WO2009132502A1 - 前导码配置方法以及小区搜索方法 - Google Patents

前导码配置方法以及小区搜索方法 Download PDF

Info

Publication number
WO2009132502A1
WO2009132502A1 PCT/CN2008/073906 CN2008073906W WO2009132502A1 WO 2009132502 A1 WO2009132502 A1 WO 2009132502A1 CN 2008073906 W CN2008073906 W CN 2008073906W WO 2009132502 A1 WO2009132502 A1 WO 2009132502A1
Authority
WO
WIPO (PCT)
Prior art keywords
preamble
communication system
generation communication
reference preamble
symbol
Prior art date
Application number
PCT/CN2008/073906
Other languages
English (en)
French (fr)
Inventor
孙长印
王文焕
刘敏
姚珂
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP08874089.9A priority Critical patent/EP2302856B1/en
Priority to US12/989,982 priority patent/US8717975B2/en
Publication of WO2009132502A1 publication Critical patent/WO2009132502A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to the field of communications, and in particular, to a preamble configuration method and a cell search method based on an orthogonal frequency division multiplexing (OFDM) technology.
  • OFDM orthogonal Frequency Division Multiplex
  • BACKGROUND OF THE INVENTION Orthogonal Frequency Division Multiplex (OFDM) is a multi-carrier transmission mode, which can make a system by converting a set of high-speed data streams into a set of low-speed parallel data streams.
  • the sensitivity to the frequency selectivity of the multipath fading channel is greatly reduced, and the introduction of the cyclic prefix further enhances the system's ability to resist Inter-symbol Interference (ISI).
  • ISI Inter-symbol Interference
  • OFDM has The characteristics of high bandwidth utilization and simple implementation make it more and more widely used in the field of wireless communication.
  • the OFDM-based system includes: a Wireless Local Area Network (WLAN) system, an 802.16e system based on orthogonal frequency division multiplexing (third generation communication system), and 802.16e.
  • the next generation evolved 802.16m system (fourth generation communication system) and so on. Since the mobile communication system is smoothly evolved, in order to protect the interests of operators, the fourth generation communication system and the third generation communication system will coexist in a certain period of time, for example, the 802.16e system and the 802.16m system will coexist. .
  • a preamble is transmitted over the entire bandwidth of the first symbol of the downlink, and 802.16e of different bandwidths (for example, 5 MHz, 10 MHz, 20 MHz) respectively use different preambles, but this exists.
  • the implementation method is complicated and the access time is long. It can be seen that if the old preamble is used to achieve access, it will limit the performance of the new system; on the contrary, if a new access channel design is adopted, compatibility design requirements need to be considered, and one system uses two access channels. , will inevitably lead to increased system overhead, which affects the overall performance of the system.
  • the present invention has been made in view of the access problem between a third generation communication system based on orthogonal frequency division multiplexing technology and a fourth generation communication system existing in the related art, and for this reason, the main object of the present invention is to provide A preamble configuration method and a cell search method are provided to solve the above problem.
  • a preamble configuration method is provided for use in an orthogonal frequency division multiplexing system of a fourth generation communication system compatible with a third generation communication system.
  • the preamble configuration method includes: configuring a preamble of the fourth generation communication system to include a first reference preamble and a second reference preamble, wherein the first reference preamble and the second reference preamble
  • the codes are located in different orthogonal frequency division multiplexing symbols.
  • the first reference preamble has a fixed bandwidth and/or a fixed position.
  • the location of the first reference preamble comprises one of: a header of a superframe of a fourth generation communication system, a header of a radio frame, or a header of a last radio subframe of a radio frame.
  • the start location information of the superframe of the fourth generation communication system is carried in the system broadcast channel of the fourth generation communication system, or carried in the sequence of the first reference preamble.
  • the first reference preamble is aligned with the frequency domain center of the second reference preamble.
  • the offset between the first reference preamble and the orthogonal frequency division multiplexing symbol in which the second reference preamble is located takes a fixed value or a changed value.
  • the change value of the offset between the orthogonal frequency division multiplexing symbols is carried by the sequence of the first reference preamble.
  • the central location information of the first reference preamble in the frequency domain is carried in a system broadcast channel of the fourth generation communication system.
  • the offset between the system broadcast channel and the first reference preamble of the fourth generation communication system takes a fixed value.
  • the first reference preamble is configured to have different sequences, that is, the first reference preamble carries information about the application scenario of the system, where the information of the system application scenario uses different first reference preambles. Sequence indication.
  • the second reference preamble is configured as a different sequence group according to the foregoing system application scenario.
  • the system application scenario includes but is not limited to: a fourth generation communication system system and a 5 MHz third generation communication system having the same frequency, a fourth generation communication system, and a 10 MHz third generation communication system having the same frequency And the fourth generation communication system exists independently.
  • the second reference preamble when the application scenario is a fourth generation communication system system and a 5 MHz third generation communication system having the same frequency, the second reference preamble is configured as a preamble of a 5 MHz third generation communication system; When the fourth generation communication system system and the 10 MHz third generation communication system having the same frequency, the second reference preamble is configured as a preamble of the 10 MHz third generation communication system; when the fourth generation communication system exists independently, The second reference preamble is configured as a second reference preamble of the fourth generation communication system.
  • the time repetition period of the first reference preamble, the second reference preamble, and the system broadcast channel of the fourth generation communication system is a superframe period divided by n, where n takes values 1, 2, 3, 4.
  • a cell search method is provided, the method being based on the preamble configuration method described above, and implemented by a receiver.
  • the cell search method according to the embodiment of the present invention includes: performing orthogonal frequency division multiplexing symbol synchronization and frame synchronization by using a first reference preamble; calculating a frequency offset estimation and compensation by using a first reference preamble; using the first reference
  • the preamble autocorrelation performs sequence detection to determine a system application scenario, an offset between the first reference preamble and the second reference preamble, and an orthogonal frequency division multiplexing symbol fine synchronization; according to the first reference preamble and the first Observing the offset between the preambles, detecting the second reference preamble, obtaining the cell identifier and the sector identification code carried by the second reference preamble; and detecting the system broadcast channel by using the second reference preamble as the reference symbol; The location information of the superframe is obtained according to the first reference preamble.
  • FIG. 1 is an 802.16m and 5MHz bandwidth 802.16e frame according to the first embodiment of the method of the present invention.
  • FIG. 2 is a schematic diagram showing the structure of a preamble when the 802.16m and 10 MHz bandwidth 802.16e frame structures coexist according to the first embodiment of the method of the present invention;
  • FIG. 3 is a schematic diagram of the method according to the present invention.
  • FIG. 4 is a schematic diagram showing a time domain structure of an OFDM symbol in which the first reference preamble according to the first embodiment of the method of the present invention is located;
  • FIG. 6 is a schematic structural diagram of a preamble structure of an 802.16m independent existing frame structure according to Embodiment 2 of the method of the present invention;
  • FIG. 6 is a schematic diagram of a preamble structure of an 802.16m independent existing frame structure according to Embodiment 2 of the present invention;
  • 7 is a schematic diagram of a 802.16m independent frame structure preamble structure according to Embodiment 3 of the method of the present invention;
  • FIG. 8 is a schematic diagram of a 802.16m independent frame structure preamble structure according to Embodiment 4 of the method of the present invention
  • 9 is a schematic diagram of a preamble placement position (frequency domain) in different bandwidth systems according to an embodiment of the method of the present invention
  • FIG. 10 is a cell according to Embodiment 5 of the method of the present invention
  • FIG. 11 is a detailed processing flowchart of a cell search method according to a fifth embodiment of the method according to the present invention.
  • a new communication system (for example, a fourth generation communication system) needs to be considered for compatibility with the third generation mobile communication system. That is, backward compatibility design.
  • the compatibility of the two systems needs to consider the following issues: air interface system parameter compatibility, Frame structure coexistence design and network compatibility.
  • the parameter compatibility is to achieve the coexistence of the frame structure of the third generation communication system (for example, 802.16m) and the fourth generation communication system (for example, 802.16e), and the system parameters of the two systems must satisfy a certain relationship.
  • the 802.16m system uses subcarrier spacing compatible with the 802.16e system to ensure the following aspects: 802.16e systems with different bandwidths can share resources with 802.16m systems in frequency division (the requirements of frame structure coexistence design),
  • the 802.16e system has the same oversampling rate as the 802.16m system, and the Cyclic Prefix (CP) length of the 802.16m system remains compatible with the 802.16e system.
  • the frame structure coexistence design is to realize the sharing of resources between the 802.16e system and the 802.16m system, and the methods used are sometimes Time Division Multiplexing (TDM) and Frequency Division Multiplexing (FDM). TDM/FDM 'Kun He.
  • TDM Time Division Multiplexing
  • FDM Frequency Division Multiplexing
  • the network access compatibility is a base station that ensures that the terminal of the 802.16e system can access the 802.16m system.
  • the terminal For a mobile communication system, the terminal usually accesses the network by means of a synchronization channel.
  • the general access steps are as follows: (1) time and frequency synchronization; (2) detecting a cell identification code (Cell lD); (3) reading a broadcast message. After the above steps, the terminal starts the subsequent access process according to the information in the broadcast message.
  • the access process is very important for mobile communication systems. One of the important indicators is the access time. The shorter the access time, the higher the system performance, but because the access needs to be realized by means of the synchronization channel, and the synchronization channel is an overhead relative to the traffic channel transmitting the user information.
  • the access design of the backward compatible 802.16m system needs to meet at least the following requirements:
  • the access design of the 802.16e system is required, so that the terminal of the 802.16e system can be successfully accessed; the terminal of the 802.16m system can also be successfully accessed, and simultaneously
  • the access of the 802.16m system is improved compared with the access performance of the 802.16e system; the synchronization channel design overhead of the 802.16m system is small.
  • a preamble configuration method for use in an orthogonal frequency division multiplexing system.
  • the preamble configuration method includes: configuring a preamble of the fourth generation communication system to include a first reference preamble and a second reference preamble, where the first reference preamble and the second reference preamble are located in different orthogonal frequencies In the division multiplexing symbol.
  • the accessibility problem between the third generation communication system and the fourth generation communication system based on the orthogonal frequency division multiplexing technology is realized by the technical solution provided by the embodiment of the invention.
  • the preamble configuration uses a grading technique to divide the preamble of the 802.16m system into a p-preamble (ie, the first reference preamble above) and an s-preamble (ie, the second reference preamble above).
  • the preamble in the above p-preamble and 802.16e adopts a fixed time interval P-offset, and the P-offset may be in units of OFDM symbols or in units of subframes, and the P-offset may take a fixed value, or may be ⁇ Configured as needed, and when P-offset is configurable, the P-offset information can be carried by the p-preamble sequence.
  • the p-preamble is fixed in position, and may be at the head of the radio frame, at the head of the superframe, or at other locations as needed.
  • the s-preamble can be used in three or more repetitions, that is, two or one frequency subcarriers are inserted.
  • the p-preamble is aligned with the frequency or center of the s-preamble, and the central location information is carried in a system broadcast channel (BCH).
  • BCH system broadcast channel
  • the offset between the p-preamble and the orthogonal frequency division multiplexing symbol in which the s-preamble is located takes a fixed value or a change value.
  • the time repetition period of the p-preamble, s-preamble, and BCH may be a frame.
  • the p-preamble may be set within one super frame period.
  • the number of occurrences is n, where n is 1, 2, 3, 4; and/or, the number of occurrences of the s-preamble in a superframe period is n, where n is 1, 2 4; and/or, the BCH of the fourth generation communication system is set to be n in a super frame period, wherein n is 1, 2, 3, 4.
  • the bandwidth of the BCH is equal to the bandwidth of the p-preamble, and the offset between the two takes a fixed value.
  • the starting location information of the superframe may be carried by the BCH or by the p-preamble sequence.
  • 802.16e is a protocol using Orthogonal Frequency Division Multiplexing (OFDM) technology.
  • the protocol defines the preamble (preamble) implementation access scheme, including OFDM symbol synchronization, frame synchronization (identifying the start of a frame), and cell identification code (Cell). ID) detection.
  • the protocol stipulates that the preamble occupies one symbol in the time domain, is composed of subcarriers in the frequency domain, and 114 specific pseudorandom sequences (PN sequence ⁇ 'J, different sequences identify different Cell IDs) are two phases
  • PN sequence ⁇ 'J specific pseudorandom sequences
  • BPSK Binary Phase Shift Keying
  • one radio frame is divided into a number of OFDM symbols, the length of one radio frame is determined to be 5 milliseconds, and the preamble is located on the first OFDM symbol of each frame.
  • the length of one radio frame is the same as the frame length of 802.16e, that is, 5 ms, each radio frame is divided into 8 sub-frames, and 8 sub-frames are divided into consecutive downlink sub-frames and uplink sub-frames, and Each subframe contains 6 OFDM symbols.
  • Four radio frames form a superframe, so a superframe is 20 milliseconds in length.
  • the 802.16m and 802.16e intra-frequency hybrid operation modes adopt time division multiplexing, that is, each radio frame has a part of time for the 802.16e system, and the remaining time is used for the 802.16m system, and the 802.16m is mixed with the 802.16m.
  • the e system bandwidth is 5MHz and 10MHz respectively.
  • the period of the synchronization channel is exemplified by a 10ms design, that is, one synchronization period, including two 5ms.
  • Embodiment 1 This example illustrates the setting of a preamble by taking a coexistence of an 802.16e frame structure of a 802.16m and a 5 MHz bandwidth as an example.
  • FIG. 1 is a schematic diagram of a preamble structure when an 802.16e frame structure of 802.16m and 5 MHz bandwidth coexists. From the time domain, where the p-preamble (ie, the first reference preamble above) is located on a fixed symbol of each frame, and the s-preamble (ie, the second reference preamble above) is located in the first radio frame. On the first symbol, and the s-preamble is a 5MHz bandwidth 802.16e preamble, the system broadcast channel (BCH) is located on the first symbol of the second radio frame, and the bandwidth is fixed at 5MHz.
  • BCH system broadcast channel
  • the new sequence can be a sequence different from the 802.16e preamble, or it can be the same as the 802.16e preamble. the sequence of.
  • Table 1 it is a schematic diagram of the structure of the p-preamble sequence and the s-preamble sequence. Table 1 p-preamble sequence and s-preamble's sequence ⁇ 'J structure
  • the s-preamble When the s-preamble is a 5 MHz bandwidth 802.16e preamble, the s-preamble has 114 sequences, which are divided into 3 groups, each group corresponding to one sector of a cell, and the s-preamble modulation of each sector is different. Offset subcarrier start position, for example: sector 1 modulation on subcarriers 1, 4, 7, etc., sector 2 modulation on subcarriers 2, 5, 8, etc., sector 3 modulation on subcarrier 3, 6, 9 and so on. 2 is a schematic diagram of a preamble structure when an 802.16m frame structure of an 802.16m and a 10 MHz bandwidth coexists.
  • FIG. 3 is a schematic diagram of a preamble structure when the 802.16m system exists alone. In the time domain, the p-preamble is located on the first symbol of the first radio frame; and the s-preamble is located in the second radio frame.
  • the BCH is located on the first symbol of the second radio frame.
  • the packet and subcarrier modulation manner of the s-preamble is the same as that of FIG. 1, and will not be described in detail herein.
  • the two parts wherein the first part of OFDM is a cyclic prefix of the OFDM symbol, is used to eliminate the multipath effect of the wireless channel transmission.
  • the position of the superframe is obtained by reading the position information of the BCH and the superframe header in the BCH, and the superframe synchronization is obtained.
  • Embodiment 2 This example is described by taking the 802.16m frame structure of the 802.16m and 5MHz bandwidth as an example.
  • the main difference between the example and the first embodiment is that the positional relationship between the p-preamble and the BCH is different, and the radio frame of 5ms is set.
  • the method includes four downlink subframes and four uplink subframes, where the implementation of the 802.16m and 10 MHz bandwidth 802.16e frame structure coexists with the 802.16m and 5 MHz bandwidth 802.16e frame structure, the only difference It is a structure in which the s-preamble bandwidth is 10 MHz and the 10 MHz 802.16e preamble sequence is used.
  • 5 is a schematic diagram of a preamble structure when an 802.16m frame structure of an 802.16m and a 5 MHz bandwidth coexists.
  • a p-preamble is located on a first symbol of a last downlink subframe of a first radio frame;
  • the -preamble is located on the first symbol of the first radio frame and is the 802.16e preamble of the 5 MHz bandwidth;
  • the BCH is located on the first symbol of the last downlink subframe of the second radio frame, and the bandwidth is fixed. It is 5MHz.
  • 6 is a schematic diagram showing the structure of a preamble when the 802.16m system exists alone. In time or above, the p-preamble is located on the first symbol of the last downlink subframe of the first radio frame; the s-preamble is located in the second symbol.
  • the second symbol of the last downlink subframe of the radio frame and is the newly designed 802.16m s-preamble sequence; the BCH is located on the first symbol of the last downlink subframe of the second radio frame, and the bandwidth is fixed. It is 5MHz.
  • the time or signal of the first p-preamble is ten A+A, that is, the structure of the first two segments is the same, where A indicates that the first segment and the second segment are the same.
  • the signal, + indicates the polarity of the signal;
  • the second p-preamble's time domain signal is +A _ A, which means that the polarity of the first and second segments are opposite, thus, by detecting the p-preamble
  • the polarity of the first and second segments of the time domain signal determines the starting position of the superframe.
  • the setting of the preamble is described in detail by taking the system scenario as an 802.16m system as an example.
  • Figure 7 is a schematic diagram showing the structure of a preamble when the 802.16m system exists alone. In the time domain, the p-preamble is located on the first symbol of the first downlink subframe of the first radio frame, and the s-preamble is located.
  • the second symbol of the first downlink subframe of the first radio frame, and the s-preamble is a 802.16m preamble of 5 MHz bandwidth; the BCH is located in the first downlink subframe of the first radio frame.
  • the bandwidth is fixed at 5MHz.
  • Embodiment 4 The fourth embodiment is the same as the third embodiment.
  • the system scenario is that the 802.16m system exists separately.
  • the main difference between the instance and the third embodiment is that the positions of the p-preamble, the s-preamble, and the BCH are different in the radio frame.
  • 8 is a schematic diagram of a preamble structure when an 802.16m system exists alone, and the p-preamble is located on the first symbol of the last downlink subframe of the first radio frame; The s-preamble is located on the second symbol of the last downlink subframe of the first radio frame, and the s-preamble is an 802.16m preamble of 5 MHz bandwidth; the BCH is located in the last downlink of the first radio frame. On the third symbol of the frame, the bandwidth is fixed at 5MHz.
  • 9 is a schematic diagram of a possible placement position (frequency domain) of a preamble p-preamble in a different bandwidth system.
  • a cell search method is provided, which is based on a preamble configuration method in Embodiment 1 of the foregoing method.
  • FIG. 1 a preamble configuration method in Embodiment 1 of the foregoing method.
  • Step S1002 The receiver performs orthogonal frequency division multiplexing symbol synchronization and frame synchronization by using the first reference preamble.
  • Step S1004 The receiver calculates the frequency offset estimation and compensation by using the first reference preamble.
  • the first reference preamble is used to calculate the frequency offset estimation and compensation of the receiver and the sender.
  • the receiver may
  • the transmitting party can be a base station.
  • Step S1006 The receiver performs sequence detection by using the first reference preamble autocorrelation to determine the following three parameters: a system application scenario, an offset between the first reference preamble and the second reference preamble, and a symbol positive Frequency division and sub-multiplex fine synchronization.
  • Step S1008 The receiver detects the second reference preamble at the position of the second reference preamble according to the offset between the first reference preamble and the second reference preamble, and obtains the cell identifier of the second reference preamble. Code and sector identification code.
  • Step S1010 The receiver detects the system broadcast channel by using the second reference preamble as a reference symbol.
  • Step S1012 The receiver obtains the location information of the superframe according to the first reference preamble.
  • the cell search process of the mobile station includes the following steps (step S1102 to step S1112).
  • Step S1102 Perform OFDM symbol synchronization, frame synchronization, and frequency synchronization.
  • the mobile station extracts a synchronization signal position (ie, a p-preamble symbol) from the received data, and performs frame synchronization and OFDM symbol synchronization, and the frame synchronization technology and the OFDM symbol synchronization technology belong to a technique well known to those skilled in the art.
  • the sub-frame synchronization signal usually has certain characteristics, such as the time domain symmetry shown in FIG. 4, which is very easy to extract, and the frequency synchronization uses the p-preamble symbol to estimate and compensate the frequency offset, and the frequency offset estimation. Algorithms are well known to those skilled in the art and are not mentioned here.
  • Step S1104 identifying a p-preamble sequence.
  • the OFDM symbol in which the p-preamble sequence is located is extracted by frame synchronization and OFDM symbol synchronization information, and a discrete Fourier transform is performed thereon, and the p-preamble sequence identification signal M can be extracted from the transformed data to obtain the s used by the cell. -preamble type.
  • Step S1106, detecting the Sector ID Using the frame synchronization and OFDM symbol synchronization information, the s-preamble is obtained according to the offset information of the p-preamble and s-preamble positions when M takes different values, and the discrete Fourier transform is performed on the transformed data.
  • the Sector ID can be determined according to the subcarrier power of different offsets.
  • the offset information of the p-preamble and the s-preamble position may be carried by the P-Preamble sequence, and the p-preamble is modulated on the L subcarriers, so that the -preamble is the same as the L segment. signal of.
  • Step S1108 performing Cell ID detection.
  • the Cell ID corresponding to the s-preamble sequence can be obtained by sequence matching on the subcarriers corresponding to the offset of the Cell ID.
  • BCH detection is performed. Using frame synchronization, OFDM symbol synchronization information, and offset information between P-reamle and BCH, the OFDM symbol in which the BCH is located, performing discrete Fourier transform on the symbol, using the solved s-preamble sequence as a reference symbol, The BCH information can be extracted from the transformed data.
  • Step S1112 Obtain location information of the superframe.
  • the starting position of the superframe can be obtained by one of the following three methods: Mode 1: The position of the BCH and the superframe header in the BCH can be read, and the starting position of the superframe can be obtained. Frame synchronization. Manner 2: As shown in FIG. 4, in the superframe of 20 ms, the time or signal of the first p-preamble is +A+A, that is, the structure of the two sections before and after, where A represents the first segment and the second segment.
  • the time domain signal of the second p-preamble is +A _ A, which means that the polarities of the signals of the first segment and the second segment are opposite, thus, by detecting p- The polarity of the first and second segments of the preamble's time domain signal determines the starting position of the superframe.
  • the relationship between the p-preamble and the BCH location is pre-defined.
  • the location of the p-preamble may be pre-defined to be adjacent to the location of the BCH, so that the receiver can determine the BCH according to the location of the p-preamble. position.
  • the cell search method when the third generation communication system and the fourth generation communication system coexist or the fourth generation communication system exists independently is realized.
  • the embodiment of the present invention only uses the IEEE 802.16e system as the third generation system, and the IEEE 802.16m system is the fourth generation system as an example, but is not limited thereto, and other systems are the third generation system and The fourth generation system implementing the method of the present invention is still within the scope of the present invention.
  • a hierarchical preamble configuration is adopted, and the access time is short; compatible with the access of the old system, the terminal of the old system can be normally accessed, and the new system can follow
  • the new mode access overcomes the problem of the old system access and reduces the overhead of the system.
  • the preamble configuration method supports the scalability of the 802.16m system bandwidth, that is, the 802.16m system bandwidth is 5MHz-20MHz, system bandwidth is greater than 20MHz,
  • the configuration method also supports UEs with different bandwidths and supports 802.16e preamble; systems that coexist in 802.16m and 802.16e can use the configuration method to multiplex the preamble of 802.16e, and the spectrum utilization is high.
  • the present invention may be embodied in various other various modifications and changes without departing from the spirit and scope of the invention. Changes and modifications are intended to be included within the scope of the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

前导码配置方法以及小区搜索方法
技术领域 本发明涉及通信领域,尤其涉及一种基于正交频分复用技术的前导码配 置方法以及小区搜索方法。 背景技术 正交频分复用( Orthogonal Frequency Division Multiplex,简称为 OFDM ) 是一种多载波传输模式, 其通过将一组高速传输的数据流转换为一组低速并 行传输的数据流,可以使系统对多径衰落信道频率选择性的敏感度大大降低, 而循环前缀的引入, 又进一步增强了系统抗符号间干扰 ( Inter-symbol Interference , 简称为 ISI ) 的能力, 除此之外, OFDM还具有带宽利用率高、 实现简单等特点, 使其在无线通信领域的应用越来越广。 其中, 基于 OFDM技术的系统包括: 无线局或网 ( Wireless Local Area Network, 简称为 WLAN ) 系统、 基于正交频分复用多址的 802.16e系统(第 三代通信系统)、以及 802.16e的下一代演进 802.16m系统(第四代通信系统) 等。 由于移动通信系统是平滑演进的, 所以, 为了保护运营商的利益, 在一 定的时间内, 第四代通信系统与第三代通信系统将会共存, 例如 802.16e 系 统和 802.16m系统将会共存。 根据 802.16e系统, 前导码 (preamble ) 在下行链路的第一个符号的整 个带宽上发送, 同时, 不同带宽(例如 5MHz, 10MHz, 20MHz ) 的 802.16e 分别采用不同的前导码, 但这存在实现方法复杂及接入时间长的问题。 可以看出, 如果完全采用旧的 preamble 实现接入, 将会限制新系统的 性能; 反之, 如果采用全新的接入信道设计, 则需要考虑兼容性的设计要求, 一个系统采用两套接入信道, 势必造成系统开销变大, 从而影响系统的整体 性能。 发明内容 考虑到相关技术中存在的基于正交频分复用技术的第三代通信系统与 第四代通信系统之间的接入问题而提出本发明, 为此, 本发明的主要目的在 于提供一种前导码配置方法以及小区搜索方法, 以解决上述问题。 才艮据本发明的一个方面, 提供了一种前导码配置方法, 用于兼容第三代 通信系统的第四代通信系统的正交频分复用系统中。 才艮据本发明实施例的前导码配置方法包括:将第四代通信系统的前导码 配置为包括第一参考前导码和第二参考前导码, 其中, 第一参考前导码和第 二参考前导码位于不同的正交频分复用符号中。 其中, 上述第一参考前导码具有固定的带宽和 /或固定的位置。 优选地, 上述第一参考前导码的位置包括以下之一: 第四代通信系统的 超帧的头部、 无线帧的头部、 或无线帧的最后一个无线子帧的头部。 其中,将上述第四代通信系统的超帧的起始位置信息携带在第四代通信 系统的系统广播信道中, 或者携带在第一参考前导码的序列中。 优选地, 将第一参考前导码与第二参考前导码的频域中心对齐。 优选地,第一参考前导码与第二参考前导码所处的正交频分复用符号之 间的偏移量取固定值或变化值。 优选地,上述正交频分复用符号之间的偏移量的变化值由第一参考前导 码的序列携带。 其中,上述频域中第一参考前导码的中心位置信息携带在第四代通信系 统的系统广播信道中。 优选地,上述第四代通信系统的系统广播信道与第一参考前导码之间的 偏移量取固定值。 其中, 才艮据系统应用场景, 将第一参考前导码配置为具有不同的序列, 即第一参考前导码携带系统应用场景的信息, 其中, 系统应用场景的信息利 用第一参考前导码的不同序列指示。 其中,才艮据上述系统应用场景,将第二参考前导码配置为不同的序列组。 优选地, 上述系统应用场景包括但不限于: 第四代通信系统系统及与其 具有相同频率的 5MHz的第三代通信系统、 第四代通信系统及与其具有相同 频率的 10MHz的第三代通信系统、 以及第四代通信系统独立存在。 其中, 当应用场景为第四代通信系统系统及与其具有相同频率的 5MHz 的第三代通信系统时, 将第二参考前导码配置为 5MHz的第三代通信系统的 前导码; 当应用场景为第四代通信系统系统及与其具有相同频率的 10MHz 的第三代通信系统时, 将第二参考前导码配置为 10MHz 的第三代通信系统 的前导码; 当第四代通信系统独立存在时, 将第二参考前导码配置为第四代 通信系统的第二参考前导码。 优选地, 第一参考前导码、 第二参考前导码以及第四代通信系统的系统 广播信道的时间重复周期为超帧周期除以 n, 其中, n取值为 1、 2、 3、 4。 才艮据本发明的另一方面, 提供了一种小区搜索方法, 该方法基于上述前 导码配置方法, 并由接收方来实现该方法。 才艮据本发明实施例的小区搜索方法包括:利用第一参考前导码进行正交 频分复用符号同步及帧同步; 利用第一参考前导码计算出频偏估计及补偿; 利用第一参考前导码自相关进行序列检测, 确定出系统应用场景、 第一参考 前导码和第二参考前导码之间的偏移量、 正交频分复用符号精同步; 根据第 一参考前导码和第二参考前导码之间的偏移量、 检测第二参考前导码, 获得 第二参考前导码携带的小区识别码和扇区识别码; 利用第二参考前导码作为 参考符号, 检测系统广播信道; 根据第一参考前导码获得超帧的位置信息。 才艮据本发明上述至少一个技术方案, 通过采用分级的前导码配置方法, 实现了基于正交频分复用技术的第三代通信系统与第四代通信系统之间的接 入方案, 缩短了接入时间。 附图说明 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本 发明的实施例一起用于解释本发明, 并不构成对本发明的限制。 在附图中: 图 1是才艮据本发明方法实施例一的 802.16m与 5MHz带宽的 802.16e帧 结构共存时的前导码结构示意图; 图 2是才艮据本发明方法实施例一的 802.16m与 10MHz带宽的 802.16e 帧结构共存时的前导码结构示意图; 图 3是才艮据本发明方法实施例一的 802.16m独立存在的帧结构前导码结 构示意图; 图 4是才艮据本发明方法实施例一的第一参考前导码所在的 OFDM符号 时域结构示意图; 图 5是是才艮据本发明方法实施例二的 802.16m与 5MHz带宽的 802.16e 帧结构共存时的前导码结构示意图; 图 6是才艮据本发明方法实施例二的 802.16m独立存在的帧结构前导码结 构示意图; 图 7是才艮据本发明方法实施例三的 802.16m独立存在的帧结构前导码结 构示意图; 图 8是才艮据本发明方法实施例四的 802.16m独立存在的帧结构前导码结 构示意图; 图 9是根据本发明方法实施例的不同带宽系统中, 前导码放置位置(频 域) 的示意图; 图 10是根据本发明方法实施例五的小区搜索方法的流程图; 图 11是根据本发明方法实施例五的小区搜索方法的详细处理流程图。 具体实施方式 功能相克述 为了实现第四代通信系统与第三代通信系统的共存, 新的通信系统(例 如第四代通信系统) 在设计时需要考虑对第三代移动通讯系统的兼容性, 即 后向兼容性设计。 一般来说,两个系统的兼容性需要考虑以下问题:空口系统参数兼容性、 帧结构共存设计及网 ^^入兼容性。 其中, 参数兼容性是为了实现第三代通信系统(例如 802.16m )和第四 代通信系统 (例如 802.16e )的帧结构共存, 两种系统的系统参数之间必须满 足一定的关系。 例如, 802.16m系统采用与 802.16e系统兼容的子载波间隔, 以确保以下几个方面: 不同带宽的 802.16e 系统可以采用频分的方式与 802.16m 系统共享资源 (帧结构共存设计的需求)、 802.16e 系统与 802.16m 系统具有相同的过采样率、 802.16m系统的循环前缀( Cyclic Prefix, 简称为 CP ) 长度保持与 802.16e系统兼容。 其中, 帧结构共存设计是为了实现 802.16e系统与 802.16m系统共享资 源, 采用的方式有时分复用 (Time Division Multiplexing, 简称为 TDM )、 频 分复用 ( Frequency Division Multiplexing, 简称为 FDM )、 TDM/FDM '昆合。 其中, 网络接入兼容性是保证 802.16e系统的终端能够接入 802.16m系 统的基站。 对于移动通信系统, 终端通常借助同步信道来接入网络, 一般的 接入步骤如下: ( 1 ) 时间、 频率同步; (2 )检测小区识别码 (Cell lD ); ( 3 ) 读取广播消息。 经过以上步骤, 终端依据广播消息中的信息, 开始后续接入 过程。 接入过程对移动通信系统非常重要, 其中一个重要的指标是接入时间。 接入时间越短, 系统性能越高, 但是由于接入需要借助同步信道实现, 而同 步信道相对于传输用户信息的业务信道而言, 资源占用是一种开销。 所以, 对于一个好的移动通信系统, 需要在接入性能和同步信道资源占用之间进行 平衡。 后向兼容的 802.16m 系统的接入设计至少需要满足下述需求: 需要 802.16e 系统的接入设计, 以便 802.16e 系统的终端能够顺利接入; 802.16m 系统的终端也能顺利接入, 同时, 802.16m 系统的接入与 802.16e 系统的接 入性能相比, 要有提高; 802.16m系统的同步信道设计开销较小。 基于以上情况,本发明提供一种针对于第四代通信系统的前导码的配置 方法, 解决 802.16e系统与 802.16m系统之间的接入问题。 在不沖突的情况下, 本申请中的实施例及实施例中的特征可以相互组 合。 下面将结合附图详细描述本发明。 方法实施例一 才艮据本发明实施例, 提供了一种前导码配置方法, 用于正交频分复用系 统中。 该前导码配置方法包括:将第四代通信系统的前导码配置为包括第一参 考前导码和第二参考前导码, 其中, 第一参考前导码和第二参考前导码位于 不同的正交频分复用符号中。 通过本发明实施例提供的技术方案,实现了基于正交频分复用技术的第 三代通信系统与第四代通信系统之间的接入兼容问题。 其中, 该前导码配置采用分级技术, 将 802.16m 系统的前导码分为 p-preamble (即上文的第一参考前导码 )和 s-preamble (即上文的第二参考前 导码)。 其中, p-preamble带宽为固定的带宽, 例如 5MHz , 且采用时域重复 L 次结构, 可以令 L=2、 4等, 相应的频或结构为 p-preamble序列间隔 L - 1个 子载波插入。 上述 p-preamble与 802.16e中的前导码采用固定的时间间隔 P-offset, P-offset可以以 OFDM符号为单位, 也可以以子帧为单位, 而且 P-offset可以 取固定值, 也可以 艮据需要来配置, 且当 P-offset可配置时, 该 P-offset信息 可以由 p-preamble序列来携带。 上述 p-preamble的位置固定, 可以处于无线帧的头部、 超帧的头部、 或 是根据需要处于其它的位置上。 其中, s-preamble可以采用时或 3次重复, 即频或子载波隔 2个插一个。 优选地, 上述 p-preamble与 s-preamble的频或中心对齐, 且该中心位置 信息携带在系统广播信道 ( Broadcast Channel , 简称为 BCH ) 中。 优选地,上述 p-preamble与 s-preamble所处的正交频分复用符号之间的 偏移量取固定值或变化值。 优选地, 上述 p-preamble、 s-preamble, BCH的时间重复周期可以是帧 周期的 n倍, 也可以是超帧周期的 1/m, 其中 m、 n=l、 2、 即 m、 n的 取值均为自然数, 优选地, 可以设置 p-preamble在一个超帧周期内的出现次 数为 n, 其中, n取值为 1、 2、 3、 4; 和 /或, 设置 s-preamble在一个超帧周 期内的出现次数为 n, 其中, n取值为 1、 2、 4; 和 /或, 设置第四代通信系 统的 BCH在一个超帧周期内的出现次数为 n, 其中, n取值为 1、 2、 3、 4。 优选地, 上述 BCH的带宽与 p-preamble的带宽相等, 且二者之间的偏 移量取固定值。 优选地, 上述超帧的起始位置信息可以通过 BCH 携带, 也可以通过 p-preamble序列携带。 下面以 IEEE 802.16e系统为旧系统(即第三代系统), IEEE 802.16m系 统为新系统 (即第四代系统) 为例对本发明加以说明。
802.16e 是使用正交频分复用技术的协议, 协议中规定了前导码 ( preamble ) 的实现接入方案, 包括 OFDM符号同步, 帧同步(标识一帧的 开始), 以及小区标识码(Cell ID )的检测。 其中, 该协议规定, 前导码在时 域上占一个符号, 在频域上由子载波构成, 114个特定的伪随机序列 (PN序 歹' J , 不同的序列识别不同的 Cell ID )以二相编码 ( Binary Phase Shift Keying, 简称为 BPSK ) 方法调制到子载波上, 且每隔 3个子载波调制某个 PN序列 的一个比特。 在 802.16e的 OFDM系统中, 一个无线帧分为若干个 OFDM符号, 一 个无线帧的长度为确定值为 5毫秒, preamble位于每帧的第一个 OFDM符号 上。 在 802.16m的 OFDM系统中, 一个无线帧的长度与 802.16e的帧长度 相同, 即 5ms , 每个无线帧分为 8个子帧, 8个子帧分为连续的下行子帧和 上行子帧, 且每个子帧中包含 6个 OFDM符号。 4个无线帧组成一个超帧, 所以一个超帧的长度为 20毫秒。
802.16m与 802.16e同频混合工作模式采用时分复用方式, 即每个无线 帧中, 有部分时间用于 802.16e系统, 而剩余时间则用于 802.16m系统, 与 802.16m同频混合的 802.16e系统带宽分别为 5MHz、 10MHz。 同步信道的周期以 10ms设计为例, 即一个同步周期中, 包含两个 5ms 的无线帧。 实施例一 该实例以系统场景为 802.16m与 5MHz带宽的 802.16e帧结构共存为例 对前导码的设置进行说明, 图 1为 802.16m与 5MHz带宽的 802.16e帧结构 共存时的前导码结构示意图, 从时域上讲, 其中 p-preamble (即上文第一参 考前导码)位于每帧的固定符号上, s-preamble (即上文第二参考前导码 )则 位于第一个无线帧的第一个符号上, 且 s-preamble为 5MHz带宽的 802.16e 的前导码, 系统广播信道(BCH )位于第二个无线帧的第一个符号上, 带宽 固定为 5MHz。 从频域的角度讲, p-preamble在 5MHz带宽的有用子载波上进行调制, 并且间隔 L - 1个子载波进行调制, 例如可令 L=2或 4, 当 L=2时, 可以在 奇数子载波或 数子载波上进行调制; s-preamble可以在 5M Hz带宽的有用 子载波上进行调制, 并且间隔两个子载波上进行调制。 其中, p-preamble 序列的结构可以分为三种, 即 M=l、 2、 3 , 其中, M=l表示 s-preamble为 5MHz带宽的 802.16e的前导码, M=2表示 s-preamble 为 10MHz带宽的 802.16e的前导码, M=3表示 s-preamble为 5MHz带宽的 802.16m新序列, 该新序列可以是与 802.16e 的前导码不同的序列, 也可以 是与 802.16e 的前导码相同的序列。 如下表 1 所示, 为 p-preamble序列与 s-preamble序列的结构示意图。 表 1 p-preamble序列与 s-preamble的序歹 'J结构
Figure imgf000010_0001
当 s-preamble为 5MHz带宽的 802.16e的 preamble时, s-preamble共有 114 个序列, 分为 3 个组, 每组对应于一个蜂窝的一个扇区, 每个扇区的 s-preamble调制在不同偏移量的子载波起始位置上, 例如: 扇区 1调制在子 载波 1、 4、 7等, 扇区 2调制在子载波 2、 5、 8等, 扇区 3调制在子载波 3、 6、 9等。 图 2为 802.16m与 10MHz带宽的 802.16e帧结构共存时的前导码结构 示意图, 从时 i或上讲, -preamble, s-preamble和 BCH的位置关系与图 1相 同, 这里不再详细描述。 p-preamble 的序列号可以为 M=2 , 在子载波上的调制与图 1 相同, s-preamble的分组和子载波调制方式与图 1相同, 这里不再详细描述。 图 3 为 802.16m 系统单独存在时的前导码结构示意图, 从时域上讲, p-preamble位于第一个无线帧的第一个符号上; 而 s-preamble则位于第二无 线帧的第二个符号上,并且由新设计的 802.16m的 s-preamble序列充当; BCH 则位于第二无线帧的第一个符号上。 此时 p-preamble的序列号可以为 M=3 , 在子载波上的调制与图 1相同, s-preamble的分组和子载波调制方式与图 1相同, 这里不再详细描述。 图 4 是 L=2 时 p-preamble 所在 OFDM 符号的时 i或结构图, 由于 p-preamble在频或上采用子载波间隔插入的方式, 所以, 时 i或在一个 OFDM 符号内形成前后相同的两部分, 其中, OFDM的前一部分是 OFDM符号的 循环前缀, 用于消除无线信道传输的多径影响。 其中, 通过读取 BCH 中的本 BCH与超帧头的位置信息, 即可获得超 帧的起始位置, 获得超帧同步。 实施例二 该实例以系统场景为 802.16m与 5MHz带宽的 802.16e帧结构共存为例 进行描述, 该实例与实施例一的主要区别是 p-preamble和 BCH的位置关系 不同, 设 5ms的无线帧中包含 4个下行子帧和 4个上行子帧, 此处 802.16m 与 10MHz带宽的 802.16e帧结构共存时的实现方式与 802.16m与 5MHz带宽 的 802.16e帧结构共存时的结构相同,唯一区别是 s-preamble带宽为 10MHz, 且采用 10MHz的 802.16e前导码序列的结构。 图 5为 802.16m与 5MHz带宽的 802.16e帧结构共存时的前导码结构示 意图, 从时域上讲, p-preamble位于第一个无线帧的最后一个下行子帧的第 一个符号上; s-preamble则位于第一个无线帧的第一个符号上, 并且为 5MHz 带宽的 802.16e的前导码; BCH则位于第二个无线帧最后一个下行子帧的第 一个符号上, 且带宽固定为 5MHz。 图 6为 802.16m 系统单独存在时的前导码结构示意图, 从时或上讲, p-preamble 位于第一个无线帧的最后一个下行子帧的第一个符号上; s-preamble 则位于第二个无线帧最后一个下行子帧的第二个符号上, 并且为 新设计的 802.16m的 s-preamble序列; BCH则位于第二个无线帧最后一个下 行子帧的第一个符号上, 带宽固定为 5MHz。 如图 4所示,在 20ms的超帧中,第一个 p-preamble的时或信号为十 A+A, 即前后两段全同的结构, 其中 A表示第一段和第二段为相同的信号, +表示 信号的极性; 第二个 p-preamble的时域信号则为 +A _ A, 即表示第一段和第 二段信号的极性相反, 这样, 通过检测 p-preamble的时域信号第一段和第二 段信号的极性即可确定超帧的起始位置。 实施例三 实施例三以系统场景为 802.16m 系统单独存在为例对前导码的设置进 行详细说明。 图 7为 802.16m 系统单独存在时的前导码结构示意图, 从时域上讲, p-preamble 位于第一个无线帧的第一个下行子帧的第一个符号上, 而 s-preamble 则位于第一个无线帧的第一个下行子帧的第二个符号上, 且该 s-preamble为 5MHz带宽的 802.16m的前导码; BCH则位于第一个无线帧的 第一个下行子帧的第三个符号上, 带宽固定为 5MHz。 实施例四 实施例四与实例三相同, 系统场景都是 802.16m系统单独存在, 该实例 与实施例三的主要区别是 p-preamble、 s-preamble和 BCH在无线帧中的位置 不同。 图 8为 802.16m 系统单独存在时的前导码结构示意图, 从时或上讲 , p-preamble 位于第一个无线帧的最后一个下行子帧的第一个符号上; s-preamble 则位于第一个无线帧的最后一个下行子帧的第二个符号上, 且该 s-preamble为 5MHz带宽的 802.16m的前导码; BCH位于第一个无线帧的最 后一个下行子帧的第三个符号上, 带宽固定为 5MHz。 图 9为不同带宽系统中, 前导码 p-preamble可能的放置位置(频域)示 意图, 对于 20MHz带宽系统中 5M带宽的前导码, 可以有 5个位置, 对于 20MHz带宽系统中 10M带宽的前导码, 可以有 3个位置, 对于 10MHz带宽 系统中 5M带宽的前导码, 可以有 3个位置; 系统中前导码的最终放置位置, 由系统广播消息携带该位置信息, 并将该位置信息发送给移动终端, 移动终 端才艮据该位置信息确定系统带宽所在的频率范围。 方法实施例二 才艮据本发明实施例, 提供了一种小区搜索方法, 该方法基于上述方法实 施例一中的前导码配置方法。 图 10是根据本发明实施例的小区搜索方法的流程图, 如图 10所示, 该 方法包括以下步骤 (步骤 S1002至步骤 S1012 )。 步骤 S1002 ,接收方利用第一参考前导码进行正交频分复用符号同步及 帧同步。 步骤 S1004 , 接收方利用所述第一参考前导码计算出频偏估计及补偿, 具体地, 即利用第一参考前导码计算出接收方和发送方的频偏估计及补偿, 例如, 接收方可以为终端, 发射方可以为基站。 步骤 S 1006 , 接收方利用第一参考前导码自相关进行序列检测, 确定出 下述三个参数: 系统应用场景、 第一参考前导码和第二参考前导码之间的偏 移量、 符号正交频分复用精同步。 步骤 S1008 ,接收方才艮据第一参考前导码和第二参考前导码之间的偏移 量, 在第二参考前导码的位置检测第二参考前导码, 并获得第二参考前导码 的小区识别码和扇区识别码。 步骤 S1010 , 接收方利用第二参考前导码作为参考符号, 检测系统广播 信道。 步骤 S1012 , 接收方才艮据第一参考前导码获得超帧的位置信息。 通过本发明实施例提供的技术方案,实现了第三代通信系统和第四代通 信系统共存的小区搜索方法或第四代通信系统独立存在时的小区搜索方法。 实施例五 如图 11所示, 在移动台端, 移动台的小区搜索过程包括如下步骤(步 骤 S1102至步骤 S1112 )。 步骤 S1102 , 进行 OFDM符号同步、 帧同步及频率同步。 具体地, 移 动台从接收的数据中提取出同步信号位置 (即 p-preamble符号), 同时进行 帧同步和 OFDM符号同步, 帧同步技术和 OFDM符号同步技术属于本领域 技术人员公知的技术, 在此不作赘述。 其中, 子帧同步信号通常具有某种特 性, 例如图 4所示的时域对称性等特点, 非常容易提取, 而频率同步则是利 用 p-preamble符号 ^故频偏估计和补偿, 频偏估计算法属于本领域技术人员熟 知的算法, 在此不作赞述。 步骤 S1104 ,识别 p-preamble序列。利用帧同步、 OFDM符号同步信息, 提取 p-preamble序列所在的 OFDM符号, 并对其执行离散傅立叶变换,从变 换后的数据中可以提取出 p-preamble 序列标识信号 M, 获得该小区采用的 s-preamble类型。 步骤 S 1106 , 检测 Sector ID。 利用帧同步、 OFDM符号同步信息, 才艮据 M 取不同值时的 p-preamble 和 s-preamble 位置的偏移量信息, 获得 s-preamble, 并对其执行离散傅立叶变换, 从变换后的数据中, 根据不同偏移 量的子载波功率大小, 即可确定 Sector ID。 其中, p-preamble和 s-preamble位置的偏移量信息, 可以由 P-Preamble 序列携带, 例 ^口, p-preamble 隔 L个子载波上进行调制, 这样, -preamble 时或为 L段全同的信号。 例如 L=4时, 记为 ± A ± A ± A ± A , 其中十号和 -号 表示各段的极性, 设第一到第四段的极性为 [nl n2 n3 n4] , 贝 'J不同的 nl〜n4 组合表示不同的 offset, 如表 2所示为不同的 nl〜n4组合所对应的固定位置 ( offset )。 表 2 不同的 nl〜n4组合所对应的 offset
[nl n2 n3 n4] Offset (固定位置)
+ + + + Offset=l
+ + + - Offset=2
+ + - - Offset=3 步骤 S 1108 , 进行 Cell ID检测。 才艮据确定的 Sector ID , 在 Cell ID对应 偏移量的子载波上, 通过序列匹配的方式, 即可获得与 s-preamble序列对应 的 Cell ID。 步骤 S1110 , 进行 BCH检测。 利用帧同步、 OFDM符号同步信息, 以 及 P-reamle与 BCH之间的偏移量信息, BCH所在的 OFDM符号, 对该符号 执行离散傅立叶变换, 利用解出的 s-preamble序列作为参考符号, 从变换后 的数据中可以提取出 BCH信息。 步骤 S1112 , 获得超帧的位置信息。 其中, 可以通过如下三种方式之一 获得超帧的起始位置: 方式一: 可以通过读取 BCH 中的本 BCH与超帧头的位置信息, 即可 获得超帧的起始位置, 获得超帧同步。 方式二: 如图 4所示, 在 20ms的超帧中, 第一个 p-preamble的时或信 号为 +A+A , 即前后两段全同的结构, 其中 A表示第一段和第二段相同的信 号, +表示信号的极性; 第二个 p-preamble的时域信号则为 +A _ A, 即表示第 一段和第二段信号的极性相反, 这样, 通过检测 p-preamble的时域信号第一 段和第二段信号的极性即可确定超帧的起始位置。 方式三, 预先规定 p-preamble与 BCH位置之间的关系, 例如, 可以预 先规定 p-preamble的位置与 BCH的位置相邻, 这样,接收方才艮据 p-preamble 的位置就可以确定出 BCH的位置。 上述实施方式中,实现了第三代通信系统和第四代通信系统共存或第四 代通信系统独立存在时的小区搜索方法。 需要说明的是, 本发明实施例仅以 IEEE 802.16e 系统为第三代系统, IEEE 802.16m系统为第四代系统为例进行说明, 但并不限于此, 以其他系统 为第三代系统和第四代系统实施本发明的方法仍在本发明的保护范围内。 如上, 借助于本发明提供的前导码配置方法以及小区搜索方法, 采用分 级的前导码配置, 接入时间短; 兼容了旧系统的接入, 旧系统的终端可以正 常接入, 新系统可以按照新的方式接入, 克服了旧系统接入存在的问题, 减 少了系统的开销; 而 艮据本发明实施例的前导码配置方法支持 802.16m系 统带宽的可扩展性, 即 802.16m 系统带宽为 5MHz-20MHz, 系统带宽大于 20MHz, 另外, 该配置方法还支持不同带宽的 UE, 支持 802.16e的前导; 在 802.16m和 802.16e共存的系统利用该配置方法, 可以复用 802.16e的前导, 频谱利用率高。 当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的 情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形, 但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种前导码配置方法, 用于兼容第三代通信系统的第四代通信系统的正 交频分复用系统中, 其特征在于, 所述方法包括:
将所述第四代通信系统的前导码配置为包括第一参考前导码和第 二参考前导码, 其中, 所述第一参考前导码和所述第二参考前导码位于 不同的正交频分复用符号中。
2. 根据权利要求 1所述的方法, 其特征在于, 所述第一参考前导码具有固 定的带宽和 /或固定的位置。
3. 根据权利要求 1所述的方法, 其特征在于, 所述第一参考前导码的位置 包括以下之一: 所述第四代通信系统的超帧的头部、 无线帧的头部、 或 无线帧的最后一个无线子帧的头部。
4. 根据权利要求 3所述的方法, 其特征在于, 将所述第四代通信系统的超 帧的起始位置信息携带在所述第四代通信系统的系统广播信道中, 或者 携带在所述第一参考前导码的序列中。
5. 根据权利要求 1所述的方法, 其特征在于, 将所述第一参考前导码与所 述第二参考前导码的频域中心对齐。
6. 才艮据权利要求 1所述的方法, 其特征在于, 所述第一参考前导码与所述 第二参考前导码所处的正交频分复用符号之间的偏移量取固定值或变化 值。
7. 根据权利要求 6所述的方法, 其特征在于, 所述正交频分复用符号之间 的偏移量的变化值由所述第一参考前导码的序列携带。
8. 才艮据权利要求 5所述的方法, 其特征在于, 所述第一参考前导码在频域 中的中心位置信息携带在所述第四代通信系统的系统广播信道中。
9. 根据权利要求 8所述的方法, 其特征在于, 所述第四代通信系统的系统 广播信道与所述第一参考前导码之间的偏移量取固定值。
10. 根据权利要求 1所述的方法, 其特征在于, 所述第一参考前导码携带系 统应用场景的信息, 其中, 所述系统应用场景的信息利用所述第一参考 前导码的不同序列指示。
11. 根据权利要求 10所述的方法, 其特征在于, 根据所述系统应用场景, 将 所述第二参考前导码配置为不同的序列组。
12. 根据权利要求 10所述的方法, 其特征在于, 所述系统应用场景包括: 所 述第四代通信系统系统及与其具有相同频率的 5MHz的所述第三代通信 系统、所述第四代通信系统及与其具有相同频率的 10MHz的所述第三代 通信系统、 以及所述第四代通信系统独立存在。
13. 才艮据权利要求 12所述的方法, 其特征在于,
当所述应用场景为所述第四代通信系统系统及与其具有相同频率 的 5MHz的所述第三代通信系统时,将所述第二参考前导码配置为 5MHz 的所述第三代通信系统的前导码;
当所述应用场景为所述第四代通信系统系统及与其具有相同频率 的 10MHz 的所述第三«通信系统时, 将所述第二参考前导码配置为 10MHz的所述第三代通信系统的前导码;
当所述第四代通信系统独立存在时,将所述第二参考前导码配置为 所述第四代通信系统的第二参考前导码。
14. 才艮据权利要求 13所述的方法, 其特征在于,
所述第一参考前导码在所述超帧周期内的出现次数为 n, 其中, n 取值为 1、 2、 3、 4; 和 /或
所述第二参考前导码在所述超帧周期内的出现次数为 n, 其中, n 取值为 1、 2、 4; 和 /或
所述第四代通信系统的系统广播信道在所述超帧周期内的出现次 数为 n, 其中, n取值为 1、 2、 3、 4。
15. 一种小区搜索方法,使用根据权利要求 1至 14中任一项所述的前导码配 置方法, 其特征在于, 所述小区搜索方法包括:
利用所述第一参考前导码进行正交频分复用符号同步及帧同步; 利用所述第一参考前导码计算出频偏估计及补偿; 利用所述第一参考前导码自相关进行序列检测,确定出系统应用场 景、 所述第一参考前导码和所述第二参考前导码之间的偏移量、 符号正 交频分复用精同步;
才艮据所述第一参考前导码和所述第二参考前导码之间的的偏移量、 检测所述第二参考前导码, 并获得所述第二参考前导码携带的小区识别 码和扇区识别码;
利用所述第二参考前导码作为参考符号, 检测所述系统广播信道; 才艮据所述第一参考前导码获得所述超帧的位置信息。
PCT/CN2008/073906 2008-04-30 2008-12-31 前导码配置方法以及小区搜索方法 WO2009132502A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08874089.9A EP2302856B1 (en) 2008-04-30 2008-12-31 Preamble code configuration method and cell search method
US12/989,982 US8717975B2 (en) 2008-04-30 2008-12-31 Method for configuring a preamble and a method for searching a cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008100887221A CN101572684B (zh) 2008-04-30 2008-04-30 小区搜索方法
CN200810088722.1 2008-04-30

Publications (1)

Publication Number Publication Date
WO2009132502A1 true WO2009132502A1 (zh) 2009-11-05

Family

ID=41231922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073906 WO2009132502A1 (zh) 2008-04-30 2008-12-31 前导码配置方法以及小区搜索方法

Country Status (4)

Country Link
US (1) US8717975B2 (zh)
EP (1) EP2302856B1 (zh)
CN (1) CN101572684B (zh)
WO (1) WO2009132502A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130107871A1 (en) * 2010-07-09 2013-05-02 Zte Corporation Synchronization preamble transmission method, synchronization method, device and system
CN111316708A (zh) * 2017-09-11 2020-06-19 瑞典爱立信有限公司 无线通信网络中的发射功率控制

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150952A1 (en) * 2009-06-23 2010-12-29 Lg Electronics Inc. Method for transmitting scheduling information in mobile communication system and femtocell base station apparatus using the same
CN102237959B (zh) * 2010-04-30 2015-08-12 中兴通讯股份有限公司 系统消息的更新方法及无线通信系统
US8582551B2 (en) * 2010-05-26 2013-11-12 Intel Corporation Device, system and method of wireless communication over non-contiguous channels
DK2690920T3 (da) * 2011-03-25 2020-04-14 Beijing Nufront Mobile Multimedia Tech Co Ltd Trådløst kommunikationssystem og kommunikationsfremgangsmåde dertil
EP2704468A4 (en) * 2011-04-29 2015-05-27 Fujitsu Ltd APPARATUS, METHOD AND BASE STATION FOR CELL IDENTIFIER ALLOCATION, RELATED PROGRAM, AND SUPPORT THEREFOR
KR20130028397A (ko) 2011-09-09 2013-03-19 삼성전자주식회사 무선 통신 시스템에서 동기 및 시스템 정보 획득을 위한 장치 및 방법
EP3305003B1 (en) * 2015-05-27 2021-03-31 Telefonaktiebolaget LM Ericsson (publ) A random access preamble signal construction
US9974023B2 (en) * 2015-09-25 2018-05-15 Intel Corporation Apparatus, system and method of communicating a wakeup packet
JP6848879B2 (ja) * 2015-11-19 2021-03-24 ソニー株式会社 装置、方法及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6618452B1 (en) * 1998-06-08 2003-09-09 Telefonaktiebolaget Lm Ericsson (Publ) Burst carrier frequency synchronization and iterative frequency-domain frame synchronization for OFDM
CN1777167A (zh) * 2004-11-02 2006-05-24 因芬尼昂技术股份公司 无线局域网的间发和连续数据通信的正交频分复用传输法
CN1909536A (zh) * 2005-08-02 2007-02-07 松下电器产业株式会社 正交频分多址-时分多址通信方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060016053A (ko) * 2004-08-16 2006-02-21 삼성전자주식회사 무선 통신 시스템에서 프리앰블 송수신 장치 및 방법
WO2008049028A1 (en) * 2006-10-17 2008-04-24 Intel Corporation Device, system, and method for partitioning and framing communication signals in broadband wireless access networks
US8175022B2 (en) * 2007-12-19 2012-05-08 Intel Corporation Transmission of system configuration information in mobile WiMAX systems
US8315330B2 (en) * 2007-12-20 2012-11-20 Lg Electronics Inc. Method of transmitting data in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6618452B1 (en) * 1998-06-08 2003-09-09 Telefonaktiebolaget Lm Ericsson (Publ) Burst carrier frequency synchronization and iterative frequency-domain frame synchronization for OFDM
CN1777167A (zh) * 2004-11-02 2006-05-24 因芬尼昂技术股份公司 无线局域网的间发和连续数据通信的正交频分复用传输法
CN1909536A (zh) * 2005-08-02 2007-02-07 松下电器产业株式会社 正交频分多址-时分多址通信方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2302856A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130107871A1 (en) * 2010-07-09 2013-05-02 Zte Corporation Synchronization preamble transmission method, synchronization method, device and system
US9622200B2 (en) * 2010-07-09 2017-04-11 Zte Corporation Synchronization preamble transmission method, synchronization method, device and system
CN111316708A (zh) * 2017-09-11 2020-06-19 瑞典爱立信有限公司 无线通信网络中的发射功率控制

Also Published As

Publication number Publication date
EP2302856A1 (en) 2011-03-30
EP2302856A4 (en) 2013-03-27
US8717975B2 (en) 2014-05-06
CN101572684A (zh) 2009-11-04
EP2302856B1 (en) 2014-04-02
US20110064032A1 (en) 2011-03-17
CN101572684B (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
WO2009132502A1 (zh) 前导码配置方法以及小区搜索方法
KR101460107B1 (ko) 무선 통신 시스템에서 순환 전치 길이 변경 방법 및 이를 위한 시스템
EP2987288B1 (en) Apparatus and method using backwards-compatible preamble formats for multiple access wlan communication system
RU2432699C2 (ru) Обнаружение сигналов в системе беспроводной связи
EP1895703A1 (en) Bandwidth asymmetric communication system based on OFDM and TDMA
WO2017004774A1 (zh) 一种数据传输的方法、无线网络设备和通信系统
EP1876730A1 (en) Bandwidth asymmetric communication system
US20100097972A1 (en) Detection and Efficient Use of Broadcast-Only Modes of Cellular Communication System Operation
WO2018028490A1 (zh) 信息传输方法、终端及网络设备
WO2010075731A1 (zh) 辅同步信道的配置方法和装置、子载波映射方法和装置
CN1909536A (zh) 正交频分多址-时分多址通信方法及装置
US8509124B2 (en) Method for transceiving a signal in wireless communication system
US20100254289A1 (en) Method for transceiving a signal in wireless communication system
WO2012003671A1 (zh) 同步前导码发送方法、同步方法、装置及系统
KR101792505B1 (ko) 복수의 무선통신 방식을 지원하는 무선통신 시스템에서 신호를 수신하는 방법 및 단말 장치
CN107872868B (zh) 信号处理的方法、设备和系统
WO2018006741A1 (zh) 传输信号的方法和装置
EP3634033A1 (en) Information transmission method and device and information receiving method and device
WO2019137808A1 (en) Time and frequency offset estimation using repeated data symbols
WO2015042916A1 (zh) 一种发送信息的方法、及确定cp类型的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08874089

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12989982

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008874089

Country of ref document: EP