma reactor for plasma assisted thermal debinding of powder injection-molded parts |
Non-Patent Citations (2)
Title |
---|
MACHADO R ET AL: "Plasma assisted debinding and sintering (PADS) - metal injection molding application", MATERIALS SCIENCE FORUM TRANS TECH PUBLICATIONS SWITZERLAND, vol. 530-531, 2006, pages 224 - 229, XP008113081, ISSN: 0255-5476 * |
MALISKA A M ET AL: "Debinding of injected parts using an abnormal glow discharge", MATERIALS SCIENCE & ENGINEERING A (STRUCTURAL MATERIALS: PROPERTIES, MICROSTRUCTURE AND PROCESSING) ELSEVIER SWITZERLAND, vol. 407, no. 1-2, 25 October 2005 (2005-10-25), pages 71 - 76, XP025304364, ISSN: 0921-5093 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015006844A1 (en) * | 2013-07-15 | 2015-01-22 | Whirlpool S.A. | Installation and process for the treatment of metallic pieces by a plasma reactor |
US9676010B2 (en) | 2013-07-15 | 2017-06-13 | Universidade Federal De Santa Catarina (Ufsc) | Installation and process for the treatment of metallic pieces by a plasma reactor |
WO2016061652A1 (en) | 2014-10-20 | 2016-04-28 | Universidade Federal De Santa Catarina | Plasma process and reactor for the thermochemical treatment of the surface of metallic pieces |
EP3382737A1 (en) | 2014-10-20 | 2018-10-03 | Universidade Federal De Santa Catarina (UFSC) | Plasma process and reactor for the thermochemical treatment of the surface of metallic pieces |
US11072850B2 (en) | 2016-07-19 | 2021-07-27 | Universidade Federal De Santa Catarina | Process for coating a conductive component and conductive component coating |
Also Published As
Publication number | Publication date |
---|---|
CN102099891B (en) | 2013-04-17 |
TW201011804A (en) | 2010-03-16 |
JP5722768B2 (en) | 2015-05-27 |
BRPI0803774A2 (en) | 2010-03-02 |
KR20160022400A (en) | 2016-02-29 |
CN102099891A (en) | 2011-06-15 |
US8926757B2 (en) | 2015-01-06 |
TWI455171B (en) | 2014-10-01 |
WO2009149526A8 (en) | 2011-09-15 |
US20110108059A1 (en) | 2011-05-12 |
BRPI0803774B1 (en) | 2018-09-11 |
EP2294598B1 (en) | 2016-10-05 |
US20150090403A1 (en) | 2015-04-02 |
KR20110031298A (en) | 2011-03-25 |
EP2294598A1 (en) | 2011-03-16 |
JP2011525216A (en) | 2011-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8926757B2 (en) | Plasma process and reactor for treating metallic pieces | |
US7943204B2 (en) | Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation | |
JP6911060B2 (en) | Injection with solid aluminum iodide (ALI3) to generate aluminum atomic ions and in-situ cleaning of aluminum iodide and its associated by-products | |
JP7383486B2 (en) | Hydrogen co-gas when using aluminum iodide as the ion source material | |
US20200123645A1 (en) | Plasma Process and Reactor for the Thermochemical Treatment of the Surface of Metallic Pieces | |
US9676010B2 (en) | Installation and process for the treatment of metallic pieces by a plasma reactor | |
Santos et al. | Oil removal and nitriding of sintered parts using a DC discharge | |
BR122022001788B1 (en) | PROCESS AND PLASMA REACTOR FOR THERMOCHEMICAL TREATMENT OF THE SURFACE OF METAL PARTS | |
KR20160032201A (en) | Installation and process for the treatment of metallic pieces by a plasma reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980127588.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09761190 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2009761190 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011512791 Country of ref document: JP Ref document number: 8854/DELNP/2010 Country of ref document: IN Ref document number: 2009761190 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20107029786 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12737125 Country of ref document: US |