WO2009126359A1 - Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding lnt3 or lnt3-like polypeptides - Google Patents
Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding lnt3 or lnt3-like polypeptides Download PDFInfo
- Publication number
- WO2009126359A1 WO2009126359A1 PCT/US2009/032512 US2009032512W WO2009126359A1 WO 2009126359 A1 WO2009126359 A1 WO 2009126359A1 US 2009032512 W US2009032512 W US 2009032512W WO 2009126359 A1 WO2009126359 A1 WO 2009126359A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plant
- dna construct
- compared
- recombinant dna
- transgenic
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Definitions
- the field of invention relates to plant breeding and genetics and, in particular, relates to recombinant DNA constructs useful in plants for conferring nitrogen use efficiency and/or tolerance to nitrogen limiting conditions.
- Activation tagging can be utilized to identify genes with the ability to affect a trait. This approach has been used in the model plant species Arabidopsis thaliana (Weigel et al., Plant Physiol. 122:1003-1013 (2000)). Insertions of transcriptional enhancer elements can dominantly activate and/or elevate the expression of nearby endogenous genes. This method can be used to identify genes of interest for a particular trait (e.g. nitrogen use efficiency in a plant), genes that when placed in an organism as a transgene can alter that trait.
- a particular trait e.g. nitrogen use efficiency in a plant
- a plant comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24, and wherein said plant exhibits increased nitrogen stress tolerance when compared to a control plant not comprising said recombinant DNA construct.
- a plant comprising in its genome a recombinant DNA construct comprising:
- polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; or
- a suppression DNA construct comprising at least one regulatory element operably linked to: (i) all or part of: (A) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24, or (B) a full complement of the nucleic acid sequence of (b)(i)(A); or (ii) a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT3 or LNT3-like polypeptide, and wherein said plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising
- a method of increasing nitrogen stress tolerance in a plant comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct and exhibits increased nitrogen stress tolerance when compared to a control plant not comprising the recombinant DNA construct; and optionally, (c) obtaining a progeny plant derived from the transgenic plant, wherein said progeny plant comprises in its genome the recombinant DNA construct and exhibits increased nitrogen stress tolerance when compared to a control plant not comprising the recombinant DNA construct.
- a method of evaluating nitrogen stress tolerance in a plant comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; and (c) evaluating the transgenic plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct; and optionally, (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and optionally, (e) evaluating the progeny plant for nitrogen stress tolerance compared
- a method of evaluating nitrogen stress tolerance in a plant comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; (c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (d) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct.
- a method of determining an alteration of an agronomic characteristic in a plant comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; and (c) determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the recombinant DNA construct; and optionally, (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct
- a method of determining an alteration of an agronomic characteristic in a plant comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; (c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (d) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared optionally under nitrogen limiting conditions, to a control plant not comprising the re
- a method of determining an alteration of an agronomic characteristic in a plant comprising:
- a region derived from all or part of a sense strand or antisense strand of a target gene of interest said region having a nucleic acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT3 or LNT3-like polypeptide;
- step (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct;
- a method of determining an alteration of an agronomic characteristic in a plant comprising: (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory element operably linked to:
- a region derived from all or part of a sense strand or antisense strand of a target gene of interest said region having a nucleic acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT3 or LNT3-like polypeptide;
- step (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct and exhibits an alteration of at least one agronomic trait when compared to a control plant not comprising the suppression DNA construct;
- FIG. 1 shows a schematic of the pHSbarENDs2 activation tagging construct used to make the Arabidopsis populations (SEQ ID NO:1 ).
- FIG. 2 shows a schematic of the vector pDONRTMZeo (SEQ ID NO:2), GATEWAY® donor vector.
- the attP1 site is at nucleotides 570-801 ; the attP2 site is at nucleotides 2754-2985 (complementary strand).
- FIG. 3 shows a schematic of the vector pDONRTM221 (SEQ ID NO:3), GATEWAY® donor vector.
- the attP1 site is at nucleotides 570-801 ; the attP2 site is at nucleotides 2754-2985 (complementary strand).
- FIG. 4 shows a schematic of the vector pBC-yellow (SEQ ID NO:4), a destination vector for use in construction of expression vectors for Arabidopsis.
- the attR1 site is at nucleotides 11276-11399 (complementary strand); the attR2 site is at nucleotides 9695-9819 (complementary strand).
- FIG. 5 shows a schematic of the vector PHP27840 (SEQ ID NO:5), a destination vector for use in construction of expression vectors for soybean.
- the attR1 site is at nucleotides 7310-7434; the attR2 site is at nucleotides 8890-9014.
- FIG. 6 shows a schematic of the vector PHP23236 (SEQ ID NO:6), a destination vector for use in construction of expression vectors for Gaspe Flint derived maize lines.
- the attR1 site is at nucleotides 2006-2130; the attR2 site is at nucleotides 2899-3023.
- FIG. 7 shows a schematic of the vector PHP10523 (SEQ ID NO:7), a plasmid DNA present in Agrobacterium strain LBA4404 ( Komari et al., Plant J. 10:165-174 (1996); NCBI General Identifier No. 59797027).
- FIG. 8 shows a schematic of the vector PHP23235 (SEQ ID NO:8), a vector used to construct the destination vector PHP23236.
- FIG. 9 shows a schematic of the vector PHP20234 (SEQ ID NO:9).
- FIG. 10 shows a schematic of the destination vector PHP22655 (SEQ ID NO:10).
- FIG. 11 shows a typical grid pattern for five lines (labeled 1 through 5 - eleven individuals for each line), plus wild-type control C1 (nine individuals), used in screens.
- FIG. 12 shows a graph showing the effect of several different potassium nitrate concentrations on plant color as determined by image analysis.
- the response of the green color bin (hues 50 to 66) to nitrate dosage demonstrates that this bin can be used as an indicator of nitrogen assimilation.
- FIG. 13 shows the growth medium used for semi-hydroponics maize growth in Example 14A.
- FIG. 14 shows a chart setting forth data relating to the effect of different nitrate concentrations on the growth and development of Gaspe Flint derived maize lines in Example 14A.
- FIG. 15 shows an evaluation of individual Gaspe Flint derived maize lines transformed with PHP29717.
- FIG. 16 shows a summary evaluation of Gaspe Flint derived maize lines transformed with PHP29717.
- sequence descriptions and Sequence Listing attached hereto comply with the rules governing nucleotide and/or amino acid sequence disclosures in patent applications as set forth in 37 C. F. R. ⁇ 1.821 -1.825.
- the Sequence Listing contains the one letter code for nucleotide sequence characters and the three letter codes for amino acids as defined in conformity with the lUPAC-IUBMB standards described in Nucleic Acids Res. 13:3021-3030 (1985) and in the Biochemical J. 219 (2):345-373 (1984) which are herein incorporated by reference.
- the symbols and format used for nucleotide and amino acid sequence data comply with the rules set forth in 37 C. F. R. ⁇ 1.822.
- SEQ ID NO:1 is the nucleotide sequence of the pHSbarEND2s activation tagging vector.
- SEQ ID NO:2 is the nucleotide sequence of the pDONRTMZeo construct (FIG.
- SEQ ID NO:3 is the nucleotide sequence of the pDONRTM221 construct (FIG. 3).
- SEQ ID NO:4 is the nucleotide sequence of the pBC-yellow vector (FIG. 4).
- SEQ ID NO:5 is the nucleotide sequence of the PHP27840 vector (FIG. 5).
- SEQ ID NO:6 is the nucleotide sequence of the destination vector PHP23236 (FIG. 6).
- SEQ ID NO:7 is the nucleotide sequence of the PHP10523 vector (FIG. 7).
- SEQ ID NO:8 is the nucleotide sequence of the PHP23235 vector (FIG. 8).
- SEQ ID NO:9 is the nucleotide sequence of the PHP20234 vector (FIG. 9).
- SEQ ID NO:10 is the nucleotide sequence of the destination vector PHP22655 (FIG. 10).
- SEQ ID NO:11 is the nucleotide sequence of the poly-linker used to substitute the Pad restriction site at position 5775 of pHSbarENDs.
- SEQ ID NO:12 is the nucleotide sequence of the attB1 sequence.
- SEQ ID NO:13 is the nucleotide sequence of the attB2 sequence.
- SEQ ID NO:14 is the nucleotide sequence of the entry clone PHP23112.
- SEQ ID NO:15 is the forward primer VC062 in Example 5B.
- SEQ ID NO:16 is the reverse primer VC063 in Example 5B.
- SEQ ID NO:17 corresponds to NCBI General Identifier No. 145339089, which is the nucleotide sequence from locus At3g43430 that encodes an Arabidopsis thaliana "C3HC4-type zinc RING finger protein" (referred to herein as LNT3).
- SEQ ID NO:18 corresponds to the amino acid sequence of At3g43430 encoded by SEQ ID NO:17.
- SEQ ID NO:19 is the nucleotide sequence of the At3g43430-5' attB forward primer.
- SEQ ID NO:20 is the nucleotide sequence of the At3g43430-3' attB reverse primer.
- SEQ ID NO:21 corresponds to NCBI General Identifier No. 145358282, which is the nucleotide sequence from locus At5g20885 that encodes an Arabidopsis thaliana "C3HC4-type zinc RING finger protein”.
- SEQ ID NO:22 corresponds to the amino acid sequence of At5g20885 encoded by SEQ ID NO:21.
- SEQ ID NO:23 corresponds to NCBI General Identifier No. 195604259, which is identified in the record as a gene that encodes a Zea mays RING zinc finger-like protein.
- SEQ ID NO:24 corresponds to NCBI General Identifier No. 195604260 and is the amino acid sequence of the protein encoded by SEQ ID NO:23.
- Nitrogen limiting conditions refers to conditions where the amount of total available nitrogen (e.g., from nitrates, ammonia, or other known sources of nitrogen) is not sufficient to sustain optimal plant growth and development. One skilled in the art would recognize conditions where total available nitrogen is sufficient to sustain optimal plant growth and development. One skilled in the art would recognize what constitutes sufficient amounts of total available nitrogen, and what constitutes soils, media and fertilizer inputs for providing nitrogen to plants. Nitrogen limiting conditions will vary depending upon a number of factors, including but not limited to, the particular plant and environmental conditions.
- EST is a DNA sequence derived from a cDNA library and therefore is a sequence which has been transcribed.
- An EST is typically obtained by a single sequencing pass of a cDNA insert.
- the sequence of an entire cDNA insert is termed the "Full-Insert Sequence” (“FIS").
- FIS Frull-Insert Sequence
- a "Contig” sequence is a sequence assembled from two or more sequences that can be selected from, but not limited to, the group consisting of an EST, FIS and PCR sequence.
- a sequence encoding an entire or functional protein is termed a
- CCS Complete Gene Sequence
- Agronomic characteristic is a measurable parameter including but not limited to, greenness, yield, growth rate, biomass, fresh weight at maturation, dry weight at maturation, fruit yield, seed yield, total plant nitrogen content, fruit nitrogen content, seed nitrogen content, whole plant amino acid content, vegetative tissue free amino acid content, fruit free amino acid content, seed free amino acid content, fruit protein content, seed protein content, protein content in a vegetative tissue, drought tolerance, nitrogen uptake, resistance to root lodging, harvest index, stalk lodging, plant height and ear length.
- “Harvest index” refers to the grain weight divided by the total plant weight.
- Int3 refers to the Arabidopsis thaliana locus, At3g43430 (SEQ ID NO: 17).
- LNT3 refers to the protein (SEQ ID NO:18) encoded by At3g43430.
- Int3-like refers to nucleotide homologs from different species, such as corn and soybean, of the Arabidopsis thaliana "Int3" locus, At3g43430 (SEQ ID NO: 17). Int3-like sequences include SEQ ID NO:21 and SEQ ID NO:23.
- LNT3-like refers to protein homologs from different species, such as corn and soybean, of the Arabidopsis thaliana “LNT3” (SEQ ID NO: 18). LNT3-like sequences include SEQ ID NO:22 and SEQ ID NO:24.
- Neitrogen stress tolerance is a trait of a plant and refers to the ability of the plant to survive under nitrogen limiting conditions.
- “Increased nitrogen stress tolerance” of a plant is measured relative to a reference or control plant, and means that the nitrogen stress tolerance of the plant is increased by any amount or measure when compared to the nitrogen stress tolerance of the reference or control plant.
- a “nitrogen stress tolerant plant” is a plant that exhibits nitrogen stress tolerance.
- a nitrogen stress tolerant plant is preferably a plant that exhibits an increase in at least one agronomic characteristic relative to a control plant under nitrogen limiting conditions.
- Environmental conditions refer to conditions under which the plant is grown, such as the availability of water, availability of nutrients (for example nitrogen), or the presence of insects or disease.
- Transgenic refers to any cell, cell line, callus, tissue, plant part or plant, the genome of which has been altered by the presence of a heterologous nucleic acid, such as a recombinant DNA construct, including those initial transgenic events as well as those created by sexual crosses or asexual propagation from the initial transgenic event.
- transgenic does not encompass the alteration of the genome (chromosomal or extra-chromosomal) by conventional plant breeding methods or by naturally occurring events such as random cross- fertilization, non-recombinant viral infection, non-recombinant bacterial transformation, non-recombinant transposition, or spontaneous mutation.
- Gene as it applies to plant cells encompasses not only chromosomal DNA found within the nucleus, but organelle DNA found within subcellular components (e.g., mitochondrial, plastid) of the cell.
- Plant includes reference to whole plants, plant organs, plant tissues, seeds and plant cells and progeny of same.
- Plant cells include, without limitation, cells from seeds, suspension cultures, embryos, mehstematic regions, callus tissue, leaves, roots, shoots, gametophytes, sporophytes, pollen, and microspores.
- Progeny comprises any subsequent generation of a plant.
- Transgenic plant includes reference to a plant which comprises within its genome a heterologous polynucleotide.
- the heterologous polynucleotide is stably integrated within the genome such that the polynucleotide is passed on to successive generations.
- the heterologous polynucleotide may be integrated into the genome alone or as part of a recombinant DNA construct.
- Heterologous with respect to sequence means a sequence that originates from a foreign species, or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention.
- nucleic acid sequence is a polymer of RNA or DNA that is single- or double-stranded, optionally containing synthetic, non-natural or altered nucleotide bases.
- Nucleotides are referred to by their single letter designation as follows: “A” for adenylate or deoxyadenylate (for RNA or DNA, respectively), “C” for cytidylate or deoxycytidylate, “G” for guanylate or deoxyguanylate, “U” for uhdylate, “T” for deoxythymidylate, “R” for purines (A or G), “Y” for pyrimidines (C or T), "K” for G or T, “H” for A or C or T, “I” for inosine, and “N” for any nucleotide.
- Polypeptide”, “peptide”, “amino acid sequence” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers.
- the terms “polypeptide”, “peptide”, “amino acid sequence”, and “protein” are also inclusive of modifications including, but not limited to, glycosylation, lipid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation.
- “Messenger RNA (mRNA)” refers to the RNA that is without introns and that can be translated into protein by the cell.
- cDNA refers to a DNA that is complementary to and synthesized from an mRNA template using the enzyme reverse transcriptase.
- the cDNA can be single- stranded or converted into the double-stranded form using the Klenow fragment of DNA polymerase I.
- “Mature” protein refers to a post-translationally processed polypeptide; i.e., one from which any pre- or pro-peptides present in the primary translation product have been removed.
- Precursor protein refers to the primary product of translation of mRNA; i.e., with pre- and pro-peptides still present. Pre- and pro-peptides may be and are not limited to intracellular localization signals.
- Isolated refers to materials, such as nucleic acid molecules and/or proteins, which are substantially free or otherwise removed from components that normally accompany or interact with the materials in a naturally occurring environment. Isolated polynucleotides may be purified from a host cell in which they naturally occur. Conventional nucleic acid purification methods known to skilled artisans may be used to obtain isolated polynucleotides. The term also embraces recombinant polynucleotides and chemically synthesized polynucleotides.
- Recombinant refers to an artificial combination of two otherwise separated segments of sequence, e.g., by chemical synthesis or by the manipulation of isolated segments of nucleic acids by genetic engineering techniques. "Recombinant” also includes reference to a cell or vector, that has been modified by the introduction of a heterologous nucleic acid or a cell derived from a cell so modified, but does not encompass the alteration of the cell or vector by naturally occurring events (e.g., spontaneous mutation, natural transformation/transduction/transposition) such as those occurring without deliberate human intervention.
- “Recombinant DNA construct” refers to a combination of nucleic acid fragments that are not normally found together in nature. Accordingly, a recombinant DNA construct may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that normally found in nature.
- regulatory sequences or “regulatory elements” are used interchangeably and refer to nucleotide sequences located upstream (5' non-coding sequences), within, or downstream (3' non-coding sequences) of a coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences may include, but are not limited to, promoters, translation leader sequences, introns, and polyadenylation recognition sequences.
- Promoter refers to a nucleic acid fragment capable of controlling transcription of another nucleic acid fragment.
- Promoter functional in a plant is a promoter capable of controlling transcription in plant cells whether or not its origin is from a plant cell.
- tissue-specific promoter and tissue-preferred promoter are used interchangeably, and refer to a promoter that is expressed predominantly but not necessarily exclusively in one tissue or organ, but that may also be expressed in one specific cell.
- “Developmentally regulated promoter” refers to a promoter whose activity is determined by developmental events.
- operably linked refers to the association of nucleic acid fragments in a single fragment so that the function of one is regulated by the other.
- a promoter is operably linked with a nucleic acid fragment when it is capable of regulating the transcription of that nucleic acid fragment.
- “Expression” refers to the production of a functional product.
- expression of a nucleic acid fragment may refer to transcription of the nucleic acid fragment (e.g., transcription resulting in mRNA or functional RNA) and/or translation of mRNA into a precursor or mature protein.
- “Phenotype” means the detectable characteristics of a cell or organism.
- “Introduced” in the context of inserting a nucleic acid fragment (e.g., a recombinant DNA construct) into a cell means “transfection” or “transformation” or “transduction” and includes reference to the incorporation of a nucleic acid fragment into a eukaryotic or prokaryotic cell where the nucleic acid fragment may be incorporated into the genome of the cell (e.g., chromosome, plasmid, plastid or mitochondrial DNA), converted into an autonomous replicon, or transiently expressed (e.g., transfected mRNA).
- a “transformed cell” is any cell into which a nucleic acid fragment (e.g., a recombinant DNA construct) has been introduced.
- Transformation refers to both stable transformation and transient transformation.
- “Stable transformation” refers to the introduction of a nucleic acid fragment into a genome of a host organism resulting in genetically stable inheritance. Once stably transformed, the nucleic acid fragment is stably integrated in the genome of the host organism and any subsequent generation.
- Transient transformation refers to the introduction of a nucleic acid fragment into the nucleus, or DNA-containing organelle, of a host organism resulting in gene expression without genetically stable inheritance.
- Allele is one of several alternative forms of a gene occupying a given locus on a chromosome. When the alleles present at a given locus on a pair of homologous chromosomes in a diploid plant are the same that plant is homozygous at that locus. If the alleles present at a given locus on a pair of homologous chromosomes in a diploid plant differ that plant is heterozygous at that locus. If a transgene is present on one of a pair of homologous chromosomes in a diploid plant that plant is hemizygous at that locus.
- Embodiments include isolated polynucleotides and polypeptides, recombinant DNA constructs, compositions (such as plants or seeds) comprising these recombinant DNA constructs, and methods utilizing these recombinant DNA constructs.
- isolated polynucleotides and polypeptides include isolated polynucleotides and polypeptides, recombinant DNA constructs, compositions (such as plants or seeds) comprising these recombinant DNA constructs, and methods utilizing these recombinant DNA constructs.
- the present invention includes the following isolated polynucleotides and polypeptides:
- An isolated polynucleotide comprising: (i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; or (ii) a full complement of the nucleic acid sequence of (i), wherein the full complement and the nucleic acid
- the polypeptide is preferably an LNT3 or LNT3-like protein.
- the polypeptide is preferably an LNT3 or LNT3-like protein.
- An isolated polynucleotide comprising (i) a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:17, 21 , or 23; or (ii) a full complement of the nucleic acid sequence of (i).
- isolated polynucleotides may be utilized in any recombinant DNA constructs (including suppression DNA constructs) of the present invention.
- the isolated polynucleotide preferably encodes an LNT3 or LNT3-like protein.
- the present invention includes recombinant DNA constructs
- a recombinant DNA construct comprises a polynucleotide operably linked to at least one regulatory sequence (e.g., a promoter functional in a plant), wherein the polynucleotide comprises (i) a nucleic acid sequence encoding an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ
- a recombinant DNA construct comprises a polynucleotide operably linked to at least one regulatory sequence (e.g., a promoter functional in a plant), wherein said polynucleotide comprises (i) a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO: 17, 21 ,
- a recombinant DNA construct comprises a polynucleotide operably linked to at least one regulatory sequence (e.g., a promoter functional in a plant), wherein said polynucleotide encodes an LNT3 or LNT3-like protein.
- at least one regulatory sequence e.g., a promoter functional in a plant
- a suppression DNA construct may comprise at least one regulatory sequence (e.g., a promoter functional in a plant) operably linked to (a) all or part of: (i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID
- the suppression DNA construct may comprise a cosuppression construct, antisense construct, viral-suppression construct, hairpin suppression construct, stem-loop suppression construct, double-stranded RNA-producing construct, RNAi construct, or small RNA construct (e.g., an siRNA construct or an miRNA construct). It is understood, as those skilled in the art will appreciate, that the invention encompasses more than the specific exemplary sequences. Alterations in a nucleic acid fragment which result in the production of a chemically equivalent amino acid at a given site, but do not affect the functional properties of the encoded polypeptide, are well known in the art.
- a codon for the amino acid alanine, a hydrophobic amino acid may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine.
- a codon encoding another less hydrophobic residue such as glycine
- a more hydrophobic residue such as valine, leucine, or isoleucine.
- changes which result in substitution of one negatively charged residue for another such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, can also be expected to produce a functionally equivalent product.
- Nucleotide changes which result in alteration of the N-terminal and C-terminal portions of the polypeptide molecule would also not be expected to alter the activity of the polypeptide.
- “Suppression DNA construct” is a recombinant DNA construct which when transformed or stably integrated into the genome of the plant, results in “silencing” of a target gene in the plant.
- the target gene may be endogenous or transgenic to the plant.
- “Silencing,” as used herein with respect to the target gene refers generally to the suppression of levels of mRNA or protein/enzyme expressed by the target gene, and/or the level of the enzyme activity or protein functionality.
- RNAi-based approaches RNAi-based approaches
- small RNA-based approaches RNAi-based approaches
- a suppression DNA construct may comprise a region derived from a target gene of interest and may comprise all or part of the nucleic acid sequence of the sense strand (or antisense strand) of the target gene of interest.
- the region may be 100% identical or less than 100% identical (e.g., at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical) to all or part of the sense strand (or antisense strand) of the gene of the gene of the gene of
- Suppression DNA constructs are well-known in the art, are readily constructed once the target gene of interest is selected, and include, without limitation, cosuppression constructs, antisense constructs, viral-suppression constructs, hairpin suppression constructs, stem-loop suppression constructs, double-stranded RNA-producing constructs, and more generally, RNAi (RNA interference) constructs and small RNA constructs such as siRNA (short interfering RNA) constructs and miRNA (microRNA) constructs.
- RNAi RNA interference constructs and small RNA constructs such as siRNA (short interfering RNA) constructs and miRNA (microRNA) constructs.
- Antisense inhibition refers to the production of antisense RNA transcripts capable of suppressing the expression of the target gene or gene product.
- Antisense RNA refers to an RNA transcript that is complementary to all or part of a target primary transcript or mRNA and that blocks the expression of a target isolated nucleic acid fragment (U.S. Patent No. 5,107,065).
- the complementarity of an antisense RNA may be with any part of the specific gene transcript, i.e., at the
- Codon refers to the production of sense RNA transcripts capable of suppressing the expression of the target gene or gene product.
- Sense RNA refers to RNA transcript that includes the mRNA and can be translated into protein within a cell or in vitro. Cosuppression constructs in plants have been previously designed by focusing on overexpression of a nucleic acid sequence having homology to a native mRNA, in the sense orientation, which results in the reduction of all RNA having homology to the overexpressed sequence (see Vaucheret et al., Plant J. 16:651 -659 (1998); and Gura, Nature 404:804-808 (2000)). Another variation describes the use of plant viral sequences to direct the suppression of proximal mRNA encoding sequences (PCT Publication No. WO 98/36083 published on August 20, 1998).
- Yet another variation includes using synthetic repeats to promote formation of a stem in the stem-loop structure.
- Transgenic organisms prepared with such recombinant DNA fragments have been shown to have reduced levels of the protein encoded by the nucleotide fragment forming the loop as described in PCT Publication No. WO 02/00904, published January 3, 2002.
- RNA interference refers to the process of sequence-specific post- transchptional gene silencing in animals mediated by short interfering RNAs (siRNAs) (Fire et al., Nature 391 :806 (1998)). The corresponding process in plants is commonly referred to as post-transcriptional gene silencing (PTGS) or RNA silencing and is also referred to as quelling in fungi.
- PTGS post-transcriptional gene silencing
- the process of post- transcriptional gene silencing is thought to be an evolutionarily-conserved cellular defense mechanism used to prevent the expression of foreign genes and is commonly shared by diverse flora and phyla (Fire et al., Trends Genet. 15:358 (1999)).
- Such protection from foreign gene expression may have evolved in response to the production of double-stranded RNAs (dsRNAs) derived from viral infection or from the random integration of transposon elements into a host genome via a cellular response that specifically destroys homologous single-stranded RNA of viral genomic RNA.
- dsRNAs double-stranded RNAs
- the presence of dsRNA in cells triggers the RNAi response through a mechanism that has yet to be fully characterized.
- dsRNAs short interfering RNAs
- dicer a hbonuclease III enzyme referred to as dicer.
- Dicer is involved in the processing of the dsRNA into short pieces of dsRNA known as short interfering RNAs (siRNAs) (Berstein et al., Nature 409:363 (2001 )).
- Short interfering RNAs derived from dicer activity are typically about 21 to about 23 nucleotides in length and comprise about 19 base pair duplexes (Elbashir et al., Genes Dev. 15:188 (2001 )).
- Dicer has also been implicated in the excision of 21 - and 22-nucleotide small temporal RNAs (stRNAs) from precursor RNA of conserved structure that are implicated in translational control (Hutvagner et al., Science 293:834 (2001 )).
- the RNAi response also features an endonuclease complex, commonly referred to as an RNA-induced silencing complex (RISC), which mediates cleavage of single- stranded RNA having sequence complementarity to the antisense strand of the siRNA duplex. Cleavage of the target RNA takes place in the middle of the region complementary to the antisense strand of the siRNA duplex.
- RISC RNA-induced silencing complex
- RNA interference can also involve small RNA (e.g., miRNA) mediated gene silencing, presumably through cellular mechanisms that regulate chromatin structure and thereby prevent transcription of target gene sequences (see, e.g., Allshire, Science 297:1818-1819 (2002); Volpe et al., Science 297:1833-1837 (2002); Jenuwein, Science 297:2215-2218 (2002); and Hall et al., Science 297:2232-2237 (2002)).
- miRNA molecules of the invention can be used to mediate gene silencing via interaction with RNA transcripts or alternately by interaction with particular gene sequences, wherein such interaction results in gene silencing either at the transcriptional or post-transchptional level.
- RNAi has been studied in a variety of systems. Fire et al. (Nature 391 :806 (1998)) were the first to observe RNAi in Caenorhabditis elegans. Wianny and Goetz ⁇ Nature Cell Biol. 2:70 (1999)) describe RNAi mediated by dsRNA in mouse embryos. Hammond et al. (Nature 404:293 (2000)) describe RNAi in Drosophila cells transfected with dsRNA.
- Small RNAs play an important role in controlling gene expression. Regulation of many developmental processes, including flowering, is controlled by small RNAs. It is now possible to engineer changes in gene expression of plant genes by using transgenic constructs which produce small RNAs in the plant. Small RNAs appear to function by base-pairing to complementary RNA or DNA target sequences. When bound to RNA, small RNAs trigger either RNA cleavage or translational inhibition of the target sequence. When bound to DNA target sequences, it is thought that small RNAs can mediate DNA methylation of the target sequence. The consequence of these events, regardless of the specific mechanism, is that gene expression is inhibited.
- RNA cleavage or translational inhibition helps to determine which mechanism, RNA cleavage or translational inhibition, is employed. It is believed that siRNAs which are perfectly complementary with their targets, work by RNA cleavage. Some miRNAs have perfect or near-perfect complementarity with their targets, and RNA cleavage has been demonstrated for at least a few of these miRNAs. Other miRNAs have several mismatches with their targets, and apparently inhibit their targets at the translational level. Again, without being held to a particular theory on the mechanism of action, a general rule is emerging that perfect or near-perfect complementarity causes RNA cleavage, whereas translational inhibition is favored when the miRNA/target duplex contains many mismatches.
- miR172 microRNA 172 in plants.
- One of the targets of miR172 is APETALA2 (AP2), and although miR172 shares near-perfect complementarity with AP2 it appears to cause translational inhibition of AP2 rather than RNA cleavage.
- AP2 APETALA2
- MicroRNAs are noncoding RNAs of about 19 to about 24 nucleotides (nt) in length that have been identified in both animals and plants (Lagos-Quintana et al., Science 294:853-858 (2001 ), Lagos-Quintana et al., Curr. Biol. 12:735-739 (2002); Lau et al., Science 294:858-862 (2001 ); Lee and Ambros, Science 294:862-864 (2001 ); Llave et al., Plant Cell 14:1605-1619 (2002);
- RNAs appear to regulate target genes by binding to complementary sequences located in the transcripts produced by these genes.
- the target sites are located in the 3' UTRs of the target mRNAs (Lee et al., Ce// 75:843-854 (1993); Wightman et al., Ce// 75:855-862 (1993); Reinhart et al., Nature 403:901 -906 (2000); Slack et al., MoI. Ce// 5:659-669 (2000)), and there are several mismatches between the lin-4 and let-7 miRNAs and their target sites.
- Binding of the lin-4 or let-7 miRNA appears to cause downregulation of steady-state levels of the protein encoded by the target mRNA without affecting the transcript itself (Olsen and Ambros, Dev. Biol. 216:671 -680 (1999)).
- miRNAs can in some cases cause specific RNA cleavage of the target transcript within the target site, and this cleavage step appears to require 100% complementarity between the miRNA and the target transcript (Hutvagner and Zamore, Science 297:2056-2060 (2002); Llave et al., Plant Cell 14:1605-1619 (2002)).
- miRNAs can enter at least two pathways of target gene regulation: (1 ) protein downregulation when target complementarity is ⁇ 100%; and (2) RNA cleavage when target complementarity is 100%.
- MicroRNAs entering the RNA cleavage pathway are analogous to the 21 -25 nt short interfering RNAs (siRNAs) generated during RNA interference (RNAi) in animals and posttranschptional gene silencing (PTGS) in plants, and likely are incorporated into an RNA-induced silencing complex (RISC) that is similar or identical to that seen for RNAi.
- siRNAs short interfering RNAs
- PTGS posttranschptional gene silencing
- RISC RNA-induced silencing complex
- a recombinant DNA construct (including a suppression DNA construct) of the present invention may comprise at least one regulatory sequence.
- a regulatory sequence may be a promoter.
- promoters can be used in recombinant DNA constructs (and suppression DNA constructs) of the present invention.
- the promoters can be selected based on the desired outcome, and may include constitutive, tissue- specific, inducible, or other promoters for expression in the host organism.
- Suitable constitutive promoters for use in a plant host cell include, for example, the core promoter of the Rsyn7 promoter and other constitutive promoters disclosed in WO 99/43838 and U.S. Patent No. 6,072,050; the core CaMV 35S promoter (Odell et al., Nature 313:810-812 (1985)); rice actin (McElroy et al., Plant Ce// 2:163-171 (1990)); ubiquitin (Christensen et al., Plant MoI. Biol. 12:619-632 (1989) and Christensen et al., Plant MoI. Biol.
- tissue-specific or developmentally regulated promoter it may be desirable to use a tissue-specific or developmentally regulated promoter.
- a tissue-specific or developmentally regulated promoter is a DNA sequence which regulates the expression of a DNA sequence selectively in the cells/tissues of a plant critical to tassel development, seed set, or both, and limits the expression of such a DNA sequence to the period of tassel development or seed maturation in the plant. Any identifiable promoter may be used in the methods of the present invention which causes the desired temporal and spatial expression.
- Promoters which are seed or embryo-specific and may be useful in the invention include soybean Kunitz trypsin inhibitor (Kti3, Jofuku and Goldberg, Plant Cell 1 :1079-1093 (1989)), patatin (potato tubers) (Rocha-Sosa, M., et al., EMBO J. 8:23-29 (1989)), convicilin, vicilin, and legumin (pea cotyledons) (Rerie, W.G., et al., MoI. Gen. Genet.
- Such examples include Arabidopsis thaliana 2S seed storage protein gene promoter to express enkephalin peptides in Arabidopsis and Brassica napus seeds (Vanderkerckhove et al., Bio/Technology 7:L929-932 (1989)), bean lectin and bean beta-phaseolin promoters to express luciferase (Riggs et al., Plant Sci. 63:47-57 (1989)), and wheat glutenin promoters to express chloramphenicol acetyl transferase (Colot et al., EMBO J. 6:3559- 3564 (1987)).
- Inducible promoters selectively express an operably linked DNA sequence in response to the presence of an endogenous or exogenous stimulus, for example by chemical compounds (chemical inducers) or in response to environmental, hormonal, chemical, and/or developmental signals.
- Inducible or regulated promoters include, for example, promoters regulated by light, heat, stress, flooding or drought, phytohormones, wounding, or chemicals such as ethanol, jasmonate, salicylic acid, or safeners.
- Promoters for use in the current invention include the following: 1 ) the stress- inducible RD29A promoter (Kasuga et al., Nature Biotechnol. 17:287-91 (1999)); 2) the barley promoter, B22E; expression of B22E is specific to the pedicel in developing maize kernels ("Primary Structure of a Novel Barley Gene Differentially Expressed in Immature Aleurone Layers", Klemsdal et al., MoI. Gen. Genet.
- Zag2 transcripts can be detected five days prior to pollination to seven to eight days after pollination ("DAP"), and directs expression in the carpel of developing female inflorescences and Ciml which is specific to the nucleus of developing maize kernels. Ciml transcript is detected four to five days before pollination to six to eight DAP.
- Other useful promoters include any promoter which can be derived from a gene whose expression is maternally associated with developing female florets.
- Additional promoters for regulating the expression of the nucleotide sequences of the present invention in plants are stalk-specific promoters.
- Such stalk-specific promoters include the alfalfa S2A promoter (GenBank Accession No. EF030816; Abrahams et al., Plant MoI. Biol. 27:513-528 (1995)) and S2B promoter (GenBank Accession No. EF030817) and the like, herein incorporated by reference.
- Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments.
- promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, DNA fragments of some variation may have identical promoter activity. Promoters that cause a gene to be expressed in most cell types at most times are commonly referred to as "constitutive promoters". New promoters of various types useful in plant cells are constantly being discovered; numerous examples may be found in the compilation by Okamuro, J. K., and Goldberg, R. B., Biochem. Plants 15:1 -82 (1989).
- Promoters for use in the current invention may include: RIP2, ml_IP15, ZmCORI , Rab17, CaMV 35S, RD29A, B22E, Zag2, SAM synthetase, ubiquitin, CaMV 19S, nos, Adh, sucrose synthase, R-allele, the vascular tissue preferred promoters S2A (Genbank accession number EF030816) and S2B (GenBank Accession No. EF030817), and the constitutive promoter GOS2 from Zea mays.
- Other promoters include root preferred promoters, such as the maize NAS2 promoter, the maize Cyclo promoter (US Publication No.
- Recombinant DNA constructs (and suppression DNA constructs) of the present invention may also include other regulatory sequences including, but not limited to, translation leader sequences, introns, and polyadenylation recognition sequences.
- a recombinant DNA construct of the present invention further comprises an enhancer or silencer.
- An intron sequence can be added to the 5' untranslated region, the protein- coding region or the 3' untranslated region to increase the amount of the mature message that accumulates in the cytosol.
- Inclusion of a spliceable intron in the transcription unit in both plant and animal expression constructs has been shown to increase gene expression at both the mRNA and protein levels up to 1000-fold (Buchman and Berg, MoI. Cell Biol. 8:4395-4405 (1988); CaIMs et al., Genes Dev. 1 :1183-1200 (1987)).
- Such intron enhancement of gene expression is typically greatest when placed near the 5' end of the transcription unit.
- Use of maize introns Adh1-S intron 1 , 2, and 6, the Bronze-1 intron are known in the art. See generally, The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, New York (1994).
- polypeptide expression it is generally desirable to include a polyadenylation region at the 3'-end of a polynucleotide coding region.
- the polyadenylation region can be derived from the natural gene, from a variety of other plant genes, or from T-DNA.
- the 3'-end sequence to be added can be derived from, for example, the nopaline synthase or octopine synthase genes, or alternatively from another plant gene, or from a non-plant eukaryotic gene.
- a translation leader sequence is a DNA sequence located between the promoter sequence of a gene and the coding sequence.
- the translation leader sequence is present in the fully processed mRNA upstream of the translation start sequence.
- the translation leader sequence may affect processing of the primary transcript to mRNA, mRNA stability or translation efficiency. Examples of translation leader sequences have been described (Turner, R. and Foster, G. D., MoI. Biotech. 3:225 (1995)).
- Any plant can be selected for the identification of regulatory sequences and genes to be used in recombinant DNA constructs of the present invention.
- suitable plant targets for the isolation of genes and regulatory sequences would include but are not limited to alfalfa, apple, apricot, Arabidopsis, artichoke, arugula, asparagus, avocado, banana, barley, beans, beet, blackberry, blueberry, broccoli, brussels sprouts, cabbage, canola, cantaloupe, carrot, cassava, castorbean, cauliflower, celery, cherry, chicory, cilantro, citrus, Clementines, clover, coconut, coffee, corn, cotton, cranberry, cucumber, Douglas fir, eggplant, endive, escarole, eucalyptus, fennel, figs, garlic, gourd, grape, grapefruit, honey dew, jicama, kiwifruit, lettuce, leeks, lemon, lime, Loblolly pine, linseed, maize, mango
- composition of the present invention is a plant comprising in its genome any of the recombinant DNA constructs (including any of the suppression DNA constructs) of the present invention (such as any of the constructs discussed above).
- Compositions also include any progeny of the plant, and any seed obtained from the plant or its progeny, wherein the progeny or seed comprises within its genome the recombinant DNA construct (or suppression DNA construct).
- Progeny includes subsequent generations obtained by self-pollination or out-crossing of a plant.
- Progeny also includes hybrids and inbreds.
- mature transgenic plants can be self- pollinated to produce a homozygous inbred plant.
- the inbred plant produces seed containing the newly introduced recombinant DNA construct (or suppression DNA construct).
- These seeds can be grown to produce plants that would exhibit an altered agronomic characteristic (e.g., an increased agronomic characteristic optionally under nitrogen limiting conditions), or used in a breeding program to produce hybrid seed, which can be grown to produce plants that would exhibit such an altered agronomic characteristic.
- the seeds may be maize seeds.
- the plant may be a monocotyledonous or dicotyledonous plant, for example, a maize or soybean plant, such as a maize hybrid plant or a maize inbred plant.
- the plant may also be sunflower, sorghum, canola, wheat, alfalfa, cotton, rice, barley or millet.
- the recombinant DNA construct may be stably integrated into the genome of the plant.
- embodiments include but are not limited to the following: 1.
- a plant for example, a maize or soybean plant
- a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V
- a plant for example, a maize or soybean plant
- a recombinant DNA construct comprising:
- a polynucleotide operably linked to at least one regulatory element wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; or (b) a suppression DNA construct comprising at least one regulatory element operably linked to:
- a region derived from all or part of a sense strand or antisense strand of a target gene of interest said region having a nucleic acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT3 or LNT3-like polypeptide, and wherein said plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising said recombinant DNA construct.
- a plant for example, a maize or soybean plant comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein said polynucleotide encodes an LNT3 or LNT3-like polypeptide, and wherein said plant exhibits increased nitrogen stress tolerance when compared to a control plant not comprising said recombinant DNA construct.
- the plant may further exhibit an alteration of at least one agronomic characteristic when compared to the control plant.
- the LNT3 or LNT3-like polypeptide may be from Arabidopsis thaliana, Zea mays, Glycine max, Glycine tabacina, Glycine soja or Glycine tomentella.
- a plant for example, a maize or soybean plant
- a plant comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein said polynucleotide encodes an LNT3 or LNT3-like polypeptide, and wherein said plant exhibits an alteration of at least one agronomic characteristic under nitrogen limiting conditions when compared to a control plant not comprising said recombinant DNA construct.
- the LNT3 or LNT3- like polypeptide may be from Arabidopsis thaliana, Zea mays, Glycine max, Glycine tabacina, Glycine soja or Glycine tomentella.
- a plant for example, a maize or soybean plant
- a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18
- a plant for example, a maize or soybean plant
- a suppression DNA construct comprising at least one regulatory element operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or
- a plant for example, a maize or soybean plant comprising in its genome a suppression DNA construct comprising at least one regulatory element operably linked to all or part of: (a) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; or (b)
- the recombinant DNA construct may comprise at least a promoter functional in a plant as a regulatory sequence.
- the alteration of at least one agronomic characteristic is either an increase or decrease.
- the at least one agronomic characteristic can be selected from the group consisting of greenness, yield, growth rate, biomass, fresh weight at maturation, dry weight at maturation, fruit yield, seed yield, total plant nitrogen content, fruit nitrogen content, seed nitrogen content, nitrogen content in a vegetative tissue, total plant free amino acid content, fruit free amino acid content, seed free amino acid content, free amino acid content in a vegetative tissue, total plant protein content, fruit protein content, seed protein content, protein content in a vegetative tissue, drought tolerance, nitrogen uptake, root lodging, harvest index, stalk lodging, plant height and ear length.
- the alteration of at least one agronomic characteristic may be an increase in yield, greenness, or biomass.
- the plant may exhibit the alteration of at least one agronomic characteristic when compared, under nitrogen stress conditions, to a control plant not comprising said recombinant DNA construct (or suppression DNA construct).
- One of ordinary skill in the art is familiar with protocols for simulating nitrogen conditions, whether limiting or non-limiting, and for evaluating plants that have been subjected to simulated or naturally-occurring nitrogen conditions, whether limiting or non-limiting.
- one can simulate nitrogen conditions by giving plants less nitrogen than normally required or no nitrogen over a period of time, and one can evaluate such plants by looking for differences in agronomic characteristics, e.g., changes in physiological and/or physical condition, including (but not limited to) vigor, growth, size, or root length, or in particular, leaf color or leaf area size.
- Other techniques for evaluating such plants include measuring chlorophyll fluorescence, photosynthetic rates, root growth or gas exchange rates.
- control or reference plant to be utilized when assessing or measuring an agronomic characteristic or phenotype of a transgenic plant in any embodiment of the present invention in which a control or preference plant is utilized (e.g., compositions or methods as described herein).
- a control or preference plant e.g., compositions or methods as described herein.
- the introgressed line would typically be measured relative to the parent inbred or variety line (i.e., the parent inbred or variety line is the control or reference plant).
- the second hybrid line would typically be measured relative to the first hybrid line (i.e., the first hybrid line is the control or reference plant).
- a plant comprising a recombinant DNA construct (or suppression DNA construct) the plant may be assessed or measured relative to a control plant not comprising the recombinant DNA construct (or suppression DNA construct) but otherwise having a comparable genetic background to the plant (e.g., sharing at least 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity of nuclear genetic material compared to the plant comprising the recombinant DNA construct (or suppression DNA construct)).
- RFLPs Restriction Fragment Length Polymorphisms
- RAPDs Randomly Amplified Polymorphic DNAs
- AP-PCR Arbitrarily Primed Polymerase Chain Reaction
- DAF DNA Amplification Fingerprinting
- SCARs Sequence Characterized Amplified Regions
- AFLP®s Amplified Fragment Length Polymorphisms
- SSRs Simple Sequence Repeats
- a suitable control or reference plant to be utilized when assessing or measuring an agronomic characteristic or phenotype of a transgenic plant would not include a plant that had been previously selected, via mutagenesis or transformation, for the desired agronomic characteristic or phenotype.
- Methods include but are not limited to methods for increasing nitrogen stress tolerance in a plant, methods for evaluating nitrogen stress tolerance in a plant, methods for altering an agronomic characteristic in a plant, methods for determining an alteration of an agronomic characteristic in a plant, and methods for producing seed.
- the plant may be a monocotyledonous or dicotyledonous plant, for example, a maize or soybean plant.
- the plant may also be sunflower, sorghum, canola, wheat, alfalfa, cotton, rice, barley or millet.
- the seed may be a maize or soybean seed, for example, a maize hybrid seed or maize inbred seed.
- Methods include but are not limited to the following: A method of increasing nitrogen stress tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence (for example, a promoter functional in a plant), wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 9
- the method may further comprise (c) obtaining a progeny plant derived from the transgenic plant, wherein said progeny plant comprises in its genome the suppression DNA construct and exhibits increased nitrogen tolerance when compared to a control plant not comprising the recombinant DNA construct.
- a method of increasing nitrogen stress tolerance in a plant comprising: (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of
- a method of increasing nitrogen stress tolerance in a plant comprising: (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence
- a method of evaluating nitrogen stress tolerance in a plant comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence (for example, a promoter functional in a plant), wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based
- the method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (e) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct.
- a method of evaluating nitrogen stress tolerance in a plant comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of
- the method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (e) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the suppression DNA construct.
- a method of evaluating nitrogen stress tolerance in a plant comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence
- the method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (e) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the suppression DNA construct.
- a method of evaluating nitrogen stress tolerance in a plant comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence (for example, a promoter functional in a plant), wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based
- a method of evaluating nitrogen stress tolerance in a plant comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of
- a method of evaluating nitrogen stress tolerance in a plant comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence
- a method of determining an alteration of an agronomic characteristic in a plant comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least on regulatory sequence (for example, a promoter functional in a plant), wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%
- the method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (e) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, optionally under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
- a method of determining an alteration of an agronomic characteristic in a plant comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based
- the method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (e) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, optionally under nitrogen limiting conditions, to a control plant not comprising the suppression DNA construct.
- a method of determining an alteration of an agronomic characteristic in a plant comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 9
- the method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (e) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, optionally under nitrogen limiting conditions, to a control plant not comprising the suppression DNA construct.
- a method of determining an alteration of an agronomic characteristic in a plant comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence (for example, a promoter functional in a plant), wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%
- a method of determining an alteration of an agronomic characteristic in a plant comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based
- a method of determining an alteration of an agronomic characteristic in a plant comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 9
- a method of producing seed comprising any of the preceding methods, and further comprising obtaining seeds from said progeny plant, wherein said seeds comprise in their genome said recombinant DNA construct (or suppression DNA construct).
- the step of determining an alteration of an agronomic characteristic in a transgenic plant may comprise determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, under varying environmental conditions, to a control plant not comprising the recombinant DNA construct.
- the step of determining an alteration of an agronomic characteristic in a progeny plant may comprise determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, under varying environmental conditions, to a control plant not comprising the recombinant DNA construct.
- said regenerable plant cell may comprise a callus cell, an embryogenic callus cell, a gametic cell, a mehstematic cell, or a cell of an immature embryo.
- the regenerable plant cells may be derived from an inbred maize plant.
- said regenerating step may comprise: (i) culturing said transformed plant cells in a media comprising an embryogenic promoting hormone until callus organization is observed; (ii) transferring said transformed plant cells of step (i) to a first media which includes a tissue organization promoting hormone; and (iii) subculturing said transformed plant cells after step (ii) onto a second media, to allow for shoot elongation, root development or both.
- the at least one agronomic characteristic may be selected from the group consisting of greenness, yield, growth rate, biomass, fresh weight at maturation, dry weight at maturation, fruit yield, seed yield, total plant nitrogen content, fruit nitrogen content, seed nitrogen content, nitrogen content in a vegetative tissue, total plant free amino acid content, fruit free amino acid content, seed free amino acid content, free amino acid content in a vegetative tissue, total plant protein content, fruit protein content, seed protein content, protein content in a vegetative tissue, drought tolerance, nitrogen uptake, root lodging, and harvest index.
- the alteration of at least one agronomic characteristic may be an increased in yield, greenness, or biomass.
- the plant may exhibit the alteration of at least one agronomic characteristic when compared, under nitrogen stress conditions, to a control plant not comprising said recombinant DNA construct (or suppression DNA construct).
- a regulatory sequence such as one or more enhancers, optionally as part of a transposable element
- the introduction of recombinant DNA constructs of the present invention into plants may be carried out by any suitable technique, including but not limited to direct DNA uptake, chemical treatment, electroporation, microinjection, cell fusion, infection, vector mediated DNA transfer, bombardment, or Agrobactehum mediated transformation.
- Transformation of monocotyledons using electroporation, particle bombardment, and Agrobacte ⁇ um have also been reported, for example, transformation and plant regeneration as achieved in asparagus (Bytebier et al., Proc. Natl. Acad. Sci. U.S.A. 84:5354, (1987)); barley (Wan and Lemaux, Plant Physiol.
- This regeneration and growth process typically includes the steps of selection of transformed cells, culturing those individualized cells through the usual stages of embryonic development through the rooted plantlet stage. Transgenic embryos and seeds are similarly regenerated. The resulting transgenic rooted shoots are thereafter planted in an appropriate plant growth medium such as soil.
- the development or regeneration of plants containing the foreign, exogenous isolated nucleic acid fragment that encodes a protein of interest is well known in the art.
- the regenerated plants may be self-pollinated to provide homozygous transgenic plants. Otherwise, pollen obtained from the regenerated plants is crossed to seed-grown plants of agronomically important lines. Conversely, pollen from plants of these important lines is used to pollinate regenerated plants.
- a transgenic plant of the present invention containing a desired polypeptide is cultivated using methods well known to one skilled in the art.
- pHSbarENDs2 SEQ ID NO:1 ; FIG. 1
- the construct also contains vector sequences (pUC9) and a poly-linker (SEQ ID NO:11 ) to allow plasmid rescue, transposon sequences (Ds) to remobilize the T-DNA, and the bar gene to allow for glufosinate selection of transgenic plants.
- the pHSbarENDs2 construct was transformed into Agrobacte ⁇ um tumefaciens strain C58, grown in lysogeny broth medium at 25 0 C to OD600 ⁇ 1.0. Cells were then pelleted by centhfugation and resuspended in an equal volume of 5% sucrose/0.05% Silwet L-77 (OSI Specialties, Inc). At early bolting, soil grown Arabidopsis thaliana ecotype CoI-O were top watered with the Agrobacterium suspension. A week later, the same plants were top watered again with the same Agrobacterium strain in sucrose/Silwet. The plants were then allowed to set seed as normal.
- T1 seed were sown on soil, and transgenic seedlings were selected by spraying with glufosinate (Finale®; AgrEvo; Bayer Environmental Science). A total of 100,000 glufosinate resistant T1 seedlings were selected. T2 seed from each line was kept separate.
- Photoperiod is sixteen hours light; eight hours dark, with an average light intensity of -200 mmol/m2/s. Plates are rotated and shuffled daily within each shelf. At day twelve (nine days of growth), seedling status is evaluated by imaging the entire plate.
- the green color bin After masking the plate image to remove background color, two different measurements are collected for each individual: total rosette area, and the percentage of color that falls into a green color bin. Using hue, saturation and intensity data (HSI), the green color bin consists of hues 50 to 66. Total rosette area is used as a measure of plant biomass, whereas the green color bin has been shown by dose-response studies to be an indicator of nitrogen assimilation (see FIG. 12).
- Phase 1 hits Lines with a significant increase in total rosette area and/or green color bin, when compared to the wild-type controls, are designated as Phase 1 hits.
- Phase 1 hits are re-screened in duplicate under the same assay conditions (Phase 2 screen).
- a Phase 3 screen was also employed to further validate mutants that passed through Phases 1 and 2.
- each line was plated separately on Low N medium, such that 32 T2 individuals were grown next to 32 wild-type individuals on one plate, providing greater statistical rigor to the analysis. If a line shows a significant difference from the controls in Phase 3, the line is then considered a validated nitrogen-deficiency tolerant line.
- TAIL PCR and SAIFF PCR may both prove insufficient to identify candidate genes.
- other procedures including inverse PCR, plasmid rescue and/or genomic library construction, can be employed.
- a successful result is one where a single TAIL or SAIFF PCR fragment contains a T-DNA border sequence and Arabidopsis genomic sequence.
- candidate genes are identified by alignment to publicly available Arabidopsis genome sequence. Specifically, the annotated gene nearest the 35S enhancer elements/T-DNA RB are candidates for genes that are activated.
- a diagnostic PCR on genomic DNA is done with one oligo in the T-DNA and one oligo specific for the candidate gene. Genomic DNA samples that give a PCR product are interpreted as representing a T-DNA insertion. This analysis also verifies a situation in which more than one insertion event occurs in the same line, e.g., if multiple differing genomic fragments are identified in TAIL and/or SAIFF PCR analyses.
- Candidate genes can be transformed into Arabidopsis and overexpressed under the 35S promoter. If the same or similar phenotype is observed in the transgenic line as in the parent activation-tagged line, then the candidate gene is considered to be a validated "lead gene" in Arabidopsis.
- the candidate Arabidopsis At3g43430 gene (SEQ ID NO:17) was tested for its ability to confer nitrogen-deficiency tolerance in the following manner.
- At3g43430 cDNA was amplified by RT-PCR with the following primers: 1. At3g43430-5' attB forward primer (SEQ ID NO:19)
- the forward primer contains the attB1 sequence
- At3g43430-3' attB reverse primer SEQ ID NO:20
- the reverse primer contains the attB2 sequence (ACCACTTTGTACAAGAAAGCTGGGT; SEQ ID NO:13) adjacent to the reverse complement of the last 21 nucleotides of the protein-coding region, beginning with the reverse complement of the stop codon, of said cDNA.
- pDONRTMZeo SEQ ID NO:2; FIG. 2. This process removes the bacteria lethal ccdB gene, as well as the chloramphenicol resistance gene (CAM) from pDONRTMZeo and directionally cloned the PCR product with flanking attB1 and attB2 sites creating an entry clone. This entry clone was used for a subsequent LR Recombination Reaction with a destination vector, as follows. A 16.8-kb T-DNA based binary vector (destination vector), called pBC-yellow
- Sequences homologous to the LNT3 polypeptide can be identified using sequence comparison algorithms such as BLAST (Basic Local Alignment Search Tool; Altschul et al., J. MoI. Biol. 215:403-410 (1993); see also the explanation of the BLAST algorithm on the world wide web site for the National Center for Biotechnology Information (NCBI) at the National Library of Medicine of the National Institutes of Health).
- BLAST Basic Local Alignment Search Tool
- NCBI National Center for Biotechnology Information
- the Arabidopsis LNT3 protein is 69.6% identical to SEQ ID NO:22 (with a pLog of 50) and 69% identical to SEQ ID NO:24 (with a pLog of 50).
- Sequences homologous to the Arabidopsis LNT3 protein can be identified using sequence comparison algorithms such as BLAST (Basic Local Alignment Search Tool; Altschul et al., J. MoI. Biol. 215:403-410 (1993); see also the explanation of the BLAST algorithm on the world wide web site for the National Center for Biotechnology Information at the National Library of Medicine of the National Institutes of Health). Sequences encoding homologous LNT3 proteins (for example, SEQ ID NO:21 and SEQ ID NO:23) can be PCR-amplified by either of the following methods.
- Method 1 (RNA-based): If the 5' and 3' sequence information for the protein- coding region of a gene encoding an LNT3-like protein is available, gene-specific primers can be designed as outlined in Example 4B. RT-PCR can be used with plant RNA to obtain a nucleic acid fragment containing the protein-coding region flanked by attB1 (SEQ ID NO:12) and attB2 (SEQ ID NO:13) sequences. The primer may contain a consensus Kozak sequence (CAACA) upstream of the start codon.
- CAACA consensus Kozak sequence
- Method 2 (DNA-based): Alternatively, if a cDNA clone is available for a gene encoding an LNT3-like protein, the entire cDNA insert (containing 5' and 3' non- coding regions) can be PCR amplified. Forward and reverse primers can be designed that contain either the attB1 sequence and vector-specific sequence that precedes the cDNA insert or the attB2 sequence and vector-specific sequence that follows the cDNA insert, respectively. For a cDNA insert cloned into the vector pBlueschpt SK+, the forward primer VC062 (SEQ ID NO:15) and the reverse primer VC063 (SEQ ID NO:16) can be used.
- Methods 1 and 2 can be modified according to procedures known by one skilled in the art.
- the primers of Method 1 may contain restriction sites instead of attB1 and attB2 sites, for subsequent cloning of the PCR product into a vector containing attB1 and attB2 sites.
- Method 2 can involve amplification from a cDNA clone, a lambda clone, a BAC clone or genomic DNA.
- a PCR product obtained by either method above can be combined with the Gateway® donor vector, such as pDONRTM/Zeo (InvitrogenTM; FIG. 2; SEQ ID NO:2) or pDONRTM221 (InvitrogenTM; FIG. 3; SEQ ID NO:3), using a BP Recombination Reaction.
- This process removes the bacteria lethal ccdB gene, as well as the chloramphenicol resistance gene (CAM) from pDONRTM221 and directionally clones the PCR product with flanking attB1 and attB2 sites to create an entry clone.
- CAM chloramphenicol resistance gene
- the sequence encoding the LNT3-like protein from the entry clone can then be transferred to a suitable destination vector, such as pBC-Yellow (FIG. 4; SEQ ID NO:4), PHP27840 (FIG. 5; SEQ ID NO:5) or PHP23236 (FIG. 6; SEQ ID NO:6), to obtain a plant expression vector for use with Arabidopsis, soybean, and corn, respectively.
- a suitable destination vector such as pBC-Yellow (FIG. 4; SEQ ID NO:4), PHP27840 (FIG. 5; SEQ ID NO:5) or PHP23236 (FIG. 6; SEQ ID NO:6)
- the attP1 and attP2 sites of donor vectors pDONRTM/Zeo or pDONRTM221 are shown in Figures 2 and 3, respectively.
- the attR1 and attR2 sites of destination vectors pBC-Yellow, PHP27840, and PHP23236 are shown in Figures 4, 5, and 6, respectively
- a MultiSite Gateway® LR recombination reaction between multiple entry clones and a suitable destination vector can be performed to create an expression vector.
- Soybean plants can be transformed to overexpress a validated Arabidopsis lead gene or corresponding homologs from various species in order to examine the resulting phenotype.
- the same GATEWAY® entry clone described in Example 4B can be used to directionally clone each gene into the PHP27840 vector (SEQ ID NO:5; FIG. 5) such that expression of the gene is under control of the SCP1 promoter.
- Soybean embryos may then be transformed with the expression vector comprising sequences encoding the instant polypeptides.
- somatic embryos To induce somatic embryos, cotyledons, 3-5 mm in length dissected from surface sterilized, immature seeds of the soybean cultivar A2872, can be cultured in the light or dark at 26 0 C on an appropriate agar medium for six to ten weeks. Somatic embryos, which produce secondary embryos, are then excised and placed into a suitable liquid medium. After repeated selection for clusters of somatic embryos which multiply as early, globular staged embryos, the suspensions are maintained as described below.
- Soybean embryogenic suspension cultures can be maintained in 35 ml_ liquid media on a rotary shaker, 150 rpm, at 26 0 C with florescent lights on a 16:8 hour day/night schedule. Cultures are subcultured every two weeks by inoculating approximately 35 mg of tissue into 35 ml_ of liquid medium.
- Soybean embryogenic suspension cultures may then be transformed by the method of particle gun bombardment (Klein et al., Nature (London) 327:70-73 (1987), U.S. Patent No. 4,945,050).
- a DUPONT BIOLISTICTM PDS1000/HE instrument helium retrofit
- a selectable marker gene which can be used to facilitate soybean transformation is a chimeric gene composed of the 35S promoter from cauliflower mosaic virus (Odell et al., Nature 313:810-812 (1985)), the hygromycin phosphotransferase gene from plasm id pJR225 (from E. coir, Gritz et al., Gene 25:179-188 (1983)) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacte ⁇ um tumefaciens.
- Another selectable marker gene which can be used to facilitate soybean transformation is an herbicide-resistant acetolactate synthase (ALS) gene from soybean or Arabidopsis.
- ALS herbicide-resistant acetolactate synthase
- ALS is the first common enzyme in the biosynthesis of the branched-chain amino acids valine, leucine and isoleucine. Mutations in ALS have been identified that convey resistance to some or all of three classes of inhibitors of ALS (US Patent No. 5,013,659; the entire contents of which are herein incorporated by reference). Expression of the herbicide-resistant ALS gene can be under the control of a SAM synthetase promoter (U.S. Patent Application No. US-2003-0226166-A1 ; the entire contents of which are herein incorporated by reference).
- Approximately 300-400 mg of a two-week-old suspension culture is placed in an empty 60x15 mm petri dish and the residual liquid removed from the tissue with a pipette.
- approximately 5-10 plates of tissue are normally bombarded.
- Membrane rupture pressure is set at 1100 psi and the chamber is evacuated to a vacuum of 28 inches mercury.
- the tissue is placed approximately 3.5 inches away from the retaining screen and bombarded three times. Following bombardment, the tissue can be divided in half and placed back into liquid and cultured as described above.
- the liquid media may be exchanged with fresh media, and eleven to twelve days post bombardment, with fresh media containing 50 mg/mL hygromycin. This selective media can be refreshed weekly.
- green, transformed tissue may be observed growing from untransformed, necrotic embryogenic clusters. Isolated green tissue is removed and inoculated into individual flasks to generate new, clonally propagated, transformed embryogenic suspension cultures. Each new line may be treated as an independent transformation event. These suspensions can then be subcultured and maintained as clusters of immature embryos or regenerated into whole plants by maturation and germination of individual somatic embryos.
- Soybean plants transformed with validated genes can be assayed to study agronomic characteristics relative to control or reference plants. For example, yield enhancement and/or stability under low and high nitrogen conditions (e.g., nitrogen limiting conditions and nitrogen-sufficient conditions) can be assayed.
- yield enhancement and/or stability under low and high nitrogen conditions e.g., nitrogen limiting conditions and nitrogen-sufficient conditions
- the same GATEWAY® entry clone described in Example 4B can be used to directionally clone each gene into a maize transformation vector.
- Expression of the gene in the maize transformation vector can be under control of a constitutive promoter such as the maize ubiquitin promoter (Christensen et al., Plant MoI. Biol. 12:619-632 (1989) and Christensen et al., Plant MoI. Biol. 18:675-689 (1992))
- the recombinant DNA construct described above can then be introduced into maize cells by the following procedure. Immature maize embryos can be dissected from developing caryopses derived from crosses of the inbred maize lines H99 and LH132. The embryos are isolated ten to eleven days after pollination when they are 1.0 to 1.5 mm long. The embryos are then placed with the axis-side facing down and in contact with agarose-solidified N6 medium (Chu et al., Sci. Sin. Peking 18:659-668 (1975)). The embryos are kept in the dark at 27 0 C.
- Friable embryogenic callus consisting of undifferentiated masses of cells with somatic proembryoids and embryoids borne on suspensor structures proliferates from the scutellum of these immature embryos.
- the embryogenic callus isolated from the primary explant can be cultured on N6 medium and sub-cultured on this medium every two to three weeks.
- the plasmid, p35S/Ac (obtained from Dr. Peter Eckes, Hoechst Ag, Frankfurt, Germany) may be used in transformation experiments in order to provide for a selectable marker.
- This plasmid contains the pat gene (see European Patent Publication 0 242 236) which encodes phosphinothricin acetyl transferase (PAT).
- PAT phosphinothricin acetyl transferase
- the enzyme PAT confers resistance to herbicidal glutamine synthetase inhibitors such as phosphinothricin.
- the pat gene in p35S/Ac is under the control of the 35S promoter from cauliflower mosaic virus (Odell et al., Nature 313:810-812 (1985)) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacterium tumefaciens.
- the particle bombardment method (Klein et al., (1987) Nature 327:70-73) may be used to transfer genes to the callus culture cells. According to this method, gold particles (1 ⁇ m in diameter) are coated with DNA using the following technique. Ten ⁇ g of plasmid DNAs are added to 50 ⁇ l_ of a suspension of gold particles (60 mg per ml_).
- the particles are then accelerated into the maize tissue with a BIOLISTICTM PDS-1000/He (Bio-Rad Instruments, Hercules CA), using a helium pressure of 1000 psi, a gap distance of 0.5 cm and a flying distance of 1.0 cm.
- BIOLISTICTM PDS-1000/He Bio-Rad Instruments, Hercules CA
- the embryogenic tissue is placed on filter paper over agarose-solidified N6 medium.
- the tissue is arranged as a thin lawn and covers a circular area of about 5 cm in diameter.
- the petri dish containing the tissue can be placed in the chamber of the PDS-1000/He approximately 8 cm from the stopping screen.
- the air in the chamber is then evacuated to a vacuum of 28 inches of Hg.
- the macrocarrier is accelerated with a helium shock wave using a rupture membrane that bursts when the He pressure in the shock tube reaches 1000 psi.
- tissue can be transferred to N6 medium that contains bialaphos (5 mg per liter) and lacks casein or proline. The tissue continues to grow slowly on this medium. After an additional two weeks the tissue can be transferred to fresh N6 medium containing bialaphos. After six weeks, areas of about 1 cm in diameter of actively growing callus can be identified on some of the plates containing the bialaphos-supplemented medium. These calli may continue to grow when sub-cultured on the selective medium. Plants can be regenerated from the transgenic callus by first transferring clusters of tissue to N6 medium supplemented with 0.2 mg per liter of 2,4-D. After two weeks the tissue can be transferred to regeneration medium (Fromm et al., Bio/Technology 8:833-839 (1990)).
- Transgenic TO plants can be regenerated and their phenotype determined following HTP (high throughput) procedures.
- T1 seed can be collected.
- T1 plants can be grown under nitrogen limiting conditions, for example 1 mM nitrate, and analyzed for phenotypic changes. The following parameters can be quantified using image analysis: plant area, volume, growth rate and color analysis can be collected and quantified.
- Overexpression constructs that result in an alteration, compared to suitable control plants, in greenness (green color bin), yield, growth rate, biomass, fresh or dry weight at maturation, fruit or seed yield, total plant nitrogen content, fruit or seed nitrogen content, free amino acid content in the whole plant, free amino acid content in the fruit or seed, protein content in the fruit or seed, or protein content in a vegetative tissue can be considered evidence that the Arabidopsis lead gene functions in maize to enhance tolerance to nitrogen deprivation (increased nitrogen tolerance).
- Electroporation competent cells 40 ⁇ l_
- Agrobacterium tumefaciens LBA4404 containing PHP10523 (FIG. 7; SEQ ID NO:7)
- PHP10523 contains VIR genes for T-DNA transfer, an Agrobacterium low copy number plasmid origin of replication, a tetracycline resistance gene, and a Cos site for in vivo DNA bimolecular recombination.
- the electroporation cuvette is chilled on ice.
- the electroporator settings are adjusted to 2.1 kV.
- a DNA aliquot (0.5 ⁇ l_ parental DNA at a concentration of 0.2 ⁇ g -1.0 ⁇ g in low salt buffer or twice distilled H 2 O) is mixed with the thawed Agrobacterium tumefaciens LBA4404 cells while still on ice. The mixture is transferred to the bottom of electroporation cuvette and kept at rest on ice for 1 -2 min. The cells are electroporated (Eppendorf electroporator 2510) by pushing the "pulse" button twice (ideally achieving a 4.0 millisecond pulse).
- Option 1 Overlay plates with 30 ⁇ L of 15 mg/mL hfampicin.
- LBA4404 has a chromosomal resistance gene for rifampicin. This additional selection eliminates some contaminating colonies observed when using poorer preparations of LBA4404 competent cells.
- Option 2 Perform two replicates of the electroporation to compensate for poorer electrocompetent cells. Identification of transformants:
- Aliquots of 2 ⁇ L are used to electroporate 20 ⁇ L of DH10b + 20 ⁇ L of twice distilled H 2 O as per above.
- a 15 ⁇ L aliquot can be used to transform 75-100 ⁇ L of INVITROGENTM Library Efficiency DH5 ⁇ .
- the cells are spread on plates containing LB medium and 50 ⁇ g/mL spectinomycin and incubated at 37 0 C overnight.
- Maize plants can be transformed to overexpress a validated Arabidopsis lead gene or the corresponding homologs from various species in order to examine the resulting phenotype.
- Agrobacterium-me ⁇ ate ⁇ transformation of maize is performed essentially as described by Zhao et al., in Meth. MoI. Biol. 318:315-323 (2006) (see also Zhao et al., MoI. Breed. 8:323-333 (2001 ) and U.S. Patent No. 5,981 ,840 issued November 9, 1999, incorporated herein by reference).
- the transformation process involves bacterium inoculation, co-cultivation, resting, selection and plant regeneration.
- Immature maize embryos are dissected from caryopses and placed in a 2 mL microtube containing 2 mL PHI-A medium.
- PHI-A medium of (1 ) is removed with 1 mL micropipettor, and 1 mL of Agrobacterium suspension is added. The tube is gently inverted to mix. The mixture is incubated for 5 min at room temperature.
- Embryonic tissue propagated on PHI-D medium is subcultured to PHI-E medium (somatic embryo maturation medium), in 100x25 mm Petri dishes and incubated at 28 0 C, in darkness, until somatic embryos mature, for about ten to eighteen days.
- PHI-E medium synthetic embryo maturation medium
- Individual, matured somatic embryos with well-defined scutellum and coleoptile are transferred to PHI-F embryo germination medium and incubated at 28 0 C in the light (about 80 ⁇ E from cool white or equivalent fluorescent lamps).
- regenerated plants about 10 cm tall, are potted in horticultural mix and hardened-off using standard horticultural methods.
- PHI-A 4g/L CHU basal salts, 1.0 mL/L 1000X Eriksson's vitamin mix, 0.5 mg/L thiamin HCI, 1.5 mg/L 2,4-D, 0.69 g/L L-proline, 68.5 g/L sucrose, 36 g/L glucose, pH 5.2. Add 100 ⁇ M acetosyhngone
- PHI-B PHI-A without glucose, increase 2,4-D to 2 mg/L, reduce sucrose to 30 g/L and supplemented with 0.85 mg/L silver nitrate (filter-sterilized), 3.0 g/L Gelrite®, 100 ⁇ M acetosyhngone (filter- sterilized), pH 5.8.
- PHI-C PHI-B without Gelrite® and acetosyringonee, reduce 2,4-D to 1.5 mg/L and supplemented with 8.0 g/L agar, 0.5 g/L 2-[N- morpholino]ethane-sulfonic acid (MES) buffer, 100 mg/L carbenicillin (filter-sterilized).
- PHI-D PHI-C supplemented with 3 mg/L bialaphos (filter-sterilized).
- PHI-F PHI-E without zeatin, IAA, ABA; reduce sucrose to 40 g/L; replacing agar with 1.5 g/L Gelrite®; pH 5.6.
- Plants can be regenerated from the transgenic callus by first transferring clusters of tissue to N6 medium supplemented with 0.2 mg per liter of 2,4-D. After two weeks the tissue can be transferred to regeneration medium (Fromm et al., Bio/Technology 8:833-839 (1990)).
- Transgenic TO plants can be regenerated and their phenotype determined. T1 seed can be collected.
- a recombinant DNA construct containing a validated Arabidopsis gene can be introduced into a maize inbred line either by direct transformation or introgression from a separately transformed line.
- Transgenic plants can undergo more vigorous field- based experiments to study yield enhancement and/or stability under nitrogen limiting and nitrogen non-limiting conditions. Subsequent yield analysis can be done to determine whether plants that contain the validated Arabidopsis lead gene have an improvement in yield performance (under nitrogen limiting or non-limiting conditions), when compared to the control (or reference) plants that do not contain the validated Arabidopsis lead gene. Plants containing the validated Arabidopsis lead gene would have less yield loss relative to the control plants, for example, at least 25% less yield loss, under nitrogen limiting conditions, or would have increased yield relative to the control plants under nitrogen non-limiting conditions.
- Arabidopsis Gene (At3g43430) Using Agrobacterium Using the INVITROGENTM GATEWAY® technology, an LR Recombination Reaction can be performed with the same GATEWAY® entry clone described in Example 4B (containing the Arabidopsis LNT3 gene), entry clone PHP23112 (SEQ ID NO:14), entry clone PHP20234 (SEQ ID NO:9; FIG. 9) and destination vector PHP22655 (SEQ ID NO:10; FIG. 10) to create the precursor plasmid PHP28694, which has the following expression cassettes: 1. Ubiquitin promoter::moPAT::Pinll terminator cassette expressing the PAT herbicide resistance gene used for selection during the transformation process.
- Ubiquitin promoter :AT-LNT3::Pinll terminator cassette over expressing the gene of interest, Arabidopsis LNT3.
- Arabidopsis Gene (At3g43430) Using Aqrobacterium
- the LNT3 expression cassette present in vector PHP28694 (described in Example 10A) can be introduced into a maize inbred line, or a transformable maize line derived from an elite maize inbred line, using transformation as described in Examples 8 and 9.
- Expression vector PHP28694 can be electroporated into the LBA4404 Agrobacterium strain containing vector PHP10523 (SEQ ID NO:7, FIG. 7) to create the co-integrate vector PHP28845, which contains the LNT3 expression cassette.
- the co-integrate vector PHP28845 is formed by recombination of the two plasmids, PHP28694 and PHP10523, through the COS recombination sites contained on each vector.
- the cointegrate vector contains the same three expression cassettes as above (Example 10A) in addition to other genes (TET, TET, TRFA, ORI terminator, CTL, ORI V, VIR C1 , VIR C2, VIR G, VIR B) needed for the Agrobacterium strain and the Agrobacte ⁇ um-me ⁇ iate ⁇ transformation.
- the electroporation protocol in, but not limited to, Example 8 may be used.
- Destination vector PHP23236 (FIG. 6; SEQ ID NO:6) was obtained by transformation of Agrobacterium strain LBA4404 containing PHP10523 (FIG. 7; SEQ ID NO:7) with vector PHP23235 (FIG. 8; SEQ ID NO:8) and isolation of the resulting co-integration product.
- Destination vector PHP23236 can be used in a recombination reaction with an entry clone as described in Example 12 to create a maize expression vector for transformation of Gaspe Flint derived maize lines.
- Example 4B containing the Arabidopsis LNT3 gene
- Example 4B was directionally cloned into the GATEWAY® destination vector PHP23236 (SEQ ID NO:6; FIG. 6) to create an expression vector PHP29717.
- This expression vector contains the Arabidopsis LNT3 gene (SEQ ID NO:17) under control of the UBI promoter and is a T-DNA binary for Agrobacterium-me ⁇ ate ⁇ transformation into maize as described, but not limited to, the examples described herein.
- Maize plants can be transformed to overexpress the Arabidopsis lead gene or the corresponding homologs from other species in order to examine the resulting phenotype.
- Expression constructs such as the one described in Example 12 may be used.
- Recipient plant cells can be from a uniform maize line having a short life cycle ("fast cycling"), a reduced size, and high transformation potential. Typical of these plant cells for maize are plant cells from any of the publicly available Gaspe Flint (GF) line varieties.
- GF Gaspe Flint
- One possible candidate plant line variety is the F1 hybrid of GF x QTM (Quick Turnaround Maize, a publicly available form of Gaspe Flint selected for growth under greenhouse conditions) disclosed in Tomes et al. (U.S. Application No. 10/367,416 filed February 13, 2003; U.S. Patent Publication No. 2003/0221212 A1 published November 27, 2003).
- Transgenic plants obtained from this line are of such a reduced size that they can be grown in four inch pots (1/4 the space needed for a normal sized maize plant) and mature in less than 2.5 months. (Traditionally 3.5 months is required to obtain transgenic TO seed once the transgenic plants are acclimated to the greenhouse.)
- Another suitable line includes but is not limited to a double haploid line of GS3 (a highly transformable line) X Gaspe Flint.
- Yet another suitable line is a transformable elite maize inbred line carrying a transgene which causes early flowering, reduced stature, or both.
- Any suitable method may be used to introduce the transgenes into the maize cells, including but not limited to inoculation type procedures using Agrobacterium based vectors (see, for example, Example 8). Transformation may be performed on immature embryos of the recipient (target) plant.
- the event population of transgenic (TO) plants resulting from the transformed maize embryos is grown in a controlled greenhouse environment using a modified randomized block design to reduce or eliminate environmental error.
- a randomized block design is a plant layout in which the experimental plants are divided into groups (e.g., thirty plants per group), referred to as blocks, and each plant is randomly assigned a location within the block.
- a replicate group For a group of thirty plants, twenty-four transformed, experimental plants and six control plants (plants with a set phenotype) (collectively, a "replicate group") are placed in pots which are arranged in an array (a.k.a. a replicate group or block) on a table located inside a greenhouse. Each plant, control or experimental, is randomly assigned to a location within the block which is mapped to a unique, physical greenhouse location as well as to the replicate group. Multiple replicate groups of thirty plants each may be grown in the same greenhouse in a single experiment. The layout (arrangement) of the replicate groups should be determined to minimize space requirements as well as environmental effects within the greenhouse. Such a layout may be referred to as a compressed greenhouse layout.
- An alternative to the addition of a specific control group is to identify those transgenic plants that do not express the gene of interest.
- a variety of techniques such as RT-PCR can be applied to quantitatively assess the expression level of the introduced gene.
- TO plants that do not express the transgene can be compared to those which do.
- Each plant in the event population is identified and tracked throughout the evaluation process, and the data gathered from that plant is automatically associated with that plant so that the gathered data can be associated with the transgene carried by the plant.
- each plant container can have a machine readable label (such as a Universal Product Code (UPC) bar code) which includes information about the plant identity, which in turn is correlated to a greenhouse location so that data obtained from the plant can be automatically associated with that plant.
- UPC Universal Product Code
- any efficient, machine readable, plant identification system can be used, such as two-dimensional matrix codes or even radio frequency identification tags (RFID) in which the data is received and interpreted by a radio frequency receiver/processor.
- RFID radio frequency identification tags
- Each greenhouse plant in the TO event population is analyzed for agronomic characteristics of interest, and the agronomic data for each plant is recorded or stored in a manner so that it is associated with the identifying data (see above) for that plant. Confirmation of a phenotype (gene effect) can be accomplished in the T1 generation with a similar experimental design to that described above.
- the TO plants are analyzed at the phenotypic level using quantitative, nondestructive imaging technology throughout the plant's entire greenhouse life cycle to assess the traits of interest.
- a digital imaging analyzer is used for automatic multi- dimensional analyzing of total plants. The imaging may be done inside the greenhouse.
- Two camera systems, located at the top and side, and an apparatus to rotate the plant, are used to view and image plants from all sides. Images are acquired from the top, front and side of each plant. All three images together provide sufficient information to evaluate, for example, the biomass, size and morphology of each plant.
- This imaging may be accomplished by using a motorized zoom lens system that is fully controlled by the imaging software.
- Plants are allowed at least six hours of darkness per twenty four hour period in order to have a normal day/night cycle.
- Any suitable imaging instrumentation may be used, including but not limited to light spectrum digital imaging instrumentation commercially available from LemnaTec GmbH of Wurselen, Germany.
- the images are taken and analyzed with a LemnaTec Scanalyzer HTS LT-0001 -2 having a 1/2" IT Progressive Scan IEE CCD imaging device.
- the imaging cameras may be equipped with a motor zoom, motor aperture and motor focus. All camera settings may be made using LemnaTec software.
- the instrumental variance of the imaging analyzer is less than about 5% for major components and less than about 10% for minor components.
- the imaging analysis system comprises a LemnaTec HTS Bonit software program for color and architecture analysis and a server database for storing data from about 500,000 analyses, including the analysis dates.
- the original images and the analyzed images are stored together to allow the user to do as much reanalyzing as desired.
- the database can be connected to the imaging hardware for automatic data collection and storage.
- a variety of commercially available software systems e.g., Matlab, others
- Matlab can be used for quantitative interpretation of the imaging data, and any of these software systems can be applied to the image data set.
- a conveyor system with a plant rotating device may be used to transport the plants to the imaging area and rotate them during imaging. For example, up to four plants, each with a maximum height of 1.5 m, are loaded onto cars that travel over the circulating conveyor system and through the imaging measurement area. In this case the total footprint of the unit (imaging analyzer and conveyor loop) is about 5 m x 5 m.
- the conveyor system can be enlarged to accommodate more plants at a time. The plants are transported along the conveyor loop to the imaging area and are analyzed for up to 50 seconds per plant. Three views of the plant are taken.
- the conveyor system, as well as the imaging equipment, should be capable of being used in greenhouse environmental conditions. Illumination
- any suitable mode of illumination may be used for the image acquisition.
- a top light above a black background can be used.
- a combination of top- and backlight using a white background can be used.
- the illuminated area should be housed to ensure constant illumination conditions.
- the housing should be longer than the measurement area so that constant light conditions prevail without requiring the opening and closing or doors.
- the illumination can be varied to cause excitation of either transgene (e.g., green fluorescent protein (GFP), red fluorescent protein (RFP)) or endogenous (e.g. Chlorophyll) fluorophores).
- transgene e.g., green fluorescent protein (GFP), red fluorescent protein (RFP)
- endogenous fluorophores e.g. Chlorophyll
- the plant images should be taken from at least three axes, for example, the top and two side (sides 1 and 2) views. These images are then analyzed to separate the plant from the background, pot and pollen control bag (if applicable).
- the toal area of the plant can be estimated by the calculation:
- the units of area are "arbitrary units". Arbitrary units are entirely sufficient to detect gene effects on plant size and growth in this system because what is desired is to detect differences (both positive-larger and negative- smaller) from the experimental mean, or control mean.
- the arbitrary units of size (e.g. area) may be trivially converted to physical measurements by the addition of a physical reference to the imaging process. For instance, a physical reference of known area can be included in both top and side imaging processes. Based on the area of these physical references a conversion factor can be determined to allow conversion from pixels to a unit of area such as square centimeters (cm 2 ).
- the physical reference may or may not be an independent sample. For instance, the pot, with a known diameter and height, could serve as an adequate physical reference.
- the imaging technology may also be used to determine plant color and to assign plant colors to various color classes.
- the assignment of image colors to color classes is an inherent feature of the LemnaTec software. With other image analysis software systems color classification may be determined by a variety of computational approaches.
- a useful classification scheme is to define a simple color scheme including two or three shades of green and, in addition, a color class for chlorosis, necrosis and bleaching, should these conditions occur.
- a background color class which includes non plant colors in the image (for example pot and soil colors) is also used and these pixels are specifically excluded from the determination of size.
- the plants are analyzed under controlled constant illumination so that any change within one plant over time, or between plants or different batches of plants (e.g. seasonal differences) can be quantified.
- color classification can be used to assess other yield component traits.
- additional color classification schemes may be used.
- the trait known as "staygreen”, which has been associated with improvements in yield may be assessed by a color classification that separates shades of green from shades of yellow and brown (which are indicative of senescing tissues).
- Green/Yellow Ratio Green/Yellow Ratio
- Plants with a significant difference in this Green/Yellow ratio can be identified as carrying transgenes which impact this important agronomic trait.
- the skilled plant biologist will recognize that other plant colors arise which can indicate plant health or stress response (for instance anthocyanins), and that other color classification schemes can provide further measures of gene action in traits related to these responses.
- Transgenes which modify plant architecture parameters may also be identified using the present invention, including such parameters as maximum height and width, internodal distances, angle between leaves and stem, number of leaves starting at nodes and leaf length.
- the LemnaTec system software may be used to determine plant architecture as follows. The plant is reduced to its main geometric architecture in a first imaging step and then, based on this image, parameterized identification of the different architecture parameters can be performed. Transgenes that modify any of these architecture parameters either singly or in combination can be identified by applying the statistical approaches previously described.
- Pollen shed date is an important parameter to be analyzed in a transformed plant, and may be determined by the first appearance on the plant of an active male flower. To find the male flower object, the upper end of the stem is classified by color to detect yellow or violet anthers. This color classification analysis is then used to define an active flower, which in turn can be used to calculate pollen shed date.
- pollen shed date and other easily visually detected plant attributes can be recorded by the personnel responsible for performing plant care.
- pollen shed date and other easily visually detected plant attributes can be recorded by the personnel responsible for performing plant care.
- this data is tracked by utilizing the same barcodes utilized by the LemnaTec light spectrum digital analyzing device.
- a computer with a barcode reader, a palm device, or a notebook PC may be used for ease of data capture recording time of observation, plant identifier, and the operator who captured the data.
- Mature maize plants grown at densities approximating commercial planting often have a planar architecture. That is, the plant has a clearly discernable broad side, and a narrow side.
- the image of the plant from the broadside is determined.
- To each plant a well defined basic orientation is assigned to obtain the maximum difference between the broadside and edgewise images.
- the top image is used to determine the main axis of the plant, and an additional rotating device is used to turn the plant to the appropriate orientation prior to starting the main image acquisition.
- Transgenic plants will contain two or three doses of Gaspe Flint-3 with one dose of GS3 (GS3/(Gaspe-3)2X or GS3/(Gaspe-3)3X) and will segregate 1 :1 for a dominant transgene.
- Plants will be planted in Turface, a commercial potting medium, and watered four times each day with 1 mM KNO 3 growth medium and with 2 mM KNO 3 , or higher, growth medium (see FIG. 13). Control plants grown in 1 mM KNO3 medium will be less green, produce less biomass and have a smaller ear at anthesis (see FIG. 14 for an illustration of sample data).
- FIG. 14 illustrates one method which places letters after the values. Those values in the same column that have the same letter (not group of letters) following them are not significantly different. Using this method, if there are no letters following the values in a column, then there are no significant differences between any of the values in that column or, in other words, all the values in that column are equal.
- transgene will result in plants with improved plant growth in 1 mM KNO3 when compared to a transgenic null.
- biomass and greenness as described in Example 13
- Improvements in growth, greenness, and ear size at anthesis will be indications of increased nitrogen tolerance.
- Gaspe Flint derived maize lines may be transformed via Agrobacterium. Typically, four transformation events for each plasmid construct may be evaluated under nitrogen limiting conditions in the following manner. Plants are planted in 100% Turface and watered until emergence. Following emergence, plants are divided equally between treatment groups and watered as appropriate to achieve saturation using drip irrigation. Daily irrigation schedule consists of a 9:00 AM, 12:00 PM, and 3:00 PM nutrient watering for 3 minutes (156 ml) between 13 and 24 days after planting (DAP). A fourth watering is added at 5:00 AM on 25 DAP, and a fifth watering is added at 5:00 PM on 31 DAP. Two treatments are applied, optimal (6.5 mMol KNO3) and reduced nitrogen (1.OmMoI KNO3).
- pH is monitored at least three times weekly for each table.
- the target pH for the experiment is 5.75 - 6.0.
- Imaging to assess surface area accumulation and specific growth rates (sgr) is performed for each plant three times per week, Monday, Wednesday and Friday.
- Plants are sampled for ELISA MoPAT on 9 DAP, and for expression and metabolic profiling analysis on 36 DAP. At 50% shed, 36 DAP, destructive ear and shoot phenotypes are collected manually.
- harvested tissue is oven dried (7OC for 120hrs.) to obtain dry weight data.
- the probability of a greater Student's one tailed t Test is calculated for each transgenic mean compared to the appropriate null mean (either segregant null or construct null). A minimum (P ⁇ t) of 0.1 is used as a cut off for a statistically significant result.
- a Gaspe Flint derived maize line was transformed via Agrobacterium with plasmid PHP29717, encoding the Arabidopsis LNT3 protein (At3g43430). Two transformation events were evaluated following a procedure similar to that described in Example 14B.
- Tables 1 and 2 show the variables for each transgenic event that were significantly altered, as compared to the segregant nulls. A "positive effect” was defined as a statistically significant improvement in that variable for the transgenic event relative to the null control. A “negative effect” was defined as a statistically significant improvement in that variable for the null control relative to the transgenic event.
- Table 1 presents the number of variables with a significant change for individual events transformed with the PHP29717 construct.
- Table 2 presents the number of events that showed a significant change for each individual variable.
- the variables designated with "_end exponential” indicate that the variables were measured at the end of exponential growth.
- the variables designated with "Jiarvest” indicate that the variables were measured at the time of harvest.
- a recombinant DNA construct containing a validated Arabidopsis gene can be introduced into a maize inbred line either by direct transformation or introgression from a separately transformed line.
- Transgenic plants, either inbred or hybrid, can undergo more vigorous field- based experiments to study yield enhancement and/or stability under nitrogen limiting and non-limiting conditions.
- Subsequent yield analysis can be done to determine whether plants that contain the validated Arabidopsis lead gene have an improvement in yield performance (under nitrogen limiting or non-limiting conditions), when compared to the control (or reference) plants that do not contain the validated Arabidopsis lead gene.
- nitrogen limiting conditions can be imposed during the flowering and/or grain fill period for plants that contain the validated Arabidopsis lead gene and the control plants.
- Reduction in yield can be measured for both. Plants containing the validated Arabidopsis lead gene would have less yield loss relative to the control plants, for example, at least 25% less yield loss, under nitrogen limiting conditions, or would have increased yield relative to the control plants under nitrogen non-limiting conditions.
- Corn hybrid testcrosses containing the LNT3 expression cassette present in vector PHP28845, and their controls were grown in low nitrogen (LN) and normal nitrogen (NN) environments in Woodland, CA, and in Johnston, IA, and yield and other traits were assessed (including GDUSHD, ASI, plant height (PLTHT).
- LN low nitrogen
- NN normal nitrogen
- a yield reduction was observed in LN conditions as compared to that obtained in NN conditions.
- Remnant topcross seed from example 15B was used to test seedling growth under nitrogen limiting conditions.
- Plants containing construct PHP28845 were grown semi-hydroponically in nutrient medium containing 1 mM nitrate as the sole nitrogen source for 2 weeks. After 2 weeks the plants were harvested, and leaf chlorophyll (SPAD), stem diameter, root dry weight, shoot dry weight, total plant weight, total N concentration, and total plant N determined. Data was analyzed using a nearest neighbor analysis to estimate the variance. Transgenic means were compared to the corresponding transgenic null mean. Table 4 shows the Student's t probability comparing the transgenic means to the corresponding null means.
Landscapes
- Genetics & Genomics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Isolated polynucleotides and polypeptides and recombinant DNA constructs particularly useful for altering agronomic characteristics of plants under nitrogen limiting conditions, compositions (such as plants or seeds) comprising these recombinant DNA constructs, and methods utilizing these recombinant DNA constructs. The recombinant DNA construct comprises a polynucleotide operably linked to a promoter functional in a plant, wherein said polynucleotide encodes an LNT3 or LNT3-like polypeptide.
Description
PLANTS HAVING ALTERED AGRONOMIC CHARACTERISTICS
UNDER NITROGEN LIMITING CONDITIONS
AND RELATED CONSTRUCTS AND METHODS INVOLVING GENES ENCODING LNT3 OR LNT3-LIKE POLYPEPTIDES
CROSS REFERENCE TO RELATED APPLICATIONS This application claims the benefit of U.S. Provisional Application No. 61/025095 filed April 9, 2008, the entire contents of which is herein incorporated by reference.
FIELD OF THE INVENTION
The field of invention relates to plant breeding and genetics and, in particular, relates to recombinant DNA constructs useful in plants for conferring nitrogen use efficiency and/or tolerance to nitrogen limiting conditions. BACKGROUND OF THE INVENTION
Abiotic stressors significantly limit crop production worldwide. Cumulatively, these factors are estimated to be responsible for an average 70% reduction in agricultural production. Plants are sessile and have to adjust to the prevailing environmental conditions of their surroundings. This has led to their development of a great plasticity in gene regulation, morphogenesis, and metabolism. Adaptation and defense strategies involve the activation of genes encoding proteins important in the acclimation or defense towards the different stressors.
The absorption of nitrogen by plants plays an important role in their growth (Gallais et al., J. Exp. Bot. 55(396):295-306 (2004)). Plants synthesize amino acids from inorganic nitrogen in the environment. Consequently, nitrogen fertilization has been a powerful tool for increasing the yield of cultivated plants, such as maize and soybean. Today farmers desire to reduce the use of nitrogen fertilizer, in order to avoid pollution by nitrates and to maintain a sufficient profit margin. If the nitrogen assimilation capacity of a plant can be increased, then increases in plant growth and yield increase are also expected. In summary, plant varieties that have a better nitrogen use efficiency (NUE) are desirable.
Activation tagging can be utilized to identify genes with the ability to affect a trait. This approach has been used in the model plant species Arabidopsis thaliana
(Weigel et al., Plant Physiol. 122:1003-1013 (2000)). Insertions of transcriptional enhancer elements can dominantly activate and/or elevate the expression of nearby endogenous genes. This method can be used to identify genes of interest for a particular trait (e.g. nitrogen use efficiency in a plant), genes that when placed in an organism as a transgene can alter that trait.
SUMMARY OF THE INVENTION The present invention includes:
In one embodiment, a plant comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24, and wherein said plant exhibits increased nitrogen stress tolerance when compared to a control plant not comprising said recombinant DNA construct. In another embodiment, a plant comprising in its genome a recombinant DNA construct comprising:
(a) a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; or
(b) a suppression DNA construct comprising at least one regulatory element operably linked to: (i) all or part of: (A) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24, or (B) a full complement of the nucleic acid sequence of (b)(i)(A); or (ii) a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT3 or LNT3-like polypeptide, and wherein said plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising said recombinant DNA construct.
In another embodiment, a method of increasing nitrogen stress tolerance in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct and exhibits increased nitrogen stress tolerance when compared to a control plant not comprising the recombinant DNA construct; and optionally, (c) obtaining a progeny plant derived from the transgenic plant, wherein said progeny plant comprises in its genome the recombinant DNA construct and exhibits increased nitrogen stress tolerance when compared to a control plant not comprising the recombinant DNA construct. In another embodiment, a method of evaluating nitrogen stress tolerance in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; and (c) evaluating the transgenic plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct; and optionally, (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and optionally, (e) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct.
In another embodiment, a method of evaluating nitrogen stress tolerance in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of
alignment, when compared to SEQ ID NO:18, 22, or 24; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; (c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (d) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct.
In another embodiment, a method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; and (c) determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the recombinant DNA construct; and optionally, (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and optionally, (e) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, optionally under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
In another embodiment, a method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; (c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (d)
determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared optionally under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
In another embodiment, a method of determining an alteration of an agronomic characteristic in a plant, comprising:
(a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory element operably linked to:
(i) all or part of: (A) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24, or (B) a full complement of the nucleic acid sequence of (b)(i)(A); or
(ii) a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT3 or LNT3-like polypeptide;
(b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; and
(c) determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the suppression DNA construct; and optionally, (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and optionally, (e) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared optionally under nitrogen limiting conditions, to a control plant not comprising the suppression DNA construct.
In another embodiment, a method of determining an alteration of an agronomic characteristic in a plant, comprising:
(a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory element operably linked to:
(i) all or part of: (A) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24, or (B) a full complement of the nucleic acid sequence of (b)(i)(A); or
(ii) a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT3 or LNT3-like polypeptide;
(b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct and exhibits an alteration of at least one agronomic trait when compared to a control plant not comprising the suppression DNA construct;
(c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and
(d) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the suppression DNA construct; and optionally, (e) determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, optionally, under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
BRIEF DESCRIPTION OF THE FIGURES AND SEQUENCE LISTINGS
The invention can be more fully understood from the following detailed description and the accompanying drawings and Sequence Listing which form a part of this application.
FIG. 1 shows a schematic of the pHSbarENDs2 activation tagging construct used to make the Arabidopsis populations (SEQ ID NO:1 ).
FIG. 2 shows a schematic of the vector pDONR™Zeo (SEQ ID NO:2), GATEWAY® donor vector. The attP1 site is at nucleotides 570-801 ; the attP2 site is at nucleotides 2754-2985 (complementary strand).
FIG. 3 shows a schematic of the vector pDONR™221 (SEQ ID NO:3), GATEWAY® donor vector. The attP1 site is at nucleotides 570-801 ; the attP2 site is at nucleotides 2754-2985 (complementary strand).
FIG. 4 shows a schematic of the vector pBC-yellow (SEQ ID NO:4), a destination vector for use in construction of expression vectors for Arabidopsis. The attR1 site is at nucleotides 11276-11399 (complementary strand); the attR2 site is at nucleotides 9695-9819 (complementary strand).
FIG. 5 shows a schematic of the vector PHP27840 (SEQ ID NO:5), a destination vector for use in construction of expression vectors for soybean. The attR1 site is at nucleotides 7310-7434; the attR2 site is at nucleotides 8890-9014.
FIG. 6 shows a schematic of the vector PHP23236 (SEQ ID NO:6), a destination vector for use in construction of expression vectors for Gaspe Flint derived maize lines. The attR1 site is at nucleotides 2006-2130; the attR2 site is at nucleotides 2899-3023.
FIG. 7 shows a schematic of the vector PHP10523 (SEQ ID NO:7), a plasmid DNA present in Agrobacterium strain LBA4404 (Komari et al., Plant J. 10:165-174 (1996); NCBI General Identifier No. 59797027).
FIG. 8 shows a schematic of the vector PHP23235 (SEQ ID NO:8), a vector used to construct the destination vector PHP23236.
FIG. 9 shows a schematic of the vector PHP20234 (SEQ ID NO:9).
FIG. 10 shows a schematic of the destination vector PHP22655 (SEQ ID NO:10).
FIG. 11 shows a typical grid pattern for five lines (labeled 1 through 5 - eleven individuals for each line), plus wild-type control C1 (nine individuals), used in screens.
FIG. 12 shows a graph showing the effect of several different potassium nitrate concentrations on plant color as determined by image analysis. The response of the green color bin (hues 50 to 66) to nitrate dosage demonstrates that this bin can be used as an indicator of nitrogen assimilation.
FIG. 13 shows the growth medium used for semi-hydroponics maize growth in Example 14A.
FIG. 14 shows a chart setting forth data relating to the effect of different nitrate concentrations on the growth and development of Gaspe Flint derived maize lines in Example 14A.
FIG. 15 shows an evaluation of individual Gaspe Flint derived maize lines transformed with PHP29717.
FIG. 16 shows a summary evaluation of Gaspe Flint derived maize lines transformed with PHP29717.
The sequence descriptions and Sequence Listing attached hereto comply with the rules governing nucleotide and/or amino acid sequence disclosures in patent applications as set forth in 37 C. F. R. §1.821 -1.825. The Sequence Listing contains the one letter code for nucleotide sequence characters and the three letter codes for amino acids as defined in conformity with the lUPAC-IUBMB standards described in Nucleic Acids Res. 13:3021-3030 (1985) and in the Biochemical J. 219 (2):345-373 (1984) which are herein incorporated by reference. The symbols and format used for nucleotide and amino acid sequence data comply with the rules set forth in 37 C. F. R. §1.822. SEQ ID NO:1 is the nucleotide sequence of the pHSbarEND2s activation tagging vector.
SEQ ID NO:2 is the nucleotide sequence of the pDONR™Zeo construct (FIG.
2).
SEQ ID NO:3 is the nucleotide sequence of the pDONR™221 construct (FIG. 3).
SEQ ID NO:4 is the nucleotide sequence of the pBC-yellow vector (FIG. 4).
SEQ ID NO:5 is the nucleotide sequence of the PHP27840 vector (FIG. 5).
SEQ ID NO:6 is the nucleotide sequence of the destination vector PHP23236 (FIG. 6). SEQ ID NO:7 is the nucleotide sequence of the PHP10523 vector (FIG. 7).
SEQ ID NO:8 is the nucleotide sequence of the PHP23235 vector (FIG. 8).
SEQ ID NO:9 is the nucleotide sequence of the PHP20234 vector (FIG. 9).
SEQ ID NO:10 is the nucleotide sequence of the destination vector PHP22655 (FIG. 10).
SEQ ID NO:11 is the nucleotide sequence of the poly-linker used to substitute the Pad restriction site at position 5775 of pHSbarENDs. SEQ ID NO:12 is the nucleotide sequence of the attB1 sequence.
SEQ ID NO:13 is the nucleotide sequence of the attB2 sequence. SEQ ID NO:14 is the nucleotide sequence of the entry clone PHP23112. SEQ ID NO:15 is the forward primer VC062 in Example 5B. SEQ ID NO:16 is the reverse primer VC063 in Example 5B. SEQ ID NO:17 corresponds to NCBI General Identifier No. 145339089, which is the nucleotide sequence from locus At3g43430 that encodes an Arabidopsis thaliana "C3HC4-type zinc RING finger protein" (referred to herein as LNT3). SEQ ID NO:18 corresponds to the amino acid sequence of At3g43430 encoded by SEQ ID NO:17. SEQ ID NO:19 is the nucleotide sequence of the At3g43430-5' attB forward primer.
SEQ ID NO:20 is the nucleotide sequence of the At3g43430-3' attB reverse primer.
SEQ ID NO:21 corresponds to NCBI General Identifier No. 145358282, which is the nucleotide sequence from locus At5g20885 that encodes an Arabidopsis thaliana "C3HC4-type zinc RING finger protein".
SEQ ID NO:22 corresponds to the amino acid sequence of At5g20885 encoded by SEQ ID NO:21.
SEQ ID NO:23 corresponds to NCBI General Identifier No. 195604259, which is identified in the record as a gene that encodes a Zea mays RING zinc finger-like protein.
SEQ ID NO:24 corresponds to NCBI General Identifier No. 195604260 and is the amino acid sequence of the protein encoded by SEQ ID NO:23.
DETAILED DESCRIPTION The disclosure of each reference set forth herein is hereby incorporated by reference in its entirety.
As used herein and in the appended claims, the singular forms "a", "an", and "the" include plural reference unless the context clearly dictates otherwise. Thus,
for example, reference to "a plant" includes a plurality of such plants, reference to "a cell" includes one or more cells and equivalents thereof known to those skilled in the art, and so forth.
As used herein: "Nitrogen limiting conditions" refers to conditions where the amount of total available nitrogen (e.g., from nitrates, ammonia, or other known sources of nitrogen) is not sufficient to sustain optimal plant growth and development. One skilled in the art would recognize conditions where total available nitrogen is sufficient to sustain optimal plant growth and development. One skilled in the art would recognize what constitutes sufficient amounts of total available nitrogen, and what constitutes soils, media and fertilizer inputs for providing nitrogen to plants. Nitrogen limiting conditions will vary depending upon a number of factors, including but not limited to, the particular plant and environmental conditions.
An "Expressed Sequence Tag" ("EST") is a DNA sequence derived from a cDNA library and therefore is a sequence which has been transcribed. An EST is typically obtained by a single sequencing pass of a cDNA insert. The sequence of an entire cDNA insert is termed the "Full-Insert Sequence" ("FIS"). A "Contig" sequence is a sequence assembled from two or more sequences that can be selected from, but not limited to, the group consisting of an EST, FIS and PCR sequence. A sequence encoding an entire or functional protein is termed a
"Complete Gene Sequence" ("CGS") and can be derived from an FIS or a contig.
"Agronomic characteristic" is a measurable parameter including but not limited to, greenness, yield, growth rate, biomass, fresh weight at maturation, dry weight at maturation, fruit yield, seed yield, total plant nitrogen content, fruit nitrogen content, seed nitrogen content, whole plant amino acid content, vegetative tissue free amino acid content, fruit free amino acid content, seed free amino acid content, fruit protein content, seed protein content, protein content in a vegetative tissue, drought tolerance, nitrogen uptake, resistance to root lodging, harvest index, stalk lodging, plant height and ear length. "Harvest index" refers to the grain weight divided by the total plant weight.
"Int3" refers to the Arabidopsis thaliana locus, At3g43430 (SEQ ID NO: 17). "LNT3" refers to the protein (SEQ ID NO:18) encoded by At3g43430.
"Int3-like" refers to nucleotide homologs from different species, such as corn and soybean, of the Arabidopsis thaliana "Int3" locus, At3g43430 (SEQ ID NO: 17). Int3-like sequences include SEQ ID NO:21 and SEQ ID NO:23.
"LNT3-like" refers to protein homologs from different species, such as corn and soybean, of the Arabidopsis thaliana "LNT3" (SEQ ID NO: 18). LNT3-like sequences include SEQ ID NO:22 and SEQ ID NO:24.
"Nitrogen stress tolerance" is a trait of a plant and refers to the ability of the plant to survive under nitrogen limiting conditions.
"Increased nitrogen stress tolerance" of a plant is measured relative to a reference or control plant, and means that the nitrogen stress tolerance of the plant is increased by any amount or measure when compared to the nitrogen stress tolerance of the reference or control plant.
A "nitrogen stress tolerant plant" is a plant that exhibits nitrogen stress tolerance. A nitrogen stress tolerant plant is preferably a plant that exhibits an increase in at least one agronomic characteristic relative to a control plant under nitrogen limiting conditions.
"Environmental conditions" refer to conditions under which the plant is grown, such as the availability of water, availability of nutrients (for example nitrogen), or the presence of insects or disease. "Transgenic" refers to any cell, cell line, callus, tissue, plant part or plant, the genome of which has been altered by the presence of a heterologous nucleic acid, such as a recombinant DNA construct, including those initial transgenic events as well as those created by sexual crosses or asexual propagation from the initial transgenic event. The term "transgenic" as used herein does not encompass the alteration of the genome (chromosomal or extra-chromosomal) by conventional plant breeding methods or by naturally occurring events such as random cross- fertilization, non-recombinant viral infection, non-recombinant bacterial transformation, non-recombinant transposition, or spontaneous mutation.
"Genome" as it applies to plant cells encompasses not only chromosomal DNA found within the nucleus, but organelle DNA found within subcellular components (e.g., mitochondrial, plastid) of the cell.
"Plant" includes reference to whole plants, plant organs, plant tissues, seeds and plant cells and progeny of same. Plant cells include, without limitation, cells
from seeds, suspension cultures, embryos, mehstematic regions, callus tissue, leaves, roots, shoots, gametophytes, sporophytes, pollen, and microspores.
"Progeny" comprises any subsequent generation of a plant.
"Transgenic plant" includes reference to a plant which comprises within its genome a heterologous polynucleotide. For example, the heterologous polynucleotide is stably integrated within the genome such that the polynucleotide is passed on to successive generations. The heterologous polynucleotide may be integrated into the genome alone or as part of a recombinant DNA construct.
"Heterologous" with respect to sequence means a sequence that originates from a foreign species, or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention.
"Polynucleotide", "nucleic acid sequence", "nucleotide sequence", or "nucleic acid fragment" are used interchangeably and is a polymer of RNA or DNA that is single- or double-stranded, optionally containing synthetic, non-natural or altered nucleotide bases. Nucleotides (usually found in their 5'-monophosphate form) are referred to by their single letter designation as follows: "A" for adenylate or deoxyadenylate (for RNA or DNA, respectively), "C" for cytidylate or deoxycytidylate, "G" for guanylate or deoxyguanylate, "U" for uhdylate, "T" for deoxythymidylate, "R" for purines (A or G), "Y" for pyrimidines (C or T), "K" for G or T, "H" for A or C or T, "I" for inosine, and "N" for any nucleotide.
"Polypeptide", "peptide", "amino acid sequence" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers. The terms "polypeptide", "peptide", "amino acid sequence", and "protein" are also inclusive of modifications including, but not limited to, glycosylation, lipid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation. "Messenger RNA (mRNA)" refers to the RNA that is without introns and that can be translated into protein by the cell.
"cDNA" refers to a DNA that is complementary to and synthesized from an mRNA template using the enzyme reverse transcriptase. The cDNA can be single-
stranded or converted into the double-stranded form using the Klenow fragment of DNA polymerase I.
"Mature" protein refers to a post-translationally processed polypeptide; i.e., one from which any pre- or pro-peptides present in the primary translation product have been removed.
"Precursor" protein refers to the primary product of translation of mRNA; i.e., with pre- and pro-peptides still present. Pre- and pro-peptides may be and are not limited to intracellular localization signals.
"Isolated" refers to materials, such as nucleic acid molecules and/or proteins, which are substantially free or otherwise removed from components that normally accompany or interact with the materials in a naturally occurring environment. Isolated polynucleotides may be purified from a host cell in which they naturally occur. Conventional nucleic acid purification methods known to skilled artisans may be used to obtain isolated polynucleotides. The term also embraces recombinant polynucleotides and chemically synthesized polynucleotides.
"Recombinant" refers to an artificial combination of two otherwise separated segments of sequence, e.g., by chemical synthesis or by the manipulation of isolated segments of nucleic acids by genetic engineering techniques. "Recombinant" also includes reference to a cell or vector, that has been modified by the introduction of a heterologous nucleic acid or a cell derived from a cell so modified, but does not encompass the alteration of the cell or vector by naturally occurring events (e.g., spontaneous mutation, natural transformation/transduction/transposition) such as those occurring without deliberate human intervention. "Recombinant DNA construct" refers to a combination of nucleic acid fragments that are not normally found together in nature. Accordingly, a recombinant DNA construct may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that normally found in nature.
The terms "entry clone" and "entry vector" are used interchangeably herein. "Regulatory sequences" or "regulatory elements" are used interchangeably and refer to nucleotide sequences located upstream (5' non-coding sequences),
within, or downstream (3' non-coding sequences) of a coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences may include, but are not limited to, promoters, translation leader sequences, introns, and polyadenylation recognition sequences.
"Promoter" refers to a nucleic acid fragment capable of controlling transcription of another nucleic acid fragment.
"Promoter functional in a plant" is a promoter capable of controlling transcription in plant cells whether or not its origin is from a plant cell. "Tissue-specific promoter" and "tissue-preferred promoter" are used interchangeably, and refer to a promoter that is expressed predominantly but not necessarily exclusively in one tissue or organ, but that may also be expressed in one specific cell.
"Developmentally regulated promoter" refers to a promoter whose activity is determined by developmental events.
"Operably linked" refers to the association of nucleic acid fragments in a single fragment so that the function of one is regulated by the other. For example, a promoter is operably linked with a nucleic acid fragment when it is capable of regulating the transcription of that nucleic acid fragment. "Expression" refers to the production of a functional product. For example, expression of a nucleic acid fragment may refer to transcription of the nucleic acid fragment (e.g., transcription resulting in mRNA or functional RNA) and/or translation of mRNA into a precursor or mature protein.
"Phenotype" means the detectable characteristics of a cell or organism. "Introduced" in the context of inserting a nucleic acid fragment (e.g., a recombinant DNA construct) into a cell, means "transfection" or "transformation" or "transduction" and includes reference to the incorporation of a nucleic acid fragment into a eukaryotic or prokaryotic cell where the nucleic acid fragment may be incorporated into the genome of the cell (e.g., chromosome, plasmid, plastid or mitochondrial DNA), converted into an autonomous replicon, or transiently expressed (e.g., transfected mRNA).
A "transformed cell" is any cell into which a nucleic acid fragment (e.g., a recombinant DNA construct) has been introduced.
"Transformation" as used herein refers to both stable transformation and transient transformation.
"Stable transformation" refers to the introduction of a nucleic acid fragment into a genome of a host organism resulting in genetically stable inheritance. Once stably transformed, the nucleic acid fragment is stably integrated in the genome of the host organism and any subsequent generation.
"Transient transformation" refers to the introduction of a nucleic acid fragment into the nucleus, or DNA-containing organelle, of a host organism resulting in gene expression without genetically stable inheritance. "Allele" is one of several alternative forms of a gene occupying a given locus on a chromosome. When the alleles present at a given locus on a pair of homologous chromosomes in a diploid plant are the same that plant is homozygous at that locus. If the alleles present at a given locus on a pair of homologous chromosomes in a diploid plant differ that plant is heterozygous at that locus. If a transgene is present on one of a pair of homologous chromosomes in a diploid plant that plant is hemizygous at that locus.
Sequence alignments and percent identity calculations may be determined using a variety of comparison methods designed to detect homologous sequences including, but not limited to, the Megalign® program of the LASERGENE® bioinformatics computing suite (DNASTAR® Inc., Madison, Wl). Unless stated otherwise, multiple alignment of the sequences provided herein were performed using the Clustal V method of alignment (Higgins and Sharp, CABIOS. 5:151 -153 (1989)) with the default parameters (GAP PENALTY=I O, GAP LENGTH PENALTY=I O). Default parameters for pairwise alignments and calculation of percent identity of protein sequences using the Clustal V method are KTUPLE=I , GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5. For nucleic acids these parameters are KTUPLE=2, GAP PENALTY=5, WINDOW=4 and DIAGONALS SAVED=4. After alignment of the sequences, using the Clustal V program, it is possible to obtain "percent identity" and "divergence" values by viewing the "sequence distances" table on the same program; unless stated otherwise, percent identities and divergences provided and claimed herein were calculated in this manner.
Standard recombinant DNA and molecular cloning techniques used herein are well known in the art and are described more fully in Sambrook, J., Fritsch, E. F. and Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, 1989 (hereinafter "Sambrook"). Turning now to the embodiments:
Embodiments include isolated polynucleotides and polypeptides, recombinant DNA constructs, compositions (such as plants or seeds) comprising these recombinant DNA constructs, and methods utilizing these recombinant DNA constructs. Isolated Polynucleotides and Polypeptides
The present invention includes the following isolated polynucleotides and polypeptides:
An isolated polynucleotide comprising: (i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; or (ii) a full complement of the nucleic acid sequence of (i), wherein the full complement and the nucleic acid sequence of (i) consist of the same number of nucleotides and are 100% complementary. Any of the foregoing isolated polynucleotides may be utilized in any recombinant DNA constructs (including suppression DNA constructs) of the present invention. The polypeptide is preferably an LNT3 or LNT3-like protein. An isolated polypeptide having an amino acid sequence of at least 50%,
51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24. The polypeptide is preferably an LNT3 or LNT3-like protein.
An isolated polynucleotide comprising (i) a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%,
64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:17, 21 , or 23; or (ii) a full complement of the nucleic acid sequence of (i). Any of the foregoing isolated polynucleotides may be utilized in any recombinant DNA constructs (including suppression DNA constructs) of the present invention. The isolated polynucleotide preferably encodes an LNT3 or LNT3-like protein.
Recombinant DNA Constructs and Suppression DNA Constructs In one aspect, the present invention includes recombinant DNA constructs
(including suppression DNA constructs).
In one embodiment, a recombinant DNA construct comprises a polynucleotide operably linked to at least one regulatory sequence (e.g., a promoter functional in a plant), wherein the polynucleotide comprises (i) a nucleic acid sequence encoding an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; or (ii) a full complement of the nucleic acid sequence of (i).
In another embodiment, a recombinant DNA construct comprises a polynucleotide operably linked to at least one regulatory sequence (e.g., a promoter functional in a plant), wherein said polynucleotide comprises (i) a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO: 17, 21 , or 23; or (ii) a full complement of the nucleic acid sequence of (i).
In another embodiment, a recombinant DNA construct comprises a polynucleotide operably linked to at least one regulatory sequence (e.g., a promoter
functional in a plant), wherein said polynucleotide encodes an LNT3 or LNT3-like protein.
In another aspect, the present invention includes suppression DNA constructs. A suppression DNA construct may comprise at least one regulatory sequence (e.g., a promoter functional in a plant) operably linked to (a) all or part of: (i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; or (ii) a full complement of the nucleic acid sequence of (a)(i); or (b) a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT3 or LNT3-like protein; or (c) all or part of: (i) a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:17, 21 , or 23; or (ii) a full complement of the nucleic acid sequence of (c)(i). The suppression DNA construct may comprise a cosuppression construct, antisense construct, viral-suppression construct, hairpin suppression construct, stem-loop suppression construct, double-stranded RNA-producing construct, RNAi construct, or small RNA construct (e.g., an siRNA construct or an miRNA construct).
It is understood, as those skilled in the art will appreciate, that the invention encompasses more than the specific exemplary sequences. Alterations in a nucleic acid fragment which result in the production of a chemically equivalent amino acid at a given site, but do not affect the functional properties of the encoded polypeptide, are well known in the art. For example, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, can also be expected to produce a functionally equivalent product. Nucleotide changes which result in alteration of the N-terminal and C-terminal portions of the polypeptide molecule would also not be expected to alter the activity of the polypeptide. Each of the proposed modifications is well within the routine skill in the art, as is determination of retention of biological activity of the encoded products.
"Suppression DNA construct" is a recombinant DNA construct which when transformed or stably integrated into the genome of the plant, results in "silencing" of a target gene in the plant. The target gene may be endogenous or transgenic to the plant. "Silencing," as used herein with respect to the target gene, refers generally to the suppression of levels of mRNA or protein/enzyme expressed by the target gene, and/or the level of the enzyme activity or protein functionality. The terms "suppression", "suppressing" and "silencing", used interchangeably herein, includes lowering, reducing, declining, decreasing, inhibiting, eliminating or preventing. "Silencing" or "gene silencing" does not specify mechanism and is inclusive, and not limited to, anti-sense, cosuppression, viral-suppression, hairpin suppression, stem- loop suppression, RNAi-based approaches, and small RNA-based approaches.
A suppression DNA construct may comprise a region derived from a target gene of interest and may comprise all or part of the nucleic acid sequence of the sense strand (or antisense strand) of the target gene of interest. Depending upon the approach to be utilized, the region may be 100% identical or less than 100% identical (e.g., at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%,
88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical) to all or part of the sense strand (or antisense strand) of the gene of interest. Suppression DNA constructs are well-known in the art, are readily constructed once the target gene of interest is selected, and include, without limitation, cosuppression constructs, antisense constructs, viral-suppression constructs, hairpin suppression constructs, stem-loop suppression constructs, double-stranded RNA-producing constructs, and more generally, RNAi (RNA interference) constructs and small RNA constructs such as siRNA (short interfering RNA) constructs and miRNA (microRNA) constructs. "Antisense inhibition" refers to the production of antisense RNA transcripts capable of suppressing the expression of the target gene or gene product. "Antisense RNA" refers to an RNA transcript that is complementary to all or part of a target primary transcript or mRNA and that blocks the expression of a target isolated nucleic acid fragment (U.S. Patent No. 5,107,065). The complementarity of an antisense RNA may be with any part of the specific gene transcript, i.e., at the
5' non-coding sequence, 3' non-coding sequence, introns, or the coding sequence.
"Cosuppression" refers to the production of sense RNA transcripts capable of suppressing the expression of the target gene or gene product. "Sense" RNA refers to RNA transcript that includes the mRNA and can be translated into protein within a cell or in vitro. Cosuppression constructs in plants have been previously designed by focusing on overexpression of a nucleic acid sequence having homology to a native mRNA, in the sense orientation, which results in the reduction of all RNA having homology to the overexpressed sequence (see Vaucheret et al., Plant J. 16:651 -659 (1998); and Gura, Nature 404:804-808 (2000)). Another variation describes the use of plant viral sequences to direct the suppression of proximal mRNA encoding sequences (PCT Publication No. WO 98/36083 published on August 20, 1998).
Previously described is the use of "hairpin" structures that incorporate all, or part, of an mRNA encoding sequence in a complementary orientation that results in a potential "stem-loop" structure for the expressed RNA (PCT Publication No. WO 99/53050 published on October 21 , 1999). In this case the stem is formed by polynucleotides corresponding to the gene of interest inserted in either sense or anti-sense orientation with respect to the promoter and the loop is formed by some
polynucleotides of the gene of interest, which do not have a complement in the construct. This increases the frequency of cosuppression or silencing in the recovered transgenic plants. For a review of hairpin suppression see Wesley, S.V. et al. (2003) Methods in Molecular Biology, Plant Functional Genomics: Methods and Protocols 236:273-286.
A construct where the stem is formed by at least 30 nucleotides from a gene to be suppressed and the loop is formed by a random nucleotide sequence has also effectively been used for suppression (PCT Publication No. WO 99/61632 published on December 2, 1999). The use of poly-T and poly-A sequences to generate the stem in the stem- loop structure has also been described (PCT Publication No. WO 02/00894 published January 3, 2002).
Yet another variation includes using synthetic repeats to promote formation of a stem in the stem-loop structure. Transgenic organisms prepared with such recombinant DNA fragments have been shown to have reduced levels of the protein encoded by the nucleotide fragment forming the loop as described in PCT Publication No. WO 02/00904, published January 3, 2002.
RNA interference refers to the process of sequence-specific post- transchptional gene silencing in animals mediated by short interfering RNAs (siRNAs) (Fire et al., Nature 391 :806 (1998)). The corresponding process in plants is commonly referred to as post-transcriptional gene silencing (PTGS) or RNA silencing and is also referred to as quelling in fungi. The process of post- transcriptional gene silencing is thought to be an evolutionarily-conserved cellular defense mechanism used to prevent the expression of foreign genes and is commonly shared by diverse flora and phyla (Fire et al., Trends Genet. 15:358 (1999)). Such protection from foreign gene expression may have evolved in response to the production of double-stranded RNAs (dsRNAs) derived from viral infection or from the random integration of transposon elements into a host genome via a cellular response that specifically destroys homologous single-stranded RNA of viral genomic RNA. The presence of dsRNA in cells triggers the RNAi response through a mechanism that has yet to be fully characterized.
The presence of long dsRNAs in cells stimulates the activity of a hbonuclease III enzyme referred to as dicer. Dicer is involved in the processing of
the dsRNA into short pieces of dsRNA known as short interfering RNAs (siRNAs) (Berstein et al., Nature 409:363 (2001 )). Short interfering RNAs derived from dicer activity are typically about 21 to about 23 nucleotides in length and comprise about 19 base pair duplexes (Elbashir et al., Genes Dev. 15:188 (2001 )). Dicer has also been implicated in the excision of 21 - and 22-nucleotide small temporal RNAs (stRNAs) from precursor RNA of conserved structure that are implicated in translational control (Hutvagner et al., Science 293:834 (2001 )). The RNAi response also features an endonuclease complex, commonly referred to as an RNA-induced silencing complex (RISC), which mediates cleavage of single- stranded RNA having sequence complementarity to the antisense strand of the siRNA duplex. Cleavage of the target RNA takes place in the middle of the region complementary to the antisense strand of the siRNA duplex. In addition, RNA interference can also involve small RNA (e.g., miRNA) mediated gene silencing, presumably through cellular mechanisms that regulate chromatin structure and thereby prevent transcription of target gene sequences (see, e.g., Allshire, Science 297:1818-1819 (2002); Volpe et al., Science 297:1833-1837 (2002); Jenuwein, Science 297:2215-2218 (2002); and Hall et al., Science 297:2232-2237 (2002)). As such, miRNA molecules of the invention can be used to mediate gene silencing via interaction with RNA transcripts or alternately by interaction with particular gene sequences, wherein such interaction results in gene silencing either at the transcriptional or post-transchptional level.
RNAi has been studied in a variety of systems. Fire et al. (Nature 391 :806 (1998)) were the first to observe RNAi in Caenorhabditis elegans. Wianny and Goetz {Nature Cell Biol. 2:70 (1999)) describe RNAi mediated by dsRNA in mouse embryos. Hammond et al. (Nature 404:293 (2000)) describe RNAi in Drosophila cells transfected with dsRNA. Elbashir et al., {Nature 411 :494 (2001 )) describe RNAi induced by introduction of duplexes of synthetic 21 -nucleotide RNAs in cultured mammalian cells including human embryonic kidney and HeLa cells.
Small RNAs play an important role in controlling gene expression. Regulation of many developmental processes, including flowering, is controlled by small RNAs. It is now possible to engineer changes in gene expression of plant genes by using transgenic constructs which produce small RNAs in the plant.
Small RNAs appear to function by base-pairing to complementary RNA or DNA target sequences. When bound to RNA, small RNAs trigger either RNA cleavage or translational inhibition of the target sequence. When bound to DNA target sequences, it is thought that small RNAs can mediate DNA methylation of the target sequence. The consequence of these events, regardless of the specific mechanism, is that gene expression is inhibited.
It is thought that sequence complementarity between small RNAs and their RNA targets helps to determine which mechanism, RNA cleavage or translational inhibition, is employed. It is believed that siRNAs which are perfectly complementary with their targets, work by RNA cleavage. Some miRNAs have perfect or near-perfect complementarity with their targets, and RNA cleavage has been demonstrated for at least a few of these miRNAs. Other miRNAs have several mismatches with their targets, and apparently inhibit their targets at the translational level. Again, without being held to a particular theory on the mechanism of action, a general rule is emerging that perfect or near-perfect complementarity causes RNA cleavage, whereas translational inhibition is favored when the miRNA/target duplex contains many mismatches. The apparent exception to this is microRNA 172 (miR172) in plants. One of the targets of miR172 is APETALA2 (AP2), and although miR172 shares near-perfect complementarity with AP2 it appears to cause translational inhibition of AP2 rather than RNA cleavage.
MicroRNAs (miRNAs) are noncoding RNAs of about 19 to about 24 nucleotides (nt) in length that have been identified in both animals and plants (Lagos-Quintana et al., Science 294:853-858 (2001 ), Lagos-Quintana et al., Curr. Biol. 12:735-739 (2002); Lau et al., Science 294:858-862 (2001 ); Lee and Ambros, Science 294:862-864 (2001 ); Llave et al., Plant Cell 14:1605-1619 (2002);
Mourelatos et al., Genes. Dev. 16:720-728 (2002); Park et al., Curr. Biol. 12:1484- 1495 (2002); Reinhart et al., Genes. Dev. 16:1616-1626 (2002)). They are processed from longer precursor transcripts that range in size from approximately 70 to 200 nt, and these precursor transcripts have the ability to form stable hairpin structures. In animals, the enzyme involved in processing miRNA precursors is called dicer, an RNAse Ill-like protein (Grishok et al., Ce// 106:23-34 (2001 ); Hutvagner et al., Science 293:834-838 (2001 ); Ketting et al., Genes. Dev. 15:2654- 2659 (2001 )). Plants also have a dicer-like enzyme, DCL1 (previously named
CARPEL FACTORY/SHORT INTEGUMENTS1/ SUSPENSOR1 ), and recent evidence indicates that it, like dicer, is involved in processing the hairpin precursors to generate mature miRNAs (Park et al., Curr. Biol. 12:1484-1495 (2002); Reinhart et al., Genes Dev. 16:1616-1626 (2002)). Furthermore, it is becoming clear from recent work that at least some miRNA hairpin precursors originate as longer polyadenylated transcripts, and several different miRNAs and associated hairpins can be present in a single transcript (Lagos-Quintana et al., Science 294:853-858 (2001 ); Lee et al., EMBO J. 21 :4663-4670 (2002)). Recent work has also examined the selection of the miRNA strand from the dsRNA product arising from processing of the hairpin by DICER (Schwartz et al., Ce// 115:199-208 (2003)). It appears that the stability (i.e., G:C versus A:U content, and/or mismatches) of the two ends of the processed dsRNA affects the strand selection, with the low stability end being easier to unwind by a helicase activity. The 5' end strand at the low stability end is incorporated into the RISC complex, while the other strand is degraded. MicroRNAs (miRNAs) appear to regulate target genes by binding to complementary sequences located in the transcripts produced by these genes. In the case of lin-4 and let-7, the target sites are located in the 3' UTRs of the target mRNAs (Lee et al., Ce// 75:843-854 (1993); Wightman et al., Ce// 75:855-862 (1993); Reinhart et al., Nature 403:901 -906 (2000); Slack et al., MoI. Ce// 5:659-669 (2000)), and there are several mismatches between the lin-4 and let-7 miRNAs and their target sites. Binding of the lin-4 or let-7 miRNA appears to cause downregulation of steady-state levels of the protein encoded by the target mRNA without affecting the transcript itself (Olsen and Ambros, Dev. Biol. 216:671 -680 (1999)). On the other hand, recent evidence suggests that miRNAs can in some cases cause specific RNA cleavage of the target transcript within the target site, and this cleavage step appears to require 100% complementarity between the miRNA and the target transcript (Hutvagner and Zamore, Science 297:2056-2060 (2002); Llave et al., Plant Cell 14:1605-1619 (2002)). It seems likely that miRNAs can enter at least two pathways of target gene regulation: (1 ) protein downregulation when target complementarity is <100%; and (2) RNA cleavage when target complementarity is 100%. MicroRNAs entering the RNA cleavage pathway are analogous to the 21 -25 nt short interfering RNAs (siRNAs) generated during RNA interference (RNAi) in animals and posttranschptional gene silencing (PTGS) in
plants, and likely are incorporated into an RNA-induced silencing complex (RISC) that is similar or identical to that seen for RNAi.
Identifying the targets of miRNAs with bioinformatics has not been successful in animals, and this is probably due to the fact that animal miRNAs have a low degree of complementarity with their targets. On the other hand, bioinformatic approaches have been successfully used to predict targets for plant miRNAs (Llave et al., Plant Cell 14:1605-1619 (2002); Park et al., Curr. Biol. 12:1484-1495 (2002); Rhoades et al., Ce// 110:513-520 (2002)), and thus it appears that plant miRNAs have higher overall complementarity with their putative targets than do animal miRNAs. Most of these predicted target transcripts of plant miRNAs encode members of transcription factor families implicated in plant developmental patterning or cell differentiation.
Regulatory Sequences:
A recombinant DNA construct (including a suppression DNA construct) of the present invention may comprise at least one regulatory sequence.
A regulatory sequence may be a promoter.
A number of promoters can be used in recombinant DNA constructs (and suppression DNA constructs) of the present invention. The promoters can be selected based on the desired outcome, and may include constitutive, tissue- specific, inducible, or other promoters for expression in the host organism.
High level, constitutive expression of the candidate gene under control of the 35S or UBI promoter may (or may not) have pleiotropic effects, although candidate gene efficacy may be estimated when driven by a constitutive promoter. Use of tissue-specific and/or stress-specific promoters may eliminate undesirable effects, but retain the ability to enhance nitrogen tolerance. This type of effect has been observed in Arabidopsis for drought and cold tolerance (Kasuga et al., Nature Biotechnol. 17:287-91 (1999)).
Suitable constitutive promoters for use in a plant host cell include, for example, the core promoter of the Rsyn7 promoter and other constitutive promoters disclosed in WO 99/43838 and U.S. Patent No. 6,072,050; the core CaMV 35S promoter (Odell et al., Nature 313:810-812 (1985)); rice actin (McElroy et al., Plant Ce// 2:163-171 (1990)); ubiquitin (Christensen et al., Plant MoI. Biol. 12:619-632 (1989) and Christensen et al., Plant MoI. Biol. 18:675-689 (1992)); pEMU (Last et
al., Theor. Appl. Genet. 81 :581 -588 (1991 )); MAS (Velten et al., EMBO J. 3:2723- 2730 (1984)); ALS promoter (U.S. Patent No. 5,659,026), and the like. Other constitutive promoters include, for example, those discussed in U.S. Patent Nos. 5,608,149; 5,608,144; 5,604,121 ; 5,569,597; 5,466,785; 5,399,680; 5,268,463; 5,608,142; and 6,177,611.
In choosing a promoter to use in the methods of the invention, it may be desirable to use a tissue-specific or developmentally regulated promoter.
A tissue-specific or developmentally regulated promoter is a DNA sequence which regulates the expression of a DNA sequence selectively in the cells/tissues of a plant critical to tassel development, seed set, or both, and limits the expression of such a DNA sequence to the period of tassel development or seed maturation in the plant. Any identifiable promoter may be used in the methods of the present invention which causes the desired temporal and spatial expression.
Promoters which are seed or embryo-specific and may be useful in the invention include soybean Kunitz trypsin inhibitor (Kti3, Jofuku and Goldberg, Plant Cell 1 :1079-1093 (1989)), patatin (potato tubers) (Rocha-Sosa, M., et al., EMBO J. 8:23-29 (1989)), convicilin, vicilin, and legumin (pea cotyledons) (Rerie, W.G., et al., MoI. Gen. Genet. 259:149-157 (1991 ); Newbigin, E.J., et al., Planta 180:461 -470 (1990); Higgins, T.J.V., et al., Plant. MoI. Biol. 11 :683-695 (1988)), zein (maize endosperm) (Schemthaner, J. P., et al., EMBO J. 7:1249-1255 (1988)), phaseolin (bean cotyledon) (Segupta-Gopalan, C, et al., Proc. Natl. Acad. Sci. U.S.A. 82:3320-3324 (1995)), phytohemagglutinin (bean cotyledon) (Voelker, T. et al., EMBO J. 6:3571 -3577 (1987)), B-conglycinin and glycinin (soybean cotyledon) (Chen, Z-L, et al., EMBO J. 7:297-302 (1988)), glutelin (rice endosperm), hordein (barley endosperm) (Marris, C, et al., Plant MoI. Biol. 10:359-366 (1988)), glutenin and gliadin (wheat endosperm) (Colot, V., et al., EMBO J. 6:3559-3564 (1987)), and sporamin (sweet potato tuberous root) (Hattori, T., et al., Plant MoI. Biol. 14:595-604 (1990)). Promoters of seed-specific genes operably linked to heterologous coding regions in chimeric gene constructions maintain their temporal and spatial expression pattern in transgenic plants. Such examples include Arabidopsis thaliana 2S seed storage protein gene promoter to express enkephalin peptides in Arabidopsis and Brassica napus seeds (Vanderkerckhove et al., Bio/Technology 7:L929-932 (1989)), bean lectin and bean beta-phaseolin promoters to express
luciferase (Riggs et al., Plant Sci. 63:47-57 (1989)), and wheat glutenin promoters to express chloramphenicol acetyl transferase (Colot et al., EMBO J. 6:3559- 3564 (1987)).
Inducible promoters selectively express an operably linked DNA sequence in response to the presence of an endogenous or exogenous stimulus, for example by chemical compounds (chemical inducers) or in response to environmental, hormonal, chemical, and/or developmental signals. Inducible or regulated promoters include, for example, promoters regulated by light, heat, stress, flooding or drought, phytohormones, wounding, or chemicals such as ethanol, jasmonate, salicylic acid, or safeners.
Promoters for use in the current invention include the following: 1 ) the stress- inducible RD29A promoter (Kasuga et al., Nature Biotechnol. 17:287-91 (1999)); 2) the barley promoter, B22E; expression of B22E is specific to the pedicel in developing maize kernels ("Primary Structure of a Novel Barley Gene Differentially Expressed in Immature Aleurone Layers", Klemsdal et al., MoI. Gen. Genet.
228(1/2):9-16 (1991 )); and 3) maize promoter, Zag2 ("Identification and molecular characterization of ZAG1 , the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS", Schmidt et al., Plant Cell 5(7):729-737 (1993); "Structural characterization, chromosomal localization and phylogenetic evaluation of two pairs of /AG/AMOL/S-like MADS-box genes from maize", Theissen et al., Gene 156(2):155- 166 (1995); NCBI GenBank Accession No. X80206)). Zag2 transcripts can be detected five days prior to pollination to seven to eight days after pollination ("DAP"), and directs expression in the carpel of developing female inflorescences and Ciml which is specific to the nucleus of developing maize kernels. Ciml transcript is detected four to five days before pollination to six to eight DAP. Other useful promoters include any promoter which can be derived from a gene whose expression is maternally associated with developing female florets.
Additional promoters for regulating the expression of the nucleotide sequences of the present invention in plants are stalk-specific promoters. Such stalk-specific promoters include the alfalfa S2A promoter (GenBank Accession No. EF030816; Abrahams et al., Plant MoI. Biol. 27:513-528 (1995)) and S2B promoter (GenBank Accession No. EF030817) and the like, herein incorporated by reference.
Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, DNA fragments of some variation may have identical promoter activity. Promoters that cause a gene to be expressed in most cell types at most times are commonly referred to as "constitutive promoters". New promoters of various types useful in plant cells are constantly being discovered; numerous examples may be found in the compilation by Okamuro, J. K., and Goldberg, R. B., Biochem. Plants 15:1 -82 (1989).
Promoters for use in the current invention may include: RIP2, ml_IP15, ZmCORI , Rab17, CaMV 35S, RD29A, B22E, Zag2, SAM synthetase, ubiquitin, CaMV 19S, nos, Adh, sucrose synthase, R-allele, the vascular tissue preferred promoters S2A (Genbank accession number EF030816) and S2B (GenBank Accession No. EF030817), and the constitutive promoter GOS2 from Zea mays. Other promoters include root preferred promoters, such as the maize NAS2 promoter, the maize Cyclo promoter (US Publication No. 2006/0156439, published July 13, 2006), the maize ROOTMET2 promoter (WO 2005/063998, published July 14, 2005), the CR1 BIO promoter (WO 2006/055487, published May 26, 2006), the CRWAQ81 (WO 2005/035770, published April 21 , 2005) and the maize ZRP2.47 promoter (NCBI Accession No. U38790; NCBI Gl No. 1063664). Recombinant DNA constructs (and suppression DNA constructs) of the present invention may also include other regulatory sequences including, but not limited to, translation leader sequences, introns, and polyadenylation recognition sequences. In another embodiment of the present invention, a recombinant DNA construct of the present invention further comprises an enhancer or silencer. An intron sequence can be added to the 5' untranslated region, the protein- coding region or the 3' untranslated region to increase the amount of the mature message that accumulates in the cytosol. Inclusion of a spliceable intron in the transcription unit in both plant and animal expression constructs has been shown to
increase gene expression at both the mRNA and protein levels up to 1000-fold (Buchman and Berg, MoI. Cell Biol. 8:4395-4405 (1988); CaIMs et al., Genes Dev. 1 :1183-1200 (1987)). Such intron enhancement of gene expression is typically greatest when placed near the 5' end of the transcription unit. Use of maize introns Adh1-S intron 1 , 2, and 6, the Bronze-1 intron are known in the art. See generally, The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, New York (1994).
If polypeptide expression is desired, it is generally desirable to include a polyadenylation region at the 3'-end of a polynucleotide coding region. The polyadenylation region can be derived from the natural gene, from a variety of other plant genes, or from T-DNA. The 3'-end sequence to be added can be derived from, for example, the nopaline synthase or octopine synthase genes, or alternatively from another plant gene, or from a non-plant eukaryotic gene.
A translation leader sequence is a DNA sequence located between the promoter sequence of a gene and the coding sequence. The translation leader sequence is present in the fully processed mRNA upstream of the translation start sequence. The translation leader sequence may affect processing of the primary transcript to mRNA, mRNA stability or translation efficiency. Examples of translation leader sequences have been described (Turner, R. and Foster, G. D., MoI. Biotech. 3:225 (1995)).
Any plant can be selected for the identification of regulatory sequences and genes to be used in recombinant DNA constructs of the present invention. Examples of suitable plant targets for the isolation of genes and regulatory sequences would include but are not limited to alfalfa, apple, apricot, Arabidopsis, artichoke, arugula, asparagus, avocado, banana, barley, beans, beet, blackberry, blueberry, broccoli, brussels sprouts, cabbage, canola, cantaloupe, carrot, cassava, castorbean, cauliflower, celery, cherry, chicory, cilantro, citrus, Clementines, clover, coconut, coffee, corn, cotton, cranberry, cucumber, Douglas fir, eggplant, endive, escarole, eucalyptus, fennel, figs, garlic, gourd, grape, grapefruit, honey dew, jicama, kiwifruit, lettuce, leeks, lemon, lime, Loblolly pine, linseed, maize, mango, melon, mushroom, nectarine, nut, oat, oil palm, oil seed rape, okra, olive, onion, orange, an ornamental plant, palm, papaya, parsley, parsnip, pea, peach, peanut, pear, pepper, persimmon, pine, pineapple, plantain, plum, pomegranate, poplar,
potato, pumpkin, quince, radiata pine, radicchio, radish, rapeseed, raspberry, rice, rye, sorghum, Southern pine, soybean, spinach, squash, strawberry, sugarbeet, sugarcane, sunflower, sweet potato, sweetgum, tangerine, tea, tobacco, tomato, triticale, turf, turnip, a vine, watermelon, wheat, yams, and zucchini. Compositions
A composition of the present invention is a plant comprising in its genome any of the recombinant DNA constructs (including any of the suppression DNA constructs) of the present invention (such as any of the constructs discussed above). Compositions also include any progeny of the plant, and any seed obtained from the plant or its progeny, wherein the progeny or seed comprises within its genome the recombinant DNA construct (or suppression DNA construct). Progeny includes subsequent generations obtained by self-pollination or out-crossing of a plant. Progeny also includes hybrids and inbreds.
In hybrid seed propagated crops, mature transgenic plants can be self- pollinated to produce a homozygous inbred plant. The inbred plant produces seed containing the newly introduced recombinant DNA construct (or suppression DNA construct). These seeds can be grown to produce plants that would exhibit an altered agronomic characteristic (e.g., an increased agronomic characteristic optionally under nitrogen limiting conditions), or used in a breeding program to produce hybrid seed, which can be grown to produce plants that would exhibit such an altered agronomic characteristic. The seeds may be maize seeds.
The plant may be a monocotyledonous or dicotyledonous plant, for example, a maize or soybean plant, such as a maize hybrid plant or a maize inbred plant. The plant may also be sunflower, sorghum, canola, wheat, alfalfa, cotton, rice, barley or millet.
The recombinant DNA construct may be stably integrated into the genome of the plant.
Particularly, embodiments include but are not limited to the following: 1. A plant (for example, a maize or soybean plant) comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%,
69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24, and wherein said plant exhibits increased nitrogen stress tolerance when compared to a control plant not comprising said recombinant DNA construct. The plant may further exhibit an alteration of at least one agronomic characteristic when compared to the control plant.
2. A plant (for example, a maize or soybean plant) comprising in its genome a recombinant DNA construct comprising:
(a) a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; or (b) a suppression DNA construct comprising at least one regulatory element operably linked to:
(i) all or part of: (A) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24, or (B) a full complement of the nucleic acid sequence of (b)(i)(A); or
(ii) a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT3 or LNT3-like polypeptide, and wherein said plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising said recombinant DNA construct. 3. A plant (for example, a maize or soybean plant) comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein said polynucleotide encodes an LNT3 or LNT3-like polypeptide, and wherein said plant exhibits increased nitrogen stress
tolerance when compared to a control plant not comprising said recombinant DNA construct. The plant may further exhibit an alteration of at least one agronomic characteristic when compared to the control plant. The LNT3 or LNT3-like polypeptide may be from Arabidopsis thaliana, Zea mays, Glycine max, Glycine tabacina, Glycine soja or Glycine tomentella.
4. A plant (for example, a maize or soybean plant) comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein said polynucleotide encodes an LNT3 or LNT3-like polypeptide, and wherein said plant exhibits an alteration of at least one agronomic characteristic under nitrogen limiting conditions when compared to a control plant not comprising said recombinant DNA construct. The LNT3 or LNT3- like polypeptide may be from Arabidopsis thaliana, Zea mays, Glycine max, Glycine tabacina, Glycine soja or Glycine tomentella.
5. A plant (for example, a maize or soybean plant) comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24, and wherein said plant exhibits an alteration of at least one agronomic characteristic under nitrogen limiting conditions when compared to a control plant not comprising said recombinant DNA construct.
6. A plant (for example, a maize or soybean plant) comprising in its genome a suppression DNA construct comprising at least one regulatory element operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity,
based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT3 or LNT3-like polypeptide, and wherein said plant exhibits an alteration of at least one agronomic characteristic under nitrogen limiting conditions when compared to a control plant not comprising said suppression DNA construct.
7. A plant (for example, a maize or soybean plant) comprising in its genome a suppression DNA construct comprising at least one regulatory element operably linked to all or part of: (a) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; or (b) a full complement of the nucleic acid sequence of (a), and wherein said plant exhibits an alteration of at least one agronomic characteristic under nitrogen limiting conditions when compared to a control plant not comprising said suppression DNA construct.
8. Any progeny of the above plants in embodiments 1 -7, any seeds of the above plants in embodiments 1 -7, any seeds of progeny of the above plants in embodiments 1 -7, and cells from any of the above plants in embodiments 1 -7 and progeny thereof.
In any of the foregoing embodiments 1 -8 or any other embodiments of the present invention, the recombinant DNA construct (or suppression DNA construct) may comprise at least a promoter functional in a plant as a regulatory sequence.
In any of the foregoing embodiments 1 -8 or any other embodiments of the present invention, the alteration of at least one agronomic characteristic is either an increase or decrease.
In any of the foregoing embodiments 1 -8 or any other embodiments of the present invention, the at least one agronomic characteristic can be selected from the group consisting of greenness, yield, growth rate, biomass, fresh weight at maturation, dry weight at maturation, fruit yield, seed yield, total plant nitrogen content, fruit nitrogen content, seed nitrogen content, nitrogen content in a
vegetative tissue, total plant free amino acid content, fruit free amino acid content, seed free amino acid content, free amino acid content in a vegetative tissue, total plant protein content, fruit protein content, seed protein content, protein content in a vegetative tissue, drought tolerance, nitrogen uptake, root lodging, harvest index, stalk lodging, plant height and ear length. For example, the alteration of at least one agronomic characteristic may be an increase in yield, greenness, or biomass.
In any of the foregoing embodiments 1 -8 or any other embodiments of the present invention, the plant may exhibit the alteration of at least one agronomic characteristic when compared, under nitrogen stress conditions, to a control plant not comprising said recombinant DNA construct (or suppression DNA construct).
One of ordinary skill in the art is familiar with protocols for simulating nitrogen conditions, whether limiting or non-limiting, and for evaluating plants that have been subjected to simulated or naturally-occurring nitrogen conditions, whether limiting or non-limiting. For example, one can simulate nitrogen conditions by giving plants less nitrogen than normally required or no nitrogen over a period of time, and one can evaluate such plants by looking for differences in agronomic characteristics, e.g., changes in physiological and/or physical condition, including (but not limited to) vigor, growth, size, or root length, or in particular, leaf color or leaf area size. Other techniques for evaluating such plants include measuring chlorophyll fluorescence, photosynthetic rates, root growth or gas exchange rates.
The Examples below describe some representative protocols and techniques for simulating nitrogen limiting conditions and/or evaluating plants under such conditions.
One can also evaluate nitrogen stress tolerance by the ability of a plant to maintain sufficient yield (at least 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% yield) in field testing under simulated or naturally-occurring low or high nitrogen conditions (e.g., by measuring for substantially equivalent yield under low or high nitrogen conditions compared to normal nitrogen conditions, or by measuring for less yield loss under low or high nitrogen conditions compared to a control or reference plant).
One of ordinary skill in the art would readily recognize a suitable control or reference plant to be utilized when assessing or measuring an agronomic
characteristic or phenotype of a transgenic plant in any embodiment of the present invention in which a control or preference plant is utilized (e.g., compositions or methods as described herein). For example, by way of non-limiting illustrations:
1. Progeny of a transformed plant which is hemizygous with respect to a recombinant DNA construct (or suppression DNA construct), such that the progeny are segregating into plants either comprising or not comprising the recombinant DNA construct (or suppression DNA construct): the progeny comprising the recombinant DNA construct (or suppression DNA construct) would be typically measured relative to the progeny not comprising the recombinant DNA construct (or suppression DNA construct) (i.e., the progeny not comprising the recombinant DNA construct (or the suppression DNA construct) is the control or reference plant).
2. lntrogression of a recombinant DNA construct (or suppression DNA construct) into an inbred line, such as in maize, or into a variety, such as in soybean: the introgressed line would typically be measured relative to the parent inbred or variety line (i.e., the parent inbred or variety line is the control or reference plant).
3. Two hybrid lines, where the first hybrid line is produced from two parent inbred lines, and the second hybrid line is produced from the same two parent inbred lines except that one of the parent inbred lines contains a recombinant DNA construct (or suppression DNA construct): the second hybrid line would typically be measured relative to the first hybrid line (i.e., the first hybrid line is the control or reference plant).
4. A plant comprising a recombinant DNA construct (or suppression DNA construct): the plant may be assessed or measured relative to a control plant not comprising the recombinant DNA construct (or suppression DNA construct) but otherwise having a comparable genetic background to the plant (e.g., sharing at least 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity of nuclear genetic material compared to the plant comprising the recombinant DNA construct (or suppression DNA construct)). There are many laboratory-based techniques available for the analysis, comparison and characterization of plant genetic backgrounds; among these are Isozyme Electrophoresis, Restriction Fragment Length Polymorphisms (RFLPs), Randomly Amplified Polymorphic DNAs (RAPDs), Arbitrarily Primed Polymerase Chain
Reaction (AP-PCR), DNA Amplification Fingerprinting (DAF), Sequence Characterized Amplified Regions (SCARs), Amplified Fragment Length Polymorphisms (AFLP®s), and Simple Sequence Repeats (SSRs) which are also referred to as Microsatellites. Furthermore, one of ordinary skill in the art would readily recognize that a suitable control or reference plant to be utilized when assessing or measuring an agronomic characteristic or phenotype of a transgenic plant would not include a plant that had been previously selected, via mutagenesis or transformation, for the desired agronomic characteristic or phenotype. Methods
Methods include but are not limited to methods for increasing nitrogen stress tolerance in a plant, methods for evaluating nitrogen stress tolerance in a plant, methods for altering an agronomic characteristic in a plant, methods for determining an alteration of an agronomic characteristic in a plant, and methods for producing seed. The plant may be a monocotyledonous or dicotyledonous plant, for example, a maize or soybean plant. The plant may also be sunflower, sorghum, canola, wheat, alfalfa, cotton, rice, barley or millet. The seed may be a maize or soybean seed, for example, a maize hybrid seed or maize inbred seed. Methods include but are not limited to the following: A method of increasing nitrogen stress tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence (for example, a promoter functional in a plant), wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; and (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct and exhibits increased nitrogen stress tolerance when compared to a control plant not comprising the recombinant DNA construct. The method may further comprise (c) obtaining a progeny plant derived
from the transgenic plant, wherein said progeny plant comprises in its genome the suppression DNA construct and exhibits increased nitrogen tolerance when compared to a control plant not comprising the recombinant DNA construct.
A method of increasing nitrogen stress tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24, or (ii) a full complement of the nucleic acid sequence of (a)(i); and (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct and exhibits increased nitrogen stress tolerance when compared to a control plant not comprising the suppression DNA construct. The method may further comprise (c) obtaining a progeny plant derived from the transgenic plant, wherein said progeny plant comprises in its genome the suppression DNA construct and exhibits increased nitrogen tolerance when compared to a control plant not comprising the suppression DNA construct.
A method of increasing nitrogen stress tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT3 or LNT3-like polypeptide; and (b)
regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct and exhibits increased nitrogen stress tolerance when compared to a control plant not comprising the suppression DNA construct. The method may further comprise (c) obtaining a progeny plant derived from the transgenic plant, wherein said progeny plant comprises in its genome the suppression DNA construct and exhibits increased nitrogen tolerance when compared to a control plant not comprising the suppression DNA construct.
A method of evaluating nitrogen stress tolerance in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence (for example, a promoter functional in a plant), wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; and (c) evaluating the transgenic plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct. The method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (e) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct.
A method of evaluating nitrogen stress tolerance in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%,
85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; or (ii) a full complement of the nucleic acid sequence of (a)(i); (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; and (c) evaluating the transgenic plant for nitrogen stress tolerance compared to a control plant not comprising the suppression DNA construct. The method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (e) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the suppression DNA construct.
A method of evaluating nitrogen stress tolerance in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT3 or LNT3-like polypeptide; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; and (c) evaluating the transgenic plant for nitrogen stress tolerance compared to a control plant not comprising the suppression DNA construct. The method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (e) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the suppression DNA construct.
A method of evaluating nitrogen stress tolerance in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence (for example, a promoter functional in a plant), wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; (c) obtaining a progeny plant derived from said transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (d) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct.
A method of evaluating nitrogen stress tolerance in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; or (ii) a full complement of the nucleic acid sequence of (a)(i); (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; (c) obtaining a progeny plant derived from said transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (d) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct.
A method of evaluating nitrogen stress tolerance in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT3 or LNT3-like polypeptide; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; (c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (d) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct.
A method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least on regulatory sequence (for example, a promoter functional in a plant), wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome said recombinant DNA construct; and (c) determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, for example, under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
The method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (e) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, optionally under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
A method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; or (ii) a full complement of the nucleic acid sequence of (i); (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; and (c) determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, optionally under nitrogen limiting conditions, to a control plant not comprising the suppression DNA construct. The method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (e) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, optionally under nitrogen limiting conditions, to a control plant not comprising the suppression DNA construct.
A method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%,
60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT3 or LNT3-like polypeptide; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; and (c) determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, optionally under nitrogen limiting conditions, to a control plant not comprising the suppression DNA construct. The method may further comprise (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (e) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, optionally under nitrogen limiting conditions, to a control plant not comprising the suppression DNA construct.
A method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence (for example, a promoter functional in a plant), wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome said recombinant DNA construct; (c) obtaining a progeny plant derived from said transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (d) determining whether the progeny plant exhibits an alteration of at least one
agronomic characteristic when compared, optionally under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
A method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to all or part of (i) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; or (ii) a full complement of the nucleic acid sequence of (i); (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; (c) obtaining a progeny plant derived from said transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (d) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, optionally under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
A method of determining an alteration of an agronomic characteristic in a plant, comprising (a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory sequence (for example, a promoter functional in a plant) operably linked to a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50%, 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 56%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT3 or LNT3-like polypeptide; (b) regenerating a transgenic plant from the regenerable plant cell after
step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; (c) obtaining a progeny plant derived from said transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (d) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, optionally under nitrogen limiting conditions, to a control plant not comprising the suppression DNA construct. A method of producing seed (for example, seed that can be sold as a nitrogen stress tolerant product offering) comprising any of the preceding methods, and further comprising obtaining seeds from said progeny plant, wherein said seeds comprise in their genome said recombinant DNA construct (or suppression DNA construct).
In any of the foregoing methods or any other embodiments of methods of the present invention, the step of determining an alteration of an agronomic characteristic in a transgenic plant, if applicable, may comprise determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, under varying environmental conditions, to a control plant not comprising the recombinant DNA construct.
In any of the foregoing methods or any other embodiments of methods of the present invention, the step of determining an alteration of an agronomic characteristic in a progeny plant, if applicable, may comprise determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, under varying environmental conditions, to a control plant not comprising the recombinant DNA construct.
In any of the preceding methods or any other embodiments of methods of the present invention, in said introducing step said regenerable plant cell may comprise a callus cell, an embryogenic callus cell, a gametic cell, a mehstematic cell, or a cell of an immature embryo. The regenerable plant cells may be derived from an inbred maize plant.
In any of the preceding methods or any other embodiments of methods of the present invention, said regenerating step may comprise: (i) culturing said transformed plant cells in a media comprising an embryogenic promoting hormone until callus organization is observed; (ii) transferring said transformed plant cells of step (i) to a first media which includes a tissue organization promoting hormone; and
(iii) subculturing said transformed plant cells after step (ii) onto a second media, to allow for shoot elongation, root development or both.
In any of the preceding methods or any other embodiments of methods of the present invention, the at least one agronomic characteristic may be selected from the group consisting of greenness, yield, growth rate, biomass, fresh weight at maturation, dry weight at maturation, fruit yield, seed yield, total plant nitrogen content, fruit nitrogen content, seed nitrogen content, nitrogen content in a vegetative tissue, total plant free amino acid content, fruit free amino acid content, seed free amino acid content, free amino acid content in a vegetative tissue, total plant protein content, fruit protein content, seed protein content, protein content in a vegetative tissue, drought tolerance, nitrogen uptake, root lodging, and harvest index. The alteration of at least one agronomic characteristic may be an increased in yield, greenness, or biomass.
In any of the preceding methods or any other embodiments of methods of the present invention, the plant may exhibit the alteration of at least one agronomic characteristic when compared, under nitrogen stress conditions, to a control plant not comprising said recombinant DNA construct (or suppression DNA construct).
In any of the preceding methods or any other embodiments of methods of the present invention, alternatives exist for introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence. For example, one may introduce into a regenerable plant cell a regulatory sequence (such as one or more enhancers, optionally as part of a transposable element), and then screen for an event in which the regulatory sequence is operably linked to an endogenous gene encoding a polypeptide of the instant invention.
The introduction of recombinant DNA constructs of the present invention into plants may be carried out by any suitable technique, including but not limited to direct DNA uptake, chemical treatment, electroporation, microinjection, cell fusion, infection, vector mediated DNA transfer, bombardment, or Agrobactehum mediated transformation.
Techniques are set forth in the Examples below for transformation of maize plant cells and soybean plant cells.
Other methods for transforming dicots, primarily by use of Agrobacteήum tumefaciens, and obtaining transgenic plants include those published for cotton (U.S. Patent No. 5,004,863, U.S. Patent No. 5,159,135, U.S. Patent No. 5,518, 908); soybean (U.S. Patent No. 5,569,834, U.S. Patent No. 5,416,011 , McCabe et. al., Bio/Technology 6:923 (1988), Christou et al., Plant Physiol. 87:671 674 (1988)); Brassica (U.S. Patent No. 5,463,174); peanut (Cheng et al., Plant Cell Rep. 15:653 657 (1996), McKently et al., Plant Cell Rep. 14:699 703 (1995)); papaya; and pea (Grant et al., Plant Cell Rep. 15:254-258 (1995)).
Transformation of monocotyledons using electroporation, particle bombardment, and Agrobacteήum have also been reported, for example, transformation and plant regeneration as achieved in asparagus (Bytebier et al., Proc. Natl. Acad. Sci. U.S.A. 84:5354, (1987)); barley (Wan and Lemaux, Plant Physiol. 104:37 (1994)); corn (Rhodes et al., Science 240:204 (1988), Gordon- Kamm et al., Plant Cell 2:603 618 (1990), Fromm et al., Bio/Technology 8:833 (1990), Koziel et al., Bio/Technology 11 :194 (1993), Armstrong et al., Crop Science 35:550-557 (1995)); oat (Somers et al., Bio/Technology 10:1589 (1992)); orchard grass (Horn et al., Plant Cell Rep. 7:469 (1988)); rice (Tohyama et al., Theor. Appl. Genet. 205:34 (1986); Part et al., Plant MoI. Biol. 32:1135 1148, (1996); Abedinia et al., Aust. J. Plant Physiol. 24:133 141 (1997); Zhang and Wu, Theor. Appl. Genet. 76:835 (1988); Zhang et al., Plant Cell Rep. 7:379, (1988); Battraw and Hall, Plant Sci. 86:191 202 (1992); Christou et al., Bio/Technology 9:957 (1991 )); rye (De Ia Pena et al., Nature 325:274 (1987)); sugarcane (Bower and Birch, Plant J. 2:409 (1992)); tall fescue (Wang et al., Bio/Technology 10:691 (1992)); and wheat (Vasil et al., Bio/Technology 10 :667 (1992); U.S. Patent No. 5,631 ,152). There are a variety of methods for the regeneration of plants from plant tissue. The particular method of regeneration will depend on the starting plant tissue and the particular plant species to be regenerated.
The regeneration, development, and cultivation of plants from single plant protoplast transformants or from various transformed explants is well known in the art (Weissbach and Weissbach, In: Methods for Plant Molecular Biology, (Eds.), Academic Press, Inc. San Diego, CA, (1988)). This regeneration and growth process typically includes the steps of selection of transformed cells, culturing those individualized cells through the usual stages of embryonic development through the
rooted plantlet stage. Transgenic embryos and seeds are similarly regenerated. The resulting transgenic rooted shoots are thereafter planted in an appropriate plant growth medium such as soil.
The development or regeneration of plants containing the foreign, exogenous isolated nucleic acid fragment that encodes a protein of interest is well known in the art. The regenerated plants may be self-pollinated to provide homozygous transgenic plants. Otherwise, pollen obtained from the regenerated plants is crossed to seed-grown plants of agronomically important lines. Conversely, pollen from plants of these important lines is used to pollinate regenerated plants. A transgenic plant of the present invention containing a desired polypeptide is cultivated using methods well known to one skilled in the art.
EXAMPLES
The present invention is further illustrated in the following Examples, in which parts and percentages are by weight and degrees are Celsius, unless otherwise stated. It should be understood that these Examples, while indicating embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions. Furthermore, various modifications of the invention in addition to those shown and described herein will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.
EXAMPLE 1 Creation of an Arabidopsis Population with Activation-Tagged Genes
An 18.49-kb T-DNA based binary construct was created, pHSbarENDs2 (SEQ ID NO:1 ; FIG. 1 ), that contains four multimehzed enhancer elements derived from the Cauliflower Mosaic Virus 35S promoter (corresponding to sequences -341 to -64, as defined by Odell et al., Nature 313:810-812 (1985)). The construct also contains vector sequences (pUC9) and a poly-linker (SEQ ID NO:11 ) to allow plasmid rescue, transposon sequences (Ds) to remobilize the T-DNA, and the bar gene to allow for glufosinate selection of transgenic plants. In principle, only the
10.8-kb segment from the right border (RB) to left border (LB) inclusive will be transferred into the host plant genome. Since the enhancer elements are located near the RB, they can induce cis-activation of genomic loci following T-DNA integration. Arabidopsis activation-tagged populations were created by whole plant
Agrobacteήum transformation. The pHSbarENDs2 construct was transformed into Agrobacteήum tumefaciens strain C58, grown in lysogeny broth medium at 25 0C to OD600 ~1.0. Cells were then pelleted by centhfugation and resuspended in an equal volume of 5% sucrose/0.05% Silwet L-77 (OSI Specialties, Inc). At early bolting, soil grown Arabidopsis thaliana ecotype CoI-O were top watered with the Agrobacterium suspension. A week later, the same plants were top watered again with the same Agrobacterium strain in sucrose/Silwet. The plants were then allowed to set seed as normal. The resulting T1 seed were sown on soil, and transgenic seedlings were selected by spraying with glufosinate (Finale®; AgrEvo; Bayer Environmental Science). A total of 100,000 glufosinate resistant T1 seedlings were selected. T2 seed from each line was kept separate.
EXAMPLE 2
Screens to Identify Lines with Tolerance to Low Nitrogen From each of 100,000 separate T1 activation-tagged lines, eleven T2 plants are sown on square plates (15 mm X 15 mm) containing 0.5x N-Free Hoagland's, 0.4 mM potassium nitrate, 0.1 % sucrose, 1 mM MES and 0.25% Phytagel™ (Low N medium). Five lines are plated per plate, and the inclusion of 9 wild-type individuals on each plate makes for a total of 64 individuals in an 8x8 grid pattern (see FIG. 11 ). Plates are kept for three days in the dark at 4 0C to stratify seeds, and then placed horizontally for nine days at 22 0C light and 20 0C dark. Photoperiod is sixteen hours light; eight hours dark, with an average light intensity of -200 mmol/m2/s. Plates are rotated and shuffled daily within each shelf. At day twelve (nine days of growth), seedling status is evaluated by imaging the entire plate.
After masking the plate image to remove background color, two different measurements are collected for each individual: total rosette area, and the percentage of color that falls into a green color bin. Using hue, saturation and intensity data (HSI), the green color bin consists of hues 50 to 66. Total rosette area is used as a measure of plant biomass, whereas the green color bin has been
shown by dose-response studies to be an indicator of nitrogen assimilation (see FIG. 12).
Lines with a significant increase in total rosette area and/or green color bin, when compared to the wild-type controls, are designated as Phase 1 hits. Phase 1 hits are re-screened in duplicate under the same assay conditions (Phase 2 screen). A Phase 3 screen was also employed to further validate mutants that passed through Phases 1 and 2. In Phase 3, each line was plated separately on Low N medium, such that 32 T2 individuals were grown next to 32 wild-type individuals on one plate, providing greater statistical rigor to the analysis. If a line shows a significant difference from the controls in Phase 3, the line is then considered a validated nitrogen-deficiency tolerant line.
EXAMPLE 3
Identification of Activation-Tagged Genes
Genes flanking the T-DNA insert in nitrogen tolerant lines are identified using one, or both, of the following two standard procedures: (1 ) thermal asymmetric interlaced (TAIL) PCR (Liu et al., Plant J. 8:457-63 (1995)); and (2) SAIFF PCR (Siebert et al., Nucleic Acids Res. 23:1087-1088 (1995)). In lines with complex multimehzed T-DNA inserts, TAIL PCR and SAIFF PCR may both prove insufficient to identify candidate genes. In these cases, other procedures, including inverse PCR, plasmid rescue and/or genomic library construction, can be employed.
A successful result is one where a single TAIL or SAIFF PCR fragment contains a T-DNA border sequence and Arabidopsis genomic sequence. Once a tag of genomic sequence flanking a T-DNA insert is obtained, candidate genes are identified by alignment to publicly available Arabidopsis genome sequence. Specifically, the annotated gene nearest the 35S enhancer elements/T-DNA RB are candidates for genes that are activated.
To verify that an identified gene is truly near a T-DNA and to rule out the possibility that the TAIL/SAIFF fragment is a chimeric cloning artifact, a diagnostic PCR on genomic DNA is done with one oligo in the T-DNA and one oligo specific for the candidate gene. Genomic DNA samples that give a PCR product are interpreted as representing a T-DNA insertion. This analysis also verifies a situation in which more than one insertion event occurs in the same line, e.g., if multiple differing genomic fragments are identified in TAIL and/or SAIFF PCR analyses.
EXAMPLE 4A
Identification of Activation-Tagged LNT3 Gene
An activation tagged-line (line 112579) showing nitrogen-deficiency tolerance was further analyzed. DNA from the line was extracted, and genes flanking the T- DNA insert in the mutant line were identified using SAIFF PCR (Siebert et al., Nucleic Acids Res. 23:1087-1088 (1995)). A single amplified fragment was identified that contained T-DNA border sequence and Arabidopsis genomic sequence. Once a tag of genomic sequence flanking a T-DNA insert was obtained, a candidate gene was identified by alignment to the completed Arabidopsis genome. Specifically, the annotated gene nearest the 35S enhancer elements/T-DNA RB was the candidate for the gene activated in the line. In the case of line 112579 the gene nearest the 35S enhancers was At3g43430 (SEQ ID NO:17), encoding the Arabidopsis thaliana "unknown protein" referred to herein as LNT3 (SEQ ID NO:18; NCBI GI 145339089). EXAMPLE 4B
Validation of Candidate Arabidopsis Gene (At3g43430) via Transformation into Arabidopsis
Candidate genes can be transformed into Arabidopsis and overexpressed under the 35S promoter. If the same or similar phenotype is observed in the transgenic line as in the parent activation-tagged line, then the candidate gene is considered to be a validated "lead gene" in Arabidopsis.
The candidate Arabidopsis At3g43430 gene (SEQ ID NO:17) was tested for its ability to confer nitrogen-deficiency tolerance in the following manner.
The At3g43430 cDNA was amplified by RT-PCR with the following primers: 1. At3g43430-5' attB forward primer (SEQ ID NO:19)
The forward primer contains the attB1 sequence
(ACAAGTTTGTACAAAAAAGCAGGCT; SEQ ID NO:12) and a consensus Kozak sequence (CAACA) upstream of the first 21 nucleotides of the protein-coding region, beginning with the ATG start codon, of said cDNA. 2. At3g43430-3' attB reverse primer (SEQ ID NO:20)
The reverse primer contains the attB2 sequence (ACCACTTTGTACAAGAAAGCTGGGT; SEQ ID NO:13) adjacent to the reverse
complement of the last 21 nucleotides of the protein-coding region, beginning with the reverse complement of the stop codon, of said cDNA.
Using the INVITROGEN™ GATEWAY® Clonase™ technology, a BP Recombination Reaction was performed with pDONR™Zeo (SEQ ID NO:2; FIG. 2). This process removes the bacteria lethal ccdB gene, as well as the chloramphenicol resistance gene (CAM) from pDONR™Zeo and directionally cloned the PCR product with flanking attB1 and attB2 sites creating an entry clone. This entry clone was used for a subsequent LR Recombination Reaction with a destination vector, as follows. A 16.8-kb T-DNA based binary vector (destination vector), called pBC-yellow
(SEQ ID NO:4; FIG. 4), was constructed with a 1.3-kb 35S promoter immediately upstream of the INVITROGEN™ GATEWAY® C1 conversion insert, which contains the bacterial lethal ccdB gene as well as the chloramphenicol resistance gene (CAM) flanked by attR1 and attR2 sequences. The vector also contains the RD29a promoter driving expression of the gene for ZS-Yellow (INVITROGEN™), which confers yellow fluorescence to transformed seed. Using the INVITROGEN™ GATEWAY® technology, an LR Recombination Reaction was performed on the entry clone containing the directionally cloned PCR product and pBC-yellow. This amplification allowed for rapid and directional cloning of the At3g43430 gene behind the 35S promoter in pBC-yellow.
Applicants then introduced the 35S promoter:At3g43430 expression construct into wild-type Arabidopsis ecotype CoI-O, using the same Agrobacterium- mediated transformation procedure described in Example 1. Transgenic T1 seeds were selected by yellow fluorescence, and T1 seeds were plated next to wild-type Arabidopsis ecotype CoI-O seeds on low nitrogen medium. Growth conditions and imaging analysis were as described in Example 2. It was found that the original phenotype from activation tagging, tolerance to nitrogen limiting conditions, could be recapitulated in wild-type Arabidopsis plants that were transformed with a construct where At3g43430 was directly expressed by the 35S promoter. EXAMPLE 5A
Identification of LNT3 homoloqs
Sequences homologous to the LNT3 polypeptide can be identified using sequence comparison algorithms such as BLAST (Basic Local Alignment Search
Tool; Altschul et al., J. MoI. Biol. 215:403-410 (1993); see also the explanation of the BLAST algorithm on the world wide web site for the National Center for Biotechnology Information (NCBI) at the National Library of Medicine of the National Institutes of Health). The LNT3 amino acid sequence was analyzed for similarity to all publicly available amino acid sequences contained in the "nr" database using the BLASTP algorithm provided by NCBI. The top hits were an Arabidopsis thaliana C3HC4-type RING zinc finger protein (NCBI Gl No. 18420336; SEQ ID NO:22) and a Zea mays RING zinc finger-like protein (NCBI Gl No. 195604260; SEQ ID NO:24). The Arabidopsis LNT3 protein is 69.6% identical to SEQ ID NO:22 (with a pLog of 50) and 69% identical to SEQ ID NO:24 (with a pLog of 50).
EXAMPLE 5B
Preparation of a Plant Expression Vector Containing a Homolog to the Arabidopsis Lead Gene Sequences homologous to the Arabidopsis LNT3 protein (e.g. SEQ ID NO:22 and SEQ ID NO:24) can be identified using sequence comparison algorithms such as BLAST (Basic Local Alignment Search Tool; Altschul et al., J. MoI. Biol. 215:403-410 (1993); see also the explanation of the BLAST algorithm on the world wide web site for the National Center for Biotechnology Information at the National Library of Medicine of the National Institutes of Health). Sequences encoding homologous LNT3 proteins (for example, SEQ ID NO:21 and SEQ ID NO:23) can be PCR-amplified by either of the following methods.
Method 1 (RNA-based): If the 5' and 3' sequence information for the protein- coding region of a gene encoding an LNT3-like protein is available, gene-specific primers can be designed as outlined in Example 4B. RT-PCR can be used with plant RNA to obtain a nucleic acid fragment containing the protein-coding region flanked by attB1 (SEQ ID NO:12) and attB2 (SEQ ID NO:13) sequences. The primer may contain a consensus Kozak sequence (CAACA) upstream of the start codon.
Method 2 (DNA-based): Alternatively, if a cDNA clone is available for a gene encoding an LNT3-like protein, the entire cDNA insert (containing 5' and 3' non- coding regions) can be PCR amplified. Forward and reverse primers can be designed that contain either the attB1 sequence and vector-specific sequence that precedes the cDNA insert or the attB2 sequence and vector-specific sequence that
follows the cDNA insert, respectively. For a cDNA insert cloned into the vector pBlueschpt SK+, the forward primer VC062 (SEQ ID NO:15) and the reverse primer VC063 (SEQ ID NO:16) can be used.
Methods 1 and 2 can be modified according to procedures known by one skilled in the art. For example, the primers of Method 1 may contain restriction sites instead of attB1 and attB2 sites, for subsequent cloning of the PCR product into a vector containing attB1 and attB2 sites. Additionally, Method 2 can involve amplification from a cDNA clone, a lambda clone, a BAC clone or genomic DNA.
A PCR product obtained by either method above can be combined with the Gateway® donor vector, such as pDONR™/Zeo (Invitrogen™; FIG. 2; SEQ ID NO:2) or pDONR™221 (Invitrogen™; FIG. 3; SEQ ID NO:3), using a BP Recombination Reaction. This process removes the bacteria lethal ccdB gene, as well as the chloramphenicol resistance gene (CAM) from pDONR™221 and directionally clones the PCR product with flanking attB1 and attB2 sites to create an entry clone. Using the Invitrogen™ Gateway® Clonase™ technology, the sequence encoding the LNT3-like protein from the entry clone can then be transferred to a suitable destination vector, such as pBC-Yellow (FIG. 4; SEQ ID NO:4), PHP27840 (FIG. 5; SEQ ID NO:5) or PHP23236 (FIG. 6; SEQ ID NO:6), to obtain a plant expression vector for use with Arabidopsis, soybean, and corn, respectively. The attP1 and attP2 sites of donor vectors pDONR™/Zeo or pDONR™221 are shown in Figures 2 and 3, respectively. The attR1 and attR2 sites of destination vectors pBC-Yellow, PHP27840, and PHP23236 are shown in Figures 4, 5, and 6, respectively.
Alternatively, a MultiSite Gateway® LR recombination reaction between multiple entry clones and a suitable destination vector can be performed to create an expression vector.
EXAMPLE 6
Preparation of Soybean Expression Vectors and Transformation of Soybean with Validated Arabidopsis Lead Genes Soybean plants can be transformed to overexpress a validated Arabidopsis lead gene or corresponding homologs from various species in order to examine the resulting phenotype.
The same GATEWAY® entry clone described in Example 4B can be used to directionally clone each gene into the PHP27840 vector (SEQ ID NO:5; FIG. 5) such that expression of the gene is under control of the SCP1 promoter.
Soybean embryos may then be transformed with the expression vector comprising sequences encoding the instant polypeptides.
To induce somatic embryos, cotyledons, 3-5 mm in length dissected from surface sterilized, immature seeds of the soybean cultivar A2872, can be cultured in the light or dark at 26 0C on an appropriate agar medium for six to ten weeks. Somatic embryos, which produce secondary embryos, are then excised and placed into a suitable liquid medium. After repeated selection for clusters of somatic embryos which multiply as early, globular staged embryos, the suspensions are maintained as described below.
Soybean embryogenic suspension cultures can be maintained in 35 ml_ liquid media on a rotary shaker, 150 rpm, at 26 0C with florescent lights on a 16:8 hour day/night schedule. Cultures are subcultured every two weeks by inoculating approximately 35 mg of tissue into 35 ml_ of liquid medium.
Soybean embryogenic suspension cultures may then be transformed by the method of particle gun bombardment (Klein et al., Nature (London) 327:70-73 (1987), U.S. Patent No. 4,945,050). A DUPONT BIOLISTIC™ PDS1000/HE instrument (helium retrofit) can be used for these transformations.
A selectable marker gene which can be used to facilitate soybean transformation is a chimeric gene composed of the 35S promoter from cauliflower mosaic virus (Odell et al., Nature 313:810-812 (1985)), the hygromycin phosphotransferase gene from plasm id pJR225 (from E. coir, Gritz et al., Gene 25:179-188 (1983)) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacteήum tumefaciens. Another selectable marker gene which can be used to facilitate soybean transformation is an herbicide-resistant acetolactate synthase (ALS) gene from soybean or Arabidopsis. ALS is the first common enzyme in the biosynthesis of the branched-chain amino acids valine, leucine and isoleucine. Mutations in ALS have been identified that convey resistance to some or all of three classes of inhibitors of ALS (US Patent No. 5,013,659; the entire contents of which are herein incorporated by reference). Expression of the herbicide-resistant ALS gene can be under the control of a SAM
synthetase promoter (U.S. Patent Application No. US-2003-0226166-A1 ; the entire contents of which are herein incorporated by reference).
To 50 μl_ of a 60 mg/mL 1 μm gold particle suspension is added (in order): 5 μl_ DNA (1 μg/μL), 20 μl_ spermidine (0.1 M), and 50 μl_ CaCI2 (2.5 M). The particle preparation is then agitated for three minutes, spun in a microfuge for 10 seconds and the supernatant removed. The DNA-coated particles are then washed once in 400 μl_ 70% ethanol and resuspended in 40 μl_ of anhydrous ethanol. The DNA/particle suspension can be sonicated three times for one second each. Five μl_ of the DNA-coated gold particles are then loaded on each macro carrier disk.
Approximately 300-400 mg of a two-week-old suspension culture is placed in an empty 60x15 mm petri dish and the residual liquid removed from the tissue with a pipette. For each transformation experiment, approximately 5-10 plates of tissue are normally bombarded. Membrane rupture pressure is set at 1100 psi and the chamber is evacuated to a vacuum of 28 inches mercury. The tissue is placed approximately 3.5 inches away from the retaining screen and bombarded three times. Following bombardment, the tissue can be divided in half and placed back into liquid and cultured as described above.
Five to seven days post bombardment, the liquid media may be exchanged with fresh media, and eleven to twelve days post bombardment, with fresh media containing 50 mg/mL hygromycin. This selective media can be refreshed weekly. Seven to eight weeks post bombardment, green, transformed tissue may be observed growing from untransformed, necrotic embryogenic clusters. Isolated green tissue is removed and inoculated into individual flasks to generate new, clonally propagated, transformed embryogenic suspension cultures. Each new line may be treated as an independent transformation event. These suspensions can then be subcultured and maintained as clusters of immature embryos or regenerated into whole plants by maturation and germination of individual somatic embryos. Soybean plants transformed with validated genes can be assayed to study agronomic characteristics relative to control or reference plants. For example, yield enhancement and/or stability under low and high nitrogen conditions (e.g., nitrogen limiting conditions and nitrogen-sufficient conditions) can be assayed.
EXAMPLE 7
Transformation of Maize with Validated Arabidopsis Lead Genes Using Particle Bombardment Maize plants can be transformed to overexpress a validated Arabidopsis lead gene or corresponding homologs from various species in order to examine the resulting phenotype.
The same GATEWAY® entry clone described in Example 4B can be used to directionally clone each gene into a maize transformation vector. Expression of the gene in the maize transformation vector can be under control of a constitutive promoter such as the maize ubiquitin promoter (Christensen et al., Plant MoI. Biol. 12:619-632 (1989) and Christensen et al., Plant MoI. Biol. 18:675-689 (1992))
The recombinant DNA construct described above can then be introduced into maize cells by the following procedure. Immature maize embryos can be dissected from developing caryopses derived from crosses of the inbred maize lines H99 and LH132. The embryos are isolated ten to eleven days after pollination when they are 1.0 to 1.5 mm long. The embryos are then placed with the axis-side facing down and in contact with agarose-solidified N6 medium (Chu et al., Sci. Sin. Peking 18:659-668 (1975)). The embryos are kept in the dark at 27 0C. Friable embryogenic callus consisting of undifferentiated masses of cells with somatic proembryoids and embryoids borne on suspensor structures proliferates from the scutellum of these immature embryos. The embryogenic callus isolated from the primary explant can be cultured on N6 medium and sub-cultured on this medium every two to three weeks.
The plasmid, p35S/Ac (obtained from Dr. Peter Eckes, Hoechst Ag, Frankfurt, Germany) may be used in transformation experiments in order to provide for a selectable marker. This plasmid contains the pat gene (see European Patent Publication 0 242 236) which encodes phosphinothricin acetyl transferase (PAT). The enzyme PAT confers resistance to herbicidal glutamine synthetase inhibitors such as phosphinothricin. The pat gene in p35S/Ac is under the control of the 35S promoter from cauliflower mosaic virus (Odell et al., Nature 313:810-812 (1985)) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacterium tumefaciens.
The particle bombardment method (Klein et al., (1987) Nature 327:70-73) may be used to transfer genes to the callus culture cells. According to this method, gold particles (1 μm in diameter) are coated with DNA using the following technique. Ten μg of plasmid DNAs are added to 50 μl_ of a suspension of gold particles (60 mg per ml_). Calcium chloride (50 μl_ of a 2.5 M solution) and spermidine free base (20 μl_ of a 1.0 M solution) are added to the particles. The suspension is vortexed during the addition of these solutions. After ten minutes, the tubes are briefly centhfuged (5 sec at 15,000 rpm) and the supernatant removed. The particles are resuspended in 200 μl_ of absolute ethanol, centhfuged again and the supernatant removed. The ethanol rinse is performed again and the particles resuspended in a final volume of 30 μl_ of ethanol. An aliquot (5 μl_) of the DNA- coated gold particles can be placed in the center of a Kapton™ flying disc (Bio-Rad Labs). The particles are then accelerated into the maize tissue with a BIOLISTIC™ PDS-1000/He (Bio-Rad Instruments, Hercules CA), using a helium pressure of 1000 psi, a gap distance of 0.5 cm and a flying distance of 1.0 cm.
For bombardment, the embryogenic tissue is placed on filter paper over agarose-solidified N6 medium. The tissue is arranged as a thin lawn and covers a circular area of about 5 cm in diameter. The petri dish containing the tissue can be placed in the chamber of the PDS-1000/He approximately 8 cm from the stopping screen. The air in the chamber is then evacuated to a vacuum of 28 inches of Hg. The macrocarrier is accelerated with a helium shock wave using a rupture membrane that bursts when the He pressure in the shock tube reaches 1000 psi.
Seven days after bombardment the tissue can be transferred to N6 medium that contains bialaphos (5 mg per liter) and lacks casein or proline. The tissue continues to grow slowly on this medium. After an additional two weeks the tissue can be transferred to fresh N6 medium containing bialaphos. After six weeks, areas of about 1 cm in diameter of actively growing callus can be identified on some of the plates containing the bialaphos-supplemented medium. These calli may continue to grow when sub-cultured on the selective medium. Plants can be regenerated from the transgenic callus by first transferring clusters of tissue to N6 medium supplemented with 0.2 mg per liter of 2,4-D. After
two weeks the tissue can be transferred to regeneration medium (Fromm et al., Bio/Technology 8:833-839 (1990)).
Transgenic TO plants can be regenerated and their phenotype determined following HTP (high throughput) procedures. T1 seed can be collected. T1 plants can be grown under nitrogen limiting conditions, for example 1 mM nitrate, and analyzed for phenotypic changes. The following parameters can be quantified using image analysis: plant area, volume, growth rate and color analysis can be collected and quantified. Overexpression constructs that result in an alteration, compared to suitable control plants, in greenness (green color bin), yield, growth rate, biomass, fresh or dry weight at maturation, fruit or seed yield, total plant nitrogen content, fruit or seed nitrogen content, free amino acid content in the whole plant, free amino acid content in the fruit or seed, protein content in the fruit or seed, or protein content in a vegetative tissue can be considered evidence that the Arabidopsis lead gene functions in maize to enhance tolerance to nitrogen deprivation (increased nitrogen tolerance).
EXAMPLE 8 Electroporation of Agrobacterium tumefaciens LBA4404
(General Description) Electroporation competent cells (40 μl_), such as Agrobacterium tumefaciens LBA4404 containing PHP10523 (FIG. 7; SEQ ID NO:7), are thawed on ice (20-30 min). PHP10523 contains VIR genes for T-DNA transfer, an Agrobacterium low copy number plasmid origin of replication, a tetracycline resistance gene, and a Cos site for in vivo DNA bimolecular recombination. Meanwhile the electroporation cuvette is chilled on ice. The electroporator settings are adjusted to 2.1 kV. A DNA aliquot (0.5 μl_ parental DNA at a concentration of 0.2 μg -1.0 μg in low salt buffer or twice distilled H2O) is mixed with the thawed Agrobacterium tumefaciens LBA4404 cells while still on ice. The mixture is transferred to the bottom of electroporation cuvette and kept at rest on ice for 1 -2 min. The cells are electroporated (Eppendorf electroporator 2510) by pushing the "pulse" button twice (ideally achieving a 4.0 millisecond pulse). Subsequently, 0.5 ml_ of room temperature 2xYT medium (or SOC medium) are added to the cuvette and transferred to a 15 ml_ snap-cap tube (e.g., FALCON™ tube). The cells are incubated at 28-30 0C, 200-250 rpm for 3 h.
Aliquots of 250 μl_ are spread onto plates containing YM medium and 50 μg/mL spectinomycin and incubated three days at 28-30 0C. To increase the number of transformants one of two optional steps can be performed:
Option 1 : Overlay plates with 30 μL of 15 mg/mL hfampicin. LBA4404 has a chromosomal resistance gene for rifampicin. This additional selection eliminates some contaminating colonies observed when using poorer preparations of LBA4404 competent cells.
Option 2: Perform two replicates of the electroporation to compensate for poorer electrocompetent cells. Identification of transformants:
Four independent colonies are picked and streaked on plates containing AB minimal medium and 50 μg/mL spectinomycin for isolation of single colonies. The plates are incubated at 28 0C for two to three days. A single colony for each putative cointegrate is picked and inoculated with 4 ml_ of 10 g/L bactopeptone, 10 g/L yeast extract, 5 g/L sodium chloride and 50 mg/L spectinomycin. The mixture is incubated for 24 h at 28 0C with shaking. Plasmid DNA from 4 mL of culture is isolated using Qiagen Miniprep and an optional Buffer PB wash. The DNA is eluted in 30 μL. Aliquots of 2 μL are used to electroporate 20 μL of DH10b + 20 μL of twice distilled H2O as per above. Optionally a 15 μL aliquot can be used to transform 75-100 μL of INVITROGEN™ Library Efficiency DH5α. The cells are spread on plates containing LB medium and 50 μg/mL spectinomycin and incubated at 37 0C overnight.
Three to four independent colonies are picked for each putative cointegrate and inoculated 4 mL of 2xYT medium (10 g/L bactopeptone, 10 g/L yeast extract, 5 g/L sodium chloride) with 50 μg/mL spectinomycin. The cells are incubated at 37 0C overnight with shaking. Next, isolate the plasmid DNA from 4 mL of culture using QIAprep® Miniprep with optional Buffer PB wash (elute in 50 μL). Use 8 μL for digestion with Sail (using parental DNA and PHP10523 as controls). Three more digestions using restriction enzymes BamHI, EcoRI, and Hindlll are performed for 4 plasm ids that represent 2 putative cointegrates with correct Sail digestion pattern (using parental DNA and PHP10523 as controls). Electronic gels are recommended for comparison.
Alternatively, for high throughput applications, such as that described for Gaspe Flint Derived Maize Lines (Example 12), instead of evaluating the resulting cointegrate vectors by restriction analysis, three colonies can be simultaneously used for the infection step as described in Example 9 (transformation via Agrobacterium).
EXAMPLE 9
Transformation of Maize Using Agrobacterium
Maize plants can be transformed to overexpress a validated Arabidopsis lead gene or the corresponding homologs from various species in order to examine the resulting phenotype.
Agrobacterium-meό\ateό transformation of maize is performed essentially as described by Zhao et al., in Meth. MoI. Biol. 318:315-323 (2006) (see also Zhao et al., MoI. Breed. 8:323-333 (2001 ) and U.S. Patent No. 5,981 ,840 issued November 9, 1999, incorporated herein by reference). The transformation process involves bacterium inoculation, co-cultivation, resting, selection and plant regeneration.
1. Immature Embryo Preparation:
Immature maize embryos are dissected from caryopses and placed in a 2 mL microtube containing 2 mL PHI-A medium.
2. Agrobacterium Infection and Co-Cultivation of Immature Embryos: 2.1 Infection Step:
PHI-A medium of (1 ) is removed with 1 mL micropipettor, and 1 mL of Agrobacterium suspension is added. The tube is gently inverted to mix. The mixture is incubated for 5 min at room temperature. 2.2 Co-culture Step: The Agrobacterium suspension is removed from the infection step with a 1 mL micropipettor. Using a sterile spatula the embryos are scraped from the tube and transferred to a plate of PHI-B medium in a 100x15 mm Petri dish. The embryos are oriented with the embryonic axis down on the surface of the medium. Plates with the embryos are cultured at 20 0C, in darkness, for three days. L- Cysteine can be used in the co-cultivation phase. With the standard binary vector, the co-cultivation medium supplied with 100-400 mg/L L-cysteine is critical for recovering stable transgenic events.
3. Selection of Putative Transgenic Events:
To each plate of PHI-D medium in a 100x15 mm Petri dish, 10 embryos are transferred, maintaining orientation and the dishes are sealed with parafilm. The plates are incubated in darkness at 28 0C. Actively growing putative events, as pale yellow embryonic tissue, are expected to be visible in six to eight weeks. Embryos that produce no events may be brown and necrotic, and little friable tissue growth is evident. Putative transgenic embryonic tissue is subcultured to fresh PHI-D plates at two-three week intervals, depending on growth rate. The events are recorded. 4. Regeneration of TO plants:
Embryonic tissue propagated on PHI-D medium is subcultured to PHI-E medium (somatic embryo maturation medium), in 100x25 mm Petri dishes and incubated at 28 0C, in darkness, until somatic embryos mature, for about ten to eighteen days. Individual, matured somatic embryos with well-defined scutellum and coleoptile are transferred to PHI-F embryo germination medium and incubated at 28 0C in the light (about 80 μE from cool white or equivalent fluorescent lamps). In seven to ten days, regenerated plants, about 10 cm tall, are potted in horticultural mix and hardened-off using standard horticultural methods.
Media for Plant Transformation:
1. PHI-A: 4g/L CHU basal salts, 1.0 mL/L 1000X Eriksson's vitamin mix, 0.5 mg/L thiamin HCI, 1.5 mg/L 2,4-D, 0.69 g/L L-proline, 68.5 g/L sucrose, 36 g/L glucose, pH 5.2. Add 100 μM acetosyhngone
(filter-sterilized).
2. PHI-B: PHI-A without glucose, increase 2,4-D to 2 mg/L, reduce sucrose to 30 g/L and supplemented with 0.85 mg/L silver nitrate (filter-sterilized), 3.0 g/L Gelrite®, 100 μM acetosyhngone (filter- sterilized), pH 5.8.
3. PHI-C: PHI-B without Gelrite® and acetosyringonee, reduce 2,4-D to 1.5 mg/L and supplemented with 8.0 g/L agar, 0.5 g/L 2-[N- morpholino]ethane-sulfonic acid (MES) buffer, 100 mg/L carbenicillin (filter-sterilized). 4. PHI-D: PHI-C supplemented with 3 mg/L bialaphos (filter-sterilized).
5. PHI-E: 4.3 g/L of Murashige and Skoog (MS) salts, (Gibco, BRL
11117-074), 0.5 mg/L nicotinic acid, 0.1 mg/L thiamine HCI, 0.5 mg/L
pyridoxine HCI, 2.0 mg/L glycine, 0.1 g/L myo-inositol, 0.5 mg/L zeatin (Sigma, Cat. No. Z-0164), 1 mg/L indole acetic acid (IAA), 26.4 μg/L abscisic acid (ABA), 60 g/L sucrose, 3 mg/L bialaphos (filter-sterilized), 100 mg/L carbenicillin (filter-sterilized), 8 g/L agar, pH 5.6.
6. PHI-F: PHI-E without zeatin, IAA, ABA; reduce sucrose to 40 g/L; replacing agar with 1.5 g/L Gelrite®; pH 5.6.
Plants can be regenerated from the transgenic callus by first transferring clusters of tissue to N6 medium supplemented with 0.2 mg per liter of 2,4-D. After two weeks the tissue can be transferred to regeneration medium (Fromm et al., Bio/Technology 8:833-839 (1990)).
Transgenic TO plants can be regenerated and their phenotype determined. T1 seed can be collected.
Furthermore, a recombinant DNA construct containing a validated Arabidopsis gene can be introduced into a maize inbred line either by direct transformation or introgression from a separately transformed line.
Transgenic plants, either inbred or hybrid, can undergo more vigorous field- based experiments to study yield enhancement and/or stability under nitrogen limiting and nitrogen non-limiting conditions. Subsequent yield analysis can be done to determine whether plants that contain the validated Arabidopsis lead gene have an improvement in yield performance (under nitrogen limiting or non-limiting conditions), when compared to the control (or reference) plants that do not contain the validated Arabidopsis lead gene. Plants containing the validated Arabidopsis lead gene would have less yield loss relative to the control plants, for example, at least 25% less yield loss, under nitrogen limiting conditions, or would have increased yield relative to the control plants under nitrogen non-limiting conditions.
EXAMPLE 10A
Preparation of Expression Vector for Transformation of Maize Lines with Validated Candidate
Arabidopsis Gene (At3g43430) Using Agrobacterium Using the INVITROGEN™ GATEWAY® technology, an LR Recombination Reaction can be performed with the same GATEWAY® entry clone described in
Example 4B (containing the Arabidopsis LNT3 gene), entry clone PHP23112 (SEQ ID NO:14), entry clone PHP20234 (SEQ ID NO:9; FIG. 9) and destination vector PHP22655 (SEQ ID NO:10; FIG. 10) to create the precursor plasmid PHP28694, which has the following expression cassettes: 1. Ubiquitin promoter::moPAT::Pinll terminator cassette expressing the PAT herbicide resistance gene used for selection during the transformation process.
2. LTP2 promoter::DS-RED2::Pinll terminator cassette expressing the DS- RED color marker gene used for seed sorting.
3. Ubiquitin promoter::AT-LNT3::Pinll terminator cassette over expressing the gene of interest, Arabidopsis LNT3.
EXAMPLE 10B Transformation of Maize Lines with Validated Candidate
Arabidopsis Gene (At3g43430) Using Aqrobacterium The LNT3 expression cassette present in vector PHP28694 (described in Example 10A) can be introduced into a maize inbred line, or a transformable maize line derived from an elite maize inbred line, using
transformation as described in Examples 8 and 9.
Expression vector PHP28694 can be electroporated into the LBA4404 Agrobacterium strain containing vector PHP10523 (SEQ ID NO:7, FIG. 7) to create the co-integrate vector PHP28845, which contains the LNT3 expression cassette. The co-integrate vector PHP28845 is formed by recombination of the two plasmids, PHP28694 and PHP10523, through the COS recombination sites contained on each vector. The cointegrate vector contains the same three expression cassettes as above (Example 10A) in addition to other genes (TET, TET, TRFA, ORI terminator, CTL, ORI V, VIR C1 , VIR C2, VIR G, VIR B) needed for the Agrobacterium strain and the Agrobacteήum-meόiateό transformation. The electroporation protocol in, but not limited to, Example 8 may be used.
EXAMPLE 11
Preparation of the Destination Vector PHP23236 for Transformation into Gaspe Flint derived Maize Lines
Destination vector PHP23236 (FIG. 6; SEQ ID NO:6) was obtained by transformation of Agrobacterium strain LBA4404 containing PHP10523 (FIG. 7;
SEQ ID NO:7) with vector PHP23235 (FIG. 8; SEQ ID NO:8) and isolation of the resulting co-integration product.
Destination vector PHP23236 can be used in a recombination reaction with an entry clone as described in Example 12 to create a maize expression vector for transformation of Gaspe Flint derived maize lines.
EXAMPLE 12 Preparation of Expression Constructs for Transformation into Gaspe Flint Derived Maize Lines
Using the INVITROGEN™ GATEWAY® LR Recombination technology, the same entry clone described in Example 4B (containing the Arabidopsis LNT3 gene) was directionally cloned into the GATEWAY® destination vector PHP23236 (SEQ ID NO:6; FIG. 6) to create an expression vector PHP29717. This expression vector contains the Arabidopsis LNT3 gene (SEQ ID NO:17) under control of the UBI promoter and is a T-DNA binary for Agrobacterium-meό\ateό transformation into maize as described, but not limited to, the examples described herein.
EXAMPLE 13 Transformation of Gaspe Flint Derived Maize Lines with Validated Candidate
ArabidoDsis Gene (At3q43430)
Maize plants can be transformed to overexpress the Arabidopsis lead gene or the corresponding homologs from other species in order to examine the resulting phenotype. Expression constructs such as the one described in Example 12 may be used.
Recipient Plants
Recipient plant cells can be from a uniform maize line having a short life cycle ("fast cycling"), a reduced size, and high transformation potential. Typical of these plant cells for maize are plant cells from any of the publicly available Gaspe Flint (GF) line varieties. One possible candidate plant line variety is the F1 hybrid of GF x QTM (Quick Turnaround Maize, a publicly available form of Gaspe Flint selected for growth under greenhouse conditions) disclosed in Tomes et al. (U.S. Application No. 10/367,416 filed February 13, 2003; U.S. Patent Publication No. 2003/0221212 A1 published November 27, 2003). Transgenic plants obtained from this line are of such a reduced size that they can be grown in four inch pots (1/4 the space needed for a normal sized maize plant) and mature in less than 2.5 months.
(Traditionally 3.5 months is required to obtain transgenic TO seed once the transgenic plants are acclimated to the greenhouse.) Another suitable line includes but is not limited to a double haploid line of GS3 (a highly transformable line) X Gaspe Flint. Yet another suitable line is a transformable elite maize inbred line carrying a transgene which causes early flowering, reduced stature, or both.
Transformation Protocol
Any suitable method may be used to introduce the transgenes into the maize cells, including but not limited to inoculation type procedures using Agrobacterium based vectors (see, for example, Example 8). Transformation may be performed on immature embryos of the recipient (target) plant.
Precision Growth and Plant Tracking
The event population of transgenic (TO) plants resulting from the transformed maize embryos is grown in a controlled greenhouse environment using a modified randomized block design to reduce or eliminate environmental error. A randomized block design is a plant layout in which the experimental plants are divided into groups (e.g., thirty plants per group), referred to as blocks, and each plant is randomly assigned a location within the block.
For a group of thirty plants, twenty-four transformed, experimental plants and six control plants (plants with a set phenotype) (collectively, a "replicate group") are placed in pots which are arranged in an array (a.k.a. a replicate group or block) on a table located inside a greenhouse. Each plant, control or experimental, is randomly assigned to a location within the block which is mapped to a unique, physical greenhouse location as well as to the replicate group. Multiple replicate groups of thirty plants each may be grown in the same greenhouse in a single experiment. The layout (arrangement) of the replicate groups should be determined to minimize space requirements as well as environmental effects within the greenhouse. Such a layout may be referred to as a compressed greenhouse layout.
An alternative to the addition of a specific control group is to identify those transgenic plants that do not express the gene of interest. A variety of techniques such as RT-PCR can be applied to quantitatively assess the expression level of the introduced gene. TO plants that do not express the transgene can be compared to those which do.
Each plant in the event population is identified and tracked throughout the evaluation process, and the data gathered from that plant is automatically associated with that plant so that the gathered data can be associated with the transgene carried by the plant. For example, each plant container can have a machine readable label (such as a Universal Product Code (UPC) bar code) which includes information about the plant identity, which in turn is correlated to a greenhouse location so that data obtained from the plant can be automatically associated with that plant.
Alternatively any efficient, machine readable, plant identification system can be used, such as two-dimensional matrix codes or even radio frequency identification tags (RFID) in which the data is received and interpreted by a radio frequency receiver/processor. See U.S. Application No. 10/324,288 filed December 19, 2002 (U.S. Patent Publication No. 2004/0122592 A1 published June 24, 2004), incorporated herein by reference. Phenotypic Analysis Using Three-Dimensional Imaging
Each greenhouse plant in the TO event population, including any control plants, is analyzed for agronomic characteristics of interest, and the agronomic data for each plant is recorded or stored in a manner so that it is associated with the identifying data (see above) for that plant. Confirmation of a phenotype (gene effect) can be accomplished in the T1 generation with a similar experimental design to that described above.
The TO plants are analyzed at the phenotypic level using quantitative, nondestructive imaging technology throughout the plant's entire greenhouse life cycle to assess the traits of interest. A digital imaging analyzer is used for automatic multi- dimensional analyzing of total plants. The imaging may be done inside the greenhouse. Two camera systems, located at the top and side, and an apparatus to rotate the plant, are used to view and image plants from all sides. Images are acquired from the top, front and side of each plant. All three images together provide sufficient information to evaluate, for example, the biomass, size and morphology of each plant.
Due to the change in size of the plants from the time the first leaf appears from the soil to the time the plants are at the end of their development, the early stages of plant development are best documented with a higher magnification from
the top. This imaging may be accomplished by using a motorized zoom lens system that is fully controlled by the imaging software.
In a single imaging analysis operation, the following events occur: (1 ) the plant is conveyed inside the analyzer area, rotated 360 degrees so its machine readable label can be read, and left at rest until its leaves stop moving; (2) the side image is taken and entered into a database; (3) the plant is rotated 90 degrees and again left at rest until its leaves stop moving, and (4) the plant is transported out of the analyzer.
Plants are allowed at least six hours of darkness per twenty four hour period in order to have a normal day/night cycle.
Imaging Instrumentation
Any suitable imaging instrumentation may be used, including but not limited to light spectrum digital imaging instrumentation commercially available from LemnaTec GmbH of Wurselen, Germany. The images are taken and analyzed with a LemnaTec Scanalyzer HTS LT-0001 -2 having a 1/2" IT Progressive Scan IEE CCD imaging device. The imaging cameras may be equipped with a motor zoom, motor aperture and motor focus. All camera settings may be made using LemnaTec software. For example, the instrumental variance of the imaging analyzer is less than about 5% for major components and less than about 10% for minor components.
Software
The imaging analysis system comprises a LemnaTec HTS Bonit software program for color and architecture analysis and a server database for storing data from about 500,000 analyses, including the analysis dates. The original images and the analyzed images are stored together to allow the user to do as much reanalyzing as desired. The database can be connected to the imaging hardware for automatic data collection and storage. A variety of commercially available software systems (e.g., Matlab, others) can be used for quantitative interpretation of the imaging data, and any of these software systems can be applied to the image data set.
Conveyor System
A conveyor system with a plant rotating device may be used to transport the plants to the imaging area and rotate them during imaging. For example, up to four
plants, each with a maximum height of 1.5 m, are loaded onto cars that travel over the circulating conveyor system and through the imaging measurement area. In this case the total footprint of the unit (imaging analyzer and conveyor loop) is about 5 m x 5 m. The conveyor system can be enlarged to accommodate more plants at a time. The plants are transported along the conveyor loop to the imaging area and are analyzed for up to 50 seconds per plant. Three views of the plant are taken. The conveyor system, as well as the imaging equipment, should be capable of being used in greenhouse environmental conditions. Illumination
Any suitable mode of illumination may be used for the image acquisition. For example, a top light above a black background can be used. Alternatively, a combination of top- and backlight using a white background can be used. The illuminated area should be housed to ensure constant illumination conditions. The housing should be longer than the measurement area so that constant light conditions prevail without requiring the opening and closing or doors. Alternatively, the illumination can be varied to cause excitation of either transgene (e.g., green fluorescent protein (GFP), red fluorescent protein (RFP)) or endogenous (e.g. Chlorophyll) fluorophores). Biomass Estimation Based on Three-Dimensional Imaging
For best estimation of biomass the plant images should be taken from at least three axes, for example, the top and two side (sides 1 and 2) views. These images are then analyzed to separate the plant from the background, pot and pollen control bag (if applicable). The toal area of the plant can be estimated by the calculation:
Estimated Total Plant Area (pixels) = Top Area (pixels) + Sidei Area (pixels) + Side2 Area (pixels)
In the equation above the units of area are "arbitrary units". Arbitrary units are entirely sufficient to detect gene effects on plant size and growth in this system because what is desired is to detect differences (both positive-larger and negative- smaller) from the experimental mean, or control mean. The arbitrary units of size (e.g. area) may be trivially converted to physical measurements by the addition of a
physical reference to the imaging process. For instance, a physical reference of known area can be included in both top and side imaging processes. Based on the area of these physical references a conversion factor can be determined to allow conversion from pixels to a unit of area such as square centimeters (cm2). The physical reference may or may not be an independent sample. For instance, the pot, with a known diameter and height, could serve as an adequate physical reference.
Color Classification
The imaging technology may also be used to determine plant color and to assign plant colors to various color classes. The assignment of image colors to color classes is an inherent feature of the LemnaTec software. With other image analysis software systems color classification may be determined by a variety of computational approaches.
For the determination of plant size and growth parameters, a useful classification scheme is to define a simple color scheme including two or three shades of green and, in addition, a color class for chlorosis, necrosis and bleaching, should these conditions occur. A background color class which includes non plant colors in the image (for example pot and soil colors) is also used and these pixels are specifically excluded from the determination of size. The plants are analyzed under controlled constant illumination so that any change within one plant over time, or between plants or different batches of plants (e.g. seasonal differences) can be quantified.
In addition to its usefulness in determining plant size growth, color classification can be used to assess other yield component traits. For these other yield component traits additional color classification schemes may be used. For instance, the trait known as "staygreen", which has been associated with improvements in yield, may be assessed by a color classification that separates shades of green from shades of yellow and brown (which are indicative of senescing tissues). By applying this color classification to images taken toward the end of the TO or T1 plants' life cycle, plants that have increased amounts of green colors relative to yellow and brown colors (expressed, for instance, as Green/Yellow Ratio) may be identified. Plants with a significant difference in this Green/Yellow ratio can be identified as carrying transgenes which impact this important agronomic trait.
The skilled plant biologist will recognize that other plant colors arise which can indicate plant health or stress response (for instance anthocyanins), and that other color classification schemes can provide further measures of gene action in traits related to these responses. Plant Architecture Analysis
Transgenes which modify plant architecture parameters may also be identified using the present invention, including such parameters as maximum height and width, internodal distances, angle between leaves and stem, number of leaves starting at nodes and leaf length. The LemnaTec system software may be used to determine plant architecture as follows. The plant is reduced to its main geometric architecture in a first imaging step and then, based on this image, parameterized identification of the different architecture parameters can be performed. Transgenes that modify any of these architecture parameters either singly or in combination can be identified by applying the statistical approaches previously described.
Pollen Shed Date
Pollen shed date is an important parameter to be analyzed in a transformed plant, and may be determined by the first appearance on the plant of an active male flower. To find the male flower object, the upper end of the stem is classified by color to detect yellow or violet anthers. This color classification analysis is then used to define an active flower, which in turn can be used to calculate pollen shed date.
Alternatively, pollen shed date and other easily visually detected plant attributes (e.g., pollination date, first silk date) can be recorded by the personnel responsible for performing plant care. To maximize data integrity and process efficiency this data is tracked by utilizing the same barcodes utilized by the LemnaTec light spectrum digital analyzing device. A computer with a barcode reader, a palm device, or a notebook PC may be used for ease of data capture recording time of observation, plant identifier, and the operator who captured the data.
Orientation of the Plants
Mature maize plants grown at densities approximating commercial planting often have a planar architecture. That is, the plant has a clearly discernable broad
side, and a narrow side. The image of the plant from the broadside is determined. To each plant a well defined basic orientation is assigned to obtain the maximum difference between the broadside and edgewise images. The top image is used to determine the main axis of the plant, and an additional rotating device is used to turn the plant to the appropriate orientation prior to starting the main image acquisition.
EXAMPLE 14A Screening of Gaspe Flint Derived Maize Lines
Under Nitrogen Limiting Conditions Transgenic plants will contain two or three doses of Gaspe Flint-3 with one dose of GS3 (GS3/(Gaspe-3)2X or GS3/(Gaspe-3)3X) and will segregate 1 :1 for a dominant transgene. Plants will be planted in Turface, a commercial potting medium, and watered four times each day with 1 mM KNO3 growth medium and with 2 mM KNO3, or higher, growth medium (see FIG. 13). Control plants grown in 1 mM KNO3 medium will be less green, produce less biomass and have a smaller ear at anthesis (see FIG. 14 for an illustration of sample data).
Statistics are used to decide if differences seen between treatments are really different. FIG. 14 illustrates one method which places letters after the values. Those values in the same column that have the same letter (not group of letters) following them are not significantly different. Using this method, if there are no letters following the values in a column, then there are no significant differences between any of the values in that column or, in other words, all the values in that column are equal.
Expression of a transgene will result in plants with improved plant growth in 1 mM KNO3 when compared to a transgenic null. Thus biomass and greenness (as described in Example 13) will be monitored during growth and compared to a transgenic null. Improvements in growth, greenness, and ear size at anthesis will be indications of increased nitrogen tolerance.
EXAMPLE 14B Procedure for Evaluation of Gaspe Flint Derived Maize Lines Under Nitrogen
Limiting Conditions
Gaspe Flint derived maize lines may be transformed via Agrobacterium. Typically, four transformation events for each plasmid construct may be evaluated
under nitrogen limiting conditions in the following manner. Plants are planted in 100% Turface and watered until emergence. Following emergence, plants are divided equally between treatment groups and watered as appropriate to achieve saturation using drip irrigation. Daily irrigation schedule consists of a 9:00 AM, 12:00 PM, and 3:00 PM nutrient watering for 3 minutes (156 ml) between 13 and 24 days after planting (DAP). A fourth watering is added at 5:00 AM on 25 DAP, and a fifth watering is added at 5:00 PM on 31 DAP. Two treatments are applied, optimal (6.5 mMol KNO3) and reduced nitrogen (1.OmMoI KNO3). pH is monitored at least three times weekly for each table. The target pH for the experiment is 5.75 - 6.0. Imaging to assess surface area accumulation and specific growth rates (sgr) is performed for each plant three times per week, Monday, Wednesday and Friday. Plants are sampled for ELISA MoPAT on 9 DAP, and for expression and metabolic profiling analysis on 36 DAP. At 50% shed, 36 DAP, destructive ear and shoot phenotypes are collected manually. At 38 DAP, harvested tissue is oven dried (7OC for 120hrs.) to obtain dry weight data. The probability of a greater Student's one tailed t Test is calculated for each transgenic mean compared to the appropriate null mean (either segregant null or construct null). A minimum (P<t) of 0.1 is used as a cut off for a statistically significant result.
EXAMPLE 14C Transformation and Evaluation of Gaspe Flint Derived Maize Lines Under Nitrogen
Limiting Conditions
A Gaspe Flint derived maize line was transformed via Agrobacterium with plasmid PHP29717, encoding the Arabidopsis LNT3 protein (At3g43430). Two transformation events were evaluated following a procedure similar to that described in Example 14B.
Tables 1 and 2 show the variables for each transgenic event that were significantly altered, as compared to the segregant nulls. A "positive effect" was defined as a statistically significant improvement in that variable for the transgenic event relative to the null control. A "negative effect" was defined as a statistically significant improvement in that variable for the null control relative to the transgenic event. Table 1 presents the number of variables with a significant change for individual events transformed with the PHP29717 construct. Table 2 presents the number of events that showed a significant change for each individual variable. The
variables designated with "_end exponential" indicate that the variables were measured at the end of exponential growth. The variables designated with "Jiarvest" indicate that the variables were measured at the time of harvest.
TABLE 1
Number of Variables with a Significant Change* for Individual Events Transformed with PHP29717 Encoding LNT3 (At3g43430)
*P-value less than or equal to 0.1
TABLE 2
Number of Events Transformed with PHP29717 Encoding LNT3 (At3g43430) with a Significant Change* for Individual Variables
*P-value less than or equal to 0.1
For construct PHP29717, the statistical value associated with each improved variable is presented in Figures 15-16. A significant positive effect had a P-value of
less than or equal to 0.1. A significant negative effect is shown in parentheses. A blank entry indicates that a significant difference was not observed between the transgenic event and the null segregant. The results for each of two transformed maize lines are presented in FIG. 15. One of the two events, EA2391.306.2.4, appears to have multiple variables with improved effects in both reduced and optimal nitrogen conditions. The summary evaluation for both events with construct PHP29717 is presented in FIG. 16. When both events are combined, multiple variables with significant positive effects were observed.
EXAMPLE 15A Yield Analysis of Maize Lines with the
ArabidoDsis Lead Gene
A recombinant DNA construct containing a validated Arabidopsis gene can be introduced into a maize inbred line either by direct transformation or introgression from a separately transformed line. Transgenic plants, either inbred or hybrid, can undergo more vigorous field- based experiments to study yield enhancement and/or stability under nitrogen limiting and non-limiting conditions.
Subsequent yield analysis can be done to determine whether plants that contain the validated Arabidopsis lead gene have an improvement in yield performance (under nitrogen limiting or non-limiting conditions), when compared to the control (or reference) plants that do not contain the validated Arabidopsis lead gene. Specifically, nitrogen limiting conditions can be imposed during the flowering and/or grain fill period for plants that contain the validated Arabidopsis lead gene and the control plants. Reduction in yield can be measured for both. Plants containing the validated Arabidopsis lead gene would have less yield loss relative to the control plants, for example, at least 25% less yield loss, under nitrogen limiting conditions, or would have increased yield relative to the control plants under nitrogen non-limiting conditions.
EXAMPLE 15B Yield Analysis of Maize Lines Transformed with PHP28845 Encoding the
Arabdopsis Lead Gene At3α43430
Corn hybrid testcrosses, containing the LNT3 expression cassette present in vector PHP28845, and their controls were grown in low nitrogen (LN) and normal
nitrogen (NN) environments in Woodland, CA, and in Johnston, IA, and yield and other traits were assessed (including GDUSHD, ASI, plant height (PLTHT). A low nitrogen (LN) environment consists of a less than normal amount of nitrogen fertilizer applied in early spring or summer, whereas a normal nitrogen (NN) environment consists of adding adequate nitrogen for normal yields, based on soil test standards established for specific growing areas by Federal and State Extension services. A yield reduction was observed in LN conditions as compared to that obtained in NN conditions.
Seven transgenic events were field tested in 2007 at two locations, Johnston, IA, and Woodland, CA, and two additional events were field tested in 2007 at Woodland in the LN environment. The following parameters were assessed: GDUSHD (GDUs to 50% shed), ASI (anthesis silking interval), PLTHT (plant height), STAGRN (staygreen), BARCNT (barren plant count), YIELD, and GRAIN N (nitrogen level in maize green). Not all parameters were assessed at each location and under each treatment, and the corn hybrid testcrosses were compared to the construct nulls (CN). The results of the 2007 field test are presented in Table 3.
In Woodland under low nitrogen conditions, event E7733.47.1.8 had a significant positive impact on yield. In addition, eight of nine events in Woodland under low nitrogen conditions showed a significant increase in staygreen. Table 3
2007 Field Tests of Maize Transformed with PHP28845
2007 Woodland - Low nitrogen
2007 Johnston - Low nitro en
2007 Johnston - Normal nitro en
EXAMPLE 16
Nitrogen Use Efficiency Seedling Assay
Remnant topcross seed from example 15B was used to test seedling growth under nitrogen limiting conditions. Plants containing construct PHP28845 were grown semi-hydroponically in nutrient medium containing 1 mM nitrate as the sole nitrogen source for 2 weeks. After 2 weeks the plants were harvested, and leaf chlorophyll (SPAD), stem diameter, root dry weight, shoot dry weight, total plant weight, total N concentration, and total plant N determined. Data was analyzed
using a nearest neighbor analysis to estimate the variance. Transgenic means were compared to the corresponding transgenic null mean. Table 4 shows the Student's t probability comparing the transgenic means to the corresponding null means. Any mean with a Student's t probability 0.1 or less is listed in the table and any values with a Student's t probability greater than 0.1 are listed as non significant (NS). Student's t probabilities of transgene means greater than the null means are designated with an asterisk (*).
Events E7733.47.1.9 and E7733.47.1.13 had higher root, shoot, and total dry weights compared to the corresponding nulls. In addition, event E7733.47.1.8 had higher total N concentration and total plant N compared to the corresponding nulls. Table 4: NUE Seedling Assay Results for Maize Plants Transformed with
PHP28845
Claims
WHAT IS CLAIMED IS: 1. A plant comprising in its genome a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24, and wherein said plant exhibits increased nitrogen stress tolerance when compared to a control plant not comprising said recombinant DNA construct.
2. The plant of claim 1 , wherein the plant is a maize plant or a soybean plant.
3. A plant comprising in its genome a recombinant DNA construct comprising:
(a) a polynucleotide operably linked to at least one regulatory element, wherein said polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; or (b) a suppression DNA construct comprising at least one regulatory element operably linked to:
(i) all or part of: (A) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24, or (B) a full complement of the nucleic acid sequence of (b)(i)(A); or
(ii) a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT3 or LNT3-like polypeptide, and wherein said plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising said recombinant DNA construct.
4. The plant of claim 3, wherein the plant is a maize plant or a soybean plant.
5. The plant of claim 3, wherein said plant exhibits said alteration of said at least one agronomic characteristic when compared, under nitrogen limiting conditions, to said control plant not comprising said recombinant DNA construct.
6. The plant of claim 5, wherein the plant is a maize plant or a soybean plant.
7. The plant of claim 3, wherein said at least one agronomic characteristic is selected from the group consisting of greenness, yield, growth rate, biomass, fresh weight at maturation, dry weight at maturation, fruit yield, seed yield, total plant nitrogen content, fruit nitrogen content, seed nitrogen content, whole plant amino acid content, vegetative tissue free amino acid content, fruit free amino acid content, seed free amino acid content, fruit protein content, seed protein content, protein content in a vegetative tissue, drought tolerance, nitrogen uptake, resistance to root lodging, harvest index, stalk lodging, plant height and ear length.
8. The plant of claim 7, wherein the plant is a maize plant or a soybean plant.
9. The plant of claim 3, wherein said plant exhibits an increase of said at least one agronomic characteristic when compared to said control plant.
10. The plant of claim 9, wherein the plant is a maize plant or a soybean plant.
11. A method of increasing nitrogen stress tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; and
(b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct and exhibits increased nitrogen stress tolerance when compared to a control plant not comprising the recombinant DNA construct.
12. The method of claim 11 , further comprising:
(c) obtaining a progeny plant derived from the transgenic plant, wherein said progeny plant comprises in its genome the recombinant DNA construct and exhibits increased nitrogen stress tolerance when compared to a control plant not comprising the recombinant DNA construct.
13. A method of evaluating nitrogen stress tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24;
(b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; and
(c) evaluating the transgenic plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct.
14. The method of claim 13, further comprising:
(d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (e) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct.
15. A method of evaluating nitrogen stress tolerance in a plant, comprising: (a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24;
(b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; (c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and
(d) evaluating the progeny plant for nitrogen stress tolerance compared to a control plant not comprising the recombinant DNA construct.
16. A method of determining an alteration of an agronomic characteristic in a plant, comprising:
(a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24;
(b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct; and
(c) determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the recombinant DNA construct.
17. The method of claim 16, further comprising: (d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and (e) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the recombinant DNA construct.
18. The method of claim 16, wherein said determining step (c) comprises determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
19. The method of claim 17, wherein said determining step (e) comprises determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
20. A method of determining an alteration of an agronomic characteristic in a plant, comprising:
(a) introducing into a regenerable plant cell a recombinant DNA construct comprising a polynucleotide operably linked to at least one regulatory sequence, wherein the polynucleotide encodes a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the recombinant DNA construct;
(c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the recombinant DNA construct; and
(d) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the recombinant DNA construct.
21. The method of claim 20, wherein said determining step (d) comprises determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
22. A method of determining an alteration of an agronomic characteristic in a plant, comprising:
(a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory element operably linked to: (i) all or part of: (A) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24, or (B) a full complement of the nucleic acid sequence of (b)(i)(A); or (ii) a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT3 or LNT3-like polypeptide;
(b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct; and
(c) determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the suppression DNA construct.
23. The method of claim 22, wherein said determining step (c) comprises determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, under nitrogen limiting conditions, to a control plant not comprising the suppression DNA construct.
24. The method of claim 22, further comprising:
(d) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and (e) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the suppression DNA construct.
25. The method of claim 24, wherein said determining step (e) comprises determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared, under nitrogen limiting conditions, to a control plant not comprising the suppression DNA construct.
26. A method of determining an alteration of an agronomic characteristic in a plant, comprising:
(a) introducing into a regenerable plant cell a suppression DNA construct comprising at least one regulatory element operably linked to:
(i) all or part of: (A) a nucleic acid sequence encoding a polypeptide having an amino acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to SEQ ID NO:18, 22, or 24, or (B) a full complement of the nucleic acid sequence of (b)(i)(A); or
(ii) a region derived from all or part of a sense strand or antisense strand of a target gene of interest, said region having a nucleic acid sequence of at least 50% sequence identity, based on the Clustal V method of alignment, when compared to said all or part of a sense strand or antisense strand from which said region is derived, and wherein said target gene of interest encodes an LNT3 or LNT3-like polypeptide; (b) regenerating a transgenic plant from the regenerable plant cell after step (a), wherein the transgenic plant comprises in its genome the suppression DNA construct and exhibits an alteration of at least one agronomic trait when compared to a control plant not comprising the suppression DNA construct; (c) obtaining a progeny plant derived from the transgenic plant, wherein the progeny plant comprises in its genome the suppression DNA construct; and
(d) determining whether the progeny plant exhibits an alteration of at least one agronomic characteristic when compared to a control plant not comprising the suppression DNA construct.
27. The method of claim 26, wherein said determining step (d) comprises determining whether the transgenic plant exhibits an alteration of at least one agronomic characteristic when compared, under nitrogen limiting conditions, to a control plant not comprising the recombinant DNA construct.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/936,697 US20110035837A1 (en) | 2008-04-09 | 2009-01-30 | Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding lnt3 polypeptides |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2509508P | 2008-04-09 | 2008-04-09 | |
US61/025,095 | 2008-04-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009126359A1 true WO2009126359A1 (en) | 2009-10-15 |
Family
ID=40532678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/032512 WO2009126359A1 (en) | 2008-04-09 | 2009-01-30 | Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding lnt3 or lnt3-like polypeptides |
Country Status (2)
Country | Link |
---|---|
US (1) | US20110035837A1 (en) |
WO (1) | WO2009126359A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8722072B2 (en) | 2010-01-22 | 2014-05-13 | Bayer Intellectual Property Gmbh | Acaricidal and/or insecticidal active ingredient combinations |
US9265252B2 (en) | 2011-08-10 | 2016-02-23 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1033405A2 (en) * | 1999-02-25 | 2000-09-06 | Ceres Incorporated | Sequence-determined DNA fragments and corresponding polypeptides encoded thereby |
WO2007084385A2 (en) * | 2006-01-13 | 2007-07-26 | Ceres, Inc. | Nucleotide sequences and corresponding polypeptides conferring improved nitrogen use efficiency characteristics in plants |
US20070214517A1 (en) * | 2004-02-13 | 2007-09-13 | Ceres, Inc. | Sequence-determined DNA fragments and corresponding polypeptides encoded thereby |
CN101270355A (en) * | 2007-03-23 | 2008-09-24 | 中国科学院遗传与发育生物学研究所 | Method for accelerating vegetation in low-nitrogen condition |
-
2009
- 2009-01-30 US US12/936,697 patent/US20110035837A1/en not_active Abandoned
- 2009-01-30 WO PCT/US2009/032512 patent/WO2009126359A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1033405A2 (en) * | 1999-02-25 | 2000-09-06 | Ceres Incorporated | Sequence-determined DNA fragments and corresponding polypeptides encoded thereby |
US20070214517A1 (en) * | 2004-02-13 | 2007-09-13 | Ceres, Inc. | Sequence-determined DNA fragments and corresponding polypeptides encoded thereby |
WO2007084385A2 (en) * | 2006-01-13 | 2007-07-26 | Ceres, Inc. | Nucleotide sequences and corresponding polypeptides conferring improved nitrogen use efficiency characteristics in plants |
CN101270355A (en) * | 2007-03-23 | 2008-09-24 | 中国科学院遗传与发育生物学研究所 | Method for accelerating vegetation in low-nitrogen condition |
Non-Patent Citations (5)
Title |
---|
DATABASE UniProt [online] 1 December 2001 (2001-12-01), "SubName: Full=AT5g20880/F22D1_50; SubName: Full=At5g20880/F22D1_50; SubName: Full=Putative uncharacterized protein At5g20885/At5g20880;", XP002524268, retrieved from EBI accession no. UNIPROT:Q93ZD8 Database accession no. Q93ZD8 * |
DATABASE UniProt [online] 1 October 2000 (2000-10-01), "SubName: Full=Putative uncharacterized protein T5C2_130; SubName: Full=Putative uncharacterized protein At3g43430;", XP002524269, retrieved from EBI accession no. UNIPROT:Q9M176 Database accession no. Q9M176 * |
DATABASE UniProt [online] 16 December 2008 (2008-12-16), "SubName: Full=RING zinc finger protein-like;", XP002524270, retrieved from EBI accession no. UNIPROT:B6SGH7 Database accession no. B6SGH7 * |
DATABASE WPI Week 200908, Derwent World Patents Index; AN 2009-B25750, XP002524638, 20080924 DAOWEN WANG [CN]; YURONG XIE [CN]; XUELI AN [CN]; HUANJU QIN [CN]; XIN LIU [CN]: "Method for accelerating vegetation in low-nitrogen condition" * |
NICKOLAI N ALEXANDROV ET AL: "Insights into corn genes derived from large-scale cDNA sequencing", PLANT MOLECULAR BIOLOGY, KLUWER ACADEMIC PUBLISHERS, DORDRECHT, NL, vol. 69, no. 1-2, 21 October 2008 (2008-10-21), pages 179 - 194, XP019648179, ISSN: 1573-5028 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8722072B2 (en) | 2010-01-22 | 2014-05-13 | Bayer Intellectual Property Gmbh | Acaricidal and/or insecticidal active ingredient combinations |
US9265252B2 (en) | 2011-08-10 | 2016-02-23 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
Also Published As
Publication number | Publication date |
---|---|
US20110035837A1 (en) | 2011-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2527449A2 (en) | Methods involving genes encoding nucleoside diphosphatase kinase (NDK) polypeptides and homologs thereof for modifying the plant's root architecture | |
US20090044293A1 (en) | Plants with altered root architecture, involving the rt1 gene, related constructs and methods | |
US9040773B2 (en) | Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding LNT1 polypeptides and homologs thereof | |
US20130298285A1 (en) | DROUGHT TOLERANT PLANTS AND RELATED CONSTRUCTS AND METHODS INVOLVING GENES ENCODING miR827 | |
US20140059716A1 (en) | Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding lnt2 polypeptides and homologs thereof | |
EP2331685A1 (en) | Plants with altered root architecture, related constructs and methods involving genes encoding protein phophatase 2c (pp2c) polypeptides and homologs thereof | |
WO2009073605A2 (en) | Drought tolerant plants and related constructs and methods involving genes encoding ferrochelatases | |
EP2617831A2 (en) | Plants with altered root architecture, related constructs and methods involving genes encoding leucine rich repeat kinase (llrk) polypeptides and homologs thereof | |
WO2009079529A2 (en) | Drought tolerant plants and related constructs and methods involving genes encoding ferredoxin family proteins | |
WO2009058947A2 (en) | Plants with altered root architecture, related constructs and methods involving genes encoding exostosin family polypeptides and homologs thereof | |
US20110035837A1 (en) | Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding lnt3 polypeptides | |
CA2736486A1 (en) | Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding lnt6 polypeptides and homologs thereof | |
EP2376636A1 (en) | Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding lnt9 polypeptides | |
WO2010011907A2 (en) | Plants with altered root architecture, related constructs and methods involving genes encoding rep2 polypeptides and homologs thereof | |
US20120047603A1 (en) | Drought tolerant plants and related constructs and methods involving genes encoding fatty acid desaturase family polypeptides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09729437 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12936697 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09729437 Country of ref document: EP Kind code of ref document: A1 |