WO2009146205A1 - Bacillus strains useful for animal odor control - Google Patents

Bacillus strains useful for animal odor control Download PDF

Info

Publication number
WO2009146205A1
WO2009146205A1 PCT/US2009/040920 US2009040920W WO2009146205A1 WO 2009146205 A1 WO2009146205 A1 WO 2009146205A1 US 2009040920 W US2009040920 W US 2009040920W WO 2009146205 A1 WO2009146205 A1 WO 2009146205A1
Authority
WO
WIPO (PCT)
Prior art keywords
nrrl
strain
bedding
animal
ammonia
Prior art date
Application number
PCT/US2009/040920
Other languages
French (fr)
Inventor
Marianne Cain Bellot
Keith J. Mertz
Thomas G. Rehberger
Original Assignee
Agtech Products, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agtech Products, Inc. filed Critical Agtech Products, Inc.
Priority to CA2721180A priority Critical patent/CA2721180C/en
Priority to DK09755567.6T priority patent/DK2274415T3/en
Priority to EP09755567.6A priority patent/EP2274415B1/en
Publication of WO2009146205A1 publication Critical patent/WO2009146205A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L11/00Methods specially adapted for refuse
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K1/00Housing animals; Equipment therefor
    • A01K1/015Floor coverings, e.g. bedding-down sheets ; Stable floors
    • A01K1/0152Litter
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K1/00Housing animals; Equipment therefor
    • A01K1/015Floor coverings, e.g. bedding-down sheets ; Stable floors
    • A01K1/0152Litter
    • A01K1/0155Litter comprising organic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/10Bacillus licheniformis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/125Bacillus subtilis ; Hay bacillus; Grass bacillus

Definitions

  • the invention relates to controlling odors associated with animals. More particularly, the invention relates to Bacillus strains for controlling odors associated with the bedding or other environment of animals, such as horses, guinea pigs, and the like and methods of making and using the Bacillus strains.
  • Animals including, but not limited to, companion animals, livestock, laboratory animals, working animals, and sport animals, generate odors that most people find offensive, especially when the odors are strong. For animals kept outdoors, this can lead to problems with neighbors, staff that work with the animals, and owners of the animals. Odors from animals kept indoors can aggravate the animal's owners, those living in the same household of the indoor animal, and visitors to the household where the animal is kept. Ammonia and other odors coming from farms, such as horse farms, can aggravate neighbors, especially in residential areas. The ability to effectively control and alleviate waste odors associated with equine in urban areas provides a healthier living environment and helps horse enthusiasts to maintain good relationships with their neighbors.
  • Horse bedding consists of materials such as straw, sand and other material. Wood shavings are commonly used as bedding material to help absorb urine and provide a surface for easy clean up. The condition or quality of bedding in equine stalls can be affected by a number of factors including frequency of clean-out, ventilation,
  • Page I of 21 moisture and temperature Due to the health problems associated with high levels of ammonia, proper barn management is crucial. Daily cleaning, good ventilation and complete clean-out of stalls when bedding is too soiled are essential to control ammonia exposure. Due to the cost of bedding materials, most horse owners clean stalls daily but prefer not to strip stalls on a regular basis. There is great value in extending the bedding life and the amount of time that bedding remains in the stall. By reducing the ammonia odors in the bedding, bedding life can be extended, resulting in a great cost savings.
  • Guinea pigs, hamsters, rats and other small animals need soft clean bedding that is changed frequently in order for the animal to stay in top health. Bedding is replaced to keep down ammonia, and to keep small animals and the cage clean.
  • Ammonia is a component of urine. In high concentrations not only does it smell offensive to humans, but it can eventually lead to respiratory problems for the small animals. Breathing concentrated ammonia will damage their lungs, burn their esophagus and create other health problems. Therefore, reducing ammonia levels is important for small animals. There is also a great value and need in extending bedding life. Ammonia concentrations in poorly ventilated horse barns and cages can rise to levels potentially harmful to the equine and small animal respiratory tract.
  • High levels of ammonia have been associated with foal pneumonia (McMillan K: Foal pneumonia: An Illinois survey. An Health andNut ⁇ t 1986; 34). High levels of ammonia may also predispose horses to chronic obstructive pulmonary disease. (Tanner MK, Swinker AM, Traub-Dargatz JL, Stiffler LA, McCue PM, Vanderwall DK, Johnson KE: Respiratory and environmental effects of recycled phone book paper versus sawdust as bedding for horses. / Eq Vet Sci 1998; 468-476). Ammonia and odor smells coming from horse farms can aggravate neighbors, especially in residential areas. The ammonia present in equine facilities and small animal cages is the product of microbial decomposition of excreted nitrogenous compounds. This includes urea, nonabsorbed proteins, amino acids, and nonprotein nitrogen present in the diet.
  • Bacillus strains to treat or prevent animal odors and to provide animal bedding including one or more of these strains, methods of using the Bacillus strains and animal bedding treated with the Bacillus strains.
  • a composition includes Bacillus subtilis 2084 (NRRL B-50013) or a strain having all of the identifying characteristics of the Bacillus subtilis 2084 (NRRL B-50013), B. subtilis 27 (NRRL B-50105) or a strain having all of the identifying characteristics of the B. subtilis 27 (NRRL B-50105), and B. licheniformis 21 (NRRL B-50134) or a strain having all of the identifying characteristics of the B. licheniformis 21 (NRRL B-50134).
  • at least one carrier capable of binding ammonia is included with the Bacillus strains.
  • at least one water-soluble carrier is included with the Bacillus strains.
  • Animal bedding that includes the Bacillus strains is also provided, as is a method of making the animal bedding. Also provided are methods of controlling odors from animal waste. In some embodiments of these methods, at least one carrier capable of binding ammonia and the Bacillus strains are used to control odors. In some embodiments of these methods, at least one water-soluble carrier and the Bacillus strains are used to control odors.
  • a method of making a composition is also provided.
  • each of Bacillus subtilis 2084 (NRRL B-50013) or a strain having all of the identifying characteristics of the Bacillus subtilis 2084 (NRRL B-50013), B. subtilis 27 (NRRL B-50105) or a strain having all of the identifying characteristics of the B. subtilis 27 (NRRL B-50105), and B. licheniformis 21 (NRRL B-50134) or a strain having all of the identifying characteristics of the B. licheniformis 21 (NRRL B-50134) is grown in a broth.
  • Each of the strains is separated from its broth to make the composition,
  • FIG. 1 is a graph of ammonia concentration at 48 hours, with bars with different letters being significantly different.
  • FIG. 2 is a graph of the reduction in ammonia levels in bedding with FreshShieldTM product or FreshShieldTM stall treatment product.
  • FIG. 3 is a graph of smell panel results after 5, 23, and 29 hours, showing reduction in ammonia smell with FreshShieldTM product treatment.
  • FIG. 4 is a graph showing the reduction in ammonia after one week of
  • FIG. 5 is a graph showing the difference in reduction of ammonia levels from used guinea pig bedding after 7 days of treatments at different concentrations of FreshShieldTM product compared to after 7 days with no treatment.
  • FIG. 6 is a graph showing reductions in ammonia levels after 24 hours in manure treated with FreshShield stall treatment product, Stall Fresh stall treatment product, Stall DRY Plus stall treatment product, and Sweet PDZ stall treatment product.
  • compositions for controlling ammonia and other odors from non-human animals.
  • Laboratory studies have shown a 50-60% reduction in ammonia on wood shavings treated with one or more compositions provided herein. Additional benefits of using the compositions to treat or prevent animal odors can include one or more of the following.
  • compositions are Compositions:
  • Bacillus strains have many qualities that make them useful for treating and preventing animal odors. For example, Bacillus strains produce extracellular enzymes, such as proteases, amylases, and cellulase. In addition, Bacillus strains produce antimicrobial factors, such as gramicidin, subtilin, bacitracin, and polymyxin. Several Bacillus species also have GRAS status, i.e., they are generally recognized as safe by the US Food and Drug Administration and are also approved for use in animal feed by the Association of American Feed Control Officials (AAFCO). All B. subtilis strains are GRAS.
  • Bacillus strains described herein are aerobic and facultative sporeformers and thus, are stable. Bacillus species are the only sporeformers that are considered GRAS. Bacillus strains preferably are used as spores. When rehydrated, with liquid containing nutrients, the Bacillus strains can go into the vegetative state. However, when again dehydrated or without enough nutrients, the Bacillus strains will go back to spores.
  • Bacillus strains found to be useful in the compositions provided herein include B. subtilis strains 2084 and 27 and B. licheniformis strain 21.
  • B. subtilis strains 2084 and 27 were deposited on March 8, 2007 and January 24, 2008, respectively, at the Agricultural Research Service Culture Collection (NRRL), 1815 North University Street, Peoria, Illinois, 61604 and given accession numbers NRRL B-50013 and NRRL B-50105, respectively.
  • B. licheniformis strain 21 was deposited at NRRL and given accession number NRRL B-50134. All of these deposits were made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure.
  • compositions provided herein include B. subtilis strains 2084 and 27 and B. licheniformis strain 21 in an effective amount to control odors.
  • substantially equal amounts (based on colony forming units (cfu)) of each strain are used.
  • differing amounts can also be used.
  • each strain can be added from about 10% to about 45% (based on cfu) of the total amount of strain in the composition.
  • B, subtilis strain 27 is included at 10%
  • B. subtilis strain 2084 is included at 45%
  • B. licheniformis strain 21 is included at 45%.
  • the total cfu of the B. subtilis strains 2084 and 27 and B. licheniformis strain 21 is from about 7.5 x 10 7 to about 7.5 x 10 8 in the final form of the composition.
  • about 2.5 x 10 8 total cfu of the B. subtilis strains 2084 and 27 and B. licheniformis strain 21 can be included in the final form of the composition.
  • one or more water-soluble carrier which is useful for rehydrating the strains, is added to the strains.
  • carriers include Baker's sugar, maltodextrin MlOO, and baylith.
  • This embodiment i.e., the three strains, B. subtilis strains 2084 and 27 and B. licheniformis strain 21, in substantially equal amounts (based on CFU) of each strain and the carriers, is referred to herein as FreshShieldTM product.
  • FreshShieldTM product is applied to animal bedding. This can be done during the manufacturing of bedding or at other times, as is explained in more detail below.
  • carriers that bind ammonia are used.
  • these carriers include bentonite, Fuller's earth, mineral oil, and baylith. These carriers in combination with the three strains, B. subtilis strains 2084 and 27 and B. licheniformis strain 21, in substantially equal amounts (based on CFU) of each strain, Baker's sugar, and baylith are referred to herein as FreshShieldTM stall treatment product.
  • Other carriers such as clintpolite, diamaceous earth, beolite clay, and limestone, also bind ammonia, and can also be used.
  • the Bacillus strains are grown in a liquid nutrient broth. In at least one embodiment, the Bacillus strains are grown to a level at which the highest number of spores are formed.
  • the Bacillus strains are produced by fermentation of the bacterial strains. Fermentation can be started by scaling-up a seed culture. This involves repeatedly and aseptically transferring the culture to a larger and larger volume to serve as the inoculum for the fermentation, which is carried out in large stainless steel fermentors in medium containing proteins, carbohydrates, and minerals necessary for optimal growth.
  • a non- limiting exemplary medium is TSB.
  • each Bacillus strain is fermented to a 5 x 10 8 CFU/ml to about 4 x 10 9 CFU/ml level. In at least one embodiment, a level of 2 x 10 9 CFU/ml is used.
  • the bacteria are harvested by centrifugation, and the supernatant is removed.
  • the pelleted bacteria can then be applied to the wood shavings. In at least come embodiments, the pelleted bacteria are freeze-dried and mixed with a carrier before they are applied to the wood shavings.
  • strains can also be used with or without preservatives, and in concentrated, unconcentrated, or diluted form.
  • CFU or colony forming unit is the viable cell count of a sample resulting from standard microbiological plating methods.
  • colony forming unit is a more useful unit measurement than cell number.
  • the cultures and carriers (where used) can be added to a ribbon or paddle mixer and mixed for about 15 minutes, although the timing can be increased or decreased.
  • the components are blended such that a uniform mixture of the cultures and carriers result.
  • the final product is preferably a dry, flowable powder.
  • the composition is applied to the surface on which an animal is kept, such as in an animal stall.
  • the composition is used as a topical treatment in a stall to treat wet spots.
  • the FreshShieldTM stall treatment product can be applied after wet bedding is removed. Clean bedding can be added on top of the FreshShieldTM stall treatment product and mixed with the FreshShieldTM stall treatment product. This treatment can be done on a daily basis, if desired, or more (or less) frequently.
  • the compositions are added on to the bedding while the bedding is being manufactured, such as just prior to packaging.
  • the bacteria are mixed into a liquid and applied onto bedding, such as wood shavings.
  • bedding such as wood shavings.
  • Different application rates of the three-strain combination for making the FreshShieldTM product can be used.
  • the application rate for bedding for large animals including, but not limited to, equine, bovine, ovine, and porcine
  • the application rate for bedding for small animals including, but not limited to, hamster, rodents, guinea pig, rabbits, reptiles, dogs, and birds).
  • the Bacillus strains are at a concentration of 8.8x10 total cfu per gram of bacteria (each strain being 1/3 of this).
  • the Bacillus strains are combined with the wood shavings by mixing 10 kg of Bacillus with 55 gallons of water to form a stock solution.
  • a total of 7 ml of stock solution is diluted with 53 ml of water and applied via an auger to one cubic foot of wood shavings prior to the bagging of the wood shavings.
  • This diluted solution treats 10,000 bags of wood shavings, with one bag of shavings being approximately 3.0 cubic foot compressed and 9 cubic feet uncompressed.
  • a typical horse stall (10'xlO') uses 4 bags (3 cubic foot each) of shavings, which delivers 3.5 x 10 u cfu/gram of Bacillus when applied as above.
  • the application for small animal bedding is a total of 5.8 xlO 10 total cfu per cubic foot of wood shavings.
  • the bacteria are added along with the carriers, MlOO and Baker's sugar, to the wood shavings.
  • the application rate can vary from 5.8xlO 9 to 5.8xlO n total cfu per cubic foot of wood shavings.
  • the Bacillus strains are at a concentration of 1.7x10 total cfu per gram of bacteria (each strain being 1/3 of this).
  • the Bacillus combination is added to the wood shavings by mixing 10 kg of Bacillus with 55 gallons of water to form a stock solution.
  • 7 ml of stock solution is diluted with 53 ml of water and applied to one cubic foot of wood shavings as they are being conveyed via an auger prior to bagging of the wood shavings.
  • This diluted solution treats the equivalent of 30,000-10,000 bags of wood shavings, with one bag of shavings being approximately 1-3 cubic foot compressed and 3-9 cubic feet uncompressed, respectively.
  • Small animal bedding materials come in a variety of sizes. Any dilution that would achieve a desired cfu per cubic foot is suitable within the scope of this invention.
  • compositions include the following.
  • the composition can be added to as an ingredient to existing stall treatment products as an all-natural additive for further odor control.
  • the compositions can also be used with alternative bedding products, e.g., corn cob bedding, paper bedding, straw, and wood pellets, used in the small and large animal market.
  • alternative bedding products e.g., corn cob bedding, paper bedding, straw, and wood pellets, used in the small and large animal market.
  • alternative bedding products the compositions are applied as is described above for wood shavings or in other ways.
  • Further uses of the compositions include using them on an absorbent material, such as granulated clay, for covering the floor of an animal's cage or excretory box.
  • the compositions can be used as a litter additive for cat litter boxes and litter boxes for other animals.
  • Ucheniformis strain 21 and carriers are combined.
  • bentonite, Fuller's earth, mineral oil, and baylith are the carriers.
  • the cat litter additive can have the same formula as shown in Table 2 or it can have a different formula.
  • the cat litter additive can be applied to cat litter as needed for odor control.
  • the cat litter additive can also be used as an ingredient for litter manufacturing or as a topical treatment.
  • compositions Routine use of the one or more compositions provided herein can dramatically reduce and even eliminate animal odors.
  • the compositions are ecologically friendly products because instead of chemicals, bacteria are used to control animal odors.
  • the compositions are considered "green," that is, something good for the environment.
  • the compositions are all natural and safe.
  • the compositions are highly stable, therefore, they have a long shelf life.
  • the compositions extend bedding life. This is increasingly important as wood and other bedding sources are becoming more expensive and more difficult to obtain.
  • the treated bedding is easy to use because nothing extra needs to be added to the bedding for odor control.
  • the compositions also provide a healthier living environment for animals living on bedding or other surfaces treated with one or more composition.
  • a healthier working environment is provided for workers that train and take care of animals. For instance, ammonia, which irritates the people's lungs and can cause respiratory and other problems, is reduced.
  • the compositions can be easily applied to wood shavings. It also provides a surface for the Bacillus bacteria to live. Unlike simply adding untreated wood shavings, wood shavings treated with a composition provided herein adds the waste digesting power of the Bacillus bacteria, which reduces the odor and ammonia.
  • inhibition of odors is accomplished via reduced volatilization of ammonia through controlled decomposition of nitrogen-containing compounds and utilization of the nitrogen by the Bacillus strains.
  • the carriers limestone, clay, zeolite, diatomaceous earth, clintpolite, bentonite, and Fuller's earth also bind ammonia and therefore reduce odors.
  • Example 1 Overview This research was conducted to determine the effectiveness of a horse waste product at lessening the odor associated with waste excretion in confined areas such as the common equine box stall.
  • Bedding treatment was applied by spreading 1 (one) scoop (in this example, one (1) scoop equals 8.64x 10 10 total cfu of the Bacillus strains) of treatment material, which is prepared to contain 2.4x10 total cfu/g of B. subtilis strains 2084 and 27 and B. licheniformis strain 21 bacteria provided in FreshShieldTM product, that is, one scoop per 1 bag (2.0 cubic foot) of Marth Easy PickTM shavings.
  • the trial initiation had a 3 week trial period. At the beginning of the trial all stalls were cleaned out of all waste and bedding material.
  • Control stalls were re-bedded with 7 bags each of untreated Marth Easy Pick Shavings.
  • Treated stalls had 7 scoops of FreshShieldTM product on 7 Marth Easy PickTM 2.0 cubic foot bags of wood shavings, applied and thoroughly mixed in the bedding.
  • Treated stalls were uniquely marked so farm personnel could easily identify treatment stalls.
  • bedding protocols were adhered to per the facility managers direction.
  • One scoop of FreshShieldTM product was applied per bag of fresh shaving material put down in the stall.
  • Fresh FreshShieldTM product was mixed in with fresh shavings at time of application.
  • Individual stall records were maintained regarding the amount of fresh bedding put down in each stall on a daily basis.
  • the FreshShieldTM product reduced odors in the treated stalls of the barn. The test was done during the time of year that the barn was open. The FreshShieldTM product reduced stall odors and ammonia smells, making the facility and environment better for the horses.
  • Example 2 Aim To determine if FreshShieldTM product will modulate the decomposition of manure mixed with Marth Easy PickTM Bedding over time. This model utilized cow urine and cow fecal material.
  • a waste in vitro model was prepared by placing lOOg of Marth Easy PickTM bedding into each of fifteen 6"x9"x3" ZiplocTM containers with a small hole drilled in one end. The hole was taped to reseal the container. 500 ml of freshly collected cow urine was added to each container followed by 50g of freshly collected cow fecal matter. Three treatments were designated across the 15 containers with 5 replicates/treatment. Treatments consisted of control, containing no FreshShieldTM product, and FreshShieldTM product added at a IX dose and a 2X dose. The IX dose contained 3.12 x 10 9 CFU of the three Bacillus strains, i.e., B. subtilis strains 2084 and 27 and B.
  • licheniformis strain 21 with the 2X dose containing twice that amount.
  • contents of the containers were thoroughly mixed using a plastic teaspoon, with different spoons used to mix each treatment.
  • Ziploc containers were sealed by placing the lid on top and placed in the Bio- Cold environmental chamber set at 81 0 F and 55% humidity. Ammonia measurements were taken from each container at 24 hours, 48 hours, and 7 days after placement in the Bio-Cold chamber. Measurements were taken using the Drager pump fitted with disposable ammonia tubes.
  • FIG. 2 shows an average ammonia reduction of 50% in bedding with
  • Results The smell panel noted a marked reduction in ammonia smell with FreshShieldTM product, at least a 50% reduction at 5, 23, and 29 hours after initial treatment as compared to the control samples (FIG. 3). The reduction in measurable ammonia was seen after one week of treatment, and no noticeable ammonia odors were present. In comparison, after one week the control containers still had offensive levels of ammonia.
  • FIG. 4 shows that after one week, the average ammonia levels were 225 ppm for the control and less than 20 ppm in the treated containers.
  • FreshShieldTM product included the three strains of bacteria, B. subtilis strains 2084 and 27 and B. licheniformis strain 21.
  • control samples were collected from pens that were to be treated and used within the experiment.
  • one composite sample was formed by collecting the same quantity from a similar location in each pen and combining it into one sample bag. Forty-eight hours after collection, ammonia readings were taken and recorded.
  • results show that ammonia readings from used guinea pig bedding with no treatment were higher than ammonia readings from used guinea pig bedding containing 0.5X, IX and 2X Bacillus treatment levels. The difference between non- treated and treated bedding taken from the same pens after 7 days of treatment were decreased compared to the control difference, as shown in FIG. 5.
  • FreshShield is an all natural, product that proactively stops ammonia production.
  • the active ingredient in FreshShield stall treatment product starts working when applied to urine and/or feces to reduce harmful ammonia emissions.
  • FreshShieldTM stall treatment product was formulated as in Table 1 above.
  • FreshShieldTM stall treatment product Treatments of the FreshShieldTM stall treatment product were applied by applying 4 oz. of the product daily. The other products were applied according to each of their label directions. Ammonia measurements were taken at time 0 and 24 hours post- treatment using a Draeger ammonia detector. The Results:

Abstract

A composition is provided that includes Bacillus subtilis 2084 (NRRL B-50013) or a strain having all of the identifying characteristics of the Bacillus subtilis 2084 (NRRL B- 50013), B. subtilis 27 (NRRL B-50105) or a strain having all of the identifying characteristics of the B. subtilis 27 (NRRL B-50105), and B. licheniformis 21 (NRRL B- 50134) or a strain having all of the identifying characteristics of the B. licheniformis 21 (NRRL B-50134). Animal bedding that includes the Bacillus strains is also provided, as well as a method of making the animal bedding. Also provided are methods of controlling odors from animal waste. A method of making a composition including the Bacillus strains is also provided.

Description

BACILLUS STRAINS USEFUL FOR ANIMAL ODOR CONTROL
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application No. 61/045,915, filed April 17, 2008, the entirety of which is incorporated by reference herein.
FIELD OF THE INVENTION
The invention relates to controlling odors associated with animals. More particularly, the invention relates to Bacillus strains for controlling odors associated with the bedding or other environment of animals, such as horses, guinea pigs, and the like and methods of making and using the Bacillus strains.
BACKGROUND OF THE INVENTION
Animals, including, but not limited to, companion animals, livestock, laboratory animals, working animals, and sport animals, generate odors that most people find offensive, especially when the odors are strong. For animals kept outdoors, this can lead to problems with neighbors, staff that work with the animals, and owners of the animals. Odors from animals kept indoors can aggravate the animal's owners, those living in the same household of the indoor animal, and visitors to the household where the animal is kept. Ammonia and other odors coming from farms, such as horse farms, can aggravate neighbors, especially in residential areas. The ability to effectively control and alleviate waste odors associated with equine in urban areas provides a healthier living environment and helps horse enthusiasts to maintain good relationships with their neighbors.
Ammonia negatively affects the health of stabled horses worldwide. Even long- term, low level exposure to ammonia can affect a horse's respiratory health and immune response. (Davis, M. S. Foster, W.M. "Inhalation Toxicology in the Equine Respiratory Tract." In: Equine Respiratory Disease, P. Lekeus. International Veterinary Information Service, 2002). Horse bedding consists of materials such as straw, sand and other material. Wood shavings are commonly used as bedding material to help absorb urine and provide a surface for easy clean up. The condition or quality of bedding in equine stalls can be affected by a number of factors including frequency of clean-out, ventilation,
Page I of 21 moisture and temperature. Due to the health problems associated with high levels of ammonia, proper barn management is crucial. Daily cleaning, good ventilation and complete clean-out of stalls when bedding is too soiled are essential to control ammonia exposure. Due to the cost of bedding materials, most horse owners clean stalls daily but prefer not to strip stalls on a regular basis. There is great value in extending the bedding life and the amount of time that bedding remains in the stall. By reducing the ammonia odors in the bedding, bedding life can be extended, resulting in a great cost savings.
There are more horses in the United States currently than there were in the 1800's, many of them kept in urban areas. In this setting, the manure and urine from horses can be offensive to non-horse owners and can be a problem for municipal landfills. Ammonia production can also cause performance loss in competitive horse events like horse racing. Some products to treat horse waste material are available, but most are chemically based and only provide short term relief of odors and no increased digestion of solid waste. Some products control ammonia with absorbents, such as clay and zeolite. These products function by providing negatively charged exchange sites to attract ammonium ions. In this process, more weakly bound ions such as hydrogen and sodium are replaced by ammonium ions, reduction the total concentration of ammonia in solution. These products also bind water, reducing the microbial activity and therefore the breakdown of urea to ammonia. Other products control ammonia via yucca additives and fragrances that simply mask the odor. Ammonia negatively affects the health of caged small animal pets as well.
Guinea pigs, hamsters, rats and other small animals need soft clean bedding that is changed frequently in order for the animal to stay in top health. Bedding is replaced to keep down ammonia, and to keep small animals and the cage clean. Ammonia is a component of urine. In high concentrations not only does it smell offensive to humans, but it can eventually lead to respiratory problems for the small animals. Breathing concentrated ammonia will damage their lungs, burn their esophagus and create other health problems. Therefore, reducing ammonia levels is important for small animals. There is also a great value and need in extending bedding life. Ammonia concentrations in poorly ventilated horse barns and cages can rise to levels potentially harmful to the equine and small animal respiratory tract. High levels of ammonia have been associated with foal pneumonia (McMillan K: Foal pneumonia: An Illinois survey. An Health andNutήt 1986; 34). High levels of ammonia may also predispose horses to chronic obstructive pulmonary disease. (Tanner MK, Swinker AM, Traub-Dargatz JL, Stiffler LA, McCue PM, Vanderwall DK, Johnson KE: Respiratory and environmental effects of recycled phone book paper versus sawdust as bedding for horses. / Eq Vet Sci 1998; 468-476). Ammonia and odor smells coming from horse farms can aggravate neighbors, especially in residential areas. The ammonia present in equine facilities and small animal cages is the product of microbial decomposition of excreted nitrogenous compounds. This includes urea, nonabsorbed proteins, amino acids, and nonprotein nitrogen present in the diet.
In view of the foregoing, it would be desirable to provide one or more Bacillus strains to treat or prevent animal odors and to provide animal bedding including one or more of these strains, methods of using the Bacillus strains and animal bedding treated with the Bacillus strains.
SUMMARY OF THE INVENTION
The invention, which is defined by the claims set out at the end of this disclosure, is intended to solve at least some of the problems noted above. A composition is provided that includes Bacillus subtilis 2084 (NRRL B-50013) or a strain having all of the identifying characteristics of the Bacillus subtilis 2084 (NRRL B-50013), B. subtilis 27 (NRRL B-50105) or a strain having all of the identifying characteristics of the B. subtilis 27 (NRRL B-50105), and B. licheniformis 21 (NRRL B-50134) or a strain having all of the identifying characteristics of the B. licheniformis 21 (NRRL B-50134). In some embodiments of the composition, at least one carrier capable of binding ammonia is included with the Bacillus strains. In some embodiments of the composition, at least one water-soluble carrier is included with the Bacillus strains.
Animal bedding that includes the Bacillus strains is also provided, as is a method of making the animal bedding. Also provided are methods of controlling odors from animal waste. In some embodiments of these methods, at least one carrier capable of binding ammonia and the Bacillus strains are used to control odors. In some embodiments of these methods, at least one water-soluble carrier and the Bacillus strains are used to control odors.
A method of making a composition is also provided. In it, each of Bacillus subtilis 2084 (NRRL B-50013) or a strain having all of the identifying characteristics of the Bacillus subtilis 2084 (NRRL B-50013), B. subtilis 27 (NRRL B-50105) or a strain having all of the identifying characteristics of the B. subtilis 27 (NRRL B-50105), and B. licheniformis 21 (NRRL B-50134) or a strain having all of the identifying characteristics of the B. licheniformis 21 (NRRL B-50134) is grown in a broth. Each of the strains is separated from its broth to make the composition,
BRIEF DESCRIPTION OF THE DRAWINGS
Preferred exemplary embodiments described herein are illustrated in the accompanying drawings, in which like reference numerals represent like parts throughout and in which:
FIG. 1 is a graph of ammonia concentration at 48 hours, with bars with different letters being significantly different.
FIG. 2 is a graph of the reduction in ammonia levels in bedding with FreshShield™ product or FreshShield™ stall treatment product.
FIG. 3 is a graph of smell panel results after 5, 23, and 29 hours, showing reduction in ammonia smell with FreshShield™ product treatment. FIG. 4 is a graph showing the reduction in ammonia after one week of
FreshShield™ product treatment.
FIG. 5 is a graph showing the difference in reduction of ammonia levels from used guinea pig bedding after 7 days of treatments at different concentrations of FreshShield™ product compared to after 7 days with no treatment. FIG. 6 is a graph showing reductions in ammonia levels after 24 hours in manure treated with FreshShield stall treatment product, Stall Fresh stall treatment product, Stall DRY Plus stall treatment product, and Sweet PDZ stall treatment product.
Before explaining embodiments described herein in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
DETAILED DESCRIPTION
Provided herein are combinations of three Bacillus strains that can be used to form odor-controlling compositions for controlling ammonia and other odors from non-human animals. Laboratory studies have shown a 50-60% reduction in ammonia on wood shavings treated with one or more compositions provided herein. Additional benefits of using the compositions to treat or prevent animal odors can include one or more of the following.
Compositions:
Bacillus strains have many qualities that make them useful for treating and preventing animal odors. For example, Bacillus strains produce extracellular enzymes, such as proteases, amylases, and cellulase. In addition, Bacillus strains produce antimicrobial factors, such as gramicidin, subtilin, bacitracin, and polymyxin. Several Bacillus species also have GRAS status, i.e., they are generally recognized as safe by the US Food and Drug Administration and are also approved for use in animal feed by the Association of American Feed Control Officials (AAFCO). All B. subtilis strains are GRAS.
The Bacillus strains described herein are aerobic and facultative sporeformers and thus, are stable. Bacillus species are the only sporeformers that are considered GRAS. Bacillus strains preferably are used as spores. When rehydrated, with liquid containing nutrients, the Bacillus strains can go into the vegetative state. However, when again dehydrated or without enough nutrients, the Bacillus strains will go back to spores.
Bacillus strains found to be useful in the compositions provided herein include B. subtilis strains 2084 and 27 and B. licheniformis strain 21. B. subtilis strains 2084 and 27 were deposited on March 8, 2007 and January 24, 2008, respectively, at the Agricultural Research Service Culture Collection (NRRL), 1815 North University Street, Peoria, Illinois, 61604 and given accession numbers NRRL B-50013 and NRRL B-50105, respectively. On April 15, 2008, B. licheniformis strain 21 was deposited at NRRL and given accession number NRRL B-50134. All of these deposits were made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure.
The compositions provided herein include B. subtilis strains 2084 and 27 and B. licheniformis strain 21 in an effective amount to control odors. In at least one embodiment of the composition, substantially equal amounts (based on colony forming units (cfu)) of each strain are used. However, differing amounts can also be used. For example, each strain can be added from about 10% to about 45% (based on cfu) of the total amount of strain in the composition. In an exemplary embodiment, B, subtilis strain 27 is included at 10%, B. subtilis strain 2084 is included at 45%, and B. licheniformis strain 21 is included at 45%.
In at least one embodiment of the composition, the total cfu of the B. subtilis strains 2084 and 27 and B. licheniformis strain 21 is from about 7.5 x 107 to about 7.5 x 108 in the final form of the composition. For example, about 2.5 x 108 total cfu of the B. subtilis strains 2084 and 27 and B. licheniformis strain 21 can be included in the final form of the composition.
In at least some embodiments of the composition, one or more water-soluble carrier, which is useful for rehydrating the strains, is added to the strains. In one embodiment, carriers include Baker's sugar, maltodextrin MlOO, and baylith. This embodiment, i.e., the three strains, B. subtilis strains 2084 and 27 and B. licheniformis strain 21, in substantially equal amounts (based on CFU) of each strain and the carriers, is referred to herein as FreshShield™ product. In at least some embodiments, FreshShield™ product is applied to animal bedding. This can be done during the manufacturing of bedding or at other times, as is explained in more detail below.
In another embodiment, carriers that bind ammonia are used. In one embodiment, these carriers include bentonite, Fuller's earth, mineral oil, and baylith. These carriers in combination with the three strains, B. subtilis strains 2084 and 27 and B. licheniformis strain 21, in substantially equal amounts (based on CFU) of each strain, Baker's sugar, and baylith are referred to herein as FreshShield™ stall treatment product. Other carriers, such as clintpolite, diamaceous earth, beolite clay, and limestone, also bind ammonia, and can also be used.
Making and Using the Compositions: The Bacillus strains are grown in a liquid nutrient broth. In at least one embodiment, the Bacillus strains are grown to a level at which the highest number of spores are formed.
The Bacillus strains are produced by fermentation of the bacterial strains. Fermentation can be started by scaling-up a seed culture. This involves repeatedly and aseptically transferring the culture to a larger and larger volume to serve as the inoculum for the fermentation, which is carried out in large stainless steel fermentors in medium containing proteins, carbohydrates, and minerals necessary for optimal growth. A non- limiting exemplary medium is TSB. After the inoculum is added to the fermentation vessel, the temperature and agitation are controlled to allow maximum growth. Once the culture reaches a maximum population density, the culture is harvested by separating the cells from the fermentation medium. This is commonly done by centrifugation. In one embodiment, to prepare the Bacillus strains, each Bacillus strain is fermented to a 5 x 108 CFU/ml to about 4 x 109 CFU/ml level. In at least one embodiment, a level of 2 x 109 CFU/ml is used. The bacteria are harvested by centrifugation, and the supernatant is removed. The pelleted bacteria can then be applied to the wood shavings. In at least come embodiments, the pelleted bacteria are freeze-dried and mixed with a carrier before they are applied to the wood shavings.
However, it is not necessary to freeze-dry the Bacillus before using them. The strains can also be used with or without preservatives, and in concentrated, unconcentrated, or diluted form.
The count of the culture can then be determined. CFU or colony forming unit is the viable cell count of a sample resulting from standard microbiological plating methods.
The term is derived from the fact that a single cell when plated on appropriate medium will grow and become a viable colony in the agar medium. Since multiple cells may give rise to one visible colony, the term colony forming unit is a more useful unit measurement than cell number.
To prepare compositions described herein, the cultures and carriers (where used) can be added to a ribbon or paddle mixer and mixed for about 15 minutes, although the timing can be increased or decreased. The components are blended such that a uniform mixture of the cultures and carriers result. The final product is preferably a dry, flowable powder.
In a non-limiting example of the FreshShield™ stall treatment product, the composition is applied to the surface on which an animal is kept, such as in an animal stall. For example, the composition is used as a topical treatment in a stall to treat wet spots. The FreshShield™ stall treatment product can be applied after wet bedding is removed. Clean bedding can be added on top of the FreshShield™ stall treatment product and mixed with the FreshShield™ stall treatment product. This treatment can be done on a daily basis, if desired, or more (or less) frequently. In a non-limiting example of the FreshShield™ product, the compositions are added on to the bedding while the bedding is being manufactured, such as just prior to packaging. This provides the convenience of having bedding material that reduces odor and ammonia emissions and extends the bedding life. In at least one embodiment of a method of making the FreshShield™ product, the bacteria are mixed into a liquid and applied onto bedding, such as wood shavings. Different application rates of the three-strain combination for making the FreshShield™ product can be used. In at least one embodiment, the application rate for bedding for large animals (including, but not limited to, equine, bovine, ovine, and porcine) differs from the rate for bedding for small animals (including, but not limited to, hamster, rodents, guinea pig, rabbits, reptiles, dogs, and birds).
For example, for large animal bedding, a total of 2,9xlO10 total cfu of bacteria per cubic foot of wood shavings is used. The bacteria are added along with the carriers, MlOO and Baker's sugar, to the wood shavings. However, the application rate can vary from 2.9x10 to 2.9x10 total cfu per cubic foot of wood shavings. In at least one embodiment, the Bacillus strains are at a concentration of 8.8x10 total cfu per gram of bacteria (each strain being 1/3 of this). In an exemplary embodiment, the Bacillus strains are combined with the wood shavings by mixing 10 kg of Bacillus with 55 gallons of water to form a stock solution. A total of 7 ml of stock solution is diluted with 53 ml of water and applied via an auger to one cubic foot of wood shavings prior to the bagging of the wood shavings. This diluted solution treats 10,000 bags of wood shavings, with one bag of shavings being approximately 3.0 cubic foot compressed and 9 cubic feet uncompressed. A typical horse stall (10'xlO') uses 4 bags (3 cubic foot each) of shavings, which delivers 3.5 x 10u cfu/gram of Bacillus when applied as above.
In at least one embodiment, the application for small animal bedding is a total of 5.8 xlO10 total cfu per cubic foot of wood shavings. The bacteria are added along with the carriers, MlOO and Baker's sugar, to the wood shavings. However, the application rate can vary from 5.8xlO9 to 5.8xlOn total cfu per cubic foot of wood shavings. In at least one embodiment, the Bacillus strains are at a concentration of 1.7x10 total cfu per gram of bacteria (each strain being 1/3 of this). In at least some embodiments, the Bacillus combination is added to the wood shavings by mixing 10 kg of Bacillus with 55 gallons of water to form a stock solution. In an exemplary embodiment, 7 ml of stock solution is diluted with 53 ml of water and applied to one cubic foot of wood shavings as they are being conveyed via an auger prior to bagging of the wood shavings. This diluted solution treats the equivalent of 30,000-10,000 bags of wood shavings, with one bag of shavings being approximately 1-3 cubic foot compressed and 3-9 cubic feet uncompressed, respectively. Small animal bedding materials come in a variety of sizes. Any dilution that would achieve a desired cfu per cubic foot is suitable within the scope of this invention.
An exemplary composition of FreshShield™ product is shown below in Table 1.
Table 1.
Figure imgf000010_0001
*This is for a specific lot of Bacillus. The amount added varies depending on the concentration of bacteria.
An exemplary composition of FreshShield™ stall treatment product is shown below in Table 2. Table 2.
Figure imgf000010_0002
*This is for a specific lot of Bacillus. The amount added varies depending on the concentration of bacteria.
Additional uses of the compositions include the following. The composition can be added to as an ingredient to existing stall treatment products as an all-natural additive for further odor control. The compositions can also be used with alternative bedding products, e.g., corn cob bedding, paper bedding, straw, and wood pellets, used in the small and large animal market. For use with alternative bedding products, the compositions are applied as is described above for wood shavings or in other ways. Further uses of the compositions include using them on an absorbent material, such as granulated clay, for covering the floor of an animal's cage or excretory box. For example, the compositions can be used as a litter additive for cat litter boxes and litter boxes for other animals. In one embodiment of the litter additive, B. subtilis strains 2084 and 27 and B. Ucheniformis strain 21 and carriers are combined. In an exemplary embodiment, bentonite, Fuller's earth, mineral oil, and baylith are the carriers. The cat litter additive can have the same formula as shown in Table 2 or it can have a different formula. The cat litter additive can be applied to cat litter as needed for odor control. The cat litter additive can also be used as an ingredient for litter manufacturing or as a topical treatment.
Routine use of the one or more compositions provided herein can dramatically reduce and even eliminate animal odors. The compositions are ecologically friendly products because instead of chemicals, bacteria are used to control animal odors. The compositions are considered "green," that is, something good for the environment. The compositions are all natural and safe. The compositions are highly stable, therefore, they have a long shelf life. In addition, the compositions extend bedding life. This is increasingly important as wood and other bedding sources are becoming more expensive and more difficult to obtain. When one or more compositions is added to animal bedding, the treated bedding is easy to use because nothing extra needs to be added to the bedding for odor control. The compositions also provide a healthier living environment for animals living on bedding or other surfaces treated with one or more composition. Animals do not like living in ammonia-rich environments. Ammonia burns their eyes and causes other problems such as respiratory problems. Therefore, reductions in ammonia and other odors improve the animal's quality of life. In addition, more efficient composting of animal manure is accomplished by using the compositions provided herein.
A healthier working environment is provided for workers that train and take care of animals. For instance, ammonia, which irritates the people's lungs and can cause respiratory and other problems, is reduced. The compositions can be easily applied to wood shavings. It also provides a surface for the Bacillus bacteria to live. Unlike simply adding untreated wood shavings, wood shavings treated with a composition provided herein adds the waste digesting power of the Bacillus bacteria, which reduces the odor and ammonia. Although not intended to be a limitation to the present disclosure, it is believed that inhibition of odors is accomplished via reduced volatilization of ammonia through controlled decomposition of nitrogen-containing compounds and utilization of the nitrogen by the Bacillus strains. Where used, the carriers limestone, clay, zeolite, diatomaceous earth, clintpolite, bentonite, and Fuller's earth, also bind ammonia and therefore reduce odors.
EXAMPLES
The following Examples are provided for illustrative purposes only. The Examples are included herein solely to aid in a more complete understanding of the presently described invention. The Examples do not limit the scope described herein described or claimed herein in any fashion.
Example 1 Overview: This research was conducted to determine the effectiveness of a horse waste product at lessening the odor associated with waste excretion in confined areas such as the common equine box stall.
Protocol: 12 horses housed in a barn were utilized to "soil" the stalls. Horses/stalls were blocked by age/ration/sex so that there were similar types of horses within each treatment. Horses were stalled for approximately 12 hours/day with daily turnout. The treatments were as follows: Control: Consisted of normal bedding practices per the protocols of the facility with 6 stalls and Bedding Treatment: In addition to normal bedding protocols, a top dress of a "horse waste product" applied to shavings was applied to selected stalls with 6 stalls. Bedding treatment was applied by spreading 1 (one) scoop (in this example, one (1) scoop equals 8.64x 1010 total cfu of the Bacillus strains) of treatment material, which is prepared to contain 2.4x10 total cfu/g of B. subtilis strains 2084 and 27 and B. licheniformis strain 21 bacteria provided in FreshShield™ product, that is, one scoop per 1 bag (2.0 cubic foot) of Marth Easy Pick™ shavings. The trial initiation had a 3 week trial period. At the beginning of the trial all stalls were cleaned out of all waste and bedding material.
Control stalls were re-bedded with 7 bags each of untreated Marth Easy Pick Shavings. Treated stalls had 7 scoops of FreshShield™ product on 7 Marth Easy Pick™ 2.0 cubic foot bags of wood shavings, applied and thoroughly mixed in the bedding. Treated stalls were uniquely marked so farm personnel could easily identify treatment stalls. For the remainder of the trial, bedding protocols were adhered to per the facility managers direction. One scoop of FreshShield™ product was applied per bag of fresh shaving material put down in the stall. Fresh FreshShield™ product was mixed in with fresh shavings at time of application. Individual stall records were maintained regarding the amount of fresh bedding put down in each stall on a daily basis. The amount of deodorizer, such as Sweet PDZ or Stall Dry, was applied daily was recorded.
Results: The FreshShield™ product reduced odors in the treated stalls of the barn. The test was done during the time of year that the barn was open. The FreshShield™ product reduced stall odors and ammonia smells, making the facility and environment better for the horses.
Example 2 Aim: To determine if FreshShield™ product will modulate the decomposition of manure mixed with Marth Easy Pick™ Bedding over time. This model utilized cow urine and cow fecal material.
Protocol: A waste in vitro model was prepared by placing lOOg of Marth Easy Pick™ bedding into each of fifteen 6"x9"x3" Ziploc™ containers with a small hole drilled in one end. The hole was taped to reseal the container. 500 ml of freshly collected cow urine was added to each container followed by 50g of freshly collected cow fecal matter. Three treatments were designated across the 15 containers with 5 replicates/treatment. Treatments consisted of control, containing no FreshShield™ product, and FreshShield™ product added at a IX dose and a 2X dose. The IX dose contained 3.12 x 109 CFU of the three Bacillus strains, i.e., B. subtilis strains 2084 and 27 and B. licheniformis strain 21, with the 2X dose containing twice that amount. After addition of all materials to the Ziploc containers, contents of the containers were thoroughly mixed using a plastic teaspoon, with different spoons used to mix each treatment. Ziploc containers were sealed by placing the lid on top and placed in the Bio- Cold environmental chamber set at 810F and 55% humidity. Ammonia measurements were taken from each container at 24 hours, 48 hours, and 7 days after placement in the Bio-Cold chamber. Measurements were taken using the Drager pump fitted with disposable ammonia tubes.
Results: Ammonia concentrations at 48 hours can be seen in FIG. 1. Results from ammonia concentration after 7 days were also observed. There was no significant difference between treatments at 24 hours. At 48 hours the 2X dose was significantly less than that of the control, but not significantly different for the IX dose. The IX dose was less than that of the control but not significant. There were no significant differences between treatment groups after seven days.
Example 3
Study Details: The following study was performed to show the effect of bedding containing the FreshShield™ product and having Baker's sugar, maltodextrin MlOO, and baylith as the carriers (formulated as shown in Table 1 above) and bedding treated with FreshShield™ stall treatment product having bentonite, Fuller' earch, mineral oil, and baylith as the carriers (formulated as shown in Table 2 above) to determine the effect of carriers on the ability of the product to control ammonia production. Both products included the three strains, B. subtilis strains 2084 and 27 and B. licheniformis strain 21, as shown in Tables 1 and 2. Soiled horse bedding material collected from a stable was placed into sealed containers. Treatments were applied at a rate of 1.Ox 1010 total cfu of the three strains of the bacteria in the FreshShield™ product per 500 grams of soiled bedding and at a rate of LOxIO10 total cfu of the three strains of bacteria in the FreshShield™ stall treatment product. Ammonia measurements were taken at time 0, 6, and 16 hours post- treatment using a Draeger ammonia detector. Results: FIG. 2 shows an average ammonia reduction of 50% in bedding with
FreshShield™ product and 62% in bedding with FreshShield™ stall treatment product
Example 4
Study Details: The following study was performed to show the effect of FreshShield™ product on ammonia production in soiled pea gravel. Soiled pea gravel was placed into sealed containers. The composition of the FreshShield™ product is shown in Table 3 below. Control samples received no FreshShield™ product. Treatments were applied as in Example 3 for the FreshShield™ stall treatment product. A smell panel evaluated the ammonia odors over time. Ammonia measurements were taken at 1 week post-treatment using a Draeger ammonia detector. Table 3.
Figure imgf000014_0001
Figure imgf000015_0001
Results: The smell panel noted a marked reduction in ammonia smell with FreshShield™ product, at least a 50% reduction at 5, 23, and 29 hours after initial treatment as compared to the control samples (FIG. 3). The reduction in measurable ammonia was seen after one week of treatment, and no noticeable ammonia odors were present. In comparison, after one week the control containers still had offensive levels of ammonia. FIG. 4 shows that after one week, the average ammonia levels were 225 ppm for the control and less than 20 ppm in the treated containers.
Example 5
Initial Visit: A commercial guinea pig farm tested the FreshShield™ product at rates of 1.45xlO10 total cfu per cubit foot of bedding (0.5x) , 2.9xlO10 total cfu per cubic foot of bedding (1.Ox) and 5.8xlO10 total cfu per cubic foot of bedding (2.Ox), to measure ammonia reduction within a guinea pig commercial facility. The FreshShield™ product included the three strains of bacteria, B. subtilis strains 2084 and 27 and B. licheniformis strain 21. During the initial visit, control samples were collected from pens that were to be treated and used within the experiment. For each of nine pens, one composite sample was formed by collecting the same quantity from a similar location in each pen and combining it into one sample bag. Forty-eight hours after collection, ammonia readings were taken and recorded.
After composite samples were collected, the appropriate concentration of product to be tested was applied to clean fresh bedding. 1.45xlO10 total cfu per cubic foot of bedding (0.5x) , 2.9xlO10 total cfu per cubic foot of bedding (1.Ox) and 5.8xlO10 total cfu per cubic foot of bedding (2.Ox), by spraying the concentrated liquid on to the clean bedding. Treatments included a control (no FreshShield™ product), 0.5X FreshShield™ product, l.OX FreshShield™ product, and 2X FreshShield™ product. Guinea pigs were allowed to maintain normal living conditions on treated bedding.
Follow-up Visit: One week following the initial treatment of bedding treated with the Bacillus shaving product, used bedding samples were collected. Again, the same quantity of bedding from similar locations was collected from each pen. Three pens were combined into one composite sample. Three replicate composite samples were collected and combined for each treatment. Forty-eight hours after collection ammonia readings were taken and recorded.
Results: The results show that ammonia readings from used guinea pig bedding with no treatment were higher than ammonia readings from used guinea pig bedding containing 0.5X, IX and 2X Bacillus treatment levels. The difference between non- treated and treated bedding taken from the same pens after 7 days of treatment were decreased compared to the control difference, as shown in FIG. 5.
Example 6
The Problem:
Ammonia negatively affects the health of stabled horses worldwide. Even long- term, low level exposure to ammonia can affect a horse's respiratory health, immune response, and the health of those people working in and around horses. FreshShield is an all natural, product that proactively stops ammonia production. The active ingredient in FreshShield stall treatment product starts working when applied to urine and/or feces to reduce harmful ammonia emissions. There are a number of stall treatment products available, but most work by masking the ammonia only for a short time and not by attacking the underlying cause of high ammonia. Study DetaUs:
The following study was performed to compare the effect of FreshShield™ stall treatment product on ammonia production to three other stall treatment products: Stall Fresh, Stall DRY Plus, and Sweet PDZ stall treatment products. Soiled horse bedding collected from a stable was placed into sealed containers. The FreshShield stall treatment product was formulated as in Table 1 above.
Treatments of the FreshShield™ stall treatment product were applied by applying 4 oz. of the product daily. The other products were applied according to each of their label directions. Ammonia measurements were taken at time 0 and 24 hours post- treatment using a Draeger ammonia detector. The Results:
As is shown in FIG. 6, after 24 hours, ammonia was reduced by 70% in manure treated with FreshShield stall treatment product, by 22.2% in manure treated with Stall Fresh stall treatment product, by 49.8% in manure treated with Stall DRY Plus stall treatment product, and by 38.9% in manure treated with Sweet PDZ stall treatment product. The other products worked initially, but then lost their effectiveness over time. FreshShield stall treatment product kept working long after the other products stop. FreshShield stall treatment product worked well with both high and low initial ammonia levels, and reduced the ammonia by the greatest amount overall. It is understood that the various preferred embodiments are shown and described above to illustrate different possible features described herein and the varying ways in which these features may be combined. Apart from combining the different features of the above embodiments in varying ways, other modifications are also considered to be within the scope described herein. The invention is not intended to be limited to the preferred embodiments described above.
It is specifically intended that the present invention not be limited to the embodiments and illustrations contained herein, but include modified forms of those embodiments including portions of the embodiments and combinations of elements of different embodiments as come within the scope of the following claims.

Claims

CLAIMS What is claimed is:
1. A composition comprising:
Bacillus subtilis 2084 (NRRL B-50013) or a strain having all of the identifying characteristics of the Bacillus subtilis 2084 (NRRL B-50013);
B. subtilis 27 (NRRL B-50105) or a strain having all of the identifying characteristics of the B. subtilis 27 (NRRL B-50105); and
B. licheniformis 21 (NRRL B-50134) or a strain having all of the identifying characteristics of the B. licheniformis 21 (NRRL B-50134).
2. The composition of claim 1, wherein the amount of each strain is about the same.
3. The composition of claim 1, further comprising at least one carrier capable of binding ammonia.
4. The composition of claim 3, wherein the carrier is selected from the group consisting of comprise limestone, clay, zeolite, diatomaceous earth, clintpolite, bentonite, and Fuller's earth.
5. A method of controlling odors and ammonia from animal waste, the method comprising applying the composition of claim 3 to an area where an animal is housed, wherein application of the composition controlling odors and ammonia in the animal waste.
6. The composition of claim 1, further comprising at least one water-soluble carrier.
7. The composition of claim 6, wherein the carrier is selected from the group consisting of Baker's sugar, maltodextrin MlOO, and baylith.
8. The composition of claim 1, further comprising bentonite, Fuller's earth, mineral oil, and baylith.
9. The composition of claim 1, further comprising an absorbent material.
10. The composition of claim 9, wherein the absorbent material is cat litter.
11. An animal bedding comprising:
Bacillus subtilis 2084 (NRRL B-50013) or a strain having all of the identifying characteristics of the Bacillus subtilis 2084 (NRRL B-50013);
B. subtilis 27 (NRRL B-50105) or a strain having all of the identifying characteristics of the B. subtilis 27 (NRRL B-50105);
B. licheniforrnis 21 (NRRL B -50134) or a strain having all of the identifying characteristics of the B. licheniforrnis 21 (NRRL B-50134); and animal bedding.
12. The animal bedding of claim 11, wherein the animal bedding is selected from the group consisting of wood shavings, corn cob bedding, paper bedding, straw, and wood pellets.
13. The animal bedding of claim 11 , further comprising at least one water-soluble carrier.
14. A method of controlling odors and ammonia from animal waste, the method comprising applying the animal bedding of claim 10 to an area where an animal is housed, wherein application of the composition controlling odors and ammonia in the animal waste.
15. A method of making animal bedding, the method comprising applying Bacillus subtilis 2084 (NRRL B-50013) or a strain having all of the identifying characteristics of the Bacillus subtilis 2084 (NRRL B-50013), B. subtilis 27 (NRRL B- 50105) or a strain having all of the identifying characteristics of the B. subtilis 27 (NRRL B- 50105), and B. licheniformis 21 (NRRL B-50134) or a strain having all of the identifying characteristics of the B. licheniformis 21 (NRRL B-50134) to animal bedding.
16. The method of claim 15, further comprising: adding a water-soluble carrier to the strains; and rehydrating the strains, wherein the rehydrated strains are applied to the animal bedding.
17. The method of claim 15, wherein the strains are applied to provide substantially the same cfu of each strain.
18. The method of claim 15, further comprising packaging the animal bedding, wherein the strains are applied prior to packaging the animal bedding.
19. The method of claim 15, wherein the animal bedding is selected from the group consisting of wood shavings, corn cob bedding, paper bedding, straw, and wood pellets.
20. A method of making a composition, the method comprising: growing each of Bacillus subtilis 2084 (NRRL B-50013) or a strain having all of the identifying characteristics of the Bacillus subtilis 2084 (NRRL B-50013), B. subtilis 27 (NRRL B-50105) or a strain having all of the identifying characteristics of the B. subtilis 27 (NRRL B-50105), and B. licheniformis 21 (NRRL B-50134) or a strain having all of the identifying characteristics of the B. licheniformis 21 (NRRL B-50134) in a broth; and separating each of the strains from its broth to make the composition.
21. The method of claim 20, further comprising freeze drying each strain.
22. The method of claim 21 , further comprising adding the freeze-dried strain to at least one water-soluble carrier.
23. The method of claim 21 , further comprising adding the freeze-dried strain to at least one carrier that is capable of binding ammonia.
24. The method of claim 21 , further comprising adding the freeze-dried strain to at least one water-soluble carrier.
PCT/US2009/040920 2008-04-17 2009-04-17 Bacillus strains useful for animal odor control WO2009146205A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2721180A CA2721180C (en) 2008-04-17 2009-04-17 Bacillus strains useful for animal odor control
DK09755567.6T DK2274415T3 (en) 2008-04-17 2009-04-17 USEFUL BACCIL STRAINS TO FIGHT ANIMAL ODOR
EP09755567.6A EP2274415B1 (en) 2008-04-17 2009-04-17 Bacillus strains useful for animal odor control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4591508P 2008-04-17 2008-04-17
US61/045,915 2008-04-17

Publications (1)

Publication Number Publication Date
WO2009146205A1 true WO2009146205A1 (en) 2009-12-03

Family

ID=41257364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/040920 WO2009146205A1 (en) 2008-04-17 2009-04-17 Bacillus strains useful for animal odor control

Country Status (5)

Country Link
US (3) US8025874B2 (en)
EP (1) EP2274415B1 (en)
CA (1) CA2721180C (en)
DK (1) DK2274415T3 (en)
WO (1) WO2009146205A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1018722A5 (en) * 2009-04-17 2011-07-05 Cruysberghs Rudiger A BIOLOGICAL COMPOSITION FOR TREATMENT OF PETS AND THEIR LIVING ENVIRONMENT.
BE1018872A5 (en) * 2009-08-28 2011-10-04 Cruysberghs Rudiger PROTECTION AGAINST MUGS.

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7618640B2 (en) 2004-05-14 2009-11-17 Agtech Products, Inc. Method and composition for reducing E. coli disease and enhancing performance
US7754469B2 (en) * 2005-11-30 2010-07-13 Agtech Products, Inc Microorganisms and methods for treating poultry
US8021654B2 (en) * 2008-03-14 2011-09-20 Danisco A/S Methods of treating pigs with Bacillus strains
EP2274415B1 (en) 2008-04-17 2016-01-13 DuPont Nutrition Biosciences ApS Bacillus strains useful for animal odor control
US8540981B1 (en) 2008-07-07 2013-09-24 Dupont Nutrition Biosciences Aps Bacillus strains useful against calf pathogens and scours
DE102009057023B4 (en) * 2009-11-25 2012-01-12 Inter-Harz Gmbh A method of reducing pathogenic bacteria in a livestock housing
JP5447348B2 (en) * 2010-11-15 2014-03-19 トヨタ自動車株式会社 Deodorant containing microorganisms and their cells
US20120128620A1 (en) * 2010-11-24 2012-05-24 Larry Douglas Mohr Animal litter
US8557234B1 (en) 2011-05-18 2013-10-15 Dupont Nutrition Biosciences Aps Methods of controlling pit foam
AT511067B1 (en) * 2011-06-24 2012-09-15 Franz Tschiggerl MAIZE SPINDLE AS DEDICATED TO POULTRY
CA2845576C (en) 2011-08-24 2020-09-15 Dupont Nutrition Biosciences Aps Enzyme producing bacillus strains
BR112014018360A8 (en) 2012-01-27 2017-07-11 Gfs Corp Aus Pty Ltd IMPROVED PRACTICES IN POULTRY FARMS
US20150216915A1 (en) * 2012-04-12 2015-08-06 Dupont Nutrition Biosciences Aps Microbial Strains and Their Use in Animals
AU2013308385A1 (en) * 2012-08-27 2015-03-19 The All Natural Pet Litter Company Pty Ltd Odour controller
US20140186929A1 (en) 2012-12-28 2014-07-03 E.I. Du Pont De Nemours And Company Compositions and methods comprising a combination silage inoculant
NL2010074C2 (en) * 2012-12-31 2014-07-21 Rinagro B V New bacteria and consortia for the reduction of ammonia and/or methane emission in manure.
US9191922B2 (en) * 2013-01-04 2015-11-17 Qualcomm Incorporated Evolved multimedia broadcast/multicast services (eMBMS) cluster management
MY195765A (en) 2013-10-25 2023-02-10 Nch Corp Delivery System and Probiotic Composition for Animals and Plants
TWI702004B (en) 2014-05-13 2020-08-21 美商微生物發現公司 Direct-fed microbials and methods of their use
CN103960141A (en) * 2014-05-16 2014-08-06 胡登恺 Pigpen packing
PE20170238A1 (en) 2014-05-23 2017-04-05 Nch Corp METHOD FOR IMPROVING THE QUALITY OF POND WATER FOR AQUACULTURE
US10766799B2 (en) 2014-05-23 2020-09-08 Nch Corporation Method for improving quality of aquaculture pond water using a nutrient germinant composition and spore incubation method
US10335440B2 (en) 2016-02-29 2019-07-02 Microbial Discovery Group, Llc Direct-fed microbials
WO2018009715A1 (en) * 2016-07-06 2018-01-11 Drylet, Llc Compositions and methods of increasing survival rate and growth rate of livestock
EP3372071B8 (en) * 2017-03-06 2020-09-30 MHK Mühlenhof Kleeth GmbH & Co. KG Bedding material for keeping farm animals and corresponding production method
WO2019135972A1 (en) * 2018-01-03 2019-07-11 Monsanto Technology Llc Bacillus isolates and uses thereof
US11401500B2 (en) 2018-08-29 2022-08-02 Nch Corporation System, method, and composition for incubating spores for use in aquaculture, agriculture, wastewater, and environmental remediation applications
US11627741B2 (en) 2018-09-28 2023-04-18 Microbial Discovery Group, Llc Microorganisms for plant pathogen inhibition
CN110699299B (en) * 2019-11-14 2023-01-17 乌拉特前旗荣生大地生物科技饲料有限责任公司 Bacillus licheniformis X173 strain for producing urease inhibitor and application thereof
CN115786163B (en) * 2022-08-02 2023-09-01 四川农业大学 Bacillus licheniformis SCAU1602 and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507250A (en) * 1994-10-18 1996-04-16 Malireddy S. Reddy Odor inhibiting pet litter
US5945333A (en) * 1997-08-26 1999-08-31 Ag Tech Products, Inc. Biological poultry litter treatment composition and its use
US5964187A (en) * 1994-06-16 1999-10-12 Willis; Gregory Lynn Animal bedding material
US20070202088A1 (en) * 2005-11-30 2007-08-30 Tammy Baltzley Microorganisms and methods for treating poultry

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2906622A (en) 1954-04-16 1959-09-29 James C Lewis Production of growth stimulating agents
US2942977A (en) 1954-04-16 1960-06-28 James C Lewis Preparation of growth factors
US3892846A (en) * 1970-06-19 1975-07-01 Allied Chem Animal litter resistant to ammonia odor formation
JPS63209580A (en) 1987-02-25 1988-08-31 Karupisu Shokuhin Kogyo Kk Bacillus subtilis c-3102
US4820531A (en) 1987-10-22 1989-04-11 Pioneer Hi-Bred International Bacterial treatment to preserve hay quality by addition of microorganisms of the genus bacillus
FR2630888B1 (en) 1988-05-09 1991-08-30 Guyomarch Nutrition Animale PROCESS FOR INCREASING THE PRODUCTIVITY OF SOWS
EP0416892B2 (en) 1989-09-05 1998-10-21 Ajinomoto Co., Inc. Agents for the prevention and treatment of diarrhoea
JPH0732702B2 (en) 1990-02-23 1995-04-12 雪印乳業株式会社 Novel lactic acid bacterium, antibacterial substance produced by the lactic acid bacterium, fermented milk starter containing the lactic acid bacterium, and method for producing fermented milk using the same
GB9200891D0 (en) 1992-01-16 1992-03-11 Mann Stephen P Formulation of microorganisms
US5478557A (en) 1992-07-29 1995-12-26 The United States Of America, As Represented By The Secretary Of Agriculture Probiotic for control of salmonella
US5840318A (en) 1993-05-11 1998-11-24 Immunom Technologies, Inc. Methods and compositions for modulating immune systems of animals
US5830993A (en) 1995-04-10 1998-11-03 Kansas State University Research Foundation Synthetic antimicrobial peptide
IES70514B2 (en) 1995-04-12 1996-12-11 Teagasc Agric Food Dev Authori Bacteriocins
US5703040A (en) 1995-11-22 1997-12-30 Kansas State University Research Foundation Broad spectrum antibiotic peptide
EP0880356A4 (en) 1996-02-16 2002-03-27 Univ California Antimicrobial peptides and methods of use
JP3028214B2 (en) 1997-06-03 2000-04-04 カルピス株式会社 How to administer live birds
US5965128A (en) 1997-08-13 1999-10-12 University Of Georgia Research Foundation Inc. Control of enterohemorrhagic E. coli 0157:H7 in cattle by probiotic bacteria and specific strains of E. coli
US6221650B1 (en) * 1997-08-25 2001-04-24 Agtech Products, Inc. Waste treatment with a combination of denitrifying propionibacterium acidipropionici and protease-producing bacillus
US5879719A (en) 1997-08-28 1999-03-09 Midwest Zoological Research, Inc. Process for control, elimination or inhibition of salmonellae in reptiles and/or amphibians
FR2778187B1 (en) 1998-04-30 2001-06-22 Sanofi Elf METHOD FOR SELECTING BACTERIAL STRAINS
US6156355A (en) 1998-11-02 2000-12-05 Star-Kist Foods, Inc. Breed-specific canine food formulations
US20040170617A1 (en) 2000-06-05 2004-09-02 Finegold Sydney M. Method of treating diseases associated with abnormal gastrointestinal flora
US20030099624A1 (en) 2001-07-05 2003-05-29 Microbes, Inc. Administering bacilus laterosporus to increase poultry feed conversion and weight gain
US7247299B2 (en) 2002-11-27 2007-07-24 Kemin Industries, Inc. Antimicrobial compounds from Bacillus subtilis for use against animal and human pathogens
US6814872B2 (en) * 2002-12-03 2004-11-09 General Electric Company Controller and method for controlling regeneration of a water softener
WO2004104175A2 (en) 2003-05-14 2004-12-02 University Of Georgia Research Foundation, Inc. Probiotic bacteria and methods
US7618640B2 (en) 2004-05-14 2009-11-17 Agtech Products, Inc. Method and composition for reducing E. coli disease and enhancing performance
US8021654B2 (en) 2008-03-14 2011-09-20 Danisco A/S Methods of treating pigs with Bacillus strains
EP2274415B1 (en) 2008-04-17 2016-01-13 DuPont Nutrition Biosciences ApS Bacillus strains useful for animal odor control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5964187A (en) * 1994-06-16 1999-10-12 Willis; Gregory Lynn Animal bedding material
US5507250A (en) * 1994-10-18 1996-04-16 Malireddy S. Reddy Odor inhibiting pet litter
US5945333A (en) * 1997-08-26 1999-08-31 Ag Tech Products, Inc. Biological poultry litter treatment composition and its use
US20070202088A1 (en) * 2005-11-30 2007-08-30 Tammy Baltzley Microorganisms and methods for treating poultry

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAVIS, M. S.; FOSTER, W.M.: "Equine Respiratory Disease", 2002, INTERNATIONAL VETERINARY INFORMATION SERVICE, article "Inhalation Toxicology in the Equine Respiratory Tract"
JANSTOVA ET AL.: "HEAT RESISTANCE OF BACILLUS spp. SPORES ISOLATED FROM COW'S MILK AND FARM ENVIRONMENT.", ACTA VET. BRNO, vol. 70, 2001, pages 179 - 184, XP008133200, Retrieved from the Internet <URL:http://vfu-www.vfu.cz/acta-vet/vo170/pdf/70_179.pdf> [retrieved on 20090529] *
See also references of EP2274415A4
TRAUB-DARGATZ JL; STIFFLER LA; MCCUE PM; VANDERWALL DK; JOHNSON KE: "Respiratory and environmental effects of recycled phone book paper versus sawdust as bedding for horses", J EQ VET SCI, 1998, pages 468 - 476

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1018722A5 (en) * 2009-04-17 2011-07-05 Cruysberghs Rudiger A BIOLOGICAL COMPOSITION FOR TREATMENT OF PETS AND THEIR LIVING ENVIRONMENT.
BE1018872A5 (en) * 2009-08-28 2011-10-04 Cruysberghs Rudiger PROTECTION AGAINST MUGS.
WO2011022790A3 (en) * 2009-08-28 2011-10-27 Rudiger Cruysberghs Mosquito repellent

Also Published As

Publication number Publication date
US20120063950A1 (en) 2012-03-15
US8025874B2 (en) 2011-09-27
CA2721180C (en) 2016-10-11
DK2274415T3 (en) 2016-04-04
EP2274415A1 (en) 2011-01-19
US8999318B2 (en) 2015-04-07
CA2721180A1 (en) 2009-12-03
US20090275109A1 (en) 2009-11-05
EP2274415B1 (en) 2016-01-13
EP2274415A4 (en) 2012-01-25
US8404227B2 (en) 2013-03-26
US20130177519A1 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
CA2721180C (en) Bacillus strains useful for animal odor control
Rotz Management to reduce nitrogen losses in animal production
CN104620996A (en) Probiotic fermentation bed for breeding livestock and poultry
CN101213951B (en) Emission reduction drying type cultivation method for producing non-antibiotics pork
CN103416321A (en) Bacillus laterosporus fermentation bed and manufacturing method thereof
CN107466877A (en) A kind of ox bed biological pad and its application method
EP2335482A2 (en) Method for reducing pathogenic bacteria in a stall for livestock
JP2608524B2 (en) Deodorants
JP2001149023A (en) Bioactive agent and animal feed additive using the same
NL192291C (en) Method for making a fermentation product, granular fermentation product obtained therewith and use of the fermentation product.
ES2216410T3 (en) BREAST OF ANIMALS AND USED MILKS.
JP2550476B2 (en) Bacterial preparation for soil improvement
Hutchison et al. A study of on-farm manure applications to agricultural land and an assessment of the risks of pathogen transfer into the food chain
CN111919762A (en) Wet-type probiotic premixed fermentation bedding cultivation method
JP2008000118A (en) Method for sterilizing livestock rearing farm
Weiske Survey of technical and management-based mitigation measures in agriculture
Byrd et al. Circadian variation of pasture NSC and insulin concentrations in horses.
JP2001112365A (en) Floor litter for animal stall
KR102324295B1 (en) Eco-friendly livestock floor treatment composition and its manufacturing method
KR20000031635A (en) Animal manure and litter for barn ground using coal cinders
CN100569703C (en) The organic waste resource restructuring constitutes the method for biosphere circulation output
Früh et al. Welfare and environmental impact of organic pig production (POWER Factsheet)
Früh et al. Welfare and environmental impact of organic pig production: a collection of factsheets
Välipakka Microbiological composition of the air in dairy farms using different types of bedding
JP2003116390A (en) Animal barn bedding material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09755567

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2721180

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009755567

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE