WO2009123867A1 - Compensating for drifts occurring during sleep times in access terminals - Google Patents

Compensating for drifts occurring during sleep times in access terminals Download PDF

Info

Publication number
WO2009123867A1
WO2009123867A1 PCT/US2009/037898 US2009037898W WO2009123867A1 WO 2009123867 A1 WO2009123867 A1 WO 2009123867A1 US 2009037898 W US2009037898 W US 2009037898W WO 2009123867 A1 WO2009123867 A1 WO 2009123867A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
time domain
paging channel
samples
access terminal
Prior art date
Application number
PCT/US2009/037898
Other languages
French (fr)
Inventor
Hemanth Sampath
Ravi Palanki
Jeremy H. Lin
Tamer A. Kadous
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to JP2011503026A priority Critical patent/JP5237436B2/en
Priority to KR1020107024475A priority patent/KR101126511B1/en
Priority to EP09728549A priority patent/EP2277345B1/en
Priority to AT09728549T priority patent/ATE526806T1/en
Priority to CN200980107920.0A priority patent/CN101960891B/en
Publication of WO2009123867A1 publication Critical patent/WO2009123867A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • H04W52/0283Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks with sequential power up or power down of successive circuit blocks, e.g. switching on the local oscillator before RF or mixer stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the disclosure generally relate to communications in a wireless environment. More particularly, embodiments of the disclosure relate to compensating drifts of components within a wireless access terminal which occur during sleep times.
  • Wireless communication systems are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, etc.
  • These wireless systems may be multiple-access systems capable of supporting multiple users by sharing the available system resources (e.g., bandwidth and transmit power).
  • Examples of such multiple-access systems include Code Division Multiple Access (CDMA) systems, Time Division Multiple Access (TDMA) systems, Frequency Division Multiple Access (FDMA) systems, 3GPP LTE systems, Orthogonal FDMA (OFDMA) systems, Single-Carrier FDMA (SC-FDMA) systems, etc.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • 3GPP LTE Long Term Evolution
  • OFDMA Orthogonal FDMA
  • SC-FDMA Single-Carrier FDMA
  • access terminals receive signals from fixed position access points (also referred to as base stations, Node -B, cell sites or cells) that support communication links or service within particular geographic regions adjacent to or surrounding the access point.
  • access points also referred to as base stations, Node -B, cell sites or cells
  • each cell may be sub-divided into multiple sectors, each corresponding to a smaller service area or geographic region.
  • An array or series of access points placed adjacent to each other can form a communication system capable of servicing a number of system users, over a larger region.
  • a wireless multiple-access communication system can simultaneously support communication for multiple wireless access terminals.
  • Each access terminal may communicate with one or more access points via transmissions on the forward and reverse links.
  • the forward link refers to the communication link from the access points to the terminals
  • the reverse link refers to the communication link from the terminals to the access points.
  • This communication link may be established via a single-in-single-out, multiple-in-signal-out or a multiple -in- multiple-out (MIMO) system.
  • MIMO multiple -in- multiple-out
  • Each access terminal can monitor a control channel that may be used to exchange messages between the access terminal and the access point.
  • the control channel is used to transmit system/overhead messages, whereas traffic channels are typically used for substantive communication (e.g., voice and data) to and from the access terminal.
  • the control channel can be used to establish traffic channels, control power levels, and the like, as is known in the art.
  • access terminals are typically battery operated, power conservation is emphasized in the system design. Accordingly, access terminals can enter into sleep modes and periodically awaken to monitor the control channel for messages / paging directed to the access terminal. During sleep modes, component(s) within the access terminal may experience drifts. These drifts may be characterized as uncontrolled variations in the performance of components in the Access Terminal. For example, an oscillator used as a frequency reference in the access terminal may provide a clock signal which experiences time and/or frequency variations. Component drift can adversely affect the functionality and/or performance of the access terminal. Moreover, this timing/frequency drift may also affect the performance of other users in the Uplink (UL) by violating the time/frequency orthogonality across users.
  • UL Uplink
  • Exemplary embodiments are directed to systems and method for compensating for drifts occurring during sleep times in access terminals.
  • a method for compensating drifts in access terminals occurring during a sleep time is presented. The method includes determining whether a sleep time exceeds a threshold, buffering time domain samples containing acquisition pilots and a paging channel, powering down RF circuitry in the access terminal after buffering samples, processing the samples to compensate for drift, and determining whether the access terminal was paged based upon the processed samples.
  • an apparatus for compensating drifts in access terminals occurring during a sleep time is presented.
  • the apparatus includes a digital front end, an FFT engine coupled to the digital front end, a symbol buffer coupled to the FFT engine, a processor coupled to the digital front end, FFT engine, and symbol buffer, and a memory coupled to the processor, the memory further comprising instructions which determines whether a sleep time exceeds a threshold, buffers time domain samples containing acquisition pilots and a paging channel, powers down RF circuitry in the access terminal after buffering samples, processes the samples to compensate for drift, and determines whether the access terminal was paged based upon the processed samples.
  • Fig. 1 shows a top level diagram of an exemplary multiple access wireless communications system.
  • Fig. 2 shows block diagrams of an exemplary access terminal and access point within the wireless communications system.
  • Fig. 3 depicts a diagram of a format associated with an exemplary super frame structure.
  • Fig. 4 shows a block diagram of an exemplary hardware receiver architecture associated with an access terminal.
  • Fig. 5 shows a flow diagram of an exemplary process for acquiring time domain samples and compensating drift within an access terminal.
  • Fig. 6 shows a flow diagram of an exemplary process for correcting time and/or frequency drifts within the compensation process shown in Fig. 5.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal FDMA
  • SC-FDMA Single-Carrier FDMA
  • a CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA), cdma2000, etc.
  • UTRA includes Wideband-CDMA (W-CDMA) and Low Chip Rate (LCR).
  • cdma2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM).
  • GSM Global System for Mobile Communications
  • An OFDMA network may implement a radio technology such as Evolved UTRA (E-UTRA), IEEE 802.11, IEEE 802.16, IEEE 802.20, Flash-OFDM®, etc.
  • E-UTRA, E-UTRA, and GSM are part of Universal Mobile Telecommunication System (UMTS).
  • UMTS Universal Mobile Telecommunication System
  • LTE Long Term Evolution
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents from an organization named "3rd Generation Partnership Project" (3GPP).
  • cdma2000 is described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2).
  • SC-FDMA Single carrier frequency division multiple access
  • SC-FDMA Single carrier frequency division multiple access
  • LTE Long Term Evolution
  • Fig. 1 shows a top level diagram of an exemplary multiple access wireless communications system.
  • the system may be a MIMO system that can employ multiple (N T ) transmit antennas and multiple (N R ) receive antennas for data transmission.
  • a MIMO channel formed by the N T transmit and N R receive antennas may be decomposed into Ns independent channels, which are also referred to as spatial channels, where N s ⁇ mm ⁇ N T , N R ⁇ .
  • Each of the Ns independent channels may correspond to a dimension.
  • the MIMO system can provide improved performance (e.g., higher throughput and/or greater reliability) if the additional dimensionalities created by the multiple transmit and receive antennas are utilized.
  • a wireless system may be a time division duplex (TDD) and/or a frequency division duplex (FDD) system.
  • TDD time division duplex
  • FDD frequency division duplex
  • the forward and reverse link transmissions are on the same frequency region so that the reciprocity principle allows the estimation of the forward link channel from the reverse link channel. This enables the access point to extract transmit beamforming gain on the forward link when multiple antennas are available at the access point.
  • an access point 100 may include multiple antenna groups, one including antennas 104 and 106, another including antennas 108 and 110, and an additional including antennas 112 and 114. In Fig. 1, only two antennas are shown for each antenna group, however, different numbers of antennas may be utilized for each antenna group.
  • Access terminal 116 is in communication with antennas 112 and 114, where antennas 112 and 114 may transmit information to access terminal 116 over forward link 120, and receive information from access terminal 116 over reverse link 118.
  • Access terminal 122 may be in communication with antennas 106 and 108, where antennas 106 and 108 transmit information to access terminal 122 over forward link 126, and receive information from access terminal 122 over reverse link 124.
  • communication links 118, 120, 124 and 126 may use different frequency for communication.
  • forward link 120 may use a different frequency then that used by reverse link 118.
  • Each group of antennas and/or the area in which they are designed to communicate is often referred to as a sector of the access point.
  • each antenna group may be designed to communicate to access terminals in a designated sector within the areas covered by access point 100.
  • the transmitting antennas of access point 100 may utilize beamforming in order to improve the signal-to-noise ratio of forward links for the different access terminals 116 and 124.
  • Using beamforming to transmit to access terminals scattered randomly throughout a coverage area may cause less interference to access terminals in neighboring cells than an access point transmitting through a single antenna to all its access terminals.
  • Fig. 2 shows block diagrams of an exemplary access terminal 250 and access point 210 within the wireless communications system.
  • the communication system may be a MIMO system 200, which can include the Access Point 210 and the Access Terminal 250.
  • Downlink (DL) transmission occurs from Access Point to the Access Terminal.
  • Uplink (UL) transmission occurs from Access Terminal to the Access Point.
  • traffic data for a number of data streams may be provided from a data source 212 to a transmit (TX) data processor 214.
  • TX data processor 214 may format, code, and interleave the traffic data for each data stream based on a particular coding scheme selected for that data stream to provide coded data.
  • the coded data for each data stream may be multiplexed with pilot data using
  • the pilot data is typically a known data pattern that is processed in a known manner and may be used at the receiver system to estimate the channel response.
  • the multiplexed pilot and coded data for each data stream may then modulated (i.e., symbol mapped) based on a particular modulation scheme (e.g., BPSK, QSPK, M-PSK, M-QAM, etc.) selected for that data stream to provide modulation symbols.
  • a particular modulation scheme e.g., BPSK, QSPK, M-PSK, M-QAM, etc.
  • the data rate, coding, and modulation for each data stream may be determined by instructions performed by processor 230.
  • modulation symbols for all data streams may then be provided to a TX
  • TX MIMO processor 220 which may further process the modulation symbols (e.g., for OFDM). TX MIMO processor 220 can then provide N T modulation symbol streams to N x transmitters (TMTR) 222a through 222t. In certain embodiments, TX MIMO processor 220 may apply beamforming weights to the symbols of the data streams and to the antenna from which the symbols are being transmitted. Each transmitter 222 may receive and processes a respective symbol stream to provide one or more analog signals, and further conditions (e.g., amplifies, filters, and/or up-converts) the analog signals to provide a modulated signal suitable for transmission over the MIMO channel. N T modulated signals from transmitters 222a through 222t may be then transmitted from N T antennas 224a through 224t, respectively.
  • TMTR N x transmitters
  • the downlink (DL) signals from the Access Point may be received by N R antennas 252a through 252r and the received signal from each antenna 252 which may be provided to a respective receiver (RCVR) 254a through 254r.
  • Each receiver 254 may condition (e.g., filters, amplifies, and down-converts) a respective received signal, digitize the conditioned signal to provide samples, and can further process the samples to provide a corresponding "received" symbol stream.
  • An RX MIMO processor 260 may then receive and processes the N R received symbol streams from N R receivers 254 based on a particular receiver processing technique to provide N T "detected" symbol streams.
  • the RX data processor 261 may then demodulate, de-interleave, and decode each detected symbol stream to recover the traffic data for the data stream.
  • the processing by RX MIMO processor 260 is complementary to that performed by TX MIMO processor 220.
  • the processing by RX data processor is complementary to that performed by TX data processor 214 at access point 210.
  • Processor 270 may then formulate a reverse link message that may comprise various types of information regarding the communication link and/or the received data stream.
  • the reverse link message may then be processed by a TX data processor 238, which also receives traffic data for a number of data streams from a data source 236, modulated by a Tx MIMO processor 280, conditioned by transmitters 254a through 254r, and transmitted back to transmitter system 210.
  • the modulated signals from receiver system 250 are received by antennas 224, conditioned by receivers 222, demodulated by a RX MIMO processor 240, and processed by a RX data processor 242 to extract the reserve link message transmitted by the receiver system 250.
  • Fig. 3 depicts a diagram of a format associated with an exemplary superframe 300 structure.
  • Each superframe may span a particular time duration, which may be fixed or configurable.
  • the superframe preamble may repeat approximately every 25 msec.
  • a superframe 300 may include a preamble followed by M physical layer (PHY) frames, where M may be any integer value.
  • PHY physical layer
  • each superframe 310 may include M PHY frames, where the first PHY frame may be extended by the length of the superframe preamble on the forward link (for example, as shown in Fig. 3, frame 0 may include 16 OFDM symbols).
  • each superframe includes 25 PHY frames with indices of 0 through 24.
  • Each PHY frame may carry traffic data, signaling, pilot, etc.
  • the superframe preamble 305 may include information to allow the access terminal 250 to perform paging and acquisition operations.
  • Information for quick paging may be provided over a paging channel such as, for example, the Quick Page Channel (QPCH).
  • Information for acquisition may reside in the Time Division Multiplexed (TDM) pilots 1, 2 and 3.
  • the superframe preamble may include eight OFDM symbols with indices of 0 through 7.
  • the OFDM symbol 0 may comprises a Forward Primary Broadcast Control Channel (F-PBCCH) that carries information for deployment-specific parameters.
  • OFDM symbols 1 through 4 may comprise either a Forward Secondary Broadcast Control Channel (F-SBCCH) or a Forward Quick Paging Channel (F-QPCH).
  • the F-SBCCH may carry information for sector-specific parameters.
  • the F-QPCH may carry information used for quick paging.
  • the OFDM symbols 5, 6 and 7 may comprise time division multiplexed (TDM) pilots 1, 2 and 3, respectively, which may be used by terminals for initial acquisition as described above.
  • TDM pilot 1 may be used as a Forward Acquisition Channel (F-ACQCH).
  • F-OSICH Forward Other-Sector-Interference Channel
  • the superframe preamble may also be defined in other manners, and the paging may be performed using a variety of signals and channels, accordingly the format and channel structure provided above is merely exemplary.
  • TDM pilots 1 and TDM pilots 2 may be Primary and Secondary Synchronization Signals (PSS, SSS), respectively.
  • PSS Primary and Secondary Synchronization Signals
  • signals such as the Primary Pilot Channel (PPICH), or the LTE equivalent Common Reference Signal may be used in place of the synchronization signals for the search and/or pilot strength measurements.
  • PPICH Primary Pilot Channel
  • Common Reference Signal may be used in place of the synchronization signals for the search and/or pilot strength measurements.
  • the paging may be performed using a data channel such as, for example, the Primary Data Shared Channel (PDSCH).
  • PDSCH Primary Data Shared Channel
  • the access terminal when the access terminal sleeps, it should wake up periodically to read the QPCH. If the QPCH decode is successful (that is, the message successfully passes a CRC test) and the terminal is paged, it should decode the Full-Page Channel to determine the paging details.
  • the Full-Page channel may be transmitted on regular PHY Frames using Hybrid ARQ (HARQ). The transmission may span 6 Frames, that are separated by approximately ⁇ 5 msec apart. A terminal with good SNR may decode the Full Page in 1 Frame, whereas a terminal with poor SNR can take up to 6 Frames to decode Full Page. Hence, the total decode times for Full Page can be as high as approximately 30 msec. In general, decoding Full Page channel consumes excess power and wastes battery life. It is for this reason that the QPCH channel was introduced, that is, in order to limit the number of times the access terminal 250 has to decode the Full Page, and thus enhance battery life.
  • HARQ Hybrid ARQ
  • the access terminal 250 In order to decode any received channel upon being initialized after power-up, the access terminal 250 should first perform acquisition. When the access terminal 250 is initially powered up, it should determine the timing and frequency offset of the Access Terminal with respect to the Access Point in order to enable successful decoding of the DL channels. To determine these offsets, the access terminal performs what is defined herein as "acquisition.” The acquisition procedure can lock on to the TDM-I, 2, 3 pilot symbols, and thereby establishes correct timing and frequency offsets. In other words, after acquisition, the access terminal is capable of decoding other channels such as, for example, the QPCH channel, the DCH (data channel) etc.
  • the superframe preamble may include eight OFDM symbols with indices of 0 through 7.
  • the OFDM symbol 0 may comprises a Forward Primary Broadcast Control Channel (F-PBCCH) that carries information for deployment-specific parameters.
  • OFDM symbols 1 through 4 may comprise either a Forward Secondary Broadcast Control Channel (F-SBCCH) or a Forward Quick Paging Channel (F-QPCH).
  • the F-SBCCH may carry information for sector-specific parameters.
  • the F-QPCH may carry information used for quick paging described above.
  • Fig. 4 shows a block diagram of an exemplary hardware architecture for a receiver 400 associated with an access terminal.
  • the receiver may be comprised of a series of signal processing functional blocks, including Front End 405, Sample Server 410, FFT Engine 415, Symbol Buffer 420, Demodulator 425, and Decoder 430.
  • the signal processing blocks may be controlled by a processor 440, which interfaces to the signal processing block over a Hardware/Firmware (HW/FW) interface 435.
  • the processor 440 which may be at least one micro-processor, a micro-controller, a Digital Signal Processor (DSP), etc., or any combination thereof, may include onboard and/or external memory 445 which stores program code and any associated parameters and data.
  • the program code may be realized in the form of software, firmware, or any combination thereof.
  • the received baseband I & Q signal time domain samples obtained by digitizing the received signal via an Analog-to-Digital Converter (ADC), may be fed to the Digital Front End Block 405.
  • the Digital Front End block performs signal conditioning such as digital AGC and filtering.
  • a modem typically also has an analog Front End Block that is part of the RF circuitry (not shown).
  • the RF circuitry includes analog components like analog AGC, mixer, analog filters etc and operate on the receive signal before it is fed to the ADC.
  • the time domain samples may be passed on to the sample server 410 where they are buffered prior be converted into the frequency domain.
  • the time domain samples may be converted to frequency domain symbols by using an FFT Engine 415.
  • the symbols may then be buffered in Symbol Buffer 420.
  • the symbols may be demodulated into soft information bits by demodulator 425, and subsequently decoded in decoder 430.
  • the demodulator 425 may have a MIMO receiver such as an MMSE receiver, followed by a Log Likelihood Ratio (LLR) computing engine.
  • the decoder 430 may include a Viterbi decoder, a Turbo decoder and/or a LDPC decoder.
  • the access terminal's sleep time may be increased during periods of terminal inactivity in order to save battery life.
  • significant time and/or frequency drift can arise due to the sleep clock drifting.
  • 2 ppm sleep clock drift in a 20 MHz system can lead to a timing drift of ⁇ 20 us, over a 10 sec sleep duration.
  • an OFDM symbol can be -100 us long, in which case the timing drift is approximately 1/5 of an OFDM symbol period.
  • an OFDM symbol can be 4 us long, in which case the timing drift can span approximately 5 OFDM symbols.
  • XO crystal oscillators
  • the access terminal may not be able to decode a paging channel (e.g., QPCH) upon wake-up, since typically the QPCH channel has a higher spectral efficiency and may be susceptible to distortion introduced by time/frequency drifts.
  • QPCH paging channel
  • the access terminal does not know whether it is being paged or not. This leads to the terminal attempting to decode the Full Page channel, causing it to be awake for up to 30 msec, as explained above.
  • the terminal is better positioned to decode the Full Page Channel even in the presence of timing/frequency drift since the information is encoded across 6 Frames spread over 30 msec, leading to a very small spectral efficiency (smaller than the spectral efficiency of QPCH channel).
  • the time drift is significant fraction of the OFDM symbol (say >25%) , or if the frequency drift is a significant fraction of the OFDM tone-spacing (say 25%), then it is highly likely that the Full Page decode might fail. This leads to the terminal re -running acquisition after some time-out period to obtain a fresh time/frequency offset, and then employing them to decode a full-page.
  • Embodiments of the disclosure improve the standby time by compensating for the time and/or frequency drift of the sleep clock, with minimal power consumption.
  • This compensation may be performed as follows.
  • the access terminal may awaken early to buffer samples that also contain the superframe preamble, at some unknown time- offset in the buffered samples. For example, if the terminal is using a 5 ppm clock and sleeps for 10 seconds, it may wake up ⁇ 50 us earlier to buffer samples, assuming that the worse-case clock drift of ⁇ 50us. Since the actual ppm offset may be smaller than 5 ppm at any given time instant, the buffered samples will in reality contain the superframe preamble at some unknown offset of up to 50 us.
  • the buffered samples specifically the TDM pilots, are then analyzed and processed in order to determine any time and/or frequency offsets values.
  • the buffered samples may then be corrected for the time/frequency offset values prior to performing a quick paging operation.
  • This buffering may be performed by the processor 440 executing acquisition algorithm 450, by storing the samples in the Tightly Coupled Memory (TCM) of the processor.
  • the processor may control the FFT engine 415 and place it in a by-pass mode so that time domain samples can be buffered in the symbol buffer 420.
  • the drift compensation algorithm 455 may compute correction factors from the drift offset values derived the buffered samples, and apply the values to the buffered samples to compensate for the drift. Details of the acquisition and drift compensation algorithms are presented below in the description of Figs. 5 and 6.
  • FIG. 5 shows a flow diagram of an exemplary process 500 for acquiring time domain samples and compensating drift within an access terminal 250.
  • the processor can then buffer the time domain samples upon wakeup (Block 520).
  • the time-domains samples may be part of the superframe preamble.
  • the storage location of the time domain samples can accomplished using a variety of different memory locations available in the access terminal 250, such as, for example, a symbol-RAM in the symbol buffer 420, a Tightly Coupled Memory (TCM) memory of the process, etc.
  • the processor 440 may determine where the symbols are buffered by controlling any of the appropriate signal processing blocks via the HW/FW interface 435. For example, in one embodiment, the processor 440 may place the FFT engine 415 in a bypass mode (in order to avoid transforming the acquired samples into the frequency domain) to move samples from sample-server 410 to symbol RAM or TCM for buffering.
  • the processor 440 may power down the RF circuitry to save power (Block 525). The processor may then begin pure digital processing of superframe preamble to determine and correct drift (Block 530). The details of this processing are presented in Fig. 6.
  • the access terminal 250 may perform regular demodulation processing of the paging channel using the corrected buffered time domain samples to determine if the access terminal 250 has been paged (Block 535). If the paging channel decode results in a successful CRC and the access terminal 250 detects a page (Block 540), then it may proceed to decode the full page of the next superframe (Block 545). Otherwise, if the paging channel decode results in a successful CRC and a page is not detected in Block 540, the access terminal 250 may reenter the sleep state (Block 550).
  • the processor 440 in access terminal 250 may also choose to do some or all parts of paging channel demodulation and time/frequency correction offline in firmware (FW), depending upon its hardware capability. For decoding a full-page channel, the terminal can use the already computed time/frequency offset to wake up at the correct time, and also apply the correct frequency offset to the phase lock loop (PLL), digital frequency correction block or the Voltage Controlled Temperature Compensated Crystal Oscillator (VCTCXO).
  • PLL phase lock loop
  • VCTCXO Voltage Controlled Temperature Compensated Crystal Oscillator
  • the wakeup time according to the above-described method shown in Fig. 5 is significantly smaller than conventional wakeup processes, thereby leading to a substantial increase in standby time.
  • This approach also improves the performance of the paging channel demodulation and decoding, in the presence of timing/frequency drifts, thereby leading to a lower probability of reading subsequent pages, such as, for example, full-pages and/or full-page failures, thus conserving battery power.
  • time duration Sleep Cycle
  • all the above process for time/frequency offset estimation and correction, including buffering of time domain samples may be skipped. This is done to further reduce power consumption.
  • Fig. 6 shows a flow diagram of an exemplary process for correcting time and/or frequency drifts within the compensation process 530 shown in Fig. 5.
  • the processor 440 may direct access terminal 250 to first processes TDM- 1,2,3 pilot samples in a cold-start acquisition mode in order to compute the time and/or frequency offset(s) of the clock (Blocks 605 and 610). Next, the processor 440 may compensate for the offset(s) by applying a time and/or frequency correction on the buffered samples corresponding to the paging channel (Block 615). The time correction may be applied by changing the starting location of the 1st OFDM symbol of paging channel, according to the temporal offset detected. The frequency correction may be applied by using a time-domain phase ramp corresponding to the estimated frequency offset.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • an embodiment of the invention can include a computer readable media embodying a method for compensating drifts occurring during sleep times in access terminals. Accordingly, the invention is not limited to illustrated examples and any means for performing the functionality described herein are included in embodiments of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method and apparatus are presented for compensating drifts in access terminals occurring during a sleep time. The method includes determining whether a sleep time exceeds a threshold, buffering time domain samples containing acquisition pilots and a paging channel, powering down RF circuitry in the access terminal after buffering samples, processing the samples to compensate for drift, and determining whether the access terminal was paged based upon the processed samples. The apparatus includes a digital front end, an FFT engine coupled to the digital front end, a symbol buffer coupled to the FFT engine, a processor coupled to the digital front end, FFT engine, and symbol buffer, and a memory coupled to the processor, the memory further comprising instructions for executing the method.

Description

COMPENSATING FOR DRIFTS OCCURRING DURING SLEEP TIMES
IN ACCESS TERMINALS
Claim of Priority under 35 U.S.C. §119
[0001] The present Application for Patent claims priority to Provisional Application
No. 61/041,324 entitled "METHOD AND APPARATUS FOR HANDLING DRIFTS DURING SLEEP FOR ACCESS TERMINALS" filed April 1, 2008, and assigned to the assignee hereof and hereby expressly incorporated by reference herein.
Field of Disclosure
[0002] Embodiments of the disclosure generally relate to communications in a wireless environment. More particularly, embodiments of the disclosure relate to compensating drifts of components within a wireless access terminal which occur during sleep times.
Background
[0003] Wireless communication systems are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, etc. These wireless systems may be multiple-access systems capable of supporting multiple users by sharing the available system resources (e.g., bandwidth and transmit power). Examples of such multiple-access systems include Code Division Multiple Access (CDMA) systems, Time Division Multiple Access (TDMA) systems, Frequency Division Multiple Access (FDMA) systems, 3GPP LTE systems, Orthogonal FDMA (OFDMA) systems, Single-Carrier FDMA (SC-FDMA) systems, etc.
[0004] In wireless communication systems access terminals (referred to as mobile stations, handsets, mobile devices, and/or user terminals) receive signals from fixed position access points (also referred to as base stations, Node -B, cell sites or cells) that support communication links or service within particular geographic regions adjacent to or surrounding the access point. In order to aid in providing coverage, each cell may be sub-divided into multiple sectors, each corresponding to a smaller service area or geographic region. An array or series of access points placed adjacent to each other can form a communication system capable of servicing a number of system users, over a larger region. [0005] Generally, a wireless multiple-access communication system can simultaneously support communication for multiple wireless access terminals. Each access terminal may communicate with one or more access points via transmissions on the forward and reverse links. The forward link (or downlink) refers to the communication link from the access points to the terminals, and the reverse link (or uplink) refers to the communication link from the terminals to the access points. This communication link may be established via a single-in-single-out, multiple-in-signal-out or a multiple -in- multiple-out (MIMO) system.
[0006] Each access terminal can monitor a control channel that may be used to exchange messages between the access terminal and the access point. The control channel is used to transmit system/overhead messages, whereas traffic channels are typically used for substantive communication (e.g., voice and data) to and from the access terminal. For example, the control channel can be used to establish traffic channels, control power levels, and the like, as is known in the art.
[0007] Because the access terminals are typically battery operated, power conservation is emphasized in the system design. Accordingly, access terminals can enter into sleep modes and periodically awaken to monitor the control channel for messages / paging directed to the access terminal. During sleep modes, component(s) within the access terminal may experience drifts. These drifts may be characterized as uncontrolled variations in the performance of components in the Access Terminal. For example, an oscillator used as a frequency reference in the access terminal may provide a clock signal which experiences time and/or frequency variations. Component drift can adversely affect the functionality and/or performance of the access terminal. Moreover, this timing/frequency drift may also affect the performance of other users in the Uplink (UL) by violating the time/frequency orthogonality across users.
[0008] Accordingly, it is desirable to compensate for component drift in order to mitigate potentially adverse effects on the communication system.
SUMMARY
[0009] Exemplary embodiments are directed to systems and method for compensating for drifts occurring during sleep times in access terminals. [0010] In one embodiment, a method for compensating drifts in access terminals occurring during a sleep time is presented. The method includes determining whether a sleep time exceeds a threshold, buffering time domain samples containing acquisition pilots and a paging channel, powering down RF circuitry in the access terminal after buffering samples, processing the samples to compensate for drift, and determining whether the access terminal was paged based upon the processed samples. [0011] In another embodiment, an apparatus for compensating drifts in access terminals occurring during a sleep time is presented. The apparatus includes a digital front end, an FFT engine coupled to the digital front end, a symbol buffer coupled to the FFT engine, a processor coupled to the digital front end, FFT engine, and symbol buffer, and a memory coupled to the processor, the memory further comprising instructions which determines whether a sleep time exceeds a threshold, buffers time domain samples containing acquisition pilots and a paging channel, powers down RF circuitry in the access terminal after buffering samples, processes the samples to compensate for drift, and determines whether the access terminal was paged based upon the processed samples.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012] The accompanying drawings are presented to aid in the description of embodiments of the disclosure and are provided solely for illustration of the embodiments and not limitation thereof. [0013] Fig. 1 shows a top level diagram of an exemplary multiple access wireless communications system. [0014] Fig. 2 shows block diagrams of an exemplary access terminal and access point within the wireless communications system. [0015] Fig. 3 depicts a diagram of a format associated with an exemplary super frame structure. [0016] Fig. 4 shows a block diagram of an exemplary hardware receiver architecture associated with an access terminal. [0017] Fig. 5 shows a flow diagram of an exemplary process for acquiring time domain samples and compensating drift within an access terminal. [0018] Fig. 6 shows a flow diagram of an exemplary process for correcting time and/or frequency drifts within the compensation process shown in Fig. 5. DETAILED DESCRIPTION
[0019] Embodiments are disclosed in the following description and related drawings directed to specific embodiments of the disclosure. Alternate embodiments may be devised without departing from the scope of the invention. Additionally, well-known elements will not be described in detail or will be omitted so as not to obscure the relevant details of the disclosure.
[0020] The word "exemplary" is used herein to mean "serving as an example, instance, or illustration." Any embodiment described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments. Likewise, the term "embodiments of the invention" does not require that all embodiments of the invention include the discussed feature, advantage or mode of operation.
[0021] The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of embodiments of the invention. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprises", "comprising,", "includes" and/or "including", when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
[0022] Further, many embodiments are described in terms of sequences of actions to be performed by, for example, elements of a computing device. It will be recognized that various actions described herein can be performed by specific circuits (e.g., application specific integrated circuits (ASICs)), by program instructions being executed by one or more processors, or by a combination of both. Additionally, these sequence of actions described herein can be considered to be embodied entirely within any form of computer readable storage medium having stored therein a corresponding set of computer instructions that upon execution would cause an associated processor to perform the functionality described herein. Thus, the various aspects of the invention may be embodied in a number of different forms, all of which have been contemplated to be within the scope of the claimed subject matter. In addition, for each of the embodiments described herein, the corresponding form of any such embodiments may be described herein as, for example, "logic configured to" perform the described action.
[0023] The techniques described herein may be used for various wireless communication networks such as Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, Single-Carrier FDMA (SC-FDMA) networks, etc. The terms "networks" and "systems" are often used interchangeably. A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA), cdma2000, etc. UTRA includes Wideband-CDMA (W-CDMA) and Low Chip Rate (LCR). cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM). An OFDMA network may implement a radio technology such as Evolved UTRA (E-UTRA), IEEE 802.11, IEEE 802.16, IEEE 802.20, Flash-OFDM®, etc. UTRA, E-UTRA, and GSM are part of Universal Mobile Telecommunication System (UMTS). Long Term Evolution (LTE) is an upcoming release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents from an organization named "3rd Generation Partnership Project" (3GPP). cdma2000 is described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2). These various radio technologies and standards are known in the art. For clarity, certain aspects of the techniques are described below for LTE, and LTE terminology is used in much of the description below. Moreover, the procedures described herein may be used in FD-LTE and TD-LTE systems.
[0024] Single carrier frequency division multiple access (SC-FDMA), which utilizes single carrier modulation and frequency domain equalization, is a wireless technique which builds on OFDMA. SC-FDMA has similar performance and essentially the same overall complexity as an OFDMA system. However, an SC-FDMA signal has the advantage of a lower peak-to-average power ratio (PAPR) because of its inherent single carrier structure. SC-FDMA has drawn great attention, especially in the uplink communications where lower PAPR greatly benefits the mobile terminal in terms of transmit power efficiency. It is currently a working assumption for the uplink multiple access scheme in 3GPP Long Term Evolution (LTE), or Evolved UTRA. [0025] Fig. 1 shows a top level diagram of an exemplary multiple access wireless communications system. The system may be a MIMO system that can employ multiple (NT) transmit antennas and multiple (NR) receive antennas for data transmission. A MIMO channel formed by the NT transmit and NR receive antennas may be decomposed into Ns independent channels, which are also referred to as spatial channels, where Ns < mm{NT, NR} . Each of the Ns independent channels may correspond to a dimension. The MIMO system can provide improved performance (e.g., higher throughput and/or greater reliability) if the additional dimensionalities created by the multiple transmit and receive antennas are utilized.
[0026] A wireless system may be a time division duplex (TDD) and/or a frequency division duplex (FDD) system. In a TDD system, the forward and reverse link transmissions are on the same frequency region so that the reciprocity principle allows the estimation of the forward link channel from the reverse link channel. This enables the access point to extract transmit beamforming gain on the forward link when multiple antennas are available at the access point.
[0027] Further referring to Fig. 1, an access point 100 (AP) may include multiple antenna groups, one including antennas 104 and 106, another including antennas 108 and 110, and an additional including antennas 112 and 114. In Fig. 1, only two antennas are shown for each antenna group, however, different numbers of antennas may be utilized for each antenna group. Access terminal 116 (AT) is in communication with antennas 112 and 114, where antennas 112 and 114 may transmit information to access terminal 116 over forward link 120, and receive information from access terminal 116 over reverse link 118. Access terminal 122 may be in communication with antennas 106 and 108, where antennas 106 and 108 transmit information to access terminal 122 over forward link 126, and receive information from access terminal 122 over reverse link 124. In a FDD system, communication links 118, 120, 124 and 126 may use different frequency for communication. For example, forward link 120 may use a different frequency then that used by reverse link 118.
[0028] Each group of antennas and/or the area in which they are designed to communicate is often referred to as a sector of the access point. In the embodiment shown in Fig. 1, each antenna group may be designed to communicate to access terminals in a designated sector within the areas covered by access point 100.
[0029] In communication over forward links 120 and 126, the transmitting antennas of access point 100 may utilize beamforming in order to improve the signal-to-noise ratio of forward links for the different access terminals 116 and 124. Using beamforming to transmit to access terminals scattered randomly throughout a coverage area may cause less interference to access terminals in neighboring cells than an access point transmitting through a single antenna to all its access terminals.
[0030] Fig. 2 shows block diagrams of an exemplary access terminal 250 and access point 210 within the wireless communications system. In this embodiment, the communication system may be a MIMO system 200, which can include the Access Point 210 and the Access Terminal 250. Downlink (DL) transmission occurs from Access Point to the Access Terminal. Uplink (UL) transmission occurs from Access Terminal to the Access Point. At the access point 210, traffic data for a number of data streams may be provided from a data source 212 to a transmit (TX) data processor 214. Each data stream may be transmitted over a respective transmit antenna. TX data processor 214 may format, code, and interleave the traffic data for each data stream based on a particular coding scheme selected for that data stream to provide coded data.
[0031] The coded data for each data stream may be multiplexed with pilot data using
OFDM techniques. The pilot data is typically a known data pattern that is processed in a known manner and may be used at the receiver system to estimate the channel response. The multiplexed pilot and coded data for each data stream may then modulated (i.e., symbol mapped) based on a particular modulation scheme (e.g., BPSK, QSPK, M-PSK, M-QAM, etc.) selected for that data stream to provide modulation symbols. The data rate, coding, and modulation for each data stream may be determined by instructions performed by processor 230.
[0032] The modulation symbols for all data streams may then be provided to a TX
MIMO processor 220, which may further process the modulation symbols (e.g., for OFDM). TX MIMO processor 220 can then provide NT modulation symbol streams to Nx transmitters (TMTR) 222a through 222t. In certain embodiments, TX MIMO processor 220 may apply beamforming weights to the symbols of the data streams and to the antenna from which the symbols are being transmitted. Each transmitter 222 may receive and processes a respective symbol stream to provide one or more analog signals, and further conditions (e.g., amplifies, filters, and/or up-converts) the analog signals to provide a modulated signal suitable for transmission over the MIMO channel. NT modulated signals from transmitters 222a through 222t may be then transmitted from NT antennas 224a through 224t, respectively.
[0033] At access terminal 250, the downlink (DL) signals from the Access Point may be received by NR antennas 252a through 252r and the received signal from each antenna 252 which may be provided to a respective receiver (RCVR) 254a through 254r. Each receiver 254 may condition (e.g., filters, amplifies, and down-converts) a respective received signal, digitize the conditioned signal to provide samples, and can further process the samples to provide a corresponding "received" symbol stream.
[0034] An RX MIMO processor 260 may then receive and processes the NR received symbol streams from NR receivers 254 based on a particular receiver processing technique to provide NT "detected" symbol streams. The RX data processor 261 may then demodulate, de-interleave, and decode each detected symbol stream to recover the traffic data for the data stream. The processing by RX MIMO processor 260 is complementary to that performed by TX MIMO processor 220. The processing by RX data processor is complementary to that performed by TX data processor 214 at access point 210.
[0035] Processor 270 may then formulate a reverse link message that may comprise various types of information regarding the communication link and/or the received data stream. The reverse link message may then be processed by a TX data processor 238, which also receives traffic data for a number of data streams from a data source 236, modulated by a Tx MIMO processor 280, conditioned by transmitters 254a through 254r, and transmitted back to transmitter system 210. At transmitter system 210, the modulated signals from receiver system 250 are received by antennas 224, conditioned by receivers 222, demodulated by a RX MIMO processor 240, and processed by a RX data processor 242 to extract the reserve link message transmitted by the receiver system 250.
[0036] The transmission timeline for the forward and reverse links may be partitioned into units of superframes. Fig. 3 depicts a diagram of a format associated with an exemplary superframe 300 structure. Each superframe may span a particular time duration, which may be fixed or configurable. In the embodiment shown in Fig. 3, the superframe preamble may repeat approximately every 25 msec. On the forward link, a superframe 300 may include a preamble followed by M physical layer (PHY) frames, where M may be any integer value. On the reverse link, each superframe 310 may include M PHY frames, where the first PHY frame may be extended by the length of the superframe preamble on the forward link (for example, as shown in Fig. 3, frame 0 may include 16 OFDM symbols). In the design shown in FIG. 3, each superframe includes 25 PHY frames with indices of 0 through 24. Each PHY frame may carry traffic data, signaling, pilot, etc.
[0037] The superframe preamble 305 may include information to allow the access terminal 250 to perform paging and acquisition operations. Information for quick paging may be provided over a paging channel such as, for example, the Quick Page Channel (QPCH). Information for acquisition may reside in the Time Division Multiplexed (TDM) pilots 1, 2 and 3. In one embodiment, the superframe preamble may include eight OFDM symbols with indices of 0 through 7. The OFDM symbol 0 may comprises a Forward Primary Broadcast Control Channel (F-PBCCH) that carries information for deployment-specific parameters. OFDM symbols 1 through 4 may comprise either a Forward Secondary Broadcast Control Channel (F-SBCCH) or a Forward Quick Paging Channel (F-QPCH). The F-SBCCH may carry information for sector-specific parameters. The F-QPCH may carry information used for quick paging. The OFDM symbols 5, 6 and 7 may comprise time division multiplexed (TDM) pilots 1, 2 and 3, respectively, which may be used by terminals for initial acquisition as described above. TDM pilot 1 may be used as a Forward Acquisition Channel (F-ACQCH). A Forward Other-Sector-Interference Channel (F-OSICH) may be sent in TDM pilots 2 and 3. One would appreciate that the superframe preamble may also be defined in other manners, and the paging may be performed using a variety of signals and channels, accordingly the format and channel structure provided above is merely exemplary.
[0038] For example, in Long Term Evolution (LTE) systems, the equivalents for TDM pilots 1 and TDM pilots 2 may be Primary and Secondary Synchronization Signals (PSS, SSS), respectively. In other embodiments, signals such as the Primary Pilot Channel (PPICH), or the LTE equivalent Common Reference Signal may be used in place of the synchronization signals for the search and/or pilot strength measurements. Moreover, in another embodiment, the paging may be performed using a data channel such as, for example, the Primary Data Shared Channel (PDSCH).
[0039] In one embodiment, with respect to quick paging operations, when the access terminal sleeps, it should wake up periodically to read the QPCH. If the QPCH decode is successful (that is, the message successfully passes a CRC test) and the terminal is paged, it should decode the Full-Page Channel to determine the paging details. The Full-Page channel may be transmitted on regular PHY Frames using Hybrid ARQ (HARQ). The transmission may span 6 Frames, that are separated by approximately ~5 msec apart. A terminal with good SNR may decode the Full Page in 1 Frame, whereas a terminal with poor SNR can take up to 6 Frames to decode Full Page. Hence, the total decode times for Full Page can be as high as approximately 30 msec. In general, decoding Full Page channel consumes excess power and wastes battery life. It is for this reason that the QPCH channel was introduced, that is, in order to limit the number of times the access terminal 250 has to decode the Full Page, and thus enhance battery life.
[0040] In order to decode any received channel upon being initialized after power-up, the access terminal 250 should first perform acquisition. When the access terminal 250 is initially powered up, it should determine the timing and frequency offset of the Access Terminal with respect to the Access Point in order to enable successful decoding of the DL channels. To determine these offsets, the access terminal performs what is defined herein as "acquisition." The acquisition procedure can lock on to the TDM-I, 2, 3 pilot symbols, and thereby establishes correct timing and frequency offsets. In other words, after acquisition, the access terminal is capable of decoding other channels such as, for example, the QPCH channel, the DCH (data channel) etc.
[0041] In one embodiment, the superframe preamble may include eight OFDM symbols with indices of 0 through 7. The OFDM symbol 0 may comprises a Forward Primary Broadcast Control Channel (F-PBCCH) that carries information for deployment-specific parameters. OFDM symbols 1 through 4 may comprise either a Forward Secondary Broadcast Control Channel (F-SBCCH) or a Forward Quick Paging Channel (F-QPCH). The F-SBCCH may carry information for sector-specific parameters. The F-QPCH may carry information used for quick paging described above. [0042] Fig. 4 shows a block diagram of an exemplary hardware architecture for a receiver 400 associated with an access terminal. The receiver may be comprised of a series of signal processing functional blocks, including Front End 405, Sample Server 410, FFT Engine 415, Symbol Buffer 420, Demodulator 425, and Decoder 430. The signal processing blocks may be controlled by a processor 440, which interfaces to the signal processing block over a Hardware/Firmware (HW/FW) interface 435. The processor 440, which may be at least one micro-processor, a micro-controller, a Digital Signal Processor (DSP), etc., or any combination thereof, may include onboard and/or external memory 445 which stores program code and any associated parameters and data. The program code may be realized in the form of software, firmware, or any combination thereof.
[0043] The received baseband I & Q signal time domain samples, obtained by digitizing the received signal via an Analog-to-Digital Converter (ADC), may be fed to the Digital Front End Block 405. The Digital Front End block performs signal conditioning such as digital AGC and filtering. Note that a modem typically also has an analog Front End Block that is part of the RF circuitry (not shown). The RF circuitry includes analog components like analog AGC, mixer, analog filters etc and operate on the receive signal before it is fed to the ADC.
[0044] The time domain samples may be passed on to the sample server 410 where they are buffered prior be converted into the frequency domain. The time domain samples may be converted to frequency domain symbols by using an FFT Engine 415. The symbols may then be buffered in Symbol Buffer 420. The symbols may be demodulated into soft information bits by demodulator 425, and subsequently decoded in decoder 430. The demodulator 425 may have a MIMO receiver such as an MMSE receiver, followed by a Log Likelihood Ratio (LLR) computing engine. The decoder 430 may include a Viterbi decoder, a Turbo decoder and/or a LDPC decoder.
[0045] As mentioned previously, the access terminal's sleep time may be increased during periods of terminal inactivity in order to save battery life. However, significant time and/or frequency drift can arise due to the sleep clock drifting. As an example, 2 ppm sleep clock drift in a 20 MHz system can lead to a timing drift of ~20 us, over a 10 sec sleep duration. In one embodiment such as in the LTE or UMB or 802.20 standards, an OFDM symbol can be -100 us long, in which case the timing drift is approximately 1/5 of an OFDM symbol period. In another embodiments, such as 802.11 WLAN standards, an OFDM symbol can be 4 us long, in which case the timing drift can span approximately 5 OFDM symbols. Furthermore, using lower cost crystal oscillators (XO) that may have a higher drift specification in ppm (e.g.,: 50-100 ppm) may result in much larger time/frequency drifts over this time-scale. Due to such time and/or frequency drifts, the access terminal may not be able to decode a paging channel (e.g., QPCH) upon wake-up, since typically the QPCH channel has a higher spectral efficiency and may be susceptible to distortion introduced by time/frequency drifts. As a result, the access terminal does not know whether it is being paged or not. This leads to the terminal attempting to decode the Full Page channel, causing it to be awake for up to 30 msec, as explained above. Typically, the terminal is better positioned to decode the Full Page Channel even in the presence of timing/frequency drift since the information is encoded across 6 Frames spread over 30 msec, leading to a very small spectral efficiency (smaller than the spectral efficiency of QPCH channel). However, if the time drift is significant fraction of the OFDM symbol (say >25%) , or if the frequency drift is a significant fraction of the OFDM tone-spacing (say 25%), then it is highly likely that the Full Page decode might fail. This leads to the terminal re -running acquisition after some time-out period to obtain a fresh time/frequency offset, and then employing them to decode a full-page.
[0046] All the above activities can lead to expending significant battery power and reducing the standby time. To mitigate this effect, conventional access terminals might reduce sleep times to shorten clock drifting, which again impacts efficiency. Alternately, access terminals may employ a more expensive LO that experiences a smaller ppm sleep drift, which increases terminal cost.
[0047] Embodiments of the disclosure improve the standby time by compensating for the time and/or frequency drift of the sleep clock, with minimal power consumption. This compensation may be performed as follows. When sleep times are sufficiently long and exceed a predetermined period of time, the access terminal may awaken early to buffer samples that also contain the superframe preamble, at some unknown time- offset in the buffered samples. For example, if the terminal is using a 5 ppm clock and sleeps for 10 seconds, it may wake up ~50 us earlier to buffer samples, assuming that the worse-case clock drift of ~50us. Since the actual ppm offset may be smaller than 5 ppm at any given time instant, the buffered samples will in reality contain the superframe preamble at some unknown offset of up to 50 us. The buffered samples, specifically the TDM pilots, are then analyzed and processed in order to determine any time and/or frequency offsets values. The buffered samples may then be corrected for the time/frequency offset values prior to performing a quick paging operation.
[0048] This buffering may be performed by the processor 440 executing acquisition algorithm 450, by storing the samples in the Tightly Coupled Memory (TCM) of the processor. Alternately, the processor may control the FFT engine 415 and place it in a by-pass mode so that time domain samples can be buffered in the symbol buffer 420. The drift compensation algorithm 455 may compute correction factors from the drift offset values derived the buffered samples, and apply the values to the buffered samples to compensate for the drift. Details of the acquisition and drift compensation algorithms are presented below in the description of Figs. 5 and 6.
[0049] Fig. 5 shows a flow diagram of an exemplary process 500 for acquiring time domain samples and compensating drift within an access terminal 250.
[0050] After going to sleep, the access terminal 250 may wake up at time duration =
Sleep Cycle - deltaT, where deltaT is the sleep-drift. In one example, assuming a 5 ppm maximum clock drift and 10 sec sleep duration, deltaT can be 50 us. The processor can then buffer the time domain samples upon wakeup (Block 520). In some embodiments, the time-domains samples may be part of the superframe preamble.
[0051] The storage location of the time domain samples can accomplished using a variety of different memory locations available in the access terminal 250, such as, for example, a symbol-RAM in the symbol buffer 420, a Tightly Coupled Memory (TCM) memory of the process, etc. The processor 440 may determine where the symbols are buffered by controlling any of the appropriate signal processing blocks via the HW/FW interface 435. For example, in one embodiment, the processor 440 may place the FFT engine 415 in a bypass mode (in order to avoid transforming the acquired samples into the frequency domain) to move samples from sample-server 410 to symbol RAM or TCM for buffering.
[0052] After buffering the time domain samples, the processor 440 may power down the RF circuitry to save power (Block 525). The processor may then begin pure digital processing of superframe preamble to determine and correct drift (Block 530). The details of this processing are presented in Fig. 6.
[0053] Next, the access terminal 250 may perform regular demodulation processing of the paging channel using the corrected buffered time domain samples to determine if the access terminal 250 has been paged (Block 535). If the paging channel decode results in a successful CRC and the access terminal 250 detects a page (Block 540), then it may proceed to decode the full page of the next superframe (Block 545). Otherwise, if the paging channel decode results in a successful CRC and a page is not detected in Block 540, the access terminal 250 may reenter the sleep state (Block 550).
[0054] The processor 440 in access terminal 250 may also choose to do some or all parts of paging channel demodulation and time/frequency correction offline in firmware (FW), depending upon its hardware capability. For decoding a full-page channel, the terminal can use the already computed time/frequency offset to wake up at the correct time, and also apply the correct frequency offset to the phase lock loop (PLL), digital frequency correction block or the Voltage Controlled Temperature Compensated Crystal Oscillator (VCTCXO).
[0055] Accordingly, the wakeup time according to the above-described method shown in Fig. 5 is significantly smaller than conventional wakeup processes, thereby leading to a substantial increase in standby time. This approach also improves the performance of the paging channel demodulation and decoding, in the presence of timing/frequency drifts, thereby leading to a lower probability of reading subsequent pages, such as, for example, full-pages and/or full-page failures, thus conserving battery power.
[0056] Note that if the sleep-drift (deltaT) is less than some Threshold (e.g., less than
1/20* of the OFDM symbol duration), then the Access Terminal may choose to wake up at time duration = Sleep Cycle, and proceed with a regular demodulation of the paging channel to determine if it was paged. In other words, all the above process for time/frequency offset estimation and correction, including buffering of time domain samples may be skipped. This is done to further reduce power consumption.
[0057] Fig. 6 shows a flow diagram of an exemplary process for correcting time and/or frequency drifts within the compensation process 530 shown in Fig. 5.
[0058] After buffering the samples in Block 520 shown in Fig. 5, the processor 440 may direct access terminal 250 to first processes TDM- 1,2,3 pilot samples in a cold-start acquisition mode in order to compute the time and/or frequency offset(s) of the clock (Blocks 605 and 610). Next, the processor 440 may compensate for the offset(s) by applying a time and/or frequency correction on the buffered samples corresponding to the paging channel (Block 615). The time correction may be applied by changing the starting location of the 1st OFDM symbol of paging channel, according to the temporal offset detected. The frequency correction may be applied by using a time-domain phase ramp corresponding to the estimated frequency offset. For example, if the frequency offset is denoted as "P, the phase ramp is given as theta(t) = exp(j*2*π*f*t), where j = sqrt(-l), and t is the time. This phase ramp is point- wise multiplied by the received samples to obtain a frequency corrected received samples.
[0059] Those of skill in the art will appreciate that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
[0060] Further, those of skill in the art will appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
[0061] In one or more exemplary embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
[0062] Accordingly, an embodiment of the invention can include a computer readable media embodying a method for compensating drifts occurring during sleep times in access terminals. Accordingly, the invention is not limited to illustrated examples and any means for performing the functionality described herein are included in embodiments of the invention.
[0063] While the foregoing disclosure shows illustrative embodiments of the invention, it should be noted that various changes and modifications could be made herein without departing from the scope of the invention as defined by the appended claims. The functions, steps and/or actions of the method claims in accordance with the embodiments of the invention described herein need not be performed in any particular order. Furthermore, although elements of the invention may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated.

Claims

CLAIMS WHAT IS CLAIMED IS:
1. A method for compensating drifts occurring during a sleep time in an access terminal, comprising: determining whether a sleep time exceeds a threshold; buffering time domain samples from at least one acquisition or paging channel; powering down RF circuitry in the access terminal after buffering the time domain samples; processing the time domain samples to compensate for drift; and determining whether the access terminal was paged based upon the processed time domain samples.
2. The method according to claim 1, wherein the time domain samples further comprise acquisition pilots.
3. The method according to claim 2, wherein the paging channel comprises the Quick Paging CHannel (QPCH).
4. The method according to claim 2, wherein determining whether the access terminal was paged further comprises: demodulating the paging channel; and determining the terminal was paged based upon the successfully decoding the paging channel.
5. The method according to claim 4, further comprising: decoding a subsequent page when the page based upon the paging channel is detected.
6. The method according to claim 2, wherein the processing further comprises: processing TDM 1, 2, 3 samples in a cold start acquisition mode; determining at least one of time and frequency offset correction values; and applying the at least one time and frequency offset correction values to the buffered paging channel samples.
7. The method according to claim 6, further comprising: applying the time correction by determining the starting location of the first OFDM symbol of the paging channel.
8. The method according to claim 6, further comprising: applying the frequency correction using a time-domain phase ramp corresponding to the determined frequency offset correction value.
9. The method according to claim 1, wherein the time domain samples are buffered in a buffer space which includes at least one of a symbol-RAM, a TCM memory in the processor, and a sample-server.
10. The method according to claim 9, further comprising: operating an FFT engine in a bypass mode to transfer the time domain samples from the sample server to the symbol-RAM.
11. The method according to claim 2, further comprising: determining that the sleep time did not exceed the threshold; and demodulating the paging channel without buffering and processing of the time domain samples.
12. The method according to claim 11, further comprising; placing the AT in a sleep state upon detecting that the terminal was not paged after demodulating the paging channel.
13. An apparatus for compensating drifts occurring during a sleep time in an access terminal, comprising: a digital front end; an FFT engine coupled to the digital front end; a symbol buffer coupled to the FFT engine; a processor coupled to the digital front end, FFT engine, and the symbol buffer; a memory coupled to the processor, the memory further comprising instructions which determines whether a sleep time exceeds a threshold, buffers time domain samples from at least one acquisition or paging channel, powers down RF circuitry in the access terminal after buffering the time domain samples, processes the time domain samples to compensate for drift, and determines whether the access terminal was paged based upon the processed time domain samples.
14. The apparatus according to claim 13, wherein the time domain samples further comprise acquisition pilots.
15. The apparatus according to claim 14, wherein the instructions which determine whether the access terminal was paged comprise further instruction which: demodulates the paging channel; and determines whether the terminal was paged based upon the successful demodulating of the paging channel.
16. The apparatus according to claim 15, wherein the memory comprises further instructions which demodulate a subsequent page when the page based upon the paging channel is detected.
17. The apparatus according to claim 16, wherein the memory comprises further instructions which process TDM 1, 2, 3 samples in a cold start acquisition mode, determines at least one of time and frequency offset correction values, and applies the at least one time and frequency offset correction values to the buffered paging channel samples.
18. The apparatus according to claim 17, wherein the memory comprises further instructions which applies the time correction by determining the starting location of the first OFDM symbol of the paging channel.
19. The apparatus according to claim 17, wherein the memory comprises further instructions which applies the frequency correction using a time-domain phase ramp corresponding to the determined frequency offset correction value.
20. An apparatus for compensating drifts occurring during a sleep time in an access terminal, comprising: means for determining whether a sleep time exceeds a threshold; means for buffering time domain samples from at least one acquisition or paging channel; means for powering down RF circuitry in the access terminal after buffering the time domain samples; means for processing the time domain samples to compensate for drift; and means for determining whether the access terminal was paged based upon the processed time domain samples.
21. The apparatus according to claim 20, wherein the time domain samples further comprise acquisition pilots.
22. The apparatus according to claim 21, wherein the paging channel comprises the Quick Paging CHannel (QPCH).
23. The apparatus according to claim 21, further comprising: means for demodulating the paging channel; and means for determining whether the terminal was paged based upon the successful decoding of the paging channel.
24. The apparatus according to claim 23, further comprising; means for demodulating a subsequent page when the page based upon the paging channel is detected.
25. The apparatus according to claim 22, further comprising: means for processing TDM 1, 2, 3 samples in a cold start acquisition mode; means for determining at least one of time and frequency offset correction values; and means for applying the at least one time and frequency offset correction values to the buffered paging channel samples.
26. A computer readable media embodying logic for compensating drifts occurring during a sleep time in an access terminal, the logic configured to perform a method comprising: determining whether a sleep time exceeds a threshold; buffering time domain samples from at least one acquisition or paging channel; powering down RF circuitry in the access terminal after buffering the time domain samples; processing the time domain samples to compensate for drift; and determining whether the access terminal was paged based upon the processed time domain samples.
27. The computer readable media according to claim 26, wherein the time domain samples further comprise acquisition pilots.
28. The computer readable media according to claim 27, wherein the paging channel comprises the Quick Paging CHannel (QPCH).
29. The computer readable media according to claim 27, comprising additional logic to perform the method further comprising: demodulating the paging channel; and determining whether the terminal was paged based upon the successful demodulating of the paging channel.
30. The computer readable media according to claim 29, comprising additional logic to perform the method further comprising: demodulating a subsequent page when the page based upon the paging channel is detected.
31. The computer readable media according to claim 28, comprising additional logic to perform the method further comprising: processing TDM 1, 2, 3 samples in a cold start acquisition mode; determining at least one of time and frequency offset correction values; and applying the at least one time and frequency offset correction values to the buffered paging channel samples.
32. A method for compensating drifts occurring during a sleep time in an access terminal, comprising: determining whether a sleep time exceeds a threshold; buffering time domain samples containing acquisition pilots and a paging channel; and processing the time domain samples to compensate for drift.
33. The method according to claim 32, further comprising: powering down RF circuitry in the access terminal after buffering the time domain samples.
34. The method according to claim 32, further comprising: determining whether the access terminal was paged based upon the time domain processed samples.
35. The method according to claim 32, wherein the processing further comprises: processing Primary and Secondary Synchronization Signal (PSS and SSS) samples in a cold start acquisition mode; determining at least one of time and frequency offset correction values; and applying the at least one time and frequency offset correction values to the buffered paging samples.
36. The method according to claim 34, wherein the page is sent on a data channel.
37. An apparatus for compensating drifts occurring during a sleep time in an access terminal, comprising: means for determining whether a sleep time exceeds a threshold; means for buffering time domain samples containing acquisition pilots and a paging channel; and means for processing the time domain samples to compensate for drift.
38. The apparatus according to claim 37, further comprising: powering down RF circuitry in the access terminal after buffering the time domain samples.
39. The apparatus according to claim 37, further comprising: determining whether the access terminal was paged based upon the processed time domain samples.
40. The apparatus according to claim 37, wherein the processing further comprises: processing Primary and Secondary Synchronization Signal (PSS and SSS) samples in a cold start acquisition mode; determining at least one of time and frequency offset correction values; and applying the at least one time and frequency offset correction values to the buffered paging samples.
41. The apparatus according to claim 39, wherein the page is sent on a data channel.
42. An apparatus for compensating drifts occurring during a sleep time in an access terminal, comprising: a digital front end; an FFT engine coupled to the digital front end; a symbol buffer coupled to the FFT engine; a processor coupled to the digital front end, FFT engine, and the symbol buffer; a memory coupled to the processor, the memory further comprising instructions which determines whether a sleep time exceeds a threshold, buffers time domain samples containing acquisition pilots and a paging channel, and processes the time domain samples to compensate for drift.
43. The apparatus according to claim 42, wherein the memory further comprising instructions which: power down RF circuitry in the access terminal after buffering the time domain samples.
44. The apparatus according to claim 42, wherein the memory further comprising instructions which: determine whether the access terminal was paged based upon the processed time domain samples.
45. The apparatus according to claim 42, wherein the memory further comprising instructions which: process Primary and Secondary Synchronization Signal (PSS and SSS) samples in a cold start acquisition mode; determine at least one of time and frequency offset correction values; and apply the at least one time and frequency offset correction values to the buffered paging samples.
46. The apparatus according to claim 44, wherein the page is sent on a data channel.
47. A computer readable media embodying logic for compensating drifts occurring during a sleep time in an access terminal, the logic configured to perform a method comprising: determining whether a sleep time exceeds a threshold; buffering time domain samples containing acquisition pilots and a paging channel; and processing the time domain samples to compensate for drift.
PCT/US2009/037898 2008-04-01 2009-03-20 Compensating for drifts occurring during sleep times in access terminals WO2009123867A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011503026A JP5237436B2 (en) 2008-04-01 2009-03-20 Compensating for drifts that occur during the sleep period at the access terminal
KR1020107024475A KR101126511B1 (en) 2008-04-01 2009-03-20 Compensating for drifts occurring during sleep times in access terminals
EP09728549A EP2277345B1 (en) 2008-04-01 2009-03-20 Compensating for drifts occurring during sleep times in access terminals
AT09728549T ATE526806T1 (en) 2008-04-01 2009-03-20 COMPENSATION FOR DRIFTS OCCURRING IN ACCESS TERMINALS DURING SLEEP TIMES
CN200980107920.0A CN101960891B (en) 2008-04-01 2009-03-20 Method and device for compensating for drifts occurring during sleep times in access terminals

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US4132408P 2008-04-01 2008-04-01
US61/041,324 2008-04-01
US12/407,467 US8451740B2 (en) 2008-04-01 2009-03-19 Compensating for drifts occurring during sleep times in access terminals
US12/407,467 2009-03-19

Publications (1)

Publication Number Publication Date
WO2009123867A1 true WO2009123867A1 (en) 2009-10-08

Family

ID=41117098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/037898 WO2009123867A1 (en) 2008-04-01 2009-03-20 Compensating for drifts occurring during sleep times in access terminals

Country Status (8)

Country Link
US (1) US8451740B2 (en)
EP (1) EP2277345B1 (en)
JP (1) JP5237436B2 (en)
KR (1) KR101126511B1 (en)
CN (1) CN101960891B (en)
AT (1) ATE526806T1 (en)
TW (1) TW201004434A (en)
WO (1) WO2009123867A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8493900B2 (en) * 2009-02-25 2013-07-23 Broadcom Corporation Idle mode power consumption reduction in wireless communications
US8554251B2 (en) * 2009-06-29 2013-10-08 Qualcomm Incorporated Device, method, and apparatus for offline discontinuous reception (DRX) processing in cellular systems
ES2624837T3 (en) * 2010-06-08 2017-07-17 Nokia Technologies Oy Data access during wireless communication
CN102291680B (en) * 2010-06-18 2013-12-25 普天信息技术研究院有限公司 Encrypted group calling method based on long term evolution (TD-LTE) trunking communication system
KR101897119B1 (en) * 2010-12-23 2018-09-10 한국전자통신연구원 Apparatus and method for transmitting/receiving data in communication system
US8488506B2 (en) * 2011-06-28 2013-07-16 Qualcomm Incorporated Oscillator settling time allowance
CN104813601A (en) * 2012-10-29 2015-07-29 伊卡诺斯通信公司 Mechanism to facilitate timing recovery in time division duplex systems
US9088942B2 (en) * 2013-02-08 2015-07-21 Telefonaktiebolaget L M Ericsson (Publ) Frequency offset estimation for early detection/decoding
WO2015065457A1 (en) * 2013-10-31 2015-05-07 Nokia Corporation User equipment power optimization
KR102332471B1 (en) 2015-05-08 2021-11-30 삼성전자주식회사 Apparatus and method for synchronization signal detecting
CN106656386B (en) * 2015-10-30 2019-08-27 南京中兴新软件有限责任公司 A kind of local clock method of adjustment, time service method and device
CN108566193B (en) * 2018-03-22 2022-02-18 深圳忆联信息系统有限公司 M-phy driving circuit for adjusting dynamic resistance by using comparator
US10812216B2 (en) 2018-11-05 2020-10-20 XCOM Labs, Inc. Cooperative multiple-input multiple-output downlink scheduling
US10756860B2 (en) 2018-11-05 2020-08-25 XCOM Labs, Inc. Distributed multiple-input multiple-output downlink configuration
US10659112B1 (en) 2018-11-05 2020-05-19 XCOM Labs, Inc. User equipment assisted multiple-input multiple-output downlink configuration
US10432272B1 (en) 2018-11-05 2019-10-01 XCOM Labs, Inc. Variable multiple-input multiple-output downlink user equipment
AU2019388921B2 (en) 2018-11-27 2024-05-30 XCOM Labs, Inc. Non-coherent cooperative multiple-input multiple-output communications
US11063645B2 (en) 2018-12-18 2021-07-13 XCOM Labs, Inc. Methods of wirelessly communicating with a group of devices
US10756795B2 (en) 2018-12-18 2020-08-25 XCOM Labs, Inc. User equipment with cellular link and peer-to-peer link
US11330649B2 (en) 2019-01-25 2022-05-10 XCOM Labs, Inc. Methods and systems of multi-link peer-to-peer communications
US10756767B1 (en) 2019-02-05 2020-08-25 XCOM Labs, Inc. User equipment for wirelessly communicating cellular signal with another user equipment
US10756782B1 (en) 2019-04-26 2020-08-25 XCOM Labs, Inc. Uplink active set management for multiple-input multiple-output communications
US11032841B2 (en) 2019-04-26 2021-06-08 XCOM Labs, Inc. Downlink active set management for multiple-input multiple-output communications
US10686502B1 (en) 2019-04-29 2020-06-16 XCOM Labs, Inc. Downlink user equipment selection
US10735057B1 (en) 2019-04-29 2020-08-04 XCOM Labs, Inc. Uplink user equipment selection
US11411778B2 (en) 2019-07-12 2022-08-09 XCOM Labs, Inc. Time-division duplex multiple input multiple output calibration
CN113472467A (en) * 2020-03-30 2021-10-01 中国电信股份有限公司 Clock synchronization method, device and system
US11411779B2 (en) 2020-03-31 2022-08-09 XCOM Labs, Inc. Reference signal channel estimation
WO2021211702A1 (en) 2020-04-15 2021-10-21 XCOM Labs, Inc. Wireless network multipoint association and diversity
CA3178604A1 (en) 2020-05-26 2021-12-02 XCOM Labs, Inc. Interference-aware beamforming
EP4229846A1 (en) 2020-10-19 2023-08-23 Xcom Labs, Inc. Reference signal for wireless communication systems
WO2022093988A1 (en) 2020-10-30 2022-05-05 XCOM Labs, Inc. Clustering and/or rate selection in multiple-input multiple-output communication systems
CN115826731B (en) * 2022-10-19 2023-07-11 科东(广州)软件科技有限公司 Sleep control method and device, storage medium and computing equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030144020A1 (en) * 2002-01-31 2003-07-31 Raghu Challa Intermediate wake mode to track sleep clock frequency in a wireless communication device
WO2004045236A1 (en) * 2002-11-11 2004-05-27 Qualcomm, Incorporated Fast reacquisition after long sleep in slotted mode operation
EP1507333A1 (en) * 2000-12-07 2005-02-16 QUALCOMM Incorporated Method and apparatus for compensating for frequency drift within a sleep clock signal

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6484176B1 (en) 1999-06-25 2002-11-19 Baynet World, Inc. System and process for providing remote interactive access to a real estate information database using a portable computing device
US6453181B1 (en) * 1999-11-04 2002-09-17 Qualcomm, Incorporated Method and apparatus for compensating for frequency drift in a low frequency sleep clock within a mobile station operating in a slotted paging mode
US6735454B1 (en) * 1999-11-04 2004-05-11 Qualcomm, Incorporated Method and apparatus for activating a high frequency clock following a sleep mode within a mobile station operating in a slotted paging mode
US7106709B2 (en) * 2000-11-29 2006-09-12 Telefonaktiebologet Lm Ericsson (Publ) Timing drift compensation in wireless packet-based systems
US7403507B2 (en) * 2001-06-18 2008-07-22 Texas Instruments Incorporated System and method for recovering system time in direct sequence spread spectrum communications
JP4005783B2 (en) 2001-10-01 2007-11-14 松下電器産業株式会社 Intermittent communication method and intermittent communication apparatus
US7184506B2 (en) * 2002-03-30 2007-02-27 Broadcom Corporation Frequency drift and phase error compensation in a VOFDM receiver
US8750908B2 (en) 2005-06-16 2014-06-10 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
US7680071B2 (en) * 2005-09-16 2010-03-16 Interdigital Technology Corporation Method and apparatus for managing power during a discontinuous reception mode
US7466778B2 (en) * 2005-12-22 2008-12-16 Sirf Technology, Inc. Memory efficient OFDM channel estimation and frequency domain diversity processing
US7542728B2 (en) * 2006-02-09 2009-06-02 Altair Semiconductor Ltd. Dual-function wireless data terminal
KR101194072B1 (en) * 2006-02-15 2012-10-24 삼성전자주식회사 Apparatus and Method for optimized acquisition of offline Paging Indicator in WCDMA system
JP4865456B2 (en) 2006-09-01 2012-02-01 キヤノン株式会社 Communication device, control method for controlling communication device, program for controlling communication device, and storage medium storing program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1507333A1 (en) * 2000-12-07 2005-02-16 QUALCOMM Incorporated Method and apparatus for compensating for frequency drift within a sleep clock signal
US20030144020A1 (en) * 2002-01-31 2003-07-31 Raghu Challa Intermediate wake mode to track sleep clock frequency in a wireless communication device
WO2004045236A1 (en) * 2002-11-11 2004-05-27 Qualcomm, Incorporated Fast reacquisition after long sleep in slotted mode operation

Also Published As

Publication number Publication date
EP2277345A1 (en) 2011-01-26
JP2011517212A (en) 2011-05-26
CN101960891A (en) 2011-01-26
KR20100127871A (en) 2010-12-06
ATE526806T1 (en) 2011-10-15
EP2277345B1 (en) 2011-09-28
JP5237436B2 (en) 2013-07-17
US8451740B2 (en) 2013-05-28
US20090245230A1 (en) 2009-10-01
CN101960891B (en) 2014-01-22
KR101126511B1 (en) 2012-04-23
TW201004434A (en) 2010-01-16

Similar Documents

Publication Publication Date Title
EP2277345B1 (en) Compensating for drifts occurring during sleep times in access terminals
CN110622586B (en) Synchronization channel for wake-up receiver (WUR) in communication device
US8554251B2 (en) Device, method, and apparatus for offline discontinuous reception (DRX) processing in cellular systems
TWI410068B (en) Apparatus and method for antenna switching diversity in an ofdm system
US8843115B2 (en) Method and apparatus for managing system information modification in a wireless communication system
JP5456861B2 (en) Method and system for DC compensation and AGC
KR101599175B1 (en) Methods and apparatus for power consumption management during discontinuous reception
EP2119003B1 (en) System and method for acquisition in wireless communication systems
RU2419207C1 (en) Method and device to control capacity when operating in dtx mode
US8711747B2 (en) Power saving methods for wireless systems
KR20160006181A (en) Enhanced gsm cell acquisition
US20100238857A1 (en) Carrier timing for wireless communications systems
RU2475964C2 (en) Efficient operation of sleeping mode for ofdma systems
US9131444B2 (en) Optimized page matching
WO2021016332A1 (en) Page message notification
US20130246835A1 (en) Sleep clock slew compensation
CN115176446B (en) Apparatus and method for cyclic prefix based time and/or frequency correction

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107920.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09728549

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 5680/CHENP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011503026

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107024475

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009728549

Country of ref document: EP