WO2009119497A1 - 燃料電池用触媒の製造方法および燃料電池用触媒 - Google Patents

燃料電池用触媒の製造方法および燃料電池用触媒 Download PDF

Info

Publication number
WO2009119497A1
WO2009119497A1 PCT/JP2009/055655 JP2009055655W WO2009119497A1 WO 2009119497 A1 WO2009119497 A1 WO 2009119497A1 JP 2009055655 W JP2009055655 W JP 2009055655W WO 2009119497 A1 WO2009119497 A1 WO 2009119497A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
catalyst
niobium
oxygen
cell catalyst
Prior art date
Application number
PCT/JP2009/055655
Other languages
English (en)
French (fr)
Inventor
卓也 今井
門田 隆二
利一 獅々倉
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to KR1020107023611A priority Critical patent/KR101249194B1/ko
Priority to JP2010505629A priority patent/JP5419864B2/ja
Priority to CA2718893A priority patent/CA2718893A1/en
Priority to EP09725941.0A priority patent/EP2270906B1/en
Priority to US12/934,198 priority patent/US9139450B2/en
Priority to CN2009801104170A priority patent/CN101978538B/zh
Publication of WO2009119497A1 publication Critical patent/WO2009119497A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • C04B35/58021Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON based on titanium carbonitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58028Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides
    • C04B35/58035Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides based on zirconium or hafnium carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/89Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by mass-spectroscopy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9692Acid, alkali or halogen resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for producing a fuel cell catalyst and a fuel cell catalyst.
  • the fuel cell cathode (air electrode) surface or anode (fuel electrode) surface has a layer containing a catalyst (hereinafter referred to as “for fuel cell”). Also referred to as “catalyst layer”).
  • the noble metal used for the cathode surface may be dissolved in an acidic atmosphere, and there is a problem that it is not suitable for applications that require long-term durability. Therefore, there has been a strong demand for the development of a catalyst that does not corrode in an acidic atmosphere, has excellent durability, and has high oxygen reducing ability.
  • Non-Patent Document 1 reports that ZrOxN compounds based on zirconium exhibit oxygen reducing ability.
  • Patent Document 1 discloses an oxygen reduction electrode material including one or more nitrides selected from the group of elements of Group 4, Group 5 and Group 14 of the long periodic table as a platinum substitute material.
  • Patent Document 2 discloses a carbonitride oxide obtained by mixing carbide, oxide and nitride and heating at 500 to 1500 ° C. in a vacuum, inert or non-oxidizing atmosphere.
  • the oxycarbonitride disclosed in Patent Document 2 is a thin film magnetic head ceramic substrate material, and the use of this oxycarbonitride as a catalyst has not been studied.
  • platinum is useful not only as a catalyst for the fuel cell, but also as an exhaust gas treatment catalyst or an organic synthesis catalyst, platinum is expensive and has limited resources. There has been a demand for the development of a catalyst that can be used in various applications.
  • Patent Document 3 discloses a method for producing a catalyst material including a step of forming an amorphous metal oxide material and a step of crystallizing the metal oxide by heating.
  • the metal oxide disclosed in Patent Document 3 is disclosed as a material capable of oxidizing harmful pollutants under non-UV irradiation, and has not been studied as a material for a catalyst for a fuel cell.
  • JP 2007-31781 A Japanese Patent Laid-Open No. 2003-342058 JP 2008-504957 A S. Doi, A. Ishihara, S. Mitsushima, N. kamiya, and K. Ota, Journal of The Electrochemical Society, 154 (3) B362-B369 (2007)
  • An object of the present invention is to provide a method for producing a highly active fuel cell catalyst.
  • the inventors of the present invention have found that a fuel cell catalyst obtained by a production method using a transition metal carbonitride as a raw material and including a specific two heating steps has a higher oxygen reduction ability. It came to complete.
  • the present invention relates to the following (1) to (10), for example.
  • (1) The transition metal carbonitride is heated in an inert gas containing oxygen (I), and the product obtained in the step (I) is heated in an inert gas substantially free of oxygen.
  • (II) a process for producing a fuel cell catalyst.
  • the fuel cell catalyst obtained by the production method of the present invention does not corrode in an acidic electrolyte or at a high potential, is stable, has a high oxygen reducing ability, and is inexpensive compared with platinum. Therefore, the fuel cell including the catalyst is relatively inexpensive and has excellent performance.
  • 2 is a powder X-ray diffraction spectrum of niobium carbonitride used in Example 1.
  • 2 is a powder X-ray diffraction spectrum of the catalyst (1) of Example 1.
  • 2 is a powder X-ray diffraction spectrum of the catalyst (2) of Example 2.
  • 3 is a powder X-ray diffraction spectrum of the catalyst (3) of Example 3.
  • 3 is a powder X-ray diffraction spectrum of the catalyst (4) of Reference Example 1.
  • 3 is a powder X-ray diffraction spectrum of the catalyst (5) of Reference Example 2.
  • 3 is a powder X-ray diffraction spectrum of the catalyst (6) of Reference Example 3.
  • 2 is a graph showing an evaluation of the oxygen reducing ability of a fuel cell electrode (1) in Example 1.
  • FIG. 6 is a graph showing an evaluation of the oxygen reducing ability of a fuel cell electrode (2) in Example 2.
  • FIG. 4 is a graph showing an evaluation of the oxygen reducing ability of a fuel cell electrode (3) in Example 3.
  • FIG. 5 is a graph showing an evaluation of the oxygen reducing ability of a fuel cell electrode (4) in Reference Example 1.
  • FIG. 6 is a graph showing an evaluation of the oxygen reducing ability of a fuel cell electrode (5) in Reference Example 2.
  • 6 is a graph showing an evaluation of the oxygen reducing ability of a fuel cell electrode (6) of Reference Example 3.
  • 5 is a graph showing an evaluation of the oxygen reducing ability of a fuel cell electrode (7) of Comparative Example 1.
  • the method for producing a fuel cell catalyst includes a step (I) of heating a transition metal carbonitride in an inert gas containing oxygen, and a product obtained in the step (I) is substantially oxygenated. And a step (II) of heating in an inert gas not containing any of the above.
  • the transition metal include niobium, titanium, and zirconium. Niobium is preferred as the transition metal.
  • the fuel cell catalyst obtained by the production method including such steps (I) and (II) is stable and does not corrode in an acidic electrolyte or at a high potential, and has a high oxygen reducing ability. Further, it can be produced at a lower cost than a fuel cell catalyst made of platinum.
  • Step (I) is a step of heating the transition metal carbonitride in an inert gas containing oxygen. It is considered that the transition metal carbonitride is oxidized by the step (I).
  • the heating temperature in the step (I) is preferably in the range of 400 to 1200 ° C, more preferably in the range of 800 to 1000 ° C.
  • the heating temperature is within the above range, it is preferable in that oxidation of transition metal carbonitride proceeds appropriately.
  • the heating temperature is less than 400 ° C, the oxidation tends not to proceed, and when it is 1200 ° C or more, the oxidation tends to proceed excessively.
  • Examples of the inert gas used in the step (I) include nitrogen gas, helium gas, neon gas, argon gas, krypton gas, xenon gas, and radon gas. Nitrogen gas and argon gas are particularly preferable because they are relatively easily available.
  • the said inert gas may be used individually by 1 type, and may be used in mixture of 2 or more types.
  • the oxygen concentration in the inert gas in the step (I) depends on the heating time and the heating temperature, but is preferably in the range of 0.1 to 10% by volume, and in the range of 0.1 to 5% by volume. It is particularly preferred. When the oxygen concentration is within the above range, it is preferable in that oxidation of transition metal carbonitride proceeds appropriately. Further, when the oxygen concentration is less than 0.1% by volume, it tends to be in an unoxidized state.
  • the inert gas preferably contains hydrogen gas in a range of 4% by volume or less.
  • the content of the hydrogen gas depends on the heating time and the heating temperature, but is more preferably 0.01 to 4% by volume, still more preferably 0.1 to 4% by volume. Further, if the hydrogen gas content exceeds 4% by volume, the risk of explosion increases, so it is preferably 4% by volume or less.
  • the gas content (volume%) in the present invention is a value in a standard state.
  • the heating method examples include a stationary method, a stirring method, a dropping method, and a powder trapping method.
  • the dropping method is a method of heating a furnace to a predetermined heating temperature while flowing an inert gas containing a small amount of oxygen gas in an induction furnace, maintaining a thermal equilibrium at the temperature, and then a crucible which is a heating area of the furnace. In this method, transition metal carbonitride is dropped and heated.
  • the dropping method is preferable in that aggregation and growth of transition metal carbonitride particles can be minimized.
  • the powder trapping method is a transition metal carbonitride in a vertical tube furnace that is kept suspended at a specified heating temperature in an inert gas containing a small amount of oxygen gas. This is a method of capturing an object and heating it.
  • the heating time of the transition metal carbonitride is usually 0.5 to 10 minutes, preferably 0.5 to 3 minutes.
  • the heating time is within the above range, the oxidation of the transition metal carbonitride tends to proceed appropriately, which is preferable.
  • the heating time is less than 0.5 minutes, the transition metal carbonitride tends to be partially oxidized, and when it exceeds 10 minutes, the oxidation tends to proceed excessively.
  • the heating time of the transition metal carbonitride is 0.2 second to 1 minute, preferably 0.2 to 10 seconds.
  • the heating time is within the above range, the oxidation of the transition metal carbonitride tends to proceed appropriately, which is preferable.
  • the heating time is less than 0.2 seconds, the oxidation of the transition metal carbonitride tends to be partial, and when it exceeds 1 minute, the oxidation tends to proceed excessively.
  • the heating time of the transition metal carbonitride is 0.1 to 20 hours, preferably 1 to 20 hours.
  • the heating time is within the above range, the oxidation of the transition metal carbonitride tends to proceed appropriately, which is preferable. If the heating time is less than 0.1 hour, the transition metal carbonitride tends to be partially oxidized, and if it exceeds 20 hours, the oxidation tends to proceed excessively.
  • Step (II) is a step of heating the product obtained in the step (I) in an inert gas substantially free of oxygen. It is considered that the product obtained in the step (I) is crystallized by the step (II).
  • the heating temperature in step (II) is preferably in the range of 800 to 1400 ° C, more preferably in the range of 800 to 1200 ° C. When the heating temperature is within the above range, it is considered that the crystallization of the product obtained in the step (I) proceeds appropriately.
  • a feature of the present invention is a production method including step (II) in addition to step (I) as described above, and the fuel cell catalyst obtained thereby is obtained by a production method without step (II).
  • the oxidation-reduction ability is higher than that of the fuel cell catalyst.
  • the heating temperature in the step (II) is preferably equal to or higher than the heating temperature in the step (I).
  • the difference between the heating temperature in step (II) and the heating temperature in step (I) (heating temperature in step (II) ⁇ heating temperature in step (I)) is more preferably 1 ° C. or more, and 50 ° C.
  • the temperature is more preferably 400 ° C. or lower and particularly preferably 200 ° C. or higher and 400 ° C. or lower.
  • Examples of the inert gas used in the step (II) include nitrogen gas, helium gas, neon gas, argon gas, krypton gas, xenon gas, and radon gas. Nitrogen gas and argon gas are particularly preferable because they are relatively easily available.
  • the said inert gas may be used individually by 1 type, and may be used in mixture of 2 or more types.
  • the inert gas used in step (II) is substantially free of oxygen. “Substantially free of oxygen” means that inevitable oxygen may be contained as impurities in the inert gas, and the oxygen concentration in the inert gas in step (II) is 10 ppm or less. More preferred is 1 ppm or less. Most preferably, no oxygen is present in the inert gas. If the oxygen concentration in the step (II) is within the above range, it is considered that the crystallization of the product obtained in the step (I) proceeds appropriately.
  • the heating method in the step (II) examples include a stationary method, a stirring method, a dropping method, and a powder trapping method.
  • the heating time in the step (II) is usually 0.5 to 10 minutes, preferably 5 to 10 minutes.
  • the heating time is within the above range, it is considered that when the oxygen concentration is within the above range, crystallization of the product obtained in the step (I) proceeds appropriately.
  • the heating time in the step (II) is usually 1 to 10 minutes, preferably 5 to 10 minutes.
  • the heating time is within the above range, it is considered that the crystallization of the product obtained in the step (I) proceeds appropriately.
  • the heating time in step (II) is 0.1 to 20 hours, preferably 1 to 20 hours.
  • the heating time is within the above range, it is considered that the crystallization of the product obtained in the step (I) proceeds appropriately.
  • the method for producing a fuel cell catalyst of the present invention may further include a step of crushing the product obtained through the steps (I) and (II). A fine powder fuel cell catalyst can be obtained by the crushing step.
  • Examples of the pulverization method include a roll rolling mill, a ball mill, a medium agitation mill, an airflow pulverizer, a mortar, a tank disintegrator, and the like.
  • the fuel cell catalyst can be made finer.
  • a method using an airflow pulverizer is preferable, and a method using a mortar is preferable in that a small amount of processing is easy.
  • the method for obtaining the transition metal carbonitride used in the step (I) is not particularly limited.
  • the transition metal is niobium
  • the following production method may be mentioned.
  • the niobium carbonitride is heated by heating a mixture of niobium oxide and carbon in nitrogen gas or an inert gas containing nitrogen.
  • the production method (1) is a method for producing niobium carbonitride by heating a mixture of niobium oxide and carbon in nitrogen gas or in an inert gas containing nitrogen.
  • the heating temperature in producing the niobium carbonitride is in the range of 600 to 1800 ° C., preferably in the range of 800 to 1600 ° C.
  • the heating temperature is within the above range, the crystallinity of the obtained niobium carbonitride tends to be high, and the amount of unreacted materials tends to decrease.
  • the heating temperature is less than 600 ° C., the resulting niobium carbonitride tends to have low crystallinity and low reactivity, and when it is 1800 ° C. or more, it tends to be easily sintered.
  • the raw material niobium oxide examples include NbO, NbO 2 and Nb 2 O 5 . Even if any of the above niobium oxides is used, the catalyst for a fuel cell obtained from the niobium carbonitride obtained from the oxide by the production method including the above steps (I) and (II) has an oxygen reduction starting potential. Is high and highly active.
  • the raw material carbon examples include carbon, carbon black, graphite, graphite, activated carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, and fullerene. It is preferable that the particle size of the carbon powder is smaller because the specific surface area is increased and the reaction with the oxide is facilitated.
  • carbon black specific surface area: 100 to 300 m 2 / g, such as XC-72 manufactured by Cabot is preferably used.
  • the niobium carbonitride can be obtained by controlling the stoichiometric molar ratio of niobium oxide and carbon.
  • niobium oxide 1 to 3 moles of carbon are preferable with respect to 1 mole of niobium oxide.
  • tetravalent niobium oxide 2 to 4 moles of carbon are preferable with respect to 1 mole of niobium oxide.
  • pentavalent niobium oxide 3 to 9 moles of carbon are preferable with respect to 1 mole of niobium oxide.
  • Niobium carbide tends to be formed when the upper limit value of these ranges is exceeded, and niobium nitride is generated when the lower limit value is exceeded.
  • the production method (2) is a method for producing niobium carbonitride by heating a mixture of niobium carbide, niobium nitride and niobium oxide in nitrogen gas or the like.
  • the heating temperature in producing the niobium carbonitride is in the range of 600 to 1800 ° C., preferably in the range of 800 to 1600 ° C.
  • the heating temperature is within the above range, the crystallinity of the obtained niobium carbonitride tends to be high, and the amount of unreacted materials tends to decrease.
  • the heating temperature is less than 600 ° C., the crystallinity of the obtained niobium carbonitride tends to be low, and there is a tendency for unreacted substances to increase.
  • the heating temperature is 1800 ° C. or more, sintering tends to occur. is there.
  • Niobium carbide, niobium nitride, and niobium oxide are used as raw materials.
  • the raw material niobium carbide include NbC and the like, and examples of the raw material niobium nitride include NbN and the like.
  • the raw material niobium oxide include NbO, NbO 2 and Nb 2 O 5 .
  • niobium carbide By controlling the amount (molar ratio) of niobium carbide, niobium oxide and niobium nitride, an appropriate niobium carbonitride can be obtained.
  • the blending amount (molar ratio) is usually 0.01 to 500 mol of niobium carbide and 0.01 to 50 mol of niobium oxide with respect to 1 mol of niobium nitride, preferably 1 mol of niobium nitride.
  • niobium carbide is 0.1 to 300 mol and niobium oxide is 0.1 to 30 mol.
  • the production method (3) is a method for producing a niobium carbonitride by heating a mixture of niobium carbide and niobium nitride in nitrogen gas or the like.
  • the heating temperature in producing the niobium carbonitride is in the range of 600 to 1800 ° C., preferably in the range of 800 to 1600 ° C.
  • the heating temperature is within the above range, the crystallinity of the obtained niobium carbonitride tends to be high, and the amount of unreacted materials tends to decrease.
  • the heating temperature is less than 600 ° C., the crystallinity of the obtained niobium carbonitride tends to be low, and there is a tendency for unreacted substances to increase.
  • the heating temperature is 1800 ° C. or more, sintering tends to occur. is there.
  • Examples of the raw material niobium carbide include NbC and the like, and examples of the raw material niobium nitride include NbN and the like.
  • the amount (molar ratio) of niobium carbide and niobium nitride By controlling the amount (molar ratio) of niobium carbide and niobium nitride, an appropriate niobium carbonitride can be obtained.
  • the blending amount (molar ratio) is usually 0.01 to 500 moles, preferably 0.01 to 300 moles of niobium carbide with respect to 1 mole of niobium nitride.
  • a niobium carbonitride having a blending molar ratio satisfying the above range is used, a catalyst having a high oxygen reduction starting potential and high activity tends to be obtained.
  • the fuel cell catalyst of the present invention comprises a step (I) of heating a transition metal carbonitride in an inert gas containing oxygen, and a product obtained in the step (I) in an inert gas. It is obtained by the manufacturing method including the process (II) heated by this.
  • the fuel cell catalyst obtained by the production method including the steps (I) and (II) is stable and does not corrode in the acidic electrolyte or at a high potential, and has a high oxygen reducing ability.
  • the fuel cell catalyst of the present invention is less expensive than a fuel cell catalyst made of platinum.
  • the transition metal is preferably niobium.
  • the diffraction angle 2 ⁇ 23 ° to 24 ° at the obtained diffraction line peak.
  • the X-ray diffraction intensity in between is preferably 1000 or more.
  • a diffraction line peak means a peak obtained with a specific diffraction angle and diffraction intensity when a sample (crystalline) is irradiated with X-rays at various angles.
  • the X-ray diffraction intensity is defined as a value obtained by subtracting the baseline intensity from the diffraction intensity obtained by the following measurement method (however, in the case of a negative value, it is set to “0”).
  • NbC x N y O z (where x, y, z represent the ratio of the number of atoms, 0.01 ⁇ x ⁇ 2, 0. (01 ⁇ y ⁇ 2, 0.01 ⁇ z ⁇ 3, and x + y + z ⁇ 5).
  • x, y, z represent the ratio of the number of atoms, 0.01 ⁇ x ⁇ 2, 0. (01 ⁇ y ⁇ 2, 0.01 ⁇ z ⁇ 3, and x + y + z ⁇ 5).
  • the ratio of the number of atoms is within the above range, the oxygen reduction potential of the finally obtained fuel cell catalyst tends to be high, which is preferable.
  • the oxygen reduction starting potential of the fuel cell catalyst of the present invention is measured according to the following measurement method (A).
  • the oxygen reduction starting potential of the fuel cell catalyst of the present invention is preferably 0.5 V (vs. NHE) or more based on the reversible hydrogen electrode.
  • carbon source carbon black (specific surface area: 100 to 300 m 2 / g) (for example, XC-72 manufactured by Cabot Corporation) is used, and the catalyst and carbon are dispersed so that the mass ratio is 95: 5.
  • isopropyl alcohol: water (mass ratio) 1: 1 is used.
  • the obtained electrode refer to a reversible hydrogen electrode in a sulfuric acid solution of the same concentration at a temperature of 30 ° C. in a 0.5 mol / dm 3 sulfuric acid solution in an oxygen atmosphere and a nitrogen atmosphere.
  • the current-potential curve was measured by polarizing the electrode at a potential scanning speed of 5 mV / sec, there was a difference of 0.2 ⁇ A / cm 2 or more between the reduction current in the oxygen atmosphere and the reduction current in the nitrogen atmosphere.
  • the potential at which it begins to appear is defined as the oxygen reduction start potential.
  • the oxygen reduction starting potential is less than 0.7 V (vs.
  • the oxygen reduction starting potential is preferably 0.85 V (vs. NHE) or more in order to suitably reduce oxygen. Further, the oxygen reduction starting potential is preferably as high as possible. Although there is no particular upper limit, the theoretical value is 1.23 V (vs. NHE).
  • the fuel cell catalyst of the present invention can be used as an alternative catalyst for a platinum catalyst.
  • a fuel cell catalyst layer can be formed using the fuel cell catalyst of the present invention.
  • the fuel cell catalyst layer includes an anode catalyst layer and a cathode catalyst layer, and the fuel cell catalyst can be used for both. Since the fuel cell catalyst is excellent in durability and has a large oxygen reducing ability, it is preferably used in the cathode catalyst layer.
  • the fuel cell catalyst layer preferably further contains electron conductive particles.
  • the reduction current can be further increased.
  • the electron conductive particles are considered to increase the reduction current because they generate an electrical contact for inducing an electrochemical reaction in the catalyst.
  • the electron conductive particles are usually used as a catalyst carrier.
  • the material constituting the electron conductive particles include carbon, conductive polymers, conductive ceramics, metals, and conductive inorganic oxides such as tungsten oxide or iridium oxide, which can be used alone or in combination. .
  • carbon particles having a large specific surface area alone or a mixture of carbon particles having a large specific surface area and other electron conductive particles are preferable. That is, the fuel cell catalyst layer preferably includes the catalyst and carbon particles having a large specific surface area.
  • carbon carbon black, graphite, graphite, activated carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, fullerene and the like can be used. If the particle size of the carbon is too small, it becomes difficult to form an electron conduction path, and if it is too large, the gas diffusibility of the catalyst layer for the fuel cell tends to be reduced or the utilization factor of the catalyst tends to be reduced. A range of 1000 nm is preferable, and a range of 10 to 100 nm is more preferable.
  • the mass ratio of the catalyst to carbon is preferably 4: 1 to 1000: 1.
  • the conductive polymer is not particularly limited.
  • polypyrrole, polyaniline, and polythiophene are preferable, and polypyrrole is more preferable.
  • the polymer electrolyte is not particularly limited as long as it is generally used in a fuel cell catalyst layer.
  • a perfluorocarbon polymer having a sulfonic acid group for example, Nafion (DuPont 5% Nafion solution (DE521))
  • a hydrocarbon polymer compound having a sulfonic acid group for example, an inorganic acid such as phosphoric acid.
  • Nafion DuPont 5% Nafion solution (DE521)
  • Nafion DuPont 5% Nafion solution (DE521)
  • the fuel cell catalyst layer can be used as either an anode catalyst layer or a cathode catalyst layer.
  • the catalyst layer for a fuel cell has a high oxygen reducing ability and contains a catalyst that is not easily corroded even in a high potential in an acidic electrolyte. Therefore, a catalyst layer (catalyst catalyst layer) provided on the cathode of a fuel cell Useful as. In particular, it is suitably used for a catalyst layer provided on the cathode of a membrane electrode assembly provided in a polymer electrolyte fuel cell.
  • Examples of the method for dispersing the catalyst on the electron conductive particles as a support include air flow dispersion and dispersion in liquid. Dispersion in liquid is preferable because a catalyst and electron conductive particles dispersed in a solvent can be used in the fuel cell catalyst layer forming step. Examples of the dispersion in the liquid include a method using an orifice contraction flow, a method using a rotating shear flow, and a method using an ultrasonic wave.
  • the solvent used for dispersion in the liquid is not particularly limited as long as it does not erode the catalyst or electron conductive particles and can be dispersed, but a volatile liquid organic solvent or water is generally used.
  • the electrolyte and the dispersant may be further dispersed simultaneously.
  • the method for forming the catalyst layer for the fuel cell is not particularly limited. For example, a method of applying a suspension containing the catalyst, the electron conductive particles, and the electrolyte to the electrolyte membrane or the gas diffusion layer to be described later. It is done. Examples of the application method include a dipping method, a screen printing method, a roll coating method, and a spray method.
  • a suspension containing the fuel cell catalyst, electron conductive particles and an electrolyte is applied to the electrolyte membrane by a transfer method.
  • the method of forming a catalyst layer is mentioned.
  • An electrode can be obtained using the fuel cell catalyst layer.
  • the electrode preferably has the fuel cell catalyst layer and a porous support layer.
  • the electrode can be used as either a cathode or an anode. Since the electrode is excellent in durability and has a large catalytic ability, it is more effective when used for a cathode.
  • the porous support layer is a layer that diffuses gas (hereinafter also referred to as “gas diffusion layer”).
  • gas diffusion layer may be anything as long as it has electron conductivity, high gas diffusibility, and high corrosion resistance.
  • carbon-based porous materials such as carbon paper and carbon cloth are used. Materials and aluminum foil coated with stainless steel and corrosion-resistant materials for weight reduction are used.
  • a membrane electrode assembly can be obtained using the electrode.
  • the membrane electrode assembly is a membrane electrode assembly having a cathode, an anode, and an electrolyte membrane disposed between the cathode and the anode, wherein the cathode and / or the anode is the electrode. preferable.
  • an electrolyte membrane using a perfluorosulfonic acid system or a hydrocarbon electrolyte membrane is generally used.
  • a membrane or porous body in which a polymer microporous membrane is impregnated with a liquid electrolyte is impregnated with a liquid electrolyte.
  • a membrane filled with a polymer electrolyte may be used.
  • the membrane electrode assembly can be used for a fuel cell. Fuel cell electrode reactions occur at the so-called three-phase interface (electrolyte-electrode catalyst-reaction gas). Fuel cells are classified into several types depending on the electrolyte used, etc., and include molten carbonate type (MCFC), phosphoric acid type (PAFC), solid oxide type (SOFC), and solid polymer type (PEFC). Among these, the membrane electrode assembly is preferably used for a polymer electrolyte fuel cell.
  • MCFC molten carbonate type
  • PAFC phosphoric acid type
  • SOFC solid oxide type
  • PEFC solid polymer type
  • the membrane electrode assembly is preferably used for a polymer electrolyte fuel cell.
  • the number of diffraction line peaks in powder X-ray diffraction of each sample was counted by regarding a signal that can be detected with a ratio (S / N) of signal (S) to noise (N) of 2 or more as one peak.
  • the X-ray diffraction intensity I was defined as a value obtained by subtracting the baseline intensity from the diffraction intensity obtained by the following measurement method (however, in the case of a negative value, it is “0”).
  • Elemental analysis Carbon About 0.1 g of a sample was weighed and measured with EMIA-110 manufactured by HORIBA.
  • Nitrogen / oxygen About 0.1 g of a sample was weighed and sealed in Ni-Cup, and then measured with an ON analyzer (TC600) manufactured by LECO.
  • Niobium About 0.1 g of a sample was weighed on a platinum dish, and nitric acid-hydrofluoric acid was added for thermal decomposition. The heat-decomposed product was fixed, diluted, and quantified by ICP-MS (ICP-OES VISTA-PRO) manufactured by SII.
  • Example 1 Preparation of catalyst 4.96 g (81 mmol) of niobium carbide, 1.25 g (10 mmol) of niobium oxide, and 0.54 g (5 mmol) of niobium nitride were sufficiently pulverized and mixed. This mixed powder was heated in nitrogen gas at 1600 ° C. for 3 hours in a tubular furnace to obtain 2.70 g of niobium carbonitride. In order to become a sintered body, it was pulverized in a mortar.
  • the powder X-ray diffraction spectrum of the obtained niobium carbonitride is shown in FIG.
  • Table 1 shows the elemental analysis results of the obtained niobium carbonitride.
  • the catalyst (1) was produced by heating at 800 ° C. for 1 hour in a argon furnace (oxygen gas concentration: 10 ppm or less) using a tubular furnace (second heating step).
  • Table 2 shows the results of elemental analysis of the catalyst (1).
  • the prepared fuel cell electrode (1) was polarized in an oxygen atmosphere and a nitrogen atmosphere in a 0.5 mol / dm 3 sulfuric acid solution at 30 ° C. and a potential scanning rate of 5 mV / sec, and a current-potential curve was obtained. It was measured. At that time, a reversible hydrogen electrode in a sulfuric acid solution having the same concentration was used as a reference electrode.
  • the potential at which a difference of 0.2 ⁇ A / cm 2 or more appears between the reduction current in the oxygen atmosphere and the reduction current in the nitrogen atmosphere was defined as the oxygen reduction start potential, and the difference between the two was defined as the oxygen reduction current.
  • the oxygen reduction ability of the fuel cell electrode (1) produced by this oxygen reduction starting potential and the oxygen reduction current was evaluated.
  • FIG. 8 shows a current-potential curve obtained by the above measurement.
  • the fuel cell electrode (1) produced in Example 1 had an oxygen reduction starting potential of 0.60 V (vs. NHE) and was found to have a high oxygen reducing ability.
  • Example 2 Preparation of catalyst Niobium carbonitride was produced in the same manner as in Example 1, and using a tubular furnace, 0.10 g of niobium carbonitride was heated at 800 ° C. for 1 hour while flowing argon gas containing 1% by volume of oxygen gas. By doing (first heating process), the product (2) was obtained. The obtained product (2) was further heated in an argon gas (oxygen gas concentration: 10 ppm or less) at 900 ° C. for 5 hours (second heating step) to prepare a catalyst (2).
  • argon gas oxygen gas concentration: 10 ppm or less
  • the powder X-ray diffraction spectrum of the catalyst (2) is shown in FIG. 3, and the elemental analysis results of the catalyst (2) are shown in Table 2.
  • a fuel cell electrode (2) was obtained in the same manner as in Example 1 except that the catalyst (2) was used. 3. Evaluation of oxygen reduction ability The oxygen reduction ability was evaluated in the same manner as in Example 1 except that the fuel cell electrode (2) was used.
  • FIG. 9 shows a current-potential curve obtained by the above measurement.
  • the fuel cell electrode (2) produced in Example 2 had an oxygen reduction starting potential of 0.80 V (vs. NHE) and was found to have a high oxygen reducing ability.
  • Example 3 Preparation of catalyst Niobium carbonitride was produced in the same manner as in Example 1. Using a rotary kiln, 0.50 g of niobium carbonitride was flowed at 950 ° C. for 2 hours while flowing argon gas containing 0.5% by volume of oxygen gas. The product (3) was obtained by heating (first heating step). The obtained product (3) was further heated in argon gas (oxygen gas concentration: 10 ppm or less) at 950 ° C. for 15 hours (second heating step) to prepare catalyst (3).
  • argon gas oxygen gas concentration: 10 ppm or less
  • the powder X-ray diffraction spectrum of the catalyst (3) is shown in FIG. 4, and the elemental analysis results of the catalyst (3) are shown in Table 2.
  • a fuel cell electrode (3) was obtained in the same manner as in Example 1 except that the catalyst (3) was used. 3. Evaluation of oxygen reduction ability The oxygen reduction ability was evaluated in the same manner as in Example 1 except that the fuel cell electrode (3) was used.
  • FIG. 10 shows a current-potential curve obtained by the measurement.
  • the fuel cell electrode (3) produced in Example 3 had an oxygen reduction starting potential of 0.92 V (vs. NHE) and was found to have a high oxygen reducing ability.
  • the powder X-ray diffraction spectrum of the catalyst (4) is shown in FIG. 5, and the elemental analysis results of the catalyst (4) are shown in Table 2.
  • a fuel cell electrode (4) was obtained in the same manner as in Example 1 except that the catalyst (4) was used. 3. Evaluation of oxygen reducing ability The oxygen reducing ability was evaluated in the same manner as in Example 1 except that the fuel cell electrode (4) was used.
  • FIG. 11 shows a current-potential curve obtained by the measurement.
  • the fuel cell electrode (5) produced in Reference Example 1 has an oxygen reduction starting potential of 0.43 V (vs. NHE), and oxygen from the catalyst (compared with the catalyst (1)) subjected to the second heating step. It was found that the reducing ability was low.
  • the powder X-ray diffraction spectrum of the catalyst (5) is shown in FIG. 6, and the elemental analysis results are shown in Table 2.
  • a fuel cell electrode (5) was obtained in the same manner as in Example 1 except that the catalyst (5) was used. 3. Evaluation of oxygen reduction ability The oxygen reduction ability was evaluated in the same manner as in Example 1 except that the fuel cell electrode (5) was used.
  • FIG. 12 shows a current-potential curve obtained by the measurement.
  • the fuel cell electrode (5) produced in Reference Example 2 has an oxygen reduction start potential of 0.74 V (vs. NHE), and oxygen from the catalyst (compared with the catalyst (2)) subjected to the second heating step. It was found that the reducing ability was low.
  • the powder X-ray diffraction spectrum of the catalyst (6) is shown in FIG. 7, and the results of elemental analysis are shown in Table 2.
  • a fuel cell electrode (6) was obtained in the same manner as in Example 1 except that the catalyst (6) was used. 3. Evaluation of oxygen reducing ability The oxygen reducing ability was evaluated in the same manner as in Example 1 except that the fuel cell electrode (6) was used.
  • FIG. 13 shows a current-potential curve obtained by the measurement.
  • the fuel cell electrode (6) produced in Reference Example 3 has an oxygen reduction starting potential of 0.87 V (vs. NHE), and oxygen from the catalyst (compared with the catalyst (3)) subjected to the second heating step. It was found that the reducing ability was low.
  • Catalyst Preparation Niobium carbonitride (hereinafter also referred to as “catalyst (7)”) was produced in the same manner as in Example 1.
  • Example 2 Production of Fuel Cell Electrode A fuel cell electrode (7) was obtained in the same manner as in Example 1 except that the catalyst (7) was used. 3. Evaluation of oxygen reduction ability The oxygen reduction ability was evaluated in the same manner as in Example 1 except that the fuel cell electrode (7) was used.
  • FIG. 14 shows a current-potential curve obtained by the measurement. It was found that the fuel cell electrode (7) produced in Comparative Example 1 had an oxygen reduction starting potential of 0.40 V (vs. NHE) and a low oxygen reducing ability.
  • the fuel cell catalyst obtained by the production method of the present invention does not corrode in an acidic electrolyte or at a high potential, has excellent durability, and has a high oxygen reducing ability. Therefore, the fuel cell catalyst layer, electrode, electrode assembly or It can be used for a fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明の目的は、酸性電解質中や高電位で腐食せず、耐久性に優れ、高い酸素還元能を有する燃料電池用触媒の製造方法を提供することである。  本発明の燃料電池用触媒の製造方法は、遷移金属の炭窒化物を、酸素を含む不活性ガス中で加熱する工程(I)と、該工程(I)で得られた生成物を、実質的に酸素を含まない不活性ガス中で加熱する工程(II)とを含むことを特徴とする。

Description

燃料電池用触媒の製造方法および燃料電池用触媒
 本発明は、燃料電池用触媒の製造方法および燃料電池用触媒に関する。
 従来、燃料電池の反応速度を高め、燃料電池のエネルギー変換効率を高めるために、燃料電池のカソード(空気極)表面やアノード(燃料極)表面には、触媒を含む層(以下「燃料電池用触媒層」とも記す。)が設けられていた。
 この触媒として、一般的に貴金属が用いられており、貴金属の中でも高い電位で安定であり、活性が高い白金が、主として用いられてきた。しかし、白金は価格が高く、また資源量が限られていることから、代替可能な触媒の開発が求められていた。
 また、カソード表面に用いる貴金属は、酸性雰囲気下では、溶解する場合があり、長期間に渡る耐久性が必要な用途には適さないという問題があった。このため酸性雰囲気下で腐食せず、耐久性の優れ、高い酸素還元能を有する触媒の開発が強く求められていた。
 白金に代わる触媒として、炭素、窒素、ホウ素等の非金属を含む材料が触媒として近年着目されている。これらの非金属を含む材料は、白金などの貴金属と比較して価格が安く、また資源量が豊富であることから、大学、研究機関等でその触媒製造法の検討がされている。
 非特許文献1では、ジルコニウムをベースとしたZrOxN化合物が、酸素還元能を示すことが報告されている。
 特許文献1では、白金代替材料として長周期表4族,5族及び14族の元素群から選ばれる1種以上の窒化物をふくむ酸素還元電極材料が開示されている。
 しかしながら、これらの非金属を含む材料は、触媒として実用的に充分な酸素還元能が得られていないという問題点があった。
 また、特許文献2では、炭化物、酸化物、窒化物を混合し、真空、不活性または非酸化性雰囲気下、500~1500℃で加熱をした炭窒酸化物が開示されている。
 しかしながら、特許文献2に開示されている炭窒酸化物は、薄膜磁気ヘッドセラミックス基板材料であり、この炭窒酸化物を触媒として用いることは検討されていない。
 なお、白金は、上記燃料電池用の触媒としてだけでなく、排ガス処理用触媒または有機合成用触媒としても有用であるが、白金は価格が高く、また資源量が限られているため、これらの用途においても代替可能な触媒の開発が求められていた。
 特許文献3では、金属酸化物の非晶質材料を形成させるステップと加熱による金属酸化物の結晶化ステップとを含む触媒材料の製造方法が開示されている。しかしながら、特許文献3に開示されている金属酸化物は、UV非照射下で有害汚染物質を酸化することが可能な材料として開示されており、燃料電池用触媒の材料としては検討されていない。
特開2007-31781号公報 特開2003-342058号公報 特開2008-504957号公報 S. Doi,A. Ishihara,S. Mitsushima,N. kamiya,and K. Ota, Journal of The Electrochemical Society, 154 (3) B362-B369 (2007)
 本発明の目的は、高活性な燃料電池用触媒の製造方法を提供することにある。
 本発明者らは、遷移金属の炭窒化物を原料として用い、特定の2つの加熱工程を含む製造方法により得られた燃料電池用触媒が、より高い酸素還元能を有することを見出し、本発明を完成するに至った。
 本発明は、たとえば以下の(1)~(10)に関する。
  (1)
 遷移金属の炭窒化物を、酸素を含む不活性ガス中で加熱する工程(I)と、該工程(I)で得られた生成物を、実質的に酸素を含まない不活性ガス中で加熱する工程(II)とを含むことを特徴とする燃料電池用触媒の製造方法。
  (2)
 前記工程(I)における加熱温度が400~1200℃の範囲であることを特徴とする上記(1)に記載の燃料電池用触媒の製造方法。
  (3)
 前記工程(II)における加熱温度が800~1400℃の範囲であることを特徴とする上記(1)または上記(2)に記載の燃料電池用触媒の製造方法。
  (4)
 前記工程(II)における加熱温度が、前記工程(I)における加熱温度以上であることを特徴とする上記(1)~(3)のいずれかに記載の燃料電池用触媒の製造方法。
  (5)
 前記工程(II)における加熱温度と前記工程(I)における加熱温度との差(工程(II)における加熱温度-工程(I)における加熱温度)が1℃以上であることを特徴とする上記(1)~(4)のいずれかに記載の燃料電池用触媒の製造方法。
  (6)
 前記工程(I)における不活性ガス中の酸素濃度が0.1~10容量%の範囲であることを特徴とする上記(1)~(5)のいずれかに記載の燃料電池用触媒の製造方法。
  (7)
 前記工程(I)における不活性ガスが、水素を4容量%以下の濃度で含むことを特徴とする上記(1)~(6)のいずれかに記載の燃料電池用触媒の製造方法。
  (8)
 前記工程(II)における不活性ガス中の酸素濃度が10ppm以下であることを特徴とする上記(1)~(7)のいずれかに記載の燃料電池用触媒の製造方法。
  (9)
 前記遷移金属が、ニオブであることを特徴とする上記(1)~(8)のいずれかに記載の燃料電池用触媒の製造方法。
  (10)
 上記(1)~(9)のいずれかに記載の製造方法により得られることを特徴とする燃料電池用触媒。
 本発明の製造方法により得られる燃料電池用触媒は、酸性電解質中や高電位で腐食せず、安定であり、高い酸素還元能を有し、かつ白金と比べ安価である。したがって、前記触媒を備えた燃料電池は、比較的安価で性能が優れている。
実施例1に用いた炭窒化ニオブの粉末X線回折スペクトルである。 実施例1の触媒(1)の粉末X線回折スペクトルである。 実施例2の触媒(2)の粉末X線回折スペクトルである。 実施例3の触媒(3)の粉末X線回折スペクトルである。 参考例1の触媒(4)の粉末X線回折スペクトルである。 参考例2の触媒(5)の粉末X線回折スペクトルである。 参考例3の触媒(6)の粉末X線回折スペクトルである。 実施例1の燃料電池用電極(1)の酸素還元能を評価したグラフである。 実施例2の燃料電池用電極(2)の酸素還元能を評価したグラフである。 実施例3の燃料電池用電極(3)の酸素還元能を評価したグラフである。 参考例1の燃料電池用電極(4)の酸素還元能を評価したグラフである。 参考例2の燃料電池用電極(5)の酸素還元能を評価したグラフである。 参考例3の燃料電池用電極(6)の酸素還元能を評価したグラフである。 比較例1の燃料電池用電極(7)の酸素還元能を評価したグラフである。
 (燃料電池用触媒の製造方法)
 燃料電池用触媒の製造方法は、遷移金属の炭窒化物を、酸素を含む不活性ガス中で加熱する工程(I)と、該工程(I)で得られた生成物を、実質的に酸素を含まない不活性ガス中で加熱する工程(II)とを含むことを特徴としている。前記遷移金属としては、ニオブ、チタンおよびジルコニウムが挙げられる。前記遷移金属としてはニオブが好ましい。このような工程(I)および工程(II)を含む製造方法により得られる燃料電池用触媒は、酸性電解質中や高電位で腐食せず、安定であり、高い酸素還元能を有する。また、白金からなる燃料電池用触媒と比べ安価に製造することができる。
 次に、前記工程(I)および前記工程(II)について説明する。
 [工程(I)]
 工程(I)は、遷移金属の炭窒化物を、酸素を含む不活性ガス中で加熱する工程である。工程(I)により、遷移金属の炭窒化物が酸化されると考えられる。
 前記工程(I)における加熱温度は、400~1200℃の範囲であることが好ましく、800~1000℃の範囲であることがさらに好ましい。前記加熱温度が前記範囲内であると、遷移金属の炭窒化物の酸化が適切に進む点で好ましい。前記加熱温度が400℃未満であると酸化が進まない傾向があり、1200℃以上であると酸化が進み過ぎる傾向がある。
 工程(I)に用いる不活性ガスとしては、窒素ガス、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス、キセノンガス、ラドンガスが挙げられる。窒素ガス、アルゴンガスが、比較的入手しやすい点で特に好ましい。上記不活性ガスは1種単独で用いてもよく、2種以上混合して用いてもよい。
 工程(I)における不活性ガス中の酸素濃度は、加熱時間および加熱温度に依存するが、0.1~10容量%の範囲であることが好ましく、0.1~5容量%の範囲であることが特に好ましい。前記酸素濃度が前記範囲内であると、遷移金属の炭窒化物の酸化が適切に進む点で好ましい。また、前記酸素濃度が0.1容量%未満であると未酸化状態になる傾向がある。
 前記不活性ガスは、水素ガスを4容量%以下の範囲で含有していることが好ましい。該水素ガスの含有量は、加熱時間および加熱温度に依存するが、より好ましくは0.01~4容量%であり、さらに好ましくは0.1~4容量%である。また、水素ガスの含有量が4容量%を超えると、爆発の危険性が高くなるので、4%容量以下であるが好ましい。不活性ガス中に水素ガスを前記範囲で含有していると、最終的に得られる燃料電池用触媒の酸素還元能が高くなる傾向がある。なお、本発明におけるガスの含有量(容量%)は、標準状態における値である。
 前記加熱の方法としては、静置法、攪拌法、落下法、粉末捕捉法などが挙げられる。
 落下法とは、誘導炉中に微量の酸素ガスを含む不活性ガスを流しながら、炉を所定の加熱温度まで加熱し、該温度で熱的平衡を保った後、炉の加熱区域である坩堝中に遷移金属の炭窒化物を落下させ、加熱する方法である。落下法の場合は、遷移金属の炭窒化物の粒子の凝集および成長を最小限度に抑制することができる点で好ましい。
 粉末捕捉法とは、微量の酸素ガスを含む不活性ガス中で、遷移金属の炭窒化物を飛沫にして浮遊させ、所定の加熱温度に保たれた垂直の管状炉中に遷移金属の炭窒化物を捕捉して、加熱する方法である。
 落下法の場合、遷移金属の炭窒化物の加熱時間は、通常0.5~10分であり、好ましくは0.5~3分である。前記加熱時間が前記範囲内であると、遷移金属の炭窒化物の酸化が適切に進む傾向があり好ましい。前記加熱時間が0.5分未満であると遷移金属の炭窒化物の酸化が部分的である傾向があり、10分を超えると酸化が進みすぎる傾向がある。
 粉末捕捉法の場合、遷移金属の炭窒化物の加熱時間は、0.2秒~1分、好ましくは0.2~10秒である。前記加熱時間が前記範囲内であると、遷移金属の炭窒化物の酸化が適切に進む傾向があり好ましい。前記加熱時間が0.2秒未満であると遷移金属の炭窒化物の酸化が部分的である傾向があり、1分を超えると酸化が進みすぎる傾向がある。
 管状炉やロータリーキルンで加熱を行なう場合、遷移金属の炭窒化物の加熱時間は、0.1~20時間、好ましくは1~20時間である。前記加熱時間が前記範囲内であると、遷移金属の炭窒化物の酸化が適切に進む傾向があり好ましい。前記加熱時間が0.1時間未満であると遷移金属の炭窒化物の酸化が部分的である傾向があり、20時間を超えると酸化が進みすぎる傾向がある。
 前記工程(I)における加熱圧力は、特に限定しないが、常圧であることが好ましい。
 [工程(II)]
 工程(II)は、前記工程(I)で得られた生成物を、実質的に酸素を含まない不活性ガス中で加熱する工程である。工程(II)により、前記工程(I)で得られた生成物が結晶化すると考えられる。
 工程(II)における加熱温度は、800~1400℃の範囲であることが好ましく、800~1200℃の範囲であることがより好ましい。前記加熱温度が前記範囲内であると、工程(I)で得られた生成物の結晶化が適切に進むと考えられる。
 本発明の特徴は、このように工程(I)に加えて、工程(II)を含む製造方法であって、これにより得られる燃料電池用触媒は、工程(II)がない製造方法により得られる燃料電池用触媒よりも酸化還元能が高くなる。
 また、工程(II)における加熱温度は、前記工程(I)における加熱温度以上であることが好ましい。前記工程(II)における加熱温度と前記工程(I)における加熱温度との差(工程(II)における加熱温度-工程(I)における加熱温度)は1℃以上であることがより好ましく、50℃以上400℃以下であることがさらに好ましく、200℃以上400℃以下であることが特に好ましい。
 工程(II)に用いる不活性ガスとしては、窒素ガス、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス、キセノンガス、ラドンガスが挙げられる。窒素ガス、アルゴンガスが、比較的入手しやすい点で特に好ましい。上記不活性ガスは1種単独で用いてもよく、2種以上混合して用いてもよい。
 工程(II)に用いる不活性ガスは実質的に酸素を含まないものとする。実質的に酸素を含まないとは、不活性ガス中に不可避的な酸素が不純物として入っていてもよいことを意味し、工程(II)における不活性ガス中の酸素濃度は、10ppm以下であることがより好ましく、1ppm以下であることがさらに好ましい。不活性ガス中に酸素は存在しないことが最も好ましい。工程(II)における前記酸素濃度が前記範囲であると、工程(I)で得られた生成物の結晶化が適切に進むと考えられる。
 工程(II)における加熱の方法としては、静置法、攪拌法、落下法、粉末捕捉法などが挙げられる。
 落下法の場合、工程(II)における加熱時間は、通常0.5~10分であり、好ましくは5~10分である。前記加熱時間が前記範囲内であると、前記酸素濃度が前記範囲であると、工程(I)で得られた生成物の結晶化が適切に進むと考えられる。
 粉末捕捉法の場合、工程(II)における加熱時間は、通常1~10分であり、好ましくは5~10分である。前記加熱時間が前記範囲内であると、工程(I)で得られた生成物の結晶化が適切に進むと考えられる。
 管状炉やロータリーキルンで加熱を行なう場合、工程(II)における加熱時間は、0.1~20時間、好ましくは1~20時間である。前記加熱時間が前記範囲内であると、工程(I)で得られた生成物の結晶化が適切に進むと考えられる。
 前記工程(II)における加熱圧力は、特に限定しないが、常圧であることが好ましい。
 [解砕工程]
 本発明の燃料電池用触媒の製造方法は、工程(I)および工程(II)を経て得られた生成物を解砕する工程をさらに含んでいてもよい。当該解砕工程により微細な粉末の燃料電池用触媒を得ることができる。
 解砕する方法としては、例えば、ロール転動ミル、ボールミル、媒体撹拌ミル、気流粉砕機、乳鉢、槽解機による方法等が挙げられ、燃料電池用触媒をより微粒とすることができる点では、気流粉砕機による方法が好ましく、少量処理が容易となる点では、乳鉢による方法が好ましい。
 (遷移金属の炭窒化物の製造方法)
 前記工程(I)に用いる遷移金属の炭窒化物を得る方法は、特に限定されないが、例えば、前記遷移金属がニオブの場合は、以下のような製造方法が挙げられる。
 前記工程(I)に用いるニオブの炭窒化物を得る方法としては、酸化ニオブと炭素との混合物を、窒素ガス中または窒素を含有する不活性ガス中で加熱することによりニオブの炭窒化物を製造する方法(1)、炭化ニオブ、酸化ニオブおよび窒化ニオブの混合物を、窒素ガス中などで加熱することによりニオブの炭窒化物を製造する方法(2)や、炭化ニオブおよび窒化ニオブの混合物を、窒素ガス中などで加熱することによりニオブの炭窒化物を製造する方法(3)等が挙げられる。
 [製造方法(1)]
 製造方法(1)は、酸化ニオブと炭素との混合物を、窒素ガス中または窒素を含有する不活性ガス中で加熱することによりニオブの炭窒化物を製造する方法である。
 ニオブの炭窒化物を製造する際の加熱の温度は600~1800℃の範囲であり、好ましくは800~1600℃の範囲である。前記加熱温度が前記範囲内であると、得られるニオブの炭窒化物の結晶性が高くなり、また、未反応物が少なくなる傾向がある。前記加熱温度が600℃未満であると、得られるニオブの炭窒化物の結晶性が低く、反応性が低い傾向があり、1800℃以上であると焼結しやすくなる傾向がある。
 原料の酸化ニオブとしては、NbO、NbO2やNb25等が挙げられる。上記いずれの酸化ニオブを用いても、該酸化物から得られるニオブの炭窒化物を、上記工程(I)および(II)を含む製造方法により、得られる燃料電池用触媒は、酸素還元開始電位が高く、活性が高い。
 原料の炭素としては、カーボン、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレンが挙げられる。カーボンの粉末の粒径がより小さいと、比表面積が大きくなり、酸化物との反応がしやすくなるため好ましい。例えば、カーボンブラック(比表面積:100~300m2/g、例えばキャボット社製 XC-72)などが好適に用いられる。
 2、4または5価といったニオブの価数に応じて、化学量論的に原料の酸化ニオブと炭素とのモル比を制御すると、適切なニオブの炭窒化物が得られる。例えば、2価の酸化ニオブでは、酸化ニオブ1モルに対して、炭素は1~3モルが好ましい。4価の酸化ニオブでは、酸化ニオブ1モルに対して、炭素は2~4モルが好ましい。5価の酸化ニオブでは、酸化ニオブ1モルに対して、炭素は3~9モルが好ましい。これらの範囲の上限値を超えると炭化ニオブ、下限値を下回ると窒化ニオブが生成する傾向がある。
 [製造方法(2)]
 製造方法(2)は、炭化ニオブ、窒化ニオブおよび酸化ニオブの混合物を、窒素ガス中などで加熱することによりニオブの炭窒化物を製造する方法である。
 ニオブの炭窒化物を製造する際の加熱の温度は600~1800℃の範囲であり、好ましくは800~1600℃の範囲である。前記加熱温度が前記範囲内であると、得られるニオブの炭窒化物の結晶性が高くなり、また、未反応物が少なくなる傾向がある。前記加熱温度が600℃未満であると、得られるニオブの炭窒化物の結晶性が低くなり、また、未反応物が多くなる傾向があり、1800℃以上であると焼結しやすくなる傾向がある。
 原料としては、炭化ニオブ、窒化ニオブおよび酸化ニオブを用いる。原料の炭化ニオブとしては、NbC等が挙げられ、原料の窒化ニオブとしては、NbN等が挙げられる。原料の酸化ニオブとしては、NbO、NbO2やNb25等が挙げられる。上記いずれの酸化ニオブを用いても、該酸化物、炭化ニオブおよび窒化ニオブから得られるニオブの炭窒化物を、上記工程(I)および(II)を含む製造方法により、得られる燃料電池用触媒は、酸素還元開始電位が高く、活性が高い。
 炭化ニオブ、酸化ニオブ、窒化ニオブの配合量(モル比)を制御すると、適切なニオブの炭窒化物が得られる。前記配合量(モル比)は、通常、窒化ニオブを1モルに対して、炭化ニオブが0.01~500モル、酸化ニオブが0.01~50モルであり、好ましくは、窒化ニオブを1モルに対して、炭化ニオブが0.1~300モル、酸化ニオブが0.1~30モルである。上記範囲を満たす配合モル比で作られたニオブの炭窒化物を用いると、酸素還元開始電位が高く、活性が高い触媒が得られる傾向がある。
 [製造方法(3)]
 製造方法(3)は、炭化ニオブおよび窒化ニオブの混合物を、窒素ガス中などで加熱することによりニオブの炭窒化物を製造する方法である。
 ニオブの炭窒化物を製造する際の加熱の温度は600~1800℃の範囲であり、好ましくは800~1600℃の範囲である。前記加熱温度が前記範囲内であると、得られるニオブの炭窒化物の結晶性が高くなり、また、未反応物が少なくなる傾向がある。前記加熱温度が600℃未満であると、得られるニオブの炭窒化物の結晶性が低くなり、また、未反応物が多くなる傾向があり、1800℃以上であると焼結しやすくなる傾向がある。
 原料の炭化ニオブとしては、NbC等が挙げられ、原料の窒化ニオブとしては、NbN等が挙げられる。
 炭化ニオブ、窒化ニオブの配合量(モル比)を制御すると、適切なニオブの炭窒化物が得られる。前記配合量(モル比)は、通常、窒化ニオブを1モルに対して、炭化ニオブが0.01~500モルであり、好ましくは0.01~300モルである。前記範囲を満たす配合モル比で作られたニオブの炭窒化物を用いると、酸素還元開始電位が高く、活性が高い触媒が得られる傾向がある。
 <燃料電池用触媒>
 本発明の燃料電池用触媒は、遷移金属の炭窒化物を、酸素を含む不活性ガス中で加熱する工程(I)と、該工程(I)で得られた生成物を、不活性ガス中で加熱する工程(II)とを含む製造方法により得られることを特徴としている。このように工程(I)および工程(II)を含む製造方法により得られる燃料電池用触媒は、酸性電解質中や高電位で腐食せず、安定であり、高い酸素還元能を有する。また、本発明の燃料電池用触媒は、白金からなる燃料電池用触媒と比べ安価である。
 前記遷移金属としては、ニオブが好ましい。前記遷移金属がニオブである場合に得られる燃料電池用触媒を、粉末X線回折法(Cu-Kα線)によって測定した際に、得られる回折線ピークにおいて、回折角2θ=23°~24°間のX線回折強度が1000以上であることが好ましい。
 回折線ピークとは、試料(結晶質)に様々な角度でX線を照射した場合に、特異的な回折角度および回折強度で得られるピークのことをいう。本発明においては、上記X線回折強度は、下記測定法により得られた回折強度からベースラインの強度を差し引いた値(ただし、負の値の場合は、「0」とする。)と定義した。ここで、ベースラインの強度は、回折角2θ=22.0°における回折強度とした。
 本発明の燃料電池用触媒は、前記遷移金属がニオブである場合、NbCxyz(ただし、x、y、zは原子数の比を表し、0.01≦x≦2、0.01≦y≦2、0.01≦z≦3、かつx+y+z≦5である。)の組成式で表されるものであることが好ましい。前記組成式において、0.1≦x≦1、 0.1≦y≦1、 0.1≦z≦2.9、かつ1≦x+y+z≦5であることがより好ましい。各原子数の比が前記範囲であると、最終的に得られる燃料電池用触媒の酸素還元電位が高くなる傾向があり好ましい。
 本発明の燃料電池用触媒の酸素還元開始電位は、下記測定法(A)に従って測定している。本発明の燃料電池用触媒の酸素還元開始電位は、可逆水素電極を基準として好ましくは0.5V(vs.NHE)以上である。
 〔測定法(A):
 電子伝導性粒子である炭素に分散させた触媒が1質量%となるように、該触媒および炭素を溶剤中に入れ、超音波で攪拌し懸濁液を得る。なお、炭素源としては、カーボンブラック(比表面積:100~300m2/g)(例えばキャボット社製 XC-72)を用い、触媒と炭素とが質量比で95:5になるように分散させる。また、溶剤としては、イソプロピルアルコール:水(質量比)=1:1を用いる。
 前記懸濁液を、超音波をかけながら10μlを採取し、すばやくグラッシーカーボン電極(直径:5.2mm)上に滴下し、乾燥させる。乾燥することにより触媒を含む燃料電池用触媒層が、グラッシーカーボン電極上に形成される。グラッシーカーボン電極上に、触媒層が2mg付着するまで、前記触媒層の形成操作を繰り返し行う。
 次いでナフィオン(デュポン社 5%ナフィオン溶液(DE521))をイソプロピルアルコールで10倍に希釈したものを、さらに前記燃料電池用触媒層上に10μl滴下し、これを60℃で1時間乾燥する。
 このようにして、得られた電極を用いて、酸素雰囲気および窒素雰囲気で、0.5mol/dm3の硫酸溶液中、30℃の温度で、同濃度の硫酸溶液中での可逆水素電極を参照電極とし、5mV/秒の電位走査速度で分極することにより電流-電位曲線を測定した際の、酸素雰囲気での還元電流と窒素雰囲気での還元電流とに0.2μA/cm2以上の差が現れ始める電位を酸素還元開始電位とする。〕
 上記酸素還元開始電位が0.7V(vs.NHE)未満であると、前記触媒を燃料電池のカソード用の触媒として用いた際に過酸化水素が発生することがある。また酸素還元開始電位は0.85V(vs.NHE)以上であることが、好適に酸素を還元するために好ましい。また、酸素還元開始電位は高い程好ましく、特に上限は無いが、理論値の1.23V(vs.NHE)である。
 この電位が0.4V(vs.NHE)未満の場合、化合物の安定性という観点では全く問題はないが、酸素を好適に還元することができず、燃料電池に含まれる膜電極接合体の燃料電池用触媒としての有用性は乏しい。
 <用途>
 本発明の燃料電池用触媒は、白金触媒の代替触媒として使用することができる。
 本発明の燃料電池用触媒を用いて燃料電池用触媒層を形成することができる。
 燃料電池用触媒層には、アノード触媒層、カソード触媒層があるが、前記燃料電池用触媒はいずれにも用いることができる。前記燃料電池用触媒は、耐久性に優れ、酸素還元能が大きいので、カソード触媒層に用いることが好ましい。
 燃料電池用触媒層には、さらに電子伝導性粒子を含むことが好ましい。前記触媒を含む燃料電池用触媒層がさらに電子伝導性粒子を含む場合には、還元電流をより高めることができる。電子伝導性粒子は、前記触媒に、電気化学的反応を誘起させるための電気的接点を生じさせるため、還元電流を高めると考えられる。
 前記電子伝導性粒子は通常、触媒の担体として用いられる。
 電子伝導性粒子を構成する材料としては、炭素、導電性高分子、導電性セラミクス、金属または酸化タングステンもしくは酸化イリジウムなどの導電性無機酸化物が挙げられ、それらを単独または組み合わせて用いることができる。特に、比表面積の大きい炭素粒子単独または比表面積の大きい炭素粒子とその他の電子伝導性粒子との混合物が好ましい。すなわち燃料電池用触媒層としては、前記触媒と、比表面積の大きい炭素粒子とを含むことが好ましい。
 炭素としては、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレンなどが使用できる。カーボンの粒径は、小さすぎると電子伝導パスが形成されにくくなり、また大きすぎると燃料電池用触媒層のガス拡散性が低下したり、触媒の利用率が低下する傾向があるため、10~1000nmの範囲であることが好ましく、10~100nmの範囲であることがよりに好ましい。
 電子伝導性粒子を構成する材料が、炭素の場合、前記触媒と炭素との質量比(触媒:電子伝導性粒子)は、好ましくは4:1~1000:1である。
 導電性高分子としては特に限定は無いが、例えばポリアセチレン、ポリ-p-フェニレン、ポリアニリン、ポリアルキルアニリン、ポリピロール、ポリチオフェン、ポリインドール、ポリ-1,5-ジアミノアントラキノン、ポリアミノジフェニル、ポリ(o-フェニレンジアミン)、ポリ(キノリニウム)塩、ポリピリジン、ポリキノキサリン、ポリフェニルキノキサリン等が挙げられる。これらの中でも、ポリピロール、ポリアニリン、ポリチオフェンが好ましく、ポリピロールがより好ましい。
 高分子電解質としては、燃料電池用触媒層において一般的に用いられているものであれば特に限定されない。具体的には、スルホン酸基を有するパーフルオロカーボン重合体(例えば、ナフィオン(デュポン社 5%ナフィオン溶液(DE521))など)、スルホン酸基を有する炭化水素系高分子化合物、リン酸などの無機酸をドープさせた高分子化合物、一部がプロトン伝導性の官能基で置換された有機/無機ハイブリッドポリマー、高分子マトリックスにリン酸溶液や硫酸溶液を含浸させたプロトン伝導体などが挙げられる。これらの中でも、ナフィオン(デュポン社 5%ナフィオン溶液(DE521))が好ましい。
 前記燃料電池用触媒層は、アノード触媒層またはカソード触媒層のいずれにも用いることができる。前記燃料電池用触媒層は、高い酸素還元能を有し、酸性電解質中において高電位であっても腐蝕しがたい触媒を含むため、燃料電池のカソードに設けられる触媒層(カソード用触媒層)として有用である。特に固体高分子型燃料電池が備える膜電極接合体のカソードに設けられる触媒層に好適に用いられる。
 前記触媒を、担体である前記電子伝導性粒子上に分散させる方法としては、気流分散、液中分散等の方法が挙げられる。液中分散は、溶媒中に触媒および電子伝導性粒子を分散したものを、燃料電池用触媒層形成工程に使用できるため好ましい。液中分散としては、オリフィス収縮流による方法、回転せん断流による方法または超音波による方法等があげられる。液中分散の際、使用される溶媒は、触媒や電子伝導性粒子を浸食することがなく、分散できるものであれば特に制限はないが、揮発性の液体有機溶媒または水等が一般に使用される。
 また、燃料電池用触媒を、前記電子伝導性粒子上に分散させる際、さらに上記電解質と分散剤とを同時に分散させてもよい。
 燃料電池用触媒層の形成方法としては、特に制限はないが、たとえば、前記触媒と電子伝導性粒子と電解質とを含む懸濁液を、後述する電解質膜またはガス拡散層に塗布する方法が挙げられる。前記塗布する方法としては、ディッピング法、スクリーン印刷法、ロールコーティング法、スプレー法などが挙げられる。また、前記燃料電池用触媒と電子伝導性粒子と電解質とを含む懸濁液を、塗布法またはろ過法により基材に燃料電池用触媒層を形成した後、転写法で電解質膜に燃料電池用触媒層を形成する方法が挙げられる。
 前記燃料電池用触媒層を用いて電極を得ることができる。該電極は、前記燃料電池用触媒層と多孔質支持層とを有することが好ましい。
 前記電極はカソードまたはアノードのいずれの電極にも用いることができる。前記電極は、耐久性に優れ、触媒能が大きいので、カソードに用いるとより効果を発揮する。
 多孔質支持層とは、ガスを拡散する層(以下「ガス拡散層」とも記す。)である。ガス拡散層としては、電子伝導性を有し、ガスの拡散性が高く、耐食性の高いものであれば何であっても構わないが、一般的にはカーボンペーパー、カーボンクロスなどの炭素系多孔質材料や、軽量化のためにステンレス、耐食材を被服したアルミニウム箔が用いられる。
 前記電極を用いて膜電極接合体を得ることができる。該膜電極接合体は、カソードとアノードと前記カソードおよび前記アノードの間に配置された電解質膜とを有する膜電極接合体であって、前記カソードおよび/または前記アノードが、前記電極であることが好ましい。
 電解質膜としては、例えば、パーフルオロスルホン酸系を用いた電解質膜または炭化水素系電解質膜などが一般的に用いられるが、高分子微多孔膜に液体電解質を含浸させた膜または多孔質体に高分子電解質を充填させた膜などを用いてもよい。
 また前記膜電極接合体は、燃料電池に使用することができる。燃料電池の電極反応はいわゆる3相界面(電解質‐電極触媒‐反応ガス)で起こる。燃料電池は、使用される電解質などの違いにより数種類に分類され、溶融炭酸塩型(MCFC)、リン酸型(PAFC)、固体酸化物型(SOFC)、固体高分子型(PEFC)等がある。中でも、前記膜電極接合体は、固体高分子型燃料電池に使用することが好ましい。
 以下に、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されない。
 また、実施例および比較例における各種測定は、下記の方法により行った。
 [分析方法]
 1.粉末X線回折
 PANalytical製のX'Pert PROを用いて、試料の粉末X線回折を行った。
 各試料の粉末X線回折における回折線ピークの本数は、信号(S)とノイズ(N)との比(S/N)が2以上で検出できるシグナルを1つのピークとしてみなして数えた。X線回折強度Iは、下記測定法により得られた回折強度からベースラインの強度を差し引いた値(ただし、負の値の場合は、「0」とする。)と定義した。ここで、ベースラインの強度は、回折角2θ=22.0°における回折強度とした。
 2.元素分析
 炭素:試料約0.1gを量り取り、HORIBA製 EMIA-110で測定を行った。
 窒素・酸素:試料約0.1gを量り取り、Ni-Cupに封入後、LECO社製 ON分析装置(TC600)で測定を行った。
 ニオブ:試料約0.1gを白金皿に量り取り、硝酸-フッ酸を加えて加熱分解した。この加熱分解物を定容後、希釈し、SII社製 ICP-MS(ICP-OES VISTA-PRO)で定量を行った。
 [実施例1]
 1.触媒の調製
 炭化ニオブ4.96g(81mmol)、酸化ニオブ1.25g(10mmol)、窒化ニオブ0.54g(5mmol)を十分に粉砕して混合した。この混合粉末を、管状炉において、1600℃で3時間、窒素ガス中で加熱することにより、炭窒化ニオブ2.70gを得た。焼結体になるため、乳鉢で粉砕した。
 得られた炭窒化ニオブの粉末X線回折スペクトルを図1に示す。また、得られた炭窒化ニオブの元素分析結果を表1に示す。
 得られた炭窒化ニオブ0.06gを、0.2容量%の酸素ガスを含むアルゴンガスを流しながら、管状炉において、400℃で2時間加熱すること(第一の加熱工程)により、生成物(1)を得た。さらに、アルゴンガス(酸素ガス濃度:10ppm以下)中で、管状炉を用いて、800℃で1時間加熱すること(第二の加熱工程)により、触媒(1)を作製した。
 触媒(1)の粉末X線回折スペクトルを図2に示す。回折角2θ=23°~33°の間に、ニオブの酸化物に由来する回折線ピークが観測された。また、触媒(1)の元素分析結果を表2に示す。
 2.燃料電池用電極の製造
 酸素還元能の測定は、次のように行った。触媒(1)0.02375gとカーボン(キャボット社製 XC-72)0.00125gとをイソプロピルアルコール:純水=1:1の質量比で混合した溶液2.5gに入れ、超音波で撹拌、懸濁して混合した。この混合物10μlをグラッシーカーボン電極(東海カーボン社製、直径:5.2mm)に塗布し、乾燥した。この操作を電極上に合計2mgの触媒層が形成されるまで繰り返し行った。さらに、ナフィオン(デュポン社 5%ナフィオン溶液(DE521))をイソプロピルアルコールで10倍に希釈したもの10μlを塗布し、60℃で1時間乾燥し、燃料電池用電極(1)を得た。
 3.酸素還元能の評価
 このようにして作製した燃料電池用電極(1)の触媒能(酸素還元能)を以下の方法で評価した。
 まず、作製した燃料電池用電極(1)を、酸素雰囲気および窒素雰囲気で、0.5mol/dm3の硫酸溶液中、30℃、5mV/秒の電位走査速度で分極し、電流-電位曲線を測定した。その際、同濃度の硫酸溶液中での可逆水素電極を参照電極とした。
 上記測定結果から、酸素雰囲気での還元電流と窒素雰囲気での還元電流とに0.2μA/cm2以上差が現れ始める電位を酸素還元開始電位とし、両者の差を酸素還元電流とした。
 この酸素還元開始電位および酸素還元電流により作製した燃料電池用電極(1)の酸素還元能を評価した。酸素還元開始電位が高いほど、また、酸素還元電流が大きいほど、燃料電池用電極(1)の酸素還元能が高いことを示す。
 図8に上記測定により得られた電流-電位曲線を示す。実施例1で作製した燃料電池用電極(1)は、酸素還元開始電位が0.60V(vs.NHE)であり、高い酸素還元能を有することがわかった。
 [実施例2]
 1.触媒の調製
 実施例1と同様にして炭窒化ニオブを製造し、管状炉を用いて、1容量%の酸素ガスを含むアルゴンガスを流しながら、炭窒化ニオブ0.10gを800℃で1時間加熱すること(第一の加熱工程)により、生成物(2)を得た。得られた生成物(2)を、さらに、アルゴンガス(酸素ガス濃度:10ppm以下)中で、900℃で5時間加熱すること(第二の加熱工程)により、触媒(2)を作製した。
 触媒(2)の粉末X線回折スペクトルを図3に示し、触媒(2)の元素分析結果を表2に示す。粉末X線回折スペクトルでは、回折角2θ=23°~33°の間に、ニオブの酸化物に由来する回折線ピークが観測された。
 2.燃料電池用電極の製造
 前記触媒(2)を用いた以外は実施例1と同様にして燃料電池用電極(2)を得た。
 3.酸素還元能の評価
 前記燃料電池用電極(2)を用いた以外は実施例1と同様にして酸素還元能を評価した。図9に上記測定により得られた電流-電位曲線を示す。実施例2で作製した燃料電池用電極(2)は、酸素還元開始電位が0.80V(vs.NHE)であり、高い酸素還元能を有することがわかった。
 [実施例3]
 1.触媒の調製
 実施例1と同様にして炭窒化ニオブを製造し、ロータリーキルンを用いて、0.5容量%の酸素ガスを含むアルゴンガスを流しながら、炭窒化ニオブ0.50gを950℃で2時間加熱すること(第一の加熱工程)により、生成物(3)を得た。得られた生成物(3)を、さらに、アルゴンガス(酸素ガス濃度:10ppm以下)中で、950℃で15時間加熱すること(第二の加熱工程)により、触媒(3)を作製した。
 触媒(3)の粉末X線回折スペクトルを図4に示し、触媒(3)の元素分析結果を表2に示す。粉末X線回折スペクトルでは、回折角2θ=23°~33°の間に、ニオブの酸化物に由来する回折線ピークが観測された。
 2.燃料電池用電極の製造
 前記触媒(3)を用いた以外は実施例1と同様にして燃料電池用電極(3)を得た。
 3.酸素還元能の評価
 前記燃料電池用電極(3)を用いた以外は実施例1と同様にして酸素還元能を評価した。図10に当該測定により得られた電流-電位曲線を示す。実施例3で作製した燃料電池用電極(3)は、酸素還元開始電位が0.92V(vs.NHE)であり、高い酸素還元能を有することがわかった。
 [参考例1]
 1.触媒の調製
 実施例1と同様にして炭窒化ニオブを製造し、管状炉を用いて、実施例1と同条件で第一の加熱工程を行い、触媒(4)を作製した。
 触媒(4)の粉末X線回折スペクトルを図5に示し、触媒(4)の元素分析結果を表2に示す。粉末X線回折スペクトルでは、回折角2θ=23°~33°の間に、ニオブの酸化物に由来する回折線ピークが観測されず、アモルファスになっていた。
 2.燃料電池用電極の製造
 前記触媒(4)を用いた以外は実施例1と同様にして燃料電池用電極(4)を得た。
 3.酸素還元能の評価
 前記燃料電池用電極(4)を用いた以外は実施例1と同様にして酸素還元能を評価した。図11に当該測定により得られた電流-電位曲線を示す。参考例1で作製した燃料電池用電極(5)は、酸素還元開始電位が0.43V(vs.NHE)であり、第二の加熱工程を行った触媒(触媒(1)と比較)より酸素還元能が低いことがわかった。
 [参考例2]
 1.触媒の調製
 実施例1と同様にして炭窒化ニオブを製造し、管状炉を用いて、実施例2と同条件で第一の加熱工程を行い、触媒(5)を作製した。
 触媒(5)の粉末X線回折スペクトルを図6に示し、元素分析結果を表2に示す。粉末X線回折スペクトルでは、回折角2θ=23°~33°の間のニオブの酸化物に由来する回折線ピークの強度が、触媒(2)よりも小さいことが分かった。
 2.燃料電池用電極の製造
 前記触媒(5)を用いた以外は実施例1と同様にして燃料電池用電極(5)を得た。
 3.酸素還元能の評価
 前記燃料電池用電極(5)を用いた以外は実施例1と同様にして酸素還元能を評価した。図12に当該測定により得られた電流-電位曲線を示す。参考例2で作製した燃料電池用電極(5)は、酸素還元開始電位が0.74V(vs.NHE)であり、第二の加熱工程を行った触媒(触媒(2)と比較)より酸素還元能が低いことがわかった。
 [参考例3]
 1.触媒の調製
 実施例1と同様にして炭窒化ニオブを製造し、ロータリーキルンを用いて、実施例3と同条件で第一の加熱工程を行い、触媒(6)を作製した。
 触媒(6)の粉末X線回折スペクトルを図7に示し、元素分析結果を表2に示す。粉末X線回折スペクトルでは、回折角2θ=23°~33°の間のニオブの酸化物に由来する回折線ピークの強度が、触媒(3)よりも小さいことが分かった。
 2.燃料電池用電極の製造
 前記触媒(6)を用いた以外は実施例1と同様にして燃料電池用電極(6)を得た。
 3.酸素還元能の評価
 前記燃料電池用電極(6)を用いた以外は実施例1と同様にして酸素還元能を評価した。図13に当該測定により得られた電流-電位曲線を示す。参考例3で作製した燃料電池用電極(6)は、酸素還元開始電位が0.87V(vs.NHE)であり、第二の加熱工程を行った触媒(触媒(3)と比較)より酸素還元能が低いことがわかった。
 [比較例1]
 1.触媒の調製
 実施例1と同様にして炭窒化ニオブ(以下「触媒(7)とも記す」。)を製造した。
 2.燃料電池用電極の製造
 前記触媒(7)を用いた以外は実施例1と同様にして燃料電池用電極(7)を得た。
 3.酸素還元能の評価
 前記燃料電池用電極(7)を用いた以外は実施例1と同様にして酸素還元能を評価した。図14に当該測定により得られた電流-電位曲線を示す。比較例1で作製した燃料電池用電極(7)は、酸素還元開始電位が0.40V(vs.NHE)であり、酸素還元能が低いことがわかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明の製造方法により得られる燃料電池用触媒は、酸性電解質中や高電位で腐食せず、耐久性に優れ、高い酸素還元能を有するので、燃料電池用触媒層、電極、電極接合体または燃料電池に用いることができる。

Claims (10)

  1.  遷移金属の炭窒化物を、酸素を含む不活性ガス中で加熱する工程(I)と、該工程(I)で得られた生成物を、実質的に酸素を含まない不活性ガス中で加熱する工程(II)とを含むことを特徴とする燃料電池用触媒の製造方法。
  2.  前記工程(I)における加熱温度が400~1200℃の範囲であることを特徴とする請求項1に記載の燃料電池用触媒の製造方法。
  3.  前記工程(II)における加熱温度が800~1400℃の範囲であることを特徴とする請求項1または2に記載の燃料電池用触媒の製造方法。
  4.  前記工程(II)における加熱温度が、前記工程(I)における加熱温度以上であることを特徴とする請求項1~3のいずれかに記載の燃料電池用触媒の製造方法。
  5.  前記工程(II)における加熱温度と前記工程(I)における加熱温度との差(工程(II)における加熱温度-工程(I)における加熱温度)が1℃以上であることを特徴とする請求項1~4のいずれかに記載の燃料電池用触媒の製造方法。
  6.  前記工程(I)における不活性ガス中の酸素濃度が0.1~10容量%の範囲であることを特徴とする請求項1~5のいずれかに記載の燃料電池用触媒の製造方法。
  7.  前記工程(I)における不活性ガスが、水素を4容量%以下の濃度で含むことを特徴とする請求項1~6のいずれかに記載の燃料電池用触媒の製造方法。
  8.  前記工程(II)における不活性ガス中の酸素濃度が10ppm以下であることを特徴とする請求項1~7のいずれかに記載の燃料電池用触媒の製造方法。
  9.  前記遷移金属が、ニオブであることを特徴とする請求項1~8のいずれかに記載の燃料電池用触媒の製造方法。
  10.  請求項1~9のいずれかに記載の製造方法により得られることを特徴とする燃料電池用触媒。
PCT/JP2009/055655 2008-03-24 2009-03-23 燃料電池用触媒の製造方法および燃料電池用触媒 WO2009119497A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020107023611A KR101249194B1 (ko) 2008-03-24 2009-03-23 연료 전지용 촉매의 제조 방법 및 연료 전지용 촉매
JP2010505629A JP5419864B2 (ja) 2008-03-24 2009-03-23 燃料電池用触媒の製造方法および燃料電池用触媒
CA2718893A CA2718893A1 (en) 2008-03-24 2009-03-23 Method for producing fuel cell catalyst and fuel cell catalyst
EP09725941.0A EP2270906B1 (en) 2008-03-24 2009-03-23 Method for producing fuel cell catalyst
US12/934,198 US9139450B2 (en) 2008-03-24 2009-03-23 Process for producing fuel cell catalysts, and fuel cell catalyst
CN2009801104170A CN101978538B (zh) 2008-03-24 2009-03-23 燃料电池用催化剂的制造方法和燃料电池用催化剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008074827 2008-03-24
JP2008-074827 2008-03-24

Publications (1)

Publication Number Publication Date
WO2009119497A1 true WO2009119497A1 (ja) 2009-10-01

Family

ID=41113690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055655 WO2009119497A1 (ja) 2008-03-24 2009-03-23 燃料電池用触媒の製造方法および燃料電池用触媒

Country Status (7)

Country Link
US (1) US9139450B2 (ja)
EP (1) EP2270906B1 (ja)
JP (1) JP5419864B2 (ja)
KR (1) KR101249194B1 (ja)
CN (1) CN101978538B (ja)
CA (1) CA2718893A1 (ja)
WO (1) WO2009119497A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041658A1 (ja) * 2008-10-06 2010-04-15 昭和電工株式会社 炭窒化物混合物粒子または炭窒酸化物混合物粒子の製造方法及びその用途
JP2011240242A (ja) * 2010-05-18 2011-12-01 Showa Denko Kk 触媒、その製造方法およびその用途

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9099749B2 (en) * 2008-03-24 2015-08-04 Showa Denko K.K. Catalyst, production process therefor and use thereof
JP5602730B2 (ja) * 2009-06-03 2014-10-08 昭和電工株式会社 燃料電池用触媒およびそれを用いた固体高分子型燃料電池
JP5000786B2 (ja) * 2009-12-25 2012-08-15 昭和電工株式会社 インク、該インクを用いて形成される燃料電池用触媒層およびその用途
JP5706595B1 (ja) 2013-07-12 2015-04-22 昭和電工株式会社 酸素還元触媒、その用途およびその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512393A (ja) * 1995-09-05 1999-10-26 エクソン リサーチ アンド エンジニアリング カンパニー 5員環及び6員環の選択的開環
JP2003342058A (ja) 2002-05-23 2003-12-03 Sumitomo Special Metals Co Ltd 薄膜磁気ヘッド用セラミックス基板材料
JP2006107967A (ja) * 2004-10-07 2006-04-20 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池
JP2007031781A (ja) 2005-07-27 2007-02-08 Yokohama National Univ 酸素還元電極
JP2007257888A (ja) * 2006-03-20 2007-10-04 Allied Material Corp 固体高分子形燃料電池用酸素極触媒およびそれを用いた酸素還元電極およびそれらの製造方法
JP2008504957A (ja) 2004-07-07 2008-02-21 ザ ホンコン ユニヴァーシティ オブ サイエンス アンド テクノロジー 触媒材料及びその製造方法
JP2008108594A (ja) * 2006-10-26 2008-05-08 Yokohama National Univ 電極活物質及びそれを用いた正極用酸素還元電極
WO2009031383A1 (ja) * 2007-09-07 2009-03-12 Showa Denko K.K. 触媒およびその製造方法ならびにその用途

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012303A (en) * 1974-12-23 1977-03-15 Hooker Chemicals & Plastics Corporation Trifluorostyrene sulfonic acid membranes
JP3925764B2 (ja) * 1999-10-19 2007-06-06 株式会社豊田中央研究所 高耐久性固体高分子電解質
US7419928B2 (en) * 2003-04-11 2008-09-02 Exxonmobil Research And Engineering Company Fischer-Tropsch catalyst production
CA2543256C (en) * 2003-10-29 2010-06-29 Umicore Ag & Co Kg Precious metal oxide catalyst for water electrolysis
US20090130502A1 (en) * 2006-02-17 2009-05-21 Monsanto Technology Llc Transition metal-containing catalysts and processes for their preparation and use as fuel cell catalysts
KR100829554B1 (ko) * 2006-12-15 2008-05-14 삼성에스디아이 주식회사 연료전지용 전극 및 이를 구비한 연료전지
WO2009091047A1 (ja) * 2008-01-18 2009-07-23 Showa Denko K.K. 触媒およびその製造方法ならびにその用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512393A (ja) * 1995-09-05 1999-10-26 エクソン リサーチ アンド エンジニアリング カンパニー 5員環及び6員環の選択的開環
JP2003342058A (ja) 2002-05-23 2003-12-03 Sumitomo Special Metals Co Ltd 薄膜磁気ヘッド用セラミックス基板材料
JP2008504957A (ja) 2004-07-07 2008-02-21 ザ ホンコン ユニヴァーシティ オブ サイエンス アンド テクノロジー 触媒材料及びその製造方法
JP2006107967A (ja) * 2004-10-07 2006-04-20 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池
JP2007031781A (ja) 2005-07-27 2007-02-08 Yokohama National Univ 酸素還元電極
JP2007257888A (ja) * 2006-03-20 2007-10-04 Allied Material Corp 固体高分子形燃料電池用酸素極触媒およびそれを用いた酸素還元電極およびそれらの製造方法
JP2008108594A (ja) * 2006-10-26 2008-05-08 Yokohama National Univ 電極活物質及びそれを用いた正極用酸素還元電極
WO2009031383A1 (ja) * 2007-09-07 2009-03-12 Showa Denko K.K. 触媒およびその製造方法ならびにその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. DOI; A. ISHIHARA; S. MITSUSHIMA; N. KAMIYA; K. OTA, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 154, no. 3, 2007, pages B362 - B369

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041658A1 (ja) * 2008-10-06 2010-04-15 昭和電工株式会社 炭窒化物混合物粒子または炭窒酸化物混合物粒子の製造方法及びその用途
JP4970597B2 (ja) * 2008-10-06 2012-07-11 昭和電工株式会社 炭窒化物混合物粒子または炭窒酸化物混合物粒子の製造方法及びその用途
US8703638B2 (en) 2008-10-06 2014-04-22 Showa Denko K.K. Process for production and use of carbonitride mixture particles or oxycarbonitride mixture particles
US9093714B2 (en) 2008-10-06 2015-07-28 Showa Denko K.K. Process for production and use of carbonitride mixture particles or oxycarbonitride mixture particles
JP2011240242A (ja) * 2010-05-18 2011-12-01 Showa Denko Kk 触媒、その製造方法およびその用途

Also Published As

Publication number Publication date
KR101249194B1 (ko) 2013-04-03
CN101978538B (zh) 2013-09-18
US20110053049A1 (en) 2011-03-03
EP2270906A1 (en) 2011-01-05
CN101978538A (zh) 2011-02-16
EP2270906B1 (en) 2017-12-27
CA2718893A1 (en) 2009-10-01
JPWO2009119497A1 (ja) 2011-07-21
JP5419864B2 (ja) 2014-02-19
KR20100123773A (ko) 2010-11-24
US9139450B2 (en) 2015-09-22
EP2270906A4 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5462150B2 (ja) 触媒及びその製造方法ならびにその用途
JP5411123B2 (ja) 燃料電池用触媒およびその製造方法ならびにその用途
JP5495798B2 (ja) 触媒およびその製造方法ならびにその用途
US8889315B2 (en) Catalyst, process for preparing the same, and uses of the catalyst
JP5475245B2 (ja) 触媒およびその製造方法ならびにその用途
JP5374387B2 (ja) 触媒およびその製造方法ならびにその用途
WO2010131636A1 (ja) 触媒およびその製造方法ならびにその用途
JP5037696B2 (ja) 触媒およびその製造方法ならびにその用途
JP5713891B2 (ja) 触媒及びその製造方法ならびにその用途
JP5419864B2 (ja) 燃料電池用触媒の製造方法および燃料電池用触媒
JP5539892B2 (ja) 触媒およびその製造方法ならびにその用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980110417.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09725941

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009725941

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010505629

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2718893

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12934198

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107023611

Country of ref document: KR

Kind code of ref document: A