WO2009125501A1 - Receiver and receiving method - Google Patents

Receiver and receiving method Download PDF

Info

Publication number
WO2009125501A1
WO2009125501A1 PCT/JP2008/057216 JP2008057216W WO2009125501A1 WO 2009125501 A1 WO2009125501 A1 WO 2009125501A1 JP 2008057216 W JP2008057216 W JP 2008057216W WO 2009125501 A1 WO2009125501 A1 WO 2009125501A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer characteristic
dimensional
data
carrier
symbol
Prior art date
Application number
PCT/JP2008/057216
Other languages
French (fr)
Japanese (ja)
Inventor
幸雄 林
義徳 阿部
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2008/057216 priority Critical patent/WO2009125501A1/en
Priority to JP2010507108A priority patent/JP5172951B2/en
Publication of WO2009125501A1 publication Critical patent/WO2009125501A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26524Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation
    • H04L27/26526Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation with inverse FFT [IFFT] or inverse DFT [IDFT] demodulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] receiver or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain

Definitions

  • the present invention relates to a receiver for terrestrial digital broadcasting, for example.
  • a pilot carrier signal for facilitating estimation of transmission path transmission characteristics is used together with a data carrier signal for transmitting information data such as video and audio.
  • a pilot carrier signal called a distributed pilot (SP) signal (hereinafter referred to as “SP signal”) is defined.
  • SP signal is known to be superimposed at a specific position in the same space when assuming an OFDM symbol space consisting of two dimensions of carrier frequency and symbol time, and its complex amplitude, that is, the absolute value of the SP signal.
  • the amplitude and phase are also predetermined. Therefore, in a receiving apparatus that receives digital broadcasting according to these standards, the SP signal is used to estimate the transfer characteristics for each carrier of the radio wave propagation path, and based on such estimation results, correction processing related to the received signal, etc. Can be performed.
  • the conventional receiver calculates the transfer function for each detection signal of the pilot carrier signal arranged in the OFDM signal symbol space, and the transfer function A two-dimensional data space is generated by performing a two-dimensional Fourier transform on the impulse delay time and the symbol frequency. Further, the conventional receiving apparatus extracts a predetermined region of the two-dimensional data space by a filter extraction region, performs a two-dimensional inverse Fourier transform on the carrier frequency and symbol time for the data included in the extraction region, and obtains an estimated transfer function. It was generated (see Patent Document 1). Japanese Patent No. 3820311
  • the problems to be solved by the present invention include the above-mentioned problems as an example.
  • the invention according to claim 1 is characterized in that a pilot signal having a specific known complex amplitude is transmitted using a transmission symbol generated by orthogonally modulating a plurality of carriers based on transmission data as a transmission unit.
  • a received signal obtained by receiving an OFDM signal superimposed on a predetermined carrier in a symbol and detecting a carrier group included in a plurality of consecutive transmission symbols is converted into a two-dimensional space corresponding to the carrier frequency and symbol time.
  • the characteristic estimation unit is configured to calculate a pilot signal transmission characteristic for a pilot signal arranged in the two-dimensional data region, and to perform a two-dimensional Fourier transform on the pilot signal transmission characteristic to obtain a transmission line delay time and a transmission line Transform means for generating two-dimensional Fourier transform data in a two-dimensional space corresponding to the fluctuation frequency, and supply means for calculating a two-dimensional filter window for allowing a group of data in a specific region of the two-dimensional Fourier transform data to pass through Filter means for selectively extracting a data group in the specific region determined based on the two-dimensional filter window, and performing a two-dimensional inverse Fourier transform on the selected and
  • the invention according to claim 6 is characterized in that a pilot signal having a specific known complex amplitude is transmitted with a transmission symbol generated by orthogonally modulating a plurality of carriers based on transmission data.
  • a received signal obtained by receiving an OFDM signal superimposed on a predetermined carrier in a symbol and detecting a carrier group included in a plurality of consecutive transmission symbols is converted into a two-dimensional space corresponding to the carrier frequency and symbol time.
  • the transfer characteristic estimation step includes: a calculation step for calculating a pilot signal transfer characteristic for a pilot signal arranged in the two-dimensional data region; and a two-dimensional Fourier transform is performed on the pilot signal transfer characteristic to perform transmission.
  • a transform step for generating two-dimensional Fourier transform data in a two-dimensional space corresponding to a path delay time and a transmission path fluctuation frequency, and a two-dimensional filter for passing a data group in a specific region of the two-dimensional Fourier transform data A supply step for calculating a window; a filter step for selectively extracting a data group in the specific region determined based on the two-dimensional filter window; and a two-dimensional inverse Fourier transform for the selected and extracted data group 2D inverse Fourier transform data in 2D space corresponding to carrier frequency and symbol time Generating a reception signal transfer characteristic based on the generated data, wherein the calculation step calculates a pilot signal transfer characteristic for a pilot signal arranged in the two-dimensional data region A transfer characteristic calculating step for extracting the pilot signal transfer characteristic at a position where the pilot signal is superposed, excluding a carrier on which the pilot signal is not superposed, and a transfer characteristic extracting step for use in the conversion step Is provided.
  • the OFDM symbol is composed of 13 segments as shown in FIG. 1, and each segment includes, for example, a carrier of 108 waves in the case of transmission mode 1. Yes.
  • the partial receiving apparatus is a receiving apparatus that demodulates only the carrier included in segment 0 located in the center of the 13 segments.
  • FIG. 4 is a block diagram illustrating a configuration example of the receiving device 1 according to the first embodiment.
  • the receiving apparatus 1 mainly includes a symbol detection unit 11, a symbol storage unit 12, a frequency domain processing unit 13, a transfer characteristic estimation unit 20, and a data decoding unit 30.
  • the arrow which shows the flow of a signal in a figure shows the flow of the main signals between each component, For example, regarding signals, such as a response signal and a monitoring signal accompanying such a main signal, a figure. Including the case of transmission in the direction opposite to the arrow in the middle.
  • the arrows in the figure conceptually indicate the flow of signals between the components, and in an actual device, it is not necessary for each signal to be faithfully exchanged along the path indicated by the arrows. . Moreover, in an actual apparatus, it is not necessary that each component is divided faithfully as shown in FIG.
  • the symbol detection unit 11 detects a carrier group included in each symbol with respect to sequentially transmitted symbols, and obtains complex amplitudes (hereinafter referred to as “carrier amplitudes”) Sp, k of these carriers.
  • S p, k represents the p-th carrier amplitude of the k-th symbol
  • the symbol detection unit 11 is configured by each component circuit such as a tuner, an A / D converter, a transmission mode / guard interval ratio detector, a guard interval removal circuit, and an FFT circuit. It is not limited to cases.
  • the symbol storage unit 12 is a circuit that selects nX carrier amplitudes output from the symbol detection unit 11 and stores them for nY symbol times in the symbol time direction. . That is, for the carrier group of (2D region carrier width nX ⁇ 2D region symbol width nY) in the OFDM symbol space shown in FIG. 6, the carrier amplitude S p, q ( ⁇ nX / 2 ⁇ p ⁇ nX / 2) , K ⁇ nY ⁇ q ⁇ k). In the following description, these stored and held carrier amplitudes are considered as a two-dimensional array ⁇ S p, q : (p, q) ⁇ Z 2D ⁇ in the (p, q) space.
  • p is a carrier index
  • q is a symbol index
  • each index corresponds to a carrier frequency and a symbol time.
  • the Z 2D range is in the carrier frequency direction, ⁇ nX / 2 ⁇ p ⁇ nX / 2
  • the frequency domain processing unit 13 performs frame synchronization processing, TMCC demodulation processing, etc., generates symbol count values from 0 to 203 for each symbol, and stores them in the symbol storage unit 12.
  • the symbol storage unit 12 stores the symbol count value provided from the frequency domain processing unit 13 in association with each symbol provided from the symbol detection unit 11.
  • the data decoding unit 30 further includes an estimation region Z EST ( ⁇ wX / 2 ⁇ p ⁇ wX / 2, k ⁇ nY / 2) shown in FIG. 6 from the carrier amplitude data group stored in the symbol storage unit 12.
  • the carrier amplitude ⁇ S p, q : (p, q) ⁇ Z EST ⁇ within ⁇ wY / 2 ⁇ q ⁇ k ⁇ nY / 2 + wY / 2) is extracted, and this is subjected to decoding processing.
  • the transfer characteristic estimation unit 20 calculates an estimated transfer characteristic with respect to the carrier amplitude in the estimation region Z EST based on the carrier amplitude stored in the symbol storage unit 12, and supplies this to the data decoding unit 30 It is.
  • the data decoding unit 30 performs processing such as equalization, deinterleaving, and Reed-Solomon decoding based on the carrier amplitude from the symbol storage unit 12 and the estimated transfer characteristic from the transfer characteristic estimation unit 20, and is obtained as a result. Output received data.
  • the transfer characteristic estimation unit 20 estimates transfer characteristics for consecutive wY symbol intervals, so it does not need to operate at the timing of each received symbol, and is once per wY symbol reception. Should work. Such operation timing is the same for the operation timing of the data decoding unit 30.
  • the transfer characteristic estimation unit 20 mainly includes an SP transfer characteristic calculation unit 21, a two-dimensional Fourier transform unit 22, a two-dimensional filter circuit 23, a two-dimensional inverse Fourier transform circuit 24, and an estimated transfer characteristic output.
  • the circuit 25 and the filter coefficient determination circuit 26 are included.
  • these circuits are referred to as a calculation unit 21, a conversion unit 22, a filter circuit 23, an inverse conversion unit 24, an output circuit 25, and a determination circuit 26, respectively, in order to simplify the description.
  • the calculation unit 21 and the inverse conversion unit 24, which are specific configurations in the present embodiment will be mainly described, and other circuit configurations will be described in the operation description.
  • the calculation circuit 21 includes an SP transfer characteristic calculation circuit 21a and an SP transfer characteristic extraction circuit 21b.
  • the SP transfer characteristic extraction circuit is referred to as an “extraction circuit”.
  • the SP transfer characteristic calculation circuit 21a extracts only the carrier amplitude related to the SP signal from the carrier amplitude supplied from the symbol storage unit 12, and divides this by the known transmission complex amplitude value. As a result, the SP transfer characteristic calculation circuit 21a can obtain the transfer characteristic ⁇ H p, q : (p, q) ⁇ Z 2D ⁇ for the SP signals scattered in the (p, q) space.
  • the extraction circuit 21b provides the conversion unit 22 with SP signal transfer characteristics for every three carrier indexes except for a carrier index on which no SP signal is superimposed.
  • the inverse transform unit 24 includes an inverse Fourier transform circuit 24a, a multiplier circuit 24b, and a Fourier transform circuit 24c.
  • the inverse Fourier transform circuit 24a performs an inverse Fourier transform process on the data in the symbol index direction over all carrier indexes.
  • the multiplication circuit 24b multiplies each carrier by a complex twiddle factor coefficient (exp ( ⁇ j ⁇ o t)). Note that j represents an imaginary unit, and exp (x) represents a complex function.
  • the Fourier transform circuit 24 c calculates an estimated transfer characteristic by performing a Fourier transform process on the data in the carrier index direction over all symbol indexes, and provides it to the output circuit 25. That is, the multiplication circuit 24b and the Fourier transform circuit 24c perform the calculation in the carrier index direction.
  • the transfer characteristic estimation unit 20 As described above, in the terrestrial digital broadcasting of the ISDB-T standard, the position of the SP signal in the carrier arrangement in the OFDM symbol space and the complex amplitude value of the SP signal at the time of transmission are determined in advance. Therefore, the calculation unit 21 extracts only the carrier amplitude related to the SP signal from the carrier amplitudes supplied from the symbol storage unit 12, and divides this by the known transmission complex amplitude value. Thereby, the transfer characteristics ⁇ H p, q : (p, q) ⁇ Z 2D ⁇ can be obtained for the SP signals scattered in the (p, q) space. Such a calculation procedure is as follows.
  • the SP transfer characteristic calculation circuit 21a shown in FIG. 9 extracts only the carrier amplitude related to the SP signal from the carrier amplitude supplied from the symbol storage unit 12, and this is extracted as a known transmission complex amplitude value. Divide by.
  • the SP transfer characteristic calculation circuit 21a performs the following operation on data carrier signals other than SP signals.
  • H p, q 0
  • the transfer function ⁇ H p, q ⁇ is defined as follows.
  • the SP transfer characteristic calculation circuit 21a can obtain the transfer characteristic ⁇ H p, q : (p, q) ⁇ Z 2D ⁇ for the SP signals scattered in the (p, q) space.
  • the extraction circuit 21 b supplies the SP signal transfer characteristic ⁇ H p, q ⁇ for each three carrier index to the conversion unit 22 except for the carrier index on which no SP signal is superimposed.
  • the SP signal superposed at a rate of 1 on 12 carriers is present only every 3 carriers as shown in FIG.
  • the SP signal in which the superposition position has been cyclically changed by three carriers for each symbol has its superposition position cyclically changed by one carrier for each symbol.
  • the SP signal transfer characteristic ⁇ H of 2D-FFT region Z ′ 2D ( ⁇ mX / 2 ⁇ p ⁇ mX / 2, k ⁇ nY ⁇ q ⁇ k) ' p, q : (p, q) ⁇ Z' 2D ⁇ is provided to the conversion unit 22.
  • the range of the estimation region Z ′ EST is ( ⁇ vX / 2 ⁇ p ⁇ vX / 2, k ⁇ nY / 2 ⁇ wY / 2 ⁇ q ⁇ knY / 2 + wY / 2).
  • the transform unit 22 performs a two-dimensional Fourier transform on the SP signal transfer characteristic ⁇ H ′ p, q ⁇ in the (p, q) space, and performs this on the SP signal transfer characteristic ⁇ h in the (m, n) space.
  • m, n (m, n) ⁇ Z ′ TRA ⁇ That is, for the carrier frequency direction (p direction) in (p, q) space, IFFT (Inverse Fast Fourier Transform) processing is performed to convert the frequency domain to the time domain, and for the symbol time direction (q direction), The time domain is converted into the frequency domain by performing FFT (Fast Fourier Transform) processing.
  • FFT Fast Fourier Transform
  • the m-axis direction corresponds to the time dimension
  • the n-axis direction corresponds to the frequency dimension.
  • the region Z ′ 2D in the (p, q) space corresponds to the region Z ′ TRA converted in the (m, n) space, and this region is -MX / 2 ⁇ m ⁇ mX / 2
  • this region is -MX / 2 ⁇ m ⁇ mX / 2
  • ⁇ nY / 2 ⁇ n ⁇ nY / 2 Is defined as
  • the determination circuit 26 calculates a two-dimensional filter window ⁇ W m, n ⁇ based on the data group that has been Fourier-transformed in the (m, n) space by the conversion unit 22. As described in Patent Document 1, the power spectrum distribution of the transmission path transfer characteristic tends to be concentrated in a specific region on the (m, n) space according to the nature of the transmission path. Therefore, the decision circuit 26 calculates a real coefficient two-dimensional filter window ⁇ W m, n ⁇ having a pass band covering this area, and supplies it to the filter circuit 23.
  • window functions having various shapes such as a rectangular window and a cosine descent window can be applied.
  • the decision circuit 26 should set the passband of the two-dimensional filter window adapted to the reception environment.
  • the filter circuit 23 is a circuit that performs a predetermined filtering process on the data group that has been Fourier-transformed in the (m, n) space by the conversion unit 22.
  • the filter circuit 23 multiplies the SP signal transfer characteristic ⁇ h m, n ⁇ in the (m, n) space by the real coefficient two-dimensional filter window ⁇ W m, n ⁇ provided by the decision circuit 26 ( m, n) Calculate the estimated transfer characteristic ⁇ g m, n ⁇ in space.
  • the estimated transfer characteristic ⁇ g m, n ⁇ calculated by the filter circuit 23 is output to the inverse conversion unit 24 in the next stage.
  • the inverse transform unit 24 performs a two-dimensional inverse Fourier transform, which is an inverse process of the two-dimensional Fourier transform, on the estimated transfer characteristic ⁇ g m, n ⁇ provided from the filter circuit 23, and from ⁇ g m, n ⁇ to ( p, q) Estimated transfer characteristic ⁇ Gp , q : (p, q) ⁇ Z 2D ⁇ in space is calculated.
  • the inverse transform unit 24 performs transform from the frequency domain to the time domain by performing an inverse Fourier transform process over the entire carrier index in the symbol index direction (n-axis direction) by the inverse Fourier transform circuit 24a shown in FIG.
  • the multiplication circuit 24b multiplies the complex twiddle factor coefficient (exp ( ⁇ j ⁇ o t)) so that a predetermined phase rotation occurs in the mX section in the time domain in the carrier index direction (m-axis direction).
  • j represents an imaginary unit
  • exp (x) represents a complex exponential function.
  • the Fourier transform circuit 24c performs transform from the time domain to the frequency domain by performing a Fourier transform process in the carrier index direction (m-axis direction).
  • the estimated transfer characteristic calculated by the inverse transform unit 24 is ⁇ G ′ p, q : (P, q) ⁇ Z ′ 2D ⁇ and the estimated region is Z ′ EST .
  • the region where the transfer characteristic estimation unit 20 should estimate the transfer characteristic is Z EST
  • the estimated region Z ′ EST is a region of 1/3 with respect to the carrier direction.
  • the inverse transform unit 24 of the present embodiment performs an inverse Fourier transform process in the symbol direction (n-axis direction) in the inverse Fourier transform circuit 24a.
  • the multiplication circuit 24b multiplies the carrier direction by a complex twiddle factor coefficient
  • the Fourier transform circuit 24c performs Fourier transform in the carrier direction three times for each symbol.
  • the estimated transfer characteristic ⁇ G p, q (p, q) ⁇ Z 2D ⁇ including the range of the estimated region Z EST is calculated.
  • the estimated transfer characteristic ⁇ G p, q ⁇ calculated by the inverse conversion unit 24 is provided to the output circuit 25.
  • the output circuit 25 extracts the estimated transfer characteristic ⁇ G p, q : (p, q) ⁇ Z EST ⁇ corresponding to the carrier amplitude of the estimation region Z EST extracted by the data decoding unit 30 and extracts such extracted data. Is provided to the data decoding unit 30.
  • the reason why the estimated transfer characteristic for the entire Z 2D region is not output from the transfer characteristic estimating unit 20 to the data decoding unit 30 is that the estimated transfer characteristic is changed due to the influence of the end of the region in the peripheral part of the (p, q) space. This is because an error occurs.
  • the specific values of the two-dimensional region carrier width nX and the two-dimensional region symbol width nY values larger than those in the present embodiment may be used.
  • FIG. 13 is a diagram showing a power spectrum distribution of the transmission path transfer characteristic of the SP signal described in FIG. 9 of Patent Document 1.
  • the m-axis direction is time, and represents the delay time to the effective symbol length Te.
  • the n-axis direction is a frequency and represents a Doppler frequency up to the symbol transmission frequency Fa.
  • the transmission path transmission characteristic is repeated in the m-axis direction in 1/3 period of the effective symbol length Te.
  • the SP signal transfer characteristic can be observed only in a form that is folded back to 1/3 period of the effective symbol length Te. Therefore, the effective SP signal transfer characteristic is only the Te / 3 section with respect to the m-axis direction.
  • 2 ⁇ represents a delay time up to 1/3 of the effective symbol length Te in the m-axis direction, as shown in FIG.
  • the frequency of the symbol transmission frequency Fa is shown as in the case shown in FIG.
  • the transfer characteristic is calculated over the Te / 3 width that is an effective section in the time direction (m-axis direction) of the SP signal transfer characteristic, the accuracy of the estimated transfer characteristic is calculated.
  • the estimated transfer characteristic can be calculated with a smaller amount of calculation processing without lowering the.
  • FIG. 15 is a flowchart illustrating a procedure example of 2D inverse Fourier transform processing.
  • the inverse Fourier transform process is executed by the inverse Fourier transform unit 24.
  • Symbol direction inverse Fourier transform processing indicates processing for performing inverse Fourier transform in the symbol direction for the (p, q) space (step S100).
  • the carrier direction Fourier transform process also referred to as C-IFFT process indicates a process of performing a Fourier transform in the carrier direction for the (p, q) space (step S200).
  • each calculation formula is expressed as follows.
  • FFT indicates a function for performing Fourier transform
  • IFFT indicates a function for performing inverse Fourier transform
  • FIG. 16 is a flowchart showing a procedure example of the symbol direction inverse Fourier transform process shown in FIG.
  • the symbol “ ⁇ ” indicates that the value or expression on the right side is set to the variable on the left side.
  • step S102 an inverse Fourier transform process is performed on the symbol direction counter value n.
  • the step S102 is repeated in the carrier direction two-dimensional region carrier width mX times (steps S101, S103, S104).
  • FIG. 17 is a flowchart showing a procedure example of the carrier direction Fourier transform process shown in FIG.
  • step S300 a twiddle factor multiplication process is executed.
  • a twiddle factor coefficient based on the repetition index k and the carrier index m is multiplied in the carrier direction. Details of the twiddle factor multiplication process will be described later.
  • step S203 a Fourier transform process is performed on the carrier index m.
  • step S400 an estimated area extraction process is executed. This estimated area extraction process extracts estimated transfer characteristics of the estimated area. In this estimated area extraction processing, only the estimated transfer characteristic of the estimated area width vX (corresponding to the estimated area carrier width wX / 3 in FIG. 6) shown in FIG. 11 is extracted and stored in a memory (not shown).
  • steps S300, S203, and S400 are repeated three times for each symbol as an example (steps S202, S204, and S205).
  • the Fourier transform process in the carrier direction is repeatedly executed over the two-dimensional area symbol width nY (steps S201, S206, S207), but is repeatedly executed over the estimated area symbol width wY. Also good.
  • FIG. 18 is a flowchart showing a specific procedure example of the twiddle factor multiplication process shown in FIG.
  • step S302 the complex exponent ph of the twiddle factor coefficient is calculated based on the repetition count index k and the carrier index m.
  • step S303 the variable z is calculated.
  • the symbol “&” represents, for example, that a logical product operation is performed on a variable or the like described on the left and right of each bit.
  • step S304 the twiddle factor exp (ph) is multiplied using the complex exponent ph calculated in step S302.
  • the target carrier calculation variable c represents a calculation variable for specifying a carrier to be processed.
  • step S404 a variable z is set.
  • step S405 the estimated transfer characteristic calculated for each carrier direction Fourier transform is stored in a memory (not shown) for each three carrier index.
  • step S406 the target carrier calculation variable c is incremented by 3 so that the carrier to be targeted is every three carriers.
  • Steps S404, S405, and S406 as described above are executed as an example from ⁇ nT / 2 to nT / 2 every three carriers (steps S401, S402, S403, S407, and S408).
  • the receiving apparatus 1 is configured so that a pilot signal having a specific known complex amplitude with the transmission symbol generated by orthogonally modulating a plurality of carriers based on transmission data as a transmission unit is the transmission symbol. 2 received in a two-dimensional space corresponding to the carrier frequency and symbol time.
  • the received signal obtained by receiving the OFDM signal superimposed on a predetermined carrier and detecting the carrier group included in a plurality of consecutive transmission symbols.
  • the transfer characteristic estimation unit 20 includes a calculation unit 21 (SP transfer characteristic calculation unit) that calculates a pilot signal transfer characteristic with respect to a pilot signal arranged in the two-dimensional data region;
  • a conversion means 22 (2D Fourier transform unit) that performs two-dimensional Fourier transform on the pilot signal transfer characteristics to generate two-dimensional Fourier transform data in a two-dimensional space corresponding to the transmission line delay time and the transmission line fluctuation frequency;
  • Supply means 26 filter coefficient setting circuit for calculating a two-dimensional filter window for passing a data group in the specific area of the two-dimensional Fourier transform data, and the specific area determined based on the two-dimensional filter window
  • Filter means 23 (2D filter circuit) for selecting and
  • the calculating means 21 includes a transfer characteristic calculating means 21a (SP transfer characteristic calculating circuit) for calculating a pilot signal transfer characteristic for a pilot signal arranged in the two-dimensional data region, The pilot signal transmission characteristic for every three carriers is extracted except for the carrier on which the pilot signal is not superimposed, and is provided with transmission characteristic extraction means 21b (SP transmission characteristic extraction circuit) for use in the conversion means 22.
  • a transfer characteristic calculating means 21a SP transfer characteristic calculating circuit
  • the pilot signal transmission characteristic for every three carriers is extracted except for the carrier on which the pilot signal is not superimposed, and is provided with transmission characteristic extraction means 21b (SP transmission characteristic extraction circuit) for use in the conversion means 22.
  • a pilot signal having a specific known complex amplitude is superimposed on a predetermined carrier in the transmission symbol with a transmission symbol generated by orthogonally modulating a plurality of carriers based on transmission data as a transmission unit.
  • a received signal obtained by receiving a received OFDM signal and detecting a carrier group included in a plurality of consecutive transmission symbols is arranged in a two-dimensional data region on a two-dimensional space corresponding to the carrier frequency and symbol time.
  • the transfer characteristic estimation step for estimating the received signal transfer characteristic for each of the received signals based on the pilot signal arranged in the two-dimensional data region, the received signal and the received signal transfer characteristic
  • a data decoding step for decoding the transmission data.
  • the characteristic estimation step includes a calculation step for calculating a pilot signal transmission characteristic for a pilot signal arranged in the two-dimensional data region, and a two-dimensional Fourier transform is performed on the pilot signal transmission characteristic to obtain a transmission line delay time and a transmission line A conversion step for generating two-dimensional Fourier transform data in a two-dimensional space corresponding to a variable frequency, and a supply step for calculating a two-dimensional filter window for allowing a group of data in a specific region to pass through the two-dimensional Fourier transform data.
  • a filter step for selectively extracting a data group in the specific region determined based on the two-dimensional filter window, and performing a two-dimensional inverse Fourier transform on the selected and extracted data group, Generate two-dimensional inverse Fourier transform data in a two-dimensional space corresponding to the symbol time, and generate the data Generating a reception signal transfer characteristic based on the received data, wherein the calculation step calculates a pilot signal transfer characteristic for a pilot signal arranged in the two-dimensional data region And a transfer characteristic extracting step for extracting the pilot signal transfer characteristic for every three carriers except for a carrier on which the pilot signal is not superimposed and for use in the process of the conversion step.
  • the estimated transfer characteristic can be calculated with a smaller amount of calculation processing without lowering the accuracy of the estimated transfer characteristic.
  • FIG. 20 shows the power spectrum distribution ⁇
  • the (m, n) space corresponds to the OFDM symbol space.
  • the SP signal transfer characteristic ⁇ hm , n ⁇ calculated by performing the 2D Fourier transform process in the conversion unit 22 has the following properties due to the regular arrangement of the SP signals.
  • the SP signal transfer characteristic ⁇ h m, n ⁇ corresponds to h (m, n).
  • the variable mode represents the transmission mode, for example, 0 for mode 1, 1 for mode 2, and 2 for mode 3.
  • the function floor (x) is a function for calculating the maximum integer value less than or equal to x.
  • equation (1) shows that an arbitrary SP signal transfer characteristic ⁇ h m, n ⁇ in the (m, n) space can be easily calculated from the SP signal transfer characteristic of the region H. Therefore, equation (1) means that the SP signal transfer characteristic ⁇ hm , n ⁇ is composed of one independent variable group and three dependent variable groups in the (m, n) space. This property is referred to as property A as a name.
  • the calculation processing amount of the conversion unit 22 can be further reduced by devising only the SP signal transfer characteristic corresponding to the region H in FIG.
  • the second embodiment described below is intended to further reduce the amount of calculation processing of the conversion unit 22 by using the property A.
  • FIG. 21 is a block diagram illustrating a configuration example of the receiving device 1a according to the second embodiment.
  • the receiving device 1a according to the second embodiment has substantially the same configuration as the receiving device 1 according to the first embodiment and performs substantially the same operation.
  • the same configurations and operations are denoted by the same reference numerals as in FIGS. 1 to 19 in the first embodiment, and the description thereof is omitted. In the following description, differences will be mainly described. .
  • the receiving device 1a according to the second embodiment includes a transfer characteristic estimation unit 20a having substantially the same function as the transfer characteristic estimation unit 20 instead of the transfer characteristic estimation unit 20 according to the first embodiment.
  • FIG. 22 is a block diagram showing a configuration example of the transfer characteristic estimation unit 20a shown in FIG.
  • the transfer characteristic estimation unit 20a according to the second embodiment mainly differs from the transfer characteristic estimation unit 20 according to the first embodiment mainly in a part of the function of the calculation unit 21 and the configuration and function of the conversion unit 22. .
  • the SP transfer characteristic calculation circuit 21a of the calculation unit 21 extracts the transfer characteristic ⁇ H p, q ⁇ of the SP signal for every three carrier indexes, for example, but this is the second embodiment. Then, the SP transfer characteristic extraction circuit 21a extracts the transfer characteristic ⁇ H p, q ⁇ of only the SP signal for every 12 carrier indexes, for example.
  • the calculating unit 21 extracts only the carrier amplitude related to the SP signal from the carrier amplitude supplied from the symbol storage unit 12 by the SP transfer characteristic calculating circuit 21a shown in FIG. Divide by value.
  • ⁇ R p, q ⁇ is a known transmission complex amplitude value of the SP signal.
  • the SP transfer characteristic calculation circuit 21a performs the following operation on data carrier signals other than SP signals.
  • H p, q 0
  • the transfer function ⁇ H p, q ⁇ is defined as follows.
  • the SP transfer characteristic calculation circuit 21a can obtain the transfer characteristic ⁇ H p, q : (p, q) ⁇ Z 2D ⁇ for the SP signals scattered in the (p, q) space.
  • the extraction circuit 21b extracts only the SP signal transfer characteristic ⁇ H p, q ⁇ at the SP signal position and supplies it to the converter 22x. Specifically, the extraction circuit 21b extracts the SP signal transfer characteristic only at the SP signal position shown in FIG. 24, and supplies the SP signal transfer characteristic to the conversion unit 22x in the form of packing in the carrier direction as shown in FIG.
  • the SP signal transfer characteristics ⁇ H ′′ p, q ⁇ provided to the conversion unit 22x are arranged in the OFDM space as shown in Fig. 23.
  • Range of 2D Fourier transform region in the second embodiment Z " 2D is ⁇ kX / 2 ⁇ p ⁇ kX / 2; k ⁇ nY ⁇ q ⁇ k Is defined.
  • the estimated area Z " EST is ⁇ uX / 2 ⁇ p ⁇ uX / 2; k ⁇ nY / 2 ⁇ wY / 2 ⁇ q ⁇ k ⁇ nY / 2 + wY / 2 Is defined.
  • the conversion unit 22x performs a two-dimensional Fourier transform on the SP signal transfer characteristic ⁇ H " p, q ⁇ in the (p, q) space provided from the SP transfer characteristic calculation unit 21, and converts this to (m, n ) SP signal transfer characteristics in space ⁇ h m, n : (m, n) ⁇ Z ′ TRA ⁇
  • the conversion unit 22 x outputs this to the filter circuit 23 and the decision circuit 26.
  • the inverse Fourier transform circuit 22a and the multiplier circuit 22b shown in FIG. 26 perform processing in the carrier index direction, and the Fourier transform circuit 22c performs processing in the symbol index direction.
  • the SP signal transfer characteristic provided to the converter 22x is degenerated in the carrier direction as shown in FIG. 25, and is different from the superimposed position in the (p, q) space as originally shown in FIG.
  • the SP signal superposition position is not shifted in the carrier direction every time. Therefore, the transform unit 22x performs the inverse Fourier transform process in the carrier direction for each symbol by the inverse Fourier transform circuit 22a using the frequency shift theorem described above, and then multiplies a predetermined complex twiddle factor coefficient in the multiplier circuit 22b. As a result, a result that is relatively shifted by a desired position on the time axis before the inverse Fourier transform processing is calculated.
  • the complex twiddle factor coefficient is determined based on the symbol count value and transmission mode associated with each symbol provided from the symbol storage unit 12. Therefore, the complex factor coefficient is updated for each symbol, and in the case of the present embodiment, the cycle is 4 symbols.
  • the SP signal transfer characteristic ⁇ h ′ m, n ⁇ in the (m, n) space is calculated by performing Fourier transform processing in the symbol direction.
  • 2 ⁇ of the SP signal transfer characteristic ⁇ h ′ m, n ⁇ calculated by the converter 22x is the effective symbol length Te in the m-axis direction.
  • the delay time is up to 1/12, and in the n-axis direction, the frequency is equal to the symbol transmission frequency Fa.
  • the SP signal transfer characteristic ⁇ h ′ m, n ⁇ calculated by the conversion unit 22x corresponds to the area H of FIG. 20 used in the description of the property A described above.
  • conversion unit SP signal transfer characteristic calculated in 22x ⁇ h 'm, n ⁇ from the calculated conversion unit 22 in the first embodiment SP signal transfer characteristic ⁇ h m, n ⁇ easily Can be converted. That is, the converter 22x outputs the SP signal transfer characteristic ⁇ h m, n ⁇ to the filter circuit 23 and the determination circuit 26.
  • the determination circuit 26, the filter circuit 23, the inverse conversion unit 24, and the output circuit 26 may be processed in the same manner as in the first embodiment. Since the determination circuit 26, the filter circuit 23, the inverse conversion unit 24, and the output circuit 25 are the same as those in the first embodiment, description thereof is omitted.
  • FIG. 28 is a flowchart showing a procedure example of 2D Fourier transform processing.
  • This 2D Fourier conversion process represents a process performed by the conversion unit 22x.
  • the 2D Fourier transform process includes a carrier direction inverse Fourier transform process (corresponding to step S500) and a symbol direction Fourier transform process (corresponding to step S600).
  • the carrier direction inverse Fourier transform process as shown in FIG. 29, the Fourier transform process (step S501) is repeatedly performed along the symbol direction (steps S502 and S503).
  • FIG. 30 is a flowchart showing a procedure example of the carrier direction inverse Fourier transform process shown in FIG.
  • step S602 the shift amount s in the carrier direction for each symbol is calculated based on the transmission mode mode and the symbol count value symco.
  • the transmission mode mode is a variable that is, for example, 0 in mode 1, 1 in mode 2, and 2 in mode 3.
  • step S603 a Fourier transform process in the carrier direction is performed.
  • step S605 the complex exponent ph of the twiddle factor coefficient is calculated based on the shift amount s calculated in step S602 and the carrier index m.
  • step S607 ⁇ H " z, q ⁇ (corresponding to H" (z, q)) subjected to the Fourier transform is multiplied by a twiddle factor exp (ph). The above process is repeated kX times in the carrier direction and nY times in the symbol direction.
  • the SP signal transfer characteristic ⁇ H p, q ⁇ provided to the conversion unit 22x is limited in the calculation unit 21, and the calculation is devised in the conversion unit 22x. As compared with the above, the amount of calculation can be further reduced without degrading the accuracy of the estimated transfer characteristic.
  • the receiving apparatus 1a uses the transmission symbol generated by orthogonally modulating a plurality of carriers based on transmission data as a transmission unit, and a pilot signal having a specific known complex amplitude is the transmission symbol. 2 received in a two-dimensional space corresponding to the carrier frequency and symbol time.
  • the received signal obtained by receiving the OFDM signal superimposed on a predetermined carrier and detecting the carrier group included in a plurality of consecutive transmission symbols.
  • a signal detector 11 symbol detector arranged in the two-dimensional data region, and a transfer characteristic estimator for estimating a received signal transfer characteristic for each of the received signals based on a pilot signal arranged in the two-dimensional data region 20 and a data decoding unit 30 for decoding the transmission data based on the received signal and the received signal transfer characteristic
  • the transfer characteristic estimation unit 20 includes a calculation unit 21 (SP transfer characteristic calculation unit) that calculates a pilot signal transfer characteristic for a pilot signal arranged in the two-dimensional data region; A conversion unit 22x (2D Fourier transform unit) that performs two-dimensional Fourier transform on the pilot signal transfer characteristics to generate two-dimensional Fourier transform data in a two-dimensional space corresponding to the transmission line delay time and the transmission line fluctuation frequency; Supply means 26 (filter coefficient setting circuit) for calculating a two-dimensional filter window for passing a data group in the specific area of the two-dimensional Fourier transform data, and the specific area determined based on the two-dimensional filter window Filter means 23 (2D filter circuit) for selectively extracting
  • a pilot signal having a specific known complex amplitude is superimposed on a predetermined carrier in the transmission symbol with a transmission symbol generated by orthogonally modulating a plurality of carriers based on transmission data as a transmission unit.
  • a received signal obtained by receiving a received OFDM signal and detecting a carrier group included in a plurality of consecutive transmission symbols is arranged in a two-dimensional data region on a two-dimensional space corresponding to the carrier frequency and symbol time.
  • the transfer characteristic estimation step for estimating the received signal transfer characteristic for each of the received signals based on the pilot signal arranged in the two-dimensional data region, the received signal and the received signal transfer characteristic
  • a data decoding step for decoding the transmission data.
  • the characteristic estimation step includes a calculation step for calculating a pilot signal transmission characteristic for a pilot signal arranged in the two-dimensional data region, and a two-dimensional Fourier transform is performed on the pilot signal transmission characteristic to obtain a transmission line delay time and a transmission line A conversion step for generating two-dimensional Fourier transform data in a two-dimensional space corresponding to a variable frequency, and a supply step for calculating a two-dimensional filter window for allowing a group of data in a specific region to pass through the two-dimensional Fourier transform data.
  • a filter step for selectively extracting a data group in the specific region determined based on the two-dimensional filter window, and performing a two-dimensional inverse Fourier transform on the selected and extracted data group, Generate two-dimensional inverse Fourier transform data in a two-dimensional space corresponding to the symbol time, and generate the data Generating a reception signal transfer characteristic based on the received data, wherein the calculation step calculates a pilot signal transfer characteristic for a pilot signal arranged in the two-dimensional data region And a transfer characteristic extracting step for extracting the pilot signal transfer characteristic at a position where the pilot signal is superimposed, except for a carrier on which the pilot signal is not superimposed, and for performing the process of the conversion step. And
  • the estimated transfer characteristic can be calculated with a smaller amount of calculation processing without lowering the accuracy of the estimated transfer characteristic as compared with the first embodiment.
  • the converting means 22x (2D Fourier transform unit) further uses the frequency shift theorem and is based on the pilot signal transmission characteristics for every 12 carriers.
  • the two-dimensional Fourier transform data is generated, and the generation means 24 (2D inverse Fourier transform circuit) uses a frequency shift theorem, and based on the data group selected and extracted, A reception signal transfer characteristic is calculated.
  • the converting means 22x (2D Fourier converter) further multiplies the pilot signal transmission characteristics for every 12 carriers by a twiddle factor to The dimensional Fourier transform data is generated, and the generation means 24 (2D inverse Fourier transform circuit) multiplies the selected and extracted data group by a twiddle factor to calculate the reception signal transfer characteristic in the two-dimensional data area.
  • the calculation unit 21 calculates the SP signal transfer characteristic ⁇ H p, q ⁇ in the (p, q) space as in the above embodiment. Then, the SP transfer characteristic extraction circuit 21b extracts the SP signal transfer characteristic ⁇ H " p, q ⁇ only for the carrier position of the SP signal (see FIG. 24), and SP signal transfer characteristics (see FIG. 25) packed in the carrier direction. Is provided to the converter 22x.
  • the conversion unit 22x performs 2D Fourier transform processing on the SP signal transfer characteristics provided from the calculation unit 21.
  • FIG. 31 shows a flowchart of the conversion unit 22x when an SP signal exists at the origin (0, 0) in the (p, q) space.
  • the 2D Fourier transform processing indicates carrier direction inverse Fourier transform processing (corresponding to the illustrated C-IFFT processing step S500) and symbol direction Fourier transform processing (corresponding to the illustrated S-IFFT processing step S600).
  • FIG. 32 is a flowchart showing a procedure example of the inverse Fourier transform process (step S500) in the carrier direction. This flowchart is executed by the conversion unit 22x.
  • step S522 a value that is incremented by 1 every time the index is incremented by 4 in the symbol index q-axis direction is calculated.
  • step S524 an index to be circulated in the carrier index p-axis direction is calculated based on the value calculated in step S522.
  • step S525 the data that has been circulated in the carrier index p-axis direction is stored in the temporary storage area temp (pa).
  • the process of step S525 is a process of changing the top address (origin) of data used for inverse Fourier transform, and does not necessarily require the temporary storage area temp (pa).
  • steps S524 and S525 are repeatedly executed over the two-dimensional region carrier width kX (S526 and S527).
  • step S528 an inverse Fourier transform process is performed in the carrier direction.
  • steps S522 to S528 are repeatedly executed over the two-dimensional symbol width nY (S529, S530).
  • FIG. 33 is a flowchart showing an example of the procedure of Fourier transform processing in the symbol direction. This flowchart is executed by the conversion unit 22.
  • step S621 the carrier index m is initialized.
  • step S622 a Fourier transform process in the symbol direction is performed.
  • step S623 an offset value ma for circulating data in the symbol index q-axis direction is calculated.
  • step S625 the index na to which data is circulated in the symbol index q-axis direction is calculated.
  • step S626 the data after Fourier transformation in the symbol direction is circulated in the symbol index q-axis direction to calculate the SP signal transfer characteristic ⁇ hm , na ⁇ .
  • steps S625 and S626 are repeatedly executed over the two-dimensional area symbol width nY (S627, S628).
  • steps S622 to S628 are executed over the two-dimensional region carrier width mX (S629, S630).
  • the SP transfer characteristic extracting circuit 21b first extracts the SP signal transfer characteristic only at the SP carrier signal position, and the symbol direction To the conversion unit 22.
  • the transform unit 22 performs the Fourier transform process in the symbol direction first, it is possible to perform the 2D Fourier transform only by the index (address) operation without multiplying the complex twiddle factor coefficient as described above. .
  • FIG. 34 is a block diagram illustrating a configuration example of a receiving device 1x configured to divide the symbol storage unit 12 into a data carrier storage unit 12a and an SP carrier storage unit 12b in the receiving device 1 illustrated in FIG.
  • the receiving apparatus 1x shown in FIG. 34 has substantially the same configuration as that of the receiving apparatus 1 shown in FIG. 4 and the receiving apparatus 1a shown in FIG.
  • the data carrier storage unit 12a and the SP carrier storage unit 12b may be two storage regions secured by dividing the storage region of the symbol storage unit 12, or may be physically separated storage regions.
  • the symbol storage unit 12 may be divided into a data carrier storage unit 12a and an SP carrier storage unit 12b. Since other configurations are almost the same as those in the above embodiment, the following description will mainly focus on the data carrier storage unit 12a and the SP carrier storage unit 12b.
  • the frequency domain processing unit 13 performs frame synchronization processing, TMCC demodulation processing, and the like, and generates symbol count values from 0 to 203 for each symbol.
  • the symbol count value is provided to the data carrier storage unit 12a and the SP carrier storage unit 12b.
  • the data carrier storage unit 12a only the carrier sequence used in the data decoding unit 30 is selected for each symbol and stored as a two-dimensional space in the carrier frequency direction and the symbol time direction. Further, the data carrier storage unit 12 a stores the symbol count value provided from the frequency domain processing unit 13 in association with each symbol provided from the symbol detection unit 11. The stored carrier group is provided to the data decoding unit 30.
  • the SP carrier storage unit 12a selects only the SP carrier sequence used by the transfer characteristic estimation unit 20 for each symbol and stores it as a two-dimensional space in the carrier frequency direction and the symbol time direction. Further, the symbol count value provided from the frequency domain processing unit 13 is stored in a form associated with each symbol provided from the symbol detection unit 11. The stored subcarrier group is provided to the transfer characteristic estimation unit 20.
  • the data decoding unit 30 performs processes such as equalization, deinterleaving, and Reed-Solomon decoding based on the carrier complex amplitude from the data carrier storage unit 12a and the estimated transfer characteristic from the transfer characteristic estimation unit 20, and outputs TS data. .
  • the SP carrier storage unit 12a selects only the SP carrier from the nX carriers in the channel center portion of the symbol comprising the carrier sequence provided from the symbol detection unit 11, and stores this for nY symbols in the symbol time direction. . That is, in the SP carrier storage unit 12a, the carrier amplitude ⁇ S p, q ⁇ of only the SP carrier in the hatched portion ( ⁇ nX / 2 ⁇ p ⁇ nX / 2, k ⁇ nY ⁇ q ⁇ k) in the OFDM space of FIG. Is retained. As shown in FIG. 35, the carrier index in the carrier frequency direction is p, and the symbol index in the symbol time direction is q.
  • the data carrier storage unit 12a only the data carrier is selected from the wX carriers in the channel center portion of the symbol composed of the carrier sequence provided from the symbol detection unit 11, and this is selected in the symbol time direction (two-dimensional region symbol width nY). / 2 + estimated area symbol width wY / 2) Stores over symbols. That is, the carrier amplitude ⁇ SD p, q ⁇ of only the data carrier of the lattice portion ( ⁇ wX / 2 ⁇ p ⁇ wX / 2, k ⁇ nY / 2 ⁇ wX / 2 ⁇ q ⁇ k) in the OFDM space of FIG. Retained.
  • the receiving device 1x in the embodiment further includes storage means for sequentially storing carrier amplitudes output from the signal detection means 11 (symbol detection unit), and the storage The means selects only the carrier sequence used in the data decoding means 30 (data decoding section) for each symbol, and stores it as a two-dimensional space in the carrier frequency direction and symbol time direction, the first storage means 12a (data carrier storage section) And a second storage unit 12b (SP carrier storage unit) for storing the symbol count value provided from the frequency domain processing unit 13 (frequency domain processing unit) for each symbol provided from the signal detection unit 11 ).
  • storage means for sequentially storing carrier amplitudes output from the signal detection means 11 (symbol detection unit), and the storage The means selects only the carrier sequence used in the data decoding means 30 (data decoding section) for each symbol, and stores it as a two-dimensional space in the carrier frequency direction and symbol time direction, the first storage means 12a (data carrier storage section) And a second storage unit 12b (SP carrier storage unit) for storing the symbol
  • the two-dimensional area carrier nX is set so that the total storage area of the data carrier storage unit 12a and the SP carrier storage unit 14 is constant regardless of the transmission mode.
  • the two-dimensional area symbol width nY may be variable with respect to the transmission mode.
  • the transfer characteristic estimation unit 20 variably sets each parameter depending on the transmission mode so that the storage capacity is constant regardless of the transmission mode.
  • the transfer characteristic estimation unit 20 prevents the estimated area carrier width wX ⁇ estimated area symbol width WY, 2D carrier width nX ⁇ 2D area symbol width nY from changing even if the transmission mode changes.
  • each parameter is set as shown in FIG.
  • ceil_pow (x) represents a function that returns the minimum factorial value of 2 that is greater than or equal to the value x.
  • nX (ceil_pow (wX / 3)) ⁇ 3
  • the supply unit 26 (filter coefficient determination circuit) further includes a carrier frequency width wX, nX and a symbol time width wY, nY as the two-dimensional filter window according to a transmission mode. It is characterized by providing.
  • the total storage area used in the data carrier storage unit 12a and the SP carrier storage unit 12b is made constant regardless of the transmission mode. can do.
  • FIG. 1 It is a block diagram which shows the specific structural example of the inverse transformation part shown in FIG. It is explanatory drawing which shows the structure of OFDM symbol space. It is explanatory drawing which shows the attribute of the carrier arrange
  • FIG. 5 is a block diagram illustrating a configuration example of a receiving device in which a symbol storage unit is divided into a data carrier storage unit and an SP carrier storage unit in the receiving device shown in FIG. 4. It is explanatory drawing which shows the structural example of OFDM symbol space. It is explanatory drawing which shows the structural example of OFDM symbol space. It is a figure which shows an example of each parameter set according to the transmission mode.

Abstract

[PROBLEMS] To solve a problem that although a conventional receiver is capable of accurately calculating an estimated transfer characteristic with respect to specific carrier amplitude, it does not take the amount of operation in a 2D (2D-inverse) Fourier transform processing into consideration. [MEANS FOR SOLVING PROBLEMS] An SP transfer characteristic calculation circuit (21a) calculates a pilot signal transfer characteristic with respect to a pilot signal located in a two-dimensional data area. An SP transfer characteristic extraction circuit (21b) extracts the pilot signal transfer characteristic at the position at which the pilot signals are superposed on one another except the carrier in which the pilot signals are not superposed on one another to supply it to a two-dimensional Fourier transform section (22).

Description

受信装置及び受信方法Receiving apparatus and receiving method
 本発明は、例えば、地上デジタル放送の受信装置等に関する。 The present invention relates to a receiver for terrestrial digital broadcasting, for example.
 一般に、OFDM方式を用いた地上波デジタル放送では、映像や音声などの情報データの伝送を担うデータキャリア信号と共に、伝送路伝達特性の推定を容易にするためのパイロットキャリア信号が使用される。例えば、前述のISDB-TやDVB-T等の規格においては、分散パイロット(Scattered Pilot;SP)信号(以下“SP信号”と称する)と呼ばれるパイロットキャリア信号が規定されている。SP信号は、キャリア周波数とシンボル時間の2次元からなるOFDMシンボル空間を仮想した場合、同空間内において特定の位置に重畳されることが既知であり、かつその複素振幅、即ちSP信号の絶対値振幅と位相も予め定められている。それ故、これらの規格によるデジタル放送を受信する受信装置では、SP信号を利用して電波伝搬経路の各キャリアに対する伝達特性を推定し、このような推定結果に基づいて受信信号に関する補正処理や等化処理を行うことが可能となる。 Generally, in terrestrial digital broadcasting using the OFDM system, a pilot carrier signal for facilitating estimation of transmission path transmission characteristics is used together with a data carrier signal for transmitting information data such as video and audio. For example, in the above-mentioned standards such as ISDB-T and DVB-T, a pilot carrier signal called a distributed pilot (SP) signal (hereinafter referred to as “SP signal”) is defined. The SP signal is known to be superimposed at a specific position in the same space when assuming an OFDM symbol space consisting of two dimensions of carrier frequency and symbol time, and its complex amplitude, that is, the absolute value of the SP signal. The amplitude and phase are also predetermined. Therefore, in a receiving apparatus that receives digital broadcasting according to these standards, the SP signal is used to estimate the transfer characteristics for each carrier of the radio wave propagation path, and based on such estimation results, correction processing related to the received signal, etc. Can be performed.
 従来の受信装置は、各キャリアに対する伝達特性の推定精度が低かったことを改善するため、OFDM信号シンボル空間内に配置されたパイロットキャリア信号の検波信号毎にその伝達関数を算出し、当該伝達関数をインパルス遅延時間とシンボル周波数とについて2次元フーリエ変換を施して2次元データ空間を生成している。さらに従来の受信装置は、当該2次元データ空間の所定領域をフィルタ抽出領域で抽出して当該抽出領域に含まれるデータについてキャリア周波数とシンボル時間とについて2次元逆フーリエ変換を施して推定伝達関数を生成していた(特許文献1参照)。
特許第3802031号公報
In order to improve that the estimation accuracy of the transfer characteristic for each carrier is low, the conventional receiver calculates the transfer function for each detection signal of the pilot carrier signal arranged in the OFDM signal symbol space, and the transfer function A two-dimensional data space is generated by performing a two-dimensional Fourier transform on the impulse delay time and the symbol frequency. Further, the conventional receiving apparatus extracts a predetermined region of the two-dimensional data space by a filter extraction region, performs a two-dimensional inverse Fourier transform on the carrier frequency and symbol time for the data included in the extraction region, and obtains an estimated transfer function. It was generated (see Patent Document 1).
Japanese Patent No. 3820311
 そのような従来の受信装置では、確かに特定キャリア振幅に対する推定伝達特性を精度良く算出することができるものの、2D(2D逆)フーリエ変換処理における演算量を考慮しておらず演算量が多くなっていた。 In such a conventional receiving apparatus, although it is possible to accurately calculate an estimated transfer characteristic with respect to a specific carrier amplitude, the amount of calculation is not taken into consideration in the 2D (2D inverse) Fourier transform processing. It was.
 本発明が解決しようとする課題には、上記した問題が一例として挙げられる。 The problems to be solved by the present invention include the above-mentioned problems as an example.
 上記課題を解決するために、請求項1記載の発明は、複数のキャリアを送信データに基づいて直交変調することにより生成した伝送シンボルを伝送単位として特定既知の複素振幅を持つパイロット信号が前記伝送シンボル内の所定のキャリアに重畳されたOFDM信号を受信し、連続する複数の前記伝送シンボルに含まれるキャリア群を検波して得た受信信号をキャリア周波数とシンボル時間に対応した2次元空間上の2次元データ領域内に配置する信号検波部と、前記2次元データ領域内に配置されたパイロット信号に基づいて前記受信信号の各々に対する受信信号伝達特性を推定する伝達特性推定部と、前記受信信号及び前記受信信号伝達特性に基づいて前記送信データを復号するデータ復号部と、を有する受信装置であって、前記伝達特性推定部は、前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する算出手段と、前記パイロット信号伝達特性について2次元フーリエ変換を施して、伝送路遅延時間と伝送路変動周波数に対応した2次元空間上の2次元フーリエ変換データを生成する変換手段と、前記2次元フーリエ変換データのうち特定領域内のデータ群を通過させるための2次元フィルタ窓を算出する供給手段と、前記2次元フィルタ窓に基づいて確定された前記特定領域内のデータ群を選択抽出するフィルタ手段と、前記選択抽出されたデータ群に対して2次元逆フーリエ変換を施して、キャリア周波数とシンボル時間に対応した2次元空間上の2次元逆フーリエ変換データを生成し、前記生成されたデータに基づいて前記受信信号伝達特性を生成する生成手段とを備え、前記算出手段は、前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する伝達特性算出手段と、前記パイロット信号が重畳されていないキャリアを除き、前記パイロット信号が重畳されている位置の前記パイロット信号伝達特性を抽出し、前記変換手段に供する伝達特性抽出手段とを備える。 In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that a pilot signal having a specific known complex amplitude is transmitted using a transmission symbol generated by orthogonally modulating a plurality of carriers based on transmission data as a transmission unit. A received signal obtained by receiving an OFDM signal superimposed on a predetermined carrier in a symbol and detecting a carrier group included in a plurality of consecutive transmission symbols is converted into a two-dimensional space corresponding to the carrier frequency and symbol time. A signal detector arranged in a two-dimensional data region, a transfer characteristic estimator for estimating a received signal transfer characteristic for each of the received signals based on a pilot signal arranged in the two-dimensional data region, and the received signal And a data decoding unit that decodes the transmission data based on the reception signal transfer characteristics, the reception device comprising: The characteristic estimation unit is configured to calculate a pilot signal transmission characteristic for a pilot signal arranged in the two-dimensional data region, and to perform a two-dimensional Fourier transform on the pilot signal transmission characteristic to obtain a transmission line delay time and a transmission line Transform means for generating two-dimensional Fourier transform data in a two-dimensional space corresponding to the fluctuation frequency, and supply means for calculating a two-dimensional filter window for allowing a group of data in a specific region of the two-dimensional Fourier transform data to pass through Filter means for selectively extracting a data group in the specific region determined based on the two-dimensional filter window, and performing a two-dimensional inverse Fourier transform on the selected and extracted data group, Generate two-dimensional inverse Fourier transform data in a two-dimensional space corresponding to the symbol time, and based on the generated data Generating means for generating a received signal transfer characteristic, wherein the calculating means superimposes the pilot signal on a transfer characteristic calculating means for calculating a pilot signal transfer characteristic for a pilot signal arranged in the two-dimensional data region. Excluding a carrier that is not used, the pilot signal transmission characteristic at a position where the pilot signal is superimposed is extracted, and is provided with a transmission characteristic extraction means for use in the conversion means.
 上記課題を解決するために、請求項6記載の発明は、複数のキャリアを送信データに基づいて直交変調することにより生成した伝送シンボルを伝送単位として特定既知の複素振幅を持つパイロット信号が前記伝送シンボル内の所定のキャリアに重畳されたOFDM信号を受信し、連続する複数の前記伝送シンボルに含まれるキャリア群を検波して得た受信信号をキャリア周波数とシンボル時間に対応した2次元空間上の2次元データ領域内に配置する信号検波ステップと、前記2次元データ領域内に配置されたパイロット信号に基づいて前記受信信号の各々に対する受信信号伝達特性を推定する伝達特性推定ステップと、前記受信信号及び前記受信信号伝達特性に基づいて前記送信データを復号するデータ復号ステップと、を有する受信方法であって、前記伝達特性推定ステップは、前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する算出ステップと、前記パイロット信号伝達特性について2次元フーリエ変換を施して、伝送路遅延時間と伝送路変動周波数に対応した2次元空間上の2次元フーリエ変換データを生成する変換ステップと、前記2次元フーリエ変換データのうち特定領域内のデータ群を通過させるための2次元フィルタ窓を算出する供給ステップと、前記2次元フィルタ窓に基づいて確定された前記特定領域内のデータ群を選択抽出するフィルタステップと、前記選択抽出されたデータ群に対して2次元逆フーリエ変換を施して、キャリア周波数とシンボル時間に対応した2次元空間上の2次元逆フーリエ変換データを生成し、前記生成されたデータに基づいて前記受信信号伝達特性を生成する生成ステップと、を備え、前記算出ステップは、前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する伝達特性算出ステップと、前記パイロット信号が重畳されていないキャリアを除き、前記パイロット信号が重畳されている位置の前記パイロット信号伝達特性を抽出し、前記変換ステップの処理に供する伝達特性抽出ステップとを備える。 In order to solve the above-mentioned problem, the invention according to claim 6 is characterized in that a pilot signal having a specific known complex amplitude is transmitted with a transmission symbol generated by orthogonally modulating a plurality of carriers based on transmission data. A received signal obtained by receiving an OFDM signal superimposed on a predetermined carrier in a symbol and detecting a carrier group included in a plurality of consecutive transmission symbols is converted into a two-dimensional space corresponding to the carrier frequency and symbol time. A signal detection step arranged in a two-dimensional data region, a transmission characteristic estimation step for estimating a reception signal transmission property for each of the reception signals based on a pilot signal arranged in the two-dimensional data region, and the reception signal And a data decoding step for decoding the transmission data based on the reception signal transfer characteristics. The transfer characteristic estimation step includes: a calculation step for calculating a pilot signal transfer characteristic for a pilot signal arranged in the two-dimensional data region; and a two-dimensional Fourier transform is performed on the pilot signal transfer characteristic to perform transmission. A transform step for generating two-dimensional Fourier transform data in a two-dimensional space corresponding to a path delay time and a transmission path fluctuation frequency, and a two-dimensional filter for passing a data group in a specific region of the two-dimensional Fourier transform data A supply step for calculating a window; a filter step for selectively extracting a data group in the specific region determined based on the two-dimensional filter window; and a two-dimensional inverse Fourier transform for the selected and extracted data group 2D inverse Fourier transform data in 2D space corresponding to carrier frequency and symbol time Generating a reception signal transfer characteristic based on the generated data, wherein the calculation step calculates a pilot signal transfer characteristic for a pilot signal arranged in the two-dimensional data region A transfer characteristic calculating step for extracting the pilot signal transfer characteristic at a position where the pilot signal is superposed, excluding a carrier on which the pilot signal is not superposed, and a transfer characteristic extracting step for use in the conversion step Is provided.
 以下、本発明の一実施の形態を図面を参照しつつ説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 なお、以下に説明する全ての実施形態では、ISDB-Tによる地上波デジタル放送の部分受信装置を例にとって説明を行う。ISDB-Tの規格による場合、OFDMシンボルは、図1に示されるような13個のセグメントによって構成されており、各セグメントには、例えば、伝送モード1の場合、108波のキャリアが含まれている。そして、部分受信装置とは、この13セグメントのうちの中央部に位置するセグメント0に含まれるキャリアのみを復調する受信装置のことである。 In all the embodiments described below, description will be made by taking as an example a partial receiver for terrestrial digital broadcasting by ISDB-T. In the case of the ISDB-T standard, the OFDM symbol is composed of 13 segments as shown in FIG. 1, and each segment includes, for example, a carrier of 108 waves in the case of transmission mode 1. Yes. The partial receiving apparatus is a receiving apparatus that demodulates only the carrier included in segment 0 located in the center of the 13 segments.
 また、以下の事例においては、ISDB-T規格で定められた複数の伝送モードのうち、伝送モード1の場合を例にとって説明を行う。なお、伝送モード1における各変調パラメータの諸値を図2に、また、説明中で使用する各定数パラメータの諸値を図3に示す。 In the following case, the case of the transmission mode 1 among a plurality of transmission modes defined in the ISDB-T standard will be described as an example. The values of each modulation parameter in the transmission mode 1 are shown in FIG. 2, and the values of each constant parameter used in the description are shown in FIG.
 <第1実施形態>
 図4は、第1実施形態における受信装置1の構成例を示すブロック図である。受信装置1は、主に、シンボル検波部11、シンボル記憶部12、周波数領域処理部13、伝達特性推定部20及びデータ復号部30を有する。なお、図中における信号の流れ示す矢印は、各構成要素間の主要な信号の流れを示すものであり、例えば、このような主要信号に付随する応答信号や監視信号等の信号に関しては、図中の矢印と逆方向の向きに伝達される場合を含むものとする。さらに、図中の矢印は、各構成要素間における信号の流れを概念的に示すものであって、実際の装置において、各信号が矢印で示される経路の通りに忠実に授受される必要はない。また、実際の装置では、各構成要素が同図に示されるように忠実に区分されている必要もない。
<First Embodiment>
FIG. 4 is a block diagram illustrating a configuration example of the receiving device 1 according to the first embodiment. The receiving apparatus 1 mainly includes a symbol detection unit 11, a symbol storage unit 12, a frequency domain processing unit 13, a transfer characteristic estimation unit 20, and a data decoding unit 30. In addition, the arrow which shows the flow of a signal in a figure shows the flow of the main signals between each component, For example, regarding signals, such as a response signal and a monitoring signal accompanying such a main signal, a figure. Including the case of transmission in the direction opposite to the arrow in the middle. Furthermore, the arrows in the figure conceptually indicate the flow of signals between the components, and in an actual device, it is not necessary for each signal to be faithfully exchanged along the path indicated by the arrows. . Moreover, in an actual apparatus, it is not necessary that each component is divided faithfully as shown in FIG.
 シンボル検波部11は、順次送信されてくるシンボルに対して、各シンボルに含まれるキャリア群を検波して、これらのキャリアの複素振幅(以下、“キャリア振幅”と称する)Sp,kを求める。ここで、Sp,kとはk番目のシンボルのp番目のキャリア振幅を表し、キャリアインデックスpについては、図5に示すように、チャンネル中央のキャリアがインデックスp=0に対応するように割り振るものとする。すなわち、チャンネル中央のキャリアはS0,kに、セグメント0のキャリア群はS-54,k~S53,kに、それぞれ対応するものとする。シンボル検波部11は、例えば、チューナー、A/D変換器、伝送モード/ガードインターバル比検出器、ガードインターバル除去回路、及びFFT回路等の各構成回路によって構成されるが、その構成はこのような事例に限定されるものではない。 The symbol detection unit 11 detects a carrier group included in each symbol with respect to sequentially transmitted symbols, and obtains complex amplitudes (hereinafter referred to as “carrier amplitudes”) Sp, k of these carriers. . Here, S p, k represents the p-th carrier amplitude of the k-th symbol, and the carrier index p is allocated so that the carrier in the center of the channel corresponds to the index p = 0 as shown in FIG. Shall. That is, the carrier at the center of the channel corresponds to S 0, k , and the carrier group of segment 0 corresponds to S −54, k to S 53, k . The symbol detection unit 11 is configured by each component circuit such as a tuner, an A / D converter, a transmission mode / guard interval ratio detector, a guard interval removal circuit, and an FFT circuit. It is not limited to cases.
 次に、シンボル記憶部12は、シンボル検波部11から出力されるキャリア振幅のうち、チャンネル中央部のnX個を選択して、これをシンボル時間方向についてnYシンボル時間分に亘り記憶する回路である。即ち、図6に示されるOFDMシンボル空間内の(2次元領域キャリア幅nX×2次元領域シンボル幅nY個)のキャリア群について、キャリア振幅Sp,q(-nX/2≦p<nX/2,k-nY<q≦k)を記憶・保持する。以下の説明では、これらの記憶保持されたキャリア振幅を(p,q)空間上の2次元配列{Sp,q:(p,q)∈Z2D}と考えて説明を行う。 Next, the symbol storage unit 12 is a circuit that selects nX carrier amplitudes output from the symbol detection unit 11 and stores them for nY symbol times in the symbol time direction. . That is, for the carrier group of (2D region carrier width nX × 2D region symbol width nY) in the OFDM symbol space shown in FIG. 6, the carrier amplitude S p, q (−nX / 2 ≦ p <nX / 2) , K−nY <q ≦ k). In the following description, these stored and held carrier amplitudes are considered as a two-dimensional array {S p, q : (p, q) εZ 2D } in the (p, q) space.
 なお、図6に示されるようにpはキャリアインデックス、qはシンボルインデックスであり、それぞれのインデックスが、キャリア周波数とシンボル時間に対応している。また、Z2Dの範囲は、キャリア周波数方向において、
 -nX/2 ≦ p < nX/2
として定義され、また、シンボル時間方向においては、
 k-nY < q ≦ k
として定義される。
As shown in FIG. 6, p is a carrier index, q is a symbol index, and each index corresponds to a carrier frequency and a symbol time. Also, the Z 2D range is in the carrier frequency direction,
−nX / 2 ≦ p <nX / 2
And in the symbol time direction:
k−nY <q ≦ k
Is defined as
 なお、OFDMシンボル空間である(p,q)空間上に2次元配列された各々のキャリア振幅情報と、各キャリアの属性(当該キャリアがSP信号、又はデータキャリア信号である属性)との関係を図7に示す。同図からも明らかなように、SP信号は12キャリアに1つの割合で重畳されており、その重畳位置は1シンボル毎に3キャリアずつ巡回推移する。 The relationship between each carrier amplitude information two-dimensionally arranged in the (p, q) space that is the OFDM symbol space and the attribute of each carrier (the attribute that the carrier is an SP signal or a data carrier signal) As shown in FIG. As is clear from the figure, the SP signal is superposed at a rate of one on 12 carriers, and the superposition position cyclically changes by 3 carriers for each symbol.
 周波数領域処理部13は、フレーム同期処理、TMCC復調処理などを施し、シンボル毎に0から203までのシンボルカウント値を生成してシンボル記憶部12に記憶する。なおシンボル記憶部12は、周波数領域処理部13から供されるシンボルカウント値をシンボル検波部11から供されるシンボル毎に付随させる形で記憶する。 The frequency domain processing unit 13 performs frame synchronization processing, TMCC demodulation processing, etc., generates symbol count values from 0 to 203 for each symbol, and stores them in the symbol storage unit 12. The symbol storage unit 12 stores the symbol count value provided from the frequency domain processing unit 13 in association with each symbol provided from the symbol detection unit 11.
 データ復号部30は、シンボル記憶部12に記憶されたキャリア振幅データ群の中から、さらに、図6に示される推定領域ZEST(-wX/2≦p<wX/2,k-nY/2-wY/2≦q<k-nY/2+wY/2)内のキャリア振幅{Sp,q:(p,q)∈ZEST}を抽出して、これに復号処理を加える部分である。 The data decoding unit 30 further includes an estimation region Z EST (−wX / 2 ≦ p <wX / 2, k−nY / 2) shown in FIG. 6 from the carrier amplitude data group stored in the symbol storage unit 12. The carrier amplitude {S p, q : (p, q) εZ EST } within −wY / 2 ≦ q <k−nY / 2 + wY / 2) is extracted, and this is subjected to decoding processing.
 また、伝達特性推定部20は、シンボル記憶部12に記憶されたキャリア振幅に基づいて、上記推定領域ZEST内のキャリア振幅に対する推定伝達特性を算出して、これをデータ復号部30に供する部分である。 Further, the transfer characteristic estimation unit 20 calculates an estimated transfer characteristic with respect to the carrier amplitude in the estimation region Z EST based on the carrier amplitude stored in the symbol storage unit 12, and supplies this to the data decoding unit 30 It is.
 データ復号部30は、シンボル記憶部12からのキャリア振幅と、伝達特性推定部20からの推定伝達特性に基づいて、等化、デインターリーブ、リードソロモン復号等の処理を行って、この結果得られる受信データを出力する。なお、伝達特性推定部20は、連続するwY個のシンボル区間について伝達特性の推定を行うので、受信した1シンボル毎のタイミングで動作する必要はなく、wYシンボルを受信する毎に1回の割合で動作すれば良い。また、このような動作タイミングはデータ復号部30の動作タイミングについても同様である。 The data decoding unit 30 performs processing such as equalization, deinterleaving, and Reed-Solomon decoding based on the carrier amplitude from the symbol storage unit 12 and the estimated transfer characteristic from the transfer characteristic estimation unit 20, and is obtained as a result. Output received data. The transfer characteristic estimation unit 20 estimates transfer characteristics for consecutive wY symbol intervals, so it does not need to operate at the timing of each received symbol, and is once per wY symbol reception. Should work. Such operation timing is the same for the operation timing of the data decoding unit 30.
 次に、伝達特性推定部20の構成、及び動作について説明を行う。 Next, the configuration and operation of the transfer characteristic estimation unit 20 will be described.
 先ず、伝達特性推定部20の構成を図8に示す。同図に示されるように、伝達特性推定部20は、主に、SP伝達特性算出部21、2次元フーリエ変換部22、2次元フィルタ回路23、2次元逆フーリエ変換回路24、推定伝達特性出力回路25、及びフィルタ係数決定回路26から構成されている。なお、以下の説明では記載を簡略化すべく、これら各々の回路をそれぞれ、算出部21、変換部22、フィルタ回路23、逆変換部24、出力回路25、及び決定回路26と称する。以下の回路構成の詳細説明では、主として本実施形態において特有の構成である算出部21及び逆変換部24を中心として説明し、その他の回路構成については動作説明において説明する。 First, the configuration of the transfer characteristic estimation unit 20 is shown in FIG. As shown in the figure, the transfer characteristic estimation unit 20 mainly includes an SP transfer characteristic calculation unit 21, a two-dimensional Fourier transform unit 22, a two-dimensional filter circuit 23, a two-dimensional inverse Fourier transform circuit 24, and an estimated transfer characteristic output. The circuit 25 and the filter coefficient determination circuit 26 are included. In the following description, these circuits are referred to as a calculation unit 21, a conversion unit 22, a filter circuit 23, an inverse conversion unit 24, an output circuit 25, and a determination circuit 26, respectively, in order to simplify the description. In the detailed description of the circuit configuration below, the calculation unit 21 and the inverse conversion unit 24, which are specific configurations in the present embodiment, will be mainly described, and other circuit configurations will be described in the operation description.
 算出回路21は、図9に示されるようにSP伝達特性算出回路21a及びSP伝達特性抽出回路21bを有する。このうちSP伝達特性抽出回路を「抽出回路」と称する。SP伝達特性算出回路21aは、シンボル記憶部12から供給されるキャリア振幅の中からSP信号に関するキャリア振幅のみを抽出して、これを既知の送信複素振幅値で除算する。これによってSP伝達特性算出回路21aは、(p,q)空間上に点在するSP信号に関し、その伝達特性{Hp,q:(p,q)∈Z2D}を求めることができる。抽出回路21bは、SP信号が全く重畳されていないキャリアインデックスを除き、3キャリアインデックス毎のSP信号伝達特性を変換部22に供する。 As shown in FIG. 9, the calculation circuit 21 includes an SP transfer characteristic calculation circuit 21a and an SP transfer characteristic extraction circuit 21b. Among these, the SP transfer characteristic extraction circuit is referred to as an “extraction circuit”. The SP transfer characteristic calculation circuit 21a extracts only the carrier amplitude related to the SP signal from the carrier amplitude supplied from the symbol storage unit 12, and divides this by the known transmission complex amplitude value. As a result, the SP transfer characteristic calculation circuit 21a can obtain the transfer characteristic {H p, q : (p, q) εZ 2D } for the SP signals scattered in the (p, q) space. The extraction circuit 21b provides the conversion unit 22 with SP signal transfer characteristics for every three carrier indexes except for a carrier index on which no SP signal is superimposed.
 逆変換部24は、図10に示されるように逆フーリエ変換回路24a、乗算回路24b及びフーリエ変換回路24cを有する。逆フーリエ変換回路24aは、シンボルインデックス方向のデータに対し、逆フーリエ変換処理を全キャリアインデックスにわたり施す。乗算回路24bは、複素回転因子係数(exp(-jωt))を各キャリアに対して乗算する。なおjは虚数単位を表しており、exp(x)は複素数関数を表している。フーリエ変換回路24cは、キャリアインデックス方向のデータに対し、フーリエ変換処理を全シンボルインデックスに亘り施すことで推定伝達特性を算出し、出力回路25に提供する。つまり乗算回路24b及びフーリエ変換回路24cはキャリアインデックス方向に演算を行っている。 As shown in FIG. 10, the inverse transform unit 24 includes an inverse Fourier transform circuit 24a, a multiplier circuit 24b, and a Fourier transform circuit 24c. The inverse Fourier transform circuit 24a performs an inverse Fourier transform process on the data in the symbol index direction over all carrier indexes. The multiplication circuit 24b multiplies each carrier by a complex twiddle factor coefficient (exp (−jω o t)). Note that j represents an imaginary unit, and exp (x) represents a complex function. The Fourier transform circuit 24 c calculates an estimated transfer characteristic by performing a Fourier transform process on the data in the carrier index direction over all symbol indexes, and provides it to the output circuit 25. That is, the multiplication circuit 24b and the Fourier transform circuit 24c perform the calculation in the carrier index direction.
 続いて、伝達特性推定部20の動作を説明する。上述のようにISDB-T規格の地上波デジタル放送では、OFDMシンボル空間のキャリア配列中におけるSP信号の存在位置、及び送信時におけるSP信号の複素振幅値は、予め定められている。それ故、算出部21は、シンボル記憶部12から供給されるキャリア振幅の中からSP信号に関するキャリア振幅のみを抽出して、これを既知の送信複素振幅値で除算する。これによって、(p,q)空間上に点在するSP信号に関し、その伝達特性{Hp,q:(p,q)∈Z2D}を求めることができる。このような算出手順は以下の通りである。 Next, the operation of the transfer characteristic estimation unit 20 will be described. As described above, in the terrestrial digital broadcasting of the ISDB-T standard, the position of the SP signal in the carrier arrangement in the OFDM symbol space and the complex amplitude value of the SP signal at the time of transmission are determined in advance. Therefore, the calculation unit 21 extracts only the carrier amplitude related to the SP signal from the carrier amplitudes supplied from the symbol storage unit 12, and divides this by the known transmission complex amplitude value. Thereby, the transfer characteristics {H p, q : (p, q) εZ 2D } can be obtained for the SP signals scattered in the (p, q) space. Such a calculation procedure is as follows.
 算出部21は、図9に示されるSP伝達特性算出回路21aが、シンボル記憶部12から供給されるキャリア振幅の中からSP信号に関するキャリア振幅のみを抽出して、これを既知の送信複素振幅値で除算する。 In the calculation unit 21, the SP transfer characteristic calculation circuit 21a shown in FIG. 9 extracts only the carrier amplitude related to the SP signal from the carrier amplitude supplied from the symbol storage unit 12, and this is extracted as a known transmission complex amplitude value. Divide by.
 SP伝達特性算出回路21aは、図6に示される領域Z2D内の全ての要素(p,q)について、Sp,qがSP信号に相当する場合は、
 Hp,q=Sp,q/Rp,q
として、当該SP信号に関する伝達特性Hp,qを求める。ここで、Rp,qは、既知であるSP信号の送出複素振幅値である。
SP transfer characteristic calculation circuit 21a, all the elements (p, q) in the area Z 2D shown in FIG. 6 for the case where S p, q corresponds to the SP signal,
H p, q = S p, q / R p, q
Then, transfer characteristics H p, q relating to the SP signal are obtained. Here, R p, q is a known transmission complex amplitude value of the SP signal.
 一方、SP伝達特性算出回路21aは、SP信号以外のデータキャリア信号に対しては、
 Hp,q=0
として、その伝達関数{Hp,q}を定める。
On the other hand, the SP transfer characteristic calculation circuit 21a performs the following operation on data carrier signals other than SP signals.
H p, q = 0
The transfer function {H p, q } is defined as follows.
 これによってSP伝達特性算出回路21aは、(p,q)空間上に点在するSP信号に関し、その伝達特性{Hp,q:(p,q)∈Z2D}を求めることができる。 As a result, the SP transfer characteristic calculation circuit 21a can obtain the transfer characteristic {H p, q : (p, q) εZ 2D } for the SP signals scattered in the (p, q) space.
 抽出回路21bは、SP信号が全く重畳されていないキャリアインデックスを除き、3キャリアインデックス毎のSP信号伝達特性{Hp,q}を変換部22に供する。 The extraction circuit 21 b supplies the SP signal transfer characteristic {H p, q } for each three carrier index to the conversion unit 22 except for the carrier index on which no SP signal is superimposed.
 つまり、12キャリアに1つの割合で重畳されていたSP信号は、図12に示されるように3キャリア毎にしか存在しないようになる。そして重畳位置が1シンボル毎に3キャリアずつ巡回推移していたSP信号は、その重畳位置が1シンボル毎に1キャリアずつ巡回推移している。 That is, the SP signal superposed at a rate of 1 on 12 carriers is present only every 3 carriers as shown in FIG. The SP signal in which the superposition position has been cyclically changed by three carriers for each symbol has its superposition position cyclically changed by one carrier for each symbol.
 即ち、図11に示されるOFDMシンボル空間内のキャリア群について、2D-FFT領域Z’2D(-mX/2≦p<mX/2,k-nY<q≦k)のSP信号伝達特性{H’p,q:(p,q)∈Z’2D}を変換部22に供する。また、同図において推定領域Z’ESTの範囲を(-vX/2≦p<vX/2,k-nY/2-wY/2≦q<k-nY/2+wY/2)とする。 That is, for the carrier group in the OFDM symbol space shown in FIG. 11, the SP signal transfer characteristic {H of 2D-FFT region Z ′ 2D (−mX / 2 ≦ p <mX / 2, k−nY <q ≦ k) ' p, q : (p, q) εZ' 2D } is provided to the conversion unit 22. In the figure, the range of the estimation region Z ′ EST is (−vX / 2 ≦ p <vX / 2, k−nY / 2−wY / 2 ≦ q <knY / 2 + wY / 2).
 変換部22は、(p,q)空間上のSP信号伝達特性{H’p,q}について、2次元フーリエ変換を施して、これを(m,n)空間上のSP信号伝達特性{hm,n:(m,n)∈Z’TRA}に変換する。すなわち、(p,q)空間のキャリア周波数方向(p方向)については、IFFT(逆高速フーリエ変換)処理を施すことで周波数領域を時間領域に変換し、シンボル時間方向(q方向)については、FFT(高速フーリエ変換)処理を施すことで時間領域を周波数領域に変換する。 The transform unit 22 performs a two-dimensional Fourier transform on the SP signal transfer characteristic {H ′ p, q } in the (p, q) space, and performs this on the SP signal transfer characteristic {h in the (m, n) space. m, n : (m, n) εZ ′ TRA } That is, for the carrier frequency direction (p direction) in (p, q) space, IFFT (Inverse Fast Fourier Transform) processing is performed to convert the frequency domain to the time domain, and for the symbol time direction (q direction), The time domain is converted into the frequency domain by performing FFT (Fast Fourier Transform) processing.
 この結果、2次元フーリエ変換後の(m,n)空間では、そのm軸方向が時間の次元に、そのn軸方向が周波数の次元に、それぞれ対応することになる。また、(p,q)空間上の領域Z’2Dが、(m,n)空間上に変換された領域Z’TRAに対応し、同領域は、m軸方向において、
 -mX/2 ≦ m < mX/2
として定義され、また、n軸方向において、
 -nY/2 ≦ n < nY/2
として定義される。
As a result, in the (m, n) space after the two-dimensional Fourier transform, the m-axis direction corresponds to the time dimension, and the n-axis direction corresponds to the frequency dimension. Further, the region Z ′ 2D in the (p, q) space corresponds to the region Z ′ TRA converted in the (m, n) space, and this region is
-MX / 2 ≦ m <mX / 2
And in the n-axis direction,
−nY / 2 ≦ n <nY / 2
Is defined as
 決定回路26は、変換部22によって(m,n)空間上にフーリエ変換されたデータ群に基づいて、2次元フィルタ窓{Wm,n}を算出する。上記特許文献1で説明されているように、伝送路伝達特性のパワースペクトラム分布は、伝送路の性質に応じて(m,n)空間上の特定領域に集中する傾向がある。したがって、決定回路26は、この領域をカバーする通過域を有する実係数の2次元フィルタ窓{Wm,n}を算出し、フィルタ回路23に供する。一例として、後述する図14に示される領域Aを通過域とし、その他の領域を阻止域とするような2次元フィルタ窓を設定すればよい。すなわち領域Aにおいては2次元フィルタ窓{Wm,n}は
   Wm,n=1
として設定され、それ以外の領域については
   Wm,n=0
として設定される。
The determination circuit 26 calculates a two-dimensional filter window {W m, n } based on the data group that has been Fourier-transformed in the (m, n) space by the conversion unit 22. As described in Patent Document 1, the power spectrum distribution of the transmission path transfer characteristic tends to be concentrated in a specific region on the (m, n) space according to the nature of the transmission path. Therefore, the decision circuit 26 calculates a real coefficient two-dimensional filter window {W m, n } having a pass band covering this area, and supplies it to the filter circuit 23. As an example, a two-dimensional filter window may be set so that a region A shown in FIG. 14 to be described later is used as a passband and other regions are used as a stopband. That is, in the region A, the two-dimensional filter window {W m, n } is W m, n = 1.
W m, n = 0 for other areas
Set as
 なお、このような2次元フィルタ窓としては、矩形窓や余弦降下窓などの様々な形状の窓関数が適用可能であることはいうまでもない。また決定回路26は受信環境に適応した2次元フィルタ窓の通過域を設定すべきであることはいうまでもない。 Needless to say, as such a two-dimensional filter window, window functions having various shapes such as a rectangular window and a cosine descent window can be applied. Needless to say, the decision circuit 26 should set the passband of the two-dimensional filter window adapted to the reception environment.
 フィルタ回路23は、変換部22で(m,n)空間上にフーリエ変換されたデータ群に対して、所定のフィルタリング処理を施す回路である。 The filter circuit 23 is a circuit that performs a predetermined filtering process on the data group that has been Fourier-transformed in the (m, n) space by the conversion unit 22.
 フィルタ回路23は、決定回路26より供される実係数の2次元フィルタ窓{Wm,n}を、(m,n)空間上のSP信号伝達特性{hm,n}に乗算して(m,n)空間上での推定伝達特性{gm,n}を算出する。フィルタ回路23によって算出された推定伝達特性{gm,n}は、次段の逆変換部24に出力される。 The filter circuit 23 multiplies the SP signal transfer characteristic {h m, n } in the (m, n) space by the real coefficient two-dimensional filter window {W m, n } provided by the decision circuit 26 ( m, n) Calculate the estimated transfer characteristic {g m, n } in space. The estimated transfer characteristic {g m, n } calculated by the filter circuit 23 is output to the inverse conversion unit 24 in the next stage.
 逆変換部24は、フィルタ回路23から供された推定伝達特性{gm,n}に、2次元フーリエ変換の逆処理である2次元逆フーリエ変換を施して、{gm,n}から(p,q)空間上の推定伝達特性{Gp,q:(p,q)∈Z2D}を算出する。 The inverse transform unit 24 performs a two-dimensional inverse Fourier transform, which is an inverse process of the two-dimensional Fourier transform, on the estimated transfer characteristic {g m, n } provided from the filter circuit 23, and from {g m, n } to ( p, q) Estimated transfer characteristic {Gp , q : (p, q) εZ 2D } in space is calculated.
 逆変換部24は、図10に示される逆フ-リエ変換回路24aが、シンボルインデックス方向(n軸方向)について逆フーリエ変換処理を全キャリアインデックスにわたり施すことで周波数領域から時間領域に変換する。 The inverse transform unit 24 performs transform from the frequency domain to the time domain by performing an inverse Fourier transform process over the entire carrier index in the symbol index direction (n-axis direction) by the inverse Fourier transform circuit 24a shown in FIG.
 乗算回路24bは、時間領域においてキャリアインデックス方向(m軸方向)について、mX区間で所定の位相回転が生じるように複素回転因子係数(exp(-jωt))を乗算する。なおjは虚数単位を表しており、exp(x)は複素指数関数を表している。 The multiplication circuit 24b multiplies the complex twiddle factor coefficient (exp (−jω o t)) so that a predetermined phase rotation occurs in the mX section in the time domain in the carrier index direction (m-axis direction). Note that j represents an imaginary unit, and exp (x) represents a complex exponential function.
 フーリエ変換回路24cは、キャリアインデックス方向(m軸方向)について、フーリエ変換処理を施すことで時間領域から周波数領域に変換する。 The Fourier transform circuit 24c performs transform from the time domain to the frequency domain by performing a Fourier transform process in the carrier index direction (m-axis direction).
 なお、逆変換部24を、上記特許文献1と同様に逆フーリエ変換回路24aとフーリエ変換回路24cのみで構成した場合、逆変換部24で算出される推定伝達特性は{G’p,q:(p,q)∈Z’2D}となり、推定領域はZ’ESTとなる。伝達特性推定部20が伝達特性を推定すべき領域はZESTであるのに対し、推定領域Z’ESTはキャリア方向について1/3の領域となっている。これはSP伝達特性抽出回路21bでSP伝達特性{Hp,q:(p,q)∈Z2D}を3キャリア毎に抽出したSP伝達特性{H’p,q:(p,q)∈Z’2D}を変換部22へ供給しているからであり、算出される推定伝達特性についても3キャリアインデックス毎の結果となる。 When the inverse transform unit 24 is configured by only the inverse Fourier transform circuit 24a and the Fourier transform circuit 24c as in the above-described Patent Document 1, the estimated transfer characteristic calculated by the inverse transform unit 24 is {G ′ p, q : (P, q) εZ ′ 2D } and the estimated region is Z ′ EST . The region where the transfer characteristic estimation unit 20 should estimate the transfer characteristic is Z EST , whereas the estimated region Z ′ EST is a region of 1/3 with respect to the carrier direction. This is because the SP transfer characteristic {H ′ p, q : (p, q) ∈ where the SP transfer characteristic {H p, q : (p, q) ∈Z 2D } is extracted every three carriers by the SP transfer characteristic extraction circuit 21 b. This is because Z ′ 2D } is supplied to the conversion unit 22, and the calculated transfer characteristic is also obtained for each three carrier index.
 よって、本実施形態の逆変換部24は、逆フーリエ変換回路24aにおいてシンボル方向(n軸方向)に逆フーリエ変換処理を施す。次に、後述する周波数移動定理を用いて、乗算回路24bにおいて、キャリア方向に複素回転因子係数を乗算した後に、フーリエ変換回路24cにおいてキャリア方向にフーリエ変換を施すことをシンボル毎に3回行うことで、推定領域ZESTの範囲を含む推定伝達特性{Gp,q:(p,q)∈Z2D}を算出する。逆変換部24で算出された推定伝達特性{Gp,q}は、出力回路25に供される。 Therefore, the inverse transform unit 24 of the present embodiment performs an inverse Fourier transform process in the symbol direction (n-axis direction) in the inverse Fourier transform circuit 24a. Next, using the frequency shift theorem described later, the multiplication circuit 24b multiplies the carrier direction by a complex twiddle factor coefficient, and the Fourier transform circuit 24c performs Fourier transform in the carrier direction three times for each symbol. Then, the estimated transfer characteristic {G p, q : (p, q) εZ 2D } including the range of the estimated region Z EST is calculated. The estimated transfer characteristic {G p, q } calculated by the inverse conversion unit 24 is provided to the output circuit 25.
 例えば、具体的に時間軸においてmX区間でそれぞれ位相が0Π、2/3Π、4/3Π回転するような複素回転因子係数を乗算した後にフーリエ変換を施すことで、周波数軸においてそれぞれキャリアインデックスt=3・p、t=3・p+1、t=3・p+2(-mX≦p<mX)位置での推定伝達特性を算出することができ、領域Z2Dの範囲における推定伝達特性が算出される。 For example, specifically, by applying a Fourier transform after multiplying complex twiddle factors such that the phase rotates 0Π, 2 / 3Π, and 4 / 3Π in the mX interval on the time axis, respectively, the carrier index t = The estimated transfer characteristic at the position of 3 · p, t = 3 · p + 1, t = 3 · p + 2 (−mX ≦ p <mX) can be calculated, and the estimated transfer characteristic in the region Z 2D is calculated.
 <周波数移動定理について>
 F(ω)とf(t)がフーリエ変換対であるならば、下記の式が成り立つ。
 f(t)×exp(jωt) ⇔ F(ω-ω
 上記の式は「周波数領域でのωの移動は、時間領域でのexp(jωt)を乗算することと等価である」という定理を示している。
<About the frequency shift theorem>
If F (ω) and f (t) are a Fourier transform pair, the following equation holds.
f (t) × exp (jω 0 t) ⇔ F (ω−ω 0 )
The above equation shows the theorem that “movement of ω 0 in the frequency domain is equivalent to multiplying exp (jω 0 t) in the time domain”.
 出力回路25は、データ復号部30が抽出した推定領域ZESTのキャリア振幅に対応する推定伝達特性{Gp,q:(p,q)∈ZEST}が抽出されて、このような抽出データをデータ復号部30に供する。 The output circuit 25 extracts the estimated transfer characteristic {G p, q : (p, q) εZ EST } corresponding to the carrier amplitude of the estimation region Z EST extracted by the data decoding unit 30 and extracts such extracted data. Is provided to the data decoding unit 30.
 なお、伝達特性推定部20からデータ復号部30に、Z2D全領域についての推定伝達特性を出力しないのは、(p,q)空間の周辺部では、領域端部の影響により推定伝達特性に誤差が生じるためである。このような端部の影響を軽減するには、例えば、2次元領域キャリア幅nX、及び2次元領域シンボル幅nYの具体的数値として、本実施形態の値よりも更に大きな値を用いれば良い。本実施形態では、推定領域シンボル幅wYとしてwY=204なる値を用いているが、推定領域シンボル幅wYはこのような値に限定されるものではない。同様に、推定領域キャリア幅wXについても、本実施形態では、1セグメント部分受信装置の構成を考えて同セグメントに含まれるキャリア数に相当するwX=108なる値を用いたが、これについてもこのような値に限定されるものではない。例えば、伝送帯域の中央に配置された3セグメントを受信復調する受信装置の場合はwX=324とすれば良い。 The reason why the estimated transfer characteristic for the entire Z 2D region is not output from the transfer characteristic estimating unit 20 to the data decoding unit 30 is that the estimated transfer characteristic is changed due to the influence of the end of the region in the peripheral part of the (p, q) space. This is because an error occurs. In order to reduce the influence of such an end, for example, as the specific values of the two-dimensional region carrier width nX and the two-dimensional region symbol width nY, values larger than those in the present embodiment may be used. In this embodiment, a value of wY = 204 is used as the estimated area symbol width wY, but the estimated area symbol width wY is not limited to such a value. Similarly, for the estimated region carrier width wX, in the present embodiment, a value of wX = 108 corresponding to the number of carriers included in the same segment is used in consideration of the configuration of the one-segment partial receiving apparatus. It is not limited to such a value. For example, in the case of a receiving apparatus that receives and demodulates three segments arranged in the center of the transmission band, wX = 324 may be set.
 図13は、上記特許文献1の図9に記載されているSP信号の伝送路伝達特性のパワースペクトラム分布を示す図である。 FIG. 13 is a diagram showing a power spectrum distribution of the transmission path transfer characteristic of the SP signal described in FIG. 9 of Patent Document 1.
 このパワースペクトラム分布は、2Dフーリエ変換処理が施されているので、m軸方向は時間であり、有効シンボル長Teまでの遅延時間を表している。また、n軸方向は周波数であり、シンボル送出周波数Faまでのドップラー周波数を表している。 Since this power spectrum distribution has been subjected to 2D Fourier transform processing, the m-axis direction is time, and represents the delay time to the effective symbol length Te. The n-axis direction is a frequency and represents a Doppler frequency up to the symbol transmission frequency Fa.
 しかしSP信号が3キャリア毎にしか重畳されていないため、有効シンボル長Teの1/3周期で伝送路伝達特性がm軸方向に繰り返されていることが確認できる。例えば、有効シンボル長Teの1/3を超えるような遅延波が存在した場合、SP信号の伝達特性は有効シンボル長Teの1/3周期に折り返される形でしか観測することはできない。よって、有効なSP信号伝達特性はm軸方向に対しTe/3区間のみである。 However, since the SP signal is superposed only for every three carriers, it can be confirmed that the transmission path transmission characteristic is repeated in the m-axis direction in 1/3 period of the effective symbol length Te. For example, when there is a delay wave exceeding 1/3 of the effective symbol length Te, the SP signal transfer characteristic can be observed only in a form that is folded back to 1/3 period of the effective symbol length Te. Therefore, the effective SP signal transfer characteristic is only the Te / 3 section with respect to the m-axis direction.
 一方、第1実施形態では、算出部21が変換部22に3キャリアインデックス毎のSP信号伝達特性{H’p,q}を供するため、変換部22の出力であるSP信号伝達特性{hm,n}のパワースペクトラム分布{|hm,n}は、図14に示されるように、m軸方向については有効シンボル長Teの1/3までの遅延時間を表している。n軸方向については、図13に示す場合と同様にシンボル送出周波数Faの周波数を表している。 On the other hand, in the first embodiment, since the calculation unit 21 provides the conversion unit 22 with the SP signal transfer characteristic {H ′ p, q } for every three carrier indexes, the SP signal transfer characteristic {h m that is the output of the conversion unit 22. , N } power spectrum distribution {| h m, n | 2 } represents a delay time up to 1/3 of the effective symbol length Te in the m-axis direction, as shown in FIG. For the n-axis direction, the frequency of the symbol transmission frequency Fa is shown as in the case shown in FIG.
 以上のように、第1実施形態においては、SP信号伝達特性の時間方向(m軸方向)に有効な区間であるTe/3幅に亘り伝達特性が算出されているため、推定伝達特性の精度を低下させることなく、より少ない演算処理量で推定伝達特性を算出することができる。 As described above, in the first embodiment, since the transfer characteristic is calculated over the Te / 3 width that is an effective section in the time direction (m-axis direction) of the SP signal transfer characteristic, the accuracy of the estimated transfer characteristic is calculated. The estimated transfer characteristic can be calculated with a smaller amount of calculation processing without lowering the.
 次に、第1実施形態において動作が複雑な逆変換部24の処理についてのみ具体的にフローチャートを用いて説明を行う。図15は、2D逆フーリエ変換処理の手順例を示すフローチャートである。逆フーリエ変換処理は逆フーリエ変換部24によって実行される。 Next, only the processing of the inverse transform unit 24 whose operation is complicated in the first embodiment will be specifically described using a flowchart. FIG. 15 is a flowchart illustrating a procedure example of 2D inverse Fourier transform processing. The inverse Fourier transform process is executed by the inverse Fourier transform unit 24.
 シンボル方向逆フーリエ変換処理(S-IFFT処理とも称する)は、(p,q)空間についてシンボル方向に逆フーリエ変換を行う処理を示している(ステップS100)。キャリア方向フーリエ変換処理(C-IFFT処理とも称する)は、(p,q)空間についてキャリア方向にフーリエ変換を行う処理を示している(ステップS200)。 Symbol direction inverse Fourier transform processing (also referred to as S-IFFT processing) indicates processing for performing inverse Fourier transform in the symbol direction for the (p, q) space (step S100). The carrier direction Fourier transform process (also referred to as C-IFFT process) indicates a process of performing a Fourier transform in the carrier direction for the (p, q) space (step S200).
 以下の説明においては各計算式が次のように表される。なお下記の式においては、「FFT」がフーリエ変換を施す関数を示しており、「IFFT」が逆フーリエ変換を施す関数を示している。 In the following explanation, each calculation formula is expressed as follows. In the following formula, “FFT” indicates a function for performing Fourier transform, and “IFFT” indicates a function for performing inverse Fourier transform.
1.nについての1D(1次元)フーリエ変換処理
 F(p,q)=FFT(f(p,n))dn
1. 1D (one-dimensional) Fourier transform processing for n F (p, q) = FFT (f (p, n)) dn
2.qについての1D(1次元)逆フーリエ変換処理
 f(m,n)=IFFT(F(m,q))dq
2. 1D (one-dimensional) inverse Fourier transform processing for q f (m, n) = IFFT (F (m, q)) dq
 図16は、図15に示すシンボル方向逆フーリエ変換処理の手順例を示すフローチャートである。なお以降の各フローチャートにおける記号「←」は左辺の変数に右辺の値や式を設定することを表している。 FIG. 16 is a flowchart showing a procedure example of the symbol direction inverse Fourier transform process shown in FIG. In the following flowcharts, the symbol “←” indicates that the value or expression on the right side is set to the variable on the left side.
 ステップS102では、シンボル方向カウンタ値nについて逆フーリエ変換処理を行う。当該ステップS102は、キャリア方向に2次元領域キャリア幅mX回繰り返し行われる(ステップS101,S103,S104)。 In step S102, an inverse Fourier transform process is performed on the symbol direction counter value n. The step S102 is repeated in the carrier direction two-dimensional region carrier width mX times (steps S101, S103, S104).
 図17は、図15に示すキャリア方向フーリエ変換処理の手順例を示すフローチャートである。 FIG. 17 is a flowchart showing a procedure example of the carrier direction Fourier transform process shown in FIG.
 ステップS300では回転因子乗算処理が実行される。この回転因子乗算処理は、繰り返し回数インデックスkとキャリアインデックスmに基づいた回転因子係数をキャリア方向に乗算する。この回転因子乗算処理の詳細については後述する。 In step S300, a twiddle factor multiplication process is executed. In this twiddle factor multiplication process, a twiddle factor coefficient based on the repetition index k and the carrier index m is multiplied in the carrier direction. Details of the twiddle factor multiplication process will be described later.
 ステップS203では、キャリアインデックスmについてフーリエ変換処理を行う。ステップS400では推定領域抽出処理が実行される。この推定領域抽出処理は推定領域の推定伝達特性を抽出している。この推定領域抽出処理は、図11で示される推定領域幅vX(図6の推定領域キャリア幅wX/3に相当)の推定伝達特性のみを抽出し、図示しないメモリに格納する。これらステップS300,S203,S400は一例として1シンボル毎に3回に亘り繰り返される(ステップS202,S204,S205)。当該フローチャートでは、2次元領域シンボル幅nYに亘り、当該キャリア方向のフーリエ変換処理が繰り返し実行されているが(ステップS201,S206,S207)、推定領域シンボル幅wYに亘り繰り返し実行されるようにしても良い。 In step S203, a Fourier transform process is performed on the carrier index m. In step S400, an estimated area extraction process is executed. This estimated area extraction process extracts estimated transfer characteristics of the estimated area. In this estimated area extraction processing, only the estimated transfer characteristic of the estimated area width vX (corresponding to the estimated area carrier width wX / 3 in FIG. 6) shown in FIG. 11 is extracted and stored in a memory (not shown). These steps S300, S203, and S400 are repeated three times for each symbol as an example (steps S202, S204, and S205). In the flowchart, the Fourier transform process in the carrier direction is repeatedly executed over the two-dimensional area symbol width nY (steps S201, S206, S207), but is repeatedly executed over the estimated area symbol width wY. Also good.
 図18は、図17に示す回転因子乗算処理の具体的な手順例を示すフローチャートである。 FIG. 18 is a flowchart showing a specific procedure example of the twiddle factor multiplication process shown in FIG.
 ステップS302では、繰り返し回数インデックスkとキャリアインデックスmに基づいて、回転因子係数の複素指数phを算出している。ステップS303では変数zが算出される。記号「&」は、例えば、その左右に記載された変数などをビット単位で論理積演算することを表している。ステップS304では、ステップS302で算出した複素指数phを用いて回転因子係数exp(ph)を乗算している。これらステップS302,S303,S304は、推定領域キャリア幅wX/2に亘り繰り返し実行される(ステップS301,S305,S306)。 In step S302, the complex exponent ph of the twiddle factor coefficient is calculated based on the repetition count index k and the carrier index m. In step S303, the variable z is calculated. The symbol “&” represents, for example, that a logical product operation is performed on a variable or the like described on the left and right of each bit. In step S304, the twiddle factor exp (ph) is multiplied using the complex exponent ph calculated in step S302. These steps S302, S303, and S304 are repeatedly executed over the estimated region carrier width wX / 2 (steps S301, S305, and S306).
 図19は、図17に示す推定領域抽出処理の具体的な手順例を示すフローチャートである。なおnTはキャリア方向算出範囲パラメータを表しており、第1実施形態ではnT=wX/3と設定される(ステップS401)。また対象キャリア算出変数cは、処理の対象とすべきキャリアを特定するための算出用変数を表している。 FIG. 19 is a flowchart showing a specific procedure example of the estimation region extraction process shown in FIG. Note that nT represents a carrier direction calculation range parameter, and in the first embodiment, nT = wX / 3 is set (step S401). The target carrier calculation variable c represents a calculation variable for specifying a carrier to be processed.
 ステップS404では、変数zが設定される。ステップS405では、キャリア方向フーリエ変換毎に算出される推定伝達特性を3キャリアインデックスごとに図示しないメモリに格納している。ステップS406では、対象とすべきキャリアを3キャリア毎とするため、対象キャリア算出変数cが3インクリメントされる。 In step S404, a variable z is set. In step S405, the estimated transfer characteristic calculated for each carrier direction Fourier transform is stored in a memory (not shown) for each three carrier index. In step S406, the target carrier calculation variable c is incremented by 3 so that the carrier to be targeted is every three carriers.
 以上のようなステップS404,S405,S406が一例として3キャリア毎に-nT/2~nT/2に亘り実行される(ステップS401,S402,S403,S407,S408)。 Steps S404, S405, and S406 as described above are executed as an example from −nT / 2 to nT / 2 every three carriers (steps S401, S402, S403, S407, and S408).
 以上説明したように、本実施形態における受信装置1は、複数のキャリアを送信データに基づいて直交変調することにより生成した伝送シンボルを伝送単位として特定既知の複素振幅を持つパイロット信号が前記伝送シンボル内の所定のキャリアに重畳されたOFDM信号を受信し、連続する複数の前記伝送シンボルに含まれるキャリア群を検波して得た受信信号をキャリア周波数とシンボル時間に対応した2次元空間上の2次元データ領域内に配置する信号検波部11(シンボル検波部)と、前記2次元データ領域内に配置されたパイロット信号に基づいて前記受信信号の各々に対する受信信号伝達特性を推定する伝達特性推定部20と、前記受信信号及び前記受信信号伝達特性に基づいて前記送信データを復号するデータ復号部30と、を有する受信装置1であって、前記伝達特性推定部20は、前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する算出手段21(SP伝達特性算出部)と、前記パイロット信号伝達特性について2次元フーリエ変換を施して、伝送路遅延時間と伝送路変動周波数に対応した2次元空間上の2次元フーリエ変換データを生成する変換手段22(2Dフーリエ変換部)と、前記2次元フーリエ変換データのうち特定領域内のデータ群を通過させるための2次元フィルタ窓を算出する供給手段26(フィルタ係数設定回路)と、前記2次元フィルタ窓に基づいて確定された前記特定領域内のデータ群を選択抽出するフィルタ手段23(2Dフィルタ回路)と、前記選択抽出されたデータ群に対して2次元逆フーリエ変換を施して、キャリア周波数とシンボル時間に対応した2次元空間上の2次元逆フーリエ変換データを生成し、前記生成されたデータに基づいて前記受信信号伝達特性を生成する生成手段24(2D逆フーリエ変換部)とを備え、前記算出手段21は、前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する伝達特性算出手段21a(SP伝達特性算出回路)と、前記パイロット信号が重畳されていないキャリアを除き、3キャリア毎の前記パイロット信号伝達特性を抽出し、前記変換手段22に供する伝達特性抽出手段21b(SP伝達特性抽出回路)とを備えることを特徴とする。 As described above, the receiving apparatus 1 according to the present embodiment is configured so that a pilot signal having a specific known complex amplitude with the transmission symbol generated by orthogonally modulating a plurality of carriers based on transmission data as a transmission unit is the transmission symbol. 2 received in a two-dimensional space corresponding to the carrier frequency and symbol time. The received signal obtained by receiving the OFDM signal superimposed on a predetermined carrier and detecting the carrier group included in a plurality of consecutive transmission symbols. A signal detector 11 (symbol detector) arranged in the two-dimensional data region, and a transfer characteristic estimator for estimating a received signal transfer characteristic for each of the received signals based on a pilot signal arranged in the two-dimensional data region 20 and a data decoding unit 30 for decoding the transmission data based on the reception signal and the reception signal transfer characteristic, The transfer characteristic estimation unit 20 includes a calculation unit 21 (SP transfer characteristic calculation unit) that calculates a pilot signal transfer characteristic with respect to a pilot signal arranged in the two-dimensional data region; A conversion means 22 (2D Fourier transform unit) that performs two-dimensional Fourier transform on the pilot signal transfer characteristics to generate two-dimensional Fourier transform data in a two-dimensional space corresponding to the transmission line delay time and the transmission line fluctuation frequency; Supply means 26 (filter coefficient setting circuit) for calculating a two-dimensional filter window for passing a data group in the specific area of the two-dimensional Fourier transform data, and the specific area determined based on the two-dimensional filter window Filter means 23 (2D filter circuit) for selecting and extracting a data group in the second order, and second order for the data group selected and extracted A generating unit 24 that performs inverse Fourier transform to generate two-dimensional inverse Fourier transform data in a two-dimensional space corresponding to the carrier frequency and symbol time, and generates the reception signal transfer characteristic based on the generated data. 2D inverse Fourier transform unit), and the calculating means 21 includes a transfer characteristic calculating means 21a (SP transfer characteristic calculating circuit) for calculating a pilot signal transfer characteristic for a pilot signal arranged in the two-dimensional data region, The pilot signal transmission characteristic for every three carriers is extracted except for the carrier on which the pilot signal is not superimposed, and is provided with transmission characteristic extraction means 21b (SP transmission characteristic extraction circuit) for use in the conversion means 22. To do.
 本実施形態における受信方法は、複数のキャリアを送信データに基づいて直交変調することにより生成した伝送シンボルを伝送単位として特定既知の複素振幅を持つパイロット信号が前記伝送シンボル内の所定のキャリアに重畳されたOFDM信号を受信し、連続する複数の前記伝送シンボルに含まれるキャリア群を検波して得た受信信号をキャリア周波数とシンボル時間に対応した2次元空間上の2次元データ領域内に配置する信号検波ステップと、前記2次元データ領域内に配置されたパイロット信号に基づいて前記受信信号の各々に対する受信信号伝達特性を推定する伝達特性推定ステップと、前記受信信号及び前記受信信号伝達特性に基づいて前記送信データを復号するデータ復号ステップと、を有する受信方法であって、前記伝達特性推定ステップは、前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する算出ステップと、前記パイロット信号伝達特性について2次元フーリエ変換を施して、伝送路遅延時間と伝送路変動周波数に対応した2次元空間上の2次元フーリエ変換データを生成する変換ステップと、前記2次元フーリエ変換データのうち特定領域内のデータ群を通過させるための2次元フィルタ窓を算出する供給ステップと、前記2次元フィルタ窓に基づいて確定された前記特定領域内のデータ群を選択抽出するフィルタステップと、前記選択抽出されたデータ群に対して2次元逆フーリエ変換を施して、キャリア周波数とシンボル時間に対応した2次元空間上の2次元逆フーリエ変換データを生成し、前記生成されたデータに基づいて前記受信信号伝達特性を生成する生成ステップと、を備え、前記算出ステップは、前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する伝達特性算出ステップと、前記パイロット信号が重畳されていないキャリアを除き、3キャリア毎の前記パイロット信号伝達特性を抽出し、前記変換ステップの処理に供する伝達特性抽出ステップとを備えることを特徴とする。 In the receiving method in the present embodiment, a pilot signal having a specific known complex amplitude is superimposed on a predetermined carrier in the transmission symbol with a transmission symbol generated by orthogonally modulating a plurality of carriers based on transmission data as a transmission unit. A received signal obtained by receiving a received OFDM signal and detecting a carrier group included in a plurality of consecutive transmission symbols is arranged in a two-dimensional data region on a two-dimensional space corresponding to the carrier frequency and symbol time. Based on the signal detection step, the transfer characteristic estimation step for estimating the received signal transfer characteristic for each of the received signals based on the pilot signal arranged in the two-dimensional data region, the received signal and the received signal transfer characteristic And a data decoding step for decoding the transmission data. The characteristic estimation step includes a calculation step for calculating a pilot signal transmission characteristic for a pilot signal arranged in the two-dimensional data region, and a two-dimensional Fourier transform is performed on the pilot signal transmission characteristic to obtain a transmission line delay time and a transmission line A conversion step for generating two-dimensional Fourier transform data in a two-dimensional space corresponding to a variable frequency, and a supply step for calculating a two-dimensional filter window for allowing a group of data in a specific region to pass through the two-dimensional Fourier transform data. A filter step for selectively extracting a data group in the specific region determined based on the two-dimensional filter window, and performing a two-dimensional inverse Fourier transform on the selected and extracted data group, Generate two-dimensional inverse Fourier transform data in a two-dimensional space corresponding to the symbol time, and generate the data Generating a reception signal transfer characteristic based on the received data, wherein the calculation step calculates a pilot signal transfer characteristic for a pilot signal arranged in the two-dimensional data region And a transfer characteristic extracting step for extracting the pilot signal transfer characteristic for every three carriers except for a carrier on which the pilot signal is not superimposed and for use in the process of the conversion step.
 これらのようにすると、推定伝達特性の精度を低下させることなく、より少ない演算処理量で推定伝達特性を算出することができる。 In this way, the estimated transfer characteristic can be calculated with a smaller amount of calculation processing without lowering the accuracy of the estimated transfer characteristic.
 <第2実施形態>
 ところで、図20は、変換部22の出力であるSP信号伝達特性{hm,n}のパワースペクトラム分布{|hm,n}であり、後述する性質Aを示す図である。なお(m,n)空間はOFDMシンボル空間に相当する。
<Second Embodiment>
Incidentally, FIG. 20 shows the power spectrum distribution {| h m, n | 2 } of the SP signal transfer characteristic {h m, n } , which is the output of the conversion unit 22, and is a diagram showing a property A described later. The (m, n) space corresponds to the OFDM symbol space.
 変換部22において2Dフーリエ変換処理を施して算出したSP信号伝達特性{hm,n}は、SP信号の規則的な配置により以下の性質を有する。なおSP信号伝達特性{hm,n}はh(m,n)に相当する。
 h(m(mX-1),n&(nY-1))
   =h(m&(kX-1),(n+k×nY/4)&(nY-1))
   ×exp(-j×2π/4×(k×co4)) ・・・(1)
 co4=(symco+(2<<mode))&3
 k=(4-floor(((m&(mX-1)+(kX/2))/kX))&3
 kX=mX/4
The SP signal transfer characteristic {hm , n } calculated by performing the 2D Fourier transform process in the conversion unit 22 has the following properties due to the regular arrangement of the SP signals. The SP signal transfer characteristic {h m, n } corresponds to h (m, n).
h (m (mX-1), n & (nY-1))
= H (m & (kX-1), (n + k × nY / 4) & (nY-1))
× exp (−j × 2π / 4 × (k × co4)) (1)
co4 = (symco + (2 << mode)) & 3
k = (4-floor (((m & (mX-1) + (kX / 2)) / kX)) & 3
kX = mX / 4
 変数modeは伝送モードを表しており、例えばモード1のときは0、モード2のときは1、モード3のときは2である。変数symcoは、変換部22に供されるシンボル群の内、q軸原点に配置、記憶されているシンボル、すなわち図12におけるq=k-255シンボルに付随するシンボルカウント値である。関数floor(x)はx以下の最大の整数値を計算する関数である。 The variable mode represents the transmission mode, for example, 0 for mode 1, 1 for mode 2, and 2 for mode 3. The variable symco is a symbol count value associated with the symbol arranged and stored at the q-axis origin, that is, q = k-255 symbol in FIG. The function floor (x) is a function for calculating the maximum integer value less than or equal to x.
 図20においては(m,n)空間は(-mX/2≦m<mX/2、-nY/2≦n<nY)の範囲で表現されているが、(1)式では(0≦m<mX、0≦n<nY)の範囲で定義されている。即ち、図20における(m,n)空間上でm=-1は(1)式ではm=mX-1として定義されている。 In FIG. 20, the (m, n) space is expressed in the range of (−mX / 2 ≦ m <mX / 2, −nY / 2 ≦ n <nY), but in the expression (1), (0 ≦ m <MX, 0 ≦ n <nY). That is, in the (m, n) space in FIG. 20, m = −1 is defined as m = mX−1 in the equation (1).
 即ち、(1)式の右辺第一項目h(m&(kX-1),(n+k×nY/4)&(nY-1))は図20の領域Hのみを示している。よって、(1)式は領域HのSP信号伝達特性から(m,n)空間上の任意のSP信号伝達特性{hm,n}を容易に算出することができることが示されている。よって、(1)式は(m,n)空間上でSP信号伝達特性{hm,n}は1つの独立変数群と3つの従属変数群から成立していることを意味している。この性質を呼称として性質Aと呼ぶこととする。 That is, the first item h (m & (kX−1), (n + k × nY / 4) & (nY−1)) on the right side of the equation (1) shows only the region H in FIG. Therefore, equation (1) shows that an arbitrary SP signal transfer characteristic {h m, n } in the (m, n) space can be easily calculated from the SP signal transfer characteristic of the region H. Therefore, equation (1) means that the SP signal transfer characteristic {hm , n } is composed of one independent variable group and three dependent variable groups in the (m, n) space. This property is referred to as property A as a name.
 要するに、図20の領域HにあたるSP信号伝達特性のみを算出するように工夫することで、さらに変換部22の演算処理量の削減を行うことが期待できる。以下に示す第2実施形態は、上記性質Aを利用することで変換部22の演算処理量をさらに削減することを目的としたものである。 In short, it can be expected that the calculation processing amount of the conversion unit 22 can be further reduced by devising only the SP signal transfer characteristic corresponding to the region H in FIG. The second embodiment described below is intended to further reduce the amount of calculation processing of the conversion unit 22 by using the property A.
 図21は、第2実施形態による受信装置1aの構成例を示すブロック図である。第2実施形態による受信装置1aは、第1実施形態による受信装置1とほぼ同様の構成でありほぼ同様の動作を行う。このため第2実施形態では、同一の構成及び動作については第1実施形態における図1乃至図19と同一の符号を用いるとともに、その説明を省略し、以下の説明では異なる点を中心として説明する。 FIG. 21 is a block diagram illustrating a configuration example of the receiving device 1a according to the second embodiment. The receiving device 1a according to the second embodiment has substantially the same configuration as the receiving device 1 according to the first embodiment and performs substantially the same operation. For this reason, in the second embodiment, the same configurations and operations are denoted by the same reference numerals as in FIGS. 1 to 19 in the first embodiment, and the description thereof is omitted. In the following description, differences will be mainly described. .
 第2実施形態による受信装置1aは、第1実施形態による伝達特性推定部20の代わりに、当該伝達特性推定部20とほぼ同様の機能を有する伝達特性推定部20aを有する。 The receiving device 1a according to the second embodiment includes a transfer characteristic estimation unit 20a having substantially the same function as the transfer characteristic estimation unit 20 instead of the transfer characteristic estimation unit 20 according to the first embodiment.
 図22は、図21に示される伝達特性推定部20aの構成例を示すブロック図である。第2実施形態による伝達特性推定部20aは、第1実施形態における伝達特性推定部20とは、主として、算出部21の一部の機能が異なるとともに、変換部22の構成及び機能が異なっている。 FIG. 22 is a block diagram showing a configuration example of the transfer characteristic estimation unit 20a shown in FIG. The transfer characteristic estimation unit 20a according to the second embodiment mainly differs from the transfer characteristic estimation unit 20 according to the first embodiment mainly in a part of the function of the calculation unit 21 and the configuration and function of the conversion unit 22. .
 第1実施形態では、算出部21のSP伝達特性算出回路21aが、例えば3キャリアインデックス毎にSP信号の伝達特性{Hp,q}を抽出していたが、これに対して第2実施形態では、SP伝達特性抽出回路21aが、例えば12キャリアインデックス毎にSP信号のみの伝達特性{Hp,q}を抽出する。 In the first embodiment, the SP transfer characteristic calculation circuit 21a of the calculation unit 21 extracts the transfer characteristic {H p, q } of the SP signal for every three carrier indexes, for example, but this is the second embodiment. Then, the SP transfer characteristic extraction circuit 21a extracts the transfer characteristic {H p, q } of only the SP signal for every 12 carrier indexes, for example.
 算出部21は、上記図9に示されるSP伝達特性算出回路21aが、シンボル記憶部12から供給されるキャリア振幅の中からSP信号に関するキャリア振幅のみを抽出して、これを既知の送信複素振幅値で除算する。 The calculating unit 21 extracts only the carrier amplitude related to the SP signal from the carrier amplitude supplied from the symbol storage unit 12 by the SP transfer characteristic calculating circuit 21a shown in FIG. Divide by value.
 SP伝達特性算出回路21aは、図6に示される領域Z2D内の全ての要素(p,q)について、Sp,qがSP信号に相当する場合は、
 Hp,q=Sp,q/Rp,q
として、当該SP信号に関する伝達特性{Hp,q}を求める。ここで、{Rp,q}は、既知であるSP信号の送出複素振幅値である。
SP transfer characteristic calculation circuit 21a, all the elements (p, q) in the area Z 2D shown in FIG. 6 for the case where S p, q corresponds to the SP signal,
H p, q = S p, q / R p, q
Then, transfer characteristics {H p, q } regarding the SP signal are obtained. Here, {R p, q } is a known transmission complex amplitude value of the SP signal.
 一方、SP伝達特性算出回路21aは、SP信号以外のデータキャリア信号に対しては、
 Hp,q=0
として、その伝達関数{Hp,q}を定める。
On the other hand, the SP transfer characteristic calculation circuit 21a performs the following operation on data carrier signals other than SP signals.
H p, q = 0
The transfer function {H p, q } is defined as follows.
 これによってSP伝達特性算出回路21aは、(p,q)空間上に点在するSP信号に関し、その伝達特性{Hp,q:(p,q)∈Z2D}を求めることができる。 As a result, the SP transfer characteristic calculation circuit 21a can obtain the transfer characteristic {H p, q : (p, q) εZ 2D } for the SP signals scattered in the (p, q) space.
 抽出回路21bは、SP信号位置のSP信号伝達特性{Hp,q}のみを抽出し変換部22xに供する。具体的には、抽出回路21bは、図24に示されるSP信号位置のみのSP信号伝達特性を抽出し、図25に示されているようにキャリア方向に詰める形にして変換部22xに供する。 The extraction circuit 21b extracts only the SP signal transfer characteristic {H p, q } at the SP signal position and supplies it to the converter 22x. Specifically, the extraction circuit 21b extracts the SP signal transfer characteristic only at the SP signal position shown in FIG. 24, and supplies the SP signal transfer characteristic to the conversion unit 22x in the form of packing in the carrier direction as shown in FIG.
 このように、変換部22xに供するSP信号伝達特性をSP信号位置のキャリアに限定することにより、変換部22xの演算処理量をさらに削減することができる。 Thus, by limiting the SP signal transfer characteristics provided to the conversion unit 22x to the carrier at the SP signal position, it is possible to further reduce the calculation processing amount of the conversion unit 22x.
 上述のように変換部22xに供されるSP信号伝達特性{H”p,q}は、図23に示すようにOFDM空間内に配置されている。第2実施形態における2Dフーリエ変換領域の範囲Z”2Dは、
 -kX/2≦p<kX/2 ; k-nY<q≦k
と定義される。また推定領域Z”ESTは、
 -uX/2≦p<uX/2 ; k-nY/2-wY/2<q≦k-nY/2+wY/2
と定義される。
As described above, the SP signal transfer characteristics {H ″ p, q } provided to the conversion unit 22x are arranged in the OFDM space as shown in Fig. 23. Range of 2D Fourier transform region in the second embodiment Z " 2D is
−kX / 2 ≦ p <kX / 2; k−nY <q ≦ k
Is defined. Also, the estimated area Z " EST is
−uX / 2 ≦ p <uX / 2; k−nY / 2−wY / 2 <q ≦ k−nY / 2 + wY / 2
Is defined.
 変換部22xは、SP伝達特性算出部21から供された(p,q)空間上のSP信号伝達特性{H”p,q}について、2次元フーリエ変換を施して、これを(m,n)空間上のSP信号伝達特性{hm,n:(m,n)∈Z’TRA}に変換する。変換部22xはこれをフィルタ回路23と決定回路26に出力する。 The conversion unit 22x performs a two-dimensional Fourier transform on the SP signal transfer characteristic {H " p, q } in the (p, q) space provided from the SP transfer characteristic calculation unit 21, and converts this to (m, n ) SP signal transfer characteristics in space {h m, n : (m, n) εZ ′ TRA } The conversion unit 22 x outputs this to the filter circuit 23 and the decision circuit 26.
 つまり変換部22xは、図26に示される逆フーリエ変換回路22a及び乗算回路22bがキャリアインデックス方向に処理を施し、フーリエ変換回路22cがシンボルインデックス方向に処理を施す。 That is, in the transform unit 22x, the inverse Fourier transform circuit 22a and the multiplier circuit 22b shown in FIG. 26 perform processing in the carrier index direction, and the Fourier transform circuit 22c performs processing in the symbol index direction.
 即ち、変換部22xに供されるSP信号伝達特性は図25に示されるようにキャリア方向に縮退され、本来図24に示されるような(p、q)空間上の重畳位置とは異なり、シンボル毎にキャリア方向にSP信号の重畳位置がずれていない。そこで、変換部22xでは前述した周波数移動定理を用いて、シンボル毎にキャリア方向に逆フーリエ変換回路22aにて逆フーリエ変換処理を施した後に、乗算回路22bにて所定の複素回転因子係数を乗算することで、逆フーリエ変換処理前の時間軸において所望の位置だけ相対的にずれた結果を算出する。 That is, the SP signal transfer characteristic provided to the converter 22x is degenerated in the carrier direction as shown in FIG. 25, and is different from the superimposed position in the (p, q) space as originally shown in FIG. The SP signal superposition position is not shifted in the carrier direction every time. Therefore, the transform unit 22x performs the inverse Fourier transform process in the carrier direction for each symbol by the inverse Fourier transform circuit 22a using the frequency shift theorem described above, and then multiplies a predetermined complex twiddle factor coefficient in the multiplier circuit 22b. As a result, a result that is relatively shifted by a desired position on the time axis before the inverse Fourier transform processing is calculated.
 具体的に複素回転因子係数は、シンボル記憶部12より供されるシンボル毎に付随したシンボルカウント値と伝送モードに基づいて決定される。よって、複素因子係数はシンボル毎に更新され、本実施形態の場合において、その周期は4シンボルとなる。 Specifically, the complex twiddle factor coefficient is determined based on the symbol count value and transmission mode associated with each symbol provided from the symbol storage unit 12. Therefore, the complex factor coefficient is updated for each symbol, and in the case of the present embodiment, the cycle is 4 symbols.
 次に、フーリエ変換回路22cにおいて、シンボル方向にフーリエ変換処理を施すことで、(m,n)空間上のSP信号伝達特性{h’m,n}を算出する。 Next, in the Fourier transform circuit 22c, the SP signal transfer characteristic {h ′ m, n } in the (m, n) space is calculated by performing Fourier transform processing in the symbol direction.
 変換部22xで算出したSP信号伝達特性{h’m,n}のパワースペクトラム分布{|h’m,n}は図27に示されるように、m軸方向については有効シンボル長Teの1/12までの遅延時間となり、n軸方向についてはシンボル送出周波数Fa分の周波数となる。また、変換部22xで算出されたSP信号伝達特性{h’m,n}は上述した性質Aの説明で用いた図20の領域Hの部分に相当する。上述した性質Aを利用すれば、変換部22xで算出したSP信号伝達特性{h’m,n}から第1実施形態における変換部22で算出したSP信号伝達特性{hm,n}に容易に変換が可能である。即ち、変換部22xはSP信号伝達特性{hm,n}をフィルタ回路23、決定回路26に出力する。 As shown in FIG. 27, the power spectrum distribution {| h ′ m, n | 2 } of the SP signal transfer characteristic {h ′ m, n } calculated by the converter 22x is the effective symbol length Te in the m-axis direction. The delay time is up to 1/12, and in the n-axis direction, the frequency is equal to the symbol transmission frequency Fa. Further, the SP signal transfer characteristic {h ′ m, n } calculated by the conversion unit 22x corresponds to the area H of FIG. 20 used in the description of the property A described above. By utilizing the above properties A, conversion unit SP signal transfer characteristic calculated in 22x {h 'm, n} from the calculated conversion unit 22 in the first embodiment SP signal transfer characteristic {h m, n} easily Can be converted. That is, the converter 22x outputs the SP signal transfer characteristic {h m, n } to the filter circuit 23 and the determination circuit 26.
 よって、決定回路26、フィルタ回路23、逆変換部24、出力回路26については第1実施形態と同様の処理を行えばよい。これら決定回路26、フィルタ回路23、逆変換部24、出力回路25については、第1実施形態と同様であるので説明を省略する。 Therefore, the determination circuit 26, the filter circuit 23, the inverse conversion unit 24, and the output circuit 26 may be processed in the same manner as in the first embodiment. Since the determination circuit 26, the filter circuit 23, the inverse conversion unit 24, and the output circuit 25 are the same as those in the first embodiment, description thereof is omitted.
 図28は、2Dフーリエ変換処理の手順例を示すフローチャートである。この2Dフ-リエ変換処理は変換部22xによって実施される処理を表している。2Dフ-リエ変換処理は、キャリア方向逆フーリエ変換処理(ステップS500に相当)及びシンボル方向フーリエ変換処理(ステップS600に相当)を有する。キャリア方向逆フーリエ変換処理は、図29に示されるようにシンボル方向に沿って繰り返しフーリエ変換処理(ステップS501)が実施される(ステップS502,S503)。 FIG. 28 is a flowchart showing a procedure example of 2D Fourier transform processing. This 2D Fourier conversion process represents a process performed by the conversion unit 22x. The 2D Fourier transform process includes a carrier direction inverse Fourier transform process (corresponding to step S500) and a symbol direction Fourier transform process (corresponding to step S600). In the carrier direction inverse Fourier transform process, as shown in FIG. 29, the Fourier transform process (step S501) is repeatedly performed along the symbol direction (steps S502 and S503).
 図30は、図28に示されるキャリア方向逆フーリエ変換処理の手順例を示すフローチャートである。ステップS602では、伝送モードmodeとシンボルカウント値symcoに基づいてシンボル毎のキャリア方向のずれ量sを算出する。伝送モードmodeは、例えばモード1のときは0、モード2のときは1、モード3のときは2である変数である。シンボルカウント値symcoは、変換部22xに供されるシンボル群の内、q軸原点に配置、記憶されているシンボル、すなわち図25におけるq=k-255シンボルに付随するシンボルカウント値である。ステップS603ではキャリア方向のフーリエ変換処理を施す。 FIG. 30 is a flowchart showing a procedure example of the carrier direction inverse Fourier transform process shown in FIG. In step S602, the shift amount s in the carrier direction for each symbol is calculated based on the transmission mode mode and the symbol count value symco. The transmission mode mode is a variable that is, for example, 0 in mode 1, 1 in mode 2, and 2 in mode 3. The symbol count value symco is a symbol count value associated with a symbol arranged and stored at the q-axis origin in the symbol group provided to the conversion unit 22x, that is, q = k-255 symbol in FIG. In step S603, a Fourier transform process in the carrier direction is performed.
 ステップS605では、ステップS602で算出したずれ量sとキャリアインデックスmに基づいて、回転因子係数の複素指数phを算出する。ステップS607ではフーリエ変換処理された{H”z,q}(H”(z,q)に相当)に回転因子係数exp(ph)を乗算する。上記処理をキャリア方向にkX回繰り返し、シンボル方向にnY回繰り返し施す。 In step S605, the complex exponent ph of the twiddle factor coefficient is calculated based on the shift amount s calculated in step S602 and the carrier index m. In step S607, {H " z, q } (corresponding to H" (z, q)) subjected to the Fourier transform is multiplied by a twiddle factor exp (ph). The above process is repeated kX times in the carrier direction and nY times in the symbol direction.
 このように、第2実施形態によれば、算出部21において変換部22xに供するSP信号伝達特性{Hp,q}を限定し、変換部22xにおいて演算を工夫することにより、第1実施形態に比べ、推定伝達特性の精度を低下させることなく、さらに演算量を削減することができる。 As described above, according to the second embodiment, the SP signal transfer characteristic {H p, q } provided to the conversion unit 22x is limited in the calculation unit 21, and the calculation is devised in the conversion unit 22x. As compared with the above, the amount of calculation can be further reduced without degrading the accuracy of the estimated transfer characteristic.
 以上説明したように、本実施形態における受信装置1aは、複数のキャリアを送信データに基づいて直交変調することにより生成した伝送シンボルを伝送単位として特定既知の複素振幅を持つパイロット信号が前記伝送シンボル内の所定のキャリアに重畳されたOFDM信号を受信し、連続する複数の前記伝送シンボルに含まれるキャリア群を検波して得た受信信号をキャリア周波数とシンボル時間に対応した2次元空間上の2次元データ領域内に配置する信号検波部11(シンボル検波部)と、前記2次元データ領域内に配置されたパイロット信号に基づいて前記受信信号の各々に対する受信信号伝達特性を推定する伝達特性推定部20と、前記受信信号及び前記受信信号伝達特性に基づいて前記送信データを復号するデータ復号部30とを有する受信装置1aであって、前記伝達特性推定部20は、前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する算出手段21(SP伝達特性算出部)と、前記パイロット信号伝達特性について2次元フーリエ変換を施して、伝送路遅延時間と伝送路変動周波数に対応した2次元空間上の2次元フーリエ変換データを生成する変換手段22x(2Dフーリエ変換部)と、前記2次元フーリエ変換データのうち特定領域内のデータ群を通過させるための2次元フィルタ窓を算出する供給手段26(フィルタ係数設定回路)と、前記2次元フィルタ窓に基づいて確定された前記特定領域内のデータ群を選択抽出するフィルタ手段23(2Dフィルタ回路)と、前記選択抽出されたデータ群に対して2次元逆フーリエ変換を施して、キャリア周波数とシンボル時間に対応した2次元空間上の2次元逆フーリエ変換データを生成し、前記生成されたデータに基づいて前記受信信号伝達特性を生成する生成手段24(2D逆フーリエ変換部)とを備え、前記算出手段21は、前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する伝達特性算出手段21a(SP伝達特性算出回路)と、前記パイロット信号が重畳されていないキャリアを除き、前記パイロット信号が重畳されている位置の前記パイロット信号伝達特性を抽出し、前記変換手段22xに供する伝達特性抽出手段21b(SP伝達特性抽出回路)とを備えることを特徴とする。 As described above, the receiving apparatus 1a according to the present embodiment uses the transmission symbol generated by orthogonally modulating a plurality of carriers based on transmission data as a transmission unit, and a pilot signal having a specific known complex amplitude is the transmission symbol. 2 received in a two-dimensional space corresponding to the carrier frequency and symbol time. The received signal obtained by receiving the OFDM signal superimposed on a predetermined carrier and detecting the carrier group included in a plurality of consecutive transmission symbols. A signal detector 11 (symbol detector) arranged in the two-dimensional data region, and a transfer characteristic estimator for estimating a received signal transfer characteristic for each of the received signals based on a pilot signal arranged in the two-dimensional data region 20 and a data decoding unit 30 for decoding the transmission data based on the received signal and the received signal transfer characteristic The transfer characteristic estimation unit 20 includes a calculation unit 21 (SP transfer characteristic calculation unit) that calculates a pilot signal transfer characteristic for a pilot signal arranged in the two-dimensional data region; A conversion unit 22x (2D Fourier transform unit) that performs two-dimensional Fourier transform on the pilot signal transfer characteristics to generate two-dimensional Fourier transform data in a two-dimensional space corresponding to the transmission line delay time and the transmission line fluctuation frequency; Supply means 26 (filter coefficient setting circuit) for calculating a two-dimensional filter window for passing a data group in the specific area of the two-dimensional Fourier transform data, and the specific area determined based on the two-dimensional filter window Filter means 23 (2D filter circuit) for selectively extracting a data group within the data group, and for the data group selected and extracted Generation means 24 for performing two-dimensional inverse Fourier transform to generate two-dimensional inverse Fourier transform data in a two-dimensional space corresponding to the carrier frequency and symbol time, and generating the reception signal transfer characteristic based on the generated data (2D inverse Fourier transform unit), and the calculation unit 21 includes a transfer characteristic calculation unit 21a (SP transfer characteristic calculation circuit) that calculates a pilot signal transfer characteristic for a pilot signal arranged in the two-dimensional data region. The pilot signal transmission characteristic at the position where the pilot signal is superimposed is extracted except for the carrier on which the pilot signal is not superimposed, and the transmission characteristic extraction means 21b (SP transmission characteristic extraction circuit) provided to the conversion means 22x It is characterized by providing.
 本実施形態における受信方法は、複数のキャリアを送信データに基づいて直交変調することにより生成した伝送シンボルを伝送単位として特定既知の複素振幅を持つパイロット信号が前記伝送シンボル内の所定のキャリアに重畳されたOFDM信号を受信し、連続する複数の前記伝送シンボルに含まれるキャリア群を検波して得た受信信号をキャリア周波数とシンボル時間に対応した2次元空間上の2次元データ領域内に配置する信号検波ステップと、前記2次元データ領域内に配置されたパイロット信号に基づいて前記受信信号の各々に対する受信信号伝達特性を推定する伝達特性推定ステップと、前記受信信号及び前記受信信号伝達特性に基づいて前記送信データを復号するデータ復号ステップと、を有する受信方法であって、前記伝達特性推定ステップは、前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する算出ステップと、前記パイロット信号伝達特性について2次元フーリエ変換を施して、伝送路遅延時間と伝送路変動周波数に対応した2次元空間上の2次元フーリエ変換データを生成する変換ステップと、前記2次元フーリエ変換データのうち特定領域内のデータ群を通過させるための2次元フィルタ窓を算出する供給ステップと、前記2次元フィルタ窓に基づいて確定された前記特定領域内のデータ群を選択抽出するフィルタステップと、前記選択抽出されたデータ群に対して2次元逆フーリエ変換を施して、キャリア周波数とシンボル時間に対応した2次元空間上の2次元逆フーリエ変換データを生成し、前記生成されたデータに基づいて前記受信信号伝達特性を生成する生成ステップと、を備え、前記算出ステップは、前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する伝達特性算出ステップと、前記パイロット信号が重畳されていないキャリアを除き、前記パイロット信号が重畳されている位置の前記パイロット信号伝達特性を抽出し、前記変換ステップの処理に供する伝達特性抽出ステップとを備えることを特徴とする。 In the receiving method in the present embodiment, a pilot signal having a specific known complex amplitude is superimposed on a predetermined carrier in the transmission symbol with a transmission symbol generated by orthogonally modulating a plurality of carriers based on transmission data as a transmission unit. A received signal obtained by receiving a received OFDM signal and detecting a carrier group included in a plurality of consecutive transmission symbols is arranged in a two-dimensional data region on a two-dimensional space corresponding to the carrier frequency and symbol time. Based on the signal detection step, the transfer characteristic estimation step for estimating the received signal transfer characteristic for each of the received signals based on the pilot signal arranged in the two-dimensional data region, the received signal and the received signal transfer characteristic And a data decoding step for decoding the transmission data. The characteristic estimation step includes a calculation step for calculating a pilot signal transmission characteristic for a pilot signal arranged in the two-dimensional data region, and a two-dimensional Fourier transform is performed on the pilot signal transmission characteristic to obtain a transmission line delay time and a transmission line A conversion step for generating two-dimensional Fourier transform data in a two-dimensional space corresponding to a variable frequency, and a supply step for calculating a two-dimensional filter window for allowing a group of data in a specific region to pass through the two-dimensional Fourier transform data. A filter step for selectively extracting a data group in the specific region determined based on the two-dimensional filter window, and performing a two-dimensional inverse Fourier transform on the selected and extracted data group, Generate two-dimensional inverse Fourier transform data in a two-dimensional space corresponding to the symbol time, and generate the data Generating a reception signal transfer characteristic based on the received data, wherein the calculation step calculates a pilot signal transfer characteristic for a pilot signal arranged in the two-dimensional data region And a transfer characteristic extracting step for extracting the pilot signal transfer characteristic at a position where the pilot signal is superimposed, except for a carrier on which the pilot signal is not superimposed, and for performing the process of the conversion step. And
 これらのようにすると、第1実施形態に比べ、推定伝達特性の精度を低下させることなく、さらに少ない演算処理量で推定伝達特性を算出することができる。 In this way, the estimated transfer characteristic can be calculated with a smaller amount of calculation processing without lowering the accuracy of the estimated transfer characteristic as compared with the first embodiment.
 上記実施形態における受信装置1aにおいては、上述した構成に加えてさらに、前記変換手段22x(2Dフ-リエ変換部)は、周波数移動定理を利用し、12キャリア毎の前記パイロット信号伝達特性に基づいて前記2次元フーリエ変換データを生成し、かつ前記生成手段24(2D逆フーリエ変換回路)は、周波数移動定理を利用し、前記選択抽出されたデータ群に基づいて前記2次元データ領域内の前記受信信号伝達特性を算出することを特徴とする。 In the receiving apparatus 1a in the above embodiment, in addition to the above-described configuration, the converting means 22x (2D Fourier transform unit) further uses the frequency shift theorem and is based on the pilot signal transmission characteristics for every 12 carriers. The two-dimensional Fourier transform data is generated, and the generation means 24 (2D inverse Fourier transform circuit) uses a frequency shift theorem, and based on the data group selected and extracted, A reception signal transfer characteristic is calculated.
 上記実施形態における受信装置1aにおいては、上述した構成に加えてさらに、前記変換手段22x(2Dフ-リエ変換部)は、12キャリア毎の前記パイロット信号伝達特性に回転因子を乗算して前記2次元フーリエ変換データを生成し、かつ前記生成手段24(2D逆フーリエ変換回路)は、前記選択抽出されたデータ群に回転因子を乗算して前記2次元データ領域内の前記受信信号伝達特性を算出する。 In the receiving apparatus 1a in the above embodiment, in addition to the above-described configuration, the converting means 22x (2D Fourier converter) further multiplies the pilot signal transmission characteristics for every 12 carriers by a twiddle factor to The dimensional Fourier transform data is generated, and the generation means 24 (2D inverse Fourier transform circuit) multiplies the selected and extracted data group by a twiddle factor to calculate the reception signal transfer characteristic in the two-dimensional data area. To do.
 なお、本実施形態は、上記に限られず、種々の変形が可能である。以下、そのような変形例を順を追って説明する。 In addition, this embodiment is not restricted above, Various deformation | transformation are possible. Hereinafter, such modifications will be described in order.
 <回転因子係数を用いない方法>
 上記第2実施形態においては、図22に示される構成において、SP信号のみを変換部22xに供する場合に、変換部22xにおいてキャリア方向の逆フーリエ変換後に上記回転因子係数を乗算しなくても、次のように所望の演算結果を求めることができる。
<Method without using twiddle factor coefficient>
In the second embodiment, in the configuration shown in FIG. 22, when only the SP signal is supplied to the converter 22x, the converter 22x does not need to multiply the twiddle factor coefficient after the inverse Fourier transform in the carrier direction. A desired calculation result can be obtained as follows.
 算出部21は、上記実施形態と同様に(p,q)空間におけるSP信号伝達特性{Hp,q}を算出する。そしてSP伝達特性抽出回路21bでは、SP信号のキャリア位置のみのSP信号伝達特性{H”p,q}を抽出し(図24参照)、それをキャリア方向に詰めたSP信号伝達特性(図25参照)を変換部22xに供する。 The calculation unit 21 calculates the SP signal transfer characteristic {H p, q } in the (p, q) space as in the above embodiment. Then, the SP transfer characteristic extraction circuit 21b extracts the SP signal transfer characteristic {H " p, q } only for the carrier position of the SP signal (see FIG. 24), and SP signal transfer characteristics (see FIG. 25) packed in the carrier direction. Is provided to the converter 22x.
 変換部22xでは、算出部21から供されたSP信号伝達特性に対し、2Dフーリエ変換処理を行う。例として、(p,q)空間上の原点(0,0)にSP信号が存在する場合の変換部22xのフローチャートを図31に示す。2Dフ-リエ変換処理は、キャリア方向逆フーリエ変換処理(図示のC-IFFT処理ステップS500に相当)及びシンボル方向フーリエ変換処理(図示のS-IFFT処理ステップS600に相当)を示す。 The conversion unit 22x performs 2D Fourier transform processing on the SP signal transfer characteristics provided from the calculation unit 21. As an example, FIG. 31 shows a flowchart of the conversion unit 22x when an SP signal exists at the origin (0, 0) in the (p, q) space. The 2D Fourier transform processing indicates carrier direction inverse Fourier transform processing (corresponding to the illustrated C-IFFT processing step S500) and symbol direction Fourier transform processing (corresponding to the illustrated S-IFFT processing step S600).
 図32は、キャリア方向の逆フーリエ変換処理(ステップS500)の手順例を示すフローチャートである。このフローチャートは変換部22xによって実行される。 FIG. 32 is a flowchart showing a procedure example of the inverse Fourier transform process (step S500) in the carrier direction. This flowchart is executed by the conversion unit 22x.
 ステップS522では、シンボルインデックスq軸方向にインデックスが4インクリメントされる毎に1インクリメントされる値を算出している。ステップS524では、ステップS522で算出した値に基づいて、キャリアインデックスp軸方向に巡回する先のインデックスを算出する。ステップS525では、一時記憶領域temp(pa)にキャリアインデックスp軸方向に巡回させたデータを格納する。このステップS525の処理は、逆フーリエ変換に供するデータの先頭アドレス(原点)を変更する処理であり、必ずしも一時記憶領域temp(pa)が必要な訳でない。 In step S522, a value that is incremented by 1 every time the index is incremented by 4 in the symbol index q-axis direction is calculated. In step S524, an index to be circulated in the carrier index p-axis direction is calculated based on the value calculated in step S522. In step S525, the data that has been circulated in the carrier index p-axis direction is stored in the temporary storage area temp (pa). The process of step S525 is a process of changing the top address (origin) of data used for inverse Fourier transform, and does not necessarily require the temporary storage area temp (pa).
 これらステップS524,S525は、2次元領域キャリア幅kXに亘り繰り返し実行される(S526,S527)。ステップS528では、キャリア方向に逆フーリエ変換処理が行われる。これらステップS522~S528は、2次元シンボル幅nYに亘り繰り返し実行される(S529,S530)。 These steps S524 and S525 are repeatedly executed over the two-dimensional region carrier width kX (S526 and S527). In step S528, an inverse Fourier transform process is performed in the carrier direction. These steps S522 to S528 are repeatedly executed over the two-dimensional symbol width nY (S529, S530).
 図33は、シンボル方向のフーリエ変換処理の手順例を示すフローチャートである。このフローチャートは変換部22によって実行される。 FIG. 33 is a flowchart showing an example of the procedure of Fourier transform processing in the symbol direction. This flowchart is executed by the conversion unit 22.
 まずステップS621では、キャリアインデックスmが初期化される。ステップS622ではシンボル方向のフーリエ変換処理が行われる。ステップS623では、シンボルインデックスq軸方向にデータを巡回するオフセット値maが算出される。ステップS625ではシンボルインデックスq軸方向にデータを巡回する先のインデックスnaを算出する。ステップS626では、シンボル方向のフーリエ変換後のデータをシンボルインデックスq軸方向に巡回し、SP信号伝達特性{hm,na}を算出する。これらステップS625,S626は、2次元領域シンボル幅nYに亘り繰り返し実行される(S627,S628)。これらステップS622~S628は、2次元領域キャリア幅mXに亘り実行される(S629,S630)。 First, in step S621, the carrier index m is initialized. In step S622, a Fourier transform process in the symbol direction is performed. In step S623, an offset value ma for circulating data in the symbol index q-axis direction is calculated. In step S625, the index na to which data is circulated in the symbol index q-axis direction is calculated. In step S626, the data after Fourier transformation in the symbol direction is circulated in the symbol index q-axis direction to calculate the SP signal transfer characteristic {hm , na }. These steps S625 and S626 are repeatedly executed over the two-dimensional area symbol width nY (S627, S628). These steps S622 to S628 are executed over the two-dimensional region carrier width mX (S629, S630).
 このように、キャリア方向の逆フーリエ変換前のインデックス(アドレス)操作とシンボル方向のフーリエ変換後のインデックス(アドレス)操作を行うことにより、複素回転因子係数を乗算しなくてもよい演算方法もある。このように演算を行えるのはnY/mXの値が1以上の整数になる場合のみである。 As described above, there is an arithmetic method that does not need to multiply the complex twiddle factor coefficient by performing an index (address) operation before the inverse Fourier transform in the carrier direction and an index (address) operation after the Fourier transform in the symbol direction. . The calculation can be performed only when the value of nY / mX becomes an integer of 1 or more.
 一方、2次元領域キャリア幅mX/2次元領域シンボル幅nYが1以上の整数になる場合には、まずSP伝達特性抽出回路21bがSPキャリア信号位置のみのSP信号伝達特性を抽出し、シンボル方向に詰めて変換部22に供する。次に変換部22は、先にシンボル方向のフーリエ変換処理から行うと、上記と同様に複素回転因子係数を乗算しなくてもインデックス(アドレス)操作のみで2Dフーリエ変換を行うことが可能となる。 On the other hand, when the two-dimensional region carrier width mX / 2-dimensional region symbol width nY is an integer of 1 or more, the SP transfer characteristic extracting circuit 21b first extracts the SP signal transfer characteristic only at the SP carrier signal position, and the symbol direction To the conversion unit 22. Next, when the transform unit 22 performs the Fourier transform process in the symbol direction first, it is possible to perform the 2D Fourier transform only by the index (address) operation without multiplying the complex twiddle factor coefficient as described above. .
 <変形例>
 図34は、図4に示す受信装置1においてシンボル記憶部12をデータキャリア記憶部12aとSPキャリア記憶部12bに分割した構成の受信装置1xの構成例を示すブロック図である。図34に示す受信装置1xは、図4に示す受信装置1及び図21に示す受信装置1aと同一の符号を付した構成はほぼ同様の構成である。なおこれらデータキャリア記憶部12a及びSPキャリア記憶部12bは、シンボル記憶部12の記憶領域を分けて確保された2つの記憶領域でも良いし、物理的に分かれた記憶領域であっても良い。
<Modification>
FIG. 34 is a block diagram illustrating a configuration example of a receiving device 1x configured to divide the symbol storage unit 12 into a data carrier storage unit 12a and an SP carrier storage unit 12b in the receiving device 1 illustrated in FIG. The receiving apparatus 1x shown in FIG. 34 has substantially the same configuration as that of the receiving apparatus 1 shown in FIG. 4 and the receiving apparatus 1a shown in FIG. Note that the data carrier storage unit 12a and the SP carrier storage unit 12b may be two storage regions secured by dividing the storage region of the symbol storage unit 12, or may be physically separated storage regions.
 上述した各実施形態では、シンボル記憶部12をデータキャリア記憶部12aとSPキャリア記憶部12bに分割した構成であってもよい。なおその他の構成は上記実施形態とほぼ同様であるため、以下では、主にデータキャリア記憶部12aとSPキャリア記憶部12bについて説明する。 In each embodiment described above, the symbol storage unit 12 may be divided into a data carrier storage unit 12a and an SP carrier storage unit 12b. Since other configurations are almost the same as those in the above embodiment, the following description will mainly focus on the data carrier storage unit 12a and the SP carrier storage unit 12b.
 まず構成について説明すると、周波数領域処理部13は、フレーム同期処理、TMCC復調処理などが施され、シンボル毎に0から203までのシンボルカウント値を生成する。シンボルカウント値をデータキャリア記憶部12aとSPキャリア記憶部12bに供する。 First, the configuration will be described. The frequency domain processing unit 13 performs frame synchronization processing, TMCC demodulation processing, and the like, and generates symbol count values from 0 to 203 for each symbol. The symbol count value is provided to the data carrier storage unit 12a and the SP carrier storage unit 12b.
 データキャリア記憶部12aでは、シンボル毎にデータ復号部30で用いるキャリア系列のみを選択し、キャリア周波数方向及びシンボル時間方向の2次元空間として記憶する。またデータキャリア記憶部12aは、周波数領域処理部13から供されるシンボルカウント値をシンボル検波部11から供されるシンボル毎に付随させる形で記憶する。記憶されたキャリア群はデータ復号部30に供される。 In the data carrier storage unit 12a, only the carrier sequence used in the data decoding unit 30 is selected for each symbol and stored as a two-dimensional space in the carrier frequency direction and the symbol time direction. Further, the data carrier storage unit 12 a stores the symbol count value provided from the frequency domain processing unit 13 in association with each symbol provided from the symbol detection unit 11. The stored carrier group is provided to the data decoding unit 30.
 SPキャリア記憶部12aでは、シンボル毎に伝達特性推定部20で用いるSPキャリア系列のみを選択し、キャリア周波数方向及びシンボル時間方向の2次元空間として記憶する。また、周波数領域処理部13から供されるシンボルカウント値をシンボル検波部11から供されるシンボル毎に付随させる形で記憶する。記憶されたサブキャリア群は伝達特性推定部20に供される。 The SP carrier storage unit 12a selects only the SP carrier sequence used by the transfer characteristic estimation unit 20 for each symbol and stores it as a two-dimensional space in the carrier frequency direction and the symbol time direction. Further, the symbol count value provided from the frequency domain processing unit 13 is stored in a form associated with each symbol provided from the symbol detection unit 11. The stored subcarrier group is provided to the transfer characteristic estimation unit 20.
 データ復号部30では、データキャリア記憶部12aからのキャリア複素振幅と伝達特性推定部20からの推定伝達特性に基づいて等化、デインターリーブ、リードソロモン復号などの処理を行い、TSデータを出力する。 The data decoding unit 30 performs processes such as equalization, deinterleaving, and Reed-Solomon decoding based on the carrier complex amplitude from the data carrier storage unit 12a and the estimated transfer characteristic from the transfer characteristic estimation unit 20, and outputs TS data. .
 SPキャリア記憶部12aでは、シンボル検波部11から供されるキャリア系列からなるシンボルのチャンネル中央部nX個のキャリアのうち、SPキャリアのみを選択しこれをシンボル時間方向にnYシンボル分に亘り記憶する。即ち、SPキャリア記憶部12aでは、図35のOFDM空間における斜線部分(-nX/2≦p<nX/2,k-nY<q≦k)のSPキャリアのみのキャリア振幅{Sp,q}を記憶保持する。なお図35に示されるようにキャリア周波数方向のキャリアインデックスをpとし、シンボル時間方向のシンボルインデックスをqとする。 The SP carrier storage unit 12a selects only the SP carrier from the nX carriers in the channel center portion of the symbol comprising the carrier sequence provided from the symbol detection unit 11, and stores this for nY symbols in the symbol time direction. . That is, in the SP carrier storage unit 12a, the carrier amplitude {S p, q } of only the SP carrier in the hatched portion (−nX / 2 ≦ p <nX / 2, k−nY <q ≦ k) in the OFDM space of FIG. Is retained. As shown in FIG. 35, the carrier index in the carrier frequency direction is p, and the symbol index in the symbol time direction is q.
 データキャリア記憶部12aでは、シンボル検波部11から供されるキャリア系列からなるシンボルのチャネル中央部wX個のキャリアのうちデータキャリアのみを選択し、これをシンボル時間方向に(2次元領域シンボル幅nY/2+推定領域シンボル幅wY/2)シンボル分に亘り記憶する。即ち、図36のOFDM空間における格子部分(-wX/2≦p<wX/2,k-nY/2-wX/2<q≦k)のデータキャリアのみのキャリア振幅{SDp,q}が記憶保持される。 In the data carrier storage unit 12a, only the data carrier is selected from the wX carriers in the channel center portion of the symbol composed of the carrier sequence provided from the symbol detection unit 11, and this is selected in the symbol time direction (two-dimensional region symbol width nY). / 2 + estimated area symbol width wY / 2) Stores over symbols. That is, the carrier amplitude {SD p, q } of only the data carrier of the lattice portion (−wX / 2 ≦ p <wX / 2, k−nY / 2−wX / 2 <q ≦ k) in the OFDM space of FIG. Retained.
 以上のように、上記実施形態における受信装置1xは、上述した構成に加えてさらに、前記信号検波手段11(シンボル検波部)から出力されるキャリア振幅を順次記憶する記憶手段を有し、前記記憶手段は、シンボル毎に前記データ復号手段30(データ復号部)で用いるキャリア系列のみを選択し、キャリア周波数方向及びシンボル時間方向の2次元空間として記憶する第1記憶手段12a(データキャリア記憶部)と、前記周波数領域処理手段13(周波数領域処理部)から供されるシンボルカウント値を前記信号検波手段11から供されるシンボル毎に付随させる形で記憶する第2記憶手段12b(SPキャリア記憶部)とを有することを特徴とする。 As described above, in addition to the above-described configuration, the receiving device 1x in the embodiment further includes storage means for sequentially storing carrier amplitudes output from the signal detection means 11 (symbol detection unit), and the storage The means selects only the carrier sequence used in the data decoding means 30 (data decoding section) for each symbol, and stores it as a two-dimensional space in the carrier frequency direction and symbol time direction, the first storage means 12a (data carrier storage section) And a second storage unit 12b (SP carrier storage unit) for storing the symbol count value provided from the frequency domain processing unit 13 (frequency domain processing unit) for each symbol provided from the signal detection unit 11 ).
 <伝送モードによらず記憶領域を一定にする技術>
 上記実施形態では、特定の伝送モードを例示して説明したが、伝送モードによらず、データキャリア記憶部12a及びSPキャリア記憶部14の合計記憶領域が一定になるように、2次元領域キャリアnX及び2次元領域シンボル幅nYを伝送モードに対し可変にするようにしても良い。
<Technology to make the storage area constant regardless of the transmission mode>
In the above embodiment, a specific transmission mode has been described as an example. However, the two-dimensional area carrier nX is set so that the total storage area of the data carrier storage unit 12a and the SP carrier storage unit 14 is constant regardless of the transmission mode. The two-dimensional area symbol width nY may be variable with respect to the transmission mode.
 まず受信装置1xは、搭載している記憶領域が限られているため、記憶領域は有効に活用されるべきである。よって、伝送モードによらずデータキャリア記憶部12aとSPデータ記憶部12bで用いる記憶領域は一定であることが望ましい。そこで伝達特性推定部20は、伝送モードによらず記憶容量が一定になるように、伝送モードによって各パラメータの設定を可変に行う。 First, since the receiving device 1x has a limited storage area, the storage area should be used effectively. Therefore, it is desirable that the storage areas used in the data carrier storage unit 12a and the SP data storage unit 12b are constant regardless of the transmission mode. Therefore, the transfer characteristic estimation unit 20 variably sets each parameter depending on the transmission mode so that the storage capacity is constant regardless of the transmission mode.
 上記各実施形態では、伝達特性推定部20は、伝送モードが変わっても、推定領域キャリア幅wX×推定領域シンボル幅WY、2次元キャリア幅nX×2次元領域シンボル幅nYが変わらないようにする。一例として図37に示すように各パラメータが設定される。 In each of the above embodiments, the transfer characteristic estimation unit 20 prevents the estimated area carrier width wX × estimated area symbol width WY, 2D carrier width nX × 2D area symbol width nY from changing even if the transmission mode changes. . As an example, each parameter is set as shown in FIG.
 2次元領域キャリアwXと2次元領域キャリア幅nXの関係については、下記の式で表される。なおceil_pow(x)は、値x以上の最小の2の階乗値を返す関数を表している。
 nX=(ceil_pow(wX/3))×3
The relationship between the two-dimensional area carrier wX and the two-dimensional area carrier width nX is expressed by the following equation. Note that ceil_pow (x) represents a function that returns the minimum factorial value of 2 that is greater than or equal to the value x.
nX = (ceil_pow (wX / 3)) × 3
 上記受信装置1xは、上述した構成に加えてさらに、前記供給手段26(フィルタ係数決定回路)は、伝送モードに応じて前記2次元フィルタ窓としてキャリア周波数幅wX,nX及びシンボル時間幅wY,nYを供することを特徴とする。 In the receiving apparatus 1x, in addition to the above-described configuration, the supply unit 26 (filter coefficient determination circuit) further includes a carrier frequency width wX, nX and a symbol time width wY, nY as the two-dimensional filter window according to a transmission mode. It is characterized by providing.
 このように伝送モードに応じてキャリア幅wX,nXとシンボル幅wY,nYを設定することにより、伝送モードによらずデータキャリア記憶部12a及びSPキャリア記憶部12bにおいて使用する合計記憶領域を一定にすることができる。 Thus, by setting the carrier width wX, nX and the symbol width wY, nY according to the transmission mode, the total storage area used in the data carrier storage unit 12a and the SP carrier storage unit 12b is made constant regardless of the transmission mode. can do.
 また、以上既に述べた以外にも、上記実施形態や各変形例による手法を適宜組み合わせて利用しても良い。 In addition to those already described above, the methods according to the above-described embodiments and modifications may be used in appropriate combination.
ISDB-T規格によるOFDMシンボルの構成を示す図である。It is a figure which shows the structure of the OFDM symbol by ISDB-T standard. ISDB-T規格による伝送モード1による各変調パラメータの処置を示す図である。It is a figure which shows treatment of each modulation parameter by the transmission mode 1 by ISDB-T standard. 第1実施形態で用いられる各定数パラメータの処置を示す図である。It is a figure which shows treatment of each constant parameter used in 1st Embodiment. 第1実施形態による受信装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the receiver by 1st Embodiment. セグメントとキャリアインデックスとの関係を示す説明図である。It is explanatory drawing which shows the relationship between a segment and a carrier index. OFDMシンボル空間の構成例を示す説明図である。It is explanatory drawing which shows the structural example of OFDM symbol space. OFDMシンボル空間に配置されたキャリアの属性を示す説明図である。It is explanatory drawing which shows the attribute of the carrier arrange | positioned in OFDM symbol space. 図1に示す伝達特性推定部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the transfer characteristic estimation part shown in FIG. 図8に示す算出回路の構成例を示すブロック図である。It is a block diagram which shows the structural example of the calculation circuit shown in FIG. 図8に示す逆変換部の具体的な構成例を示すブロック図である。It is a block diagram which shows the specific structural example of the inverse transformation part shown in FIG. OFDMシンボル空間の構成を示す説明図である。It is explanatory drawing which shows the structure of OFDM symbol space. OFDMシンボル空間に配置されたキャリアの属性を示す説明図である。It is explanatory drawing which shows the attribute of the carrier arrange | positioned in OFDM symbol space. 第1受信環境における(m,n)空間上のパワースペクトラム分布を示す説明図である。It is explanatory drawing which shows the power spectrum distribution on the (m, n) space in a 1st receiving environment. 2Dフーリエ変換部の出力であるSP信号伝達特性のパワースペクトラム分布を示す図である。It is a figure which shows the power spectrum distribution of SP signal transmission characteristic which is an output of a 2D Fourier-transform part. 2D逆フーリエ変換処理の手順例を示すフローチャートである。It is a flowchart which shows the example of a procedure of 2D inverse Fourier transform processing. 図15に示すシンボル方向逆フーリエ変換処理の手順例を示すフローチャートである。It is a flowchart which shows the example of a procedure of the symbol direction inverse Fourier transform process shown in FIG. 図15に示すキャリア方向フーリエ変換処理の手順例を示すフローチャートである。It is a flowchart which shows the example of a procedure of the carrier direction Fourier-transform process shown in FIG. 図17に示す回転因子乗算処理の具体的な手順例を示すフローチャートである。It is a flowchart which shows the specific example of a procedure of the twiddle factor multiplication process shown in FIG. 図17に示す推定領域抽出処理の具体的な手順例を示すフローチャートである。It is a flowchart which shows the specific example of a procedure of the estimation area | region extraction process shown in FIG. 変換部の出力であるSP信号伝達特性のパワースペクトラム分布例である。It is an example of the power spectrum distribution of the SP signal transmission characteristic that is the output of the conversion unit. 第2実施形態による受信装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the receiver by 2nd Embodiment. 図21に示される伝達特性推定部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the transfer characteristic estimation part shown by FIG. OFDMシンボル空間の構成を示す説明図である。It is explanatory drawing which shows the structure of OFDM symbol space. OFDMシンボル空間に配置されたキャリアの属性を示す説明図である。It is explanatory drawing which shows the attribute of the carrier arrange | positioned in OFDM symbol space. OFDMシンボル空間に配置されたキャリアの属性を示す説明図である。It is explanatory drawing which shows the attribute of the carrier arrange | positioned in OFDM symbol space. 2Dフーリエ変換部を示すブロック図である。It is a block diagram which shows a 2D Fourier-transform part. 第2実施形態における変換部から出力されるSP信号伝達特性のパワースペクトラム分布を示す図である。It is a figure which shows the power spectrum distribution of SP signal transmission characteristic output from the conversion part in 2nd Embodiment. 2Dフーリエ変換処理の手順例を示すフローチャートである。It is a flowchart which shows the example of a procedure of 2D Fourier-transform processing. 図28に示されるシンボル方向フーリエ変換処理の手順例を示すフローチャートである。It is a flowchart which shows the example of a procedure of the symbol direction Fourier-transform process shown by FIG. 図28に示されるキャリア方向逆フーリエ変換処理の手順例を示すフローチャートである。It is a flowchart which shows the example of a procedure of the carrier direction inverse Fourier transform process shown by FIG. 回転因子係数を用いない2Dフーリエ変換部の手順例を示すフローチャートである。It is a flowchart which shows the example of a procedure of the 2D Fourier-transform part which does not use a twiddle factor coefficient. キャリア方向の逆フーリエ変換処理ステップの手順例を示すフローチャートである。It is a flowchart which shows the example of a procedure of the inverse Fourier transform process step of a carrier direction. シンボル方向のフーリエ変換処理の手順例を示すフローチャートである。It is a flowchart which shows the example of a procedure of the Fourier-transform process of a symbol direction. 図4に示す受信装置においてシンボル記憶部をデータキャリア記憶部とSPキャリア記憶部に分割した受信装置の構成例を示すブロック図である。FIG. 5 is a block diagram illustrating a configuration example of a receiving device in which a symbol storage unit is divided into a data carrier storage unit and an SP carrier storage unit in the receiving device shown in FIG. 4. OFDMシンボル空間の構成例を示す説明図である。It is explanatory drawing which shows the structural example of OFDM symbol space. OFDMシンボル空間の構成例を示す説明図である。It is explanatory drawing which shows the structural example of OFDM symbol space. 伝送モードに応じて設定された各パラメータの一例を示す図である。It is a figure which shows an example of each parameter set according to the transmission mode.
符号の説明Explanation of symbols
 1        受信装置
 1a       受信装置
 1x       受信装置
 11       シンボル検波部(信号検波部)
 12       シンボル記憶部
 12a      データキャリア記憶部(第1記憶手段、記憶手段)
 12b      SPキャリア記憶部(第2記憶手段、記憶手段)
 20       伝達特性推定部
 20a      伝達特性推定部
 21       SP伝達特性算出部(算出手段)
 21a      SP伝達特性算出回路(伝達特性算出手段)
 21b      SP伝達特性抽出回路(伝達特性抽出手段)
 22       2次元フーリエ変換回路(変換手段)
 23       2次元フィルタ回路(フィルタ手段)
 24       2次元逆フーリエ変換回路(生成手段)
 24a      逆フーリエ変換回路
 24b      乗算回路
 24c      フーリエ変換回路
 25       推定伝達特性出力回路
 26       フィルタ係数決定回路(供給手段)
 30       データ復号部
1 receiver 1a receiver 1x receiver 11 symbol detector (signal detector)
12 symbol storage section 12a data carrier storage section (first storage means, storage means)
12b SP carrier storage section (second storage means, storage means)
20 transfer characteristic estimation unit 20a transfer characteristic estimation unit 21 SP transfer characteristic calculation unit (calculation means)
21a SP transfer characteristic calculation circuit (transfer characteristic calculation means)
21b SP transfer characteristic extraction circuit (transfer characteristic extraction means)
22 Two-dimensional Fourier transform circuit (conversion means)
23 Two-dimensional filter circuit (filter means)
24 Two-dimensional inverse Fourier transform circuit (generation means)
24a Inverse Fourier Transform Circuit 24b Multiplier Circuit 24c Fourier Transform Circuit 25 Estimated Transfer Characteristic Output Circuit 26 Filter Coefficient Determination Circuit (Supply Unit)
30 Data decoding unit

Claims (6)

  1.  複数のキャリアを送信データに基づいて直交変調することにより生成した伝送シンボルを伝送単位として特定既知の複素振幅を持つパイロット信号が前記伝送シンボル内の所定のキャリアに重畳されたOFDM信号を受信し、連続する複数の前記伝送シンボルに含まれるキャリア群を検波して得た受信信号をキャリア周波数とシンボル時間に対応した2次元空間上の2次元データ領域内に配置する信号検波部と、
     前記2次元データ領域内に配置されたパイロット信号に基づいて前記受信信号の各々に対する受信信号伝達特性を推定する伝達特性推定部と、
     前記受信信号及び前記受信信号伝達特性に基づいて前記送信データを復号するデータ復号部と、を有する受信装置であって、
     前記伝達特性推定部は、
     前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する算出手段と、
     前記パイロット信号伝達特性について2次元フーリエ変換を施して、伝送路遅延時間と伝送路変動周波数に対応した2次元空間上の2次元フーリエ変換データを生成する変換手段と、
     前記2次元フーリエ変換データのうち特定領域内のデータ群を通過させるための2次元フィルタ窓を算出する供給手段と、
     前記2次元フィルタ窓に基づいて確定された前記特定領域内のデータ群を選択抽出するフィルタ手段と、
     前記選択抽出されたデータ群に対して2次元逆フーリエ変換を施して、キャリア周波数とシンボル時間に対応した2次元空間上の2次元逆フーリエ変換データを生成し、前記生成されたデータに基づいて前記受信信号伝達特性を生成する生成手段と
    を備え、
     前記算出手段は、
     前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する伝達特性算出手段と、
     前記パイロット信号が重畳されていないキャリアを除き、前記パイロット信号が重畳されている位置の前記パイロット信号伝達特性を抽出し、前記変換手段に供する伝達特性抽出手段と
    を備えることを特徴とする受信装置。
    Receiving an OFDM signal in which a pilot signal having a specific known complex amplitude is superimposed on a predetermined carrier in the transmission symbol with a transmission symbol generated by orthogonally modulating a plurality of carriers based on transmission data as a transmission unit; A signal detector that arranges a received signal obtained by detecting a carrier group included in a plurality of consecutive transmission symbols in a two-dimensional data region on a two-dimensional space corresponding to a carrier frequency and a symbol time;
    A transfer characteristic estimator for estimating a received signal transfer characteristic for each of the received signals based on a pilot signal arranged in the two-dimensional data region;
    A data decoding unit that decodes the transmission data based on the received signal and the received signal transfer characteristic,
    The transfer characteristic estimator is
    Calculating means for calculating a pilot signal transfer characteristic for a pilot signal arranged in the two-dimensional data region;
    Conversion means for performing two-dimensional Fourier transform on the pilot signal transfer characteristic to generate two-dimensional Fourier transform data in a two-dimensional space corresponding to a transmission line delay time and a transmission line fluctuation frequency;
    Supply means for calculating a two-dimensional filter window for allowing a data group in a specific region to pass through the two-dimensional Fourier transform data;
    Filter means for selectively extracting a data group in the specific area determined based on the two-dimensional filter window;
    Two-dimensional inverse Fourier transform is performed on the selected and extracted data group to generate two-dimensional inverse Fourier transform data in a two-dimensional space corresponding to a carrier frequency and a symbol time, and based on the generated data Generating means for generating the received signal transfer characteristic,
    The calculating means includes
    Transfer characteristic calculation means for calculating a pilot signal transfer characteristic for a pilot signal arranged in the two-dimensional data region;
    A receiving apparatus comprising: a transfer characteristic extracting unit that extracts the pilot signal transfer characteristic at a position where the pilot signal is superimposed, except for a carrier on which the pilot signal is not superimposed, and provides the converted signal to the conversion unit .
  2.  請求項1記載の受信装置において、
     前記変換手段は、周波数移動定理を利用し、12キャリア毎の前記パイロット信号伝達特性に基づいて前記2次元フーリエ変換データを生成し、かつ
     前記生成手段は、周波数移動定理を利用し、前記選択抽出されたデータ群に基づいて前記2次元データ領域内の前記受信信号伝達特性を算出する
    ことを特徴とする受信装置。
    The receiving device according to claim 1,
    The transforming means uses the frequency shift theorem to generate the two-dimensional Fourier transform data based on the pilot signal transfer characteristics for every 12 carriers, and the generating means uses the frequency shift theorem to perform the selective extraction. A reception apparatus that calculates the reception signal transfer characteristic in the two-dimensional data region based on the data group that has been set.
  3.  請求項2記載の受信装置において、
     前記変換手段は、12キャリア毎の前記パイロット信号伝達特性に回転因子を乗算して前記2次元フーリエ変換データを生成し、かつ
     前記生成手段は、
     前記選択抽出されたデータ群に回転因子を乗算して前記2次元データ領域内の前記受信信号伝達特性を算出する
    ことを特徴とする受信装置。
    The receiving device according to claim 2,
    The conversion means generates the two-dimensional Fourier transform data by multiplying the pilot signal transmission characteristic for every 12 carriers by a twiddle factor, and the generation means
    The receiving apparatus, wherein the reception signal transfer characteristic in the two-dimensional data area is calculated by multiplying the selected and extracted data group by a twiddle factor.
  4.  請求項1記載の受信装置において、
     前記信号検波手段から出力されるキャリア振幅を順次記憶する記憶手段を有し、
     前記記憶手段は、
     シンボル毎に前記データ復号手段で用いるキャリア系列のみを選択し、キャリア周波数方向及びシンボル時間方向の2次元空間として記憶する第1記憶手段と、
     前記周波数領域処理手段から供されるシンボルカウント値を前記信号検波手段から供されるシンボル毎に付随させる形で記憶する第2記憶手段と
    を備えることを特徴とする受信装置。
    The receiving device according to claim 1,
    Storage means for sequentially storing carrier amplitudes output from the signal detection means;
    The storage means
    First storage means for selecting only a carrier sequence used by the data decoding means for each symbol and storing it as a two-dimensional space in the carrier frequency direction and symbol time direction;
    And a second storage means for storing the symbol count value provided by the frequency domain processing means in association with each symbol provided by the signal detection means.
  5.  請求項1記載の受信装置において、
     前記供給手段は、伝送モードに応じて前記2次元フィルタ窓としてキャリア周波数幅及びシンボル時間幅を供する
    ことを特徴とする受信装置。
    The receiving device according to claim 1,
    The receiving device provides a carrier frequency width and a symbol time width as the two-dimensional filter window according to a transmission mode.
  6.  複数のキャリアを送信データに基づいて直交変調することにより生成した伝送シンボルを伝送単位として特定既知の複素振幅を持つパイロット信号が前記伝送シンボル内の所定のキャリアに重畳されたOFDM信号を受信し、連続する複数の前記伝送シンボルに含まれるキャリア群を検波して得た受信信号をキャリア周波数とシンボル時間に対応した2次元空間上の2次元データ領域内に配置する信号検波ステップと、
     前記2次元データ領域内に配置されたパイロット信号に基づいて前記受信信号の各々に対する受信信号伝達特性を推定する伝達特性推定ステップと、
     前記受信信号及び前記受信信号伝達特性に基づいて前記送信データを復号するデータ復号ステップと、を有する受信方法であって、
     前記伝達特性推定ステップは、
     前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する算出ステップと、
     前記パイロット信号伝達特性について2次元フーリエ変換を施して、伝送路遅延時間と伝送路変動周波数に対応した2次元空間上の2次元フーリエ変換データを生成する変換ステップと、
     前記2次元フーリエ変換データのうち特定領域内のデータ群を通過させるための2次元フィルタ窓を算出する供給ステップと、
     前記2次元フィルタ窓に基づいて確定された前記特定領域内のデータ群を選択抽出するフィルタステップと、
     前記選択抽出されたデータ群に対して2次元逆フーリエ変換を施して、キャリア周波数とシンボル時間に対応した2次元空間上の2次元逆フーリエ変換データを生成し、前記生成されたデータに基づいて前記受信信号伝達特性を生成する生成ステップと、
    を備え、
     前記算出ステップは、
     前記2次元データ領域内に配置されたパイロット信号に対するパイロット信号伝達特性を算出する伝達特性算出ステップと、
     前記パイロット信号が重畳されていないキャリアを除き、前記パイロット信号が重畳されている位置の前記パイロット信号伝達特性を抽出し、前記変換ステップの処理に供する伝達特性抽出ステップと
    を備えることを特徴とする受信方法。
    Receiving an OFDM signal in which a pilot signal having a specific known complex amplitude is superimposed on a predetermined carrier in the transmission symbol with a transmission symbol generated by orthogonally modulating a plurality of carriers based on transmission data as a transmission unit; A signal detection step of arranging a received signal obtained by detecting a carrier group included in a plurality of continuous transmission symbols in a two-dimensional data region on a two-dimensional space corresponding to a carrier frequency and a symbol time;
    A transfer characteristic estimating step for estimating a received signal transfer characteristic for each of the received signals based on a pilot signal arranged in the two-dimensional data region;
    A data decoding step of decoding the transmission data based on the received signal and the received signal transfer characteristics, comprising:
    The transfer characteristic estimation step includes:
    A calculation step of calculating a pilot signal transfer characteristic for a pilot signal arranged in the two-dimensional data region;
    A transforming step of performing a two-dimensional Fourier transform on the pilot signal transfer characteristic to generate two-dimensional Fourier transform data in a two-dimensional space corresponding to a transmission path delay time and a transmission path fluctuation frequency;
    A supply step of calculating a two-dimensional filter window for allowing a data group in a specific region to pass through the two-dimensional Fourier transform data;
    A filter step of selectively extracting a data group in the specific region determined based on the two-dimensional filter window;
    Two-dimensional inverse Fourier transform is performed on the selected and extracted data group to generate two-dimensional inverse Fourier transform data in a two-dimensional space corresponding to a carrier frequency and a symbol time, and based on the generated data Generating to generate the received signal transfer characteristics;
    With
    The calculating step includes:
    A transfer characteristic calculating step for calculating a pilot signal transfer characteristic for a pilot signal arranged in the two-dimensional data region;
    And a transfer characteristic extracting step for extracting the pilot signal transfer characteristic at a position where the pilot signal is superimposed, except for a carrier on which the pilot signal is not superimposed, and for providing to the process of the conversion step. Reception method.
PCT/JP2008/057216 2008-04-12 2008-04-12 Receiver and receiving method WO2009125501A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/057216 WO2009125501A1 (en) 2008-04-12 2008-04-12 Receiver and receiving method
JP2010507108A JP5172951B2 (en) 2008-04-12 2008-04-12 Receiving apparatus and receiving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/057216 WO2009125501A1 (en) 2008-04-12 2008-04-12 Receiver and receiving method

Publications (1)

Publication Number Publication Date
WO2009125501A1 true WO2009125501A1 (en) 2009-10-15

Family

ID=41161644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/057216 WO2009125501A1 (en) 2008-04-12 2008-04-12 Receiver and receiving method

Country Status (2)

Country Link
JP (1) JP5172951B2 (en)
WO (1) WO2009125501A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575568A (en) * 1991-01-17 1993-03-26 Fr Telecom Apparatus for evaluating frequency response of communication channel and performing coherent demodulation of digital data multiplexed in time-frequency region having limit judging function
JP2002261729A (en) * 2001-03-06 2002-09-13 Hitachi Ltd Ofdm receiver
US20040086055A1 (en) * 1998-12-31 2004-05-06 Ye Li Pilot-aided channel estimation for OFDM in wireless systems
JP2005229466A (en) * 2004-02-16 2005-08-25 Pioneer Electronic Corp Receiver and receiving method
WO2005122717A2 (en) * 2004-06-10 2005-12-29 Hasan Sehitoglu Matrix-valued methods and apparatus for signal processing
JP2006148387A (en) * 2004-11-18 2006-06-08 Pioneer Electronic Corp Ofdm signal receiver, and receiving method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575568A (en) * 1991-01-17 1993-03-26 Fr Telecom Apparatus for evaluating frequency response of communication channel and performing coherent demodulation of digital data multiplexed in time-frequency region having limit judging function
US20040086055A1 (en) * 1998-12-31 2004-05-06 Ye Li Pilot-aided channel estimation for OFDM in wireless systems
JP2002261729A (en) * 2001-03-06 2002-09-13 Hitachi Ltd Ofdm receiver
JP2005229466A (en) * 2004-02-16 2005-08-25 Pioneer Electronic Corp Receiver and receiving method
WO2005122717A2 (en) * 2004-06-10 2005-12-29 Hasan Sehitoglu Matrix-valued methods and apparatus for signal processing
JP2006148387A (en) * 2004-11-18 2006-06-08 Pioneer Electronic Corp Ofdm signal receiver, and receiving method

Also Published As

Publication number Publication date
JP5172951B2 (en) 2013-03-27
JPWO2009125501A1 (en) 2011-07-28

Similar Documents

Publication Publication Date Title
JP5281078B2 (en) Reception device, integrated circuit, digital television receiver, reception method, and reception program
JP5763650B2 (en) System for multi-carrier transmission of digital data and transmission method using the system
WO2007080745A1 (en) Multi-carrier modulation method, and transmission device and reception device using the method
EP2989767B1 (en) Method and apparatus for transmitting and receiving data in multicarrier communication system
EP2131512B1 (en) OFDM reception device, OFDM reception method, OFDM reception circuit, integrated circuit and program
EP2264921B1 (en) Receiving apparatus, receiving method, integrated circuit, digital television receiver, and program
CN101378378A (en) Apparatus and method for estimating and compensating sampling clock offset
US7602853B2 (en) Method and apparatus for channel estimation
JP2005102169A (en) Method and system for receiving ofdm
JP4903026B2 (en) Delay profile analysis circuit and apparatus using the same
JP5172952B2 (en) Receiving apparatus and receiving method
WO2009083774A1 (en) Channel estimation of orthogonal frequency division multiplexed systems
JP5172951B2 (en) Receiving apparatus and receiving method
JP2007143106A (en) Receiver, receiving circuit, receiving method, and reception program
JP6028572B2 (en) Receiver
WO2009125500A1 (en) Receiver and reception method
JP4093246B2 (en) Orthogonal frequency division multiplexing transmission apparatus and method
JP5995703B2 (en) Equalizer, equalization method, and receiver
JP6005008B2 (en) Equalizer and equalization method
JP5172950B2 (en) Receiving apparatus and receiving method
JP5542483B2 (en) OFDM receiver
JP2010246024A (en) Demodulation device
JP7289737B2 (en) Data transmission system and data transmission method
JP4131691B2 (en) Digital receiver circuit
JP4838370B2 (en) Communication apparatus and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08751842

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010507108

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08751842

Country of ref document: EP

Kind code of ref document: A1