WO2009128439A1 - Exposure method and device, and method for manufacturing device - Google Patents

Exposure method and device, and method for manufacturing device Download PDF

Info

Publication number
WO2009128439A1
WO2009128439A1 PCT/JP2009/057488 JP2009057488W WO2009128439A1 WO 2009128439 A1 WO2009128439 A1 WO 2009128439A1 JP 2009057488 W JP2009057488 W JP 2009057488W WO 2009128439 A1 WO2009128439 A1 WO 2009128439A1
Authority
WO
WIPO (PCT)
Prior art keywords
masks
stage
mask
exposure
control target
Prior art date
Application number
PCT/JP2009/057488
Other languages
French (fr)
Japanese (ja)
Inventor
圭 奈良
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2010508211A priority Critical patent/JPWO2009128439A1/en
Publication of WO2009128439A1 publication Critical patent/WO2009128439A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70466Multiple exposures, e.g. combination of fine and coarse exposures, double patterning or multiple exposures for printing a single feature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present invention relates to an exposure technique for exposing an object through patterns formed on a plurality of masks, and a device manufacturing technique using the exposure technique.
  • a plate glass plate or glass on which a pattern of a mask (reticle, photomask, etc.) is applied via a projection optical system
  • a projection exposure apparatus for projecting onto a semiconductor wafer or the like is used.
  • a plate for manufacturing a liquid crystal display element has become increasingly larger, and in recent years, a plate exceeding 2 m square has been used.
  • the mask is also increased in size. The cost of the mask needs to maintain the flatness of the mask substrate, and the manufacturing process becomes more complicated as the area becomes larger. Further, for example, in order to form a thin film transistor portion of a liquid crystal display element, a mask for 4 to 5 layers is usually required, which requires a great deal of cost.
  • an enlargement composed of a plurality of partial projection optical systems that are arranged in two rows in the scanning direction and have an enlargement magnification that is arranged adjacent to a direction orthogonal to the scanning direction hereinafter referred to as a non-scanning direction.
  • a scanning projection exposure apparatus scanning exposure apparatus
  • a mask pattern is made smaller than that of a plate by using a system multilens (see, for example, Patent Document 1).
  • the mask pattern is divided into strips (strips) into a plurality of pattern areas corresponding to each partial projection optical system,
  • the projected image of the pattern is transferred onto the plate in a non-scanning direction by one scanning exposure.
  • the present invention provides an exposure method and apparatus, and a device manufacturing method that can suppress the occurrence of splicing errors when a pattern formed on a plurality of masks is transferred onto a plate (substrate).
  • the purpose is to do.
  • An exposure method includes a supporting step for supporting a plurality of masks on which a pattern is formed on a first stage, and moving at least one control target mask among the plurality of masks individually with respect to the first stage.
  • the exposure apparatus according to the present invention includes a first stage that supports a plurality of masks on which a pattern is formed, a second stage on which an object is placed, and at least one control target mask among the plurality of masks.
  • a control device that individually moves the first stage to control the relative arrangement of the plurality of masks, and illumination that irradiates the object with exposure light through the patterns of the plurality of masks in which the relative arrangement is controlled. And a system.
  • the device manufacturing method includes a transfer step of transferring a plurality of mask patterns onto a photosensitive substrate placed on the second stage using the exposure method or exposure apparatus of the present invention, and the patterns are transferred. And developing the photosensitive substrate and forming a transfer pattern layer having a shape corresponding to the pattern on the photosensitive substrate, and a processing step of processing the photosensitive substrate through the transfer pattern layer. It is a waste.
  • At least one mask to be controlled among a plurality of masks on which a pattern is formed is individually moved with respect to a stage that supports the plurality of masks, and the relative arrangement of the plurality of masks is controlled. Therefore, it is possible to suppress the occurrence of a joint error when the patterns formed on the plurality of masks are transferred onto an object such as a substrate, and the pattern can be transferred onto the object with high accuracy.
  • FIG. 2 is a cross-sectional view illustrating configurations of two partial illumination optical systems and two projection optical systems in FIG. 1.
  • FIG. 3A is a perspective view showing the mask stage MST and its driving mechanism
  • FIG. 3B is a perspective view showing the mask stage MST.
  • 4A is a plan view showing an example of the arrangement of actuator systems on the mask stage MST
  • FIG. 4B is an enlarged view showing the pressing portion 40B
  • FIG. 4C is a cross-sectional view showing the actuator 39B.
  • FIG. 4D is an enlarged cross-sectional view taken along the line IVD-IVD in FIG.
  • FIG. 6A is a plan view showing the arrangement of the masks M1 to M7 on the mask stage MST
  • FIG. 6B is a plan view showing the plate PT on the plate stage.
  • 7A is a plan view showing the plate PT during scanning exposure
  • FIG. 7B is a plan view showing the mask stage MST during scanning exposure
  • FIG. 7C is a plane showing the mask M1 during scanning exposure.
  • FIG. It is a flowchart which shows an example of the exposure operation
  • FIG. 10A is a perspective view showing a state in which the masks M1 to M7 are placed on the carrier 45 in the second embodiment, and FIG. 10B shows the carrier 45 in FIG. 10A on the mask stage MST. It is a perspective view which shows the state mounted in.
  • FIG. 11A is a plan view showing the mask stage MST of FIG. 10B
  • FIG. 11B is an enlarged cross-sectional view taken along line XIB-XIB of FIG. 11A.
  • FIG. 12A is a perspective view showing a state in which the masks M1 to M7 are placed on the carrier 45 in the third embodiment
  • FIG. 12B is a plan view showing the mask M1 in FIG.
  • FIG. 12C is an enlarged view showing the pressing portion 40SB in FIG.
  • FIG. 12A, and FIG. 12D is an enlarged view showing the actuator 39SB in FIG. It is a perspective view which shows the pre-alignment apparatus of 2nd Embodiment.
  • FIG. 14A is a plan view showing the carrier 47A of the fourth embodiment
  • FIG. 14B is a plan view showing a state where the masks M1 to M7 are placed on the carrier 47A
  • FIG. It is a perspective view which shows the state which is conveying the carrier 47A.
  • FIG. 15A is a plan view showing a mask stage MST on which the carrier 47A of FIG. 14C is placed
  • FIG. 15B is a cross-sectional view taken along line XVB-XVB of FIG. . It is a flowchart which shows the manufacturing method of a liquid crystal device.
  • FIG. 1 shows a schematic configuration of a step-and-scan projection exposure apparatus (scanning exposure apparatus) EX of the present embodiment.
  • the projection exposure apparatus EX is formed on a plurality of (seven in FIG. 1) small masks M1, M2, M3, M4, M5, M6, and M7 with light from an exposure light source (not shown).
  • Illumination device IU that illuminates a pattern, mask stage MST that moves while holding masks M1 to M7, and a plurality of catadioptric projection optical systems that project magnified images of the patterns of masks M1 to M7 on plate PT, respectively
  • Projection optical apparatus PL including PL1 to PL7, a plate stage PTST (see FIG. 2) that holds and moves the plate PT, a drive mechanism (not shown) including a mask stage MST, a linear motor that drives the plate stage PTST, and the like.
  • a main control system 57 composed of a computer for comprehensively controlling the operation of the drive mechanism and the like.
  • the plate PT of the present embodiment is a 1.9 ⁇ 2.2 m square, 2.2 ⁇ 2.4 m square, 2.4 ⁇ 2.8 m square coated with a photoresist (photosensitive material), or
  • This is a glass plate for manufacturing a liquid crystal display element having a rectangular flat plate shape of 2.8 ⁇ 3.2 m square or the like.
  • the X axis and the Y axis are taken in two orthogonal directions on the surface on which the plate PT is placed on the plate stage PTST (a surface substantially parallel to the surface of the plate PT), and the Z axis is taken perpendicular to the surface.
  • a rotation method around an axis parallel to the Z axis will be described as the ⁇ z direction.
  • the XY plane is set parallel to the horizontal plane
  • the ⁇ Z direction is set to the vertical direction.
  • the direction in which the masks M1 to M7 and the plate PT are moved in synchronism is set in the X direction.
  • light emitted from an exposure light source (not shown) made of, for example, an ultra-high pressure mercury lamp is reflected by the elliptical mirror 2 and the dichroic mirror 3 in the illumination device IU and enters the collimating lens 4.
  • Light in a wavelength region including g-line (wavelength 436 nm), h-line (wavelength 405 nm), and i-line (wavelength 365 nm) light is extracted by the reflective film of the elliptical mirror 2 and the reflective film of the dichroic mirror 3, and the extracted light Enters the collimating lens 4.
  • the illumination light converted into parallel light by the collimating lens 4 passes through a wavelength selection filter 5 that transmits only light in a predetermined exposure wavelength range, a neutral density filter 6, and a condenser lens 7, and an incident port 8 a of the light guide fiber 8. It is focused on.
  • the light guide fiber 8 includes an entrance 8a and seven exits (hereinafter referred to as exits 8b, 8c, 8d, 8e, 8f, 8g, and 8h).
  • the illumination light that has entered the entrance 8a propagates through the inside of the light guide fiber 8, and then is divided and emitted from the 7 exits 8b to 8h, and the 7 partial illumination optics that partially illuminate the masks M1 to M7. It enters each of the systems (hereinafter referred to as partial illumination optical systems IL1, IL2, IL3, IL4, IL5, IL6, and IL7).
  • the illumination light that has passed through the partial illumination optical systems IL1 to IL7 illuminates the corresponding illumination areas on the masks M1 to M7 almost uniformly.
  • An illuminating device IU is configured using optical members from the elliptical mirror 2 to the partial illumination optical systems IL1 to IL7.
  • Illumination light from the illumination areas on the masks M1 to M7 is projected into seven projection optical systems (hereinafter referred to as projection optical systems PL1, PL2, PL3, respectively) that project images of a part of the patterns of the masks M1 to M7 onto the plate PT.
  • projection optical systems PL1, PL2, PL3, respectively that project images of a part of the patterns of the masks M1 to M7 onto the plate PT.
  • PL4, PL5, PL6, and PL7 projection optical systems
  • Projection optical systems (partial projection optical systems) PL1 to PL7 form images of patterns on the pattern surfaces (lower surfaces) of the masks M1 to M7 on the plate PT, respectively.
  • FIG. 3A is a perspective view showing the mask stage MST and its driving mechanism and the like
  • FIG. 3B is a perspective view showing the mask stage MST.
  • the mask stage MST is placed on a pair of rod-shaped guide members 59A and 59B supported by a column (not shown) parallel to the X axis in the X direction via a vacuum preload type gas bearing. It is mounted so as to be movable in the ⁇ z direction. Further, from the movers 60Aa and 60Ba fixed to both ends in the Y direction of the mask stage MST and the stators 60Ab and 60Bb supported by a column (not shown), respectively, in the X direction with respect to the guide members 59A and 59B.
  • a pair of linear motors 60A and 60B for moving the mask stage MST are configured. It is also possible to control the rotation angle of the mask stage MST in the ⁇ z direction within a predetermined range by changing the drive amount of the linear motors 60A and 60B in the X direction.
  • the measurement beams are irradiated from the laser interferometers 56X1 and 56Y2 to the two movable mirrors 55X1 and 55X2 fixed to the ⁇ X direction end of the mask stage MST, and fixed to the ⁇ Y direction end of the mask stage MST.
  • the rod-shaped moving mirror 55Y is irradiated with a measurement beam from the laser interferometer 56Y.
  • the laser interferometers 56X1, 56X2, and 56Y use, for example, a reference mirror (not shown) provided in a column (not shown) that supports the projection optical apparatus PL as a reference, the position of the mask stage MST in the X direction, the Y direction, and ⁇ z
  • the direction rotation angle is measured.
  • the stage controller in the main control system 57 controls the position and speed of the mask stage MST in the X direction and the rotation angle in the ⁇ z direction via the linear motors 60A and 60B.
  • FIG. 3B seven rectangular openings 21 are formed in the mask stage MST for allowing the illumination light that has passed through the masks M1 to M7 to pass therethrough.
  • actuator systems AC1, AC2, AC2 for driving the masks M1 to M7 with respect to the mask stage MST in the X direction, the Y direction, and the ⁇ z direction so as to surround each opening 21 on the mask stage MST.
  • AC3, AC4, AC5, AC6, and AC7 are provided.
  • Masks M1 to M7 are individually driven with respect to mask stage MST by actuator systems AC1 to AC7.
  • FIG. 4A is a plan view showing an example of the arrangement of the actuator systems AC1 to AC7 on the mask stage MST in FIG. 3A
  • FIG. 4D is a IVD-IVD line in FIG. 4A
  • FIG. 4A each of the masks M1 to M7 has four air pad portions 41A, 41B, 41C, which constitute a vacuum preload type gas bearing on the mask stage MST so that the pattern area PA covers the opening 21, respectively.
  • 41D By 41D, it floats and is supported in a state where movement in the X direction and Y direction and rotation in the ⁇ z direction are possible.
  • the plurality of exhaust holes 42A of the air pad portion 41D of the mask stage MST communicate with the vacuum pump 43 through the vent holes 42B and a flexible pipe (not shown),
  • the air hole 42C communicates with the pressurizing source 44 through the air hole 42D and a flexible pipe (not shown).
  • the air pad portion 41D and the mask M1 have a size of about several ⁇ m.
  • the gap g (for example, about 5 ⁇ m) is maintained.
  • the other air pad portions 41A to 41C are configured similarly.
  • the air pad portion 41D protrudes from the upper surface of the mask stage MST with a predetermined step, but the upper surfaces of the air pad portions 41A to 41D are made to be the same height as other portions of the mask stage MST.
  • the actuator system AC1 includes an actuator 39A that drives the mask M1 in the X direction, and two actuators 39B and 39C that drive the mask M1 in the Y direction at two locations separated in the X direction.
  • Opposing actuators 39A, 39B, and 39C are provided with pressing portions 40A, 40B, and 40C that urge the mask M1 in the X and Y directions, respectively.
  • the rotation angle of the mask M1 in the ⁇ z direction can be controlled by changing the drive amounts of the Y-axis actuators 39B and 39C.
  • the actuators 39B and 39C are arranged by rotating the actuator 39A by 90 °, and the pressing portions 40B and 40C are arranged by rotating the pressing portion 40A by 90 °.
  • the tip portions of the pressing portions 40A to 40C can be retracted in the reverse direction at any time so that a certain amount of clearance can be secured between each tip portion of the actuator system AC1 and the mask M1. ing.
  • the other actuator systems AC2 to AC7 have substantially the same configuration as the actuator system AC1. However, the two adjacent actuator systems (for example, AC1 and AC2) are displaced in the X direction so that the Y-axis actuators 39B and 39C and the Y-axis pressing portions 40B and 40C do not mechanically interfere with each other. .
  • the actuator systems AC1 to AC7 are driven by an actuator drive system 58 (see FIGS. 4B and 4C) under the control of the main control system 57.
  • the relationship between the drive signals supplied from the actuator drive system 58 to the actuators 39A to 39C and the movement amounts of the corresponding masks M1 to M7 is stored in advance in the storage unit in the actuator drive system 58.
  • Information on the respective target drive amounts of the masks M1 to M7 is supplied from the main control system 57 to the actuator drive system 58, and as an example, the actuator drive system 58 receives only the target drive amounts corresponding to the masks M1 to M7.
  • Actuators 39A-39C are driven by open loop control so that they are driven. It is possible to provide a sensor (capacitance type gap sensor or the like) for detecting the displacement of the masks M1 to M7 with respect to the mask stage MST and drive the actuators 39A to 39C in a closed loop manner.
  • the pressing portion 40B includes a main body portion 40a fixed to the mask stage MST, a moving member 40c made of a magnetic material supported so as to be detachable from the main body portion 40a, and a moving member 40c. It includes a coil spring 40d that urges outward, and a metal sphere 40e that is rotatably provided at the tip of the moving member 40c and that directly contacts the mask M1.
  • the moving member 40c (spherical body 40e) can be retracted to the position B1 on the main body 40a side by energizing the coil 40b incorporated in the main body 40a from the actuator drive system 58.
  • a leaf spring member or the like can be used as the pressing portion 40B.
  • the actuator 39B is fixed to the mask stage MST, and has a stator 39a having an opening in which a large number of small piezoelectric elements (piezoelectric elements) are arranged around the opening, and an opening in the stator 39a. And a metal sphere 39c that is rotatably provided at the tip of the mover 39b and directly contacts the mask M1. That is, the actuator 39B is a direct-acting piezo motor, and by driving a large number of piezo elements in the stator 39a from the actuator drive system 58, the mover 39b can be moved by a desired drive amount. Further, in the piezo motor, when the driving power is not supplied to the stator 39a, the position of the mover 39b is maintained at the previous position.
  • the plate PT is sucked and held on a plate stage PTST (see FIG. 2) via a plate holder (not shown), and an X-axis movable mirror 50X and a Y-axis movable mirror 50Y are provided on the plate stage PTST. Is provided.
  • the measurement beams are irradiated to the movable mirrors 50X and 50Y from the X-axis laser interferometers 51X1 and 51X2 and the Y-axis laser interferometers 51Y1, 51Y2, and 51Y3.
  • Laser interferometers 51X1, 51X2, and 51Y1 to 51Y3 use, for example, a reference mirror (not shown) provided in a column (not shown) that supports the projection optical apparatus PL as a reference for the positions of the plate stage PTST in the X and Y directions, The rotation angle in the ⁇ z direction is measured.
  • the stage control unit in the main control system 57 via a drive mechanism (not shown), the position and speed in the X and Y directions and the rotation angle in the ⁇ z direction of the plate stage PTST (plate PT). To control.
  • the partial illumination optical systems IL1, IL3, IL5, IL7 in the first column on the ⁇ X direction side have a predetermined interval in the non-scanning direction (Y direction) orthogonal to the scanning direction.
  • the first-row projection optical systems PL1, PL3, PL5, and PL7 that are arranged and provided corresponding to the partial illumination optical systems IL1, IL3, IL5, and IL7 are also arranged in the non-scanning direction in the projection optical apparatus PL. They are arranged at a predetermined interval.
  • the second column partial illumination optical systems IL2, IL4, and IL6 are arranged on the + X direction side with respect to the first column and at a predetermined interval in the non-scanning direction, and the partial illumination optical systems IL2, IL4, and IL6.
  • the second row projection optical systems PL2, PL4, and PL6 provided corresponding to are also arranged in the + X direction and at a predetermined interval in the non-scanning direction with respect to the first row.
  • the first row of projection optical systems PL1, PL3, PL5, and PL7 have fields of view V1, V3, V5, and V7 along straight lines parallel to the non-scanning direction on the first surface on which the masks M1 to M7 are respectively arranged. Images are formed in image fields (projection regions) I1, I3, I5, and I7 arranged at predetermined intervals along a straight line parallel to the non-scanning direction on the second surface on which the plate PT is disposed.
  • the projection optical systems PL2, PL4, and PL6 in the second row have visual fields V2, V4, and V6 along straight lines parallel to the non-scanning direction on the first surface, respectively, and non-scanning on the second surface.
  • Images are formed in image fields (projection regions) I2, I4 and I6 (I2 and I4 are not shown) arranged at predetermined intervals along a straight line parallel to the direction.
  • the visual fields V1 to V7 are also illumination areas (illumination fields) on the masks M1 to M7 by the partial illumination optical systems IL1 to IL7.
  • the auto focus system 52 for aligning the focus positions (Z-direction positions) of the masks M1 to M7 and the plate PT and the plate PT are aligned.
  • the off-axis alignment system 54 is arranged.
  • the projection optical systems PL1 to PL7 are catadioptric projection optical systems that form a primary image, which is an enlarged image in the field of view (here, equal to the illumination area) on the masks M1 to M7, in the image field on the plate PT.
  • the magnification in the scanning direction (X direction) exceeds +1 times, and the magnification in the non-scanning direction (Y direction) is less than -1.
  • the projection optical systems PL1 to PL7 form enlarged images on the plate PT that are upright in the scanning direction of the patterns of the masks M1 to M7 and inverted in the non-scanning direction, respectively.
  • the absolute value of the magnification in the scanning direction and the non-scanning direction is about 2.5.
  • the partial illumination optical systems IL1 to IL7 have the same configuration. Further, the projection optical systems PL1, PL3, PL5, and PL7 in the first row have the same configuration, and the projection optical systems PL2, PL4, and PL6 in the second row have a configuration obtained by rotating the projection optical system PL1 by 180 °.
  • the configuration of the two partial illumination optical systems IL1 and IL2 and the two projection optical systems PL1 and PL2 in the first row and the second row will be typically described.
  • FIG. 2 is a diagram showing the configuration of the two partial illumination optical systems IL1 and IL2 in FIG. 1 and the two projection optical systems PL1 and PL2 corresponding thereto.
  • the light beams emitted from the exit ports 8b and 8c of the light guide fiber 8 enter the partial illumination optical systems IL1 and IL2 and are collected by the collimating lenses 9b and 9c.
  • the condensed light beams are incident on fly-eye lenses 10b and 10c, which are optical integrators, and light beams from a number of secondary light sources formed on the rear focal planes of the fly-eye lenses 10b and 10c are respectively condenser lenses 11b. And 11c illuminate the masks M1 and M2 almost uniformly.
  • the projection optical system PL1 includes a concave reflecting mirror CCMb, a first lens group G1b and a second lens having an optical axis AX11 parallel to the Z axis and disposed in the optical path between the mask M1 and the concave reflecting mirror CCMb.
  • Group G2b first deflection member FM1b that deflects light traveling in the + Z direction from the second lens group G2b along the optical axis AX12 in the ⁇ X direction, and deflects light traveling in the ⁇ X direction in the ⁇ Z direction
  • a third lens group G3b having an optical axis AX13 which is disposed in the optical path between the second deflection member FM2b and the plate PT and is parallel to the Z axis.
  • Projection optical system PL1 is an off-axis optical system using concave reflecting mirror CCMb.
  • an aperture stop ASb for determining the numerical aperture on the plate PT side of the projection optical system PL1 is provided in the vicinity (pupil plane) of the concave reflecting mirror CCMb.
  • the projection optical system PL2 is symmetrical to the projection optical system PL1 and includes a first lens group G1c, a second lens group G2c, and a concave reflecting mirror CCMc, which are disposed along an optical axis AX21 parallel to the Z axis.
  • a third lens group G3c having an optical axis AX23 parallel to the axis, a first deflecting member FM1c that bends the light flux from the second lens group G2c in the + Z direction along the optical axis AX22, and the + X direction.
  • a second deflection member FM2c that bends the light beam in the ⁇ Z direction and an aperture stop ASc disposed on the pupil plane of the projection optical system PL2 are provided.
  • the projection optical systems PL1 and PL2 are provided with a magnification correction mechanism (not shown).
  • the configurations and magnifications of the projection optical systems PL1 and PL2 are arbitrary, and the projection optical systems PL1 and PL2 may be configured by a refractive system, for example. Further, a projection optical system that forms an intermediate image may be used as the projection optical systems PL1 and PL2.
  • the distance between the optical axes AX11 and AX21 of the first lens groups G1b and G1c in the X direction (scanning direction) is Dm
  • the optical axes AX13 and AX23 of the third lens groups G3b and G3c are set.
  • FIG. 6A is a plan view showing the arrangement of the masks M1 to M7 on the mask stage MST of FIG.
  • the masks M1 to M7 are arranged along the Y direction (non-scanning direction), and the trapezoidal fields V1 to V7 of the projection optical systems PL1 to PL7 in FIG.
  • the pattern area PA is provided.
  • the reason why the fields of view V1 to V7 are trapezoidal is that the images of the patterns at both ends of the fields of view V1 to V7 are overlaid and exposed on the plate PT in order to reduce joint errors. Therefore, the same pattern is alternately formed at both ends of the pattern area PA of the masks M2 to M6.
  • the images of the edge portions inside the visual fields V1 and V7 at both ends in the Y direction are portions that are not exposed to each other, the inner sides of the visual fields V1 and V7 are linear parallel to the X axis.
  • FIG. 6B is a plan view showing the plate PT on the plate stage PTST.
  • the exposed area EP on the plate PT is divided into seven partial exposed areas EP1 to EP7 that are elongated in the X direction so that the boundary part EP12 in the Y direction and the like overlap.
  • Image fields I1 to I7 of the projection optical systems PL1 to PL7 are set on the partially exposed areas EP1 to EP7, respectively, and pattern images in the pattern areas PA of the masks M1 to M7 are joined together in the Y direction by scanning exposure. Exposed.
  • a plurality of two-dimensional alignment marks 38A to 38D are formed in the vicinity of the four corners of the exposed area EP of the plate PT.
  • a plurality of alignment marks may be provided for each of the partially exposed areas EP1 to EP7. In practice, a plurality of exposed areas are set on the plate PT.
  • the interval in the X direction is Lm.
  • a straight line parallel to the Y axis connecting the centers of the image fields I1, I3, etc. in the first column and a Y axis connecting the centers of the image fields I2, I4, etc. in the second column are parallel.
  • the distance in the X direction from the straight line is Lp.
  • the intervals Lm and Lp are larger than the intervals Dm and Dp in FIG. 2, but the following relationship similar to the equation (1) is established between the intervals Lm and Lp.
  • the pattern area PA of the odd-numbered masks M1, M3, M5, and M7 and the pattern area PA of the even-numbered masks M2, M4, and M6 are formed at the same position in the X direction, and the mask offset MO is set to 0.
  • the projection images of the masks M1 to M7 can be accurately connected and exposed on the plate PT.
  • an imaging lens 34 In the plate stage PTST on the bottom surface of the reference member 31, an imaging lens 34, a two-dimensional image sensor 35, and the like that receive the illumination light that has passed around the corresponding reference mark and capture an image of the reference mark, etc.
  • Eight aerial image measurement systems 33A to 33H are installed.
  • the imaging signal of the imaging device 35 is supplied to an alignment control unit in the main control system 57.
  • an image of the alignment mark 36A of the mask M1 by the projection optical system PL1 is formed on the reference member 31, and the image of the alignment mark 36A and the image of the reference mark 32A are overlapped to obtain the image sensor of the aerial image measurement system 33A. 35 is formed.
  • the alignment control unit processes the imaging signal to determine the amount of positional deviation in the X and Y directions of the image of the alignment mark 36A (or other alignment mark) with respect to the reference mark 32A. Similarly, the amount of misalignment in the X direction and Y direction of the image of the alignment mark with respect to the reference mark 32B etc. is obtained from the imaging signals of the other aerial image measurement systems 33B to 33H in FIG.
  • FIG. 5 shows a state where the mask stage MST is moved to the + X direction ends of the guide members 59A and 59B.
  • a mask library 62 is installed in the vicinity of the end portion, and small masks M8 to M14 and the like similar to the mask M1 are stored in the mask library 62.
  • a mask loader system 61 is disposed between the mask library 62 and the end portions of the guide members 59A and 59B.
  • the mask loader system 61 moves three-dimensionally by adsorbing and holding the mask M1 and the like at the guide member 61a parallel to the Y axis, the multi-joint portion 61b moving along the guide member 61a, and the tip of the multi-joint portion 61b. Hand portion 61c.
  • the masks M1 to M7 can be easily installed between the actuators 39A to 39C and the pressing portions 40A to 40C (inside the actuator systems AC1 to AC7). Further, the suction and pressurization operations of the air pad portions 41A to 41D are stopped.
  • step 201 in FIG. 8 the mask stage MST is moved to the + X direction ends of the guide members 59A and 59B, and the masks M1 to M1 are sequentially transferred from the mask library 62 by the mask loader system 61.
  • M7 is transferred to the inside of the actuator systems AC1 to AC7 on the mask stage MST.
  • rough alignment may be performed by detecting the alignment marks 36A and 36B (or 37A and 37B) on the masks M1 to M7 by a pre-alignment system (not shown).
  • step 202 the masks M1 to M7 are placed in parallel on the mask stage MST.
  • the mask stage MST is moved in the -X direction, and the visual fields V1, V3, V5 are placed on the alignment marks 36A, 36B of the odd-numbered masks M1, M3, M5, M7 in FIG. V7 (illumination area) is set, and illumination light is emitted from the partial illumination optical systems IL1 to IL7. Further, the plate stage PTST is driven to move the four pairs of reference marks 32A and 32B of the reference member 31 of FIG. 1 into the odd-numbered image fields I1, I3, I5 and I7 of FIG.
  • the amount of positional deviation in the X and Y directions between the four pairs of reference marks 32A and 32B and the images of the alignment marks 36A and 36B of the masks M1, M3, M5 and M7 is measured by the aerial image measurement systems 33A to 33H. Further, the mask stage MST is moved in the + X direction by the interval Lm, and the visual fields V2, V4, V6 are set on the alignment marks 36A, 36B of the even-numbered masks M2, M4, M6, and the plate stage PTST is set by the interval Lp. Moving in the + X direction, the six reference marks inside the reference member 31 are moved into the even-numbered image fields I2, I4, and I6.
  • the aerial image measurement systems 33B to 33G use the six reference marks (three pairs of reference marks 32B and 32A) and the images of the alignment marks 36A and 36B of the masks M2, M4 and M6 in the X and Y directions. Measure the amount of displacement.
  • the reference of the alignment marks 37A and 37B in the + X direction of the masks M1 to M7 is similarly used.
  • the amount of displacement with respect to the marks 32A and 32B is measured.
  • These positional deviation amounts are obtained by an alignment control unit in the main control system 57. Further, in the alignment control unit, the positional relationship between the masks M1 to M7 in FIG. 6A based on the positional deviation information, for example, the positions of the other masks M2 to M7 in the X and Y directions with reference to the mask M1.
  • Each shift amount corresponds to a relative arrangement error between the masks M1 to M7.
  • the alignment controller also obtains information on the positional relationship between the positions of the reference marks 32A and 32B at the ends in the + Y direction and the images of the alignment marks 36A and 36B, etc., on the mask M1.
  • the alignment control unit supplies information on the positional deviation amount ( ⁇ Xi, ⁇ Yi) and the rotational angle deviation amount ⁇ i to the actuator drive system 58.
  • the actuator drive system 58 drives the actuator systems AC2 to AC7 so as to cancel out the positional deviation amounts ( ⁇ Xi, ⁇ Yi) and the rotational angle deviation amount ⁇ i.
  • the patterns in the pattern area PA of the masks M1 to M7 are set in the same positional relationship as when the patterns of the masks M1 to M7 are formed on one large mask. Therefore, even when a plurality of small masks M1 to M7 are used, it is possible to suppress the occurrence of joint errors when the patterns of the masks M1 to M7 are transferred onto the plate PT. Can be transferred with high accuracy.
  • the scaling in the Y direction is performed by the projection optical system. Correction can be performed by a magnification correction mechanism in PL1 to PL7. Further, the scaling in the X direction can be corrected by increasing or decreasing the scanning speed of the mask stage MST with respect to the plate stage PTST with respect to the initial target value during scanning exposure described later. Further, as shown in FIG.
  • the pattern of the mask M1 is virtually transformed to the pattern of the mask M1 ′.
  • the mask M1 may be gradually shifted in the Y direction. The same applies to the other masks M2 to M7.
  • the plate PT is loaded on the plate stage PTST.
  • a photoresist is applied to the plate PT in advance by a coater / developer (not shown).
  • the alignment system 54 is used to detect the positions of the alignment marks 38A to 38D on the plate PT, and the reference marks 32A, 32B, etc. are detected by the alignment control unit in the main control system 57 based on the detection result. The positional relationship of the exposed area EP of the plate PT with respect to is determined.
  • the main control system 57 uses the alignment result of the masks M1 to M7 in step 203 and the alignment result of the plate PT, and the position of the plate stage PTST (plate PT) in the scanning direction (X
  • target positions (including rotation angles) of the masks M1 to M7 on the mask stage MST are calculated.
  • the mask side laser interferometers 56X1, 56X2, 56Y and the plate side laser interferometers 51X1, 51X2, 51Y1 to 51Y3 are used to calculate the mask.
  • the amount of deviation from each target position of M1 to M7 (the amount of positional deviation and rotational error between the pattern image of the masks M1 to M7 and the plate PT (exposed area EP)) is obtained as a synchronization error.
  • the mask stage MST is driven, the masks M1 to M7 are moved, for example, in front of the visual fields V1 to V7 in FIG. 6A, the plate stage PTST is driven, and the mask stage MST in FIG.
  • the exposed area EP of the plate PT is moved before the image fields I1 to I7, and the mask stage MST and / or the plate stage PTST are driven in such a positional relationship that the synchronization error becomes zero.
  • scanning exposure of the plate PT is performed by driving the mask stage MST and the plate stage PTST synchronously so that the positional relationship is maintained in consideration of the projection magnification ⁇ of the projection optical systems PL1 to PL7.
  • the plate stage PTST (plate PT) is moved at the speed VM ⁇ in the + X direction indicated by the mark SP1 in synchronization with the movement of the mask stage MST in the + X direction indicated by the arrow SM1 at the speed VM ⁇ . Move with
  • the mask-side laser interferometers 56X1, 56X2, and 56Y and the plate-side laser interferometers 51X1, 51X2, and 51Y1 to 51Y3 form the masks M1 to M7.
  • Measurement of the positional deviation amount between the image and the plate PT and the synchronization error, which is a rotation error, are continuously performed.
  • the actuator systems AC1 to AC7 in FIG. 6A are driven so as to correct the error, and the X of the masks M1 to M7 with respect to the mask stage MST is driven.
  • the direction, the position in the Y direction, and the rotation angle in the ⁇ z direction are individually corrected dynamically.
  • FIGS. 7A and 7B show the plate PT and the mask stage MST during scanning exposure, respectively.
  • the rotation error with respect to the target rotation angle of the plate PT is defined as ⁇ (rad)
  • the image field I1 from a straight line passing through the center of the exposed area EP and parallel to the X axis.
  • P1y be the distance in the Y direction to the center of.
  • the position of the image field I1 is shifted in the X direction by ⁇ ⁇ P1y from the original position.
  • the main control system 57 sets in advance the rotation angle with respect to the mask stage MST (the target rotation angle corresponding to the X coordinate of the plate stage PTST) with respect to the mask M1, as shown in FIG. 7B. Keep it. Further, the distance from the center of the mask M1 in the X direction to the center of the visual field V1 is Ma (x), and the amount of movement of the mask M1 relative to the mask stage MST in the X direction and Y direction ( ⁇ XM1, ⁇ YM1) (X direction, Y direction) The target position) is approximately set as follows.
  • ⁇ XM1 ⁇ ⁇ P1y /
  • (3) ⁇ YM1 ⁇ ⁇ Ma (x) (4) Similarly, the target positions are set (corrected) for the other masks M2 to M7. As a result, the synchronization error during scanning exposure can be corrected at a high tracking speed.
  • the rotation angle of the masks M1 to M7 may be ⁇ .
  • the mask stage MST is moved by the arrow SM2 in FIG. 6A, for example. Scanning exposure is performed by moving the plate PT in synchronization with the ⁇ X direction indicated by the arrow SP2 in FIG. 6B.
  • the plate PT is unloaded. The unloaded plate PT is developed by a coater / developer (not shown). This exposure and development process is a part of a pattern formation process in step S401 and a color filter formation process in step S402, which will be described later.
  • step 209 the operation shifts to step 204, and the exposure operations in steps 204 to 208 are repeated. If there is no plate to be exposed in step 209, the process proceeds to step 210 as an example, and the suction and pressurization operations of the air pads 41A to 41D with respect to the masks M1 to M7 of the mask stage MST are canceled, and the actuator system AC1 The spheres 40e of the pressing parts 40A to 40C of AC7 are retracted to the main body part 40a side. As a result, the masks M1 to M7 can be easily taken out from the mask stage MST.
  • the mask stage MST is moved to the ends of the guide members 59A and 59B in FIG. 5, and then the masks M1 to M7 on the mask stage MST are sequentially unloaded by the mask loader system 61 to the mask library 62. Store and finish the exposure.
  • the pattern to be transferred is divided into the masks M1 to M7, and the pattern images of the masks M1 to M7 are formed through the projection optical systems PL1 to PL7 having the magnification. Since the exposure is performed on the PT, the device pattern having a large area can be exposed on the plate PT with high throughput and high accuracy without increasing the size of the projection optical system.
  • step 202 for supporting a plurality of masks M1 to M7 on the mask stage MST and masks by moving the masks M1 to M7 individually relative to the mask stage MST.
  • the plate PT placed on the plate stage PTST is passed through the step 203 for controlling the relative positions and rotation angles of M1 to M7 and the patterns of the masks M1 to M7 whose relative positions and rotation angles are controlled.
  • Exposure steps 206 and 207 Exposure steps 206 and 207.
  • the projection exposure apparatus EX also moves the masks M1 to M7 by individually moving the mask stage MST for supporting the masks M1 to M7, the plate stage PTST on which the plate PT is placed, and the masks M1 to M7 with respect to the mask stage MST.
  • Illumination light is irradiated to the plate PT through a control mechanism including a main control system 57 for controlling the relative position and rotation angle of M7, and patterns of masks M1 to M7 whose relative positions and rotation angles are controlled.
  • an illuminating device IU is an illuminating device IU.
  • the masks M1 to M7 are reduced in size by dividing the pattern for generating a device pattern to be exposed in each exposed region on the plate PT and forming the pattern on the masks M1 to M7. it can. Therefore, for example, the masks M1 to M7 can be individually manufactured at low cost and with high accuracy using a small electron beam drawing apparatus. Further, in step 203, for example, by correcting the relative positions and rotation angles of the masks M2 to M7 with reference to the mask M1, the relative position errors and rotation errors (relative to the patterns of the masks M1 to M7) are corrected.
  • step 207 the mask M1 is used to reduce the relative position error and rotation error (synchronization error) between the pattern formed in the previous process in the exposed region on the plate PT and the patterns of the masks M1 to M7.
  • Driving the M7 improves the overlay accuracy. For example, when the pre-alignment accuracy is high, step 203 may be omitted, and when the synchronization error during scanning exposure can be corrected only by the operations of the mask stage MST and the plate stage PTST, step 207 is omitted. It is possible.
  • the projection optical apparatus PL of FIG. 1 is composed of only one row of projection optical systems PL1, PL3, PL5, and PL7, and an image of the pattern of odd-numbered masks M1, M3, M5, and M7 in the first scanning exposure. Can be exposed on the plate PT, and images of the patterns of the even-numbered masks M2, M4, and M6 can be stitched together in the Y direction in the second scanning exposure in the Y direction.
  • the odd-numbered mask is the control target (the drive target by the actuator systems AC1 to AC7) in the first scanning exposure
  • the even-numbered mask is the control target in the second scanning exposure.
  • the position and rotation angle of the first mask M1 may be corrected by the mask stage MST itself, and the positions and rotation angles of the other masks M2 to M7 with respect to the mask stage MST may be corrected by the actuator systems AC2 to AC7.
  • the actuator system AC1 for the mask M1 instead of the actuator system AC1 for the mask M1, a member for simply positioning the mask M1 may be provided.
  • seven masks M1 to M7 are placed on the mask stage MST, but any number of two or more masks may be placed on the mask stage MST. Therefore, at least one mask to be controlled is sufficient.
  • the positions of the masks M1 to M7 in the X and Y directions and the rotation angle in the ⁇ z direction are controlled. However, at least one of the position and the rotation angle may be controlled. Thereby, the relative error and / or overlay error of the patterns of the masks M1 to M7 can be improved.
  • the aerial image measurement systems 33A to 33H measure the positional relationship of the alignment marks 36A and 36B of the masks M1 to M7 with reference to the reference marks 32A and 32B, and the mask M1 is determined from the measurement results.
  • step 203 the positions of the alignment marks 36A, 36B, etc. of the masks M1 to M7 measured (acquired) in advance by, for example, a pre-alignment system (not shown) without performing measurement by the aerial image measurement systems 33A to 33H.
  • the positions of the masks M1 to M7 may be corrected based on the relationship.
  • piezo motors are used as the actuators 39A to 39C of the actuator systems AC1 to AC7.
  • a direct acting ultrasonic motor or a voice coil motor can be used in addition to the piezo motor.
  • step 207 the mask-side laser interferometers 56X1, 56X2, etc. and the plate-side laser interferometers 51X1, 51X2, etc. And calculating the relative position and rotation angle error (which may be at least one of the above), and the position and rotation angle (which may be at least one) of the masks M1 to M7 by the actuator systems AC1 to AC7 based on the measurement results. Each of which is controlled individually.
  • the pattern images of the masks M1 to M7 can be exposed on the exposed area EP of the plate PT with high overlay accuracy.
  • the masks M1 to M7 are directly driven by the actuators 39A to 39C of the actuator systems AC1 to AC7, so that the mask is placed on the mask stage MST, for example.
  • a sufficient space for arranging the actuator systems AC1 to AC7 on the mask stage MST can be secured.
  • a metal spacer 48 for example, a metallic spacer 48 (
  • a buffer member may be provided by adhesion or the like. This eliminates the possibility that the side surfaces of the masks M1 to M7 are damaged when the masks M1 to M7 are driven.
  • the mask stage MST (masks M1 to M7) and the plate stage PTST (plate PT) are moved in synchronization with the X direction while the projection optical systems PL1 to PL7 of the patterns of the masks M1 to M7 are moved.
  • the plate PT is scanned and exposed with an image of PL7. Accordingly, the pattern of the masks M1 to M7 can be efficiently transferred to each exposed area EP on the plate PT by one scanning exposure.
  • the mask stage MST and the plate PT are moved stepwise in the Y direction.
  • exposure may be performed on the plate PT by the step-and-repeat method while sequentially joining the pattern images of the masks M2 to M7.
  • FIGS. 10 (A), FIG. 10 (B), FIG. 11 (A), and FIG. 11 (B) correspond to FIG. 3 (A), FIG. 3 (B), and FIGS. 4 (A) to 4 (D).
  • the same reference numerals are given to the parts to be described, and detailed description thereof will be omitted.
  • FIG. 10A shows a state where the masks M1 to M7 are placed on the carrier 45
  • FIG. 10B shows a state where the carrier 45 is placed on the mask stage MST.
  • actuator systems AC1 to AC7 including actuators 39A to 39C and pressing portions 40A to 40C are installed around the masks M1 to M7 on the carrier 45, respectively.
  • the carrier 45 is provided with a connector 46 for supplying electric power for driving the actuators 39A to 39C and the pressing portions 40A to 40C.
  • the masks M1 to M7 are placed in parallel on the carrier 45 on the mask stage MST by a mask loader system (not shown). 10B, the connector 46 of the carrier 45 on the mask stage MST is connected to an actuator drive system 58 via a flexible cable 70, and the actuator drive system 58 is the same as the example of FIG. 4A.
  • the masks M1 to M7 are driven with respect to the mask stage MST via the actuator systems AC1 to AC7.
  • FIG. 11A is a plan view showing the mask stage MST of FIG. 10B
  • FIG. 11B is an enlarged cross-sectional view taken along line XIB-XIB of FIG. 11A.
  • an opening 22 is formed in the carrier 45 so as to cover the pattern area PA of the masks M1 to M7
  • an opening 21 is formed in the mask stage MST so as to cover the opening 22.
  • a vacuum preload type gas bearing is formed around the opening 22 of the carrier 45 in correspondence with the air pad portions 41A to 41D (used in this embodiment for adsorption) on the mask stage MST in FIG.
  • Four air pad portions 41E to 41H are formed.
  • the carrier 45 is sucked and held by the air pad portion 41D of the mask stage MST by suction from the exhaust hole 42E communicating with the vent hole 42B in the mask stage MST.
  • the air pad portion 41H of the carrier 45 is formed with an exhaust hole 42A1 and an air supply hole 42C1 so as to be connected to the exhaust hole 42A and the air supply hole 42C in the air pad portion 41D, respectively.
  • the other configuration is the same as that in FIG. 4A, and the mask M1 is lifted and held with the gap g from the air pad portion 41H by suction and pressurization from the air pad portion 41H. Accordingly, the masks M1 to M7 can be smoothly driven in the X direction, the Y direction, and the ⁇ z direction with respect to the carrier 45 (mask stage MST) by the actuator systems AC1 to AC7.
  • Effects and the like of this embodiment are as follows. (1) In this embodiment, when the masks M1 to M7 are used for the first time, the masks M1 to M7 are placed in the actuator systems AC1 to AC7 on the carrier 45 on the mask stage MST as shown in FIG. Then, suction and pressurization of the air pads 41E to 41H are started. Thereafter, corresponding to step 203 in FIG. 8, the amount of positional deviation between the reference marks 32A, 32B, etc. on the plate stage PTST and the images of the alignment marks 36A, 36B, etc. of the masks M1 to M7 is measured. The relative position and relative angle errors (or at least one of them) of the other masks M2 to M7 are measured using (as a result, the carrier 45 or the mask stage MST) as a reference.
  • the pattern of the masks M1 to M7 is changed to one large pattern. It can be set to a positional relationship equivalent to the case where it is formed on the mask. Therefore, a desired large device pattern can be exposed on the plate PT with high accuracy.
  • step 207 an image of the pattern of the masks M1 to M7 (mask stage MST) measured via the laser interferometer and the exposed area EP (plate stage PTST) of the plate PT.
  • the actuator systems AC1 to AC7 By driving the actuator systems AC1 to AC7 on the carrier 45 so as to correct the positional deviation amount, the overlay error can be reduced.
  • the masks M1 to M7 are placed on the carrier 45, and the mask stage MST and the mask library (not shown) are connected by the mask loader system (not shown). Are stored in the mask library while being placed on the carrier 45.
  • the masks M1 to M7 are used after the second time, the masks M1 to M7 are placed on the mask stage MST by the mask loader system while being placed on the carrier 45.
  • the actuators 39A to 39C of the actuator systems AC1 to AC7 a piezo motor (or an ultrasonic motor, a small electric micrometer, or the like) that keeps the operation position almost constant in a state where power is not supplied is used. Therefore, the relative positions of the masks M1 to M7 placed in parallel on the carrier 45 are maintained in a substantially constant relationship while returning from the mask stage MST to the mask stage MST through the mask library. Accordingly, in a state where the carrier 45 on which the masks M1 to M7 are placed is placed on the mask stage MST after the second time, the relative positions of the masks M1 to M7 are set at the time of the previous exposure (almost).
  • the mask alignment operation corresponding to step 203 can be executed in a very short time, or the operation corresponding to step 203 can be omitted to perform exposure. You can save time. Further, since the masks M1 to M7 can be transported collectively using the carrier 45, the transport time of the masks M1 to M7 corresponding to step 201 can be shortened.
  • step corresponding to step 203 at least one of the relative position and the relative angle between the carrier 45 and the mask stage MST is measured, and the mask stage MST of the carrier 45 is based on the measurement result. You may make it change at least one of the position and rotation angle with respect to. This can be performed using, for example, an image processing type pre-alignment system (not shown) provided on the mask stage MST and a mask loader system.
  • FIGS. 12A, FIG. 12B, and FIG. 13 the parts corresponding to those in FIG. 10A, FIG. 10B, FIG. 11A, and FIG. A detailed description thereof will be omitted.
  • FIG. 12A shows a state where the masks M1 to M7 are placed on the carrier 45
  • FIG. 12B shows the mask M1 shown in FIG.
  • the actuator system ACS1 for the mask M1 in FIG. 12A includes a manual triaxial actuator 39SA to 39SC that drives the mask M1 and a pressing portion 40SA that presses the mask M1 against them as shown in FIG. 12B.
  • the actuator 39SAB is a manual micrometer as shown in FIG. 12D
  • the pressing portion 40SB is a coil spring type plunger as shown in FIG. 12C.
  • the other actuator systems ACS2 to ACS7 are similarly configured.
  • FIG. 13 shows a pre-alignment apparatus arranged between a mask library (not shown) and the mask stage MST in FIG. 10B in this embodiment.
  • an orthogonal coordinate system composed of an X axis, a Y axis, and a Z axis is set.
  • the pre-alignment apparatus includes X-axis movable mirrors 64X1 and 64X2 and a Y-axis movable mirror 64Y1, and moves in the X direction along a guide member (not shown) and a base member (not shown).
  • An imaging device 66 that includes a Y-axis guide 65 laid in parallel to the Y-axis (axis orthogonal to the X-axis) via a frame, and a Y-axis moving mirror 64Y2, and moves in the Y direction along the Y-axis guide 65.
  • a four-axis laser interferometer (not shown) that measures the positions of the movable mirrors 64X1 and 64X2 in the X direction and the positions of the movable mirrors 64Y1 and 64Y2 in the Y direction, and a process for processing the imaging signal of the imaging device 66 Device (not shown).
  • the carrier 45 is sucked and held on the X stage 63.
  • the masks M1 to M7 are placed in the actuator systems ACS1 to ACS7 on the carrier 45 by the mask loader system.
  • the carrier 45 is placed on the X stage 63 and sucked and held, and then the masks M1 to M7 are pre-aligned. That is, the operation of driving the X stage 63 in the X direction and the operation of driving the imaging device 66 in the Y direction along the Y-axis guide 65 are combined, and the alignment marks 36A and 36B of the masks M1 to M7 are combined by the imaging device 66. (And / or 37A, 37B) coordinates are measured.
  • the positional deviation amounts of the other masks M2 to M7 in the X direction and the Y direction and the rotation angle around the Z axis may be obtained.
  • the drive amounts of the actuators 39SA to 39SC (micrometers) of the actuator systems ACS2 to ACS7 of FIG. 12A for canceling out the displacement and the rotation angle are obtained.
  • the operator can manually operate the actuators 39SA to 39SC by the determined drive amount, thereby correcting the relative positional deviation amount and the rotation angle error of the masks M1 to M7.
  • the carrier 45 thus pre-aligned is transported onto the mask stage MST in FIG. 10B by a mask loader system (not shown).
  • the masks M1 to M7 on the carrier 45 have been pre-aligned and can be handled as one large mask on which the patterns of the masks M1 to M7 are formed. Therefore, on the mask stage MST, for example, the final alignment (fine fineness) of the masks M1 to M7 is detected only by detecting the amount of misalignment between the alignment mark images of the masks M1 and M7 at both ends and the corresponding reference marks on the plate stage. Alignment) can be performed quickly.
  • the actuator systems ACS1 to ACS7 are driven by a manual method, the operation of individually driving the masks M1 to M7 is not executed during exposure. For this reason, the masks M1 to M7 can be held on the carrier 45 only by vacuum suction, and it is not necessary to apply pressure. After the exposure, the masks M1 to M7 are transported to the mask library and stored in a state of being placed on the carrier 45. Thereafter, when the masks M1 to M7 are used, since the pre-alignment is completed, the carrier 45 on which the masks M1 to M7 are placed only needs to be transferred onto the mask stage MST as it is. Accordingly, the masks M1 to M7 can be quickly aligned.
  • FIGS. 15A and 15B portions corresponding to FIGS. 4A and 4D are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 14A is a plan view showing the carrier 47A of the present embodiment
  • FIG. 14B is a plan view showing a state in which the masks M1 to M7 are placed on the carrier 47A
  • FIG. 14C is a mask loader system.
  • FIG. 6 is a perspective view showing a state where a carrier 47A is being transported by 61;
  • the rectangular flat carrier 47A allows the illumination light that has passed through the masks M1 to M7 to pass, and as shown by the position B2, the mask M1 is formed at the four corners and at the center of the opposing long sides.
  • Seven rectangular openings 23 capable of holding .about.M7 are provided.
  • the opening 23 is provided with notches 23a to 23f so that the actuator systems AC1 to AC7 and the air pad portions 41A to 41D on the mask stage MST can pass through.
  • the mask library 62 stores a plurality of carriers 47B to 47D each having seven masks MB1 to MB7, MC1 to MC7, and MD1 to MD7 each having the same shape as the carrier 47A. Has been.
  • the mask library 62 also has a space for storing the carrier 47A.
  • the mask loader system 61 includes a hand portion 61d for carrying the carriers 47A to 47D.
  • the masks M1 to M7 are initially placed on the carrier 47A by, for example, a mask loader system (not shown) that individually transports the masks. Thereafter, the masks M1 to M7 are stored in the mask library 62 while being placed on the carrier 47A. When the masks M1 to M7 are used for exposure, the carrier 47A on which the masks M1 to M7 are placed is transported from the mask library 62 onto the mask stage MST by the mask loader system 61.
  • FIG. 15A is a plan view showing the mask stage MST on which the carrier 47A is conveyed
  • FIG. 15B is a cross-sectional view taken along the line XVB-XVB in FIG. 15A.
  • the masks M1 to M7 are separated from the carrier 47A, they can be individually driven by the actuator systems AC1 to AC7 on the mask stage MST as in the first embodiment.
  • the masks M1 to M7 are placed on the carrier 47A by raising the carrier 47A in the Z direction by the mask loader system from the state of FIG. Thereafter, the masks M1 to M7 are stored in the mask library while being placed on the carrier 47A.
  • a liquid crystal device such as a liquid crystal display element is formed by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a substrate (glass plate) using the projection exposure apparatus (scanning exposure apparatus) of the embodiment described above. Can be manufactured.
  • a predetermined pattern circuit pattern, electrode pattern, etc.
  • a substrate glass plate
  • the projection exposure apparatus scanning exposure apparatus
  • an example of this manufacturing method will be described with reference to steps S401 to S404 in FIG.
  • step S401 pattern formation process
  • An exposure process for transferring and exposing the pattern onto the photosensitive substrate and a developing process for developing the photosensitive substrate are performed.
  • a predetermined resist pattern is formed on the substrate by a lithography process including the coating process, the exposure process, and the development process. Following this lithography process, a predetermined pattern including a large number of electrodes and the like is formed on the substrate through an etching process using the resist pattern as a processing mask, a resist stripping process, and the like. The lithography process or the like is executed a plurality of times according to the number of layers on the substrate.
  • next step S402 color filter forming step
  • a large number of three fine filter sets corresponding to red R, green G, and blue B are arranged in a matrix, or red R, green G, and blue B are arranged.
  • a color filter is formed by arranging a set of three stripe-shaped filters in the horizontal scanning line direction.
  • next step S403 cell assembly process
  • liquid crystal is injected between the substrate having the predetermined pattern obtained in step S401 and the color filter obtained in step S402, and a liquid crystal panel (liquid crystal cell) is obtained. ).
  • step S404 module assembly process
  • the liquid crystal panel (liquid crystal cell) thus assembled is attached with an electric circuit for performing a display operation and components such as a backlight to complete a liquid crystal display element.
  • the present invention is not limited to application to a manufacturing process of a liquid crystal display element.
  • a manufacturing process of a display device such as a plasma display, an imaging element (CCD or the like), a micromachine, a MEMS (Microelectromechanical systems: It can be widely applied to manufacturing processes of various devices such as micro electromechanical systems), thin film magnetic heads using ceramic wafers or the like as substrates, and semiconductor elements.
  • a discharge lamp is provided as a light source, and necessary light such as g-line, h-line, and i-line is selected.
  • the exposure light uses light from an ultraviolet LED, laser light from a KrF excimer laser (248 nm) or ArF excimer laser (193 nm), or harmonics of a solid-state laser (semiconductor laser or the like). Even if it exists, it is possible to apply this invention.
  • the present invention can also be applied to an exposure apparatus that performs Mitty exposure.
  • the masks M1 to M7 on which the pattern is formed are described as using the transmission type mask that transmits the exposure light.
  • a reflection type mask that reflects the exposure light can also be used.
  • the reflective mask for example, a DMD (Digital Micromirror Device or Deformable Micromirror Device) in which a pattern is formed by a plurality of minute mirror elements can be used.
  • the plate PT such as a glass plate is used as an object to which the pattern of the masks M1 to M7 is transferred (an object to be exposed through the pattern).
  • a solid plate such as a glass plate
  • a flexible film-like or sheet-like object can be used.
  • the projection exposure apparatus EX (exposure apparatus) of the above-described embodiment has various mechanical systems including components (MST, PTST) recited in the claims of the present application, with predetermined mechanical accuracy, electrical Manufactured by assembling so as to maintain optical accuracy and optical accuracy.
  • the assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus.
  • the exposure apparatus is preferably manufactured in a clean room where the temperature, cleanliness, etc. are controlled.

Abstract

Disclosed is an exposure device that can suppress the occurrence of a connection error in the case where patters formed on multiple masks are connected with each other and the transfer of the connected patterns are carried out. The exposure device is provided with a mask stage (MST) to support multiple masks (M1-M7) on which patterns are formed, a plate stage on which a plate (PT) is mounted, a control device that individually moves a control subject mask out of the masks (M1-M7) with respect to the mask state (MST) so as to control relative arrangement of the masks (M1-M7), and a lighting device (IU) that irradiates exposure light to the plate (PT) through the patterns of the masks (M1-M7) with the relative arrangement controlled.

Description

露光方法及び装置、並びにデバイス製造方法Exposure method and apparatus, and device manufacturing method
 本発明は、複数のマスクに形成されたパターンを介して物体を露光する露光技術、及びその露光技術を用いるデバイス製造技術に関する。 The present invention relates to an exposure technique for exposing an object through patterns formed on a plurality of masks, and a device manufacturing technique using the exposure technique.
 例えば半導体素子又は液晶表示素子等のデバイス(電子デバイス、マイクロデバイス)を製造する際に、マスク(レチクル、フォトマスク等)のパターンを投影光学系を介してレジストが塗布されたプレート(ガラスプレート又は半導体ウエハ等)上に投影する投影露光装置が使用されている。例えば液晶表示素子製造用のプレートは益々大型化し、近年では、2m角を越えるプレートが使用されるようになってきている。このようなプレートに対して例えば等倍の投影光学系を使用するものとすると、マスクも大型化する。マスクのコストは、マスク基板の平面度を維持する必要もあり、また、大面積になるほど製造工程が複雑化するため、大型化するほど高くなる。さらに、例えば液晶表示素子の薄膜トランジスタ部を形成するためには、通常4~5層分のマスクが必要とされており多大なコストを要していた。 For example, when manufacturing a device such as a semiconductor element or a liquid crystal display element (electronic device, microdevice), a plate (glass plate or glass) on which a pattern of a mask (reticle, photomask, etc.) is applied via a projection optical system A projection exposure apparatus for projecting onto a semiconductor wafer or the like) is used. For example, a plate for manufacturing a liquid crystal display element has become increasingly larger, and in recent years, a plate exceeding 2 m square has been used. For example, if a projection optical system of the same magnification is used for such a plate, the mask is also increased in size. The cost of the mask needs to maintain the flatness of the mask substrate, and the manufacturing process becomes more complicated as the area becomes larger. Further, for example, in order to form a thin film transistor portion of a liquid crystal display element, a mask for 4 to 5 layers is usually required, which requires a great deal of cost.
 そこで、例えば走査方向に2列に分けて配置され、走査方向と直交する方向(以下、非走査方向と呼ぶ。)に隣接して配置された拡大倍率を有する複数の部分投影光学系よりなる拡大系マルチレンズを用いることによって、プレートに比してマスクのパターンを小さくした走査型の投影露光装置(走査型露光装置)が提案されている(例えば、特許文献1参照)。この従来の拡大系マルチレンズを備えた走査型露光装置では、マスクのパターンが各部分投影光学系に対応して複数のパターン領域に短冊状(条片状)に分割され、各パターン領域内のパターンの投影像が1回の走査露光によってプレート上に非走査方向に継ぎ合わされて転写される。
特開平11-265848号公報
Therefore, for example, an enlargement composed of a plurality of partial projection optical systems that are arranged in two rows in the scanning direction and have an enlargement magnification that is arranged adjacent to a direction orthogonal to the scanning direction (hereinafter referred to as a non-scanning direction). There has been proposed a scanning projection exposure apparatus (scanning exposure apparatus) in which a mask pattern is made smaller than that of a plate by using a system multilens (see, for example, Patent Document 1). In this conventional scanning exposure apparatus equipped with a magnifying system multi-lens, the mask pattern is divided into strips (strips) into a plurality of pattern areas corresponding to each partial projection optical system, The projected image of the pattern is transferred onto the plate in a non-scanning direction by one scanning exposure.
JP-A-11-265848
 ところが、上述のような拡大系マルチレンズを備えた走査型露光装置では、分割された各パターン領域間に相互に配置誤差が生じた場合、プレート上に継ぎ合わせて転写されるパターンにおいて、その配置誤差に起因する継ぎ合わせの誤差(以下、継ぎ誤差と呼ぶ。)が発生する問題があった。 However, in the scanning type exposure apparatus provided with the magnifying system multi-lens as described above, when an arrangement error occurs between the divided pattern areas, the arrangement of the pattern is transferred on the plate. There has been a problem that a splicing error (hereinafter referred to as a splicing error) due to the error occurs.
 本発明はこのような事情に鑑み、複数のマスクに形成されたパターンをプレート(基板)上に継ぎ合わせて転写する場合の継ぎ誤差の発生を抑制できる露光方法及び装置、並びにデバイス製造方法を提供することを目的とする。 In view of such circumstances, the present invention provides an exposure method and apparatus, and a device manufacturing method that can suppress the occurrence of splicing errors when a pattern formed on a plurality of masks is transferred onto a plate (substrate). The purpose is to do.
 本発明による露光方法は、パターンが形成された複数のマスクを第1ステージ上に支持する支持工程と、前記複数のマスクのうち少なくとも1つの制御対象マスクを前記第1ステージに対して個別に動かして該複数のマスクの相対配置を制御する制御工程と、前記相対配置が制御された前記複数のマスクの前記パターンを介し、第2ステージに載置された物体を露光する露光工程と、を含むものである。
 また、本発明による露光装置は、パターンが形成された複数のマスクを支持する第1ステージと、物体が載置される第2ステージと、前記複数のマスクのうち少なくとも1つの制御対象マスクを前記第1ステージに対して個別に動かして該複数のマスクの相対配置を制御する制御装置と、前記相対配置が制御された前記複数のマスクの前記パターンを介し
て前記物体に露光光を照射する照明系と、を備えるものである。
An exposure method according to the present invention includes a supporting step for supporting a plurality of masks on which a pattern is formed on a first stage, and moving at least one control target mask among the plurality of masks individually with respect to the first stage. A control step for controlling the relative arrangement of the plurality of masks, and an exposure step for exposing the object placed on the second stage through the pattern of the plurality of masks for which the relative arrangement is controlled. It is a waste.
The exposure apparatus according to the present invention includes a first stage that supports a plurality of masks on which a pattern is formed, a second stage on which an object is placed, and at least one control target mask among the plurality of masks. A control device that individually moves the first stage to control the relative arrangement of the plurality of masks, and illumination that irradiates the object with exposure light through the patterns of the plurality of masks in which the relative arrangement is controlled. And a system.
 また、本発明によるデバイス製造方法は、本発明の露光方法又は露光装置を用いて、複数のマスクのパターンをその第2ステージに載置された感光基板に転写する転写工程と、そのパターンが転写されたその感光基板を現像し、そのパターンに対応する形状の転写パターン層をその感光基板上に形成する現像工程と、その転写パターン層を介してその感光基板を加工する加工工程と、を含むものである。 The device manufacturing method according to the present invention includes a transfer step of transferring a plurality of mask patterns onto a photosensitive substrate placed on the second stage using the exposure method or exposure apparatus of the present invention, and the patterns are transferred. And developing the photosensitive substrate and forming a transfer pattern layer having a shape corresponding to the pattern on the photosensitive substrate, and a processing step of processing the photosensitive substrate through the transfer pattern layer. It is a waste.
 本発明によれば、パターンが形成された複数のマスクのうち少なくとも1つの制御対象マスクを、この複数のマスクを支持するステージに対して個別に動かして、この複数のマスクの相対配置を制御しているため、この複数のマスクに形成されたパターンを基板等の物体上に継ぎ合わせて転写する場合の継ぎ誤差の発生を抑制でき、物体上に高精度にパターンを転写できる。 According to the present invention, at least one mask to be controlled among a plurality of masks on which a pattern is formed is individually moved with respect to a stage that supports the plurality of masks, and the relative arrangement of the plurality of masks is controlled. Therefore, it is possible to suppress the occurrence of a joint error when the patterns formed on the plurality of masks are transferred onto an object such as a substrate, and the pattern can be transferred onto the object with high accuracy.
第1の実施形態に係る投影露光装置の構成を示す斜視図である。It is a perspective view which shows the structure of the projection exposure apparatus which concerns on 1st Embodiment. 図1の2つの部分照明光学系及び2つの投影光学系等の構成を示す断面図である。FIG. 2 is a cross-sectional view illustrating configurations of two partial illumination optical systems and two projection optical systems in FIG. 1. 図3(A)は、マスクステージMST及びその駆動機構等を示す斜視図、図3(B)は、マスクステージMSTを示す斜視図である。FIG. 3A is a perspective view showing the mask stage MST and its driving mechanism, and FIG. 3B is a perspective view showing the mask stage MST. 図4(A)は、マスクステージMST上のアクチュエータ系の配列の一例を示す平面図、図4(B)は押圧部40Bを示す拡大図、図4(C)はアクチュエータ39Bを示す断面図、図4(D)は図4(A)のIVD-IVD線に沿う拡大断面図である。4A is a plan view showing an example of the arrangement of actuator systems on the mask stage MST, FIG. 4B is an enlarged view showing the pressing portion 40B, and FIG. 4C is a cross-sectional view showing the actuator 39B. FIG. 4D is an enlarged cross-sectional view taken along the line IVD-IVD in FIG. マスクステージMSTをガイド部材の端部に移動した状態を示す斜視図である。It is a perspective view which shows the state which moved the mask stage MST to the edge part of a guide member. 図6(A)は、マスクステージMST上のマスクM1~M7の配置を示す平面図、図6(B)は、プレートステージ上のプレートPTを示す平面図である。FIG. 6A is a plan view showing the arrangement of the masks M1 to M7 on the mask stage MST, and FIG. 6B is a plan view showing the plate PT on the plate stage. 図7(A)は走査露光中のプレートPTを示す平面図、図7(B)は走査露光中のマスクステージMSTを示す平面図、図7(C)は走査露光中のマスクM1を示す平面図である。7A is a plan view showing the plate PT during scanning exposure, FIG. 7B is a plan view showing the mask stage MST during scanning exposure, and FIG. 7C is a plane showing the mask M1 during scanning exposure. FIG. 第1の実施形態の露光動作の一例を示すフローチャートである。It is a flowchart which shows an example of the exposure operation | movement of 1st Embodiment. 第1の実施形態の変形例のマスクM1の駆動機構を示す平面図である。It is a top view which shows the drive mechanism of the mask M1 of the modification of 1st Embodiment. 図10(A)は、第2の実施形態においてキャリア45上にマスクM1~M7を載置した状態を示す斜視図、図10(B)は図10(A)のキャリア45をマスクステージMST上に載置した状態を示す斜視図である。FIG. 10A is a perspective view showing a state in which the masks M1 to M7 are placed on the carrier 45 in the second embodiment, and FIG. 10B shows the carrier 45 in FIG. 10A on the mask stage MST. It is a perspective view which shows the state mounted in. 図11(A)は図10(B)のマスクステージMSTを示す平面図、図11(B)は図11(A)のXIB-XIB線に沿う拡大断面図である。FIG. 11A is a plan view showing the mask stage MST of FIG. 10B, and FIG. 11B is an enlarged cross-sectional view taken along line XIB-XIB of FIG. 11A. 図12(A)は、第3の実施形態においてキャリア45上にマスクM1~M7を載置した状態を示す斜視図、図12(B)は図12(A)のマスクM1を示す平面図、図12(C)は図12(A)中の押圧部40SBを示す拡大図、図12(D)は図12(A)中のアクチュエータ39SBを示す拡大図である。FIG. 12A is a perspective view showing a state in which the masks M1 to M7 are placed on the carrier 45 in the third embodiment, and FIG. 12B is a plan view showing the mask M1 in FIG. FIG. 12C is an enlarged view showing the pressing portion 40SB in FIG. 12A, and FIG. 12D is an enlarged view showing the actuator 39SB in FIG. 第2の実施形態のプリアライメント装置を示す斜視図である。It is a perspective view which shows the pre-alignment apparatus of 2nd Embodiment. 図14(A)は、第4の実施形態のキャリア47Aを示す平面図、図14(B)はキャリア47A上にマスクM1~M7を載置した状態を示す平面図、図14(C)はキャリア47Aを搬送している状態を示す斜視図である。FIG. 14A is a plan view showing the carrier 47A of the fourth embodiment, FIG. 14B is a plan view showing a state where the masks M1 to M7 are placed on the carrier 47A, and FIG. It is a perspective view which shows the state which is conveying the carrier 47A. 図15(A)は、図14(C)のキャリア47Aが載置されたマスクステージMSTを示す平面図、図15(B)は図15(A)のXVB-XVB線に沿う断面図である。FIG. 15A is a plan view showing a mask stage MST on which the carrier 47A of FIG. 14C is placed, and FIG. 15B is a cross-sectional view taken along line XVB-XVB of FIG. . 液晶デバイスの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of a liquid crystal device.
 [第1の実施形態]
 以下、本発明の好ましい第1の実施形態につき図1~図8を参照して説明する。
 図1は、本実施形態のステップ・アンド・スキャン方式の投影露光装置(走査型露光装置)EXの概略構成を示す。図1において、投影露光装置EXは、露光光源(不図示)からの光で、複数(図1では7個)の小型のマスクM1,M2,M3,M4,M5,M6,M7に形成されたパターンを照明する照明装置IUと、マスクM1~M7を保持して移動するマスクステージMSTと、マスクM1~M7のパターンの拡大像をそれぞれプレートPT上に投影する複数の反射屈折型の投影光学系PL1~PL7を含む投影光学装置PLと、プレートPTを保持して移動するプレートステージPTST(図2参照)と、マスクステージMST及びプレートステージPTSTを駆動するリニアモータ等を含む駆動機構(不図示)と、この駆動機構等の動作を統括的に制御するコンピュータよりなる主制御系57とを備えている。なお、本実施形態のプレートPTは、一例としてフォトレジスト(感光材料)が塗布された1.9×2.2m角、2.2×2.4m角、2.4×2.8m角、又は2.8×3.2m角等の矩形の平板状の液晶表示素子製造用のガラスプレートである。
[First Embodiment]
A preferred first embodiment of the present invention will be described below with reference to FIGS.
FIG. 1 shows a schematic configuration of a step-and-scan projection exposure apparatus (scanning exposure apparatus) EX of the present embodiment. In FIG. 1, the projection exposure apparatus EX is formed on a plurality of (seven in FIG. 1) small masks M1, M2, M3, M4, M5, M6, and M7 with light from an exposure light source (not shown). Illumination device IU that illuminates a pattern, mask stage MST that moves while holding masks M1 to M7, and a plurality of catadioptric projection optical systems that project magnified images of the patterns of masks M1 to M7 on plate PT, respectively Projection optical apparatus PL including PL1 to PL7, a plate stage PTST (see FIG. 2) that holds and moves the plate PT, a drive mechanism (not shown) including a mask stage MST, a linear motor that drives the plate stage PTST, and the like. And a main control system 57 composed of a computer for comprehensively controlling the operation of the drive mechanism and the like. As an example, the plate PT of the present embodiment is a 1.9 × 2.2 m square, 2.2 × 2.4 m square, 2.4 × 2.8 m square coated with a photoresist (photosensitive material), or This is a glass plate for manufacturing a liquid crystal display element having a rectangular flat plate shape of 2.8 × 3.2 m square or the like.
 以下では、プレートステージPTSTでプレートPTが載置される面(ほぼプレートPTの表面に平行な面)上で直交する2方向にX軸及びY軸を取り、その面に垂直にZ軸を取り、Z軸に平行な軸の周りの回転方法をθz方向として説明する。本実施形態では、一例としてXY面が水平面に平行に、-Z方向が鉛直方向に設定される。また、マスクM1~M7及びプレートPTを同期して移動する方向、すなわちマスクステージMST及びプレートステージPTSTを同期して移動させる方向(走査方向)をX方向に設定している。 In the following description, the X axis and the Y axis are taken in two orthogonal directions on the surface on which the plate PT is placed on the plate stage PTST (a surface substantially parallel to the surface of the plate PT), and the Z axis is taken perpendicular to the surface. A rotation method around an axis parallel to the Z axis will be described as the θz direction. In the present embodiment, as an example, the XY plane is set parallel to the horizontal plane, and the −Z direction is set to the vertical direction. The direction in which the masks M1 to M7 and the plate PT are moved in synchronism, that is, the direction in which the mask stage MST and the plate stage PTST are moved in synchronism (scanning direction) is set in the X direction.
 図1において、例えば超高圧水銀ランプからなる露光光源(不図示)より射出した光は、照明装置IU内で楕円鏡2及びダイクロイックミラー3により反射されてコリメートレンズ4に入射する。楕円鏡2の反射膜及びダイクロイックミラー3の反射膜によりg線(波長436nm)、h線(波長405nm)及びi線(波長365nm)の光を含む波長域の光が取り出され、取り出された光がコリメートレンズ4に入射する。コリメートレンズ4で平行光にされた照明光は、所定の露光波長域の光のみを透過させる波長選択フィルタ5、減光フィルタ6、及び集光レンズ7を介してライトガイドファイバ8の入射口8aに集光される。 In FIG. 1, light emitted from an exposure light source (not shown) made of, for example, an ultra-high pressure mercury lamp is reflected by the elliptical mirror 2 and the dichroic mirror 3 in the illumination device IU and enters the collimating lens 4. Light in a wavelength region including g-line (wavelength 436 nm), h-line (wavelength 405 nm), and i-line (wavelength 365 nm) light is extracted by the reflective film of the elliptical mirror 2 and the reflective film of the dichroic mirror 3, and the extracted light Enters the collimating lens 4. The illumination light converted into parallel light by the collimating lens 4 passes through a wavelength selection filter 5 that transmits only light in a predetermined exposure wavelength range, a neutral density filter 6, and a condenser lens 7, and an incident port 8 a of the light guide fiber 8. It is focused on.
 ライトガイドファイバ8は、入射口8aと7つの射出口(以下、射出口8b,8c,8d,8e,8f,8g,8hという。)を備えている。入射口8aに入射した照明光は、ライトガイドファイバ8の内部を伝播した後、7つの射出口8b~8hより分割されて射出し、マスクM1~M7を部分的に照明する7つの部分照明光学系(以下、部分照明光学系IL1,IL2,IL3,IL4,IL5,IL6,IL7という。)にそれぞれ入射する。各部分照明光学系IL1~IL7を通過した照明光は、それぞれマスクM1~M7上の対応する照明領域をほぼ均一に照明する。楕円鏡2から部分照明光学系IL1~IL7までの光学部材を用いて照明装置IUが構成されている。 The light guide fiber 8 includes an entrance 8a and seven exits (hereinafter referred to as exits 8b, 8c, 8d, 8e, 8f, 8g, and 8h). The illumination light that has entered the entrance 8a propagates through the inside of the light guide fiber 8, and then is divided and emitted from the 7 exits 8b to 8h, and the 7 partial illumination optics that partially illuminate the masks M1 to M7. It enters each of the systems (hereinafter referred to as partial illumination optical systems IL1, IL2, IL3, IL4, IL5, IL6, and IL7). The illumination light that has passed through the partial illumination optical systems IL1 to IL7 illuminates the corresponding illumination areas on the masks M1 to M7 almost uniformly. An illuminating device IU is configured using optical members from the elliptical mirror 2 to the partial illumination optical systems IL1 to IL7.
 マスクM1~M7上の照明領域からの照明光は、マスクM1~M7のパターンの一部の像をプレートPT上にそれぞれ投影する7つの投影光学系(以下、投影光学系PL1,PL2,PL3,PL4,PL5,PL6,PL7という。)のそれぞれに入射する。投影光学系(部分投影光学系)PL1~PL7は、それぞれマスクM1~M7のパターン面(下面)のパターンの像をプレートPT上に結像する。 Illumination light from the illumination areas on the masks M1 to M7 is projected into seven projection optical systems (hereinafter referred to as projection optical systems PL1, PL2, PL3, respectively) that project images of a part of the patterns of the masks M1 to M7 onto the plate PT. PL4, PL5, PL6, and PL7). Projection optical systems (partial projection optical systems) PL1 to PL7 form images of patterns on the pattern surfaces (lower surfaces) of the masks M1 to M7 on the plate PT, respectively.
 次に、図3(A)は、マスクステージMST及びその駆動機構等を示す斜視図、図3(B)は、マスクステージMSTを示す斜視図である。図3(A)において、マスクステージMSTは、X軸に平行に不図示のコラムに支持された1対のロッド状のガイド部材59A,59B上に、真空予圧型気体軸受を介してX方向及びθz方向に移動可能に載置されている。また、マスクステージMSTのY方向の両端部に固定された移動子60Aa及び60Baと、不図示のコラムに支持された固定子60Ab及び60Bbとから、それぞれガイド部材59A,59Bに対してX方向にマスクステージMSTを移動させるための1対のリニアモータ60A及び60Bが構成されている。リニアモータ60A及び60BのX方向の駆動量を変化させることによって、マスクステージMSTのθz方向の回転角を所定範囲内で制御することも可能である。 Next, FIG. 3A is a perspective view showing the mask stage MST and its driving mechanism and the like, and FIG. 3B is a perspective view showing the mask stage MST. In FIG. 3A, the mask stage MST is placed on a pair of rod-shaped guide members 59A and 59B supported by a column (not shown) parallel to the X axis in the X direction via a vacuum preload type gas bearing. It is mounted so as to be movable in the θz direction. Further, from the movers 60Aa and 60Ba fixed to both ends in the Y direction of the mask stage MST and the stators 60Ab and 60Bb supported by a column (not shown), respectively, in the X direction with respect to the guide members 59A and 59B. A pair of linear motors 60A and 60B for moving the mask stage MST are configured. It is also possible to control the rotation angle of the mask stage MST in the θz direction within a predetermined range by changing the drive amount of the linear motors 60A and 60B in the X direction.
 また、マスクステージMSTの-X方向の端部に固定された2つの移動鏡55X1,55X2にレーザ干渉計56X1,56Y2から計測用ビームが照射され、マスクステージMSTの-Y方向の端部に固定されたロッド状の移動鏡55Yにレーザ干渉計56Yから計測用ビームが照射されている。レーザ干渉計56X1,56X2及び56Yによって、例えば投影光学装置PLを支持する不図示のコラムに設けられた参照鏡(不図示)を基準として、マスクステージMSTのX方向、Y方向の位置、及びθz方向の回転角が計測されている。この計測情報に基づいて主制御系57内のステージ制御部が、リニアモータ60A,60Bを介してマスクステージMSTのX方向の位置及び速度、並びにθz方向の回転角を制御する。 Further, the measurement beams are irradiated from the laser interferometers 56X1 and 56Y2 to the two movable mirrors 55X1 and 55X2 fixed to the −X direction end of the mask stage MST, and fixed to the −Y direction end of the mask stage MST. The rod-shaped moving mirror 55Y is irradiated with a measurement beam from the laser interferometer 56Y. The laser interferometers 56X1, 56X2, and 56Y use, for example, a reference mirror (not shown) provided in a column (not shown) that supports the projection optical apparatus PL as a reference, the position of the mask stage MST in the X direction, the Y direction, and θz The direction rotation angle is measured. Based on this measurement information, the stage controller in the main control system 57 controls the position and speed of the mask stage MST in the X direction and the rotation angle in the θz direction via the linear motors 60A and 60B.
 また、マスクステージMSTには、図3(B)に示すように、マスクM1~M7を通過した照明光を通過させるための7つの矩形の開口21が形成されている。さらに、マスクステージMST上には各開口21を囲むように、マスクステージMSTに対してマスクM1~M7を互いに独立にX方向、Y方向、及びθz方向に駆動するためのアクチュエータ系AC1,AC2,AC3,AC4,AC5,AC6,AC7が設けられている。マスクM1~M7は、このアクチュエータ系AC1~AC7によって、マスクステージMSTに対して個別に駆動される。 In addition, as shown in FIG. 3B, seven rectangular openings 21 are formed in the mask stage MST for allowing the illumination light that has passed through the masks M1 to M7 to pass therethrough. Further, actuator systems AC1, AC2, AC2 for driving the masks M1 to M7 with respect to the mask stage MST in the X direction, the Y direction, and the θz direction so as to surround each opening 21 on the mask stage MST. AC3, AC4, AC5, AC6, and AC7 are provided. Masks M1 to M7 are individually driven with respect to mask stage MST by actuator systems AC1 to AC7.
 図4(A)は、図3(A)のマスクステージMST上のアクチュエータ系AC1~AC7の配列の一例を示す平面図であり、図4(D)は図4(A)のIVD-IVD線に沿う拡大断面図である。図4(A)において、マスクM1~M7は、それぞれそのパターン領域PAが開口21を覆うように、マスクステージMST上で真空予圧型気体軸受を構成する4箇所のエアパッド部41A,41B,41C,41Dによって、X方向、Y方向の移動、及びθz方向の回転が可能な状態で浮上して支持されている。 4A is a plan view showing an example of the arrangement of the actuator systems AC1 to AC7 on the mask stage MST in FIG. 3A, and FIG. 4D is a IVD-IVD line in FIG. 4A. FIG. In FIG. 4A, each of the masks M1 to M7 has four air pad portions 41A, 41B, 41C, which constitute a vacuum preload type gas bearing on the mask stage MST so that the pattern area PA covers the opening 21, respectively. By 41D, it floats and is supported in a state where movement in the X direction and Y direction and rotation in the θz direction are possible.
 即ち、図4(D)に示すように、マスクステージMSTのエアパッド部41Dの複数の排気孔42Aが通気孔42B及び不図示の可撓性配管を介して真空ポンプ43に連通し、複数の給気孔42Cが通気孔42D及び不図示の可撓性配管を介して加圧源44に連通している。エアパッド部41Dの給気孔42Cから加圧空気等を吹き出す加圧と、排気孔42Aから気体を吸引する真空予圧とを並行して行うことによって、エアパッド部41DとマスクM1との間に数μm程度(例えば5μm程度)のギャップgが維持される。他のエアパッド部41A~41Cも同様に構成されている。 That is, as shown in FIG. 4D, the plurality of exhaust holes 42A of the air pad portion 41D of the mask stage MST communicate with the vacuum pump 43 through the vent holes 42B and a flexible pipe (not shown), The air hole 42C communicates with the pressurizing source 44 through the air hole 42D and a flexible pipe (not shown). By performing in parallel the pressurization for blowing out pressurized air or the like from the air supply hole 42C of the air pad portion 41D and the vacuum preload for sucking the gas from the exhaust hole 42A, the air pad portion 41D and the mask M1 have a size of about several μm. The gap g (for example, about 5 μm) is maintained. The other air pad portions 41A to 41C are configured similarly.
 なお、図4(D)の例では、エアパッド部41DはマスクステージMSTの上面から所定の段差をもって突き出ているが、エアパッド部41A~41Dの上面をマスクステージMSTの他の部分と同じ高さにしてもよい。
 また、図4(A)において、アクチュエータ系AC1は、マスクM1をX方向に駆動するアクチュエータ39Aと、X方向に離れた2箇所でマスクM1をY方向に駆動する2つのアクチュエータ39B,39Cと、アクチュエータ39A及び39B,39Cに対向してそれぞれマスクM1をX方向及びY方向に付勢する押圧部40A及び40B,40Cとを備えている。Y軸のアクチュエータ39B,39Cの駆動量を変えることでマスクM1のθz方向の回転角を制御できる。アクチュエータ39B,39Cはアクチュエータ39Aを90°回転して配置したものであり、押圧部40B,40Cは押圧部40Aを90°回転して配置したものである。マスクM1の着脱時に、アクチュエータ系AC1の各先端部とマスクM1との間に或る程度の隙間を確保できるように、押圧部40A~40Cの先端部を随時逆方向に退避できるように構成されている。
In the example of FIG. 4D, the air pad portion 41D protrudes from the upper surface of the mask stage MST with a predetermined step, but the upper surfaces of the air pad portions 41A to 41D are made to be the same height as other portions of the mask stage MST. May be.
4A, the actuator system AC1 includes an actuator 39A that drives the mask M1 in the X direction, and two actuators 39B and 39C that drive the mask M1 in the Y direction at two locations separated in the X direction. Opposing actuators 39A, 39B, and 39C are provided with pressing portions 40A, 40B, and 40C that urge the mask M1 in the X and Y directions, respectively. The rotation angle of the mask M1 in the θz direction can be controlled by changing the drive amounts of the Y- axis actuators 39B and 39C. The actuators 39B and 39C are arranged by rotating the actuator 39A by 90 °, and the pressing portions 40B and 40C are arranged by rotating the pressing portion 40A by 90 °. When the mask M1 is attached / detached, the tip portions of the pressing portions 40A to 40C can be retracted in the reverse direction at any time so that a certain amount of clearance can be secured between each tip portion of the actuator system AC1 and the mask M1. ing.
 他のアクチュエータ系AC2~AC7もアクチュエータ系AC1と実質的に同一構成である。ただし、隣接する2つのアクチュエータ系(例えばAC1及びAC2)は、Y軸のアクチュエータ39B,39Cと、Y軸の押圧部40B,40Cとが機械的に干渉しないようにX方向の位置がずれている。アクチュエータ系AC1~AC7は、主制御系57の制御のもとにあるアクチュエータ駆動系58(図4(B),(C)参照)によって駆動される。アクチュエータ駆動系58からアクチュエータ39A~39Cに供給する駆動信号と、対応するマスクM1~M7の移動量との関係は予めアクチュエータ駆動系58内の記憶部に記憶されている。主制御系57からアクチュエータ駆動系58に対してマスクM1~M7のそれぞれの目標駆動量の情報が供給され、それに応じて一例としてアクチュエータ駆動系58は、マスクM1~M7が対応する目標駆動量だけ駆動されるように、開ループ制御でアクチュエータ39A~39Cを駆動する。なお、マスクM1~M7のマスクステージMSTに対する変位を検出するセンサ(静電容量型のギャプセンサ等)を設け、閉ループ方式でアクチュエータ39A~39Cを駆動することも可能である。 The other actuator systems AC2 to AC7 have substantially the same configuration as the actuator system AC1. However, the two adjacent actuator systems (for example, AC1 and AC2) are displaced in the X direction so that the Y- axis actuators 39B and 39C and the Y-axis pressing portions 40B and 40C do not mechanically interfere with each other. . The actuator systems AC1 to AC7 are driven by an actuator drive system 58 (see FIGS. 4B and 4C) under the control of the main control system 57. The relationship between the drive signals supplied from the actuator drive system 58 to the actuators 39A to 39C and the movement amounts of the corresponding masks M1 to M7 is stored in advance in the storage unit in the actuator drive system 58. Information on the respective target drive amounts of the masks M1 to M7 is supplied from the main control system 57 to the actuator drive system 58, and as an example, the actuator drive system 58 receives only the target drive amounts corresponding to the masks M1 to M7. Actuators 39A-39C are driven by open loop control so that they are driven. It is possible to provide a sensor (capacitance type gap sensor or the like) for detecting the displacement of the masks M1 to M7 with respect to the mask stage MST and drive the actuators 39A to 39C in a closed loop manner.
 代表的にアクチュエータ39B及び押圧部40Bの構成例につき図4(C)及び図4(B)を参照して説明する。
 図4(B)において、押圧部40Bは、マスクステージMSTに固定される本体部40aと、本体部40aに対して挿脱自在に支持された磁性材料からなる移動部材40cと、移動部材40cを外側に付勢するコイルばね40dと、移動部材40cの先端部に回転可能に設けられてマスクM1に直接接触する金属製の球体40eとを含んでいる。さらに、本体部40a内に組み込まれたコイル40bにアクチュエータ駆動系58から通電することによって、移動部材40c(球体40e)を本体部40a側の位置B1に退避できるように構成されている。なお、押圧部40Bとしては、板ばね部材等も使用可能である。
A configuration example of the actuator 39B and the pressing portion 40B will be described with reference to FIGS. 4C and 4B.
4B, the pressing portion 40B includes a main body portion 40a fixed to the mask stage MST, a moving member 40c made of a magnetic material supported so as to be detachable from the main body portion 40a, and a moving member 40c. It includes a coil spring 40d that urges outward, and a metal sphere 40e that is rotatably provided at the tip of the moving member 40c and that directly contacts the mask M1. Further, the moving member 40c (spherical body 40e) can be retracted to the position B1 on the main body 40a side by energizing the coil 40b incorporated in the main body 40a from the actuator drive system 58. In addition, a leaf spring member or the like can be used as the pressing portion 40B.
 一方、図4(C)において、アクチュエータ39Bは、マスクステージMSTに固定されて、多数の小さいピエゾ素子(圧電素子)が周囲に配列された開口を持つ固定子39aと、固定子39aの開口内に挿脱自在に配置された移動子39bと、移動子39bの先端部に回転可能に設けられてマスクM1に直接接触する金属製の球体39cとを含んでいる。即ち、アクチュエータ39Bは直動型のピエゾモータであり、アクチュエータ駆動系58から固定子39a内の多数のピエゾ素子を駆動することで、移動子39bを所望の駆動量だけ移動することができる。さらに、ピエゾモータは、固定子39aに駆動電力を供給しない状態では、移動子39bの位置がそれまでの位置に維持される。 On the other hand, in FIG. 4C, the actuator 39B is fixed to the mask stage MST, and has a stator 39a having an opening in which a large number of small piezoelectric elements (piezoelectric elements) are arranged around the opening, and an opening in the stator 39a. And a metal sphere 39c that is rotatably provided at the tip of the mover 39b and directly contacts the mask M1. That is, the actuator 39B is a direct-acting piezo motor, and by driving a large number of piezo elements in the stator 39a from the actuator drive system 58, the mover 39b can be moved by a desired drive amount. Further, in the piezo motor, when the driving power is not supplied to the stator 39a, the position of the mover 39b is maintained at the previous position.
 また、図4(A)において、マスクM1~M7のパターン領域PAのX方向(走査方向)の近傍には、相互の位置関係及びプレートPT上に形成されているデバイスパターン(2層目以降に露光する場合)との位置関係を計測するための2対の2次元のアライメントマーク36A,36B及び37A,37Bが形成されている。
 図1に戻り、プレートPTはプレートホルダ(不図示)を介してプレートステージPTST(図2参照)上に吸着保持され、プレートステージPTSTにはX軸の移動鏡50X及びY軸の移動鏡50Yが設けられている。X軸のレーザ干渉計51X1,51X2及びY軸のレーザ干渉計51Y1,51Y2,51Y3から移動鏡50X及び50Yに計測用ビームが照射されている。レーザ干渉計51X1,51X2及び51Y1~51Y3によって、例えば投影光学装置PLを支持する不図示のコラムに設けられた参照鏡(不図示)を基準として、プレートステージPTSTのX方向、Y方向の位置、及びθz方向の回転角が計測されている。その計測情報に基づいて主制御系57内のステージ制御部が、駆動機構(不図示)を介してプレートステージPTST(プレートPT)のX方向、Y方向の位置及び速度、並びにθz方向の回転角を制御する。
4A, in the vicinity of the pattern area PA of the masks M1 to M7 in the X direction (scanning direction), the mutual positional relationship and the device pattern formed on the plate PT (from the second layer onward) Two pairs of two-dimensional alignment marks 36A and 36B and 37A and 37B for measuring the positional relationship with the exposure) are formed.
Returning to FIG. 1, the plate PT is sucked and held on a plate stage PTST (see FIG. 2) via a plate holder (not shown), and an X-axis movable mirror 50X and a Y-axis movable mirror 50Y are provided on the plate stage PTST. Is provided. The measurement beams are irradiated to the movable mirrors 50X and 50Y from the X-axis laser interferometers 51X1 and 51X2 and the Y-axis laser interferometers 51Y1, 51Y2, and 51Y3. Laser interferometers 51X1, 51X2, and 51Y1 to 51Y3 use, for example, a reference mirror (not shown) provided in a column (not shown) that supports the projection optical apparatus PL as a reference for the positions of the plate stage PTST in the X and Y directions, The rotation angle in the θz direction is measured. Based on the measurement information, the stage control unit in the main control system 57, via a drive mechanism (not shown), the position and speed in the X and Y directions and the rotation angle in the θz direction of the plate stage PTST (plate PT). To control.
 上述の部分照明光学系IL1~IL7のうちの-X方向側の第1列の部分照明光学系IL1,IL3,IL5,IL7は、走査方向と直交する非走査方向(Y方向)に所定間隔をもって配置され、部分照明光学系IL1,IL3,IL5,IL7に対応して設けられている第1列の投影光学系PL1,PL3,PL5,PL7も、同様に投影光学装置PL内で非走査方向に所定間隔をもって配置されている。また、第2列の部分照明光学系IL2,IL4,IL6は、第1列に対して+X方向側に、かつ非走査方向に所定間隔をもって配置されており、部分照明光学系IL2,IL4,IL6に対応して設けられている第2列の投影光学系PL2,PL4,PL6も、第1列に対して+X方向に、かつ非走査方向に所定間隔をもって配置されている。 Among the partial illumination optical systems IL1 to IL7, the partial illumination optical systems IL1, IL3, IL5, IL7 in the first column on the −X direction side have a predetermined interval in the non-scanning direction (Y direction) orthogonal to the scanning direction. Similarly, the first-row projection optical systems PL1, PL3, PL5, and PL7 that are arranged and provided corresponding to the partial illumination optical systems IL1, IL3, IL5, and IL7 are also arranged in the non-scanning direction in the projection optical apparatus PL. They are arranged at a predetermined interval. The second column partial illumination optical systems IL2, IL4, and IL6 are arranged on the + X direction side with respect to the first column and at a predetermined interval in the non-scanning direction, and the partial illumination optical systems IL2, IL4, and IL6. The second row projection optical systems PL2, PL4, and PL6 provided corresponding to are also arranged in the + X direction and at a predetermined interval in the non-scanning direction with respect to the first row.
 第1列の投影光学系PL1,PL3,PL5,PL7は、それぞれマスクM1~M7が配置される第1面上の非走査方向に平行な直線に沿った視野V1,V3,V5,V7を持ち、プレートPTが配置される第2面上の非走査方向に平行な直線に沿って所定間隔で配列された像野(投影領域)I1,I3,I5,I7に像をそれぞれ形成する。また、第2列の投影光学系PL2,PL4,PL6は、それぞれその第1面上の非走査方向に平行な直線に沿った視野V2,V4,V6を持ち、その第2面上の非走査方向に平行な直線に沿って所定間隔で配列された像野(投影領域)I2,I4,I6(I2,I4は不図示)に像をそれぞれ形成する。なお、視野V1~V7は、部分照明光学系IL1~IL7によるマスクM1~M7上の照明領域(照野)でもある。 The first row of projection optical systems PL1, PL3, PL5, and PL7 have fields of view V1, V3, V5, and V7 along straight lines parallel to the non-scanning direction on the first surface on which the masks M1 to M7 are respectively arranged. Images are formed in image fields (projection regions) I1, I3, I5, and I7 arranged at predetermined intervals along a straight line parallel to the non-scanning direction on the second surface on which the plate PT is disposed. The projection optical systems PL2, PL4, and PL6 in the second row have visual fields V2, V4, and V6 along straight lines parallel to the non-scanning direction on the first surface, respectively, and non-scanning on the second surface. Images are formed in image fields (projection regions) I2, I4 and I6 (I2 and I4 are not shown) arranged at predetermined intervals along a straight line parallel to the direction. The visual fields V1 to V7 are also illumination areas (illumination fields) on the masks M1 to M7 by the partial illumination optical systems IL1 to IL7.
 第1列及び第2列の投影光学系の間には、マスクM1~M7及びプレートPTのフォーカス位置(Z方向の位置)を合わせるためのオートフォーカス系52と、プレートPTの位置合わせを行うためのオフアクシスのアライメント系54とが配置されている。
 以下、部分照明光学系IL1~IL7及び投影光学系PL1~PL7の構成につき詳細に説明する。投影光学系PL1~PL7は、それぞれマスクM1~M7上における視野(ここでは照明領域に等しい)内の拡大像である一次像をプレートPT上の像野内に形成する反射屈折型の投影光学系であり、その走査方向(X方向)における拡大倍率が+1倍を超え、且つ非走査方向(Y方向)における拡大倍率は-1を下回る。言い換えると、投影光学系PL1~PL7は、それぞれマスクM1~M7のパターンの走査方向に正立で、かつ非走査方向に倒立の拡大像をプレートPT上に形成する。走査方向及び非走査方向の拡大倍率の絶対値は、一例として2.5程度である。
Between the first and second rows of projection optical systems, the auto focus system 52 for aligning the focus positions (Z-direction positions) of the masks M1 to M7 and the plate PT and the plate PT are aligned. The off-axis alignment system 54 is arranged.
Hereinafter, the configurations of the partial illumination optical systems IL1 to IL7 and the projection optical systems PL1 to PL7 will be described in detail. The projection optical systems PL1 to PL7 are catadioptric projection optical systems that form a primary image, which is an enlarged image in the field of view (here, equal to the illumination area) on the masks M1 to M7, in the image field on the plate PT. Yes, the magnification in the scanning direction (X direction) exceeds +1 times, and the magnification in the non-scanning direction (Y direction) is less than -1. In other words, the projection optical systems PL1 to PL7 form enlarged images on the plate PT that are upright in the scanning direction of the patterns of the masks M1 to M7 and inverted in the non-scanning direction, respectively. As an example, the absolute value of the magnification in the scanning direction and the non-scanning direction is about 2.5.
 本例では、部分照明光学系IL1~IL7は同一構成である。また、第1列の投影光学系PL1,PL3,PL5,PL7は同一構成であり、第2列の投影光学系PL2,PL4,PL6は投影光学系PL1を180°回転した構成である。以下では代表的に第1列及び第2列の2つの部分照明光学系IL1,IL2及び2つの投影光学系PL1,PL2の構成につき説明する。 In this example, the partial illumination optical systems IL1 to IL7 have the same configuration. Further, the projection optical systems PL1, PL3, PL5, and PL7 in the first row have the same configuration, and the projection optical systems PL2, PL4, and PL6 in the second row have a configuration obtained by rotating the projection optical system PL1 by 180 °. Hereinafter, the configuration of the two partial illumination optical systems IL1 and IL2 and the two projection optical systems PL1 and PL2 in the first row and the second row will be typically described.
 図2は、図1中の2つの部分照明光学系IL1,IL2、及びこれらに対応する2つの投影光学系PL1,PL2の構成を示す図である。図2において、ライトガイドファイバ8の射出口8b及び8cから射出した光束は、部分照明光学系IL1及びIL2に入射して、コリメートレンズ9b及び9cにより集光される。集光された光束は、オプティカルインテグレータであるフライアイレンズ10b及び10cに入射し、フライアイレンズ10b及び10cの後側焦点面に形成された多数の二次光源からの光束は、それぞれコンデンサーレンズ11b及び11cによりマスクM1及びM2をほぼ均一に照明する。 FIG. 2 is a diagram showing the configuration of the two partial illumination optical systems IL1 and IL2 in FIG. 1 and the two projection optical systems PL1 and PL2 corresponding thereto. In FIG. 2, the light beams emitted from the exit ports 8b and 8c of the light guide fiber 8 enter the partial illumination optical systems IL1 and IL2 and are collected by the collimating lenses 9b and 9c. The condensed light beams are incident on fly- eye lenses 10b and 10c, which are optical integrators, and light beams from a number of secondary light sources formed on the rear focal planes of the fly- eye lenses 10b and 10c are respectively condenser lenses 11b. And 11c illuminate the masks M1 and M2 almost uniformly.
 また、投影光学系PL1は、凹面反射鏡CCMbと、マスクM1と凹面反射鏡CCMbとの間の光路中に配置されたZ軸に平行な光軸AX11を持つ第1レンズ群G1b及び第2レンズ群G2bと、第2レンズ群G2bから+Z方向に進行する光を-X方向に光軸AX12に沿って偏向する第1偏向部材FM1bと、その-X方向に進行する光を-Z方向に偏向する第2偏向部材FM2bと、第2偏向部材FM2bとプレートPTとの間の光路中に配置されて、Z軸に平行な光軸AX13を有する第3レンズ群G3bとを備えている。投影光学系PL1は、凹面反射鏡CCMbを用いた軸外れ光学系である。 In addition, the projection optical system PL1 includes a concave reflecting mirror CCMb, a first lens group G1b and a second lens having an optical axis AX11 parallel to the Z axis and disposed in the optical path between the mask M1 and the concave reflecting mirror CCMb. Group G2b, first deflection member FM1b that deflects light traveling in the + Z direction from the second lens group G2b along the optical axis AX12 in the −X direction, and deflects light traveling in the −X direction in the −Z direction And a third lens group G3b having an optical axis AX13 which is disposed in the optical path between the second deflection member FM2b and the plate PT and is parallel to the Z axis. Projection optical system PL1 is an off-axis optical system using concave reflecting mirror CCMb.
 投影光学系PL1において、凹面反射鏡CCMbの反射面の近傍(瞳面)には、投影光学系PL1のプレートPT側の開口数を決定するための開口絞りASbが備えられており、開口絞りASbは、マスクM1側及びプレートPT側が略テレセントリックとなるように位置決めされている。
 また、投影光学系PL2は、投影光学系PL1と対称に、Z軸に平行な光軸AX21に沿って配置された第1レンズ群G1c、第2レンズ群G2c、及び凹面反射鏡CCMcと、Z軸に平行な光軸AX23を持つ第3レンズ群G3cと、第2レンズ群G2cから+Z方向に向かう光束を光軸AX22に沿って+X方向に折り曲げる第1偏向部材FM1cと、その+X方向に向かう光束を-Z方向に折り曲げる第2偏向部材FM2cと、投影光学系PL2の瞳面に配置された開口絞りAScとを備えている。
In the projection optical system PL1, an aperture stop ASb for determining the numerical aperture on the plate PT side of the projection optical system PL1 is provided in the vicinity (pupil plane) of the concave reflecting mirror CCMb. Are positioned so that the mask M1 side and the plate PT side are substantially telecentric.
The projection optical system PL2 is symmetrical to the projection optical system PL1 and includes a first lens group G1c, a second lens group G2c, and a concave reflecting mirror CCMc, which are disposed along an optical axis AX21 parallel to the Z axis. A third lens group G3c having an optical axis AX23 parallel to the axis, a first deflecting member FM1c that bends the light flux from the second lens group G2c in the + Z direction along the optical axis AX22, and the + X direction. A second deflection member FM2c that bends the light beam in the −Z direction and an aperture stop ASc disposed on the pupil plane of the projection optical system PL2 are provided.
 さらに、投影光学系PL1,PL2には倍率補正機構(不図示)が設けられている。なお、投影光学系PL1,PL2の構成及び倍率は任意であり、投影光学系PL1,PL2を例えば屈折系で構成してもよい。また、投影光学系PL1,PL2として中間像を形成する投影光学系を使用してもよい。
 また、投影光学系PL1及びPL2は、第1レンズ群G1b及びG1cの光軸AX11,AX21のX方向(走査方向)における間隔をDmとし、第3レンズ群G3b及びG3cの光軸AX13,AX23のX方向における間隔をDpとし、投影光学系PL1及びPL2の投影倍率をβとするとき、以下の関係が満足されている。
Further, the projection optical systems PL1 and PL2 are provided with a magnification correction mechanism (not shown). The configurations and magnifications of the projection optical systems PL1 and PL2 are arbitrary, and the projection optical systems PL1 and PL2 may be configured by a refractive system, for example. Further, a projection optical system that forms an intermediate image may be used as the projection optical systems PL1 and PL2.
In the projection optical systems PL1 and PL2, the distance between the optical axes AX11 and AX21 of the first lens groups G1b and G1c in the X direction (scanning direction) is Dm, and the optical axes AX13 and AX23 of the third lens groups G3b and G3c are set. When the interval in the X direction is Dp and the projection magnification of the projection optical systems PL1 and PL2 is β, the following relationship is satisfied.
 Dp=Dm×|β| …(1)
 図6(A)は、図1のマスクステージMST上のマスクM1~M7の配置を示す平面図である。図6(A)に示すように、マスクM1~M7は、Y方向(非走査方向)に沿って配置されて、それぞれ図1の投影光学系PL1~PL7の台形状の視野V1~V7が位置決めされるパターン領域PAを備えている。視野V1~V7が台形状であるのは、継ぎ誤差を低減するために、視野V1~V7の両端部のパターンの像をプレートPT上に重ねて露光するためである。そのため、マスクM2~M6のパターン領域PAの両端部には交互に同じパターンが形成されている。ただし、Y方向の両端部の視野V1,V7の内側のエッジ部の像は重ねては露光されない部分であるため、視野V1,V7の内側はX軸に平行な直線状となっている。
Dp = Dm × | β | (1)
FIG. 6A is a plan view showing the arrangement of the masks M1 to M7 on the mask stage MST of FIG. As shown in FIG. 6A, the masks M1 to M7 are arranged along the Y direction (non-scanning direction), and the trapezoidal fields V1 to V7 of the projection optical systems PL1 to PL7 in FIG. The pattern area PA is provided. The reason why the fields of view V1 to V7 are trapezoidal is that the images of the patterns at both ends of the fields of view V1 to V7 are overlaid and exposed on the plate PT in order to reduce joint errors. Therefore, the same pattern is alternately formed at both ends of the pattern area PA of the masks M2 to M6. However, since the images of the edge portions inside the visual fields V1 and V7 at both ends in the Y direction are portions that are not exposed to each other, the inner sides of the visual fields V1 and V7 are linear parallel to the X axis.
 なお、マスクM1~M7上の視野V1,V2等を規定するために、一例として、図2の部分照明光学系IL11,IL2中に不図示の照明視野絞り及びリレー光学系が配置されている。
 図6(B)は、プレートステージPTST上のプレートPTを示す平面図である。図6(B)において、プレートPT上の被露光領域EPは、Y方向の境界部EP12等が重なるように、X方向に細長い7列の部分被露光領域EP1~EP7に分かれている。部分被露光領域EP1~EP7上にはそれぞれ投影光学系PL1~PL7の像野I1~I7が設定され、走査露光によってマスクM1~M7のパターン領域PA内のパターンの像がY方向に継ぎ合わせながら露光される。また、プレートPTの被露光領域EPの四隅の近傍には、複数の2次元のアライメントマーク38A~38Dが形成されている。なお、部分被露光領域EP1~EP7毎に複数のアライメントマークを設けてもよい。また、実際にはプレートPT上には、複数の被露光領域が設定される。
In order to define the fields V1, V2, etc. on the masks M1 to M7, as an example, an illumination field stop and a relay optical system (not shown) are arranged in the partial illumination optical systems IL11, IL2 in FIG.
FIG. 6B is a plan view showing the plate PT on the plate stage PTST. In FIG. 6B, the exposed area EP on the plate PT is divided into seven partial exposed areas EP1 to EP7 that are elongated in the X direction so that the boundary part EP12 in the Y direction and the like overlap. Image fields I1 to I7 of the projection optical systems PL1 to PL7 are set on the partially exposed areas EP1 to EP7, respectively, and pattern images in the pattern areas PA of the masks M1 to M7 are joined together in the Y direction by scanning exposure. Exposed. A plurality of two-dimensional alignment marks 38A to 38D are formed in the vicinity of the four corners of the exposed area EP of the plate PT. A plurality of alignment marks may be provided for each of the partially exposed areas EP1 to EP7. In practice, a plurality of exposed areas are set on the plate PT.
 また、図6(A)の第1列の視野V1,V3等の中心を結ぶY軸に平行な直線と、第2列の視野V2,V4等の中心を結ぶY軸に平行な直線とのX方向の間隔をLmとする。同様に、図6(B)の第1列の像野I1,I3等の中心を結ぶY軸に平行な直線と、第2列の像野I2,I4等の中心を結ぶY軸に平行な直線とのX方向の間隔をLpとする。間隔Lm及びLpは図2の間隔Dm及びDpよりも大きいが、間隔LmとLpとの間にも式(1)と同様の以下の関係が成立する。 Also, a straight line parallel to the Y axis connecting the centers of the first column visual fields V1, V3, etc., and a straight line parallel to the Y axis connecting the centers of the second column visual fields V2, V4, etc. of FIG. The interval in the X direction is Lm. Similarly, in FIG. 6B, a straight line parallel to the Y axis connecting the centers of the image fields I1, I3, etc. in the first column and a Y axis connecting the centers of the image fields I2, I4, etc. in the second column are parallel. The distance in the X direction from the straight line is Lp. The intervals Lm and Lp are larger than the intervals Dm and Dp in FIG. 2, but the following relationship similar to the equation (1) is established between the intervals Lm and Lp.
 Lp=Lm×|β| …(2)
 この場合、奇数番目のマスクM1,M3,M5,M7のパターン領域PAと、偶数番目のマスクM2,M4,M6のパターン領域PAとをX方向の同じ位置に形成して、マスクオフセットMOを0にしておいても、マスクM1~M7の投影像をプレートPT上で正確に繋ぎ合わせて露光できる。
Lp = Lm × | β | (2)
In this case, the pattern area PA of the odd-numbered masks M1, M3, M5, and M7 and the pattern area PA of the even-numbered masks M2, M4, and M6 are formed at the same position in the X direction, and the mask offset MO is set to 0. However, the projection images of the masks M1 to M7 can be accurately connected and exposed on the plate PT.
 なお、例えば第1列の像野と第2列の像野との間隔Lpを小さくするような場合には、式(1)の関係が成立しなくなる。この場合には、マスクオフセットMO(=Lm-Lp/|β|)の分だけ、奇数番目のマスクM1,M3等と、偶数番目のマスクM2,M4等とのパターン領域をX方向にずらせばよい。
 また、図2のプレートステージPTSTの-X方向の端部に設けられた光透過性の基準部材31のプレートPT表面と同じ高さの表面には、Y方向に所定間隔の1対の2次元の基準マーク32A,32B(図1参照)が合計で4対(8個)形成されている。基準部材31の底面のプレートステージPTST内には、対応する基準マークの周囲を通過した照明光を受光して基準マーク等の像を撮像する、それぞれ結像レンズ34と2次元の撮像素子35とを備える8個の空間像計測系33A~33Hが設置されている。撮像素子35の撮像信号は主制御系57内のアライメント制御部に供給される。
For example, when the distance Lp between the image field of the first row and the image field of the second row is reduced, the relationship of the expression (1) is not established. In this case, if the pattern areas of the odd-numbered masks M1, M3, etc. and the even-numbered masks M2, M4, etc. are shifted in the X direction by the mask offset MO (= Lm−Lp / | β |). Good.
Further, a pair of two-dimensional pairs with a predetermined interval in the Y direction is provided on the surface of the light transmitting reference member 31 provided at the end in the −X direction of the plate stage PTST in FIG. A total of four pairs (eight) of reference marks 32A and 32B (see FIG. 1) are formed. In the plate stage PTST on the bottom surface of the reference member 31, an imaging lens 34, a two-dimensional image sensor 35, and the like that receive the illumination light that has passed around the corresponding reference mark and capture an image of the reference mark, etc. Eight aerial image measurement systems 33A to 33H are installed. The imaging signal of the imaging device 35 is supplied to an alignment control unit in the main control system 57.
 図2の状態では、マスクM1のアライメントマーク36Aの投影光学系PL1による像が基準部材31上に形成され、アライメントマーク36Aの像及び基準マーク32Aの像が重ねて空間像計測系33Aの撮像素子35上に形成される。アライメント制御部では、その撮像信号を処理して、基準マーク32Aに対するアライメントマーク36A(又は他のアライメントマーク)の像のX方向、Y方向の位置ずれ量を求める。同様に図1の他の空間像計測系33B~33Hの撮像信号より基準マーク32B等に対するアライメントマークの像のX方向、Y方向の位置ずれ量が求められる。 In the state of FIG. 2, an image of the alignment mark 36A of the mask M1 by the projection optical system PL1 is formed on the reference member 31, and the image of the alignment mark 36A and the image of the reference mark 32A are overlapped to obtain the image sensor of the aerial image measurement system 33A. 35 is formed. The alignment control unit processes the imaging signal to determine the amount of positional deviation in the X and Y directions of the image of the alignment mark 36A (or other alignment mark) with respect to the reference mark 32A. Similarly, the amount of misalignment in the X direction and Y direction of the image of the alignment mark with respect to the reference mark 32B etc. is obtained from the imaging signals of the other aerial image measurement systems 33B to 33H in FIG.
 また、基準マーク32A,32B等の中心と、プレート用のアライメント系54の検出中心との位置関係は予め求められてアライメント制御部に記憶されている。
 さらに、図5は、マスクステージMSTをガイド部材59A,59Bの+X方向の端部に移動した状態を示す。図5において、その端部近傍にマスクライブラリ62が設置され、マスクライブラリ62内にマスクM1と同様の小型のマスクM8~M14等が格納されている。また、マスクライブラリ62とガイド部材59A,59Bの端部との間に、マスクローダ系61が配置されている。マスクローダ系61は、Y軸に平行なガイド部材61aと、ガイド部材61aに沿って移動する多関節部61bと、多関節部61bの先端でマスクM1等を吸着保持して3次元的に移動するハンド部61cとを備えている。
The positional relationship between the centers of the reference marks 32A and 32B and the detection center of the plate alignment system 54 is obtained in advance and stored in the alignment control unit.
Further, FIG. 5 shows a state where the mask stage MST is moved to the + X direction ends of the guide members 59A and 59B. In FIG. 5, a mask library 62 is installed in the vicinity of the end portion, and small masks M8 to M14 and the like similar to the mask M1 are stored in the mask library 62. Further, a mask loader system 61 is disposed between the mask library 62 and the end portions of the guide members 59A and 59B. The mask loader system 61 moves three-dimensionally by adsorbing and holding the mask M1 and the like at the guide member 61a parallel to the Y axis, the multi-joint portion 61b moving along the guide member 61a, and the tip of the multi-joint portion 61b. Hand portion 61c.
 以下、本実施形態の投影露光装置EXで走査露光を行う場合の動作の一例につき図8のフローチャートを参照して説明する。この動作は主制御系57によって制御される。初期状態では、マスクステージMST及びプレートステージPTST上にマスク及びプレートはロードされていないものとする。さらに、図4(A)のマスクステージMSTの各アクチュエータ系AC1~AC7において、押圧部40A~40Cの移動部材40c(球体40e)は本体部40a側に退避し、アクチュエータ39A~39Cの移動子39bは、移動ストローク内の最も外側に移動している。これによって、マスクM1~M7を容易にアクチュエータ39A~39Cと押圧部40A~40Cとの間(アクチュエータ系AC1~AC7の内側)に設置できる。また、エアパッド部41A~41Dの吸引及び加圧動作は停止されている。 Hereinafter, an example of the operation when performing the scanning exposure with the projection exposure apparatus EX of the present embodiment will be described with reference to the flowchart of FIG. This operation is controlled by the main control system 57. In the initial state, it is assumed that the mask and plate are not loaded on the mask stage MST and the plate stage PTST. Further, in each of the actuator systems AC1 to AC7 of the mask stage MST in FIG. 4A, the moving member 40c (sphere 40e) of the pressing portions 40A to 40C is retracted to the main body portion 40a side, and the moving element 39b of the actuators 39A to 39C. Is moving to the outermost side in the moving stroke. Accordingly, the masks M1 to M7 can be easily installed between the actuators 39A to 39C and the pressing portions 40A to 40C (inside the actuator systems AC1 to AC7). Further, the suction and pressurization operations of the air pad portions 41A to 41D are stopped.
 先ず、図8のステップ201において、図5に示すように、マスクステージMSTをガイド部材59A,59Bの+X方向の端部に移動して、マスクライブラリ62からマスクローダ系61によって順次、マスクM1~M7をマスクステージMST上のアクチュエータ系AC1~AC7の内側に搬送する。この際に、プリアライメント系(不図示)によってマスクM1~M7上のアライメントマーク36A,36B(又は37A,37B)を検出して、大まかなアライメントを行ってもよい。この結果、ステップ202において、マスクステージMST上にマスクM1~M7が並列に載置されている。この状態で、マスクステージMST上の全部のエアパッド部41A~41Dにおいて吸引及び加圧を開始して、マスクステージMST(エアパッド部41A~41D)上に数μmのギャップを空けてマスクM1~M7を移動及び回転が円滑にできる状態で支持する。また、アクチュエータ系AC1~AC7において、押圧部40A~40Cの球体40eをマスクM1~M7の側面に接触させてマスクM1~M7を付勢し、かつアクチュエータ39A~39Cの移動子39bを移動ストロークの中央に移動する。これによって、マスクM1~M7はアクチュエータ系AC1~AC7内でX方向、Y方向の移動ストロークの中央に保持される。 First, in step 201 in FIG. 8, as shown in FIG. 5, the mask stage MST is moved to the + X direction ends of the guide members 59A and 59B, and the masks M1 to M1 are sequentially transferred from the mask library 62 by the mask loader system 61. M7 is transferred to the inside of the actuator systems AC1 to AC7 on the mask stage MST. At this time, rough alignment may be performed by detecting the alignment marks 36A and 36B (or 37A and 37B) on the masks M1 to M7 by a pre-alignment system (not shown). As a result, in step 202, the masks M1 to M7 are placed in parallel on the mask stage MST. In this state, suction and pressurization are started in all the air pad portions 41A to 41D on the mask stage MST, and a mask of M1 to M7 is formed with a gap of several μm on the mask stage MST (air pad portions 41A to 41D). Support in a state that can move and rotate smoothly. Further, in the actuator systems AC1 to AC7, the spheres 40e of the pressing portions 40A to 40C are brought into contact with the side surfaces of the masks M1 to M7 to urge the masks M1 to M7, and the moving elements 39b of the actuators 39A to 39C are moved. Move to the center. Accordingly, the masks M1 to M7 are held at the center of the movement strokes in the X direction and the Y direction in the actuator systems AC1 to AC7.
 次のステップ203において、マスクステージMSTを-X方向に移動して、図6(A)の奇数番目のマスクM1,M3,M5,M7のアライメントマーク36A,36B上に視野V1,V3,V5,V7(照明領域)を設定し、部分照明光学系IL1~IL7から照明光を照射する。さらに、プレートステージPTSTを駆動して、図6(B)の奇数番目の像野I1,I3,I5,I7中に図1の基準部材31の4対の基準マーク32A,32Bを移動して、空間像計測系33A~33Hによって4対の基準マーク32A,32BとマスクM1,M3,M5,M7のアライメントマーク36A,36Bの像とのX方向、Y方向の位置ずれ量を計測する。さらに、マスクステージMSTを間隔Lmだけ+X方向に移動し、偶数番目のマスクM2,M4,M6のアライメントマーク36A,36B上に視野V2,V4,V6を設定するとともに、プレートステージPTSTを間隔Lpだけ+X方向に移動し、偶数番目の像野I2,I4,I6中に基準部材31の内側の6個の基準マークを移動する。そして、空間像計測系33B~33Gによって、この6個の基準マーク(3対の基準マーク32B,32A)とマスクM2,M4,M6のアライメントマーク36A,36Bの像とのX方向、Y方向の位置ずれ量を計測する。 In the next step 203, the mask stage MST is moved in the -X direction, and the visual fields V1, V3, V5 are placed on the alignment marks 36A, 36B of the odd-numbered masks M1, M3, M5, M7 in FIG. V7 (illumination area) is set, and illumination light is emitted from the partial illumination optical systems IL1 to IL7. Further, the plate stage PTST is driven to move the four pairs of reference marks 32A and 32B of the reference member 31 of FIG. 1 into the odd-numbered image fields I1, I3, I5 and I7 of FIG. The amount of positional deviation in the X and Y directions between the four pairs of reference marks 32A and 32B and the images of the alignment marks 36A and 36B of the masks M1, M3, M5 and M7 is measured by the aerial image measurement systems 33A to 33H. Further, the mask stage MST is moved in the + X direction by the interval Lm, and the visual fields V2, V4, V6 are set on the alignment marks 36A, 36B of the even-numbered masks M2, M4, M6, and the plate stage PTST is set by the interval Lp. Moving in the + X direction, the six reference marks inside the reference member 31 are moved into the even-numbered image fields I2, I4, and I6. Then, the aerial image measurement systems 33B to 33G use the six reference marks (three pairs of reference marks 32B and 32A) and the images of the alignment marks 36A and 36B of the masks M2, M4 and M6 in the X and Y directions. Measure the amount of displacement.
 さらに、マスクM1~M7のパターンのX方向、Y方向のスケーリング(線形伸縮)、及び直交度も計測する場合には、同様にマスクM1~M7の+X方向のアライメントマーク37A,37Bの像の基準マーク32A,32Bに対する位置ずれ量を計測する。これらの位置ずれ量は主制御系57内のアライメント制御部で求められる。さらにアライメント制御部では、これらの位置ずれ量の情報から図6(A)のマスクM1~M7の位置関係として、例えばマスクM1を基準とした他のマスクM2~M7のX方向、Y方向の位置ずれ量(ΔXi,ΔYi)(i=2~7)、及びθz方向の回転角のずれ量Δθiを求める。この各ずれ量は、マスクM1~M7間の相対的な配置誤差に相当する。また、アライメント制御部では、+Y方向の端部の基準マーク32A,32Bの位置とマスクM1のアライメントマーク36A,36B等の像との位置関係の情報も求める。 Furthermore, when measuring the X-direction and Y-direction scaling (linear expansion / contraction) and the orthogonality of the patterns of the masks M1 to M7, the reference of the alignment marks 37A and 37B in the + X direction of the masks M1 to M7 is similarly used. The amount of displacement with respect to the marks 32A and 32B is measured. These positional deviation amounts are obtained by an alignment control unit in the main control system 57. Further, in the alignment control unit, the positional relationship between the masks M1 to M7 in FIG. 6A based on the positional deviation information, for example, the positions of the other masks M2 to M7 in the X and Y directions with reference to the mask M1. The shift amount (ΔXi, ΔYi) (i = 2 to 7) and the shift angle shift amount Δθi in the θz direction are obtained. Each shift amount corresponds to a relative arrangement error between the masks M1 to M7. The alignment controller also obtains information on the positional relationship between the positions of the reference marks 32A and 32B at the ends in the + Y direction and the images of the alignment marks 36A and 36B, etc., on the mask M1.
 また、そのアライメント制御部はアクチュエータ駆動系58に対してその位置ずれ量(ΔXi,ΔYi)及び回転角のずれ量Δθiの情報を供給する。これに応じて、アクチュエータ駆動系58では、その位置ずれ量(ΔXi,ΔYi)及び回転角のずれ量Δθiを相殺するようにアクチュエータ系AC2~AC7を駆動する。これによって、マスクM1~M7のパターン領域PA内のパターンは、マスクM1~M7のパターンを1枚の大型のマスクに形成した場合と同様の位置関係に設定される。従って、小型の複数のマスクM1~M7を用いても、このマスクM1~M7のパターンをプレートPT上に継ぎ合わせて転写する場合の継ぎ誤差の発生を抑制することができ、プレートPT上に目標とするパターン(継ぎ合わせられた一連のパターン)を高精度に転写できる。 Further, the alignment control unit supplies information on the positional deviation amount (ΔXi, ΔYi) and the rotational angle deviation amount Δθi to the actuator drive system 58. In response to this, the actuator drive system 58 drives the actuator systems AC2 to AC7 so as to cancel out the positional deviation amounts (ΔXi, ΔYi) and the rotational angle deviation amount Δθi. As a result, the patterns in the pattern area PA of the masks M1 to M7 are set in the same positional relationship as when the patterns of the masks M1 to M7 are formed on one large mask. Therefore, even when a plurality of small masks M1 to M7 are used, it is possible to suppress the occurrence of joint errors when the patterns of the masks M1 to M7 are transferred onto the plate PT. Can be transferred with high accuracy.
 また、マスクM1~M7のアライメントマーク37A,37Bをも計測して、マスクM1~M7のパターンのX方向、Y方向のスケーリング、及び直交度も計測した場合、Y方向のスケーリングは、投影光学系PL1~PL7内の倍率補正機構によって補正できる。また、X方向のスケーリングは、後述の走査露光中にプレートステージPTSTに対するマスクステージMSTの走査速度を初期の目標値に対して増減することで補正できる。さらに、図7(C)に示すように、直交度誤差(ここではプレートPT上のパターンに対する誤差)を補正して、マスクM1のパターンを仮想的にマスクM1’のパターンのように変形させる場合には、視野V1に対してマスクM1をX方向に移動する際にマスクM1を次第にY方向にシフトすればよい。これは他のマスクM2~M7についても同様である。 Further, when the alignment marks 37A and 37B of the masks M1 to M7 are also measured, and the scaling in the X and Y directions and the orthogonality of the patterns of the masks M1 to M7 are also measured, the scaling in the Y direction is performed by the projection optical system. Correction can be performed by a magnification correction mechanism in PL1 to PL7. Further, the scaling in the X direction can be corrected by increasing or decreasing the scanning speed of the mask stage MST with respect to the plate stage PTST with respect to the initial target value during scanning exposure described later. Further, as shown in FIG. 7C, when the orthogonality error (here, the error with respect to the pattern on the plate PT) is corrected, the pattern of the mask M1 is virtually transformed to the pattern of the mask M1 ′. For this, when the mask M1 is moved in the X direction with respect to the visual field V1, the mask M1 may be gradually shifted in the Y direction. The same applies to the other masks M2 to M7.
 次のステップ204において、プレートステージPTST上にプレートPTをロードする。プレートPTには予め不図示のコータ・デベロッパにおいてフォトレジストが塗布されている。次のステップ205において、アライメント系54を用いてプレートPT上のアライメントマーク38A~38Dの位置を検出し、この検出結果に基づいて主制御系57内のアライメント制御部で、基準マーク32A,32B等に対するプレートPTの被露光領域EPの位置関係を求める。この動作(プレートPTのアライメント)によって、マスクM1~M7とプレートPTとの間の相対的な配置誤差として、マスクM1~M7のパターンの投影像と、プレートPTの被露光領域EP等との位置関係の誤差(X方向、Y方向の位置ずれ量、及びθz方向の回転誤差)を求めることができる。アライメント制御部は、この位置ずれ量及び回転誤差の情報をアクチュエータ駆動系58に対して供給し、アクチュエータ駆動系58は、この供給された位置ずれ量及び回転誤差を相殺するようにアクチュエータ系AC1~AC7を駆動することができる。 In the next step 204, the plate PT is loaded on the plate stage PTST. A photoresist is applied to the plate PT in advance by a coater / developer (not shown). In the next step 205, the alignment system 54 is used to detect the positions of the alignment marks 38A to 38D on the plate PT, and the reference marks 32A, 32B, etc. are detected by the alignment control unit in the main control system 57 based on the detection result. The positional relationship of the exposed area EP of the plate PT with respect to is determined. By this operation (alignment of the plate PT), as a relative arrangement error between the masks M1 to M7 and the plate PT, the position of the projected image of the pattern of the masks M1 to M7 and the exposed region EP of the plate PT, etc. It is possible to obtain a relationship error (a positional deviation amount in the X direction and the Y direction, and a rotation error in the θz direction). The alignment control unit supplies the positional deviation amount and the rotation error information to the actuator drive system 58, and the actuator drive system 58 cancels the supplied positional deviation amount and the rotational error. AC7 can be driven.
 また、ステップ203のマスクM1~M7のアライメントの結果と、そのプレートPTのアライメントの結果とを用いて、一例として、主制御系57では、プレートステージPTST(プレートPT)の走査方向の位置(X座標)の関数として、マスクステージMST上のマスクM1~M7の目標位置(回転角を含む)を算出する。これ以降は、プレートステージPTSTのX座標が所定量ずつ変化する毎に、マスク側のレーザ干渉計56X1,56X2,56Y及びプレート側のレーザ干渉計51X1,51X2,51Y1~51Y3の計測値から、マスクM1~M7の各目標位置からのずれ量(マスクM1~M7のパターンの像とプレートPT(被露光領域EP)との位置ずれ量及び回転誤差)が同期誤差として求められる。 Further, as an example, the main control system 57 uses the alignment result of the masks M1 to M7 in step 203 and the alignment result of the plate PT, and the position of the plate stage PTST (plate PT) in the scanning direction (X As a function of coordinates, target positions (including rotation angles) of the masks M1 to M7 on the mask stage MST are calculated. Thereafter, every time the X coordinate of the plate stage PTST changes by a predetermined amount, the mask side laser interferometers 56X1, 56X2, 56Y and the plate side laser interferometers 51X1, 51X2, 51Y1 to 51Y3 are used to calculate the mask. The amount of deviation from each target position of M1 to M7 (the amount of positional deviation and rotational error between the pattern image of the masks M1 to M7 and the plate PT (exposed area EP)) is obtained as a synchronization error.
 次のステップ206において、マスクステージMSTを駆動して、図6(A)の視野V1~V7の例えば手前にマスクM1~M7を移動し、プレートステージPTSTを駆動して、図6(B)の像野I1~I7の手前にプレートPTの被露光領域EPを移動し、上記の同期誤差が0になるような位置関係で、マスクステージMST及び/又はプレートステージPTSTを駆動する。これ以降は、投影光学系PL1~PL7の投影倍率βを考慮して、その位置関係が維持されるようにマスクステージMST及びプレートステージPTSTを同期して駆動することで、プレートPTの走査露光を開始する。 In the next step 206, the mask stage MST is driven, the masks M1 to M7 are moved, for example, in front of the visual fields V1 to V7 in FIG. 6A, the plate stage PTST is driven, and the mask stage MST in FIG. The exposed area EP of the plate PT is moved before the image fields I1 to I7, and the mask stage MST and / or the plate stage PTST are driven in such a positional relationship that the synchronization error becomes zero. Thereafter, scanning exposure of the plate PT is performed by driving the mask stage MST and the plate stage PTST synchronously so that the positional relationship is maintained in consideration of the projection magnification β of the projection optical systems PL1 to PL7. Start.
 そして、視野(照明領域)V1~V7への照明光の照射を開始して、マスクM1~M7のパターンの像を投影光学系PL1~PL7を介してプレートPTの被露光領域EP上の像野I1~I7に投影露光した状態で、マスクステージMSTを矢印SM1で示す+X方向に速度VMで移動するのに同期して、プレートステージPTST(プレートPT)を印SP1で示す+X方向に速度VM×|β|で移動する。なお、そのようにマスクステージMST及びプレートステージPTSTを同期移動しても、上記の同期誤差が或る程度は残存する場合がある。 Then, irradiation of illumination light onto the visual fields (illumination areas) V1 to V7 is started, and images of the patterns of the masks M1 to M7 are imaged on the exposed area EP of the plate PT via the projection optical systems PL1 to PL7. In a state where the projection exposure is performed on I1 to I7, the plate stage PTST (plate PT) is moved at the speed VM × in the + X direction indicated by the mark SP1 in synchronization with the movement of the mask stage MST in the + X direction indicated by the arrow SM1 at the speed VM ×. Move with | β |. Even if the mask stage MST and the plate stage PTST are moved synchronously in this way, the above-mentioned synchronization error may remain to some extent.
 そこで、この走査露光中にステップ207に示すように、マスク側のレーザ干渉計56X1,56X2,56Y及びプレート側のレーザ干渉計51X1,51X2,51Y1~51Y3によって、上記のマスクM1~M7のパターンの像とプレートPTとの位置ずれ量及び回転誤差である同期誤差の計測を継続して行う。そして、その同期誤差が所定の許容範囲を超えた場合には、その誤差を補正するように図6(A)のアクチュエータ系AC1~AC7を駆動して、マスクステージMSTに対するマスクM1~M7のX方向、Y方向の位置、及びθz方向の回転角を個別にダイナミックに補正する。本実施形態では、投影光学系PL1~PL7は拡大倍率であるため、マスクM1~M7を駆動することによって、プレートPTの位置を調整する場合に比べて、少ない駆動量で高速に同期誤差を補正できる。 Therefore, as shown in step 207 during this scanning exposure, the mask-side laser interferometers 56X1, 56X2, and 56Y and the plate-side laser interferometers 51X1, 51X2, and 51Y1 to 51Y3 form the masks M1 to M7. Measurement of the positional deviation amount between the image and the plate PT and the synchronization error, which is a rotation error, are continuously performed. When the synchronization error exceeds a predetermined allowable range, the actuator systems AC1 to AC7 in FIG. 6A are driven so as to correct the error, and the X of the masks M1 to M7 with respect to the mask stage MST is driven. The direction, the position in the Y direction, and the rotation angle in the θz direction are individually corrected dynamically. In this embodiment, since the projection optical systems PL1 to PL7 have a magnification, driving the masks M1 to M7 corrects the synchronization error at a high speed with a small driving amount compared to the case of adjusting the position of the plate PT. it can.
 その同期誤差の補正方法の一例につき図7(A)及び(B)を参照して説明する。図7(A)及び(B)はそれぞれ走査露光中のプレートPT及びマスクステージMSTを示す。図7(A)に示すように、プレートPT(被露光領域EP)の目標回転角に対する回転誤差をθ(rad)として、被露光領域EPの中心を通りX軸に平行な直線から像野I1の中心までのY方向の距離をP1yとする。このとき、像野I1の位置は本来の位置からθ・P1yだけX方向にずれる。この対策として、予め主制御系57は、マスクM1に関しては図7(B)に示すように、マスクステージMSTに対する回転角(プレートステージPTSTのX座標に応じた目標回転角)を-θに設定しておく。さらに、マスクM1のX方向の中心から視野V1の中心までの距離をMa(x)として、マスクM1のマスクステージMSTに対するX方向、Y方向の移動量(ΔXM1,ΔYM1)(X方向、Y方向の目標位置)を近似的に次のように設定しておく。 An example of a method for correcting the synchronization error will be described with reference to FIGS. 7 (A) and 7 (B). FIGS. 7A and 7B show the plate PT and the mask stage MST during scanning exposure, respectively. As shown in FIG. 7A, the rotation error with respect to the target rotation angle of the plate PT (exposed area EP) is defined as θ (rad), and the image field I1 from a straight line passing through the center of the exposed area EP and parallel to the X axis. Let P1y be the distance in the Y direction to the center of. At this time, the position of the image field I1 is shifted in the X direction by θ · P1y from the original position. As a countermeasure, the main control system 57 sets in advance the rotation angle with respect to the mask stage MST (the target rotation angle corresponding to the X coordinate of the plate stage PTST) with respect to the mask M1, as shown in FIG. 7B. Keep it. Further, the distance from the center of the mask M1 in the X direction to the center of the visual field V1 is Ma (x), and the amount of movement of the mask M1 relative to the mask stage MST in the X direction and Y direction (ΔXM1, ΔYM1) (X direction, Y direction) The target position) is approximately set as follows.
 ΔXM1=-θ・P1y/|β| …(3)
 ΔYM1=θ・Ma(x)    …(4)
 他のマスクM2~M7についても同様に目標位置の設定(補正)を行う。これによって、走査露光中の同期誤差を高い追従速度で補正できる。なお、投影光学系PL1~PL7の投影像が正立正像である場合には、マスクM1~M7の回転角はθでよい。
ΔXM1 = −θ · P1y / | β | (3)
ΔYM1 = θ · Ma (x) (4)
Similarly, the target positions are set (corrected) for the other masks M2 to M7. As a result, the synchronization error during scanning exposure can be corrected at a high tracking speed. When the projection images of the projection optical systems PL1 to PL7 are erect images, the rotation angle of the masks M1 to M7 may be θ.
 被露光領域EPへの走査露光終了後に、照明光の照射を停止する。そして、プレートPT上の他の被露光領域にも露光する場合には、プレートPTのY方向への移動(ステップ移動)を行った後、例えばマスクステージMSTを図6(A)の矢印SM2で示す-X方向に移動させ、プレートPTを図6(B)の矢印SP2で示す-X方向に同期して移動させることで、走査露光を行う。プレートPT上の全部の被露光領域への走査露光終了後のステップ208において、プレートPTのアンロードが行われる。アンロードされたプレートPTには不図示のコータ・デベロッパにおいて現像が行われる。この露光及び現像工程は、後述のステップS401のパターン形成工程及びステップS402のカラーフィルタ形成工程の一部である。 After the scanning exposure to the exposed area EP is completed, the irradiation of illumination light is stopped. In the case of exposing other exposed areas on the plate PT, after moving the plate PT in the Y direction (step movement), the mask stage MST is moved by the arrow SM2 in FIG. 6A, for example. Scanning exposure is performed by moving the plate PT in synchronization with the −X direction indicated by the arrow SP2 in FIG. 6B. In step 208 after the end of scanning exposure to all exposed areas on the plate PT, the plate PT is unloaded. The unloaded plate PT is developed by a coater / developer (not shown). This exposure and development process is a part of a pattern formation process in step S401 and a color filter formation process in step S402, which will be described later.
 その後、ステップ209で次のプレートを露光する場合には、動作はステップ204に移行して、ステップ204~208までの露光動作が繰り返される。ステップ209で露光対象のプレートがない場合には、一例としてステップ210に移行して、マスクステージMSTのマスクM1~M7に対するエアパッド部41A~41Dの吸引及び加圧動作を解除して、アクチュエータ系AC1~AC7の押圧部40A~40Cの球体40eを本体部40a側に退避する。これによって、マスクM1~M7をマスクステージMSTから容易に取り出すことが可能になる。次のステップ211において、マスクステージMSTを図5のガイド部材59A,59Bの端部に移動した後、マスクローダ系61によってマスクステージMST上のマスクM1~M7を順次アンロードしてマスクライブラリ62に格納して、露光が終了する。 Thereafter, when the next plate is exposed in step 209, the operation shifts to step 204, and the exposure operations in steps 204 to 208 are repeated. If there is no plate to be exposed in step 209, the process proceeds to step 210 as an example, and the suction and pressurization operations of the air pads 41A to 41D with respect to the masks M1 to M7 of the mask stage MST are canceled, and the actuator system AC1 The spheres 40e of the pressing parts 40A to 40C of AC7 are retracted to the main body part 40a side. As a result, the masks M1 to M7 can be easily taken out from the mask stage MST. In the next step 211, the mask stage MST is moved to the ends of the guide members 59A and 59B in FIG. 5, and then the masks M1 to M7 on the mask stage MST are sequentially unloaded by the mask loader system 61 to the mask library 62. Store and finish the exposure.
 このように本実施形態によれば、転写対象のパターンをマスクM1~M7に分割して形成し、かつマスクM1~M7のパターンの像を拡大倍率を持つ投影光学系PL1~PL7を介してプレートPT上に継ぎ合わせて露光しているため、投影光学系を大型化することなく、プレートPT上に大面積のデバイスパターンを高いスループットでかつ高精度に露光できる。 As described above, according to the present embodiment, the pattern to be transferred is divided into the masks M1 to M7, and the pattern images of the masks M1 to M7 are formed through the projection optical systems PL1 to PL7 having the magnification. Since the exposure is performed on the PT, the device pattern having a large area can be exposed on the plate PT with high throughput and high accuracy without increasing the size of the projection optical system.
 本実施形態の作用効果等は以下の通りである。
 (1)本実施形態の投影露光装置EXによる露光方法は、複数のマスクM1~M7をマスクステージMST上に支持するステップ202と、マスクM1~M7をマスクステージMSTに対して個別に動かしてマスクM1~M7の相対的な位置及び回転角を制御するステップ203と、その相対的な位置及び回転角が制御されたマスクM1~M7のパターンを介し、プレートステージPTSTに載置されたプレートPTを露光するステップ206,207と、を含んでいる。
 また、投影露光装置EXは、マスクM1~M7を支持するマスクステージMSTと、プレートPTが載置されるプレートステージPTSTと、マスクM1~M7をマスクステージMSTに対して個別に動かしてマスクM1~M7の相対的な位置及び回転角を制御する主制御系57を含む制御機構と、その相対的な位置及び回転角が制御されたマスクM1~M7のパターンを介してプレートPTに照明光を照射する照明装置IUと、を備えている。
Effects and the like of this embodiment are as follows.
(1) In the exposure method using the projection exposure apparatus EX of the present embodiment, step 202 for supporting a plurality of masks M1 to M7 on the mask stage MST and masks by moving the masks M1 to M7 individually relative to the mask stage MST. The plate PT placed on the plate stage PTST is passed through the step 203 for controlling the relative positions and rotation angles of M1 to M7 and the patterns of the masks M1 to M7 whose relative positions and rotation angles are controlled. Exposure steps 206 and 207.
The projection exposure apparatus EX also moves the masks M1 to M7 by individually moving the mask stage MST for supporting the masks M1 to M7, the plate stage PTST on which the plate PT is placed, and the masks M1 to M7 with respect to the mask stage MST. Illumination light is irradiated to the plate PT through a control mechanism including a main control system 57 for controlling the relative position and rotation angle of M7, and patterns of masks M1 to M7 whose relative positions and rotation angles are controlled. And an illuminating device IU.
 本実施形態によれば、プレートPT上の各被露光領域に露光されるデバイスパターンを生成するためのパターンを分割してマスクM1~M7に形成することによって、個々のマスクM1~M7を小型化できる。従って、例えば小型の電子線描画装置を用いてマスクM1~M7を個々に、安価にかつ高精度に製造できる。さらに、ステップ203において、例えばマスクM1を基準としてマスクM2~M7の相対的な位置及び回転角を補正することによって、マスクM1~M7のパターン間の相対的な位置誤差及び回転誤差(相対的な配置誤差)を低減でき、マスクM1~M7のパターンを1枚の大型のマスクに形成した場合と同様の位置関係に設定できる。このため、マスクM1~M7のパターンをプレートPT上に継ぎ合わせて転写する場合の継ぎ誤差の発生を抑制することができ、プレートPT上に高精度にデバイスパターンを転写できる。 According to the present embodiment, the masks M1 to M7 are reduced in size by dividing the pattern for generating a device pattern to be exposed in each exposed region on the plate PT and forming the pattern on the masks M1 to M7. it can. Therefore, for example, the masks M1 to M7 can be individually manufactured at low cost and with high accuracy using a small electron beam drawing apparatus. Further, in step 203, for example, by correcting the relative positions and rotation angles of the masks M2 to M7 with reference to the mask M1, the relative position errors and rotation errors (relative to the patterns of the masks M1 to M7) are corrected. (Positioning error) can be reduced, and the same positional relationship as when the patterns of the masks M1 to M7 are formed on one large mask can be set. Therefore, it is possible to suppress the occurrence of a joint error when the patterns of the masks M1 to M7 are transferred onto the plate PT, and the device pattern can be transferred onto the plate PT with high accuracy.
 また、ステップ207において、プレートPT上の被露光領域に前工程で形成されているパターンとマスクM1~M7のパターンとの相対的な位置誤差及び回転誤差(同期誤差)を低減するようにマスクM1~M7を駆動することで、重ね合わせ精度が向上する。なお、例えばプリアライメント精度が高い場合にはステップ203を省略してもよく、走査露光中の同期誤差をマスクステージMST及びプレートステージPTSTの動作のみで補正可能な場合には、ステップ207を省略することが可能である。 In step 207, the mask M1 is used to reduce the relative position error and rotation error (synchronization error) between the pattern formed in the previous process in the exposed region on the plate PT and the patterns of the masks M1 to M7. Driving the M7 improves the overlay accuracy. For example, when the pre-alignment accuracy is high, step 203 may be omitted, and when the synchronization error during scanning exposure can be corrected only by the operations of the mask stage MST and the plate stage PTST, step 207 is omitted. It is possible.
 また、本実施形態では、全部のマスクM1~M7を制御対象のマスクとしている。しかしながら、例えば図1の投影光学装置PLを1列の投影光学系PL1,PL3,PL5,PL7のみから構成し、1回目の走査露光で奇数番目のマスクM1,M3,M5,M7のパターンの像をプレートPT上に露光し、2回目の走査露光で偶数番目のマスクM2,M4,M6のパターンの像を先に露光した像にY方向に継ぎ合わせて露光することも可能である。この場合には、1回目の走査露光では奇数番目のマスクが制御対象(アクチュエータ系AC1~AC7による駆動対象)となり、2回目の走査露光では偶数番目のマスクが制御対象となる。 In this embodiment, all the masks M1 to M7 are used as masks to be controlled. However, for example, the projection optical apparatus PL of FIG. 1 is composed of only one row of projection optical systems PL1, PL3, PL5, and PL7, and an image of the pattern of odd-numbered masks M1, M3, M5, and M7 in the first scanning exposure. Can be exposed on the plate PT, and images of the patterns of the even-numbered masks M2, M4, and M6 can be stitched together in the Y direction in the second scanning exposure in the Y direction. In this case, the odd-numbered mask is the control target (the drive target by the actuator systems AC1 to AC7) in the first scanning exposure, and the even-numbered mask is the control target in the second scanning exposure.
 さらに、例えば1番目のマスクM1の位置及び回転角はマスクステージMST自体で補正し、他のマスクM2~M7のマスクステージMSTに対する位置及び回転角をアクチュエータ系AC2~AC7で補正してもよい。この場合には、マスクM1用のアクチュエータ系AC1の代わりに、単にマスクM1の位置決めを行う部材を設けてもよい。
 なお、本実施形態ではマスクステージMST上に7個のマスクM1~M7が載置されるが、マスクステージMST上には2個以上の任意の数のマスクを載置してもよい。従って、制御対象のマスクは少なくとも一つでよい。
Further, for example, the position and rotation angle of the first mask M1 may be corrected by the mask stage MST itself, and the positions and rotation angles of the other masks M2 to M7 with respect to the mask stage MST may be corrected by the actuator systems AC2 to AC7. In this case, instead of the actuator system AC1 for the mask M1, a member for simply positioning the mask M1 may be provided.
In this embodiment, seven masks M1 to M7 are placed on the mask stage MST, but any number of two or more masks may be placed on the mask stage MST. Therefore, at least one mask to be controlled is sufficient.
 (2)また、本実施形態では、マスクM1~M7のX方向、Y方向の位置及びθz方向の回転角を制御しているが、その位置及び回転角の少なくとも一方を制御するのみでもよい。これによって、マスクM1~M7のパターンの相対誤差及び/又は重ね合わせ誤差を改善できる。
 (3)また、ステップ203は、空間像計測系33A~33Hによって基準マーク32A,32B等を基準としてマスクM1~M7のアライメントマーク36A,36B等の位置関係を計測し、この計測結果からマスクM1(マスクステージMST)に対するマスクM2~M7の相対的な位置及び回転角(この少なくとも一方でもよい)を求める工程と、その計測結果に基づいてアクチュエータ系AC1~AC7によってマスクM1~M7の位置及び回転角(この少なくとも一方でもよい)を変化させる工程とを含んでいる。
(2) In this embodiment, the positions of the masks M1 to M7 in the X and Y directions and the rotation angle in the θz direction are controlled. However, at least one of the position and the rotation angle may be controlled. Thereby, the relative error and / or overlay error of the patterns of the masks M1 to M7 can be improved.
(3) In step 203, the aerial image measurement systems 33A to 33H measure the positional relationship of the alignment marks 36A and 36B of the masks M1 to M7 with reference to the reference marks 32A and 32B, and the mask M1 is determined from the measurement results. A process of obtaining relative positions and rotation angles (or at least one of these) of the masks M2 to M7 with respect to the (mask stage MST), and positions and rotations of the masks M1 to M7 by the actuator systems AC1 to AC7 based on the measurement results Changing the corner (which may be at least one of these).
 これによって、マスクM1~M7のパターン間の相対的な位置及び/又は回転角の誤差を高精度に補正できる。
 なお、ステップ203では、空間像計測系33A~33Hによる計測を行うことなく、例えばプリアライメント系(不図示)によって予め計測(取得)されているマスクM1~M7のアライメントマーク36A,36B等の位置関係等に基づいて、マスクM1~M7の位置等を補正してもよい。
Thereby, the relative position and / or rotation angle error between the patterns of the masks M1 to M7 can be corrected with high accuracy.
In step 203, the positions of the alignment marks 36A, 36B, etc. of the masks M1 to M7 measured (acquired) in advance by, for example, a pre-alignment system (not shown) without performing measurement by the aerial image measurement systems 33A to 33H. The positions of the masks M1 to M7 may be corrected based on the relationship.
 また、本実施形態では、アクチュエータ系AC1~AC7のアクチュエータ39A~39Cとしてピエゾモータが使用されているが、ピエゾモータの他に直動型の超音波モータ、又はボイスコイルモータ等も使用できる。
 (4)また、ステップ207は、マスク側のレーザ干渉計56X1,56X2等及びプレート側のレーザ干渉計51X1,51X2等によって、プレートPT上の被露光領域EPとマスクM1~M7のパターンの像との相対的な位置及び回転角の誤差(この少なくとも一方でもよい)を求める工程と、その計測結果に基づいてアクチュエータ系AC1~AC7によってマスクM1~M7の位置及び回転角(この少なくとも一方でもよい)を個別に制御する工程とを含んでいる。
In this embodiment, piezo motors are used as the actuators 39A to 39C of the actuator systems AC1 to AC7. However, a direct acting ultrasonic motor or a voice coil motor can be used in addition to the piezo motor.
(4) In step 207, the mask-side laser interferometers 56X1, 56X2, etc. and the plate-side laser interferometers 51X1, 51X2, etc. And calculating the relative position and rotation angle error (which may be at least one of the above), and the position and rotation angle (which may be at least one) of the masks M1 to M7 by the actuator systems AC1 to AC7 based on the measurement results. Each of which is controlled individually.
 これによって、マスクM1~M7のパターンの像をプレートPTの被露光領域EP上に高い重ね合わせ精度で露光できる。
 (5)また、本実施形態では、図4(A)に示すように、アクチュエータ系AC1~AC7のアクチュエータ39A~39CによってマスクM1~M7を直接駆動しているため、例えばマスクステージMST上にマスクM1~M7が載置される小型の複数の可動ステージを設ける場合に比べて、マスクステージMST上にアクチュエータ系AC1~AC7を配置するためのスペースを十分に確保できる。
Thus, the pattern images of the masks M1 to M7 can be exposed on the exposed area EP of the plate PT with high overlay accuracy.
(5) In this embodiment, as shown in FIG. 4A, the masks M1 to M7 are directly driven by the actuators 39A to 39C of the actuator systems AC1 to AC7, so that the mask is placed on the mask stage MST, for example. Compared with the case of providing a plurality of small movable stages on which M1 to M7 are placed, a sufficient space for arranging the actuator systems AC1 to AC7 on the mask stage MST can be secured.
 なお、図9に示すように、アクチュエータ系AC1のアクチュエータ39A~39C及び押圧部40A~40CによるマスクM1(他のマスクM2~M7も同様)の外面の接触部に、例えば金属製のスペーサ48(緩衝部材)を接着等によって設けてもよい。これによって、マスクM1~M7の駆動時にマスクM1~M7の側面が損傷を受ける恐れがなくなる。 As shown in FIG. 9, for example, a metal spacer 48 (for example, a metallic spacer 48 ( A buffer member may be provided by adhesion or the like. This eliminates the possibility that the side surfaces of the masks M1 to M7 are damaged when the masks M1 to M7 are driven.
 (6)また、本実施形態では、マスクステージMST(マスクM1~M7)及びプレートステージPTST(プレートPT)をX方向に同期して移動させながら、マスクM1~M7のパターンの投影光学系PL1~PL7による像でプレートPTを走査露光している。従って、1回の走査露光で効率的にマスクM1~M7のパターンをプレートPT上の各被露光領域EPに転写することができる。 (6) In the present embodiment, the mask stage MST (masks M1 to M7) and the plate stage PTST (plate PT) are moved in synchronization with the X direction while the projection optical systems PL1 to PL7 of the patterns of the masks M1 to M7 are moved. The plate PT is scanned and exposed with an image of PL7. Accordingly, the pattern of the masks M1 to M7 can be efficiently transferred to each exposed area EP on the plate PT by one scanning exposure.
 なお、例えば図4(A)において、マスクM1のパターン領域PAのパターンを1つの投影光学系を介してプレートPT上に一括露光した後、マスクステージMST及びプレートPTをY方向にステップ移動しながら、マスクM2~M7のパターンの像を順次継ぎ合わせながらステップ・アンド・リピート方式でプレートPT上に露光してもよい。 For example, in FIG. 4A, after the pattern of the pattern area PA of the mask M1 is collectively exposed on the plate PT via one projection optical system, the mask stage MST and the plate PT are moved stepwise in the Y direction. Alternatively, exposure may be performed on the plate PT by the step-and-repeat method while sequentially joining the pattern images of the masks M2 to M7.
 [第2の実施形態]
 本発明の第2の実施形態につき図10及び図11を参照して説明する。本実施形態の投影露光装置は図1の投影露光装置EXとほぼ同じであるが、複数のマスクM1~M7を個々にマスクステージMST上に載置するのではなく、図10(A)に示すように、マスクM1~M7を矩形の平板状のキャリア45に載置した状態でマスクステージMST上に載置する点が異なっている。図10(A)、図10(B)及び図11(A)、図11(B)において、図3(A)、図3(B)及び図4(A)~図4(D)に対応する部分には同一符号を付してその詳細な説明を省略する。
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIGS. The projection exposure apparatus of this embodiment is almost the same as the projection exposure apparatus EX of FIG. 1, but a plurality of masks M1 to M7 are not individually placed on the mask stage MST, but are shown in FIG. As described above, the difference is that the masks M1 to M7 are mounted on the mask stage MST in a state of being mounted on the rectangular flat carrier 45. 10 (A), FIG. 10 (B), FIG. 11 (A), and FIG. 11 (B) correspond to FIG. 3 (A), FIG. 3 (B), and FIGS. 4 (A) to 4 (D). The same reference numerals are given to the parts to be described, and detailed description thereof will be omitted.
 図10(A)はキャリア45上にマスクM1~M7を載置した状態を示し、図10(B)はそのキャリア45をマスクステージMST上に載置した状態を示す。図10(A)において、キャリア45上のマスクM1~M7の周囲にはそれぞれアクチュエータ39A~39C及び押圧部40A~40Cを含むアクチュエータ系AC1~AC7が設置されている。キャリア45には、アクチュエータ39A~39C及び押圧部40A~40Cを駆動する電力を供給するためのコネクタ46が設けられている。 10A shows a state where the masks M1 to M7 are placed on the carrier 45, and FIG. 10B shows a state where the carrier 45 is placed on the mask stage MST. In FIG. 10A, actuator systems AC1 to AC7 including actuators 39A to 39C and pressing portions 40A to 40C are installed around the masks M1 to M7 on the carrier 45, respectively. The carrier 45 is provided with a connector 46 for supplying electric power for driving the actuators 39A to 39C and the pressing portions 40A to 40C.
 マスクM1~M7は初めて露光される際に、マスクローダ系(不図示)によってマスクステージMST上のキャリア45上に並列に載置される。
 図10(B)において、マスクステージMST上のキャリア45のコネクタ46は可撓性のケーブル70を介してアクチュエータ駆動系58に連結され、アクチュエータ駆動系58は、図4(A)の例と同様にアクチュエータ系AC1~AC7を介してマスクステージMSTに対してマスクM1~M7を駆動する。
When the masks M1 to M7 are exposed for the first time, they are placed in parallel on the carrier 45 on the mask stage MST by a mask loader system (not shown).
10B, the connector 46 of the carrier 45 on the mask stage MST is connected to an actuator drive system 58 via a flexible cable 70, and the actuator drive system 58 is the same as the example of FIG. 4A. The masks M1 to M7 are driven with respect to the mask stage MST via the actuator systems AC1 to AC7.
 図11(A)は図10(B)のマスクステージMSTを示す平面図、図11(B)は図11(A)のXIB-XIB線に沿う拡大断面図である。図11(A)において、キャリア45にはマスクM1~M7のパターン領域PAを覆うように開口22が形成され、マスクステージMSTには開口22を覆うように開口21が形成されている。また、図4(A)のマスクステージMST上のエアパッド部41A~41D(本実施形態では吸着用に使用される)に対応して、キャリア45の開口22の周囲に真空予圧型気体軸受を構成する4箇所のエアパッド部41E~41Hが形成されている。 FIG. 11A is a plan view showing the mask stage MST of FIG. 10B, and FIG. 11B is an enlarged cross-sectional view taken along line XIB-XIB of FIG. 11A. In FIG. 11A, an opening 22 is formed in the carrier 45 so as to cover the pattern area PA of the masks M1 to M7, and an opening 21 is formed in the mask stage MST so as to cover the opening 22. Further, a vacuum preload type gas bearing is formed around the opening 22 of the carrier 45 in correspondence with the air pad portions 41A to 41D (used in this embodiment for adsorption) on the mask stage MST in FIG. Four air pad portions 41E to 41H are formed.
 図11(B)において、マスクステージMST内の通気孔42Bに連通する排気孔42Eからの吸引によって、キャリア45はマスクステージMSTのエアパッド部41Dに吸着保持される。さらに、キャリア45のエアパッド部41Hには、エアパッド部41D内の排気孔42A及び給気孔42Cに接続されるようにそれぞれ排気孔42A1及び給気孔42C1が形成されている。他の構成は図4(A)と同様であり、エアパッド部41Hからの吸引及び加圧によって、マスクM1はエアパッド部41Hからギャップgを開けて浮上して保持される。従って、マスクM1~M7はアクチュエータ系AC1~AC7によってキャリア45(マスクステージMST)に対してX方向、Y方向、θz方向に円滑に駆動できる。 In FIG. 11B, the carrier 45 is sucked and held by the air pad portion 41D of the mask stage MST by suction from the exhaust hole 42E communicating with the vent hole 42B in the mask stage MST. Further, the air pad portion 41H of the carrier 45 is formed with an exhaust hole 42A1 and an air supply hole 42C1 so as to be connected to the exhaust hole 42A and the air supply hole 42C in the air pad portion 41D, respectively. The other configuration is the same as that in FIG. 4A, and the mask M1 is lifted and held with the gap g from the air pad portion 41H by suction and pressurization from the air pad portion 41H. Accordingly, the masks M1 to M7 can be smoothly driven in the X direction, the Y direction, and the θz direction with respect to the carrier 45 (mask stage MST) by the actuator systems AC1 to AC7.
 本実施形態の作用効果等は以下の通りである。
 (1)本実施形態において、マスクM1~M7を初めて使用する際には、図11(A)に示すようにマスクM1~M7をマスクステージMST上のキャリア45上のアクチュエータ系AC1~AC7内に載置して、エアパッド部41E~41Hの吸引及び加圧を開始する。その後、図8のステップ203に対応して、プレートステージPTST上の基準マーク32A,32B等と、マスクM1~M7のアライメントマーク36A,36B等の像との位置ずれ量を計測し、例えばマスクM1(ひいてはキャリア45又はマスクステージMST)を基準として、他のマスクM2~M7の相対位置及び相対角度の誤差(又はこれらの少なくとも一方)を計測する。
Effects and the like of this embodiment are as follows.
(1) In this embodiment, when the masks M1 to M7 are used for the first time, the masks M1 to M7 are placed in the actuator systems AC1 to AC7 on the carrier 45 on the mask stage MST as shown in FIG. Then, suction and pressurization of the air pads 41E to 41H are started. Thereafter, corresponding to step 203 in FIG. 8, the amount of positional deviation between the reference marks 32A, 32B, etc. on the plate stage PTST and the images of the alignment marks 36A, 36B, etc. of the masks M1 to M7 is measured. The relative position and relative angle errors (or at least one of them) of the other masks M2 to M7 are measured using (as a result, the carrier 45 or the mask stage MST) as a reference.
 その後、その誤差を補正するように、アクチュエータ系AC1~AC7を介してキャリア45に対するマスクM1~M7の位置及び回転角の少なくとも一方を変化させることによって、マスクM1~M7のパターンを1枚の大きなマスクに形成されている場合と等価な位置関係に設定できる。従って、プレートPT上に所望の大きなデバイスパターンを高精度に露光できる。 Thereafter, by changing at least one of the position and rotation angle of the masks M1 to M7 with respect to the carrier 45 via the actuator systems AC1 to AC7 so as to correct the error, the pattern of the masks M1 to M7 is changed to one large pattern. It can be set to a positional relationship equivalent to the case where it is formed on the mask. Therefore, a desired large device pattern can be exposed on the plate PT with high accuracy.
 さらに、走査露光中にステップ207に対応して、レーザ干渉計を介して計測されるマスクM1~M7のパターン(マスクステージMST)の像とプレートPTの被露光領域EP(プレートステージPTST)との位置ずれ量を補正するように、キャリア45上のアクチュエータ系AC1~AC7を駆動することで、重ね合わせ誤差を低減できる。
 (2)その露光後、コネクタ46からケーブル70を外した後、マスクM1~M7はキャリア45に載置された状態でマスクローダ系(不図示)によってマスクステージMSTとマスクライブラリ(不図示)との間を搬送され、キャリア45に載置された状態でマスクライブラリに収納される。2回目以降にマスクM1~M7を使用する際には、マスクM1~M7はキャリア45に載置された状態でマスクローダ系によってマスクステージMST上に載置される。
Further, corresponding to step 207 during scanning exposure, an image of the pattern of the masks M1 to M7 (mask stage MST) measured via the laser interferometer and the exposed area EP (plate stage PTST) of the plate PT. By driving the actuator systems AC1 to AC7 on the carrier 45 so as to correct the positional deviation amount, the overlay error can be reduced.
(2) After the exposure, after the cable 70 is disconnected from the connector 46, the masks M1 to M7 are placed on the carrier 45, and the mask stage MST and the mask library (not shown) are connected by the mask loader system (not shown). Are stored in the mask library while being placed on the carrier 45. When the masks M1 to M7 are used after the second time, the masks M1 to M7 are placed on the mask stage MST by the mask loader system while being placed on the carrier 45.
 この際に、アクチュエータ系AC1~AC7のアクチュエータ39A~39Cとしては、電力が供給されない状態で作動位置をほぼ一定に維持するピエゾモータ(又は超音波モータ、小型電動マイクロメータ等でもよい)が使用されているため、キャリア45上に並列に載置されたマスクM1~M7の相対位置等は、マスクステージMSTからマスクライブラリを経てマスクステージMSTに戻る間でほぼ一定の関係に維持される。従って、2回目以降に、マスクM1~M7が載置されたキャリア45をマスクステージMST上に載置した状態では、マスクM1~M7の相対位置等がその前の露光時に設定された状態(ほぼマスクM1~M7間の相対位置誤差等が補正された状態)であるため、ステップ203に対応するマスクアライメント動作を極めて短時間で実行できるか、又はステップ203に対応する動作を省略して、露光時間を短縮できる。また、キャリア45を用いてマスクM1~M7を一括して搬送することができるため、ステップ201に対応するマスクM1~M7の搬送時間を短縮できる。 At this time, as the actuators 39A to 39C of the actuator systems AC1 to AC7, a piezo motor (or an ultrasonic motor, a small electric micrometer, or the like) that keeps the operation position almost constant in a state where power is not supplied is used. Therefore, the relative positions of the masks M1 to M7 placed in parallel on the carrier 45 are maintained in a substantially constant relationship while returning from the mask stage MST to the mask stage MST through the mask library. Accordingly, in a state where the carrier 45 on which the masks M1 to M7 are placed is placed on the mask stage MST after the second time, the relative positions of the masks M1 to M7 are set at the time of the previous exposure (almost). The mask alignment operation corresponding to step 203 can be executed in a very short time, or the operation corresponding to step 203 can be omitted to perform exposure. You can save time. Further, since the masks M1 to M7 can be transported collectively using the carrier 45, the transport time of the masks M1 to M7 corresponding to step 201 can be shortened.
 (3)なお、本実施形態において、ステップ203に対応する工程では、キャリア45とマスクステージMSTとの相対位置及び相対角度の少なくとも一方を計測し、この計測結果に基づいてキャリア45のマスクステージMSTに対する位置及び回転角の少なくとも一方を変化させるようにしてもよい。これは、例えばマスクステージMST上に設けられる不図示の画像処理型のプリアライメント系と、マスクローダ系とを用いて行うことができる。 (3) In this embodiment, in the step corresponding to step 203, at least one of the relative position and the relative angle between the carrier 45 and the mask stage MST is measured, and the mask stage MST of the carrier 45 is based on the measurement result. You may make it change at least one of the position and rotation angle with respect to. This can be performed using, for example, an image processing type pre-alignment system (not shown) provided on the mask stage MST and a mask loader system.
 [第3の実施形態]
 本発明の第3の実施形態につき図12及び図13を参照して説明する。本実施形態では、第2の実施形態と同様に図12(A)に示すように、キャリア45上にマスクM1~M7を載置するが、キャリア45上のアクチュエータ系ACS1~ACS7が第2の実施形態とは異なりオペレータによってマニュアルで駆動される点が異なっている。以下、図12(A)、図12(B)及び図13において、図10(A)、図10(B)及び図11(A)、図11(B)に対応する部分には同一符号を付してその詳細な説明を省略する。
[Third Embodiment]
A third embodiment of the present invention will be described with reference to FIGS. In this embodiment, as in the second embodiment, masks M1 to M7 are placed on the carrier 45, as shown in FIG. 12A, but the actuator systems ACS1 to ACS7 on the carrier 45 are in the second state. Unlike the embodiment, the operator is manually driven. Hereinafter, in FIG. 12A, FIG. 12B, and FIG. 13, the parts corresponding to those in FIG. 10A, FIG. 10B, FIG. 11A, and FIG. A detailed description thereof will be omitted.
 図12(A)はキャリア45上にマスクM1~M7を載置した状態を示し、図12(B)は図12(A)のマスクM1を示す。図12(A)のマスクM1用のアクチュエータ系ACS1は、図12(B)に示すようにマスクM1を駆動する手動の3軸のアクチュエータ39SA~39SCと、これらにマスクM1を押圧する押圧部40SA~40SCとを備えている。代表的にアクチュエータ39SABは、図12(D)に示すように手動のマイクロメータであり、押圧部40SBは、図12(C)に示すようにコイルばね式のプランジャである。他のアクチュエータ系ACS2~ACS7も同様に構成されている。 12A shows a state where the masks M1 to M7 are placed on the carrier 45, and FIG. 12B shows the mask M1 shown in FIG. The actuator system ACS1 for the mask M1 in FIG. 12A includes a manual triaxial actuator 39SA to 39SC that drives the mask M1 and a pressing portion 40SA that presses the mask M1 against them as shown in FIG. 12B. To 40SC. Typically, the actuator 39SAB is a manual micrometer as shown in FIG. 12D, and the pressing portion 40SB is a coil spring type plunger as shown in FIG. 12C. The other actuator systems ACS2 to ACS7 are similarly configured.
 また、図13は、本実施形態でマスクライブラリ(不図示)と図10(B)のマスクステージMSTとの間に配置されるプリアライメント装置を示す。図13において、X軸、Y軸、Z軸よりなる直交座標系を設定する。プリアライメント装置は、X軸の移動鏡64X1,64X2及びY軸の移動鏡64Y1を備え、不図示のガイド部材に沿ってX方向に移動するXステージ63と、そのベース部材に対して不図示のフレームを介してY軸(X軸に直交する軸)に平行に架設されたY軸ガイド65と、Y軸の移動鏡64Y2を備え、Y軸ガイド65に沿ってY方向に移動する撮像装置66と、移動鏡64X1,64X2のX方向の位置、及び移動鏡64Y1,64Y2のY方向の位置をそれぞれ計測する4軸のレーザ干渉計(不図示)と、撮像装置66の撮像信号を処理する処理装置(不図示)とを含んでいる。Xステージ63上にキャリア45が吸着保持される。 FIG. 13 shows a pre-alignment apparatus arranged between a mask library (not shown) and the mask stage MST in FIG. 10B in this embodiment. In FIG. 13, an orthogonal coordinate system composed of an X axis, a Y axis, and a Z axis is set. The pre-alignment apparatus includes X-axis movable mirrors 64X1 and 64X2 and a Y-axis movable mirror 64Y1, and moves in the X direction along a guide member (not shown) and a base member (not shown). An imaging device 66 that includes a Y-axis guide 65 laid in parallel to the Y-axis (axis orthogonal to the X-axis) via a frame, and a Y-axis moving mirror 64Y2, and moves in the Y direction along the Y-axis guide 65. A four-axis laser interferometer (not shown) that measures the positions of the movable mirrors 64X1 and 64X2 in the X direction and the positions of the movable mirrors 64Y1 and 64Y2 in the Y direction, and a process for processing the imaging signal of the imaging device 66 Device (not shown). The carrier 45 is sucked and held on the X stage 63.
 マスクM1~M7を初めて使用する際には、マスクローダ系によってキャリア45上のアクチュエータ系ACS1~ACS7内にマスクM1~M7が載置される。その状態でキャリア45をXステージ63上に載置して吸着保持した後、マスクM1~M7のプリアライメントを行う。即ち、Xステージ63をX方向に駆動する動作と、撮像装置66をY軸ガイド65に沿ってY方向に駆動する動作とを組み合わせて、撮像装置66によってマスクM1~M7のアライメントマーク36A,36B(及び/又は37A,37B)の座標を計測する。その後、例えばマスクM1(キャリア45)を基準として他のマスクM2~M7のX方向、Y方向の位置ずれ量、及びZ軸の周りの回転角(又はこれらの少なくとも一方でもよい)を求める。さらに上記の処理装置では、その位置ずれ量及び回転角を相殺するための図12(A)のアクチュエータ系ACS2~ACS7のアクチュエータ39SA~39SC(マイクロメータ)の駆動量を求める。その後、オペレータがその求められた駆動量だけアクチュエータ39SA~39SCを手動で操作することによって、マスクM1~M7の相対的な位置ずれ量及び回転角の誤差を補正できる。 When the masks M1 to M7 are used for the first time, the masks M1 to M7 are placed in the actuator systems ACS1 to ACS7 on the carrier 45 by the mask loader system. In this state, the carrier 45 is placed on the X stage 63 and sucked and held, and then the masks M1 to M7 are pre-aligned. That is, the operation of driving the X stage 63 in the X direction and the operation of driving the imaging device 66 in the Y direction along the Y-axis guide 65 are combined, and the alignment marks 36A and 36B of the masks M1 to M7 are combined by the imaging device 66. (And / or 37A, 37B) coordinates are measured. Thereafter, for example, with respect to the mask M1 (carrier 45), the positional deviation amounts of the other masks M2 to M7 in the X direction and the Y direction and the rotation angle around the Z axis (or at least one of these) may be obtained. Further, in the above processing apparatus, the drive amounts of the actuators 39SA to 39SC (micrometers) of the actuator systems ACS2 to ACS7 of FIG. 12A for canceling out the displacement and the rotation angle are obtained. Thereafter, the operator can manually operate the actuators 39SA to 39SC by the determined drive amount, thereby correcting the relative positional deviation amount and the rotation angle error of the masks M1 to M7.
 このようにプリアライメントが行われたキャリア45は、不図示のマスクローダ系によって図10(B)のマスクステージMST上に搬送される。この際に、キャリア45上のマスクM1~M7はプリアライメントが完了しており、マスクM1~M7のパターンが形成された1枚の大型のマスクとして扱うことができる。従って、マスクステージMST上では、例えば両端のマスクM1及びM7のアライメントマークの像と対応するプレートステージ上の基準マークとの位置ずれ量を検出するのみでマスクM1~M7の最終的なアライメント(ファインアライメント)を迅速に行うことができる。 The carrier 45 thus pre-aligned is transported onto the mask stage MST in FIG. 10B by a mask loader system (not shown). At this time, the masks M1 to M7 on the carrier 45 have been pre-aligned and can be handled as one large mask on which the patterns of the masks M1 to M7 are formed. Therefore, on the mask stage MST, for example, the final alignment (fine fineness) of the masks M1 to M7 is detected only by detecting the amount of misalignment between the alignment mark images of the masks M1 and M7 at both ends and the corresponding reference marks on the plate stage. Alignment) can be performed quickly.
 なお、本実施形態では、アクチュエータ系ACS1~ACS7はマニュアル方式で駆動されるため、露光中にマスクM1~M7を個別に駆動する動作は実行されない。そのため、マスクM1~M7のキャリア45に対する保持は、単なる真空吸着のみでよく、加圧を行う必要はない。
 また、露光後には、マスクM1~M7はキャリア45に載置された状態でマスクライブラリに搬送されて格納される。その後、マスクM1~M7を使用する際には、プリアライメントが完了しているため、マスクM1~M7が載置されたキャリア45をそのままマスクステージMST上に搬送するのみでよい。従って、マスクM1~M7のアライメントを迅速に行うことができる。
In this embodiment, since the actuator systems ACS1 to ACS7 are driven by a manual method, the operation of individually driving the masks M1 to M7 is not executed during exposure. For this reason, the masks M1 to M7 can be held on the carrier 45 only by vacuum suction, and it is not necessary to apply pressure.
After the exposure, the masks M1 to M7 are transported to the mask library and stored in a state of being placed on the carrier 45. Thereafter, when the masks M1 to M7 are used, since the pre-alignment is completed, the carrier 45 on which the masks M1 to M7 are placed only needs to be transferred onto the mask stage MST as it is. Accordingly, the masks M1 to M7 can be quickly aligned.
 [第4の実施形態]
 本発明の第4の実施形態につき図14及び図15を参照して説明する。本実施形態では、第2の実施形態と同様に図14(A)に示すように、キャリア47A上にマスクM1~M7を載置して搬送するが、キャリア47Aにはアクチュエータ系が設けられておらず、第1の実施形態と同様にマスクステージMST上にアクチュエータ系AC1~AC7が設けられている。以下、図15(A)、図15(B)において、図4(A)、図4(D)に対応する部分には同一符号を付してその詳細な説明を省略する。
[Fourth Embodiment]
A fourth embodiment of the present invention will be described with reference to FIGS. In the present embodiment, as in the second embodiment, as shown in FIG. 14A, masks M1 to M7 are placed on the carrier 47A and transported. The carrier 47A is provided with an actuator system. In the same manner as in the first embodiment, actuator systems AC1 to AC7 are provided on the mask stage MST. In the following, in FIGS. 15A and 15B, portions corresponding to FIGS. 4A and 4D are denoted by the same reference numerals, and detailed description thereof is omitted.
 図14(A)は本実施形態のキャリア47Aを示す平面図、図14(B)はキャリア47A上にマスクM1~M7を載置した状態を示す平面図、図14(C)はマスクローダ系61でキャリア47Aを搬送している状態を示す斜視図である。図14(A)において、矩形の平板状のキャリア47Aには、マスクM1~M7を通過した照明光を通過させるとともに、位置B2で示すように4隅及び対向する長辺の中央部でマスクM1~M7を保持できる7つの矩形状の開口23が設けられている。開口23には、マスクステージMST上のアクチュエータ系AC1~AC7及びエアパッド部41A~41Dが通過できるように切り欠き部23a~23fが設けられている。 14A is a plan view showing the carrier 47A of the present embodiment, FIG. 14B is a plan view showing a state in which the masks M1 to M7 are placed on the carrier 47A, and FIG. 14C is a mask loader system. FIG. 6 is a perspective view showing a state where a carrier 47A is being transported by 61; In FIG. 14A, the rectangular flat carrier 47A allows the illumination light that has passed through the masks M1 to M7 to pass, and as shown by the position B2, the mask M1 is formed at the four corners and at the center of the opposing long sides. Seven rectangular openings 23 capable of holding .about.M7 are provided. The opening 23 is provided with notches 23a to 23f so that the actuator systems AC1 to AC7 and the air pad portions 41A to 41D on the mask stage MST can pass through.
 また、図14(C)において、マスクライブラリ62には、キャリア47Aと同一形状でそれぞれ7枚のマスクMB1~MB7、MC1~MC7、MD1~MD7が載置された複数のキャリア47B~47Dが格納されている。マスクライブラリ62にはキャリア47Aを格納するスペースも設けられている。マスクローダ系61は、キャリア47A~47Dを搬送するためのハンド部61dを備えている。 In FIG. 14C, the mask library 62 stores a plurality of carriers 47B to 47D each having seven masks MB1 to MB7, MC1 to MC7, and MD1 to MD7 each having the same shape as the carrier 47A. Has been. The mask library 62 also has a space for storing the carrier 47A. The mask loader system 61 includes a hand portion 61d for carrying the carriers 47A to 47D.
 マスクM1~M7は、最初は例えば個別にマスクを搬送するマスクローダ系(不図示)によってキャリア47A上に載置される。その後、マスクM1~M7はキャリア47Aに載置された状態でマスクライブラリ62内に格納される。マスクM1~M7を露光に使用する際には、マスクM1~M7が載置されたキャリア47Aをマスクローダ系61によってマスクライブラリ62からマスクステージMST上に搬送する。 The masks M1 to M7 are initially placed on the carrier 47A by, for example, a mask loader system (not shown) that individually transports the masks. Thereafter, the masks M1 to M7 are stored in the mask library 62 while being placed on the carrier 47A. When the masks M1 to M7 are used for exposure, the carrier 47A on which the masks M1 to M7 are placed is transported from the mask library 62 onto the mask stage MST by the mask loader system 61.
 図15(A)はキャリア47Aが搬送されたマスクステージMSTを示す平面図、図15(B)は図15(A)のXVB-XVB線に沿う断面図である。キャリア47Aに載置されたマスクM1~M7をマスクステージMSTに受け渡す際には、キャリア47Aの開口23の切り欠き部23a~23fをアクチュエータ系AC1~AC7及びエアパッド部41A~41Dが通過して、エアパッド部41A~41D上にマスクM1~M7が受け渡される。この際に、図15(B)に示すように、キャリア47Aは、マスクM1(マスクM2~M7についても同様)とマスクステージMSTとの間の空間に退避される。なお、マスクステージMST上に2点鎖線で示す溝部25を設けておき、溝部25内にキャリア47Aを埋設して退避させてもよい。 15A is a plan view showing the mask stage MST on which the carrier 47A is conveyed, and FIG. 15B is a cross-sectional view taken along the line XVB-XVB in FIG. 15A. When the masks M1 to M7 placed on the carrier 47A are transferred to the mask stage MST, the actuator systems AC1 to AC7 and the air pad portions 41A to 41D pass through the notches 23a to 23f of the opening 23 of the carrier 47A. The masks M1 to M7 are transferred onto the air pad portions 41A to 41D. At this time, as shown in FIG. 15B, the carrier 47A is retracted to the space between the mask M1 (the same applies to the masks M2 to M7) and the mask stage MST. Note that a groove portion 25 indicated by a two-dot chain line may be provided on the mask stage MST, and the carrier 47A may be embedded in the groove portion 25 and retracted.
 この結果、マスクM1~M7はキャリア47Aから分離された状態になるため、第1の実施形態と同様にマスクステージMST上のアクチュエータ系AC1~AC7によって個別に駆動することができる。また、露光終了後には、図15(B)の状態からマスクローダ系によってキャリア47AをZ方向に上昇させることによって、キャリア47A上にマスクM1~M7が載置される。その後、マスクM1~M7はキャリア47Aに載置された状態でマスクライブラリに格納される。 As a result, since the masks M1 to M7 are separated from the carrier 47A, they can be individually driven by the actuator systems AC1 to AC7 on the mask stage MST as in the first embodiment. After the exposure is completed, the masks M1 to M7 are placed on the carrier 47A by raising the carrier 47A in the Z direction by the mask loader system from the state of FIG. Thereafter, the masks M1 to M7 are stored in the mask library while being placed on the carrier 47A.
 以上説明した実施形態の投影露光装置(走査型露光装置)を用いて、基板(ガラスプレート)上に所定のパターン(回路パターン、電極パターン等)を形成することによって、液晶表示素子等の液晶デバイスを製造することができる。以下、図16のステップS401~S404を参照して、この製造方法の一例につき説明する。
 図16のステップS401(パターン形成工程)では、先ず、露光対象の基板上にフォトレジストを塗布して感光基板を準備する塗布工程、上記の走査型露光装置を用いて液晶表示素子用のマスクのパターンをその感光基板上に転写露光する露光工程、及びその感光基板を現像する現像工程が実行される。この塗布工程、露光工程、及び現像工程を含むリソグラフィ工程によって、その基板上に所定のレジストパターンが形成される。このリソグラフィ工程に続いて、そのレジストパターンを加工用のマスクとしたエッチング工程、及びレジスト剥離工程等を経て、その基板上に多数の電極等を含む所定パターンが形成される。そのリソグラフィ工程等は、その基板上のレイヤ数に応じて複数回実行される。
A liquid crystal device such as a liquid crystal display element is formed by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a substrate (glass plate) using the projection exposure apparatus (scanning exposure apparatus) of the embodiment described above. Can be manufactured. Hereinafter, an example of this manufacturing method will be described with reference to steps S401 to S404 in FIG.
In step S401 (pattern formation process) in FIG. 16, first, a coating process for preparing a photosensitive substrate by applying a photoresist on a substrate to be exposed, and a mask for a liquid crystal display element using the above scanning exposure apparatus. An exposure process for transferring and exposing the pattern onto the photosensitive substrate and a developing process for developing the photosensitive substrate are performed. A predetermined resist pattern is formed on the substrate by a lithography process including the coating process, the exposure process, and the development process. Following this lithography process, a predetermined pattern including a large number of electrodes and the like is formed on the substrate through an etching process using the resist pattern as a processing mask, a resist stripping process, and the like. The lithography process or the like is executed a plurality of times according to the number of layers on the substrate.
 その次のステップS402(カラーフィルタ形成工程)では、赤R、緑G、青Bに対応した3つの微細なフィルタの組をマトリックス状に多数配列するか、又は赤R、緑G、青Bの3本のストライプ状の複数のフィルタの組を水平走査線方向に配列することによってカラーフィルタを形成する。その次のステップS403(セル組立工程)では、例えばステップS401にて得られた所定パターンを有する基板とステップS402にて得られたカラーフィルタとの間に液晶を注入して、液晶パネル(液晶セル)を製造する。 In the next step S402 (color filter forming step), a large number of three fine filter sets corresponding to red R, green G, and blue B are arranged in a matrix, or red R, green G, and blue B are arranged. A color filter is formed by arranging a set of three stripe-shaped filters in the horizontal scanning line direction. In the next step S403 (cell assembly process), for example, liquid crystal is injected between the substrate having the predetermined pattern obtained in step S401 and the color filter obtained in step S402, and a liquid crystal panel (liquid crystal cell) is obtained. ).
 その後のステップS404(モジュール組立工程)では、そのようにして組み立てられた液晶パネル(液晶セル)に表示動作を行わせるための電気回路、及びバックライト等の部品を取り付けて、液晶表示素子として完成させる。上述の液晶表示素子の製造方法によれば、露光工程で使用するマスクM1~M7等の製造コストを低減できる。さらに、露光中にもマスクM1~M7等を駆動することによって重ね合わせ精度も向上するため、低コストで、かつ高精度に液晶表示素子の製造を行うことができる。 In subsequent step S404 (module assembly process), the liquid crystal panel (liquid crystal cell) thus assembled is attached with an electric circuit for performing a display operation and components such as a backlight to complete a liquid crystal display element. Let According to the above-described method for manufacturing a liquid crystal display element, the manufacturing cost of the masks M1 to M7 used in the exposure process can be reduced. Further, since the overlay accuracy is improved by driving the masks M1 to M7 and the like even during exposure, the liquid crystal display element can be manufactured with high accuracy at low cost.
 なお、本発明は、液晶表示素子の製造プロセスへの適用に限定されることなく、例えば、プラズマディスプレイ等のディスプレイ装置の製造プロセスや、撮像素子(CCD等)、マイクロマシーン、MEMS(Microelectromechanical Systems:微小電気機械システム)、セラミックスウエハ等を基板として用いる薄膜磁気ヘッド、及び半導体素子等の各種デバイスの製造プロセスにも広く適用できる。 Note that the present invention is not limited to application to a manufacturing process of a liquid crystal display element. For example, a manufacturing process of a display device such as a plasma display, an imaging element (CCD or the like), a micromachine, a MEMS (Microelectromechanical systems: It can be widely applied to manufacturing processes of various devices such as micro electromechanical systems), thin film magnetic heads using ceramic wafers or the like as substrates, and semiconductor elements.
 なお、上述の実施形態では、光源として放電ランプを備え、必要となるg線、h線、及びi線等の光を選択するようにしていた。しかしながら、これに限らず、露光光として紫外LEDからの光、KrFエキシマレーザ(248nm)やArFエキシマレーザ(193nm)からのレーザ光、又は固体レーザ(半導体レーザ等)の高調波等を用いる場合であっても本発明を適用することが可能である。 In the above-described embodiment, a discharge lamp is provided as a light source, and necessary light such as g-line, h-line, and i-line is selected. However, the present invention is not limited to this, and the exposure light uses light from an ultraviolet LED, laser light from a KrF excimer laser (248 nm) or ArF excimer laser (193 nm), or harmonics of a solid-state laser (semiconductor laser or the like). Even if it exists, it is possible to apply this invention.
 また、上述の実施形態では、マスクM1~M7のパターンの像を投影光学系PL1~PL7によって投影する投影露光装置に本発明を適用するものとして説明したが、投影露光装置に限定されず、プロキシミティ露光を行う露光装置にも適用できる。 In the above-described embodiment, the description has been given assuming that the present invention is applied to the projection exposure apparatus that projects the pattern images of the masks M1 to M7 by the projection optical systems PL1 to PL7. The present invention can also be applied to an exposure apparatus that performs Mitty exposure.
また、上述の実施形態では、パターンが形成されたマスクM1~M7として、露光光を透過させる透過型マスクを用いるものとして説明したが、露光光を反射させる反射型マスクを用いることもできる。反射型マスクとしては、例えば複数の微小なミラーエレメントによってパターンが形成されるDMD(Digital Micromirror DeviceまたはDeformable Micromirror Device)を用いることができる。 In the above-described embodiment, the masks M1 to M7 on which the pattern is formed are described as using the transmission type mask that transmits the exposure light. However, a reflection type mask that reflects the exposure light can also be used. As the reflective mask, for example, a DMD (Digital Micromirror Device or Deformable Micromirror Device) in which a pattern is formed by a plurality of minute mirror elements can be used.
 また、上述の実施形態では、マスクM1~M7のパターンを転写する物体(パターンを介して露光する物体)としてガラスプレート等のプレートPTを用いるものとして説明したが、ガラスプレート等の堅固なプレート(基板)に限らず、柔軟なフィルム状あるいはシート状の物体を用いることもできる。
 また、上記の実施形態の投影露光装置EX(露光装置)は、本願請求の範囲に挙げられたステージ(MST,PTST)等の各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度及びクリーン度等が管理されたクリーンルームで行うことが望ましい。
In the above-described embodiment, the plate PT such as a glass plate is used as an object to which the pattern of the masks M1 to M7 is transferred (an object to be exposed through the pattern). However, a solid plate (such as a glass plate) Not only a substrate) but also a flexible film-like or sheet-like object can be used.
Further, the projection exposure apparatus EX (exposure apparatus) of the above-described embodiment has various mechanical systems including components (MST, PTST) recited in the claims of the present application, with predetermined mechanical accuracy, electrical Manufactured by assembling so as to maintain optical accuracy and optical accuracy. In order to ensure these various accuracies, before and after assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, and various electrical systems are Adjustments are made to achieve electrical accuracy. The assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. The exposure apparatus is preferably manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
 なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。また、明細書、特許請求の範囲、図面、及び要約を含む2008年4月16日付け提出の日本国特許出願第2008-107337の全ての開示内容は、そっくりそのまま引用して本願に組み込まれている。 In addition, this invention is not limited to the above-mentioned embodiment, A various structure can be taken in the range which does not deviate from the summary of this invention. In addition, the entire disclosure of Japanese Patent Application No. 2008-107337 filed on April 16, 2008, including the specification, claims, drawings, and abstract, is incorporated herein by reference in its entirety. Yes.
 M1~M7…マスク、MST…マスクステージ、PL1~PL7…投影光学系、PT…プレート、PTST…プレートステージ、AC1~AC7…アクチュエータ系、36A,36B…アライメントマーク、39A~39C…アクチュエータ、40A~40C…押圧部、41A~41C…エアパッド部、45…キャリア、47A~47D…キャリア M1 to M7 ... Mask, MST ... Mask stage, PL1 to PL7 ... Projection optical system, PT ... Plate, PTST ... Plate stage, AC1 to AC7 ... Actuator system, 36A, 36B ... Alignment mark, 39A-39C ... Actuator, 40A ... 40C ... Pressing part, 41A to 41C ... Air pad part, 45 ... Carrier, 47A to 47D ... Carrier

Claims (33)

  1.  パターンが形成された複数のマスクを第1ステージ上に支持する支持工程と、
     前記複数のマスクのうち少なくとも1つの制御対象マスクを前記第1ステージに対して個別に動かして該複数のマスクの相対配置を制御する制御工程と、
     前記相対配置が制御された前記複数のマスクの前記パターンを介し、第2ステージに載置された物体を露光する露光工程と、
     を含むことを特徴とする露光方法。
    A supporting step of supporting a plurality of masks on which a pattern is formed on the first stage;
    A control step of controlling the relative arrangement of the plurality of masks by individually moving at least one control target mask of the plurality of masks with respect to the first stage;
    An exposure step of exposing an object placed on a second stage through the pattern of the plurality of masks, the relative arrangement of which is controlled;
    An exposure method comprising:
  2.  前記制御工程は、
     前記複数のマスク間の相対的な配置誤差と、前記制御対象マスクと前記物体との間の相対的な配置誤差との少なくとも一方を計測する計測工程と、
     前記計測工程の計測結果に基づいて前記制御対象マスクを前記第1ステージに対して動かす駆動工程と、を含むことを特徴とする請求項1に記載の露光方法。
    The control step includes
    A measurement step of measuring at least one of a relative placement error between the plurality of masks and a relative placement error between the control target mask and the object;
    The exposure method according to claim 1, further comprising: a driving step of moving the control target mask relative to the first stage based on a measurement result of the measurement step.
  3.  前記第1ステージと前記第2ステージとを同期して移動させる同期移動工程を含み、
     前記制御工程は、前記計測工程の計測結果に基づいて、前記第1ステージの移動位置に対応する前記制御対象マスクの駆動量を設定する設定工程を含み、
     前記駆動工程は、前記第1ステージの移動にともない、前記設定工程によって設定された前記駆動量に基づいて前記制御対象マスクを動かすことを特徴とする請求項2に記載の露光方法。
    Including a synchronous movement step of moving the first stage and the second stage synchronously;
    The control step includes a setting step of setting a drive amount of the control target mask corresponding to a movement position of the first stage based on a measurement result of the measurement step,
    3. The exposure method according to claim 2, wherein in the driving step, the mask to be controlled is moved based on the driving amount set in the setting step as the first stage moves.
  4.  前記計測工程は、前記複数のマスクに設けられた各計測マークと前記第2ステージに設けられた基準マークとの間の位置ずれ量を計測し、該位置ずれ量に基づいて前記複数のマスク間の相対的な配置誤差を計測することを特徴とする請求項2または3に記載の露光方法。 The measuring step measures a positional deviation amount between each measurement mark provided on the plurality of masks and a reference mark provided on the second stage, and based on the positional deviation amount, between the plurality of masks. 4. The exposure method according to claim 2, wherein a relative arrangement error is measured.
  5.  前記計測工程は、前記複数のマスクに設けられた各計測マークの座標を計測し、該座標に基づいて前記複数のマスク間の相対的な配置誤差を計測することを特徴とする請求項2または3に記載の露光方法。 3. The measurement step according to claim 2, wherein coordinates of each measurement mark provided on the plurality of masks are measured, and a relative arrangement error between the plurality of masks is measured based on the coordinates. 4. The exposure method according to 3.
  6.  前記計測工程は、前記制御対象マスクに設けられた各マスク上マークと前記物体に設けられた物体上マークとの間の位置ずれ量を計測し、該位置ずれ量に基づいて前記制御対象マスクと前記物体との間の相対的な配置誤差を計測することを特徴とする請求項2~5のいずれか一項に記載の露光方法。 The measurement step measures a positional deviation amount between each on-mask mark provided on the control target mask and the on-object mark provided on the object, and based on the positional deviation amount, the control target mask 6. The exposure method according to claim 2, wherein a relative arrangement error between the object and the object is measured.
  7.  前記相対的な配置誤差は、相対的な位置誤差及び回転誤差の少なくとも一方を含むことを特徴とする請求項2~6のいずれか一項に記載の露光方法。 The exposure method according to any one of claims 2 to 6, wherein the relative arrangement error includes at least one of a relative position error and a rotation error.
  8.  前記支持工程は、保持部材を介して前記複数のマスクを支持し、
     前記駆動工程は、前記制御対象マスクを前記保持部材に対して動かすことを特徴とする請求項2~7のいずれか一項に記載の露光方法。
    The supporting step supports the plurality of masks via a holding member,
    The exposure method according to any one of claims 2 to 7, wherein in the driving step, the mask to be controlled is moved with respect to the holding member.
  9.  前記駆動工程は、前記制御対象マスクに外設された部材を介して該制御対象マスクを動かすことを特徴とする請求項2~8のいずれか一項に記載の露光方法。 The exposure method according to any one of claims 2 to 8, wherein, in the driving step, the control target mask is moved via a member provided outside the control target mask.
  10.  前記駆動工程は、前記制御対象マスクの位置及び回転角の少なくとも一方を変化させることを特徴とする請求項2~9のいずれか一項に記載の露光方法。 10. The exposure method according to claim 2, wherein the driving step changes at least one of a position and a rotation angle of the control target mask.
  11.  前記複数のマスクを搬送部材上に載置し、前記複数のマスクが載置された前記搬送部材を前記第1ステージ上に搬送し、前記搬送部材上の前記複数のマスクを前記第1ステージに受け渡し、前記複数のマスクを受け渡した前記搬送部材を前記第1ステージの退避部に退避させる退避工程を含むことを特徴とする請求項1~10のいずれか一項に記載の露光方法。 The plurality of masks are placed on a transport member, the transport member on which the plurality of masks are placed is transported onto the first stage, and the plurality of masks on the transport member are placed on the first stage. The exposure method according to any one of claims 1 to 10, further comprising a retracting step of retracting and transferring the transport member that has received the plurality of masks to a retracting portion of the first stage.
  12.  前記複数のマスクを前記保持部材上に載置するマスク載置工程と、
     前記複数のマスクが載置された前記保持部材を前記第1ステージ上に搬送する部材搬送工程と、
    を含むことを特徴とする請求項8に記載の露光方法。
    A mask placing step of placing the plurality of masks on the holding member;
    A member conveying step of conveying the holding member on which the plurality of masks are placed on the first stage;
    The exposure method according to claim 8, comprising:
  13.  前記露光工程は、前記複数のマスクにそれぞれ対応して配置された複数の投影光学系を介して前記物体を露光することを特徴とする請求項1~12のいずれか一項に記載の露光方法。 The exposure method according to any one of claims 1 to 12, wherein in the exposure step, the object is exposed through a plurality of projection optical systems respectively arranged corresponding to the plurality of masks. .
  14.  前記第1ステージと前記第2ステージとを同期して移動させる同期移動工程を含み、
     前記露光工程は、前記同期移動工程中に前記物体を露光することを特徴とする請求項1~13のいずれか一項に記載の露光方法。
    Including a synchronous movement step of moving the first stage and the second stage synchronously;
    The exposure method according to any one of claims 1 to 13, wherein the exposure step exposes the object during the synchronous movement step.
  15.  請求項1~14のいずれか一項に記載の露光方法を用いて、前記複数のマスクの前記パターンを前記第2ステージに載置された感光基板に転写する転写工程と、
     前記パターンが転写された前記感光基板を現像し、前記パターンに対応する形状の転写パターン層を前記感光基板上に形成する現像工程と、
     前記転写パターン層を介して前記感光基板を加工する加工工程と、
     を含むことを特徴とするデバイス製造方法。
    A transfer step of transferring the pattern of the plurality of masks to a photosensitive substrate placed on the second stage using the exposure method according to any one of claims 1 to 14.
    Developing the photosensitive substrate to which the pattern has been transferred, and forming a transfer pattern layer having a shape corresponding to the pattern on the photosensitive substrate;
    A processing step of processing the photosensitive substrate through the transfer pattern layer;
    A device manufacturing method comprising:
  16.  パターンが形成された複数のマスクを支持する第1ステージと、
     物体が載置される第2ステージと、
     前記複数のマスクのうち少なくとも1つの制御対象マスクを前記第1ステージに対して個別に動かして該複数のマスクの相対配置を制御する制御装置と、
     前記相対配置が制御された前記複数のマスクの前記パターンを介して前記物体に露光光を照射する照明系と、
     を備えることを特徴とする露光装置。
    A first stage for supporting a plurality of masks on which a pattern is formed;
    A second stage on which the object is placed;
    A control device for controlling the relative arrangement of the plurality of masks by individually moving at least one control target mask among the plurality of masks with respect to the first stage;
    An illumination system that irradiates the object with exposure light through the patterns of the plurality of masks, the relative arrangement of which is controlled;
    An exposure apparatus comprising:
  17.  前記制御装置は、
     前記複数のマスク間の相対的な配置誤差と、前記制御対象マスクと前記物体との間の相対的な配置誤差との少なくとも一方を計測する計測装置と、
     前記計測装置の計測結果に基づいて前記制御対象マスクを前記第1ステージに対して動かす駆動装置と、を含むことを特徴とする請求項16に記載の露光装置。
    The controller is
    A measuring device that measures at least one of a relative placement error between the plurality of masks and a relative placement error between the control target mask and the object;
    The exposure apparatus according to claim 16, further comprising: a drive device that moves the control target mask relative to the first stage based on a measurement result of the measurement device.
  18.  前記第1ステージと前記第2ステージとを同期して移動させるステージ制御部を備え、
     前記制御装置は、前記計測装置の計測結果に基づいて、前記第1ステージの移動位置に対応する前記制御対象マスクの駆動量を設定する設定制御部を含み、
     前記駆動装置は、前記第1ステージの移動にともない、前記駆動量に基づいて前記制御対象マスクを動かすことを特徴とする請求項17に記載の露光装置。
    A stage control unit that moves the first stage and the second stage synchronously;
    The control device includes a setting control unit that sets a drive amount of the control target mask corresponding to a movement position of the first stage based on a measurement result of the measurement device,
    The exposure apparatus according to claim 17, wherein the driving apparatus moves the control target mask based on the driving amount as the first stage moves.
  19.  前記計測装置は、前記複数のマスクに設けられた各計測マークと前記第2ステージに設けられた基準マークとの間の位置ずれ量を計測し、該位置ずれ量に基づいて前記複数のマスク間の相対的な配置誤差を計測することを特徴とする請求項17または18に記載の露光装置。 The measuring device measures a positional deviation amount between each measurement mark provided on the plurality of masks and a reference mark provided on the second stage, and based on the positional deviation amount, the plurality of masks are measured. 19. The exposure apparatus according to claim 17, wherein a relative arrangement error is measured.
  20.  前記計測装置は、前記複数のマスクに設けられた各計測マークの座標を計測し、該座標に基づいて前記複数のマスク間の相対的な配置誤差を計測することを特徴とする請求項17または18に記載の露光装置。 18. The measurement device according to claim 17, wherein the measurement device measures coordinates of each measurement mark provided on the plurality of masks, and measures a relative arrangement error between the plurality of masks based on the coordinates. 18. An exposure apparatus according to 18.
  21.  前記計測装置は、前記制御対象マスクに設けられた各マスク上マークと前記物体に設けられた物体上マークとの間の位置ずれ量を計測し、該位置ずれ量に基づいて前記制御対象マスクと前記物体との間の相対的な配置誤差を計測することを特徴とする請求項17~20のいずれか一項に記載の露光装置。 The measuring device measures a positional deviation amount between each on-mask mark provided on the control target mask and the on-object mark provided on the object, and based on the positional deviation amount, the control target mask The exposure apparatus according to any one of claims 17 to 20, wherein a relative arrangement error between the object and the object is measured.
  22.  前記相対的な配置誤差は、相対的な位置誤差及び回転誤差の少なくとも一方を含むことを特徴とする請求項17~21のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 17 to 21, wherein the relative arrangement error includes at least one of a relative position error and a rotation error.
  23.  前記第1ステージは、保持部材を介して前記複数のマスクを支持し、
     前記駆動装置は、前記制御対象マスクを前記保持部材に対して動かすことを特徴とする請求項17~22のいずれか一項に記載の露光装置。
    The first stage supports the plurality of masks via a holding member,
    The exposure apparatus according to any one of claims 17 to 22, wherein the driving device moves the control target mask with respect to the holding member.
  24.  前記駆動装置は、前記制御対象マスクに外設された部材を介して該制御対象マスクを動かすことを特徴とする請求項17~23のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 17 to 23, wherein the driving device moves the control target mask via a member provided outside the control target mask.
  25.  前記駆動装置は、前記制御対象マスクの位置及び回転角の少なくとも一方を変化させることを特徴とする請求項17~24のいずれか一項に記載の露光装置。 25. The exposure apparatus according to claim 17, wherein the driving device changes at least one of a position and a rotation angle of the control target mask.
  26.  前記駆動装置は、電力が供給されない状態で作動位置をほぼ一定に維持することを特徴とする請求項17~25のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 17 to 25, wherein the driving device maintains an operation position substantially constant in a state where power is not supplied.
  27.  前記複数のマスクが載置された搬送部材を前記第1ステージ上に搬送し、前記搬送部材上の前記複数のマスクを前記第1ステージのマスク支持部に受け渡し、該複数のマスクを受け渡した前記搬送部材を前記第1ステージの退避部に退避させる搬送装置を備えることを特徴とする請求項16~26のいずれか一項に記載の露光装置。 The transfer member on which the plurality of masks are placed is transferred onto the first stage, the plurality of masks on the transfer member are transferred to the mask support portion of the first stage, and the plurality of masks are transferred The exposure apparatus according to any one of claims 16 to 26, further comprising a transport device that retracts the transport member to a retracting portion of the first stage.
  28.  前記複数のマスクが載置された前記搬送部材を保管する保管部を備え、
     前記搬送装置は、前記保管部に保管された前記搬送部材を前記第1ステージ上に搬送することを特徴とする請求項27に記載の露光装置。
    A storage unit for storing the transport member on which the plurality of masks are placed;
    28. The exposure apparatus according to claim 27, wherein the transport device transports the transport member stored in the storage unit onto the first stage.
  29.  前記複数のマスクが載置された前記保持部材を前記第1ステージ上に搬送する搬送装置を備えることを特徴とする請求項23に記載の露光装置。 24. The exposure apparatus according to claim 23, further comprising a transport device that transports the holding member on which the plurality of masks are placed onto the first stage.
  30.  前記複数のマスクに対応して配置され、該複数のマスクの前記パターンの像を前記物体上に投影する複数の投影光学系を備え、
     前記照明系は、前記複数の投影光学系を介して前記物体に前記露光光を照射することを特徴とする請求項16~29のいずれか一項に記載の露光装置。
    A plurality of projection optical systems arranged corresponding to the plurality of masks and projecting images of the patterns of the plurality of masks onto the object;
    The exposure apparatus according to any one of claims 16 to 29, wherein the illumination system irradiates the object with the exposure light via the plurality of projection optical systems.
  31.  前記投影光学系は、前記パターンの像を拡大して投影することを特徴とする請求項30に記載の露光装置。 The exposure apparatus according to claim 30, wherein the projection optical system projects the pattern image in an enlarged manner.
  32.  前記第1ステージと前記第2ステージとを同期して移動させるステージ制御部を備え、
     前記照明系は、前記ステージ制御部が移動させる前記第1ステージ上の前記複数のマスクの前記パターンを介し、該第1ステージに同期して移動される前記第2ステージ上の前記物体に露光光を照射することを特徴とする請求項16~31のいずれか一項に記載の露光装置。
    A stage control unit that moves the first stage and the second stage synchronously;
    The illumination system exposes the object on the second stage moved in synchronization with the first stage via the patterns of the plurality of masks on the first stage moved by the stage controller. The exposure apparatus according to any one of claims 16 to 31, wherein
  33.  請求項16~32のいずれか一項に記載の露光装置を用いて、前記複数のマスクの前記パターンを前記第2ステージに載置された感光基板に転写する転写工程と、
     前記パターンが転写された前記感光基板を現像し、前記パターンに対応する形状の転写パターン層を前記感光基板上に形成する現像工程と、
     前記転写パターン層を介して前記感光基板を加工する加工工程と、
     を含むことを特徴とするデバイス製造方法。
    A transfer step of transferring the pattern of the plurality of masks to a photosensitive substrate placed on the second stage using the exposure apparatus according to any one of claims 16 to 32;
    Developing the photosensitive substrate to which the pattern has been transferred, and forming a transfer pattern layer having a shape corresponding to the pattern on the photosensitive substrate;
    A processing step of processing the photosensitive substrate through the transfer pattern layer;
    A device manufacturing method comprising:
PCT/JP2009/057488 2008-04-16 2009-04-14 Exposure method and device, and method for manufacturing device WO2009128439A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010508211A JPWO2009128439A1 (en) 2008-04-16 2009-04-14 Exposure method and apparatus, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-107337 2008-04-16
JP2008107337 2008-04-16

Publications (1)

Publication Number Publication Date
WO2009128439A1 true WO2009128439A1 (en) 2009-10-22

Family

ID=41199130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057488 WO2009128439A1 (en) 2008-04-16 2009-04-14 Exposure method and device, and method for manufacturing device

Country Status (3)

Country Link
JP (1) JPWO2009128439A1 (en)
KR (1) KR20110004365A (en)
WO (1) WO2009128439A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201457A (en) * 2005-12-28 2007-08-09 Nikon Corp Exposure apparatus, exposure method, and device production method
JP2007249169A (en) * 2006-02-16 2007-09-27 Nikon Corp Exposure method, exposure apparatus, photomask and method of manufacturing photomask
JP2007251152A (en) * 2006-02-16 2007-09-27 Nikon Corp Exposure apparatus, exposure method and method of manufacturing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201457A (en) * 2005-12-28 2007-08-09 Nikon Corp Exposure apparatus, exposure method, and device production method
JP2007249169A (en) * 2006-02-16 2007-09-27 Nikon Corp Exposure method, exposure apparatus, photomask and method of manufacturing photomask
JP2007251152A (en) * 2006-02-16 2007-09-27 Nikon Corp Exposure apparatus, exposure method and method of manufacturing device

Also Published As

Publication number Publication date
JPWO2009128439A1 (en) 2011-08-04
KR20110004365A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP5177674B2 (en) Measuring apparatus and method, pattern forming apparatus and method, and device manufacturing method
JP5195417B2 (en) Pattern forming apparatus, exposure apparatus, exposure method, and device manufacturing method
US11126094B2 (en) Exposure apparatus, manufacturing method of flat-panel display, device manufacturing method, and exposure method
JP5412814B2 (en) Exposure method and apparatus, and device manufacturing method
KR102193252B1 (en) Exposure apparatus, exchange method of object, exposure method, and device manufacturing method
US11009799B2 (en) Exposure apparatus, manufacturing method of flat-panel display, device manufacturing method, and exposure method
US11392042B2 (en) Exposure apparatus and exposure method, and flat panel display manufacturing method
US10935894B2 (en) Movable body apparatus, exposure apparatus, manufacturing method of flat-panel display and device manufacturing method, and movement method of object
JP5455166B2 (en) Exposure method, exposure apparatus, and device manufacturing method
TW202127152A (en) Exposure apparatus and manufacturing method of flat panel display
JP5151852B2 (en) Correction information creation method, exposure method, exposure apparatus, and device manufacturing method
WO2017057465A1 (en) Mobile device, exposure device, method for manufacturing flat panel display, method for manufacturing device, and measuring method
JP6855008B2 (en) Exposure equipment, flat panel display manufacturing method, device manufacturing method, and exposure method
WO2009128439A1 (en) Exposure method and device, and method for manufacturing device
JP5245506B2 (en) Stage apparatus, exposure method and apparatus, and device manufacturing method
JP6008165B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP2012089769A (en) Exposure equipment and method for manufacturing device
JP2012004259A (en) Method, apparatus and system for exposure, and device manufacturing method
JP2011022532A (en) Alignment apparatus, exposure apparatus, and method for manufacturing device
JP2005026615A (en) Stage unit and exposure apparatus, and measuring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09732588

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010508211

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107020626

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09732588

Country of ref document: EP

Kind code of ref document: A1