WO2009136667A1 - Variable focus lens, liquid crystal lens, and device using those for giving stimulus to eye - Google Patents

Variable focus lens, liquid crystal lens, and device using those for giving stimulus to eye Download PDF

Info

Publication number
WO2009136667A1
WO2009136667A1 PCT/JP2009/059023 JP2009059023W WO2009136667A1 WO 2009136667 A1 WO2009136667 A1 WO 2009136667A1 JP 2009059023 W JP2009059023 W JP 2009059023W WO 2009136667 A1 WO2009136667 A1 WO 2009136667A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
transparent
dielectric constant
crystal lens
transparent electrodes
Prior art date
Application number
PCT/JP2009/059023
Other languages
French (fr)
Japanese (ja)
Inventor
山本正男
佐藤進
Original Assignee
スカラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スカラ株式会社 filed Critical スカラ株式会社
Priority to JP2010511096A priority Critical patent/JP5551587B2/en
Publication of WO2009136667A1 publication Critical patent/WO2009136667A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/081Ophthalmic lenses with variable focal length
    • G02C7/083Electrooptic lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/28Function characteristic focussing or defocussing

Definitions

  • This effort is related to a variable focus lens that is mainly composed of a liquid crystal lens with variable focus.
  • Lenses are one of the application fields of liquid crystals that are applied in various fields.
  • the lens called a liquid crystal lens, utilizes the property of a liquid crystal that its refractive index changes depending on the orientation state.
  • a liquid crystal lens By controlling the liquid crystal layer arranged perpendicular to the light transmission direction so that the alignment state is different for each part in the direction perpendicular to the light transmission direction, for example, a uniform thickness
  • liquid crystals can have lens-like properties.
  • Such a liquid crystal lens has a major feature that it can change the properties of the lens (for example, the focal length) by changing the alignment state of the liquid crystal, and can give or lose the properties of the lens. is there.
  • the liquid crystal lens functions as a variable focus lens.
  • This feature is different from the classic lens that is made by giving a glass or resin a transparent or concave shape to a transparent glass, and its properties are fixed. Yes.
  • a conventional liquid crystal lens is configured as follows, for example.
  • One type of conventional liquid crystal lens has two transparent plates arranged in parallel, and a voltage between them arranged along the two plates (for example, inside the plate).
  • the two plates are both rectangular.
  • Both two transparent electrodes In general, a force that is the same size and shape as the two plates, at least one of them is often provided with a circular opening.
  • the electric field generated at the center of the transparent electrode opening becomes the weakest and the electric field generated at the edge of the transparent electrode opening is the strongest. Therefore, the strength of the electric field is generated from the center of the transparent electrode opening to the outside.
  • the liquid crystal in the liquid crystal layer filled between the two plates changes the orientation state depending on the site, and thus the above-described liquid crystal lens has a function as a lens.
  • other types have two transparent plates arranged in ⁇ , and are arranged in layers along the two plates to apply a voltage between them.
  • One of the two plates is a flat plate, and for example, a layered transparent electrode is provided inside.
  • the other of the two plates has, for example, a dome-shaped convex portion that bulges outward in the center thereof, and the other transparent electrode is disposed along the periphery of the flange portion and the convex portion.
  • the transparent electrode along the plate having the convex portion is provided outside the plate including the surface of the convex portion.
  • the distance between the two transparent electrodes increases in the portion closer to the top of the dome-shaped member.
  • the electric field generated between the transparent electrodes increases from the apex of the member toward the base. Based on the distribution of the electric field, the liquid crystal in the liquid crystal layer filled between the two plates changes the alignment state depending on the part, so the above-mentioned liquid crystal lens has a function as a lens. become.
  • the liquid crystal layer positioned inside the powerful opening does not have a transparent electrode that gives a potential difference to the liquid crystal layer (liquid crystal The part of the layer that is located inside the opening is not sandwiched between the transparent electrodes from both sides.)
  • the opening is large, the gradient of the electric field from the edge of the opening to the center of the opening is maintained in the desired state. It is difficult. If the potential difference created between the two transparent electrodes is increased, can the generated electric field gradient be maintained within the preferred range? However, the larger the aperture, the greater the potential difference that must be applied between the two transparent electrodes. Therefore, the former liquid crystal lens tends to be limited in application fields.
  • increasing the potential difference between the two transparent electrodes requires a power source for generating a high voltage, which is difficult in terms of cost and somewhat difficult in terms of safety. These also tend to lead to restrictions on the application field of liquid crystal lenses.
  • a liquid crystal lens having a convex portion has a drawback that a potential difference to be applied between the transparent electrodes is large, and the overall thickness tends to increase due to the presence of the convex portion.
  • the conventional liquid crystal lens has large restrictions on the shape and size, and the ratio of the part that does not function as a lens is large compared to the total area, and the voltage of the liquid crystal lens is low. There is a problem that it is difficult to drive.
  • the liquid crystal of the liquid crystal lens is a predetermined substance that changes its refractive index depending on the site according to the electric field distribution (for example, an electro-optic crystal such as KTN (potassium niobate tantalate, KTal-xNbx03) can be used to obtain a more general varifocal lens, but even such a varifocal lens can be used in the liquid crystal lens described above. The same is true for the existence of such defects.
  • KTN potassium niobate tantalate, KTal-xNbx03
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 5-9 2 0 0 9
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 6-3 3 1 3 2 4 8
  • Non-Patent Document 1 Liquid crystal molecular alignment effect and its application to new optical devices (Akita University, Department of Electrical and Electronic Engineering Susumu Sato Z 2 0 0 6 Japan Liquid Crystal Society Annual Meeting)
  • the present invention provides a liquid crystal lens in which the restriction on the shape and size is small, the proportion of the portion that does not function as a lens is small compared to the overall size, and at most, the liquid crystal lens can be driven at a lower voltage than in the past.
  • the main challenge is to provide the first variable focus lens.
  • the liquid crystal lens includes two transparent plates arranged at a predetermined interval, two transparent electrodes provided in pairs with the two plates along the two plates, and the 2 A liquid crystal layer disposed between two transparent electrodes, and a dielectric constant distribution forming a dielectric constant distribution in a plane direction of the two transparent electrodes provided in a space between the two transparent electrodes. And when the voltage is applied between the two transparent electrodes, a refractive index distribution is generated in the liquid crystal layer by the electric field distribution generated according to the dielectric constant distribution forming means. It is a liquid crystal lens.
  • dielectric constant distribution forming means for providing a dielectric constant distribution in the plane direction of the two transparent electrodes is provided in a space between the two transparent electrodes. Then, depending on the distribution of the electric field formed between the transparent electrodes when a potential difference is applied between the transparent electrodes in accordance with the change in the dielectric constant formed by the dielectric constant distribution forming means, The refractive index distributions in are different. That is, in the liquid crystal lens according to the present invention, even if there is no opening in either of the two transparent electrodes, or the two transparent electrodes are parallel, and the distance between the transparent electrodes is any part of the two transparent electrodes.
  • the liquid crystal lens of the present invention has less restrictions on the shape and size, and the ratio of the portion that does not function as a lens is smaller than the overall size, and can be driven at least at a lower voltage than in the past. It will be a thing.
  • the above-described invention can be more generalized by replacing the liquid crystal lens of the invention with a variable focus lens.
  • a refractive index distribution is generated between two transparent electrodes when a voltage is applied between the two liquid crystal layers of the liquid crystal layer that they have. It is possible to replace it with a layer of a predetermined material.
  • the above-described invention includes two transparent plates arranged at a predetermined interval, and two transparent electrodes provided in pairs with each of the plates along the two plates.
  • a dielectric constant in a plane direction of the two transparent electrodes, provided in a space between the electrode, a layer made of a predetermined material disposed between the two transparent electrodes, and the two transparent electrodes A dielectric constant distribution forming means for providing a distribution, and when the voltage is applied between the two transparent electrodes, the electric field distribution generated according to the dielectric constant distribution forming means It can be a varifocal lens with a refractive index profile in the layer.
  • variable focus lens is a liquid crystal lens in order to make the description concrete, but the liquid crystal of the liquid crystal lens is replaced with the “predetermined substance” as described above. It is possible for a person skilled in the art to disclose an invention having a variable focus lens having such a “predetermined substance” in place of a liquid crystal lens. Will understand. In other words, in the following description, “liquid crystal layer” can be read as “layer”, and “liquid crystal lens” can be read as “variable focus lens”.
  • the plate used in the liquid crystal lens of the present invention may be a flat plate, but is not necessarily a flat plate. For example, the plate may be curved.
  • At least one surface of the plate used in the liquid crystal lens of the present invention may be uneven.
  • the two plates are arranged almost in parallel, but they do not have to be completely TO. If the two plates are both flat, have no irregularities, and are completely corrugated, the liquid crystal lens can be made thinner.
  • the dielectric constant distribution formed by the dielectric constant distribution forming means in the present invention may be appropriately selected according to the purpose that the liquid crystal lens should have.
  • the dielectric constant variation can be designed, for example, by considering the shape of the plate (the plate itself can function as a lens depending on the shape) and other optical systems combined with the liquid crystal lens. .
  • the dielectric constant distribution given by the dielectric constant distribution forming means in the present invention is, for example, the refraction of light when vertically incident on the two plates when a voltage is applied to the two transparent electrodes.
  • the rate may increase or decrease gradually around the optical axis.
  • the liquid crystal lens can easily function as a lens.
  • the dielectric constant distribution given by the dielectric constant distribution forming means may be a concentric distribution. In this way, the liquid crystal lens functions as a lens. It becomes easy to let.
  • the dielectric constant distribution forming means in the present invention is not particularly limited as long as it can form a dielectric constant distribution.
  • the dielectric constant distribution forming means may be formed by a concentration distribution of a dielectric powder whose particle size does not affect the transparency of the liquid crystal lens.
  • the dielectric may be any material, for example, barium titanate.
  • the particle size of the dielectric may be a level that does not affect the transparency of the liquid crystal lens (in many cases, the transparency to visible light).
  • the diameter may be on the order of m or less. It is done.
  • the dielectric constant distribution forming means may be layered.
  • the term “layered” includes not only a continuous layer as a whole but also a discontinuous layer as a whole.
  • a discontinuous layer as a whole is, for example, a case where a part of the layer is missing or a layer that is scattered.
  • the dielectric constant distribution forming means described above may be provided in the space between the two transparent electrodes, as already described.
  • the phrase “inside the space between two transparent electrodes” includes the surface of the two transparent electrodes facing the space between the two transparent electrodes.
  • the two transparent electrodes are paired with each of the two plates. That is, in the present invention, there are two pairs of plates and transparent electrodes.
  • the pair of these two pairs of plates and transparent electrodes may be in a positional relationship in which the inner transparent electrode is on the outer side of the plate or vice versa (in this application, “outer”
  • the transparent electrode does not necessarily have to be in close contact with a force plate provided along the plate.
  • Other members may exist between the transparent electrode and the plate.
  • the force depending on the positional relationship between the pair of plates and the transparent electrode can be provided at the locations exemplified below.
  • the dielectric constant distribution forming means may be provided on the inner surface of the transparent electrode.
  • the dielectric constant distribution forming means includes the transparent electrode It may be provided on the plate paired with.
  • the dielectric constant distribution forming means may be provided in any part (for example, the inside) of the plate included in a pair of the two pairs of the plate and the transparent electrode. And may be provided on at least one surface of the plate included in a pair of the transparent electrodes.
  • the dielectric constant distribution forming means includes the transparent electrode (For example, between the transparent electrode and the plate paired with the transparent electrode, or the inside of the plate paired with the transparent electrode). Also good.
  • the dielectric constant distribution forming means may be provided in any part of the transparent layer (for example, the inside thereof), but the dielectric constant distribution forming means is provided on at least one surface of the transparent layer. You can be done.
  • the dielectric constant distribution forming means It may be provided on the inner surface of the electrode.
  • the dielectric constant distribution forming means It may be provided in a transparent transparent layer provided inside the electrode.
  • the change in dielectric constant may be provided in any part of the transparent layer (for example, inside thereof), but the dielectric constant distribution forming means is provided on at least one surface of the transparent layer. May be.
  • the change in the dielectric constant may be provided in both a pair of two plates and a transparent electrode (and in some cases, a transparent layer).
  • the dielectric constant distribution forming means When the dielectric constant distribution forming means is provided on the inner surface of the transparent electrode, the dielectric constant distribution forming means is arranged on the inner surface of the transparent electrode such that the particle size does not affect the transparency of the liquid crystal lens. By providing a concentration distribution of the dielectric powder A dielectric constant distribution can be formed.
  • the dielectric constant distribution forming means When the dielectric constant distribution forming means is provided on the surface of the plate, the dielectric constant distribution forming means has such a degree that the particle size does not affect the transparency of the liquid crystal lens on at least one surface of the plate. By providing a distribution of the concentration of the dielectric powder thus formed, an dielectric distribution can be formed.
  • the dielectric constant distribution forming means When the dielectric constant distribution forming means is provided on the surface of the transparent layer, the dielectric constant distribution forming means has such a degree that the particle size does not affect the transparency of the liquid crystal lens on at least one surface of the transparent layer. By providing a distribution of the concentration of the dielectric powder thus formed, a dielectric constant distribution can be formed.
  • the liquid crystal lens of the present application is expected to be applied in various fields. For example, it can be applied to the following devices for stimulating the eyes (hereinafter sometimes simply referred to as “stimulators”). Be expected.
  • the device for stimulating the eye includes two transparent plates arranged at a predetermined interval, and two transparent electrodes provided in pairs with the plates along the two plates.
  • a liquid crystal layer disposed between the two transparent electrodes, and a dielectric distribution that provides a dielectric constant distribution in a plane direction of the two transparent electrodes provided in a space between the two transparent electrodes.
  • Forming means, a voltage applying means for applying a desired voltage between the two transparent electrodes, and when the voltage is applied between the two transparent electrodes, the dielectric constant distribution forming means Accordingly, a refractive index distribution is generated in the liquid crystal layer due to the electric field distribution generated, and a fixing means for fixing the plate of the liquid crystal lens in front of the user's eyes. ing.
  • the voltage applying means in this apparatus automatically changes the voltage applied between the transparent electrodes as time passes.
  • the voltage application means changes the voltage applied between the transparent electrodes. This makes it possible to automatically change the focus of the liquid crystal lens. As a result, users who wear this eye stimulator and see the outside through the liquid crystal lens in front of their eyes are forced to change their focus by automatically changing the focus of the liquid crystal lens. You will be tempted. This is considered useful for preventing hyperopia and myopia.
  • this apparatus may include two liquid crystal lenses for both eyes or only one for one eye.
  • the liquid crystal lens of the above-described device for stimulating the eye can also be replaced by a more general variable focus lens.
  • the device for stimulating the eye includes two transparent plates arranged at a predetermined interval, and two devices provided in pairs with each of the front f along the two plates.
  • a dielectric constant distribution forming means for providing a distribution; a voltage applying means for applying a desired voltage between the two transparent electrodes; and when the voltage is applied between the two transparent electrodes, the dielectric constant A variable-focus lens in which a refractive index distribution is generated in the layer by an electric field distribution generated according to the distribution forming means, and a fixing means for fixing the plate of the variable-focus lens in front of the user's eye ,
  • the stage is a device for stimulating the eye that automatically changes the voltage applied between the transparent electrodes as time passes.
  • FIG. 1 is a perspective view showing the configuration of the liquid crystal lens according to the first embodiment.
  • FIG. 2 is a plan view conceptually showing one surface of the transparent electrode of the liquid crystal lens shown in FIG.
  • FIG. 3 is a perspective view showing a configuration of a liquid crystal lens according to the first modification.
  • FIG. 4 is a perspective view showing a configuration of a liquid crystal lens according to the second modification.
  • FIG. 5 is a perspective view showing a configuration of a liquid crystal lens according to Modification 3.
  • FIG. 6 is a perspective view showing a configuration of a liquid crystal lens according to Modification 4.
  • FIG. 7 is a perspective view showing a configuration of a device for applying stimulation to the eye according to the second embodiment.
  • FIG. 1 shows a liquid crystal lens 100 A in the first embodiment.
  • the liquid crystal lens 10 O A has two transparent plates 10.
  • the transparent plate 10 of this embodiment is not necessarily limited to this, but is a flat plate having a uniform thickness.
  • these plates 10 are made of glass, but can be made of a resin such as acrylic.
  • the two transparent plates 10 have the same shape and are parallel to each other.
  • a transparent electrode 20 is provided inside each of the two transparent plates 10.
  • the transparent electrode 20 may be a well-known one, and is made of ITO (tin oxide / tin oxide), zinc oxide, tin oxide or the like.
  • the transparent electrode 20 is a known method such as a sputtering method, a vacuum deposition method, a sol-gel method, a cluster beam deposition method, or a PLD method.
  • the transparent electrode 20 is in close contact with the inner surface of the plate 10. Is provided.
  • a liquid crystal layer 30 is provided between the two plates 10.
  • a liquid crystal layer 30 is provided between two plates 10 via a transparent electrode 20.
  • the liquid crystal layer 30 has a higher degree of liquid crystal orientation in the portion where the liquid crystal layer 30 is located, and the refractive index becomes higher. Is supposed to be small.
  • the liquid crystal used in this embodiment is a thermotop pick liquid crystal, and more specifically, a nematic liquid crystal with positive dielectric anisotropy.
  • the liquid crystal layer 30 does not necessarily have to be composed of liquid crystals.
  • a voltage is applied between the two transparent electrodes 20, it corresponds to the electric field. 2009/059023
  • a layer made of such a material is a liquid crystal layer made of liquid crystal, and another example is made of electro-optic crystals, for example KTN (potassium niobate tantalate, KTal-x bx03) Electrical engineering crystal layer.
  • KTN potassium niobate tantalate, KTal-x bx03
  • the transparent electrode 20 is connected to an external power circuit 40 and a cable 41.
  • the power supply circuit 40 can apply a desired potential difference between the two transparent electrodes 20.
  • the inner surface of one of the two transparent electrodes 20 has a concentration distribution in a concentric circle centered on the center of the transparent electrode 20 in plan view. Of powder is attached.
  • the dielectric for example, a known material such as Roche 1 1 e salt (abbreviation: R salt), dihydrogen dihydrogen power (abbreviation: KD P), or arsenic potassium arsenate, a similar substance of KD P, should be used.
  • R salt Roche 1 1 e salt
  • KD P dihydrogen dihydrogen power
  • arsenic potassium arsenate a similar substance of KD P
  • barium titanate abbreviation: BT
  • the particle size of the dielectric powder need only be small enough not to affect the transparency of the liquid crystal lens 10 OA (in this embodiment, the transparency to visible light), but in this embodiment, it is less than the ⁇ m order.
  • a dispersion containing a binder such as polybulal alcohol and a dielectric powder is printed on the inner surface of the transparent electrode 20 using an ink jet printing device. This can be done.
  • FIG. 2 conceptually shows the state of the surface of the transparent electrode 20 on which the dielectric is printed.
  • Dielectric material is printed in the circled area marked with 3 ⁇ 4fe ⁇ in Fig.2.
  • the center of the circle coincides with the center of the transparent electrode 20 as described above.
  • the concentration of the dielectric at the center of the circle is substantially zero.
  • the density of the transparent electrode 20 at the edge of the circle is determined according to the size of the refractive index to be generated in this portion. Dielectric In this embodiment, the density gradually increases gradually from the center of the circle as viewed in the radial direction of the circle.
  • the binder containing the dielectric powder is not necessarily limited to this, but in this embodiment, it is layered.
  • the binder containing the dielectric powder may be a continuous layer or a discontinuous layer.
  • the binder is formed into a discontinuous layer by ink jet printing.
  • the concentration distribution of the dielectric provided on the inner surface of one of the two transparent electrodes 20 is such that the concentration gradually increases from the inside toward the outside around a predetermined point.
  • the concentration distribution of the dielectric powder as described above is formed on the inner surface of one of the two transparent electrodes 20. It is possible to form a concentration distribution by the dielectric powder as described above on both inner surfaces. Of course, when the concentration distribution due to the dielectric powder as described above is formed on the inner surface of the two transparent electrodes 20, the concentration due to the dielectric powder formed on the inner surface of the transparent electrode 20.
  • the distribution pattern is not necessarily the same.
  • the liquid crystal lens 10 O A of this embodiment operates as follows.
  • the liquid crystal lens 10 0 OA of the embodiment does not function as a lens and basically has a focal length of infinity.
  • the liquid crystal lens 10 OA has a different dielectric constant depending on its width direction due to the above-described concentration distribution of the dielectric powder, and therefore the refractive index may differ depending on the width direction based on that. .
  • the liquid crystal lens 10 OA functions as a lens due to the refractive index distribution corresponding to the concentration distribution of the dielectric powder, but the focal length is considerably long even if this is taken into consideration. It will be a thing.
  • the liquid crystal lens 10 OA functions as a lens.
  • Power supply circuit 40 has two transparent When a potential difference is applied between the bright electrodes 20, an electric field is generated between the two transparent electrodes 20.
  • This electric field is the center of the above-described circle (transparent The closer to the center of the circle (the center of the transparent electrode 20), the weaker the closer to the center of the circle (the center of the transparent electrode 20), the stronger the distance from the center of the circle.
  • the electric field outside the circle is uniform.
  • the degree of orientation of the liquid crystal layer 30 when a potential difference is applied between the two transparent electrodes 20 becomes stronger as it is farther from the center of the transparent electrode 20, and the closer to the center of the transparent electrode 20, the stronger the liquid crystal layer 30 becomes.
  • the refractive index increases.
  • the liquid crystal lens 10 OA (more precisely, the portion corresponding to the above circle in the liquid crystal lens 10 OA) functions in the same way as a convex lens having a positive power. If the potential difference that the original circuit 40 gives between the two transparent electrodes 20 becomes large, the overall degree of alignment of the liquid crystal in the liquid crystal layer 30 becomes large, so until the potential difference reaches a certain threshold value. As the potential difference provided between the two transparent electrodes 20 increases, the power of the liquid crystal lens 10 OA increases.
  • the refractive index distribution when a potential difference is applied between the two transparent electrodes 20 becomes smaller as the position is closer to the center of the transparent electrode 20. .
  • the potential difference given by the power supply circuit 40 between the two transparent electrodes 20 is increased, the size of the liquid crystal lens 10 OA is reduced accordingly.
  • a liquid crystal lens 10 0 B according to Modification 1 will be described.
  • the liquid crystal lens 100 B according to Modification 1 basically has the same configuration as the liquid crystal lens 10 O A according to the first embodiment.
  • the liquid crystal lens 1 0 0 B according to the modified example 1 has two plates 10 0 and 2 transparent plates from the outside as in the case of the liquid crystal lens 1 0 OA according to the first embodiment. It has an electrode 20, a liquid crystal layer 30, and a power circuit 40 connected to the two transparent electrodes 20.
  • the functions of the plate 10 of the liquid crystal lens 100 B, the transparent electrode 20, and the liquid crystal layer 30 of the modification 1 are the same as those of the first embodiment.
  • the liquid crystal lens of modification 1 is different from the liquid crystal lens according to the first embodiment in that the liquid crystal lens of modification 1 is the liquid crystal lens according to the first embodiment.
  • the transparent layer 50 is a transparent layer.
  • the transparent layer 50 is made of a resin formed into a thin film.
  • the type of resin constituting the transparent layer 50 is not particularly limited.
  • at least one of the two transparent layers 50 is provided with a concentration distribution as shown in FIG. Such a concentration distribution is not necessarily limited to this, but in Modification 1, it is provided on at least one side of at least one of the two transparent layers 50.
  • the method for forming the concentration distribution by the dielectric on the transparent layer 50 may be the same printing as in the first embodiment.
  • the transparent layer 50 may be a single layer.
  • a liquid crystal lens 100C according to Modification 2 will be described.
  • the liquid crystal lens 100 C according to Modification 2 basically has the same configuration as the liquid crystal lens 100 A according to the first embodiment.
  • the liquid crystal lens 100 according to the modified example 2 has two plates 10 and two transparent electrodes 2 similar to those provided in the liquid crystal lens 10 OA according to the first embodiment. 0, a liquid crystal layer 30, and a power supply circuit 40 connected to two transparent electrodes 20.
  • the liquid crystal lens 1 0 0 C of modification 2 is different from the liquid crystal lens 1 0 0 A according to the first embodiment.
  • the liquid crystal lens 1 0 0 C of modification 2 is opposite to the case of the first embodiment.
  • the two transparent electrodes 20 are both provided outside the plate 10.
  • the powder power of the dielectric is arranged on at least one surface of the two plates 10 by the same method and concentration distribution as in the first embodiment.
  • dielectric powder is arranged on the surface of the plate 10. At the same time, or instead, the dielectric powder may be arranged on the inner surface of the transparent electrode 20 by the same method and concentration distribution as in the first embodiment.
  • a liquid crystal lens 10 O D according to Modification 3 will be described.
  • the liquid crystal lens 1 0 0 D according to Modification 3 basically has the same configuration as the liquid crystal lens 1 0 0 B according to Modification 1.
  • the liquid crystal lens 1 0 0 D according to the modified example 3 includes two plates 10 0, two transparent electrodes 2 0, a liquid crystal layer similar to the liquid crystal lens B according to the modified example 1
  • a power supply circuit 40 connected to 30, two transparent layers 50, and two transparent electrodes 20 is provided.
  • Liquid crystal lens of modification 3 1 0 0 D force Liquid crystal lens 1 0 0 B of modification 1 differs from liquid crystal lens 1 0 0 D of modification 3 in that both two transparent electrodes 2 0 are deformed. Contrary to the case of Example 1, it is provided on the outside of the plate 10 and two transparent layers 50 are provided between the paired plate 10 and the transparent electrode 20, respectively. That is the point.
  • the dielectric powder is disposed on any one of the transparent layers 50 (for example, any surface of the transparent layer 50) in the same manner and concentration distribution as in the modified example 1.
  • the transparent layer 50 provided with the concentration distribution by the dielectric powder as described above is provided inside the two plates 10 (for example, in close contact with the inner surface of the two plates 10). May be.
  • a liquid crystal lens 1000E according to Modification 4 will be described.
  • the liquid crystal lens 100 0 E according to the modification 4 basically has the same configuration as the liquid crystal lens 100 0 D according to the modification 3.
  • the liquid crystal lens 1 0 0 E according to modification 4 is based on modification 3 as shown in FIG. It is connected to two plates 10, two transparent electrodes 20, a liquid crystal layer 30, two transparent layers 50, and two transparent electrodes 20, similar to the liquid crystal lens 100 B.
  • a power supply circuit 40 is provided.
  • Liquid crystal lens of modification 4 1 0 0 E force
  • the difference from liquid crystal lens 1 0 0 D of modification 3 is that the liquid crystal lens 1 0 0 D of modification 4 is paired in the case of modification 3
  • the two transparent layers 50 provided respectively between the plate 10 and the transparent electrode 20 are provided inside the plate 10 together.
  • the dielectric powder is arranged on any one of the transparent layers 50 (for example, any surface of the transparent layer 50) in the same manner and concentration distribution as in the modified example 3. .
  • the transparent layer 50 that does not form the dielectric concentration distribution is unnecessary. In that case, the transparent layer 50 is a single layer.
  • This device 200 is configured in the shape of glasses as shown in FIG.
  • This device 2 0 0 includes two frames 2 1 0, a bridge 2 2 0 connecting the two frames 2 1 0, and a temple 2 3 0 attached to the outside of the two frames 2 1 0. ing.
  • the frame 2 10, the bridge 2 2 0, and the temple 2 3 0 can be made of metal, for example, but in this embodiment, they are made of resin.
  • the temple 2 3 0 may be foldable with respect to the frame 2 1 0.
  • a known nose pad may be provided on the inner side of the bridge 2 20 or the frame 2 10.
  • the frame 2 10 is not necessarily limited to this, but has a circular donut shape.
  • a liquid crystal lens 100 similar to that described in the first embodiment is fitted in the space inside both frames 2 10.
  • the liquid crystal lens 100 includes two transparent plates 10, two layered transparent electrodes 20, a liquid crystal layer 30, and in some cases two transparent layers 50. I have.
  • These two transparent plates 10, which were rectangular in the first embodiment, two layered transparent electrodes 20, a liquid crystal layer 30, and optionally two transparent layers 50 are the second embodiment.
  • the shape is a circle corresponding to the shape of the space inside the frame 2 10. More specifically, the plate 10 included in the liquid crystal lens 100 of the second embodiment corresponds to the inner part of the broken line shown in FIG.
  • the liquid crystal lens 100 of the second embodiment is the same as the liquid crystal lens of the first embodiment, the portion of the plate 10 surrounded by the broken line 10, and the corresponding transparent electrode 20 and liquid crystal layer 30. In some cases, the transparent layer 50 is cut out.
  • the temple 2 3 0 is provided with a control mute 1 1 0.
  • the control unit 110 is configured such that the power source circuit 40 described in the first embodiment is housed in a resin case formed in a rectangular parallelepiped shape.
  • the control unit 1 1 0 also houses a control circuit that controls the power supply circuit 40. In FIG. 7, both the power supply circuit and the control circuit are not shown. Since the control circuit is a known technology, the control circuit is configured to include a CPU and a memory (not shown), and the CPU executes a program recorded in the memory, thereby generating a potential difference applied to the two transparent electrodes.
  • the power supply circuit 40 is controlled to change automatically at a predetermined timing.
  • One end of the power supply circuit 40 is connected to the other end of the cable 41 connected to the transparent electrode 20 inside the frame 21, and between the two transparent electrodes 20 via the cable 41.
  • the potential difference can be controlled.
  • the user uses this device 2 0 0 with two temples 2 3 0 on both ears in the same way as normal glasses.
  • the two liquid crystal lenses 100 are positioned in front of the right and left eyes of the user, respectively.
  • the user sees the outside world through the liquid crystal lens 100 when using the device 200.
  • the power supply circuit 40 is controlled by the control circuit to automatically change the potential difference between the two transparent electrodes 20 of the liquid crystal lens 100 at a predetermined timing.
  • the liquid crystal lens 100 changes the focal length as in the case of the first embodiment.
  • a user wearing this device 200 is forced to change the focus of the eye when looking at the outside world.
  • the potential difference between the transparent electrodes 20 by the power supply circuit 40 may be synchronized between the right-eye liquid crystal lens 100 and the left-eye liquid crystal lens 100, or the user's The synchronization may not be performed according to the state of the right eye and the left eye.
  • the liquid crystal lens 100 and the control unit 110 can be provided for only one of the two existing forces for the right eye and the left eye. .

Abstract

Provided is a liquid crystal lens without requiring a large potential difference to drive it and having an overall shape with low roughness. The liquid crystal lens (100) includes two parallel transparent plates (10), two transparent electrodes (20) along the inner sides of the plates (10), and a liquid crystal layer (30) placed between the plates (10).  On at least one of the inner sides of the two transparent electrodes (20), powder of barium titanate which is dielectric is adhered with a concentric distribution of the concentration decreasing from the center of the plates (10) toward the periphery.  When a potential difference between the transparent electrodes (20) is produced, the electric field produced in the space where the liquid crystal layer (30) is placed is different in different portions because of the existence of the dielectric.  Since, the degree of orientation of the liquid crystal layer (30) varies in the different portions, the liquid crystal lens (100) functions as a lens.

Description

発明の名称 Title of invention
可変焦点レンズ、 液晶レンズ、 及びそれらを用いた眼へ刺激を与えるための装 置 技術分野  Technical Field of Variable Focus Lens, Liquid Crystal Lens, and Apparatus for Stimulating Eyes Using the Lens
本努明は、 主に液晶レンズとして明構成される焦点を可変とする可変焦点レンズ に関する。 糸 1 背景技術  This effort is related to a variable focus lens that is mainly composed of a liquid crystal lens with variable focus. Yarn 1 background technology
様々な分野に応用されている液晶の応用分野の 1つに、 レンズがある。 液晶レ ンズと呼ばれるそのレンズは、 その配向の状態によって屈折率が変わるという液 晶が持つ性質を利用するものとなっている。 光の ¾ϋ方向に対して垂直に配され た液晶層を、 光の透過方向に対して垂直な方向における部分毎に配向の状態が異 なるように制御することによって、 例えば、 均一な厚さの液晶であっても、 レン ズの如き性質を持つようにすることができる。  Lenses are one of the application fields of liquid crystals that are applied in various fields. The lens, called a liquid crystal lens, utilizes the property of a liquid crystal that its refractive index changes depending on the orientation state. By controlling the liquid crystal layer arranged perpendicular to the light transmission direction so that the alignment state is different for each part in the direction perpendicular to the light transmission direction, for example, a uniform thickness Even liquid crystals can have lens-like properties.
かかる液晶レンズは、液晶の配向の状態を変化させることで、レンズの性質(例 えば、 焦点距離) を変化させたり、 レンズとしての性質を持たせたり失わせたり することができるという大きな特徴がある。 つまり、 液晶レンズは可変焦点レン ズとして機能する。  Such a liquid crystal lens has a major feature that it can change the properties of the lens (for example, the focal length) by changing the alignment state of the liquid crystal, and can give or lose the properties of the lens. is there. In other words, the liquid crystal lens functions as a variable focus lens.
この特徴は、 透明なガラスゃ榭脂に ώ又は凹の形状を与えて作られる、 その性 質が固定されている古典的なレンズとは一線を画すものであり、 その製品化が望 まれている。  This feature is different from the classic lens that is made by giving a glass or resin a transparent or concave shape to a transparent glass, and its properties are fixed. Yes.
従来の液晶レンズは、 例えば、 以下のように構成されている。  A conventional liquid crystal lens is configured as follows, for example.
従来の液晶レンズのうち、 あるタイプのものは、 平行に配された 2枚の透明な 板と、 それら 2枚の板に沿って (例えば、 板の内側に) 設けられたそれらの間に 電圧を印加するための透明電極と、 2枚の板の間に充填された液晶層と、 を備え る。 一般的には、 2枚の板はともに矩形とされる。 2つの透明電極はともに、 一 般的には 2枚の板と同じ大きさ、 形状とされる力 それらのうちの少なくとも一 方に、多くの場合は円形の開口が設けられる。このような透明電極を用いた場合、 2つの透明電極の間に所定の電位差を与えると、 透明電極の開口の中心に生じる 電界が最も弱くなり、 透明電極の開口の縁に生じる電界が最も強くなるため、 透 明電極の開口の中心から外側にかけて、 電界の強弱が生じる。 その電界の分布に 基づいて、 2枚の板の間に充填された液晶層中の液晶は部位により配向の状態を 変えるため、 上述の液晶レンズは、 レンズとしての機能を有することになる。 従来の液晶レンズのうち、 他のタイプのものは、 ^に配された 2枚の透明な 板と、 2枚の板に沿って層状に設けられた、 それらの間に電圧を印加するための 透明電極と、 2枚の板の間に充填された液晶層と、 を備える。 一般的には、 2枚 の板はともに矩形とされる。 2枚の板のうちの一方は平らな板状であり、 例えば その内側に、 層状の透明電極が設けられる。 2枚の板のうちの他方は、 例えばそ の中央に外側に向かって膨らむドーム型の凸部を有しており、 他方の透明電極は その ώ部及び凸部の周辺に沿って配される (この場合、 凸部を有する板に沿う透 明電極は、 凸部の表面を含む板の外側に設けられる。)。 このような透明電極を用 いた場合、 2つの透明電極の間に所定の電位差を与えると、 ドーム型の部材の頂 点に近い部分ほど 2つの透明電極間の距離が大きくなるため、 ドーム型の部材の 頂点から裾野の方向に向けて、透明電極間に生じる電界が大きくなることになる。 その電界の分布に基づレ、て、 2枚の板の間に充填された液晶層中の液晶は部位に より配向の状態を変えるため、 上述の液晶レンズは、 レンズとしての機能を有す ることになる。 One type of conventional liquid crystal lens has two transparent plates arranged in parallel, and a voltage between them arranged along the two plates (for example, inside the plate). A transparent electrode for applying a liquid crystal, and a liquid crystal layer filled between two plates. In general, the two plates are both rectangular. Both two transparent electrodes In general, a force that is the same size and shape as the two plates, at least one of them is often provided with a circular opening. When such a transparent electrode is used, if a predetermined potential difference is applied between the two transparent electrodes, the electric field generated at the center of the transparent electrode opening becomes the weakest and the electric field generated at the edge of the transparent electrode opening is the strongest. Therefore, the strength of the electric field is generated from the center of the transparent electrode opening to the outside. Based on the distribution of the electric field, the liquid crystal in the liquid crystal layer filled between the two plates changes the orientation state depending on the site, and thus the above-described liquid crystal lens has a function as a lens. Of the conventional liquid crystal lenses, other types have two transparent plates arranged in ^, and are arranged in layers along the two plates to apply a voltage between them. A transparent electrode, and a liquid crystal layer filled between two plates. In general, both plates are rectangular. One of the two plates is a flat plate, and for example, a layered transparent electrode is provided inside. The other of the two plates has, for example, a dome-shaped convex portion that bulges outward in the center thereof, and the other transparent electrode is disposed along the periphery of the flange portion and the convex portion. (In this case, the transparent electrode along the plate having the convex portion is provided outside the plate including the surface of the convex portion). When such a transparent electrode is used, if a predetermined potential difference is applied between the two transparent electrodes, the distance between the two transparent electrodes increases in the portion closer to the top of the dome-shaped member. The electric field generated between the transparent electrodes increases from the apex of the member toward the base. Based on the distribution of the electric field, the liquid crystal in the liquid crystal layer filled between the two plates changes the alignment state depending on the part, so the above-mentioned liquid crystal lens has a function as a lens. become.
これら液晶レンズはともに、 一応の成功を収めてはいるものの、 改良すべき点 がないわけではない。,  Both of these liquid crystal lenses have been successful for some time, but are not without their improvements. ,
前者の液晶レンズでは、 透明電極の少なくとも一方に開口を設けることとして いるが、 力かる開口の内側に位置する液晶層には、 それに電位差を与える透明電 極が近接しては存在しないため (液晶層のうち開口の内側に位置する部分は、 両 側から透明電極に挟まれていない。)、 開口が大きい場合、 開口の縁から開口の中 心にかけての電界の勾配を、 所望の状態に保つのが難しい。 両透明電極間に作る 電位差を大きくすれば、 カゝかる電界の勾配を好ましい範囲に保つことができるか もしれないが、 開口が大きくなればなるほど両透明電極間に印加すべき電位差が 大きくなるため、 前者の液晶レンズでは応用分野に制限が生じやすい。 また、 両 透明電極間に与える電位差を大きくする場合には、 高電圧を発生させるための電 源が必要となるためコスト的に難があり、 また、 安全性の面でもやや難がある。 これらも、 また、 液晶レンズの応用分野の制限に繋がり易い。 In the former liquid crystal lens, an opening is provided in at least one of the transparent electrodes. However, the liquid crystal layer positioned inside the powerful opening does not have a transparent electrode that gives a potential difference to the liquid crystal layer (liquid crystal The part of the layer that is located inside the opening is not sandwiched between the transparent electrodes from both sides.) When the opening is large, the gradient of the electric field from the edge of the opening to the center of the opening is maintained in the desired state. It is difficult. If the potential difference created between the two transparent electrodes is increased, can the generated electric field gradient be maintained within the preferred range? However, the larger the aperture, the greater the potential difference that must be applied between the two transparent electrodes. Therefore, the former liquid crystal lens tends to be limited in application fields. In addition, increasing the potential difference between the two transparent electrodes requires a power source for generating a high voltage, which is difficult in terms of cost and somewhat difficult in terms of safety. These also tend to lead to restrictions on the application field of liquid crystal lenses.
凸部を有する液晶レンズも、 両透明電極間に印加すべき電位差が大きいという 難点がある上、 凸部の存在によりその全体的な厚さが大きくなりがちである。 つまり、従来の液晶レンズには、形状、大きさについての規制が大きく、 また、 全体の面積に比べてレンズとして機能しない部分の割合が大きく、 また、 液晶レ ンズの面積の割りに低電圧で駆動させることが難しいという不具合がある。  A liquid crystal lens having a convex portion has a drawback that a potential difference to be applied between the transparent electrodes is large, and the overall thickness tends to increase due to the presence of the convex portion. In other words, the conventional liquid crystal lens has large restrictions on the shape and size, and the ratio of the part that does not function as a lens is large compared to the total area, and the voltage of the liquid crystal lens is low. There is a problem that it is difficult to drive.
液晶レンズの他にも、 液晶レンズの液晶を、 電界の分布に応じて部位によりそ の屈折率を変える所定の物質 (その一例として、電気光学結晶、例えば、 KTN (タ ンタル酸ニオブ酸カリウム、 KTal- xNbx03) を挙げることができる。) に置換える ことにより、 より一般的な可変焦点レンズを得ることも可能であるが、 そのよう な可変焦点レンズであっても、 液晶レンズに存する上述の如き不具合が存在する 点については同じである。  In addition to the liquid crystal lens, the liquid crystal of the liquid crystal lens is a predetermined substance that changes its refractive index depending on the site according to the electric field distribution (for example, an electro-optic crystal such as KTN (potassium niobate tantalate, KTal-xNbx03) can be used to obtain a more general varifocal lens, but even such a varifocal lens can be used in the liquid crystal lens described above. The same is true for the existence of such defects.
[特許文献 1 ] 特開 2 0 0 5— 9 2 0 0 9 [Patent Document 1] Japanese Patent Laid-Open No. 2 0 0 5-9 2 0 0 9
[特許文献 2 ] 特開 2 0 0 6— 3 1 3 2 4 8 [Patent Document 2] Japanese Patent Laid-Open No. 2 0 0 6-3 3 1 3 2 4 8
[非特許文献 1 ] 液晶分子配向効果と新規光学デバイスへの応用 (秋田大学電気 電子工学科 佐藤 進 Z 2 0 0 6年日本液晶学会討論会)  [Non-Patent Document 1] Liquid crystal molecular alignment effect and its application to new optical devices (Akita University, Department of Electrical and Electronic Engineering Susumu Sato Z 2 0 0 6 Japan Liquid Crystal Society Annual Meeting)
本発明は、 形状、 大きさについての規制が小さく、 全体の大きさに比べてレン ズとして機能しない部分の割合が小さく、 また、 大きくとも従来より低電圧で駆 動させることのできる液晶レンズを初めとする可変焦点レンズを提供することを、 その主な課題とする。 発明の概要  The present invention provides a liquid crystal lens in which the restriction on the shape and size is small, the proportion of the portion that does not function as a lens is small compared to the overall size, and at most, the liquid crystal lens can be driven at a lower voltage than in the past. The main challenge is to provide the first variable focus lens. Summary of the Invention
上述の課題を解決するために、 本願発明者は、 以下の液晶レンズを提案する。 その液晶レンズは、 所定の間隔をおいて配された 2枚の透明な板と、 前記 2枚 の板に沿って前記板のそれぞれと対にして設けられた 2つの透明電極と、 前記 2 つの透明電極の間に配された液晶層と、 前記 2つの透明電極に挟まれた空間に設 けられている、 前記 2枚の透明電極の面方向に誘電率分布を与える誘電率分布形 成手段と、 を備えており、 前記 2つの透明電極の間に電圧を印加した場合に、 前 記誘電率分布形成手段に従つて生じる電界分布によって、 前記液晶層に屈折率分 布が生じるようになつている、 液晶レンズである。 In order to solve the above-mentioned problems, the present inventor proposes the following liquid crystal lens. The liquid crystal lens includes two transparent plates arranged at a predetermined interval, two transparent electrodes provided in pairs with the two plates along the two plates, and the 2 A liquid crystal layer disposed between two transparent electrodes, and a dielectric constant distribution forming a dielectric constant distribution in a plane direction of the two transparent electrodes provided in a space between the two transparent electrodes. And when the voltage is applied between the two transparent electrodes, a refractive index distribution is generated in the liquid crystal layer by the electric field distribution generated according to the dielectric constant distribution forming means. It is a liquid crystal lens.
この液晶レンズでは、 2枚の透明電極の面方向に誘電率分布を与える誘電率分 布形成手段を、 前記 2つの透明電極に挟まれた空間に設けることとしている。 そ して、 誘電率分布形成手段によつて形成される誘電率の変化に従つて透明電極間 に電位差を与えたときに透明電極間に形成される電界の分布により、 前記液晶層 の場所毎における屈折率分布が異なるものとされるようになつている。 つまり、 本発明による液晶レンズは、 2つの透明電極のどちらにも開口がなくても、 或い は、 2つの透明電極が平行であり且つ 2つの透明電極のどの部分でも透明電極間 の距離が一定だとしても、 両透明電極間に電位差を形成した場合、 上述の誘電率 の変化によって、 2枚の透明な板の間に生じる電界を、 板の場所によって変ィ匕さ せることができ、 それにより液晶層の場所によつて液晶の配向状態を変ィ匕させら れるようになる。 このような本発明による液晶レンズは、 従来技術の如く透明電 極に孔を空けたり、 板に凸部を設けたりすることが不要となり、 両透明電極間の 距離を両透明電極のすべての範囲で小さく保ち得るものとなるため、 透明電極間 に与える電位差を小さくすることができる。  In this liquid crystal lens, dielectric constant distribution forming means for providing a dielectric constant distribution in the plane direction of the two transparent electrodes is provided in a space between the two transparent electrodes. Then, depending on the distribution of the electric field formed between the transparent electrodes when a potential difference is applied between the transparent electrodes in accordance with the change in the dielectric constant formed by the dielectric constant distribution forming means, The refractive index distributions in are different. That is, in the liquid crystal lens according to the present invention, even if there is no opening in either of the two transparent electrodes, or the two transparent electrodes are parallel, and the distance between the transparent electrodes is any part of the two transparent electrodes. Even if it is constant, when a potential difference is formed between the two transparent electrodes, the electric field generated between the two transparent plates can be changed depending on the location of the plate due to the change in the dielectric constant described above. Depending on the location of the liquid crystal layer, the alignment state of the liquid crystal can be changed. In such a liquid crystal lens according to the present invention, it is not necessary to make a hole in the transparent electrode or provide a convex part on the plate as in the prior art. Therefore, the potential difference between the transparent electrodes can be reduced.
即ち、 本発明の液晶レンズは、 形状、 大きさについての規制が小さく、 全体の 大きさに比べてレンズとして機能しない部分の割合が小さく、 また、 少なくとも 従来よりも低電圧で駆動させることのできるものとなる。  That is, the liquid crystal lens of the present invention has less restrictions on the shape and size, and the ratio of the portion that does not function as a lens is smaller than the overall size, and can be driven at least at a lower voltage than in the past. It will be a thing.
上述の発明は、それが持つ液晶レンズを可変焦点レンズに置換えることにより、 より一般化することができる。 つまり、 上述の発明では、 それらが持っていた液 晶層を、 2つの透明電極の間に電圧を印加した場合に、 屈折率分布が生じるよう になっている、 2つの透明電極の間に配された所定の物質による層に置換えるこ とが可能である。  The above-described invention can be more generalized by replacing the liquid crystal lens of the invention with a variable focus lens. In other words, in the above-described invention, a refractive index distribution is generated between two transparent electrodes when a voltage is applied between the two liquid crystal layers of the liquid crystal layer that they have. It is possible to replace it with a layer of a predetermined material.
そのような場合、 上述の発明は、 所定の間隔をおいて配された 2枚の透明な板 と、 前記 2枚の板に沿つて前記板のそれぞれと対にして設けられた 2つの透明電 極と、 前記 2つの透明電極の間に配された所定の物質による層と、 前記 2つの透 明電極に挟まれた空間に設けられている、 前記 2枚の透明電極の面方向に誘電率 分布を与える誘電率分布形成手段と、 を備えており、 前記 2つの透 ^電極の間に 電圧を印カロした場合に、 前記誘電率分布形成手段に従つて生じる電界分布によつ て、 前記層に屈折率分布が生じるようになつている、 可変焦点レンズとすること ができる。 In such a case, the above-described invention includes two transparent plates arranged at a predetermined interval, and two transparent electrodes provided in pairs with each of the plates along the two plates. A dielectric constant in a plane direction of the two transparent electrodes, provided in a space between the electrode, a layer made of a predetermined material disposed between the two transparent electrodes, and the two transparent electrodes A dielectric constant distribution forming means for providing a distribution, and when the voltage is applied between the two transparent electrodes, the electric field distribution generated according to the dielectric constant distribution forming means It can be a varifocal lens with a refractive index profile in the layer.
以上説明した本発明は、 以下のようなバリエーションを持ちうる。  The present invention described above can have the following variations.
なお、 以下の説明では、 説明を具体的なものとするために、 可変焦点レンズが 液晶レンズであるという前提で記述を行なうが、 液晶レンズの液晶を上述の如き 「所定の物質」 に置換えることは可能であり、 そのような 「所定の物質」 を有す る可変焦点レンズを液晶レンズに代えて持つ発明もが以下の説明で開示されてレ、 ることは、 当業者であれば当然に理解できるであろう。 つまり、 以下の説明にお ける 「液晶層」 は 「層」 と、 「液晶レンズ」 は 「可変焦点レンズ」 と読み替えるこ とが可能である。 本発明の液晶レンズに用いられる板は平らな板でもよいが、 必ずしも平らな板である必要はない。 例えば、板は、湾曲していてもよい。 また、 本発明の液晶レンズに用いられる板の少なくとも一方の面には、 凹凸があっても よい。 2枚の板は、 略平行に配されるが、 完全に TOでなくともよい。 2枚の板 がともに平らな板で、 凹凸がなく、 且つ互いに完全に 亍であれば、 液晶レンズ を薄くすることが可能となる。  In the following description, the description will be made on the assumption that the variable focus lens is a liquid crystal lens in order to make the description concrete, but the liquid crystal of the liquid crystal lens is replaced with the “predetermined substance” as described above. It is possible for a person skilled in the art to disclose an invention having a variable focus lens having such a “predetermined substance” in place of a liquid crystal lens. Will understand. In other words, in the following description, “liquid crystal layer” can be read as “layer”, and “liquid crystal lens” can be read as “variable focus lens”. The plate used in the liquid crystal lens of the present invention may be a flat plate, but is not necessarily a flat plate. For example, the plate may be curved. Further, at least one surface of the plate used in the liquid crystal lens of the present invention may be uneven. The two plates are arranged almost in parallel, but they do not have to be completely TO. If the two plates are both flat, have no irregularities, and are completely corrugated, the liquid crystal lens can be made thinner.
本発明における誘電率分布形成手段が形成する誘電率の分布は、 液晶レンズが 持つべき目的に応じて適当に選択すればよい。 誘電率の変ィヒは、 例えば、 板の形 状 (形状次第で板自体がレンズとして機能する場合も想定できる。)、 液晶レンズ と組合される他の光学系との兼ね合いで設計すればよい。  The dielectric constant distribution formed by the dielectric constant distribution forming means in the present invention may be appropriately selected according to the purpose that the liquid crystal lens should have. The dielectric constant variation can be designed, for example, by considering the shape of the plate (the plate itself can function as a lens depending on the shape) and other optical systems combined with the liquid crystal lens. .
例えば、 本発明における前記誘電率分布形成手段が与える誘電率分布は、 例え ば 2つの前記透明電極に電圧を印加しているときに前記 2枚の板に垂直に入射し た場合の光の屈折率が、 光軸を中心として漸増するか又は漸減するようなものと されていてもよい。 このようにすれば、 液晶レンズをレンズとして機能させ易く なる。 この場合、 前記誘電率分布形成手段が与える誘電率分布は、 同心円状の分 布となっていてもよい。 このようにすれば、 液晶レンズをレンズとして更に機能 させ易くなる。 For example, the dielectric constant distribution given by the dielectric constant distribution forming means in the present invention is, for example, the refraction of light when vertically incident on the two plates when a voltage is applied to the two transparent electrodes. The rate may increase or decrease gradually around the optical axis. In this way, the liquid crystal lens can easily function as a lens. In this case, the dielectric constant distribution given by the dielectric constant distribution forming means may be a concentric distribution. In this way, the liquid crystal lens functions as a lens. It becomes easy to let.
本発明における誘電率分布形成手段は、 誘電率分布を形成できるのであれば具 体的な構成は不問である。 例えば、 前記誘電率分布形成手段は、 その粒径が前記 液晶レンズの透明度に影響を与えない程度とされた誘電体の粉末の濃度の分布に よって形成されていてもよレ、。  The dielectric constant distribution forming means in the present invention is not particularly limited as long as it can form a dielectric constant distribution. For example, the dielectric constant distribution forming means may be formed by a concentration distribution of a dielectric powder whose particle size does not affect the transparency of the liquid crystal lens.
前記誘電体は、 どのようなものでもよいが、 例えば、 チタン酸バリウムとする ことができる。  The dielectric may be any material, for example, barium titanate.
前記誘電体の粒径は、 前記液晶レンズの透明度 (多くの場合、 可視光に対する 透明度) に影響を与えない程度であればよいが、 例えば、 その直径が m以下の オーダーであればよいと考えられる。  The particle size of the dielectric may be a level that does not affect the transparency of the liquid crystal lens (in many cases, the transparency to visible light). For example, the diameter may be on the order of m or less. It is done.
前記誘電率分布形成手段は、 層状であってもよい。 この場合の『層状』 という 文言には、 全体として連続である層の他、 全体として不連続な層をも含むものと する。 全体として不連続な層とは、 例えば、 層の一部に抜けがある場合、 層が散 点状である場合である。  The dielectric constant distribution forming means may be layered. In this case, the term “layered” includes not only a continuous layer as a whole but also a discontinuous layer as a whole. A discontinuous layer as a whole is, for example, a case where a part of the layer is missing or a layer that is scattered.
本発明では、 上述した誘電率分布形成手段は、 既に述べたように、 2つの透明 電極に挟まれた空間内に設けられていればよい。 なお、 本願で『2つの透明電極 に挟まれた空間内』 という文言には、 2つの透明電極に挟まれた空間にカ卩え、 2 つの透明電極のその空間に臨む面をも含むものとする。  In the present invention, the dielectric constant distribution forming means described above may be provided in the space between the two transparent electrodes, as already described. In the present application, the phrase “inside the space between two transparent electrodes” includes the surface of the two transparent electrodes facing the space between the two transparent electrodes.
本発明では、 2つの透明電極は、 2枚の板のそれぞれと対とされる。 つまり、 本発明には、 板と透明電極の組が 2対ある。 これら 2対の板と透明電極の組はと もに、 板が内側透明電極が外側という位置関係にあってもよく、 その逆の位置関 係にあってもよい (なお、 本願で『外側』 という文言は、 液晶層の厚さ方向の中 心から遠い側を意味する)。 2対の板と透明電極の組の双方で、透明電極と板の位 置関係 (内外の位置関係) が同じである必要性は存在しない。  In the present invention, the two transparent electrodes are paired with each of the two plates. That is, in the present invention, there are two pairs of plates and transparent electrodes. The pair of these two pairs of plates and transparent electrodes may be in a positional relationship in which the inner transparent electrode is on the outer side of the plate or vice versa (in this application, “outer” The term “means the side far from the center of the thickness of the liquid crystal layer). There is no need for the positional relationship between the transparent electrode and the plate (internal / external positional relationship) to be the same between the two pairs of plates and transparent electrodes.
透明電極は、板に沿って設けられる力 板と必ずしも密着している必要はない。 透明電極と板の間に他の部材が存在していてもよい。  The transparent electrode does not necessarily have to be in close contact with a force plate provided along the plate. Other members may exist between the transparent electrode and the plate.
対になった板と透明電極の位置関係にもよる力 本発明における誘電率の変化 は、 以下に例示する場所に設けることができる。  The force depending on the positional relationship between the pair of plates and the transparent electrode The change in the dielectric constant in the present invention can be provided at the locations exemplified below.
2対の前記板と前記透明電極のうちの一対に含まれる前記板の外側に当該板と 対にされた前記透明電極が設けられている場合、 前記誘電率分布形成手段は、 当 該透明電極の内側の面に設けられていてもよい。 The plate on the outside of the plate included in a pair of the two pairs of the plate and the transparent electrode When the paired transparent electrodes are provided, the dielectric constant distribution forming means may be provided on the inner surface of the transparent electrode.
2対の前記板と前記透明電極のうちの一対に含まれる前記板の外側に当該板と 対にされた前記透明電極が設けられている場合、 前記誘電率分布形成手段は、 当 該透明電極と対にされた前記板に設けられていてもよい。 この場合、 誘電率分布 形成手段は、 2対の前記板と前記透明電極のうちの一対に含まれる前記板のどの 部分 (例えばその内部) に設けられていてもよいが、 2対の前記板と前記透明電 極のうちの一対に含まれる前記板の少なくとも一方の面に設けられていてもよレ、。  When the transparent electrode paired with the plate is provided outside the plate included in a pair of the two pairs of the plate and the transparent electrode, the dielectric constant distribution forming means includes the transparent electrode It may be provided on the plate paired with. In this case, the dielectric constant distribution forming means may be provided in any part (for example, the inside) of the plate included in a pair of the two pairs of the plate and the transparent electrode. And may be provided on at least one surface of the plate included in a pair of the transparent electrodes.
2対の前記板と前記透明電極のうちの一対に含まれる前記板の外側に当該板と 対にされた前記透明電極が設けられている場合、 前記誘電率分布形成手段は、 当 該透明電極の内側 (例えば、 当該透明電極と当該透明電極と対にされた前記板と の間、 或いは当該透明電極と対にされた前記板の内側) に設けられた透明な透明 層に設けられていてもよい。 透明層がある場合、 誘電率分布形成手段は、 透明層 のどの部分 (例えばその内部) に設けられていてもよいが、 前記誘電率分布形成 手段は、 前記透明層の少なくとも一方の面に設けられていてもよレ、。  When the transparent electrode paired with the plate is provided outside the plate included in a pair of the two pairs of the plate and the transparent electrode, the dielectric constant distribution forming means includes the transparent electrode (For example, between the transparent electrode and the plate paired with the transparent electrode, or the inside of the plate paired with the transparent electrode). Also good. When there is a transparent layer, the dielectric constant distribution forming means may be provided in any part of the transparent layer (for example, the inside thereof), but the dielectric constant distribution forming means is provided on at least one surface of the transparent layer. You can be done.
2対の前記板と前記透明電極のうちの一対に含まれる前記板の内側に当該板と 対にされた前記透明電極が設けられている場合には、前記誘電率分布形成手段は、 当該透明電極の内側の面に設けられていてもよい。  When the transparent electrode paired with the plate is provided inside the plate included in a pair of the two pairs of the plate and the transparent electrode, the dielectric constant distribution forming means It may be provided on the inner surface of the electrode.
2対の前記板と前記透明電極のうちの一対に含まれる前記板の内側に当該板と 対にされた前記透明電極が設けられている場合には、前記誘電率分布形成手段は、 当該透明電極の内側に設けられた透明な透明層に設けられていてもよレ、。 透明層 がある場合、 誘電率の変化は透明層のどの部分 (例えばその内部) に設けられて いてもよいが、 前記誘電率分布形成手段は、 前記透明層の少なくとも一方の面に 設けられていてもよい。  When the transparent electrode paired with the plate is provided inside the plate included in a pair of the two pairs of the plate and the transparent electrode, the dielectric constant distribution forming means It may be provided in a transparent transparent layer provided inside the electrode. In the case where there is a transparent layer, the change in dielectric constant may be provided in any part of the transparent layer (for example, inside thereof), but the dielectric constant distribution forming means is provided on at least one surface of the transparent layer. May be.
なお、 誘電率の変化は、 2対ある板と透明電極 (と、 場合によっては透明層) からなる組の双方に設けられていてもよい。  The change in the dielectric constant may be provided in both a pair of two plates and a transparent electrode (and in some cases, a transparent layer).
透明電極の内側の面に誘電率分布形成手段が設けられる場合、 前記誘電率分布 形成手段は、 前記透明電極の内側の面に、 その粒径が前記液晶レンズの透明度に 影響を与えない程度とされた誘電体の粉末の濃度の分布を設けることによって、 誘電率分布を形成するようなものとすることができる。 When the dielectric constant distribution forming means is provided on the inner surface of the transparent electrode, the dielectric constant distribution forming means is arranged on the inner surface of the transparent electrode such that the particle size does not affect the transparency of the liquid crystal lens. By providing a concentration distribution of the dielectric powder A dielectric constant distribution can be formed.
板の表面に前記誘電率分布形成手段が設けられる場合、 前記誘電率分布形成手 段は、 前記板の少なくとも一方の面に、 その粒径が前記液晶レンズの透明度に影 響を与えない程度とされた誘電体の粉末の濃度の分布を設けることによって、 誘 電率分布を形成するようなものとすることができる。  When the dielectric constant distribution forming means is provided on the surface of the plate, the dielectric constant distribution forming means has such a degree that the particle size does not affect the transparency of the liquid crystal lens on at least one surface of the plate. By providing a distribution of the concentration of the dielectric powder thus formed, an dielectric distribution can be formed.
透明層の表面に誘電率分布形成手段が設けられる場合、 前記誘電率分布形成手 段は、 前記透明層の少なくとも一方の面に、 その粒径が前記液晶レンズの透明度 に影響を与えない程度とされた誘電体の粉末の濃度の分布を設けることによって、 誘電率分布を形成するようなものとすることができる。  When the dielectric constant distribution forming means is provided on the surface of the transparent layer, the dielectric constant distribution forming means has such a degree that the particle size does not affect the transparency of the liquid crystal lens on at least one surface of the transparent layer. By providing a distribution of the concentration of the dielectric powder thus formed, a dielectric constant distribution can be formed.
板、 透明電極、 透明層などの所定の物の表面に誘電体の粉末を分布させる場合 には、 何らかのパインダに誘電体の粉末を混入したィンク様のものを用いて印刷 を行うことで、 その所定の物の表面に誘電体の粉末の濃度の分布を作ることがで きる。 印刷の技術は、 高度に完成しているので、 板、 透明電極、 透明層等の表面 に誘電体の粉末の濃度分布を作るには大きな困難はない。  When distributing dielectric powder on the surface of a predetermined object such as a plate, transparent electrode, transparent layer, etc., printing is performed by using an ink-like one in which dielectric powder is mixed into some kind of binder. A distribution of the concentration of the dielectric powder can be created on the surface of a given object. Since the printing technology is highly complete, there is no great difficulty in creating a dielectric powder concentration distribution on the surface of a plate, transparent electrode, or transparent layer.
本願の液晶レンズは、 様々な分野での応用が期待されるが、 例えば、 以下のよ うな眼へ刺激を与えるための装置 (以下、 単に 「刺激装置」 という場合がある。) への応用が期待される。  The liquid crystal lens of the present application is expected to be applied in various fields. For example, it can be applied to the following devices for stimulating the eyes (hereinafter sometimes simply referred to as “stimulators”). Be expected.
その眼へ刺激を与えるための装置は、 所定の間隔をおいて配された 2枚の透明 な板、 前記 2枚の板に沿って前記板のそれぞれと対にして設けられた 2つの透明 電極、 前記 2つの透明電極の間に配された液晶層、 前記 2つの透明電極に挟まれ た空間に設けられている、 前記 2枚の透明電極の面方向に誘電率分布を与える誘 電率分布形成手段、 前記 2つの透明電極の間に所望の電圧を印加する電圧印加手 段、 を有し、 前記 2つの透明電極の間に電圧を印カ卩した場合に、 前記誘電率分布 形成手段に従つて生じる電界分布によって、 前記液晶層に屈折率分布が生じるよ うになつている、 液晶レンズと、 前記液晶レンズの前記板を、 ユーザの眼の前方 に固定するための固定手段と、 を備えている。  The device for stimulating the eye includes two transparent plates arranged at a predetermined interval, and two transparent electrodes provided in pairs with the plates along the two plates. A liquid crystal layer disposed between the two transparent electrodes, and a dielectric distribution that provides a dielectric constant distribution in a plane direction of the two transparent electrodes provided in a space between the two transparent electrodes. Forming means, a voltage applying means for applying a desired voltage between the two transparent electrodes, and when the voltage is applied between the two transparent electrodes, the dielectric constant distribution forming means Accordingly, a refractive index distribution is generated in the liquid crystal layer due to the electric field distribution generated, and a fixing means for fixing the plate of the liquid crystal lens in front of the user's eyes. ing.
そして、 この装置における前記電圧印加手段は、 時間の経過にしたがって自動 的に前記透明電極の間に印加される電圧を変ィ匕させるようになっている。  The voltage applying means in this apparatus automatically changes the voltage applied between the transparent electrodes as time passes.
この刺激装置では、 電圧印加手段が透明電極の間に印カロされる電圧を変ィ匕させ ることで、 液晶レンズの焦点を自動的に変化させることができるようになる。 そ れにより、 この眼の刺激装置を身につけ、 眼の前方にある液晶レンズを通して外 部を見ることになるユーザは、 液晶レンズの焦点の自動的な変化によって、 強制 的に眼の焦点を変ィ匕させられることになる。 これは、 遠視、 近視等の予防に有用 であると考えられる。 In this stimulator, the voltage application means changes the voltage applied between the transparent electrodes. This makes it possible to automatically change the focus of the liquid crystal lens. As a result, users who wear this eye stimulator and see the outside through the liquid crystal lens in front of their eyes are forced to change their focus by automatically changing the focus of the liquid crystal lens. You will be tempted. This is considered useful for preventing hyperopia and myopia.
なお、 この装置は、 液晶レンズを両眼用に 2つ備えていてもよいし、 片眼用に 1つだけ備えていてもよい。  Note that this apparatus may include two liquid crystal lenses for both eyes or only one for one eye.
眼へ刺激を与えるための上述の装置の液晶レンズも、 より一般的な可変焦点レ ンズに置き換え可能である。  The liquid crystal lens of the above-described device for stimulating the eye can also be replaced by a more general variable focus lens.
その場合における眼へ刺激を与えるための装置は、 所定の間隔をおいて配され た 2枚の透明な板、 前記 2枚の板に沿って前 f のそれぞれと対にして設けられ た 2つの透明電極、 前記 2つの透明電極の間に配された所定の物質による層、 前 記 2つの透明電極に挟まれた空間に設けられている、 前記 2枚の透明電極の面方 向に誘電率分布を与える誘電率分布形成手段、 前記 2つの透明電極の間に所望の 電圧を印加する電圧印加手段、 を有し、 前記 2つの透明電極の間に電圧を印加し た場合に、 前記誘電率分布形成手段に従って生じる電界分布によって、 前記層に 屈折率分布が生じるようになつている、 可変焦点レンズと、 前記可変焦点レンズ の前記板を、 ユーザの眼の前方に固定するための固定手段と、 を備えており、 前 記電圧印加手段は、 時間の経過にしたがって自動的に前記透明電極の間に印加さ れる電圧を変ィ匕させるようになつている、 眼へ刺激を与えるための装置となる。 図面の簡単な説明  In this case, the device for stimulating the eye includes two transparent plates arranged at a predetermined interval, and two devices provided in pairs with each of the front f along the two plates. A transparent electrode, a layer made of a predetermined substance disposed between the two transparent electrodes, and a dielectric constant in a plane direction of the two transparent electrodes provided in a space between the two transparent electrodes. A dielectric constant distribution forming means for providing a distribution; a voltage applying means for applying a desired voltage between the two transparent electrodes; and when the voltage is applied between the two transparent electrodes, the dielectric constant A variable-focus lens in which a refractive index distribution is generated in the layer by an electric field distribution generated according to the distribution forming means, and a fixing means for fixing the plate of the variable-focus lens in front of the user's eye , And the voltage application hand The stage is a device for stimulating the eye that automatically changes the voltage applied between the transparent electrodes as time passes. Brief Description of Drawings
図 1は、 第 1実施形態による液晶レンズの構成を示す斜視図である。  FIG. 1 is a perspective view showing the configuration of the liquid crystal lens according to the first embodiment.
図 2は、 図 1に示した液晶レンズの透明電極の一面を概念的に示す平面図であ る。  FIG. 2 is a plan view conceptually showing one surface of the transparent electrode of the liquid crystal lens shown in FIG.
図 3は、 変形例 1による液晶レンズの構成を示す斜視図である。  FIG. 3 is a perspective view showing a configuration of a liquid crystal lens according to the first modification.
図 4は、 変形例 2による液晶レンズの構成を示す斜視図である。  FIG. 4 is a perspective view showing a configuration of a liquid crystal lens according to the second modification.
図 5は、 変形例 3による液晶レンズの構成を示す斜視図である。  FIG. 5 is a perspective view showing a configuration of a liquid crystal lens according to Modification 3.
図 6は、 変形例 4による液晶レンズの構成を示す斜視図である。 図 7は、 第 2実施形態による眼へ刺激を与えるための装置の構成を示す斜視図 である。 発明を実施するための形態 FIG. 6 is a perspective view showing a configuration of a liquid crystal lens according to Modification 4. FIG. 7 is a perspective view showing a configuration of a device for applying stimulation to the eye according to the second embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好ましい第 1、 第 2実施形態を、 図面を参照しながら詳細に説 明する。 なお、 両実施形態で共通する事項には共通の符号を付すこととし、 共通 する説明は省略することにする。  Hereinafter, preferred first and second embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that items common to both embodiments are denoted by common reference numerals, and common description is omitted.
《第 1実施形態》 First embodiment
図 1に、 第 1実施形態における液晶レンズ 1 0 0 Aを示す。  FIG. 1 shows a liquid crystal lens 100 A in the first embodiment.
この液晶レンズ 1 0 O Aは、 2枚の透明な板 1 0を有している。 この実施形態 の透明な板 1 0は、 必ずしもこの限りではないが、 厚さが均一な、 平らな板とさ れている。 この実施形態では、 これら板 1 0は、 ガラス製であるが、 例えば、 ァ クリルなどの樹脂製とすることができる。 この実施形態では、 2枚の透明な板 1 0は同形状の矩形であり、 互いに平行とされている。  The liquid crystal lens 10 O A has two transparent plates 10. The transparent plate 10 of this embodiment is not necessarily limited to this, but is a flat plate having a uniform thickness. In this embodiment, these plates 10 are made of glass, but can be made of a resin such as acrylic. In this embodiment, the two transparent plates 10 have the same shape and are parallel to each other.
2枚の透明な板 1 0それぞれの内側には、 透明電極 2 0が設けられている。 透 明電極 2 0は、公知のものでよく、 I T〇 (酸化ィンジゥム ·スズ)、酸化亜鉛、 酸化スズなどを材料として形成されている。透明電極 2 0は、スパッタリング法、 真空蒸着法、 ゾル 'ゲル法、 クラスタービーム蒸着法、 P L D法などの公知の方 法で、 この実施形態では板 1 0の内側の面に密着させた状態で設けられている。  A transparent electrode 20 is provided inside each of the two transparent plates 10. The transparent electrode 20 may be a well-known one, and is made of ITO (tin oxide / tin oxide), zinc oxide, tin oxide or the like. The transparent electrode 20 is a known method such as a sputtering method, a vacuum deposition method, a sol-gel method, a cluster beam deposition method, or a PLD method. In this embodiment, the transparent electrode 20 is in close contact with the inner surface of the plate 10. Is provided.
2枚の板 1 0の間には、 液晶層 3 0が設けられている。 この実施形態では、 2 枚の板 1 0の間に、 透明電極 2 0を介して液晶層 3 0が設けられている。 必ずし もこの限りではないが、 この実施形態では、 液晶層 3 0は、 それが位置する部分 における電界の大きさが大きくなる程、 その部分の液晶の配向の程度が大きくな り、 屈折率が小さくなるようなものとされている。 なお、 この実施形態で使用す る液晶は、 サーモト口ピック液晶であり、 より詳細には、 誘電異方性が正のネマ ティック液晶である。  A liquid crystal layer 30 is provided between the two plates 10. In this embodiment, a liquid crystal layer 30 is provided between two plates 10 via a transparent electrode 20. Although not necessarily limited to this, in this embodiment, the liquid crystal layer 30 has a higher degree of liquid crystal orientation in the portion where the liquid crystal layer 30 is located, and the refractive index becomes higher. Is supposed to be small. Note that the liquid crystal used in this embodiment is a thermotop pick liquid crystal, and more specifically, a nematic liquid crystal with positive dielectric anisotropy.
もっとも、 その名前にも関わらず、 液晶層 3 0は必ずしも液晶で構成されてい る必要はなく、 2つの透明電極 2 0の間に電圧を印加した場合に、 電界に応じた 2009/059023 However, in spite of its name, the liquid crystal layer 30 does not necessarily have to be composed of liquid crystals. When a voltage is applied between the two transparent electrodes 20, it corresponds to the electric field. 2009/059023
1 1 1 1
屈折率分布を生じるような性質を持つ所定の物質により構成されていればよい。 そのような物質で作られた層の一例が液晶で作られた液晶層であり、 他の例が電 気光学結晶、 例えば、 KTN (タンタル酸ニオブ酸カリウム、 KTal - x bx03) により 作られた電気工学結晶層である。 What is necessary is just to be comprised with the predetermined | prescribed substance with the property which produces refractive index distribution. An example of a layer made of such a material is a liquid crystal layer made of liquid crystal, and another example is made of electro-optic crystals, for example KTN (potassium niobate tantalate, KTal-x bx03) Electrical engineering crystal layer.
透明電極 2 0は、 外部の電源回路 4 0とケーブル 4 1で接続されている。 電源 回路 4 0は、 2つの透明電極 2 0の間に所望の電位差を印加できるようなものに なっている。  The transparent electrode 20 is connected to an external power circuit 40 and a cable 41. The power supply circuit 40 can apply a desired potential difference between the two transparent electrodes 20.
この実施形態では、 両透明電極 2 0力 板 1 0の内側にあるため、 透明電極 2 0の内側の面に、 誘電率を変ィ匕させるための工夫を行ってある。  In this embodiment, since it is inside the two transparent electrodes 20 force plates 10, a device for changing the dielectric constant is devised on the inner surface of the transparent electrode 20.
その工夫とは、 以下のようなものである。  The ideas are as follows.
この実施形態では、 2つの透明電極 2 0のうちの一方の内側の面に、 平面視し た場合の透明電極 2 0の中心を中心とし、 同心円状の濃度分布を有するようにし て、 誘電体の粉末が付着させられている。  In this embodiment, the inner surface of one of the two transparent electrodes 20 has a concentration distribution in a concentric circle centered on the center of the transparent electrode 20 in plan view. Of powder is attached.
誘電体としては、例えば、 R o c h e 1 1 e塩(略称: R塩)、 リン酸 2水素力 リ (略称: KD P)、 KD Pの同類物質のヒ酸カリなどの公知のものを用いること ができるが、 この実施形態では、 より汎用されているチタン酸バリウム (略称: B T) を用いることとしている。  As the dielectric, for example, a known material such as Roche 1 1 e salt (abbreviation: R salt), dihydrogen dihydrogen power (abbreviation: KD P), or arsenic potassium arsenate, a similar substance of KD P, should be used. However, in this embodiment, barium titanate (abbreviation: BT), which is more widely used, is used.
誘電体の粉末の粒径は、 液晶レンズ 1 0 O Aの透明度 (この実施形態では、 可 視光に対する透明度) に影響を与えない程度に小さければよいが、 この実施形態 では、 μ mオーダー以下の大きさとし、より詳細には n mのオーダーとしている。 つまり、 この実施形態における誘電体の粉末は、 いわゆるナノ粒子である。  The particle size of the dielectric powder need only be small enough not to affect the transparency of the liquid crystal lens 10 OA (in this embodiment, the transparency to visible light), but in this embodiment, it is less than the μm order. The size, more specifically, in the order of nm. That is, the dielectric powder in this embodiment is so-called nanoparticles.
誘電体の透明電極 2 0への付着は、 ポリビュルアルコール等のバインダと、 誘 電体の粉末とを含むディスパージョンを、 ィンクジェット印刷の装置を用いて透 明電極 2 0の内側の面に印刷することにより行うことができる。  To adhere the dielectric to the transparent electrode 20, a dispersion containing a binder such as polybulal alcohol and a dielectric powder is printed on the inner surface of the transparent electrode 20 using an ink jet printing device. This can be done.
透明電極 2 0の誘電体が印刷された面の状態を概念的に、 図 2に示す。 図 2に おける ¾fe ^で示した円で囲まれた範囲に、 誘電体の印刷がなされている。 円の中 心は、 上述したように透明電極 2 0の中心と一致している。 円の中心における誘 電体の濃度は、 この実施形態では、 略 0である。 円の縁における透明電極 2 0の 濃度は、 この部分に生じさせるべき屈折率の大きさに応じて決定する。 誘電体の 濃度は、 この実施形態では、 円の半径方向で見た^ \ 円の中心から外側に向け て滑らかに漸増するようになっている。 FIG. 2 conceptually shows the state of the surface of the transparent electrode 20 on which the dielectric is printed. Dielectric material is printed in the circled area marked with ¾fe ^ in Fig.2. The center of the circle coincides with the center of the transparent electrode 20 as described above. In this embodiment, the concentration of the dielectric at the center of the circle is substantially zero. The density of the transparent electrode 20 at the edge of the circle is determined according to the size of the refractive index to be generated in this portion. Dielectric In this embodiment, the density gradually increases gradually from the center of the circle as viewed in the radial direction of the circle.
誘電体の粉末を含むパインダは、 必ずしもこの限りではないが、 この実施形態 では、 層状になる。 誘電体の粉末を含むバインダは、 連続的な層状になっていて も不連続な層状になっていても構わないが、 この実施形態では、 インクジェット 式の印刷により、 不連続な層状になる。  The binder containing the dielectric powder is not necessarily limited to this, but in this embodiment, it is layered. The binder containing the dielectric powder may be a continuous layer or a discontinuous layer. In this embodiment, the binder is formed into a discontinuous layer by ink jet printing.
なお、 この実施形態では、 2つの透明電極 2 0のうちの一方の内側の面に設け られる誘電体の濃度分布は、 所定の点を中心として、 内から外に向けてその濃度 が漸増するような同心円状の分布とされているが、 これとは逆に、 所定の点を中 心として内から外に濃度が漸減するような同心円状の分布とすることも可能であ る。  In this embodiment, the concentration distribution of the dielectric provided on the inner surface of one of the two transparent electrodes 20 is such that the concentration gradually increases from the inside toward the outside around a predetermined point. On the contrary, it is also possible to make a concentric distribution in which the concentration gradually decreases from the inside to the outside with a predetermined point as the center.
また、 この実施形態では、 2つの透明電極 2 0のうちの一方の内側の面に、 上 述した如き誘電体の粉末による濃度分布を形成することとしたが、 2つの透明電 極 2 0の双方の内側の面に、 上述の如き誘電体の粉末による濃度分布を形成して もよレ、。 もっとも、 2つの透明電極 2 0の双方の内側の面に、 上述の如き誘電体 の粉末による濃度分布を形成する場合には、 透明電極 2 0の内側の面に形成する 誘電体の粉末による濃度分布の態様は、 必ずしも同じである必要はない。  In this embodiment, the concentration distribution of the dielectric powder as described above is formed on the inner surface of one of the two transparent electrodes 20. It is possible to form a concentration distribution by the dielectric powder as described above on both inner surfaces. Of course, when the concentration distribution due to the dielectric powder as described above is formed on the inner surface of the two transparent electrodes 20, the concentration due to the dielectric powder formed on the inner surface of the transparent electrode 20. The distribution pattern is not necessarily the same.
この実施形態の液晶レンズ 1 0 O Aは、 以下のように動作する。  The liquid crystal lens 10 O A of this embodiment operates as follows.
まず、 液晶レンズ 1 0 O Aに含まれる 2つの透明電極 2 0の間に電位差がない 場合 (電源回路 4 0が、 2つの透明電極 2 0の間に電位差を与えていない場合) には、 この実施形態の液晶レンズ 1 0 O Aはレンズとして機能せず、 基本的には その焦点距離は無限遠である。 もっとも、 液晶レンズ 1 0 O Aは、 上述した誘電 体の粉末の濃度分布により、 その広さ方向の部分によって誘電率が異なるため、 それに基づいてその広さ方向の部分によって屈折率が異なる場合がある。 この場 合には、 液晶レンズ 1 0 O Aは、 誘電体の粉末の濃度分布に応じた屈折率の分布 によりレンズとして機能することになるが、 それを考慮してもその焦点距離はか なり長いものとなる。  First, when there is no potential difference between the two transparent electrodes 20 included in the liquid crystal lens 10 OA (when the power supply circuit 40 does not give a potential difference between the two transparent electrodes 20), The liquid crystal lens 10 0 OA of the embodiment does not function as a lens and basically has a focal length of infinity. However, the liquid crystal lens 10 OA has a different dielectric constant depending on its width direction due to the above-described concentration distribution of the dielectric powder, and therefore the refractive index may differ depending on the width direction based on that. . In this case, the liquid crystal lens 10 OA functions as a lens due to the refractive index distribution corresponding to the concentration distribution of the dielectric powder, but the focal length is considerably long even if this is taken into consideration. It will be a thing.
上述の電源回路 4 0が、 2つ透明電極 2 0の間に電位差を与えた場合には、 液 晶レンズ 1 0 O Aはレンズとして機能することになる。 電源回路 4 0が 2つの透 明電極 2 0の間に電位差を与えた場合、 2枚の透明電極 2 0の間に電界が生じる 力 この電界は一方の透明電極 2 0の内側に設けられた上述の円の中心 (透明電 極 2 0の中心) に近い程低くされた誘電体の粉末の濃度分布にしたがって、 上述 の円の中心 (透明電極 2 0の中心) に近いほど弱く、 円の中心から離れる程強く なる。 ただし、 円の外側の電界は一様である。 そのため、 2つの透明電極 2 0の 間に電位差を与えた場合における液晶層 3 0の配向の程度は、 透明電極 2 0の中 心から遠いほど強くなり、 透明電極 2 0の中心に近いほど液晶による屈折率が大 きくなる。 これは、 液晶レンズ 1 0 O Aが (より正確には、 液晶レンズ 1 0 O A のうち上述の円に対応した部分が)、正のパワーを持つ凸レンズと同様に機能する ことを意味する。 原回路 4 0が 2つの透明電極 2 0の間に与える電位差が大き くなると、 全体的に液晶層 3 0中の液晶の配向の程度が大きくなるので、 一定の 閾値に電位差が到達するまでは、 2つの透明電極 2 0の間に設けられる電位差が 大きくなればなるほど液晶レンズ 1 0 O Aのパワーが大きくなる。 When the power supply circuit 40 described above gives a potential difference between the two transparent electrodes 20, the liquid crystal lens 10 OA functions as a lens. Power supply circuit 40 has two transparent When a potential difference is applied between the bright electrodes 20, an electric field is generated between the two transparent electrodes 20. This electric field is the center of the above-described circle (transparent The closer to the center of the circle (the center of the transparent electrode 20), the weaker the closer to the center of the circle (the center of the transparent electrode 20), the stronger the distance from the center of the circle. However, the electric field outside the circle is uniform. Therefore, the degree of orientation of the liquid crystal layer 30 when a potential difference is applied between the two transparent electrodes 20 becomes stronger as it is farther from the center of the transparent electrode 20, and the closer to the center of the transparent electrode 20, the stronger the liquid crystal layer 30 becomes. The refractive index increases. This means that the liquid crystal lens 10 OA (more precisely, the portion corresponding to the above circle in the liquid crystal lens 10 OA) functions in the same way as a convex lens having a positive power. If the potential difference that the original circuit 40 gives between the two transparent electrodes 20 becomes large, the overall degree of alignment of the liquid crystal in the liquid crystal layer 30 becomes large, so until the potential difference reaches a certain threshold value. As the potential difference provided between the two transparent electrodes 20 increases, the power of the liquid crystal lens 10 OA increases.
なお、 誘電体の濃度分布を中心に近い程高くした場合には、 2つの透明電極 2 0間に電位差を与えた場合における屈折率の分布は、 透明電極 2 0の中心に近い 場所程小さくなる。 これは、 そのような液晶レンズ 1 0 0 Aが負のパワーを持つ 凹レンズと同様に機能することを意味する。 この場合には、 電源回路 4 0が 2つ の透明電極 2 0の間に与える電位差が大きくなると、 液晶レンズ 1 0 O Aのパヮ 一はそれに連れて小さくなる。  When the concentration distribution of the dielectric is increased as it is closer to the center, the refractive index distribution when a potential difference is applied between the two transparent electrodes 20 becomes smaller as the position is closer to the center of the transparent electrode 20. . This means that such a liquid crystal lens 100 A functions in the same way as a concave lens with negative power. In this case, when the potential difference given by the power supply circuit 40 between the two transparent electrodes 20 is increased, the size of the liquid crystal lens 10 OA is reduced accordingly.
<変形例 1 > <Modification 1>
変形例 1による液晶レンズ 1 0 0 Bについて説明する。  A liquid crystal lens 10 0 B according to Modification 1 will be described.
変形例 1による液晶レンズ 1 0 0 Bは、 基本的に第 1実施形態による液晶レン ズ 1 0 O Aと同様の構成を備える。  The liquid crystal lens 100 B according to Modification 1 basically has the same configuration as the liquid crystal lens 10 O A according to the first embodiment.
変形例 1による液晶レンズ 1 0 0 Bは、 図 3に示したように、 第 1実施形態に よる液晶レンズ 1 0 O Aの場合と同様に、 外側から、 2枚の板 1 0、 2つの透明 電極 2 0、 及ぴ液晶層 3 0を備え、 2つの透明電極 2 0と接続された電源回路 4 0を備えている。 変形例 1の液晶レンズ 1 0 0 Bの板 1 0、 透明電極 2 0、 液晶 層 3 0の機能は、 第 1実施形態の場合のそれらと、 それぞれ同様である。 変形例 1の液晶レンズ 1 0 0 Βが、 第 1実施形態による液晶レンズ 1 0 0 Αと 異なるのは、 変形例 1の液晶レンズ 1 0 0 Bは、 第 1実施形態による液晶レンズAs shown in FIG. 3, the liquid crystal lens 1 0 0 B according to the modified example 1 has two plates 10 0 and 2 transparent plates from the outside as in the case of the liquid crystal lens 1 0 OA according to the first embodiment. It has an electrode 20, a liquid crystal layer 30, and a power circuit 40 connected to the two transparent electrodes 20. The functions of the plate 10 of the liquid crystal lens 100 B, the transparent electrode 20, and the liquid crystal layer 30 of the modification 1 are the same as those of the first embodiment. The liquid crystal lens of modification 1 is different from the liquid crystal lens according to the first embodiment in that the liquid crystal lens of modification 1 is the liquid crystal lens according to the first embodiment.
1 0 0 Aが備えていなかった透明層 5 0を、 透明電極 2 0と液晶層 3 0の間に 2 つ備えているという点である。 透明層 5 0は、 透明な層であり、 この変形例 1で は、 薄い膜状に形成された樹脂によって構成されている。 透明層 5 0を構成する 樹脂の種類は特に問わない。 この実施形態では、 2つの透明層 5 0の少なくとも 一方に、 誘電体の粉末による図 2に示したような濃度分布が設けられている。 か かる濃度分布は、 必ずしもこの限りではないが、 この変形例 1では、 2つの透明 層 5 0の少なくとも一方の少なくとも片面に設けられている。 透明層 5 0に誘電 体による濃度分布を形成する方法は、 第 1実施形態の場合と同様の印刷によれば よい。 This is that two transparent layers 50 that were not included in the 100 A are provided between the transparent electrode 20 and the liquid crystal layer 30. The transparent layer 50 is a transparent layer. In the first modification, the transparent layer 50 is made of a resin formed into a thin film. The type of resin constituting the transparent layer 50 is not particularly limited. In this embodiment, at least one of the two transparent layers 50 is provided with a concentration distribution as shown in FIG. Such a concentration distribution is not necessarily limited to this, but in Modification 1, it is provided on at least one side of at least one of the two transparent layers 50. The method for forming the concentration distribution by the dielectric on the transparent layer 50 may be the same printing as in the first embodiment.
なお、 2つの透明層 5 0の双方に誘電体の濃度分布を形成しない場合には、 透 明層 5 0は 1層でよレ、。 <変形例 2 >  If the dielectric concentration distribution is not formed on both of the two transparent layers 50, the transparent layer 50 may be a single layer. <Modification 2>
変形例 2による液晶レンズ 1 0 0 Cについて説明する。  A liquid crystal lens 100C according to Modification 2 will be described.
変形例 2による液晶レンズ 1 0 0 Cは、 基本的に第 1実施形態による液晶レン ズ 1 0 0 Aと同様の構成を備える。  The liquid crystal lens 100 C according to Modification 2 basically has the same configuration as the liquid crystal lens 100 A according to the first embodiment.
変形例 2による液晶レンズ 1 0 0 Cは、 図 4に示したように、 第 1実施形態に よる液晶レンズ 1 0 O Aが備えるのと同様の、 2枚の板 1 0、 2つの透明電極 2 0、 液晶層 3 0、 及ぴ 2つの透明電極 2 0と接続された電源回路 4 0を備えてい る。  As shown in FIG. 4, the liquid crystal lens 100 according to the modified example 2 has two plates 10 and two transparent electrodes 2 similar to those provided in the liquid crystal lens 10 OA according to the first embodiment. 0, a liquid crystal layer 30, and a power supply circuit 40 connected to two transparent electrodes 20.
変形例 2の液晶レンズ 1 0 0 Cが、 第 1実施形態による液晶レンズ 1 0 0 Aと 異なるのは、変形例 2の液晶レンズ 1 0 0 Cでは、第 1実施形態の場合とは逆に、 2つの透明電極 2 0がともに、 板 1 0の外側にそれぞれ設けられているという点 である。  The liquid crystal lens 1 0 0 C of modification 2 is different from the liquid crystal lens 1 0 0 A according to the first embodiment. The liquid crystal lens 1 0 0 C of modification 2 is opposite to the case of the first embodiment. The two transparent electrodes 20 are both provided outside the plate 10.
この変形例 2では、 2枚の板 1 0の少なくとも一方の片面に、誘電体の粉末力 第 1実施形態の場合と同様の手法、 濃度分布で配されている。  In the second modification, the powder power of the dielectric is arranged on at least one surface of the two plates 10 by the same method and concentration distribution as in the first embodiment.
なお、 変形例 2の液晶レンズ 1 0 0 Cでは、 板 1 0の表面に誘電体の粉末を配 するのと同時に、 或いはそれに代えて、 誘電体の粉末が、 第 1実施形態の場合と 同様の手法、 濃度分布で透明電極 2 0の内側の面に配されていてもよい。 く変形例 3 > In the liquid crystal lens 100 C of Modification 2, dielectric powder is arranged on the surface of the plate 10. At the same time, or instead, the dielectric powder may be arranged on the inner surface of the transparent electrode 20 by the same method and concentration distribution as in the first embodiment. <Modification 3>
変形例 3による液晶レンズ 1 0 O Dについて説明する。  A liquid crystal lens 10 O D according to Modification 3 will be described.
変形例 3による液晶レンズ 1 0 0 Dは、 基本的に変形例 1による液晶レンズ 1 0 0 Bと同様の構成を備える。  The liquid crystal lens 1 0 0 D according to Modification 3 basically has the same configuration as the liquid crystal lens 1 0 0 B according to Modification 1.
変形例 3による液晶レンズ 1 0 0 Dは、 図 5に示したように、 変形例 1による 液晶レンズ Bが備えるのと同様の、 2枚の板 1 0、 2つの透明電極 2 0、 液晶層 3 0、 2つの透明層 5 0、 及ぴ 2つの透明電極 2 0と接続された電源回路 4 0を 備えている。  As shown in FIG. 5, the liquid crystal lens 1 0 0 D according to the modified example 3 includes two plates 10 0, two transparent electrodes 2 0, a liquid crystal layer similar to the liquid crystal lens B according to the modified example 1 A power supply circuit 40 connected to 30, two transparent layers 50, and two transparent electrodes 20 is provided.
変形例 3の液晶レンズ 1 0 0 D力 変形例 1による液晶レンズ 1 0 0 Bと異な るのは、 変形例 3の液晶レンズ 1 0 0 Dでは、 2つの透明電極 2 0がともに、 変 形例 1の場合とは逆に板 1 0の外側にそれぞれ設けられており、 且つ対になって いる板 1 0と透明電極 2 0の間に 2つの透明層 5 0がそれぞれ設けられている、 という点である。  Liquid crystal lens of modification 3 1 0 0 D force Liquid crystal lens 1 0 0 B of modification 1 differs from liquid crystal lens 1 0 0 D of modification 3 in that both two transparent electrodes 2 0 are deformed. Contrary to the case of Example 1, it is provided on the outside of the plate 10 and two transparent layers 50 are provided between the paired plate 10 and the transparent electrode 20, respectively. That is the point.
この変形例 3では、 誘電体の粉末が、 変形例 1の場合と同様の手法、 濃度分布 でいずれかの透明層 5 0 (例えば、透明層 5 0のいずれかの面)に配されている。 なお、 上述の如き誘電体の粉末によって濃度分布が設けられた透明層 5 0は、 2つの板 1 0の内側に (例えば、 2つの板 1 0の内側の面に密接して) 設けられ ていてもよい。  In this modified example 3, the dielectric powder is disposed on any one of the transparent layers 50 (for example, any surface of the transparent layer 50) in the same manner and concentration distribution as in the modified example 1. . The transparent layer 50 provided with the concentration distribution by the dielectric powder as described above is provided inside the two plates 10 (for example, in close contact with the inner surface of the two plates 10). May be.
ただし、 2つの透明層 5 0の片方にし力、誘電体の濃度分布を形成しない場合に は、 透明層 5 0は 1層でよい。 く変形例 4 >  However, if no force or dielectric concentration distribution is formed on one of the two transparent layers 50, one transparent layer 50 may be used. Variation 4>
変形例 4による液晶レンズ 1 0 0 Eについて説明する。  A liquid crystal lens 1000E according to Modification 4 will be described.
変形例 4による液晶レンズ 1 0 0 Eは、 .基本的に変形例 3による液晶レンズ 1 0 0 Dと同様の構成を備える。  The liquid crystal lens 100 0 E according to the modification 4 basically has the same configuration as the liquid crystal lens 100 0 D according to the modification 3.
変形例 4による液晶レンズ 1 0 0 Eは、 図 6に示したように、 変形例 3による 液晶レンズ 1 0 0 Bが備えるのと同様の、 2枚の板 1 0、 2つの透明電極 2 0、 液晶層 3 0、 2つの透明層 5 0、 及ぴ 2つの透明電極 2 0と接続された電源回路 4 0を備えている。 The liquid crystal lens 1 0 0 E according to modification 4 is based on modification 3 as shown in FIG. It is connected to two plates 10, two transparent electrodes 20, a liquid crystal layer 30, two transparent layers 50, and two transparent electrodes 20, similar to the liquid crystal lens 100 B. A power supply circuit 40 is provided.
変形例 4の液晶レンズ 1 0 0 E力 変形例 3による液晶レンズ 1 0 0 Dと異な るのは、 変形例 4の液晶レンズ 1 0 0 Dでは、 変形例 3の場合では、 対になって いる板 1 0と透明電極 2 0の間にそれぞれ設けられていた 2つの透明層 5 0がと もに、 板 1 0の内側にそれぞれ設けられているという点である。  Liquid crystal lens of modification 4 1 0 0 E force The difference from liquid crystal lens 1 0 0 D of modification 3 is that the liquid crystal lens 1 0 0 D of modification 4 is paired in the case of modification 3 The two transparent layers 50 provided respectively between the plate 10 and the transparent electrode 20 are provided inside the plate 10 together.
この変形例 4では、 誘電体の粉末が、 変形例 3の場合と同様の手法、 濃度分布 でいずれかの透明層 5 0 (例えば、透明層 5 0のいずれかの面) に配されている。 なお、 2つの透明層 5 0の双方に誘電体の濃度分布を形成する必要がなレ、場合 には、 誘電体の濃度分布を形成しない透明層 5 0は不要である。 その場合には、 透明層 5 0は一層となる。  In this modified example 4, the dielectric powder is arranged on any one of the transparent layers 50 (for example, any surface of the transparent layer 50) in the same manner and concentration distribution as in the modified example 3. . In addition, in the case where it is necessary to form a dielectric concentration distribution in both of the two transparent layers 50, the transparent layer 50 that does not form the dielectric concentration distribution is unnecessary. In that case, the transparent layer 50 is a single layer.
《第 2実施形態》 << Second Embodiment >>
第 2実施形態では、 上述の如き液晶レンズ 1 0 0 ( 1 0 0 〜1 0 0 £のぃず れか) を応用した、 眼へ刺激を与えるための装置について説明する。  In the second embodiment, a description will be given of an apparatus for applying stimulation to the eye, to which the above-described liquid crystal lens 100 (from 1 00 to 100 0) is applied.
この装置 2 0 0は、 図 7に示したように眼鏡様に構成されている。  This device 200 is configured in the shape of glasses as shown in FIG.
この装置 2 0 0は、 2つのフレーム 2 1 0と、 2つのフレーム 2 1 0を繋ぐブ リッジ 2 2 0と、 2つのフレーム 2 1 0の外側に取付けられたテンプル 2 3 0と、 を備えている。 フレーム 2 1 0、 プリッジ 2 2 0、 テンプル 2 3 0は、 例えば金 属で構成することができるが、 この実施形態では、 樹脂で作られている。 テンプ ル 2 3 0は、 フレーム 2 1 0に対して折り畳むことができるようになつていても よい。 また、 プリッジ 2 2 0又はフレーム 2 1 0の内側部分には、 公知のノーズ パッドが設けられていてもよレヽ。  This device 2 0 0 includes two frames 2 1 0, a bridge 2 2 0 connecting the two frames 2 1 0, and a temple 2 3 0 attached to the outside of the two frames 2 1 0. ing. The frame 2 10, the bridge 2 2 0, and the temple 2 3 0 can be made of metal, for example, but in this embodiment, they are made of resin. The temple 2 3 0 may be foldable with respect to the frame 2 1 0. A known nose pad may be provided on the inner side of the bridge 2 20 or the frame 2 10.
フレーム 2 1 0は、 この実施形態では、 必ずしもこの限りではないが、 円形の ドーナツ形状とされている。 両フレーム 2 1 0の内側の空間には、 第 1実施形態 で説明したのと同様の液晶レンズ 1 0 0が嵌めこまれている。 液晶レンズ 1 0 0 は、 第 1実施形態の場合と同様、 2枚の透明な板 1 0、 2つの層状の透明電極 2 0、 液晶層 3 0、 及び場合によっては 2つの透明層 5 0を備えている。 ただし、 第 1実施形態で矩形とされていたこれら 2枚の透明な板 1 0、 2つの層状の透明 電極 2 0、 液晶層 3 0、 及び場合により存在する 2つの透明層 5 0は、 第 2実施 形態の場合にはすべて、 フレーム 2 1 0の内側の空間の形状に対応した円形とさ れている。 より詳細には、第 2実施形態の液晶レンズ 1 0 0に含まれる板 1 0は、 図 2で示した破線の内側の部分に対応したものとされている。 つまり、 第 2実施 形態の液晶レンズ 1 0 0は、 第 1実施形態の液晶レンズのうち、 破線で囲まれた 部分の板 1 0、 及ぴそれに対応する透明電極 2 0と液晶層 3 0、 及び場合によつ ては透明層 5 0を切出したような形状となっている。 In this embodiment, the frame 2 10 is not necessarily limited to this, but has a circular donut shape. A liquid crystal lens 100 similar to that described in the first embodiment is fitted in the space inside both frames 2 10. As in the case of the first embodiment, the liquid crystal lens 100 includes two transparent plates 10, two layered transparent electrodes 20, a liquid crystal layer 30, and in some cases two transparent layers 50. I have. However, These two transparent plates 10, which were rectangular in the first embodiment, two layered transparent electrodes 20, a liquid crystal layer 30, and optionally two transparent layers 50 are the second embodiment. In all cases, the shape is a circle corresponding to the shape of the space inside the frame 2 10. More specifically, the plate 10 included in the liquid crystal lens 100 of the second embodiment corresponds to the inner part of the broken line shown in FIG. In other words, the liquid crystal lens 100 of the second embodiment is the same as the liquid crystal lens of the first embodiment, the portion of the plate 10 surrounded by the broken line 10, and the corresponding transparent electrode 20 and liquid crystal layer 30. In some cases, the transparent layer 50 is cut out.
テンプル 2 3 0には、 制御ュ-ット 1 1 0が取付けられている。 制御ュニット 1 1 0は、 この実施形態では直方体形状に形成された樹脂製のケースに、 第 1実 施形態で説明した鼈源回路 4 0を収納したものとされている。 制御ユニット 1 1 0は、 また、 電源回路 4 0の制御を行う制御回路を収納している。 なお、 図 7で は、 電源回路、 制御回路の図示をともに省略している。 制御回路は、 いずれも周 知技術であるため図示を省略する C P Uとメモリを含んで構成されており、 C P Uがメモリに記録されたプログラムを実行することにより、 2つの透明電極に与 える電位差を所定のタイミングで自動的に変化させるように電源回路 4 0を制御 するようなものとなっている。  The temple 2 3 0 is provided with a control mute 1 1 0. In this embodiment, the control unit 110 is configured such that the power source circuit 40 described in the first embodiment is housed in a resin case formed in a rectangular parallelepiped shape. The control unit 1 1 0 also houses a control circuit that controls the power supply circuit 40. In FIG. 7, both the power supply circuit and the control circuit are not shown. Since the control circuit is a known technology, the control circuit is configured to include a CPU and a memory (not shown), and the CPU executes a program recorded in the memory, thereby generating a potential difference applied to the two transparent electrodes. The power supply circuit 40 is controlled to change automatically at a predetermined timing.
電源回路 4 0は、 その一端がフレーム 2 1 0の内部の透明電極 2 0と接続され たケーブル 4 1の他端に接続されており、 ケーブル 4 1を介して 2つの透明電極 2 0の間の電位差を制御できるようにされている。  One end of the power supply circuit 40 is connected to the other end of the cable 41 connected to the transparent electrode 20 inside the frame 21, and between the two transparent electrodes 20 via the cable 41. The potential difference can be controlled.
ユーザは、 通常の眼鏡と同様の方法で、 2つのテンプル 2 3 0を両耳にかけて この装置 2 0 0を用いる。 その状態で、 2つの液晶レンズ 1 0 0はそれぞれ、 ュ 一ザの右眼と左眼の前に位置することになる。 ユーザは、 この装置 2 0 0を使用 するとき、 液晶レンズ 1 0 0を通して外界を見ることになる。  The user uses this device 2 0 0 with two temples 2 3 0 on both ears in the same way as normal glasses. In this state, the two liquid crystal lenses 100 are positioned in front of the right and left eyes of the user, respectively. The user sees the outside world through the liquid crystal lens 100 when using the device 200.
このとき、 電源回路 4 0は、 制御回路に制御されて、 所定のタイミングで、 自 動的に、 液晶レンズ 1 0 0の 2つの透明電極 2 0の間の電位差を変化させる。 こ れにより、 液晶レンズ 1 0 0は、 第 1実施形態の場合と同様に、 焦点距離を変ィ匕 させる。 この装置 2 0 0を身に付けたユーザは、 外界を見るにあたり、 強制的に 眼の焦点を変ィヒさせられることになる。 なお、 電源回路 4 0による透明電極 2 0の間の電位差は、 右眼用の液晶レンズ 1 0 0と左眼用の液晶レンズ 1 0 0とで同期されるようにしてもよいし、 ユーザ の右眼と左眼の状態に応じて同期がされないようにしてもよい。 At this time, the power supply circuit 40 is controlled by the control circuit to automatically change the potential difference between the two transparent electrodes 20 of the liquid crystal lens 100 at a predetermined timing. Thereby, the liquid crystal lens 100 changes the focal length as in the case of the first embodiment. A user wearing this device 200 is forced to change the focus of the eye when looking at the outside world. The potential difference between the transparent electrodes 20 by the power supply circuit 40 may be synchronized between the right-eye liquid crystal lens 100 and the left-eye liquid crystal lens 100, or the user's The synchronization may not be performed according to the state of the right eye and the left eye.
また、 第 2実施形態では、 液晶レンズ 1 0 0と制御ュニット 1 1 0は、 右眼用 と左眼用の 2つ存在した力 いずれかの眼用に 1つだけとすることも可能である。  Further, in the second embodiment, the liquid crystal lens 100 and the control unit 110 can be provided for only one of the two existing forces for the right eye and the left eye. .

Claims

請 求 の 範 囲 The scope of the claims
1 . 所定の間隔をおいて配された 2枚の透明な板と、 1. Two transparent plates arranged at a predetermined interval;
前記 2枚の板に沿って前記板のそれぞれと対にして設けられた 2つの透明電極 と、  Two transparent electrodes provided in pairs with each of the plates along the two plates;
前記 2つの透明電極の間に配された液晶層と、  A liquid crystal layer disposed between the two transparent electrodes;
前記 2つの透明電極に挟まれた空間に設けられている、 前記 2枚の透明電極の 面方向に誘電率分布を与える誘電率分布形成手段と、  A dielectric constant distribution forming means for providing a dielectric constant distribution in a plane direction of the two transparent electrodes, provided in a space between the two transparent electrodes;
を備えており、  With
前記2つの透明電極の間に電圧を印加した場合に、 前記誘電率分布形成手段に 従って生じる電界分布によって、 前記液晶層に屈折率分布が生じるようになって いる、 When a voltage is applied between the two transparent electrodes, said by the thus generated electric field distribution permittivity distribution forming means, so that the refractive index distribution in the liquid crystal layer occurs,
液晶レンズ。  Liquid crystal lens.
2 . 2対の前記板と前記透明電極のうちの一対に含まれる前記板の外側に当該 板と対にされた前記透明電極が設けられており、 前記誘電率分布形成手段は、 当 該透明電極の内側の面に設けられている、  2.2 The transparent electrode paired with the plate is provided on the outside of the plate included in a pair of the two pairs of the plate and the transparent electrode, and the dielectric constant distribution forming means includes the transparent electrode Provided on the inner surface of the electrode,
請求の範囲第 1項記載の液晶レンズ。  The liquid crystal lens according to claim 1.
3 . 2対の前記板と前記透明電極のうちの一対に含まれる前記板の外側に当該 板と対にされた前記透明電極が設けられており、 前記誘電率分布形成手段は、 前 記透明電極と対にされた前記板に設けられている、 3.2 The transparent electrode paired with the plate is provided outside the plate included in a pair of the two pairs of the plate and the transparent electrode, and the dielectric constant distribution forming means includes the transparent Provided on the plate paired with an electrode,
請求の範囲第 1項記載の液晶レンズ。  The liquid crystal lens according to claim 1.
4. 前記誘電率分布形成手段は、 前記板の少なくとも一方の面に設けられてい る、 4. The dielectric constant distribution forming means is provided on at least one surface of the plate.
請求の範囲第 3項記載の液晶レンズ。  4. A liquid crystal lens according to claim 3.
5 . 2対の前記板と前記透明電極のうちの一対に含まれる前記板の内側に当該 板と対にされた前記透明電極が設けられており、 前記誘電率分布形成手段は、 当 該透明電極の内側の面に設けられている、 5. The transparent electrode paired with the plate is provided inside the plate included in a pair of the two pairs of the plate and the transparent electrode, and the dielectric constant distribution forming unit includes the transparent electrode Provided on the inner surface of the electrode,
請求の範囲第 1項記載の液晶レンズ。  The liquid crystal lens according to claim 1.
6 . 2対の前記板と前記透明電極のうちの一対に含まれる前記板の内側に当該 板と対にされた前記透明電極が設けられており、 前記誘電率分布形成手段は、 当 該透明電極の内側に設けられた透明な透明層に設けられている、 6. Inside the plate included in a pair of the two pairs of plates and the transparent electrode The transparent electrode paired with a plate is provided, and the dielectric constant distribution forming means is provided in a transparent transparent layer provided inside the transparent electrode.
請求の範囲第 1項記載の液晶レンズ。  The liquid crystal lens according to claim 1.
7. 2対の前記板と前記透明電極のうちの一対に含まれる前記板の外側に当該 板と対にされた前記透明電極が設けられており、 前記誘電率分布形成手段は、 当 該透明電極の内側に設けられた透明な透明層に設けられてレ、る、 7. The transparent electrode paired with the plate is provided outside the plate included in a pair of the two pairs of the plate and the transparent electrode, and the dielectric constant distribution forming unit includes the transparent electrode It is provided in a transparent transparent layer provided inside the electrode.
請求の範囲第 1項記載の液晶レンズ。  The liquid crystal lens according to claim 1.
8 . 前記誘電率分布形成手段は、 前記透明層の少なくとも一方の面に設けられ ている、 8. The dielectric constant distribution forming means is provided on at least one surface of the transparent layer,
請求の範囲第 6項又は第 7項記載の液晶レンズ。  The liquid crystal lens according to claim 6 or 7.
9. 前記誘電率分布形成手段は、 層状である、  9. The dielectric constant distribution forming means is layered,
請求の範囲第 1項〜第 8項のいずれかに記載の液晶レンズ。  The liquid crystal lens according to any one of claims 1 to 8.
1 0. 前記 2枚の板が、 互いに平行に配されている、  1 0. The two plates are arranged in parallel to each other,
請求の範囲第 1項記載の液晶レンズ。  The liquid crystal lens according to claim 1.
1 1 . 前記 2枚の板がともに平らな板であり、 互いに平行に配されている、 請求の範囲第 1項記載の液晶レンズ。 11. The liquid crystal lens according to claim 1, wherein the two plates are both flat plates and are arranged in parallel to each other.
1 2. 前記誘電率分布形成手段が与える誘電率分布は、 1 2. The dielectric constant distribution given by the dielectric constant distribution forming means is
前記 2枚の板に垂直に入射した場合の光の屈折率が、 光軸を中心として漸増す るカ又は漸減するようなものとされている、  The refractive index of light when vertically incident on the two plates is such that it gradually increases or decreases with the optical axis as the center,
請求の範囲第 1項記載の液晶レンズ。  The liquid crystal lens according to claim 1.
1 3 . 前記誘電率分布形成手段が与える誘電率分布は、  1 3. The dielectric constant distribution given by the dielectric constant distribution forming means is:
同心円状の分布となっている、  It has a concentric distribution,
請求の範囲第 1 2項記載の液晶レンズ。  The liquid crystal lens according to claim 12.
1 4. 前記誘電率分布形成手段は、 その粒径が前記液晶レンズの透明度に影響 を与えない程度とされた誘電体の粉末の濃度の分布によって誘電率分布を形成す るようになっている、  1 4. The dielectric constant distribution forming means forms the dielectric constant distribution by the distribution of the concentration of the dielectric powder whose particle size does not affect the transparency of the liquid crystal lens. ,
請求の範囲第 1項記載の液晶レンズ。  The liquid crystal lens according to claim 1.
1 5 . 前記誘電率分布形成手段は、 その粒径が前記液晶レンズの透明度に影響 を与えなレ、程度とされた誘電体の粉末の濃度の分布によつて誘電率分布を形成す るようになっており、 前記誘電体の粉末の濃度の分布は、 前記透明電極の内側の 面に形成されている、 15. The dielectric constant distribution forming means forms the dielectric constant distribution based on the distribution of the concentration of the dielectric powder, the particle size of which does not affect the transparency of the liquid crystal lens. The distribution of the concentration of the dielectric powder is formed on the inner surface of the transparent electrode,
請求の範囲第 2項又は第 5項記載の液晶レンズ。  6. A liquid crystal lens according to claim 2 or claim 5.
1 6 . 前記誘電率分布形成手段は、 その粒径が前記液晶レンズの透明度に影響 を与えない程度とされた誘電体の粉末の濃度の分布によって誘電率分布を形成す るようになっており、 前記誘電体の粉末の濃度の分布は、 前記板の少なくとも一 方の面に形成されている、  16. The dielectric constant distribution forming means forms the dielectric constant distribution by the distribution of the concentration of the dielectric powder whose particle size does not affect the transparency of the liquid crystal lens. The distribution of the concentration of the dielectric powder is formed on at least one surface of the plate,
請求の範囲第 4項記載の液晶レンズ。  5. A liquid crystal lens according to claim 4.
1 7 . 前記誘電率分布形成手段は、 その粒径が前記液晶レンズの透明度に影響 を与えない程度とされた誘電体の粉末の濃度の分布によって誘電率分布を形成す るようになっており、 前記誘電体の粉末の濃度の分布は、 前記透明層の少なくと も一方の面に形成されてレヽる、  17. The dielectric constant distribution forming means forms the dielectric constant distribution by the distribution of the concentration of the dielectric powder whose particle size does not affect the transparency of the liquid crystal lens. The concentration distribution of the dielectric powder is formed on at least one surface of the transparent layer.
+請求の範囲第 7項記載の液晶レンズ。  + Liquid crystal lens according to claim 7.
1 8 . 前記誘電体は、 チタン酸バリゥムである、  1 8. The dielectric is barium titanate,
請求の範囲第 1 4項〜第 1 7項のいずれかに記載の液晶レンズ。  The liquid crystal lens according to any one of claims 14 to 17.
1 9 . 所定の間隔をおいて配された 2枚の透明な板、  1 9. Two transparent plates, spaced at a predetermined interval,
前記 2枚の板に沿って前記板のそれぞれと対にして設けられた 2つの透明電極、 前記 2つの透明電極の間に配された液晶層、  Two transparent electrodes provided in pairs with each of the plates along the two plates, a liquid crystal layer disposed between the two transparent electrodes,
前記 2つの透明電極に挟まれた空間に設けられている、 前記 2枚の透明電極の 面方向に誘電率分布を与える誘電率分布形成手段、  A dielectric constant distribution forming means for providing a dielectric constant distribution in a plane direction of the two transparent electrodes, provided in a space between the two transparent electrodes;
前記 2つの透明電極の間に所望の電圧を印加する電圧印加手段、  Voltage applying means for applying a desired voltage between the two transparent electrodes;
を有し、  Have
前記 2つの透明電極の間に電圧を印加した場合に、 前記誘電率分布形成手段に 従って生じる電界分布によって、 前記液晶層に屈折率分布が生じるようになって いる、  When a voltage is applied between the two transparent electrodes, a refractive index distribution is generated in the liquid crystal layer by an electric field distribution generated according to the dielectric constant distribution forming means.
液晶レンズと、  A liquid crystal lens,
前記液晶レンズの前記板を、 ユーザの眼の前方に固定するための固定手段と、 を備えており、  A fixing means for fixing the plate of the liquid crystal lens in front of the user's eyes; and
前記電圧印加手段は、 時間の経過にしたがって自動的に前記透明電極の間に印 加される電圧を変化させるようになつている、 The voltage applying means automatically marks between the transparent electrodes as time passes. To change the applied voltage,
眼へ刺激を与えるための装置。  A device for stimulating the eyes.
2 0 . 所定の間隔をおいて配された 2枚の透明な板と、  2 0. Two transparent plates arranged at a predetermined interval;
前記 2枚の板に沿つて前記板のそれぞれと対にして設けられた 2つの透明電極 と、  Two transparent electrodes provided in pairs with each of the plates along the two plates;
前記 2つの透明電極の間に配された所定の物質による層と、  A layer of a predetermined material disposed between the two transparent electrodes;
前記 2つの透明電極に挟まれた空間に設けられている、 前記 2枚の透明電極の 面方向に誘電率分布を与える誘電率分布形成手段と、  A dielectric constant distribution forming means for providing a dielectric constant distribution in a plane direction of the two transparent electrodes, provided in a space between the two transparent electrodes;
を備えており、  With
前記 2つの透明電極の間に電圧を印加した場合に、 前記誘電率分布形成手段に 従って生じる電界分布によって、前記層に屈折率分布が生じるようになつている、 可変焦点レンズ。  A variable focus lens, wherein when a voltage is applied between the two transparent electrodes, a refractive index distribution is generated in the layer by an electric field distribution generated by the dielectric constant distribution forming means.
2 1 . 所定の間隔をおいて配された 2枚の透明な板、  2 1. Two transparent plates arranged at a predetermined interval,
前記 2枚の板に沿つて前記板のそれぞれと対にして設けられた 2つの透明電極、 前記 2つの透明電極の間に配された所定の物質による層、  Two transparent electrodes provided in pairs with each of the two plates along the two plates, a layer made of a predetermined substance disposed between the two transparent electrodes,
前記 2つの透明電極に挟まれた空間に設けられている、 前記 2枚の透明電極の 面方向に誘電率分布を与える誘電率分布形成手段、  A dielectric constant distribution forming means for providing a dielectric constant distribution in a plane direction of the two transparent electrodes, provided in a space between the two transparent electrodes;
前記 2つの透明電極の間に所望の電圧を印加する電圧印加手段、  Voltage applying means for applying a desired voltage between the two transparent electrodes;
を有し、  Have
前記 2つの透明電極の間に電圧を印加した場合に、 前記誘電率分布形成手段に 従って生じる電界分布によつて、前記層に屈折率分布が生じるようになつている、 可変焦点レンズと、  When a voltage is applied between the two transparent electrodes, a refractive index distribution is generated in the layer by an electric field distribution generated according to the dielectric constant distribution forming means, a variable focus lens,
前記可変焦点レンズの前記板を、 ユーザの眼の前方に固定するための固定手段 と、  Fixing means for fixing the plate of the variable focus lens in front of the user's eye;
を備えており、  With
前記電圧印加手段は、 時間の経過にしたがって自動的に前記透明電極の間に印 加される電圧を変ィ匕させるようになつている、  The voltage applying means automatically changes the voltage applied between the transparent electrodes as time passes.
眼へ刺激を与えるための装置。  A device for stimulating the eyes.
PCT/JP2009/059023 2008-05-09 2009-05-08 Variable focus lens, liquid crystal lens, and device using those for giving stimulus to eye WO2009136667A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010511096A JP5551587B2 (en) 2008-05-09 2009-05-08 Variable focus lens, liquid crystal lens, and apparatus for stimulating eyes using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008123890 2008-05-09
JP2008-123890 2008-05-09

Publications (1)

Publication Number Publication Date
WO2009136667A1 true WO2009136667A1 (en) 2009-11-12

Family

ID=41264710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059023 WO2009136667A1 (en) 2008-05-09 2009-05-08 Variable focus lens, liquid crystal lens, and device using those for giving stimulus to eye

Country Status (2)

Country Link
JP (1) JP5551587B2 (en)
WO (1) WO2009136667A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231033A (en) * 2011-05-27 2011-11-02 深圳超多维光电子有限公司 Liquid crystal lens and control method thereof, 3D (three-dimensional) display device and computer system
US8783861B2 (en) 2010-07-02 2014-07-22 Pixeloptics, Inc. Frame design for electronic spectacles
US8801174B2 (en) 2011-02-11 2014-08-12 Hpo Assets Llc Electronic frames comprising electrical conductors
WO2014190807A1 (en) * 2013-05-31 2014-12-04 International Business Machines Corporation Auto focus device and method for liquid crystal display
US8905541B2 (en) 2010-07-02 2014-12-09 Mitsui Chemicals, Inc. Electronic spectacle frames
US8944590B2 (en) 2010-07-02 2015-02-03 Mitsui Chemicals, Inc. Electronic spectacle frames
US8979259B2 (en) 2010-07-02 2015-03-17 Mitsui Chemicals, Inc. Electro-active spectacle frames
US9229248B2 (en) 2009-01-09 2016-01-05 Mitsui Chemicals, Inc. Electro-active spectacles and associated electronics
US9470909B2 (en) 2011-08-17 2016-10-18 Mitsui Chemicals, Inc. Moisture-resistant electronic spectacle frames
CN109188824A (en) * 2018-10-31 2019-01-11 合肥京东方光电科技有限公司 A kind of display panel, display device and its driving method
US10613355B2 (en) 2007-05-04 2020-04-07 E-Vision, Llc Moisture-resistant eye wear
US11061252B2 (en) 2007-05-04 2021-07-13 E-Vision, Llc Hinge for electronic spectacles
EP3958789A4 (en) * 2019-04-23 2022-09-28 Sightglass Vision, Inc. Ophthalmic lenses with dynamic optical properties for reducing development of myopia
WO2024042280A1 (en) * 2022-08-24 2024-02-29 Laclaree Pair of adaptive spectacles and method for controlling such a pair of adaptive spectacles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788143A (en) * 1993-09-27 1995-04-04 Scala Kk Shortsightedness/hyperopia preventing implement and shortsightedness/hyperopia prevending method using its implement
JP2006302462A (en) * 2005-04-25 2006-11-02 Mitsubishi Electric Corp Phase control component and optical head device
WO2007098602A1 (en) * 2006-03-03 2007-09-07 UNIVERSITé LAVAL Method and apparatus for spatially modulated electric field generation and electro-optical tuning using liquid crystals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788143A (en) * 1993-09-27 1995-04-04 Scala Kk Shortsightedness/hyperopia preventing implement and shortsightedness/hyperopia prevending method using its implement
JP2006302462A (en) * 2005-04-25 2006-11-02 Mitsubishi Electric Corp Phase control component and optical head device
WO2007098602A1 (en) * 2006-03-03 2007-09-07 UNIVERSITé LAVAL Method and apparatus for spatially modulated electric field generation and electro-optical tuning using liquid crystals

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11586057B2 (en) 2007-05-04 2023-02-21 E-Vision, Llc Moisture-resistant eye wear
US11061252B2 (en) 2007-05-04 2021-07-13 E-Vision, Llc Hinge for electronic spectacles
US10613355B2 (en) 2007-05-04 2020-04-07 E-Vision, Llc Moisture-resistant eye wear
US9229248B2 (en) 2009-01-09 2016-01-05 Mitsui Chemicals, Inc. Electro-active spectacles and associated electronics
US8979259B2 (en) 2010-07-02 2015-03-17 Mitsui Chemicals, Inc. Electro-active spectacle frames
US8783861B2 (en) 2010-07-02 2014-07-22 Pixeloptics, Inc. Frame design for electronic spectacles
US8905541B2 (en) 2010-07-02 2014-12-09 Mitsui Chemicals, Inc. Electronic spectacle frames
US8944590B2 (en) 2010-07-02 2015-02-03 Mitsui Chemicals, Inc. Electronic spectacle frames
US10359649B2 (en) 2011-02-11 2019-07-23 Mitsui Chemical, Inc. Electronic frames comprising electrical conductors
US8801174B2 (en) 2011-02-11 2014-08-12 Hpo Assets Llc Electronic frames comprising electrical conductors
US9946097B2 (en) 2011-02-11 2018-04-17 Mitsui Chemicals, Inc. Electronic frames comprising electrical conductors
CN102231033A (en) * 2011-05-27 2011-11-02 深圳超多维光电子有限公司 Liquid crystal lens and control method thereof, 3D (three-dimensional) display device and computer system
CN102231033B (en) * 2011-05-27 2014-11-05 深圳超多维光电子有限公司 Liquid crystal lens and control method thereof, 3D (three-dimensional) display device and computer system
US9470909B2 (en) 2011-08-17 2016-10-18 Mitsui Chemicals, Inc. Moisture-resistant electronic spectacle frames
US9835930B2 (en) 2013-05-31 2017-12-05 International Business Machines Corporation Auto focus device and method for liquid crystal display
WO2014190807A1 (en) * 2013-05-31 2014-12-04 International Business Machines Corporation Auto focus device and method for liquid crystal display
CN104216151A (en) * 2013-05-31 2014-12-17 国际商业机器公司 Automatic focusing device and method of LCD
CN104216151B (en) * 2013-05-31 2017-11-14 国际商业机器公司 The automatic focusing device and method of liquid crystal display
CN109188824A (en) * 2018-10-31 2019-01-11 合肥京东方光电科技有限公司 A kind of display panel, display device and its driving method
CN109188824B (en) * 2018-10-31 2022-08-19 合肥京东方光电科技有限公司 Display panel, display device and driving method thereof
EP3958789A4 (en) * 2019-04-23 2022-09-28 Sightglass Vision, Inc. Ophthalmic lenses with dynamic optical properties for reducing development of myopia
WO2024042280A1 (en) * 2022-08-24 2024-02-29 Laclaree Pair of adaptive spectacles and method for controlling such a pair of adaptive spectacles
FR3139205A1 (en) * 2022-08-24 2024-03-01 Laclaree Pair of adaptive glasses and method of controlling such a pair of adaptive glasses.

Also Published As

Publication number Publication date
JP5551587B2 (en) 2014-07-16
JPWO2009136667A1 (en) 2011-09-08

Similar Documents

Publication Publication Date Title
WO2009136667A1 (en) Variable focus lens, liquid crystal lens, and device using those for giving stimulus to eye
US10908476B2 (en) Dynamic diffractive liquid crystal lens
WO2011093530A1 (en) Method for manufacturing electronic glasses and liquid-crystal lenses
CN107219573B (en) Fresnel Lenses and glasses
WO2015024322A1 (en) Liquid crystal lens and liquid crystal glasses
JPH0160127B2 (en)
JPS61156227A (en) Fresnel liquid crystal spectacle
JP2015038535A (en) Liquid crystal optical element and image display device
WO2015109719A1 (en) 3d glasses lens and manufacturing method therefor, and 3d glasses
JP2009294654A (en) Spectacles
JP2007240709A (en) Multifocal spectacles
CN110291445B (en) Lens and eyewear
JPS5850339B2 (en) variable focal length lens
JPS6050510A (en) Liquid crystal lens of variable focal distance
JPH0250123A (en) Electronic sunglasses
JPS61177428A (en) Spectacles of liquid crystal
JPS623223A (en) Liquid crystal lens of variable focal length
CN203705725U (en) Eyeglass of 3D glasses and the same
JP2009294653A (en) Lens structure and bifocals
US20140132862A1 (en) Liquid crystal lens unit and stereoscopic display
JPS61177429A (en) Liquid crystal spectacles
JPH0560907A (en) Double focus lens
TW202326179A (en) Optical dimming lens and fabrication method thereof
TW202326231A (en) Ophthalmic lens with embedded dimmer
JPH02150818A (en) Liquid crystal sunglasses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09742791

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010511096

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09742791

Country of ref document: EP

Kind code of ref document: A1