WO2009137310A2 - Optical waveguides and methods of making the same - Google Patents

Optical waveguides and methods of making the same Download PDF

Info

Publication number
WO2009137310A2
WO2009137310A2 PCT/US2009/042172 US2009042172W WO2009137310A2 WO 2009137310 A2 WO2009137310 A2 WO 2009137310A2 US 2009042172 W US2009042172 W US 2009042172W WO 2009137310 A2 WO2009137310 A2 WO 2009137310A2
Authority
WO
WIPO (PCT)
Prior art keywords
silicon wafer
optical waveguide
stem portion
stem
doped
Prior art date
Application number
PCT/US2009/042172
Other languages
French (fr)
Other versions
WO2009137310A3 (en
Inventor
David Fattal
Marco Fiorentino
Qianfan Xu
Original Assignee
Hewlett-Packard Development Company, L.P.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett-Packard Development Company, L.P. filed Critical Hewlett-Packard Development Company, L.P.
Priority to EP09743297.5A priority Critical patent/EP2274643B1/en
Priority to JP2011508554A priority patent/JP5231632B2/en
Priority to US12/991,052 priority patent/US20110058782A1/en
Priority to CN2009801163484A priority patent/CN102016663A/en
Publication of WO2009137310A2 publication Critical patent/WO2009137310A2/en
Publication of WO2009137310A3 publication Critical patent/WO2009137310A3/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12097Ridge, rib or the like

Definitions

  • the present disclosure relates generally to optical waveguides and methods of making the same.
  • optoelectronic devices may offer advantages over typical electronic devices, such as, for example, a much larger bandwidth (by many orders of magnitude). Such optoelectronic devices often involve the transmission of optical signals, and the interconversion of such optical signals into electronic signals.
  • FIGs. 1 A and 1 B together illustrate a schematic flow diagram of the formation of an embodiment of an optical waveguide, where Fig. 1 B is a schematic profile of the optical waveguide;
  • Figs. 2A through 2K together illustrate a schematic flow diagram of the etch sequence used to form the optical waveguide of Fig. 1 B;
  • Fig. 2L is a schematic profile of the optical waveguide of Fig. 1 B and 2K after it is fully oxidized;
  • Fig. 3 is a schematic profile of another embodiment of an optical waveguide.
  • Embodiments of the optical waveguide disclosed herein are formed of bare silicon wafers.
  • the silicon optical waveguides are thermally well connected to the underlying bulk silicon, which enables efficient cooling of the device. It is further believed that this renders the waveguides less likely to suffer from temperature fluctuations that are typical of devices formed on silicon- on-insulator wafers, where the oxide layer acts as a thermal barrier and may deleteriously affect heat dissipation.
  • the optical waveguides disclosed herein may advantageously be used in passive or active silicon optoelectronic devices.
  • a structure 100 including an optical waveguide 10 (the profile of which is shown in Fig. 1 B) is formed from a bare silicon wafer 12 having two opposed sides Si, S2 (shown in Fig. 1A).
  • the optical waveguide 10 is defined in the silicon wafer 12 such that the resulting structure 100 includes the waveguide 10 established on a remaining portion 12' of the original silicon wafer 12.
  • a sequence of isotropic and anisotropic etches are used to form notches 14, 16 in each of the two opposed sides Si , S 2 .
  • a non-limiting example of the etch sequence is a single Bosch etch sequence. The etch sequence is discussed further hereinbelow in reference to Figs. 2A through 2L.
  • the notches 14, 16 are configured such that the resulting waveguide 10 includes a head portion H and a first bottleneck or stem portion B 1 .
  • the elements H, Bi of the waveguide 10 are established on a portion 12' of the silicon wafer 12.
  • each notch 14, 16 undercuts the head portion H, and includes a rounded edge RE and a straight edge SE.
  • the rounded edges RE define the stem portion Bi of the waveguide 10 and the straight edges SE are also respective surfaces of the silicon wafer portion 12'.
  • the head portion H generally has a cross-sectional shape that is square, rectangular, elliptical, rounded or any other desirable geometry, with the bottomside rounding off and leading into the first stem portion Bi. It is believed that the stem portion Bi provides an optical barrier that enables mode confinement in the head portion H.
  • the transverse electric (TE) mode of the waveguide 10 is substantially confined within the head portion H.
  • the first stem portion Bi may be partially or fully oxidized. Such oxidation may be accomplished in a standard oxidation furnace. The time of heating may be altered depending on whether partial or full oxidation is desired. It is believed that such oxidation enhances the optical isolation between the waveguide 10 and the underlying silicon wafer portion 12', while still enabling the first stem portion Bi to provide adequate structural support to the waveguide 10.
  • Figs. 2A through 2K illustrate a non-limiting example of the etch sequence used to form the embodiment of the structure 100 shown in Fig. 1 B and in Fig. 2K. It is to be understood that such a sequence may also be used to form the embodiment of the structure 100' shown in Fig. 3.
  • the silicon wafer 12 has an oxide layer 26 and a resist layer 28 established thereon.
  • the oxide layer 26 may be established via any suitable growth or deposition technique.
  • a thermal oxide insulator layer may be formed by the oxidation of silicon, which forms silicon dioxide.
  • the oxide layer 26 may also be established via any conformal deposition technique, non-limiting examples of which include, but are not limited to low-pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), atmospheric pressure chemical vapor deposition (APCVD), or any other suitable chemical or physical vapor deposition techniques.
  • the resist layer 28 may also be established on the oxide layer 26 via any suitable chemical or physical vapor deposition techniques.
  • Electron beam (e-beam) or photo lithography is then used to pattern the resist layer 28 and to expose a portion of the oxide layer 26, as shown in Fig. 2B. It is to be understood that the pattern is ultimately used to form the head portion H (or top portion T if the embodiment of Fig. 3 is formed) of the structure 100 (or 100').
  • a metal layer 30 is established on the remaining portions of the resist layer 28 and the newly exposed portions of the oxide layer 26.
  • the metal layer 30 include aluminum, titanium, chromium or other like metals.
  • Such a layer 30 may be deposited via sputtering, chemical vapor deposition (CVD), atomic layer deposition (ALD), evaporation (e.g. thermal or e-beam), inkjet deposition, and/or spin-coating.
  • Lift-off may then be used to remove the portions of the metal layer 30 that are established on the remaining resist layer 28, thereby exposing other portions of the oxide layer 26. It is to be understood that after lift-off, the portion of the metal layer 30 that is established directly on the oxide layer 26 remains.
  • a dry etching process e.g., CF 4
  • CF 4 dry etching process
  • An anisotropic etching process (e.g., using HBr) may then be performed to remove a desirable amount of the exposed portions of the silicon wafer 12. This is depicted in Fig. 2F. As shown, the remaining metal and oxide layers 30, 26 act as a mask during this etching process and thus the silicon wafer 12 underlying these layers 30, 26 remains substantially unetched.
  • Fig. 2G illustrates the deposition of another oxide layer 32 on substantially the entire structure. Generally, this layer 32 is conformally deposited on the exposed surfaces of the silicon wafer 12 that are adjacent to the oxide layer 26, and the metal layer 30 via plasma enhanced chemical vapor deposition (PECVD).
  • Fig. 2H illustrates the result of a dry etching process performed on the oxide layer 32. It is to be understood that the oxide layer 32 established on the sidewalls of the oxide layer 26, the metal layer 30 and the portions of the silicon wafer 12 exposed in Fig. 2F remains intact after the dry etch. This etching process exposes surfaces of the silicon oxide wafer 12 and the metal layer 30 as depicted in Fig. 2H. Another anisotropic dry etching process is performed on the silicon wafer
  • the remaining oxide layer 32 acts as a mask, and the silicon wafer 12 underlying this layer 32 remains unetched. It is to be understood that the etching process may be performed until a desirable height for the waveguide 10 is achieved, and a portion 12' of the silicon wafer 12 remains. As previously described, this portion 12' of the silicon wafer 12 acts as the support for the ultimately formed waveguide 10 (non-limiting examples of which are shown in Figs. 2K and 2L).
  • An isotropic dry etching process is then performed on the silicon wafer 12 to form the notches 12, 14.
  • SF 6 may be used in the isotropic dry etching process.
  • the etching process may be controlled to undercut the silicon wafer
  • the resulting undercuts form the notches 12, 14, thereby defining the first stem portion Bi.
  • Figs. 2H through 2J may be altered so that a top portion T and a head portion H are formed with notches 18, 20 formed therebetween.
  • the aspect ratio of the waveguide 10 may be controlled by changing the relative duration of anisotropic (e.g., HBr) and isotropic (e.g., SF 6 ) silicon etches.
  • anisotropic e.g., HBr
  • isotropic e.g., SF 6
  • Fig. 2K illustrates the removal of the remaining oxide layers 26, 32 and the resulting structure 100, which includes waveguide 10.
  • the oxide may be removed, for example, via an HF dipping process.
  • Fig. 2L illustrates the structure 100 having waveguide fully oxidized.
  • An additional oxide deposition process may be performed to conformally establish oxide on each of the surfaces of the waveguide 10.
  • Fig. 3 another embodiment of the structure 100' includes another embodiment of the optical waveguide 10'.
  • the method for forming such a structure 100' includes defining second notches 18, 20 in each of the two opposed sides Si, S2 during the anisotropic and isotropic etching processes.
  • the second notches 18, 20 are generally formed a spaced distance from the respective first notches 14, 16.
  • the first notches 12, 14 are separated from the second notches 18, 20 via the head portion H.
  • Each of the second notches 18, 20 has a substantially rounded edge, and together the notches 18, 20 define a second stem B 2 of the optical waveguide 10'. It is believed that together the first and second stem portions B 1 , B 2 provide optical barriers that enable mode confinement in the head portion H.
  • the etching processes may be performed such that a top portion T of the silicon wafer 12 is adjacent to the second stem B 2 .
  • a first electrical contact 22 may be operatively connected to the top portion T.
  • a second electrical contact 24 may be operatively connected to the silicon wafer portion 12', a non-limiting example of which is depicted in Fig. 2.
  • Non-limiting examples of the first and second electrical contacts 22, 24 include metals (e.g., aluminum).
  • top portion T and the area of the portion 12' adjacent to the respective electrical contacts 22, 24 may be doped to exhibit a desirable conductivity.
  • the top portion T is doped p-type or n-type and the area of the portion 12' adjacent to the electrical contact 24 is doped the other of n-type or p- type.
  • Dopants for introducing p-type conductivity include, but are not limited to boron, other like elements, or combinations thereof; and dopants for introducing n-type conductivity include, but are not limited to phosphorus, arsenic, antimony, other like elements, or combinations thereof.
  • the electrical contacts 22, 24 enable current to be easily introduced into and flown through the structure 100', and in other instances, the electrical contacts 22, 24 enable charges to be easily extracted from the structure 100'.
  • the function of the contacts 22, 24 depends, at least in part, on whether the structure 100' is used in a modulator or a detector device. It is to be understood that one or both of the first and second stem portions Bi, B 2 may be partially or fully oxidized. It is believed that such oxidation enhances the optical isolation of the waveguide 10'.
  • the dimensions of the head portion H and stem portion(s) Bi, B 2 depend, at least in part, on the wavelength used, and on whether the waveguide 10, 10' is single-mode or multi-mode. In a non-limiting example, the height and width of the waveguide 10, 10' each ranges from about 100 nm to about 1000 nm.
  • electronic components CMOS
  • optical components may advantageously be integrated into the same structure.
  • the electronic components may be operatively positioned, for example, on the top portion P and may be isolated with an oxide layer.
  • the optical components may be placed adjacent to the silicon substrate portion 12' such that they are located at an end of the structure opposite to the end at which the electrical components are located.
  • the electrical and optical components may be operatively connected using through silicon vias.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

An optical waveguide includes a silicon wafer having two opposed sides. A first notch is defined in each of the two opposed sides such that the silicon wafer includes a head portion and a first stem portion.

Description

OPTICAL WAVEGUIDES AND METHODS OF MAKING THE SAME
CROSS-REFERENCE TO RELATED APPLICATION The present application claims priority from provisional application Serial No. 61/050,682, filed May 6, 2008, as well as non-provisional application Serial No. 12/263400, filed October 31 , 2008, the contents of which are incorporated herein by reference in their entirety.
BACKGROUND The present disclosure relates generally to optical waveguides and methods of making the same.
Since the inception of microelectronics, a consistent trend has been toward the development of passive and active optoelectronic devices. This may be due, at least in part, to the fact that optoelectronic devices may offer advantages over typical electronic devices, such as, for example, a much larger bandwidth (by many orders of magnitude). Such optoelectronic devices often involve the transmission of optical signals, and the interconversion of such optical signals into electronic signals.
BRIEF DESCRIPTION OF THE DRAWINGS
Features and advantages of embodiments of the present disclosure will become apparent by reference to the following detailed description and drawings, in which like reference numerals correspond to the same or similar, though perhaps not identical, components. For the sake of brevity, reference numerals having a previously described function may or may not be described in connection with subsequent drawings in which they appear. Figs. 1 A and 1 B together illustrate a schematic flow diagram of the formation of an embodiment of an optical waveguide, where Fig. 1 B is a schematic profile of the optical waveguide;
Figs. 2A through 2K together illustrate a schematic flow diagram of the etch sequence used to form the optical waveguide of Fig. 1 B;
Fig. 2L is a schematic profile of the optical waveguide of Fig. 1 B and 2K after it is fully oxidized; and
Fig. 3 is a schematic profile of another embodiment of an optical waveguide.
DETAILED DESCRIPTION
Embodiments of the optical waveguide disclosed herein are formed of bare silicon wafers. The silicon optical waveguides are thermally well connected to the underlying bulk silicon, which enables efficient cooling of the device. It is further believed that this renders the waveguides less likely to suffer from temperature fluctuations that are typical of devices formed on silicon- on-insulator wafers, where the oxide layer acts as a thermal barrier and may deleteriously affect heat dissipation. Furthermore, the optical waveguides disclosed herein may advantageously be used in passive or active silicon optoelectronic devices.
Referring now to Figs. 1A and 1 B, a structure 100 including an optical waveguide 10 (the profile of which is shown in Fig. 1 B) is formed from a bare silicon wafer 12 having two opposed sides Si, S2 (shown in Fig. 1A). The optical waveguide 10 is defined in the silicon wafer 12 such that the resulting structure 100 includes the waveguide 10 established on a remaining portion 12' of the original silicon wafer 12.
A sequence of isotropic and anisotropic etches are used to form notches 14, 16 in each of the two opposed sides Si , S2. A non-limiting example of the etch sequence is a single Bosch etch sequence. The etch sequence is discussed further hereinbelow in reference to Figs. 2A through 2L.
The notches 14, 16 are configured such that the resulting waveguide 10 includes a head portion H and a first bottleneck or stem portion B1. The elements H, Bi of the waveguide 10 are established on a portion 12' of the silicon wafer 12. As depicted in Fig. 1 B, each notch 14, 16 undercuts the head portion H, and includes a rounded edge RE and a straight edge SE. The rounded edges RE define the stem portion Bi of the waveguide 10 and the straight edges SE are also respective surfaces of the silicon wafer portion 12'. The head portion H generally has a cross-sectional shape that is square, rectangular, elliptical, rounded or any other desirable geometry, with the bottomside rounding off and leading into the first stem portion Bi. It is believed that the stem portion Bi provides an optical barrier that enables mode confinement in the head portion H. In one embodiment, the transverse electric (TE) mode of the waveguide 10 is substantially confined within the head portion H.
It is to be understood that the first stem portion Bi may be partially or fully oxidized. Such oxidation may be accomplished in a standard oxidation furnace. The time of heating may be altered depending on whether partial or full oxidation is desired. It is believed that such oxidation enhances the optical isolation between the waveguide 10 and the underlying silicon wafer portion 12', while still enabling the first stem portion Bi to provide adequate structural support to the waveguide 10. Figs. 2A through 2K illustrate a non-limiting example of the etch sequence used to form the embodiment of the structure 100 shown in Fig. 1 B and in Fig. 2K. It is to be understood that such a sequence may also be used to form the embodiment of the structure 100' shown in Fig. 3.
As depicted in Fig. 2A, the silicon wafer 12 has an oxide layer 26 and a resist layer 28 established thereon. The oxide layer 26 may be established via any suitable growth or deposition technique. A thermal oxide insulator layer may be formed by the oxidation of silicon, which forms silicon dioxide. The oxide layer 26 may also be established via any conformal deposition technique, non-limiting examples of which include, but are not limited to low-pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), atmospheric pressure chemical vapor deposition (APCVD), or any other suitable chemical or physical vapor deposition techniques. The resist layer 28 may also be established on the oxide layer 26 via any suitable chemical or physical vapor deposition techniques.
Electron beam (e-beam) or photo lithography is then used to pattern the resist layer 28 and to expose a portion of the oxide layer 26, as shown in Fig. 2B. It is to be understood that the pattern is ultimately used to form the head portion H (or top portion T if the embodiment of Fig. 3 is formed) of the structure 100 (or 100').
As shown in Fig. 2C, a metal layer 30 is established on the remaining portions of the resist layer 28 and the newly exposed portions of the oxide layer 26. Non-limiting examples of the metal layer 30 include aluminum, titanium, chromium or other like metals. Such a layer 30 may be deposited via sputtering, chemical vapor deposition (CVD), atomic layer deposition (ALD), evaporation (e.g. thermal or e-beam), inkjet deposition, and/or spin-coating.
Lift-off may then be used to remove the portions of the metal layer 30 that are established on the remaining resist layer 28, thereby exposing other portions of the oxide layer 26. It is to be understood that after lift-off, the portion of the metal layer 30 that is established directly on the oxide layer 26 remains. A dry etching process (e.g., CF4) may then be used to remove these exposed oxide layer 26 portions. These processes are respectively depicted in Figs. 2D and 2E. As shown in Fig. 2E, once the exposed oxide layer 26 portions are removed, portions of the silicon wafer 12 are exposed.
An anisotropic etching process (e.g., using HBr) may then be performed to remove a desirable amount of the exposed portions of the silicon wafer 12. This is depicted in Fig. 2F. As shown, the remaining metal and oxide layers 30, 26 act as a mask during this etching process and thus the silicon wafer 12 underlying these layers 30, 26 remains substantially unetched.
Fig. 2G illustrates the deposition of another oxide layer 32 on substantially the entire structure. Generally, this layer 32 is conformally deposited on the exposed surfaces of the silicon wafer 12 that are adjacent to the oxide layer 26, and the metal layer 30 via plasma enhanced chemical vapor deposition (PECVD). Fig. 2H illustrates the result of a dry etching process performed on the oxide layer 32. It is to be understood that the oxide layer 32 established on the sidewalls of the oxide layer 26, the metal layer 30 and the portions of the silicon wafer 12 exposed in Fig. 2F remains intact after the dry etch. This etching process exposes surfaces of the silicon oxide wafer 12 and the metal layer 30 as depicted in Fig. 2H. Another anisotropic dry etching process is performed on the silicon wafer
12, as depicted in Fig. 2I. The remaining oxide layer 32 acts as a mask, and the silicon wafer 12 underlying this layer 32 remains unetched. It is to be understood that the etching process may be performed until a desirable height for the waveguide 10 is achieved, and a portion 12' of the silicon wafer 12 remains. As previously described, this portion 12' of the silicon wafer 12 acts as the support for the ultimately formed waveguide 10 (non-limiting examples of which are shown in Figs. 2K and 2L).
An isotropic dry etching process is then performed on the silicon wafer 12 to form the notches 12, 14. SF6 may be used in the isotropic dry etching process. The etching process may be controlled to undercut the silicon wafer
12 at an area where the oxide layer 32 abuts the wafer 12. As previously mentioned, the resulting undercuts form the notches 12, 14, thereby defining the first stem portion Bi.
It is to be understood that the process may vary somewhat when forming the structure 100' (shown in Fig. 3), which includes additional notches 18, 20.
For example, the anisotropic and isotropic etching processes shown in Figs. 2H through 2J may be altered so that a top portion T and a head portion H are formed with notches 18, 20 formed therebetween.
It is to be understood that the aspect ratio of the waveguide 10 may be controlled by changing the relative duration of anisotropic (e.g., HBr) and isotropic (e.g., SF6) silicon etches.
Fig. 2K illustrates the removal of the remaining oxide layers 26, 32 and the resulting structure 100, which includes waveguide 10. The oxide may be removed, for example, via an HF dipping process. Fig. 2L illustrates the structure 100 having waveguide fully oxidized. An additional oxide deposition process may be performed to conformally establish oxide on each of the surfaces of the waveguide 10. Referring now to Fig. 3, another embodiment of the structure 100' includes another embodiment of the optical waveguide 10'. The method for forming such a structure 100' includes defining second notches 18, 20 in each of the two opposed sides Si, S2 during the anisotropic and isotropic etching processes. The second notches 18, 20 are generally formed a spaced distance from the respective first notches 14, 16. In an embodiment, the first notches 12, 14 are separated from the second notches 18, 20 via the head portion H.
Each of the second notches 18, 20 has a substantially rounded edge, and together the notches 18, 20 define a second stem B2 of the optical waveguide 10'. It is believed that together the first and second stem portions B1, B2 provide optical barriers that enable mode confinement in the head portion H.
When the optical waveguide 10' includes the second stem B2, it is to be understood that the etching processes may be performed such that a top portion T of the silicon wafer 12 is adjacent to the second stem B2. A first electrical contact 22 may be operatively connected to the top portion T. In some embodiments, a second electrical contact 24 may be operatively connected to the silicon wafer portion 12', a non-limiting example of which is depicted in Fig. 2. Non-limiting examples of the first and second electrical contacts 22, 24 include metals (e.g., aluminum).
It is to be understood that high quality (Ohmic) contacts 22, 24 are made of metal and are established on a highly doped semi-conductor material. As such, the top portion T and the area of the portion 12' adjacent to the respective electrical contacts 22, 24 may be doped to exhibit a desirable conductivity. In one embodiment, the top portion T is doped p-type or n-type and the area of the portion 12' adjacent to the electrical contact 24 is doped the other of n-type or p- type. Dopants for introducing p-type conductivity include, but are not limited to boron, other like elements, or combinations thereof; and dopants for introducing n-type conductivity include, but are not limited to phosphorus, arsenic, antimony, other like elements, or combinations thereof.
It is to be understood that in some instances, the electrical contacts 22, 24 enable current to be easily introduced into and flown through the structure 100', and in other instances, the electrical contacts 22, 24 enable charges to be easily extracted from the structure 100'. The function of the contacts 22, 24 depends, at least in part, on whether the structure 100' is used in a modulator or a detector device. It is to be understood that one or both of the first and second stem portions Bi, B2 may be partially or fully oxidized. It is believed that such oxidation enhances the optical isolation of the waveguide 10'.
The dimensions of the head portion H and stem portion(s) Bi, B2 depend, at least in part, on the wavelength used, and on whether the waveguide 10, 10' is single-mode or multi-mode. In a non-limiting example, the height and width of the waveguide 10, 10' each ranges from about 100 nm to about 1000 nm. In one embodiment of the optical waveguide 10' including both stem portions Bi, B2, electronic components (CMOS) and optical components may advantageously be integrated into the same structure. The electronic components may be operatively positioned, for example, on the top portion P and may be isolated with an oxide layer. The optical components may be placed adjacent to the silicon substrate portion 12' such that they are located at an end of the structure opposite to the end at which the electrical components are located. The electrical and optical components may be operatively connected using through silicon vias.
While several embodiments have been described in detail, it will be apparent to those skilled in the art that the disclosed embodiments may be modified. Therefore, the foregoing description is to be considered exemplary rather than limiting.

Claims

What is claimed is:
1. An optical waveguide, comprising: a silicon wafer having two opposed sides; a first notch defined in each of the two opposed sides such that the silicon wafer includes a head portion and a first stem portion.
2. The optical waveguide as defined in claim 1 , further comprising a second notch defined in each of the two opposed sides a spaced distance from the respective first notches.
3. The optical waveguide as defined in claim 2 wherein each first notch includes a rounded edge and a substantially straight edge, and wherein each second notch includes a rounded edge.
4. The optical waveguide as defined in claim 2 wherein the silicon wafer further includes a second stem portion defined by the second notches.
5. The optical waveguide as defined in claim 4 wherein at least one of the first stem portion or the second stem portion is partially or fully oxidized.
6. The optical waveguide as defined in claim 4, further comprising: a top portion of the silicon wafer adjacent the second stem portion; and an electrical contact operatively connected to the top portion.
7. The optical waveguide as defined in claim 4, further comprising: a doped top portion of the silicon wafer adjacent the second stem portion; a first electrical contact operatively connected to the doped top portion; a doped bottom portion of the silicon wafer adjacent the first stem portion; and a second electrical contact operatively connected to the doped bottom portion.
8. The optical waveguide as defined in claim 7 wherein the top portion is doped to have one of p-type conductivity or n-type conductivity and wherein the bottom portion is doped to have an other of n-type conductivity or p-type conductivity.
9. The optical waveguide as defined in claim 1 wherein a transverse electric mode of the optical waveguide is substantially confined in the head portion.
10. The optical waveguide as defined in claim 1 wherein the first stem portion is partially or fully oxidized.
11. A method of making an optical waveguide, comprising: sequentially anisotropically and isotropically etching two opposed sides of a silicon wafer, thereby forming a first notch in each of the two opposed sides and defining a head portion and a first stem portion of the silicon wafer.
12. The method as defined in claim 11 , further comprising forming a second notch in each of the two opposed sides a spaced distance from the respective first notches during the sequential isotropic and anisotropic etching processes.
13. The method as defined in claim 12 wherein the second notches define a second stem portion of the silicon wafer, and wherein the method further comprises partially or fully oxidizing at least one of the first stem portion or the second stem portion.
14. The method as defined in claim 13, further comprising: defining a top portion of the silicon wafer adjacent the second stem portion; and operatively connecting an electrical contact to the top portion.
15. The method as defined in claim 14, further comprising: doping the top portion; doping a bottom portion of the silicon wafer that is adjacent the first stem portion; and operatively connecting a second electrical contact to the doped bottom portion.
PCT/US2009/042172 2008-05-06 2009-04-29 Optical waveguides and methods of making the same WO2009137310A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09743297.5A EP2274643B1 (en) 2008-05-06 2009-04-29 Optical waveguides and methods of making the same
JP2011508554A JP5231632B2 (en) 2008-05-06 2009-04-29 Optical waveguide and method for manufacturing the same
US12/991,052 US20110058782A1 (en) 2008-05-06 2009-04-29 Optical waveguides and methods of making the same
CN2009801163484A CN102016663A (en) 2008-05-06 2009-04-29 Optical waveguides and methods of making the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US5068208P 2008-05-06 2008-05-06
US61/050,682 2008-05-06
US12/263,400 US7907811B2 (en) 2008-05-06 2008-10-31 Optical waveguides and methods of making the same
US12/263,400 2008-10-31

Publications (2)

Publication Number Publication Date
WO2009137310A2 true WO2009137310A2 (en) 2009-11-12
WO2009137310A3 WO2009137310A3 (en) 2010-03-18

Family

ID=41265309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/042172 WO2009137310A2 (en) 2008-05-06 2009-04-29 Optical waveguides and methods of making the same

Country Status (6)

Country Link
US (2) US7907811B2 (en)
EP (1) EP2274643B1 (en)
JP (1) JP5231632B2 (en)
KR (1) KR101578828B1 (en)
CN (1) CN102016663A (en)
WO (1) WO2009137310A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8655138B2 (en) * 2010-05-10 2014-02-18 Cornell University Waveguide structure and related fabrication method
CN102096149B (en) * 2011-01-19 2012-08-15 浙江大学 Silicon-based long-wave infrared waveguide and preparation method thereof
US11988872B2 (en) * 2021-11-29 2024-05-21 Ciena Corporation Optical waveguide coupling using fabricated waveguide coupling structures

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2009472A1 (en) 2007-06-28 2008-12-31 NEC Corporation Silicon Structure and Method of Manufacturing the Same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3563630A (en) * 1966-12-07 1971-02-16 North American Rockwell Rectangular dielectric optical wave-guide of width about one-half wave-length of the transmitted light
JPS5940317B2 (en) * 1976-07-29 1984-09-29 日本電気株式会社 Rib guide stripe type semiconductor multilayer thin film optical waveguide and its manufacturing method
US5274720A (en) * 1991-08-22 1993-12-28 Olympus Optical Co., Ltd. Optical system having a ring-shaped waveguide
JPH0651143A (en) * 1992-07-31 1994-02-25 Olympus Optical Co Ltd Curved waveguide
JPH06347653A (en) * 1993-06-04 1994-12-22 Sumitomo Electric Ind Ltd Production of optical waveguide film
WO1996011516A1 (en) * 1994-10-05 1996-04-18 Massachusetts Institute Of Technology Resonant microcavities employing one-dimensional periodic dielectric waveguides
US6795635B1 (en) * 1998-09-15 2004-09-21 Corning Incorporated Waveguides having axially varying structure
GB2367904B (en) * 2000-10-09 2004-08-04 Marconi Caswell Ltd Guided wave spatial filter
JP2002169132A (en) * 2000-12-04 2002-06-14 Toshiba Electronic Engineering Corp Electric field absorption type optical modulator and method of manufacturing the same
WO2003100487A1 (en) * 2002-05-24 2003-12-04 The Regents Of The University Of Michigan Polymer micro-ring resonator device and fabrication method
US7057250B2 (en) * 2003-04-09 2006-06-06 University Of Delaware Terahertz frequency band wavelength selector
US7319076B2 (en) * 2003-09-26 2008-01-15 Intel Corporation Low resistance T-shaped ridge structure
JP4225230B2 (en) * 2004-03-31 2009-02-18 パナソニック株式会社 Optical element
US7097778B2 (en) * 2004-04-28 2006-08-29 Chunghwa Telecom Co., Ltd. Process for fabricating a micro-optical lens
US7528403B1 (en) * 2005-04-25 2009-05-05 California Institute Of Technology Hybrid silicon-on-insulator waveguide devices
WO2008011043A2 (en) * 2006-07-18 2008-01-24 Binoptics Corporation Algainn-based lasers with dovetailed ridge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2009472A1 (en) 2007-06-28 2008-12-31 NEC Corporation Silicon Structure and Method of Manufacturing the Same

Also Published As

Publication number Publication date
US7907811B2 (en) 2011-03-15
EP2274643A4 (en) 2015-10-28
US20110058782A1 (en) 2011-03-10
CN102016663A (en) 2011-04-13
WO2009137310A3 (en) 2010-03-18
KR101578828B1 (en) 2015-12-18
JP2011520155A (en) 2011-07-14
KR20110004476A (en) 2011-01-13
EP2274643B1 (en) 2017-09-20
US20090279838A1 (en) 2009-11-12
JP5231632B2 (en) 2013-07-10
EP2274643A2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
JP5095812B2 (en) Core-shell-shell nanowire transistor and manufacturing method thereof
JP4686544B2 (en) Method for etching a layer on a substrate
US8772902B2 (en) Fabrication of a localized thick box with planar oxide/SOI interface on bulk silicon substrate for silicon photonics integration
WO2014113440A1 (en) Buried waveguide photodetector
US9618776B2 (en) Electro-absorption optical modulation device and method of fabricating the same
JP2009130035A (en) Method of manufacturing semiconductor device
CN110945412A (en) Optoelectronic component and method for the production thereof
JP2005333144A (en) Photonic integrated device using reverse-mesa structure and method for fabricating same
US7907811B2 (en) Optical waveguides and methods of making the same
US11574811B2 (en) Tight pitch patterning
US20140191302A1 (en) Photonics device and cmos device having a common gate
JP2006120715A (en) Manufacturing method for semiconductor wafer
TWI796578B (en) Semiconductor structure and method for manufacturing the same
JP5673060B2 (en) Optical semiconductor device and manufacturing method thereof
US8815102B2 (en) Method for fabricating patterned dichroic film
KR101923730B1 (en) A semiconductor laser and method of forming the same
US7816166B1 (en) Method to form a MEMS structure having a suspended portion
JP2011232529A (en) Waveguide type resonator device
CN112186075A (en) Waveguide type photoelectric detector and manufacturing method thereof
US8288185B2 (en) Semiconductor devices and methods of forming the same
US9395490B2 (en) Variable buried oxide thickness for a waveguide
CN108807278A (en) Semiconductor devices and its production method
CN113097067B (en) Semiconductor device and method for manufacturing the same
KR100230732B1 (en) Method of manufacturing compound semiconductor
JP6048138B2 (en) Manufacturing method of optical waveguide element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980116348.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09743297

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12991052

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011508554

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009743297

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009743297

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107027424

Country of ref document: KR

Kind code of ref document: A