WO2009116152A1 - 光素子及びその製造方法 - Google Patents

光素子及びその製造方法 Download PDF

Info

Publication number
WO2009116152A1
WO2009116152A1 PCT/JP2008/055113 JP2008055113W WO2009116152A1 WO 2009116152 A1 WO2009116152 A1 WO 2009116152A1 JP 2008055113 W JP2008055113 W JP 2008055113W WO 2009116152 A1 WO2009116152 A1 WO 2009116152A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffraction grating
layer
layers
optical element
mask
Prior art date
Application number
PCT/JP2008/055113
Other languages
English (en)
French (fr)
Inventor
松田 学
山本 剛之
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2008/055113 priority Critical patent/WO2009116152A1/ja
Priority to JP2010503705A priority patent/JP5182362B2/ja
Publication of WO2009116152A1 publication Critical patent/WO2009116152A1/ja
Priority to US12/868,163 priority patent/US7899283B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1228DFB lasers with a complex coupled grating, e.g. gain or loss coupling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • H01S5/0654Single longitudinal mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1215Multiplicity of periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/124Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • H01S5/2209GaInP based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32333Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm based on InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3403Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3434Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer comprising at least both As and P as V-compounds

Definitions

  • the present invention relates to a waveguide type optical element having an embedded diffraction grating and a method for manufacturing the same.
  • DFB laser As a waveguide type optical element loaded with an embedded diffraction grating, for example, there is a DFB laser made of a compound semiconductor.
  • DFB lasers it has been proposed to improve laser characteristics by adopting a structure in which a coupling coefficient that determines the feedback amount of a diffraction grating is distributed in the resonator direction. For example, by adopting a structure in which the coupling coefficient is distributed so as to decrease toward the center of the resonator, it has been proposed to suppress axial hole burning and improve longitudinal mode stability at high light output. (For example, refer nonpatent literature 1).
  • the width of the embedded diffraction grating is gradually decreased toward the center of the resonator, the width of the embedded diffraction grating is gradually increased toward the center of the resonator, It has also been proposed to gradually increase the height of the embedded diffraction grating toward the center of the resonator, or to gradually decrease the height of the embedded diffraction grating toward the center of the resonator (for example, Patent Documents). 1).
  • Patent Document 3 discloses a DFB laser in which an embedded diffraction grating is provided so that an active layer is sandwiched between the upper and lower sides. However, one diffraction grating reflects and returns laser light input from the outside. It is provided in the vicinity of the front end face of the laser so as to reflect light, and the phases of the upper and lower diffraction gratings are not matched so that the oscillation wavelength becomes a single wavelength (see paragraphs 0036 and 0037). Further, as described in Patent Document 3, in the structure in which the embedded diffraction gratings are provided on both the upper and lower sides of the active layer, it is difficult to manufacture with high accuracy so that the phases of the upper and lower diffraction gratings are synchronized.
  • JP-A-8-255554 Japanese Patent No. 2966485 JP 2004-356571 A G. Morthier et al., "A New DFB-Laser Diode with Reduced Spatial Hole Burning", IEEE Photonics Technology Letter, vol. 2, no.
  • the coupling coefficient varies, and the device characteristics (here, the laser oscillation threshold) fluctuate. . Also, the yield is not good.
  • the width of the embedded diffraction grating when the width of the embedded diffraction grating is changed, the width of the diffraction grating in the region where the coupling coefficient is maximized is half the period of the diffraction grating (duty ratio 50%). By making the width of the diffraction grating wider (greater than 50% duty) or narrower (smaller than 50% duty), a diffraction grating having a small coupling coefficient can be formed.
  • the width of the diffraction grating is made very wide in the region where the coupling coefficient is decreased, or It needs to be narrowed.
  • the width of the diffraction grating is very wide, the opening of the mask for forming the diffraction grating becomes very narrow, so that it is difficult to form the diffraction grating by etching.
  • the width of the diffraction grating is made very narrow, the width of the etching mask is also made very narrow, but it is difficult to produce a mask with a width of, for example, several percent with high accuracy and stability. Even if a very narrow diffraction grating can be formed, it may disappear if it is embedded, and it is difficult to stably manufacture an embedded diffraction grating. For this reason, the yield is not good.
  • the diffraction grating can be manufactured with high accuracy and stability, the yield is improved, and the region and coupling coefficient for increasing the coupling coefficient are increased. It is desired to improve the element characteristics by making it possible to increase the difference of the coupling coefficient between the regions to be reduced (to increase the contrast of the coupling coefficient).
  • the optical element includes an optical waveguide and a plurality of diffraction grating layers provided along the optical waveguide, and each diffraction grating layer is divided into one semiconductor layer, one semiconductor layer, and a refractive index.
  • the plurality of diffraction grating layers are required to have the same phase and period of the diffraction grating formed in the corresponding region.
  • a plurality of layers are stacked on a substrate, a mask having a diffraction grating pattern is formed on the surface, and etching is performed using the mask to form a plurality of layers.
  • the diffraction grating pattern is transferred to one of the layers, another mask is formed so as to cover the surface of a partial region of the one mask, and the plurality of layers are etched by using the one mask and the other mask. It is a requirement to form a plurality of diffraction grating layers by transferring the diffraction grating pattern to the other layers in the substrate, removing one mask and the other mask, and embedding with another layer.
  • the present optical element and the manufacturing method thereof in the optical element having a structure in which the coupling coefficient of the diffraction grating is distributed in the resonator, the diffraction grating can be manufactured accurately and stably, and the yield is improved.
  • the difference between the coupling coefficients can be increased (the contrast of the coupling coefficient is increased) between the region where the coupling coefficient is increased and the region where the coupling coefficient is decreased, and the element characteristics can be improved.
  • FIGS. 2A to 2E are schematic perspective views for explaining a manufacturing method of one configuration example of the optical element (DFB laser) according to the first embodiment of the present invention.
  • FIGS. 3A to 3E are schematic perspective views for explaining a manufacturing method of one configuration example of the optical element (DFB laser) according to the first embodiment of the present invention.
  • FIGS. 4A to 4E are schematic perspective views for explaining a manufacturing method of one configuration example of the optical element (DFB laser) according to the first embodiment of the present invention.
  • FIGS. 6A to 6E are schematic perspective views for explaining a manufacturing method of one configuration example of the optical element (DFB laser) according to the second embodiment of the present invention.
  • FIGS. 7A to 7E are schematic perspective views for explaining a manufacturing method of one configuration example of the optical element (DFB laser) according to the second embodiment of the present invention.
  • FIGS. 8A to 8E are schematic perspective views for explaining a manufacturing method of one configuration example of the optical element (DFB laser) according to the second embodiment of the present invention. It is typical sectional drawing which shows the other structural example of the optical element (DFB laser) concerning 2nd Embodiment of this invention. It is typical sectional drawing which shows the structure of the optical element (DFB laser) concerning 3rd Embodiment of this invention.
  • 11A to 11E are schematic perspective views for explaining a manufacturing method of one configuration example of the optical element (DFB laser) according to the third embodiment of the present invention.
  • 12 (A) to 12 (E) are schematic perspective views for explaining a manufacturing method of one configuration example of the optical element (DFB laser) according to the third embodiment of the present invention.
  • FIGS. 13A to 13E are schematic perspective views for explaining a manufacturing method of one configuration example of the optical element (DFB laser) according to the third embodiment of the present invention. It is typical sectional drawing which shows the other structural example of the optical element (DFB laser) concerning 1st Embodiment of this invention.
  • the optical element according to the present embodiment is, for example, a DFB (Distributed Feed-Back) laser (laser element; waveguide type optical element; active) having a structure in which the coupling coefficient of the diffraction grating is distributed in the resonator.
  • a DFB (Distributed Feed-Back) laser laser element; waveguide type optical element; active
  • FIG. 1 an optical waveguide 1 and a plurality of (here, two) diffraction grating layers 2 and 3 provided along the optical waveguide 1 are provided.
  • a first diffraction grating layer 2 and a second diffraction grating layer 3 are provided as a plurality of diffraction grating layers, and these diffraction grating layers 2 and 3 are optical waveguides. 1 are all provided on the lower side (substrate side with respect to the optical waveguide 1; one side of the optical waveguide 1). These diffraction grating layers 2 and 3 are loaded close to the optical waveguide 1.
  • each diffraction grating layer 2, 3 has a refractive index different from that of one divided semiconductor layer 102, 104 and one semiconductor layer 102, 104, and embeds one semiconductor layer 102, 104. It is configured to include diffraction gratings (embedded diffraction gratings; embedded diffraction gratings) 2A and 3A configured by other semiconductor layers 103 and 107.
  • the plurality of diffraction grating layers 2 and 3 have the same phase, period, and duty ratio (ratio of portions left by etching with respect to the period of the diffraction grating) of the diffraction gratings 2A and 3A formed in the corresponding regions. ing.
  • the duty ratios of the diffraction gratings 2A and 3A provided in the diffraction grating layers 2 and 3 are respectively constant.
  • the first diffraction grating layer 2 is formed only in the central region in the direction along the optical waveguide 1 (the length direction of the resonator). That is, the region where the diffraction grating 2 ⁇ / b> A of the first diffraction grating layer 2 is formed is a central region in the direction along the optical waveguide 1.
  • the second diffraction grating layer 3 has a diffraction grating 3 ⁇ / b> A formed over the entire length in the direction along the optical waveguide 1. That is, the region where the diffraction grating 3 ⁇ / b> A of the second diffraction grating layer 3 is formed is the entire region along the optical waveguide 1. As described above, in this embodiment, the length of the region in which the diffraction grating 2A of the first diffraction grating layer 2 is formed in the direction along the optical waveguide 1 is the diffraction grating 3A of the second diffraction grating layer 3.
  • the length of the region where the diffraction gratings 2A and 3A are formed is different between the first diffraction grating layer 2 and the second diffraction grating layer 3, which is shorter than the length of the region along the optical waveguide 1 ing.
  • the corresponding regions of these diffraction grating layers 2 and 3 are central regions in the direction along the optical waveguide 1.
  • two diffraction grating layers 2 and 3 are provided as a plurality of diffraction grating layers, and the lengths of the regions where the diffraction gratings 2A and 3A of these diffraction grating layers 2 and 3 are formed are as follows. Although they are different from each other, they are not limited to this.
  • a third diffraction grating layer (a layer in which the length in the direction along the optical waveguide 1 of the region where the diffraction grating is formed is the same as the first diffraction grating layer 2) is further provided, and the central region in the direction along the optical waveguide 1 In this case, the coupling coefficient may be increased.
  • the plurality of diffraction grating layers may include at least two diffraction grating layers having different lengths of regions where the diffraction gratings are formed.
  • a buried diffraction grating is used, a plurality of diffraction grating layers including a region where the buried diffraction grating is formed are multilayered, and a multilayer diffraction is performed in a region where the coupling coefficient is to be maximized.
  • An embedded diffraction grating is formed in all of the grating layers (here, the first diffraction grating layer 2 and the second diffraction grating layer 3), and some diffraction grating layers (in the region where the coupling coefficient is desired to be smaller)
  • a diffraction grating is formed only in the second diffraction grating layer 3).
  • the second diffraction grating layer 3 is laminated on the first diffraction grating layer 2, and each diffraction grating layer 2, 3 is formed in the central region along the optical waveguide 1.
  • the diffraction gratings 2A and 3A are stacked. That is, the number of stacked diffraction gratings is different in the direction along the optical waveguide 1. In this way, the coupling coefficient of the central region in the direction along the optical waveguide 1 is increased, and the coupling coefficient of other regions (regions near both end faces) is decreased compared to this central region.
  • the present DFB laser (optical semiconductor element) is a DFB laser that oscillates in a wavelength band of 1.55 ⁇ m, and as shown in FIG. 1, an n-type divided on the n-type doped InP substrate 101 in the central region.
  • Embedded diffraction grating formed by embedding a doped GaInAsP layer (eg, composition wavelength 1.25 ⁇ m, thickness 25 nm) 102 with an n-type doped InP layer (eg, thickness 15 nm; buried layer) 103 having a different refractive index
  • the first diffraction grating layer 2 containing 2A and the n-type doped GaInAsP layer (for example, composition wavelength 1.15 ⁇ m, thickness 20 nm) 104 divided in the entire region are embedded by the n-type doped InP layer 107 having a different refractive index.
  • the second diffraction grating layer 3 including the embedded diffraction grating 3A formed by the optical waveguide 1 and the optical waveguide 1 including the quantum well active layer 108 as a waveguide core layer are provided. It is configured as
  • the diffraction grating 2A of the first diffraction grating layer 2 is configured by the n-type doped GaInAsP layer 102 and the n-type doped InP layer 103 having a composition wavelength of 1.25 ⁇ m
  • the diffraction grating 3A of the first diffraction grating layer 2 is configured by configuring the diffraction grating 3A of the second diffraction grating layer 3 with the n-type doped GaInAsP layer 104 and the n-type doped InP layer 107 having a composition wavelength of 1.15 ⁇ m.
  • the refractive index difference between the semiconductor layers 102 and 103 is larger than the refractive index difference between the semiconductor layers 104 and 107 constituting the diffraction grating 3A of the second diffraction grating layer 3. That is, the coupling coefficient is increased without increasing the thickness of the first diffraction grating layer 2 so as to increase the coupling coefficient difference between the region having a large coupling coefficient and the region having a small coupling coefficient.
  • the portion of the n-type InP buried layer 103 buried between the divided n-type GaInAsP layers 102 constitutes the diffraction grating 2A
  • the n-type InP buried layer 107 has a divided n-type.
  • the portion embedded between the GaInAsP layers 104 constitutes the diffraction grating 3A.
  • the portion formed above the n-type GaInAsP layer 102 constitutes the spacer layer 4 between the first diffraction grating layer 2 and the second diffraction grating layer 3
  • n A portion of the type InP buried layer 107 formed above the n-type GaInAsP layer 104 constitutes a spacer layer (cladding layer) 5 between the second diffraction grating layer 3 and the active layer 108.
  • the spacer layer 4 is preferably as thin as possible to absorb etching variations.
  • the thickness of the n-type doped GaInAsP layer 102 constituting the diffraction grating 2A of the first diffraction grating layer 2 is set to 25 nm, and the diffraction grating 3A of the second diffraction grating layer 3 is configured.
  • the n-type doped GaInAsP layer 104 has a thickness of 20 nm, and the first diffraction grating layer 2 and the second diffraction grating layer 3 have different thicknesses.
  • the difference in refractive index between the semiconductor layers 102 and 103 constituting the diffraction grating 2A of the first diffraction grating layer 2 is larger than the difference between the refractive indexes of the semiconductor layers 104 and 107 constituting the diffraction grating 3A of the second diffraction grating layer 3.
  • the first diffraction grating layer 2 and the second diffraction grating layer 3 are configured so as to have different refractive index differences.
  • the first diffraction grating layer 2 and the second diffraction grating layer 3 have the same duty ratio of the diffraction gratings 2A and 3A, but the coupling coefficients of the diffraction gratings 2A and 3A are different.
  • the contrast of the coupling coefficient can be increased by laminating the plurality of diffraction grating layers 2 and 3, an element that satisfies the desired requirements can be realized. Element characteristics can be improved.
  • a surface diffraction grating (a diffraction grating formed by forming irregularities on a substrate surface and embedding it with a semiconductor layer, or one semiconductor layer
  • the contrast of the coupling coefficient is increased using only the diffraction grating formed by embedding the surface of the substrate and embedding it with another semiconductor layer, for example, the diffraction grating in the region where the coupling coefficient is increased.
  • the depth of the diffraction grating in the region where the depth is increased to about 17 nm and the coupling coefficient is reduced must be reduced to about 7 nm. If the depth of the diffraction grating is shifted by 1 nm, the coupling coefficient value is increased. Will vary by about 4 cm ⁇ 1 .
  • the etching rate is 55 nm / min.
  • the time required is as very short as about 7.6 seconds, and it is almost impossible to control the variation in rising of the etching plasma and the timing of turning off the high frequency switch on the order of 0.1 second.
  • the oscillation threshold gain is about 1.4 times that in the case where it does not change. Will raise the lasing threshold of the laser.
  • the contrast of the coupling coefficient can be increased by stacking the plurality of diffraction grating layers 2 and 3, the depth (thickness) of the diffraction grating is increased in order to increase the contrast of the coupling coefficient. Is not required to be very shallow (thin). For this reason, it is possible to suppress an increase in the laser oscillation threshold by setting the thickness of the diffraction grating so that the variation in the coupling coefficient is within an allowable range.
  • the contrast of the coupling coefficient is increased only by using the surface diffraction grating, the unevenness including a very deep portion and a very shallow portion is embedded by the embedded layer. If it is not thick, the surface will not be flat. However, if the thickness of the buried layer is increased, a desired coupling coefficient cannot be obtained.
  • the contrast of the coupling coefficient can be increased by laminating the plurality of diffraction grating layers 2 and 3, the groove embedded by the buried layer in order to increase the contrast of the coupling coefficient. It is not necessary to include a very deep portion and a very shallow portion. Therefore, even if the buried layer is not so thick, the surface can be flattened and a desired coupling coefficient can be obtained.
  • the embedded diffraction gratings 2 and 3 formed by embedding the divided GaInAsP layers 102 and 104 with the InP layers 103 and 107 are used, the diffraction grating is made accurate. It can be manufactured well and stably, and the yield can be improved.
  • the depth of the diffraction grating is defined by stopping etching in the middle of the substrate or in the middle of one semiconductor layer, so that it is difficult to accurately control the coupling coefficient.
  • etching for dividing one semiconductor layer is performed on the entire semiconductor layer. It is only necessary to remove and stop halfway through the lower semiconductor layer. Then, by embedding with another semiconductor layer made of the same semiconductor material as the lower semiconductor layer, variations in etching depth can be absorbed. In this case, since the depth of the diffraction grating is determined by the thickness of one semiconductor layer, the coupling coefficient can be controlled with high accuracy, and the yield can be improved.
  • the embedded diffraction gratings 2 and 3 formed by embedding the divided GaInAsP layers 102 and 104 with InP layers (embedded layers) 103 and 107 have GaInAsP quaternary mixed crystal layers formed as InP buried layers. Therefore, the GaInAsP layers 102 and 104 that are basically divided do not deform.
  • the InP buried layers 103 and 107 embed the composition modulation (refractive index modulation). do not do. For this reason, the coupling coefficient as designed can be obtained, and the yield can be improved.
  • the contrast of the coupling coefficient can be increased by laminating the plurality of diffraction grating layers 2 and 3, the depth of the groove formed in one GaInAsP layer is very large in order to increase the contrast of the coupling coefficient. Therefore, it is difficult to generate crystal defects, and it is not necessary to use a material having a very large difference in refractive index from InP, so that laser characteristics are not deteriorated.
  • the diffraction grating can be formed without causing deformation, compositional modulation, crystal defects, etc. of the diffraction grating, even if the buried layer is made thicker than 50 nm, a desired coupling coefficient can be obtained, and the InP buried layer can be obtained. Even if the active layer 108 is grown on the surface of the buried layer 107, it can be flattened to such an extent that there is no crystal problem. Further, by changing the thickness of the InP buried layer 107 (the thickness of the spacer layer 5; the distance between the active layer 108 and the second diffraction grating layer 3), the value of the entire coupling coefficient is finely adjusted. be able to.
  • an n-type doped GaInAsP layer (for example, a composition wavelength of 1.25 ⁇ m, a thickness of 25 nm; a layer having a refractive index different from that of the substrate 101) 102 is formed on an n-type doped InP substrate 101.
  • n-type doped InP layer for example, thickness 15 nm; layer having the same refractive index as the substrate 101
  • n-type doped GaInAsP layer for example, composition wavelength 1.15 ⁇ m, thickness 20 nm; layer having a refractive index different from that of the substrate 101
  • MOVPE metal organic chemical vapor deposition
  • an n-type doped InP cladding layer may be formed between the n-type doped InP substrate 101 and the n-type doped GaInAsP layer 102.
  • a mask 105 having a diffraction grating pattern and made of an electron beam resist (ZEP520 manufactured by Nippon Zeon Co., Ltd.) is applied to the surface of the n-type GaInAsP layer 104 by an electron beam exposure method.
  • the diffraction grating pattern formed on the mask 105 includes a pattern for forming a phase shift ( ⁇ / 4 phase shift) having a phase of ⁇ radians in the center of the resonator of each element. .
  • the n-type GaInAsP layer 104 and a part of the n-type InP layer 103 are removed by, for example, reactive ion etching (RIE) using an ethane / hydrogen mixed gas.
  • RIE reactive ion etching
  • the n-type GaInAsP layer 104 is divided so that the etching stops in the middle of the n-type InP layer 103.
  • the diffraction grating pattern is transferred to the entire surface of the n-type GaInAsP layer 104, and the n-type GaInAsP layer 104 is divided.
  • a positive type photoresist (OFPR8600 manufactured by Tokyo Ohka Kogyo Co., Ltd .; for example, a thickness of 300 nm) 106 is applied on the surface. Note that since the electron beam resist and the positive photoresist 106 constituting the mask 105 are not mixed, the mask 105 is not deformed.
  • a part of the positive photoresist 106 (here, the resonator central portion; the central region in the direction along the optical waveguide) is removed.
  • a positive photoresist mask 106A that covers both end portions in the direction along the optical waveguide (covers the surface of a part of the region of the mask 105; covers the surface of the region corresponding to the region on both ends of the optical waveguide).
  • the remaining part of the n-type InP layer 103 is formed by reactive ion etching (RIE) using a mixed gas of ethane / hydrogen, for example, again using the electron beam resist mask 105 and the positive photoresist mask 106A exposed on the surface.
  • RIE reactive ion etching
  • the n-type GaInAsP layer 102 and a part of the n-type InP substrate 101 are removed.
  • the n-type InP layer 103 and the n-type GaInAsP layer 102 are divided, and etching stops in the middle of the n-type InP substrate 101 (here, at an etching depth of 10 nm). I am doing so.
  • the diffraction grating pattern is transferred to a part of the n-type GaInAsP layer 102 (here, the resonator central portion; the central region in the direction along the optical waveguide), and the n-type GaInAsP layer 102 is divided.
  • the diffraction grating pattern formed on the n-type GaInAsP layer 104 and the diffraction grating pattern formed on the n-type GaInAsP layer 102 are formed using the same mask 105, they are formed as described later.
  • the first diffraction grating layer 2 and the second diffraction grating layer 3 have the same phase, period, and duty ratio of the diffraction gratings 2A and 3A formed in the corresponding regions.
  • the thickness and refractive index of the n-type GaInAsP layer 102 thickness and refractive index difference of the first diffraction grating layer 2
  • the thickness and refractive index of the n-type GaInAsP layer 104 second diffraction grating layer 3. Thickness and refractive index difference).
  • the coupling coefficient of the diffraction grating 2A included in the first diffraction grating layer 2 and the coupling coefficient of the diffraction grating 3A included in the second diffraction grating layer 3 are different.
  • each of the diffraction grating layers 2 and 3 has a constant duty ratio in the layers.
  • the processing accuracy of the diffraction grating is stabilized.
  • the diffraction grating layers 2 and 3 have constant thickness and refractive index difference in the layers, the coupling coefficient of the diffraction grating is constant in the layers.
  • the mask 105 and the mask 106A are removed from the surface by using a normal resist peeling method.
  • an n-type doped InP layer (a layer having the same refractive index as that of the substrate 101) 107 is grown on the entire surface by using, for example, the MOVPE method.
  • the groove formed by stopping etching in the middle of the n-type InP layer 103 and the groove formed by stopping etching in the middle of the n-type InP substrate 101 are filled with the n-type InP layer 107.
  • the divided n-type GaInAsP layer 102 is buried by the n-type InP layer 107, and the diffraction grating 2A is formed in a part (here, the resonator central portion; the central region in the direction along the optical waveguide).
  • a first diffraction grating layer 2 is formed.
  • the divided n-type GaInAsP layer 104 is embedded by the n-type InP layer 107, and the second diffraction grating layer 3 is formed in which the diffraction grating 3A is formed on the entire surface (the total length in the direction along the optical waveguide). .
  • a spacer layer 4 is formed between the first diffraction grating layer 2 and the second diffraction grating layer 3 by a part of the n-type InP layer 103 and the n-type InP layer 107. Further, the spacer layer 5 is formed on a part of the n-type InP layer 107 above the second diffraction grating layer 3.
  • a quantum well active layer 108 and a p-type doped InP cladding layer (for example, thickness 250 nm) 109 are sequentially stacked by, for example, the MOVPE method.
  • the quantum well active layer 108 is configured using a GaInAsP-based compound semiconductor material. That is, the quantum well active layer 108 includes an undoped GaInAsP quantum well layer (for example, a thickness of 5.1 nm and a compressive strain of 1.0%) and an undoped GaInAsP barrier layer (for example, a composition wavelength of 1.2 ⁇ m, a thickness of 10 nm). ), The number of quantum well layers is six, and the emission wavelength is 1560 nm.
  • An undoped GaInAsP-SCH (Separate Confinement Heterostructure) layer (light guide layer; for example, wavelength 1.15 ⁇ m, thickness 20 nm) is provided above and below the quantum well active layer 108 so as to sandwich the quantum well active layer 108. Also good.
  • a mask made of SiO 2 (for example, 400 nm thick and 1. nm wide) is formed on the semiconductor surface by using an ordinary chemical vapor deposition method (CVD method) and a photolithography technique. 6 ⁇ m stripe-shaped etching mask) 110 is formed.
  • the semiconductor stacked structure formed as described above is etched to a depth at which the n-type InP substrate 101 is dug by, for example, about 0.7 ⁇ m, using, for example, a dry etching method. Then, a striped mesa structure (mesa stripe) is formed.
  • a current confinement layer composed of a p-type InP layer 111 / n-type InP layer 112 / p-type InP layer 113 is formed on both sides of the mesa structure by, for example, MOVPE.
  • a p-type InP cladding layer for example, 2.2 ⁇ m thick
  • MOVPE MOVPE
  • the diffraction grating can be accurately and stably manufactured in the optical element having a structure in which the coupling coefficient of the diffraction grating is distributed in the resonator.
  • the yield is improved and the difference in coupling coefficient between the region where the coupling coefficient is increased and the region where the coupling coefficient is decreased can be increased (the contrast of the coupling coefficient is increased), thereby improving the element characteristics.
  • the diffraction grating can be manufactured with high accuracy and stability, variations in element characteristics can be suppressed, and the element characteristics can be improved.
  • the controllability of the coupling coefficient and the design freedom of the coupling coefficient are improved.
  • the refractive index difference between one semiconductor layer and another semiconductor layer constituting each diffraction grating layer, the thickness of each diffraction grating layer, and each diffraction grating layer for the distance (thickness of the spacer layer) all be set arbitrarily, for example, ranging from a few cm -1 to several 100 cm -1, a diffraction grating to accurately produce with a coupling coefficient of a very wide range of values It becomes possible.
  • the range of coupling coefficients that can be designed increases as the number of layers of the plurality of diffraction grating layers increases.
  • the lower diffraction grating layer has a region where the diffraction grating is not formed among the plurality of diffraction grating layers.
  • the range of coupling coefficients that can be designed increases as the substrate is loaded.
  • the DFB laser configured as described above, for example, as described in Non-Patent Document 6 or Patent Document 2 described above, divides the drive electrode into three parts in the direction of the resonator, and the injection current of the center electrode Can also be used as an FM modulated light source.
  • Such a laser light source is used for, for example, coherent light transmission.
  • it is necessary to increase the modulation current width to the center electrode.
  • the above-described structure that is, a resonator is used as a structure that suppresses a decrease in gain difference between modes between the main mode and the submode even if axial hole burning is increased.
  • a structure in which the coupling coefficient at the center is large and the coupling coefficient at both ends is smaller than that at the center can be used (see Non-Patent Document 2 above).
  • the value of the normalized threshold gain difference between the main and sub modes of the longitudinal mode is 1.7, which is about 2.4 times that of 0.72 of a normal ⁇ / 4 shift DFB laser. Therefore, even if the normalized threshold gain difference decreases due to the effect of axial hole burning during high current injection, unlike the normal laser, the minimum normalized threshold required to maintain single-mode operation The gain difference is not less than 0.2 (see Non-Patent Document 3), and FM modulation efficiency can be improved while maintaining a stable single longitudinal mode operation (see Non-Patent Document 4).
  • the normalized coupling coefficient ⁇ L of the region where the central diffraction grating is two layers is 5, and the normalized coupling coefficient ⁇ L of the region where both diffraction gratings are one layer is 2 and by designing the ratio of the length to the entire resonator length of the region where the diffraction gratings on both sides are in one layer to be 0.18, the threshold between normal and main modes in the longitudinal mode Since the value gain difference value is 1.7, which is about 2.4 times the 0.72 of a normal ⁇ / 4 shift DFB laser, a more stable longitudinal single mode operation can be realized.
  • an optical element and a manufacturing method thereof according to the second embodiment will be described with reference to FIGS. 5 to 8E.
  • the optical element (DFB laser) and the manufacturing method thereof according to this embodiment are the same as those of the first embodiment described above, as shown in FIG. 5 and FIG. , 40, a point in which the quantum well active layer 211 is formed using an AlGaInAs-based compound semiconductor material, a semi-insulating buried heterostructure (SI-BH structure; Semi-Insulating Buried Heterostructure) Difference).
  • SI-BH structure Semi-Insulating Buried Heterostructure
  • the optical element according to the present embodiment is, for example, a DFB (Distributed Feed-Back) laser (laser element; waveguide type optical element) having a structure in which the coupling coefficient of the diffraction grating is distributed in the resonator.
  • DFB Distributed Feed-Back
  • Active type optical element; light emitting element; code multiplex communication device as shown in FIG. 5, optical waveguide 1 and a plurality (three in this case) of diffraction gratings provided along optical waveguide 1 Layers 20, 30, 40.
  • a first diffraction grating layer 20, a second diffraction grating layer 30, and a third diffraction grating layer 40 are provided as a plurality of diffraction grating layers.
  • the layers 20, 30, and 40 are all provided on the lower side of the optical waveguide 1 (substrate side with respect to the optical waveguide 1; one side of the optical waveguide 1).
  • each of the diffraction grating layers 20, 30, and 40 has a refractive index different from that of the divided semiconductor layer 202, 204, 206 and the semiconductor layer 202, 204, 206.
  • diffraction gratings embedded diffraction gratings; embedded diffraction gratings
  • 20A, 30A, and 40A constituted by other semiconductor layers 203, 207, and 210 that embed layers 202, 204, and 206.
  • the plurality of diffraction grating layers 20, 30, and 40 have phases, periods, and duty ratios of the diffraction gratings 20 ⁇ / b> A, 30 ⁇ / b> A, and 40 ⁇ / b> A formed in the corresponding regions (ratio of portions left by etching with respect to the period of the diffraction grating). Are the same.
  • the duty ratios of the diffraction gratings 20A, 30A, and 40A provided in the diffraction grating layers 20, 30, and 40 are constant.
  • the first diffraction grating layer 20 is formed only in the region near the center in the direction along the optical waveguide 1 (the length direction of the resonator). That is, the region where the diffraction grating 20 ⁇ / b> A of the first diffraction grating layer 20 is formed is a region near the center in the direction along the optical waveguide 1.
  • the second diffraction grating layer 30 is formed only in the central region in the direction along the optical waveguide 1 (the length direction of the resonator). That is, the region where the diffraction grating 30 ⁇ / b> A of the second diffraction grating layer 30 is formed is a central region in the direction along the optical waveguide 1.
  • the third diffraction grating layer 40 has the diffraction grating 40 ⁇ / b> A formed over the entire length in the direction along the optical waveguide 1. That is, the region where the diffraction grating 40 ⁇ / b> A of the third diffraction grating layer 40 is formed is the entire region along the optical waveguide 1.
  • the length in the direction along the optical waveguide 1 of the region where the diffraction grating 20 ⁇ / b> A of the first diffraction grating layer 20 is formed is the second diffraction grating layer 30.
  • the length of the region of the second diffraction grating layer 30 in which the diffraction grating 30A is formed along the optical waveguide 1 is such that the length of the optical waveguide 1 in the region of the third diffraction grating layer 40 in which the diffraction grating 40A is formed. It is shorter than the length along the direction. That is, the lengths of the regions where the diffraction gratings 20A, 30A, and 40A are formed in the first diffraction grating layer 20, the second diffraction grating layer 30, and the third diffraction grating layer 40 are different. In this case, the corresponding regions of these diffraction grating layers 20, 30, and 40 are regions near the center in the direction along the optical waveguide 1.
  • three diffraction grating layers 20, 30, 40 are provided as a plurality of diffraction grating layers, and diffraction gratings 20A, 30A, 40A of these diffraction grating layers 20, 30, 40 are formed.
  • the lengths of the areas are different from each other, but are not limited thereto.
  • a fourth diffraction grating layer (a layer in which the length in the direction along the optical waveguide 1 in the region where the diffraction grating is formed is the same as the first diffraction grating layer 20 or the second diffraction grating layer 30) is further provided.
  • the coupling coefficient may be further increased in the central region in the direction along 1 or the central vicinity region.
  • the plurality of diffraction grating layers may include at least two diffraction grating layers having different lengths of regions where the diffraction gratings are formed.
  • a buried diffraction grating is used, a plurality of diffraction grating layers including a region where the buried diffraction grating is formed are multilayered, and a multilayer diffraction is performed in a region where the coupling coefficient is to be maximized.
  • An embedded diffraction grating is formed in all of the grating layers (here, the first diffraction grating layer 20, the second diffraction grating layer 30, and the third diffraction grating layer 40), and in a region where the coupling coefficient is desired to be smaller than that.
  • the diffraction grating is formed only in a part of the diffraction grating layers (here, the second diffraction grating layer 30 or the second diffraction grating layer 30 and the third diffraction grating layer 40).
  • the second diffraction grating layer 30 and the third diffraction grating layer 40 are stacked on the first diffraction grating layer 20, and in the vicinity of the center in the direction along the optical waveguide 1.
  • the diffraction gratings 20A, 30A, and 40A of the diffraction grating layers 20, 30, and 40 are stacked, and the diffraction gratings 30A and 40A of the diffraction grating layers 30 and 40 are stacked in the central region in the direction along the optical waveguide 1. It has become. That is, the number of stacked diffraction gratings is different in the direction along the optical waveguide 1. In this way, the coupling coefficient in the central region in the direction along the optical waveguide 1 is increased, and the coupling coefficient in the central region and the region near both end faces is decreased stepwise.
  • the present DFB laser includes an n-type doped GaInAsP layer (for example, a composition wavelength of 1..
  • the n-type doped GaInAsP layer (for example, composition wavelength 1.25 ⁇ m, thickness 20 nm) 204 divided in the central region is embedded by an n-type doped InP layer (for example, thickness 15 nm; buried layer) 205 having a different refractive index.
  • the optical waveguide 1 including the well active layer 211 is provided.
  • the diffraction grating 20A of the first diffraction grating layer 20 is configured by the n-type doped GaInAsP layer 202 and the n-type doped InP layer 203 having a composition wavelength of 1.25 ⁇ m.
  • the diffraction grating 40A of the first diffraction grating layer 20 is configured by configuring the diffraction grating 40A of the third diffraction grating layer 40 by the n-type doped GaInAsP layer 206 and the n-type doped InP layer 210 having a composition wavelength of 1.15 ⁇ m.
  • the difference in refractive index between the semiconductor layers 202 and 203 is larger than the difference in refractive index between the semiconductor layers 206 and 210 constituting the diffraction grating 40A of the third diffraction grating layer 40.
  • the coupling coefficient is increased without increasing the thickness of the first diffraction grating layer 20 so as to increase the coupling coefficient difference between the region having a large coupling coefficient and the region having a small coupling coefficient.
  • the portion of the n-type InP buried layer 203 buried between the divided n-type GaInAsP layers 202 constitutes the diffraction grating 20A, and the n-type InP buried layer 205 has a divided n-type.
  • the portion buried between the GaInAsP layers 204 constitutes the diffraction grating 30A, and the portion of the n-type InP buried layer 210 buried between the divided n-type GaInAsP layers 206 constitutes the diffraction grating 40A. .
  • a portion of the n-type InP buried layer 203 formed above the n-type GaInAsP layer 202 constitutes a spacer layer 41 between the first diffraction grating layer 20 and the second diffraction grating layer 30, and n
  • a portion of the type InP buried layer 205 formed above the n type GaInAsP layer 204 forms a spacer layer 42 between the second diffraction grating layer 30 and the third diffraction grating layer 40, and the n type InP buried layer 205.
  • a portion of the buried layer 210 formed above the n-type GaInAsP layer 206 forms a spacer layer (cladding layer) 51 between the third diffraction grating layer 40 and the active layer 211.
  • the spacer layers 41 and 42 are preferably as thin as possible to absorb etching variations.
  • the thickness of the n-type doped InP layer 203 is 15 nm
  • the thickness of the n-type doped InP layer 205 is 15 nm
  • the spacer layer 41 and the spacer layer 42 have the same thickness.
  • the first diffraction grating layer 20, the second diffraction grating layer 30, and the third diffraction grating layer 40 are provided at the same interval.
  • the thickness of the n-type doped GaInAsP layer 202 constituting the diffraction grating 20A of the first diffraction grating layer 20 is 15 nm, and the diffraction grating 30A of the second diffraction grating layer 30 is configured.
  • the n-type doped GaInAsP layer 204 has a thickness of 20 nm
  • the n-type doped GaInAsP layer 206 constituting the diffraction grating 40A of the third diffraction grating layer 40 has a thickness of 15 nm
  • the layer 40 and the second diffraction grating layer 30 are configured to have different thicknesses. That is, the plurality of diffraction grating layers include diffraction grating layers having different thicknesses, and some of the diffraction grating layers have different thicknesses.
  • a difference in refractive index between the semiconductor layers 202 and 203 constituting the diffraction grating 20A of the first diffraction grating layer 20 or a difference in refractive index between the semiconductor layers 204 and 205 constituting the diffraction grating 3A of the second diffraction grating layer 30 is obtained.
  • the difference in refractive index between the semiconductor layers 206 and 210 constituting the diffraction grating 40A of the third diffraction grating layer 40 is made larger so that the first diffraction grating layer 20 or the second diffraction grating layer 30 and the third diffraction grating layer 40 are It is comprised as what has a different refractive index difference.
  • the plurality of diffraction grating layers include diffraction grating layers having different refractive index differences, and the semiconductor layers constituting the diffraction gratings of some diffraction grating layers have different refractive index differences.
  • the first diffraction grating layer 20, the second diffraction grating layer 30, and the third diffraction grating layer 40 have the same duty ratio of the diffraction gratings 20A, 30A, and 40A, but are coupled to the diffraction gratings 20A, 30A, and 40A.
  • the coefficients are different.
  • the contrast of the coupling coefficient can be increased by stacking the plurality of diffraction grating layers 20, 30, and 40 as in the case of the first embodiment described above. Therefore, an element that satisfies the desired requirements can be realized, and the element characteristics can be improved.
  • an n-type doped GaInAsP layer (for example, a composition wavelength of 1.25 ⁇ m, a thickness of 15 nm; a layer having a refractive index different from that of the substrate 201) 202 is formed on an n-type doped InP substrate 201.
  • n-type doped InP layer for example, thickness 15 nm; layer having the same refractive index as substrate 201
  • n-type doped GaInAsP layer for example, composition wavelength 1.25 ⁇ m, thickness 20 nm; layer having a refractive index different from that of substrate 201)
  • n-type doped InP layer for example, thickness 15 nm; layer having the same refractive index as substrate 201)
  • n-type doped GaInAsP layer for example, composition wavelength 1.15 ⁇ m, thickness 15 nm; refractive index is different from substrate 201) Layer
  • MOVPE metal organic chemical vapor deposition
  • An n-type InP clad layer may be formed between the n-type InP substrate 201 and the n-type GaInAsP layer 202.
  • a mask 207 having a diffraction grating pattern and made of an electron beam resist (ZEP520 manufactured by Nippon Zeon Co., Ltd.) is applied to the surface of the n-type GaInAsP layer 206 by an electron beam exposure method.
  • the diffraction grating pattern formed on the mask 207 includes a pattern for forming a phase shift ( ⁇ / 4 phase shift) having a phase of ⁇ radians in the center of the resonator of each element. .
  • a part of the n-type GaInAsP layer 206 and the n-type doped InP layer 205 is removed by reactive ion etching (RIE) using an ethane / hydrogen mixed gas, for example.
  • RIE reactive ion etching
  • the n-type GaInAsP layer 206 is divided, and the etching is stopped in the middle of the n-type InP layer 205. Thereby, the diffraction grating pattern is transferred to the entire surface of the n-type GaInAsP layer 206, and the n-type GaInAsP layer 206 is divided.
  • a positive photoresist (OFR 8600 manufactured by Tokyo Ohka Kogyo Co., Ltd .; thickness 300 nm) 208 is applied to this surface. Note that since the electron beam resist and the positive photoresist 208 constituting the mask 207 are not mixed, the mask 207 is not deformed.
  • a part of the positive photoresist 208 here, the resonator central portion; the central region in the direction along the optical waveguide
  • a positive photoresist mask 208A covering a portion near both ends in the direction along the optical waveguide (covering the surface of a part of the mask 207; covering the surface of the region corresponding to the region on both ends of the optical waveguide) Form.
  • the remaining part of the n-type InP layer 205 is formed by reactive ion etching (RIE) using an ethane / hydrogen mixed gas, for example, again using the electron beam resist mask 207 and the positive photoresist mask 208A exposed on the surface.
  • RIE reactive ion etching
  • the n-type GaInAsP layer 204 and the n-type InP layer 203 are partially removed.
  • the n-type InP layer 205 and the n-type GaInAsP layer 204 are divided, and the etching is stopped in the middle of the n-type InP layer 203.
  • the diffraction grating pattern is transferred to a part of the n-type GaInAsP layer 204 (here, the resonator central portion; the central region in the direction along the optical waveguide), and the n-type GaInAsP layer 204 is divided.
  • a negative photoresist OMR85, manufactured by Tokyo Ohka Kogyo Co., Ltd .; thickness 300 nm
  • the electron beam resist constituting the mask 207, the positive photoresist 208 constituting the mask 208A, and the negative photoresist 209 do not mix with each other, so that the mask 207 is not deformed.
  • a part of the negative photoresist 209 (here, a portion near the resonator center included in the resonator central portion; along the optical waveguide)
  • the region near the center included in the central region in the direction is removed, and the portions on both ends in the direction along the optical waveguide are covered (the surface of a part of the region of the positive photoresist 208 is covered;
  • a negative photoresist mask 209A (covering the surface of the region corresponding to the region) is formed.
  • the electron beam resist mask 207, the positive photoresist mask 208A, and the negative photoresist mask 209A exposed to the surface are used again, for example, by n-type reactive ion etching (RIE) using a mixed gas of ethane / hydrogen.
  • RIE reactive ion etching
  • Part of the InP layer 203, the n-type GaInAsP layer 202, and the n-type InP substrate 201 is removed.
  • the n-type InP layer 203 and the n-type GaInAsP layer 202 are divided, and the etching is stopped in the middle of the n-type InP substrate 201 (here, the etching depth is 10 nm).
  • the etching depth is 10 nm.
  • the diffraction grating pattern is transferred to a part of the n-type GaInAsP layer 202 (here, the vicinity of the center of the resonator; the vicinity of the center in the direction along the optical waveguide), and the n-type GaInAsP layer 202 is divided. .
  • the diffraction grating pattern formed on the n-type GaInAsP layer 202, the diffraction grating pattern formed on the n-type GaInAsP layer 204, and the diffraction grating pattern formed on the n-type GaInAsP layer 206 have the same mask 207.
  • the first diffraction grating layer 20, the second diffraction grating layer 30, and the third diffraction grating layer 40 that are formed as described below are formed by using the diffraction gratings 20 ⁇ / b> A and 30 ⁇ / b> A formed in corresponding regions. , 40A have the same phase, cycle, and duty ratio.
  • the thickness of the n-type GaInAsP layer 202 (thickness of the first diffraction grating layer 20) and the thickness of the n-type GaInAsP layer 206 (thickness of the third diffraction grating layer 40) are the same.
  • the refractive index of the n-type GaInAsP layer 202 (the refractive index difference of the first diffraction grating layer 20) and the refractive index of the n-type GaInAsP layer 206 (the refractive index difference of the third diffraction grating layer 40) are different.
  • the coupling coefficient of the diffraction grating 20A included in the first diffraction grating layer 20 and the coupling coefficient of the diffraction grating 40A included in the third diffraction grating layer 40 are different.
  • the refractive index of the n-type GaInAsP layer 202 (the refractive index difference of the first diffraction grating layer 20) and the refractive index of the n-type GaInAsP layer 204 (the refractive index difference of the second diffraction grating layer 30) are the same.
  • the thickness of the n-type GaInAsP layer 202 (the thickness of the first diffraction grating layer 20) is different from the thickness of the n-type GaInAsP layer 204 (the thickness of the second diffraction grating layer 30).
  • the coupling coefficient of the diffraction grating 20 ⁇ / b> A included in the first diffraction grating layer 20 is different from the coupling coefficient of the diffraction grating 30 ⁇ / b> A included in the second diffraction grating layer 30.
  • the thickness and refractive index of the n-type GaInAsP layer 204 thickness and refractive index difference of the second diffraction grating layer 30
  • the thickness and refractive index of the n-type GaInAsP layer 206 thickness of the third diffraction grating layer 40.
  • refractive index difference the coupling coefficient of the diffraction grating 30A included in the second diffraction grating layer 30 is different from the coupling coefficient of the diffraction grating 40A included in the third diffraction grating layer 40.
  • each of the diffraction grating layers 20, 30, and 40 has a constant duty ratio within the layer.
  • the processing accuracy of the diffraction grating is stabilized.
  • the diffraction grating layers 20, 30, and 40 have constant thickness and refractive index difference within the layers, the coupling coefficient of the diffraction grating is constant within the layers.
  • an n-type doped InP layer (a layer having the same refractive index as that of the substrate 201) 210 is grown on the entire surface by using, for example, the MOVPE method.
  • the trench formed by stopping is filled with the n-type InP layer 210.
  • the divided n-type GaInAsP layer 202 is embedded by the n-type InP layer 210, and the diffraction grating 20A is formed in a part (here, the vicinity of the center of the resonator; the vicinity of the center in the direction along the optical waveguide).
  • the first diffraction grating layer 20 is formed.
  • the divided n-type GaInAsP layer 204 is buried with the n-type InP layer 210, and a diffraction grating 30A is formed in a part (here, the resonator central portion; the central region in the direction along the optical waveguide). Two diffraction grating layers 30 are formed.
  • the divided n-type GaInAsP layer 206 is embedded by the n-type InP layer 210, and the third diffraction grating layer 40 in which the diffraction grating 40A is formed on the entire surface (the total length in the direction along the optical waveguide) is formed. .
  • a spacer layer 41 is formed between the first diffraction grating layer 20 and the second diffraction grating layer 30 by a part of the n-type InP layer 203 and the n-type InP layer 210.
  • a spacer layer 42 is formed between the second diffraction grating layer 30 and the third diffraction grating layer 40 by a part of the n-type InP layer 205 and the n-type InP layer 210.
  • a spacer layer 51 is formed on the upper side of the third diffraction grating layer 40 by a part of the n-type InP layer 210.
  • the thickness of the spacer layer 41 between the first diffraction grating layer 20 and the second diffraction grating layer 30 is the thickness of the n-type InP layer 203 (the thickness of the portion formed above the n-type GaInAsP layer 202).
  • the thickness of the spacer layer 42 between the second diffraction grating layer 30 and the third diffraction grating layer 40 is the thickness of the n-type InP layer 205 (the portion formed above the n-type GaInAsP layer 204).
  • the thickness of each of the diffraction grating layers 20, 30, and 40 is the same with a gap of 15 nm.
  • a quantum well active layer 211 includes an undoped AlGaInAs quantum well layer (for example, a thickness of 6.0 nm and a compressive strain of 1.0%) and an undoped AlGaInAs barrier layer (for example, a composition wavelength of 1.05 ⁇ m, a thickness). 10 nm), the number of quantum well layers is 10, and the emission wavelength thereof is 1310 nm.
  • undoped AlGaInAs-SCH (for example, wavelength 1.0 ⁇ m, thickness 20 nm) may be provided above and below the quantum well active layer 211 so as to sandwich the quantum well active layer 211.
  • a mask made of SiO 2 (for example, a thickness of 400 nm, a width of 1. nm) is formed on the semiconductor surface by using a normal chemical vapor deposition method (CVD method) and a photolithography technique. 3 ⁇ m stripe-shaped etching mask) 214 is formed.
  • the semiconductor stacked structure formed as described above is etched to a depth at which the n-type InP substrate 201 is dug, for example, about 0.7 ⁇ m, using, for example, a dry etching method. Then, a striped mesa structure (mesa stripe) is formed.
  • a current confinement layer 215 made of Fe-doped InP is grown on both sides of the mesa structure by using, for example, MOVPE, and an etching mask 214 is formed by, for example, hydrofluoric acid.
  • FIG. 8E after forming the p-side electrode 216 and the n-side electrode 217, non-reflective coatings 218 and 219 are formed on both end faces of the element, thereby completing the element.
  • an optical element having a structure in which the coupling coefficient of the diffraction grating is distributed in the resonator, as in the first embodiment. Therefore, the diffraction grating can be manufactured with high accuracy and stability, the yield is improved, and the difference in the coupling coefficient is increased between the area where the coupling coefficient is increased and the area where the coupling coefficient is decreased (the contrast of the coupling coefficient is increased). There is an advantage that the device characteristics can be improved.
  • the diffraction grating can be manufactured with high accuracy and stability, variations in element characteristics can be suppressed, and the element characteristics can be improved.
  • the controllability of the coupling coefficient and the design freedom of the coupling coefficient are improved.
  • the coupling coefficient is configured to be more strongly distributed in the center than that of the above-described first embodiment, so that higher FM modulation efficiency can be obtained. There is an advantage that the stability of single mode oscillation is also increased.
  • the diffraction grating layers 20, 30, and 40 are provided at the same interval, but the present invention is not limited to this.
  • the distance between the first diffraction grating layer 20 and the second diffraction grating layer 30 (the thickness of the spacer layer 41; the n-type GaInAsP of the n-type InP layer 203).
  • the thickness of the upper portion of the layer 202 is, for example, 25 nm, and the distance between the second diffraction grating layer 30 and the third diffraction grating layer 40 (the thickness of the spacer layer 42; the n-type GaInAsP layer 204 of the n-type InP layer 205)
  • the diffraction grating layers 20, 30, and 40 may be provided at different intervals with the thickness of the upper portion being, for example, 10 nm.
  • the plurality of diffraction grating layers may be provided at the same interval, may be provided at different intervals, or a part thereof may be different. You may provide at intervals. [Third Embodiment]
  • an optical element and a method for manufacturing the optical element according to the third embodiment will be described with reference to FIGS. 10 to 13E.
  • the optical element (DFB laser) and the manufacturing method thereof according to the present embodiment are different from those of the first embodiment described above, as shown in FIG.
  • the region where 31A is laminated is a region on both ends in the direction along the optical waveguide 1, the thickness of the plurality of diffraction grating layers 21 and 31 is the same, and the plurality of diffraction grating layers 21 , 31 have different intervals.
  • the optical element according to the present embodiment is, for example, a DFB (Distributed Feed-Back) laser (laser element; waveguide type optical element) having a structure in which the coupling coefficient of the diffraction grating is distributed in the resonator.
  • DFB Distributed Feed-Back
  • Active type optical element; light emitting element; code multiplex communication device as shown in FIG. 10, optical waveguide 1 and a plurality (two in this case) of diffraction gratings provided along optical waveguide 1 Layers 21 and 31.
  • a first diffraction grating layer 21 and a second diffraction grating layer 31 are provided as a plurality of diffraction grating layers, and these diffraction grating layers 21 and 31 are optical waveguides. 1 are all provided on the lower side (substrate side with respect to the optical waveguide 1; one side of the optical waveguide 1).
  • each of the diffraction grating layers 21 and 31 has a refractive index different from that of the divided one semiconductor layer 302 and 304 and the one semiconductor layer 302 and 304, and embeds the one semiconductor layer 302 and 304. It is configured to include diffraction gratings (embedded diffraction gratings; embedded diffraction gratings) 21A and 31A configured by other semiconductor layers 303 and 307.
  • the plurality of diffraction grating layers 21 and 31 have the same phase, period, and duty ratio (ratio of portions left by etching with respect to the period of the diffraction grating) of the diffraction gratings 21A and 31A formed in the corresponding regions. ing.
  • the duty ratios of the diffraction gratings 21A and 31A provided in the diffraction grating layers 21 and 31 are constant, respectively.
  • the first diffraction grating layer 21 is formed only in regions on both ends in the direction along the optical waveguide 1 (the length direction of the resonator). That is, the region where the diffraction grating 21 ⁇ / b> A of the first diffraction grating layer 21 is formed is a region on both ends in the direction along the optical waveguide 1.
  • the second diffraction grating layer 31 has the diffraction grating 31 ⁇ / b> A formed over the entire length in the direction along the optical waveguide 1. That is, the region where the diffraction grating 31 ⁇ / b> A of the second diffraction grating layer 31 is formed is the entire region along the optical waveguide 1.
  • the length of the region along the optical waveguide 1 in the region where the diffraction grating 21A of the first diffraction grating layer 21 is formed is the diffraction grating 31A of the second diffraction grating layer 31 formed.
  • the length of the region where the diffraction gratings 21A and 31A are formed is different between the first diffraction grating layer 21 and the second diffraction grating layer 31. ing.
  • regions corresponding to these diffraction grating layers 21 and 31 are regions on both ends in the direction along the optical waveguide 1.
  • two diffraction grating layers 21 and 31 are provided as a plurality of diffraction grating layers, and the lengths of the regions of the diffraction grating layers 21 and 31 where the diffraction gratings 21A and 31A are formed are the same. Although they are different from each other, they are not limited to this.
  • a third diffraction grating layer (a layer in which the length in the direction along the optical waveguide 1 in the region where the diffraction grating is formed is the same as the first diffraction grating layer 21) is further provided, and both end sides in the direction along the optical waveguide 1 In this area, the coupling coefficient may be increased.
  • the plurality of diffraction grating layers may include at least two diffraction grating layers having different lengths of regions where the diffraction gratings are formed.
  • a buried diffraction grating is used, a plurality of diffraction grating layers including a region where the buried diffraction grating is formed are multilayered, and a multilayer diffraction is performed in a region where the coupling coefficient is to be maximized.
  • An embedded diffraction grating is formed in all of the grating layers (here, two of the first diffraction grating layer 21 and the second diffraction grating layer 31), and a part of the diffraction grating layers ( Here, a diffraction grating is formed only in the second diffraction grating layer 31).
  • the second diffraction grating layer 31 is laminated on the first diffraction grating layer 21, and each diffraction grating layer 21 is a region on both ends in the direction along the optical waveguide 1.
  • 31 diffraction gratings 21A, 31A are stacked. That is, the number of stacked diffraction gratings is different in the direction along the optical waveguide 1. In this way, the coupling coefficient in the region on both ends in the direction along the optical waveguide 1 is increased, and the coupling coefficient in the other region (center region) is decreased as compared with the region on both ends. .
  • the present DFB laser (optical semiconductor element) includes an n-type doped GaInAsP layer (for example, a composition wavelength of 1) divided on both end regions on an n-type doped InP substrate 301. .1 .mu.m, thickness 20 nm) first diffraction grating layer 21 including embedded diffraction grating 21A formed by embedding 302 with n-type doped InP layers (for example, thickness 20 nm; buried layer) 303 having different refractive indexes.
  • n-type doped GaInAsP layer for example, a composition wavelength of 1
  • first diffraction grating layer 21 including embedded diffraction grating 21A formed by embedding 302 with n-type doped InP layers (for example, thickness 20 nm; buried layer) 303 having different refractive indexes.
  • the optical waveguide 1 includes the second diffraction grating layer 31 including 31A and the quantum well active layer 308 as a waveguide core layer.
  • the portion of the n-type InP buried layer 303 buried between the divided n-type GaInAsP layers 302 constitutes the diffraction grating 21A.
  • the portion buried between the divided n-type GaInAsP layers 304 constitutes the diffraction grating 31A.
  • the portion formed above the n-type GaInAsP layer 302 forms a spacer layer 43 between the first diffraction grating layer 21 and the second diffraction grating layer 31, and n A portion of the type InP buried layer 307 formed above the n-type GaInAsP layer 304 forms a spacer layer (cladding layer) 52 between the second diffraction grating layer 31 and the active layer 308. Further, the thickness of the spacer layer 43 is preferably as thin as possible so as to absorb the variation in etching.
  • the thickness of the n-type doped GaInAsP layer 302 constituting the diffraction grating 21A of the first diffraction grating layer 21 is set to 20 nm, and the diffraction grating 31A of the second diffraction grating layer 31 is configured.
  • the n-type doped GaInAsP layer 304 has a thickness of 20 nm, and the first diffraction grating layer 21 and the second diffraction grating layer 31 have the same thickness.
  • the difference in refractive index between the semiconductor layers 302 and 303 constituting the diffraction grating 21A of the first diffraction grating layer 21 is the same as the difference between the refractive indexes of the semiconductor layers 304 and 307 constituting the diffraction grating 31A of the second diffraction grating layer 31.
  • the first diffraction grating layer 21 and the second diffraction grating layer 31 are configured to have the same refractive index difference.
  • the coupling coefficients of the diffraction gratings 21A and 31A are the same.
  • the contrast of the coupling coefficient can be increased by stacking the plurality of diffraction grating layers 21 and 31, an element that satisfies the desired requirements can be realized. Element characteristics can be improved.
  • an n-type doped GaInAsP layer for example, a composition wavelength of 1.15 ⁇ m, a thickness of 20 nm; a layer having a refractive index different from that of the substrate
  • n Type-doped InP layer for example, thickness 20 nm; layer having the same refractive index as the substrate
  • n-type doped GaInAsP layer for example, composition wavelength 1.15 ⁇ m, thickness 20 nm; layer having a refractive index different from that of the substrate
  • the layers are sequentially stacked using a metal organic chemical vapor deposition method (MOVPE method).
  • MOVPE method metal organic chemical vapor deposition method
  • an n-type InP cladding layer may be formed between the n-type InP substrate 301 and the n-type GaInAsP layer 302.
  • a mask 305 having a diffraction grating pattern and made of an electron beam resist (ZEP520 manufactured by Nippon Zeon Co., Ltd.) is applied to the surface of the n-type GaInAsP layer 304 by, for example, an electron beam exposure method.
  • the diffraction grating pattern formed on the mask 305 includes a pattern for forming a phase shift ( ⁇ / 4 phase shift) having a phase of ⁇ radians in the center of the resonator of each element. .
  • the n-type GaInAsP layer 304 and a part of the n-type InP layer 303 are removed by reactive ion etching (RIE) using an ethane / hydrogen mixed gas, for example.
  • RIE reactive ion etching
  • the n-type GaInAsP layer 304 is divided so that the etching stops in the middle of the n-type InP layer 303.
  • the diffraction grating pattern is transferred to the entire surface of the n-type GaInAsP layer 304, and the n-type GaInAsP layer 304 is divided.
  • a positive photoresist (Tokyo Ohka's OFPR8600; for example, a thickness of 300 nm) 306 is applied to this surface. Note that since the electron beam resist and the positive photoresist 306 constituting the mask 305 are not mixed, the mask 305 is not deformed. Next, using a normal photolithography technique, as shown in FIG.
  • a part of the positive photoresist 306 (here, both ends of the resonator; regions on both ends in the direction along the optical waveguide) ) Is removed to form a positive photoresist mask 306A covering the central portion of the resonator (covering the surface of a part of the mask 305; covering the surface of the region corresponding to the central region of the optical waveguide).
  • the remaining portion of the n-type InP layer 303 is formed by reactive ion etching (RIE) using an ethane / hydrogen mixed gas, for example, again using the electron beam resist mask 305 and the positive photoresist mask 306A exposed on the surface.
  • RIE reactive ion etching
  • the n-type GaInAsP layer 302 and the n-type InP substrate 301 are partially removed.
  • the n-type InP layer 303 and the n-type GaInAsP layer 302 are divided, and the etching stops in the middle of the n-type InP substrate 301 (here, at an etching depth of 10 nm). I am doing so.
  • the diffraction grating pattern is transferred to a part of the n-type GaInAsP layer 302 (here, both end portions of the resonator; regions on both ends in the direction along the optical waveguide), and the n-type GaInAsP layer 302 is divided. become.
  • the diffraction grating pattern formed on the n-type GaInAsP layer 304 and the diffraction grating pattern formed on the n-type GaInAsP layer 302 are formed using the same mask 305, they are formed as described later.
  • the first diffraction grating layer 21 and the second diffraction grating layer 31 have the same phase, period, and duty ratio of the diffraction gratings 21A and 31A formed in the corresponding regions.
  • the thickness and refractive index of the n-type GaInAsP layer 302 thickness and refractive index difference of the first diffraction grating layer 21
  • the thickness and refractive index of the n-type GaInAsP layer 304 second diffraction grating layer 31.
  • the thickness and the refractive index difference are the same.
  • the coupling coefficient of the diffraction grating 21 ⁇ / b> A included in the first diffraction grating layer 21 and the coupling coefficient of the diffraction grating 31 ⁇ / b> A included in the second diffraction grating layer 31 are the same.
  • each of the diffraction grating layers 21 and 31 has a constant duty ratio within the layer.
  • the processing accuracy of the diffraction grating is stabilized.
  • the diffraction grating layers 21 and 31 have constant thickness and refractive index difference in the layers, the coupling coefficient of the diffraction grating is constant in the layers.
  • an n-type doped InP layer (a layer having the same refractive index as that of the substrate 301) 307 is grown on the entire surface by using, for example, the MOVPE method. Accordingly, the groove formed by stopping etching in the middle of the n-type InP layer 303 and the groove formed by stopping etching in the middle of the n-type InP substrate 301 are filled with the n-type InP layer 307.
  • the divided n-type GaInAsP layer 302 is embedded by the n-type InP layer 307, and the diffraction grating 21A is partially formed (here, both ends of the resonator; regions on both ends in the direction along the optical waveguide).
  • the formed first diffraction grating layer 21 is formed.
  • the divided n-type GaInAsP layer 304 is embedded with the n-type InP layer 307, and the second diffraction grating layer 31 is formed in which the diffraction grating 31A is formed on the entire surface (the total length in the direction along the optical waveguide). .
  • a spacer layer 43 is formed between the first diffraction grating layer 21 and the second diffraction grating layer 31 by a part of the n-type InP layer 303 and the n-type InP layer 307.
  • a spacer layer 52 is formed on a part of the n-type InP layer 307 above the second diffraction grating layer 31.
  • a quantum well active layer 308 and a p-type doped InP cladding layer (for example, 250 nm thick) 309 are sequentially stacked by, for example, the MOVPE method.
  • the quantum well active layer 308 includes an undoped GaInAsP quantum well layer (for example, a thickness of 5.1 nm and a compressive strain of 1.0%) and an undoped GaInAsP barrier layer (for example, a composition wavelength of 1.2 ⁇ m, a thickness). 10 nm), the number of quantum well layers is 6, and the emission wavelength is 1560 nm.
  • undoped GaInAsP-SCH (for example, a wavelength of 1.15 ⁇ m and a thickness of 20 nm) may be provided above and below the quantum well active layer 308 so as to sandwich the quantum well active layer 308.
  • a mask made of SiO 2 (for example, a thickness of 400 nm, a width of 1. nm) is formed on the semiconductor surface by using an ordinary chemical vapor deposition method (CVD method) and a photolithography technique. 6 ⁇ m stripe-shaped etching mask) 310 is formed. Then, as shown in FIG. 13A, the semiconductor stacked structure formed as described above is etched to a depth at which the n-type InP substrate 301 is dug by about 0.7 ⁇ m, for example, using a dry etching method. Then, a striped mesa structure (mesa stripe) is formed.
  • CVD method chemical vapor deposition method
  • 6 ⁇ m stripe-shaped etching mask 310 6 ⁇ m stripe-shaped etching mask
  • a current confinement layer composed of a p-type InP layer 311 / n-type InP layer 312 / p-type InP layer 313 is formed on both sides of this mesa structure by, for example, MOVPE.
  • MOVPE metal-organic chemical vapor deposition
  • a p-type InP cladding layer for example, 2.2 ⁇ m thick
  • a type GaInAs contact layer for example, a thickness of 300 nm
  • the optical element Diffraction grating
  • the manufacturing method thereof according to the present embodiment, an optical element having a structure in which the coupling coefficient of the diffraction grating is distributed in the resonator, as in the first embodiment. Therefore, the diffraction grating can be manufactured with high accuracy and stability, the yield is improved, and the difference in the coupling coefficient is increased between the area where the coupling coefficient is increased and the area where the coupling coefficient is decreased (the contrast of the coupling coefficient is increased). There is an advantage that the device characteristics can be improved.
  • the diffraction grating can be manufactured with high accuracy and stability, variations in element characteristics can be suppressed, and the element characteristics can be improved.
  • the controllability of the coupling coefficient and the design freedom of the coupling coefficient are improved.
  • the coupling coefficient on the element end face side is large, axial hole burning can be suppressed even when a long resonator is used. For this reason, stable single longitudinal mode operation can be maintained even with higher light output, and the oscillation line width of the laser can be made narrower.
  • the present invention is applied to an element having a structure in which the coupling coefficient is distributed so as to decrease toward the center of the resonator, thereby suppressing axial hole burning and increasing light intensity. Longitudinal mode stability during output can be improved.
  • Such an element is used for a laser light source in a system that requires a laser light source having a very narrow laser oscillation line width of 100 to 500 kHz, such as a coherent optical transmission system or a multi-level modulation optical communication system. Can be used as
  • the laser resonator length In order to narrow the laser oscillation line width, it is first necessary to operate in a single longitudinal mode like a DFB laser. To further narrow the line width, the laser resonator length must be increased. is necessary. For example, the line width of 1 MHz or less can be achieved by setting the laser resonator length to 1000 ⁇ m or more. Furthermore, since the line width is proportional to the reciprocal of the light output of the laser, the line width can be reduced as the operation is performed at a higher light output. For this reason, in order to further reduce the line width, it is only necessary to further increase the laser resonator length and operate with the highest possible light output.
  • each diffraction grating layer has a constant duty ratio of the diffraction grating in the layer, but is not limited thereto.
  • the second diffraction grating layer 3 is a diffraction grating in a region corresponding to a region where the diffraction grating 2A of the first diffraction grating layer 2 is formed.
  • the duty ratio (here, 25%) of the diffraction grating 3A in a region other than this region (regions on both ends in the direction along the optical waveguide) other than this region is different from the duty ratio (here, 50%) of 3A. May be. That is, one of the plurality of diffraction grating layers may be configured to include diffraction gratings having different duty ratios. This modification can also be applied to the configurations of the second embodiment and the third embodiment described above.
  • a plurality of diffraction grating layers are configured so that the duty ratios of the diffraction gratings formed in the corresponding regions are the same, while each diffraction grating layer has a duty ratio of the diffraction grating in the layer, The duty ratio may be changed within a range in which the duty ratio does not become very large or very small.
  • the plurality of diffraction grating layers can be configured to include at least one diffraction grating layer including diffraction gratings having different duty ratios.
  • the plurality of diffraction grating layers have the same duty ratio of the diffraction gratings formed in the corresponding regions, but the present invention is not limited to this.
  • a diffraction grating is formed by etching, its cross-sectional shape becomes a trapezoid instead of a rectangle, and as a result, even if the duty ratio of the diffraction grating formed in the corresponding region is slightly different, it is formed in the corresponding region.
  • the phase and period of the diffraction gratings are the same, substantially the same effects as those of the above-described embodiments and modifications thereof can be obtained.
  • the configuration in which the coupling coefficient increases toward the center of the resonator (first embodiment, second embodiment), and the configuration in which the coupling coefficient decreases toward the center of the resonator ( The third embodiment) is described as an example.
  • the present invention is not limited thereto, and the distribution of the coupling coefficient in the resonator is arbitrary, and can be freely set according to the design of the optical element. is there.
  • the structure in which the distribution of the coupling coefficient is symmetric with respect to the center of the resonator along the resonator direction is described as an example.
  • the coupling coefficient distribution is asymmetric with respect to the center of the resonator, for example, a structure in which the coupling coefficient on the laser front end surface side is increased in order to increase the return light resistance, and conversely on the laser front end surface side in order to increase the optical output. It is also possible to adopt a structure with a reduced coupling coefficient.
  • a GaInAsP-based compound semiconductor material (first embodiment, third embodiment) or an AlGaInAs-based compound semiconductor material (second embodiment) is used on an n-type InP substrate.
  • a DFB laser is formed by forming a quantum well active layer is described as an example.
  • the present invention is not limited to this, and the present invention is a device (optical element) in which a diffraction grating is loaded in the vicinity of an optical waveguide. ) Widely applicable.
  • an AlGaInAs-based compound semiconductor material may be used to form a quantum well active layer, or in the configuration of the second embodiment, a GaInAsP-based compound semiconductor material is used.
  • a quantum well active layer may be formed.
  • the quantum well active layer may be formed using other compound semiconductor materials such as a GaInNAs-based compound semiconductor material. Also in this case, the same effects as those of the above-described embodiments and modifications thereof can be obtained.
  • a material that can constitute an optical element may be used as a material constituting the element.
  • a material that can constitute an optical element semiconductor laser
  • other compound semiconductor materials may be used.
  • organic materials and inorganic materials can also be used.
  • the same effects as those of the above-described embodiments and modifications thereof can be obtained.
  • the substrate may be a p-type conductive substrate or a semi-insulating substrate. In this case, the conductivity of each layer formed on the substrate is reversed. Also in this case, the same effects as those of the above-described embodiments and modifications thereof can be obtained.
  • a GaAs substrate may be used, and each layer may be formed using a semiconductor material capable of crystal growth (for example, epitaxial growth) on the GaAs substrate.
  • a semiconductor material capable of crystal growth for example, epitaxial growth
  • it may be produced by a method of bonding onto a silicon substrate. Also in this case, the same effects as those of the above-described embodiments and modifications thereof can be obtained.
  • the pn buried structure or the SI-BH structure is adopted as the waveguide structure.
  • the present invention is not limited to this.
  • another buried structure is used. It is also possible to use a ridge waveguide structure or the like.
  • the present invention can be applied to other semiconductor lasers such as DBR (Distributed Bragg Reflector) lasers and DR (Distributed Reflector) lasers. Furthermore, the present invention can be applied not only to an active optical element such as a semiconductor laser but also to a passive optical element such as an optical filter. In these cases, the same effects as those of the above-described embodiments and the modifications thereof can be obtained.
  • DBR Distributed Bragg Reflector
  • DR distributed Reflector

Abstract

 光素子を、光導波路(1)と、光導波路(1)に沿って設けられた複数の回折格子層(2,3)とを備えるものとし、各回折格子層(2,3)を、分断された一の半導体層(102,104)と、一の半導体層(102,104)と屈折率が異なり、一の半導体層(102,104)を埋め込む他の半導体層(103,107)とによって構成される回折格子(2A,3A)を含むものとし、複数の回折格子層を、回折格子(2A,3A)が形成されている領域の長さが異なる少なくとも2つの回折格子層(2,3)を含むものとし、複数の回折格子層(2,3)は、対応する領域に形成されている回折格子(2A,3A)の位相、周期が同一になっている。

Description

光素子及びその製造方法
 本発明は、埋込回折格子を有する導波路型の光素子及びその製造方法に関する。
 埋込回折格子を装荷した導波路型の光素子としては、例えば化合物半導体で構成されたDFBレーザがある。
 近年、DFBレーザにおいて、回折格子の帰還量を決定する結合係数を共振器方向で分布させる構造を採用することで、レーザ特性を向上させることが提案されている。
 例えば、結合係数を共振器中央に向かって小さくなるように分布させた構造を採用することで、軸方向のホールバーニングを抑制し、高光出力時の縦モード安定性を向上させることが提案されている(例えば非特許文献1参照)。
 また、ホールバーニングの発生を抑制するために、埋込回折格子の幅を共振器中央に向かって徐々に小さくしたり、埋込回折格子の幅を共振器中央に向かって徐々に大きくしたり、埋込回折格子の高さを共振器中央に向かって徐々に高くしたり、埋込回折格子の高さを共振器中央に向かって徐々に低くしたりすることも提案されている(例えば特許文献1参照)。
 また、共振器中央の結合係数を大きくし、両端の結合係数を中央に比べて小さくした構造にすることで、大きなしきい値利得差あるいは主副モード間利得差が得られることも提案されている(例えば非特許文献2~5参照)。
 また、共振器方向で駆動電極を3分割し、中央の電極の注入電流を変調することで、DFBレーザをFM変調光源として用いる場合に、共振器長を長くすることで、スペクトル線幅を狭くすることが提案されている(例えば非特許文献6、特許文献2参照)。
 なお、特許文献3には、活性層を上下に挟むように埋込回折格子が設けられたDFBレーザが開示されているが、一方の回折格子は、外部から入力してくるレーザ光の反射戻り光を反射するようにレーザの前端面近傍に設けられており、また、発振波長が単一波長になるように上下の回折格子の位相が一致しないようにしている(段落0036、0037参照)。また、上記特許文献3に記載されているように、活性層の上下両側に埋込回折格子を設ける構造では、上下の回折格子の位相が同期するように精度良く作製するのは困難である。
特開平8-255954号公報 特許第2966485号公報 特開2004-356571号公報 G. Morthier et al., "A New DFB-Laser Diode with Reduced Spatial Hole Burning", IEEE Photonics Technology Letter, vol. 2, no. 6, June 1990, pp.388-390 大橋他、「不均一な結合係数を有するDFBレーザのモード解析」、1989年秋、応用物理学会学術講演会、30p-ZG-13 小路他、「不均一深さ回折格子λ/4 シフトDFBレーザの解析」、1991年秋、応用物理学会学術講演会、10p-ZM-17 小滝他、「不均一深さ回折格子を有するMQW-DFBレーザ」、1991年春、応用物理学会学術講演会、29p-D-7 M. Matsuda et al., "Reactively Ion Etched Nonuniform-Depth Grating for Advenced DFB Lasers", 3rd International Conference on Indium Phosphide and Related Materials, April 8-11, 1991, TuF.4 S. Ogita et al., "FM Response of Narrow-Linewidth, Multielectrode λ/4 Shift DFB Laser", IEEE Photonics Technology Letters, vol. 2, no. 3, March 1990, pp. 165-166
 ところで、回折格子の結合係数を共振器内で分布させた構造を採用する場合、素子特性を向上させるために、結合係数を大きくする領域と結合係数を小さくする領域とで結合係数の差を大きくする(結合係数のコントラストを大きくする)ことが必要な場合がある。
 しかしながら、例えば上記特許文献2や上記非特許文献4,5に記載されているように、InP基板の表面に凹凸を形成し、これを半導体層で埋め込むことによって形成される表面回折格子を用いて、結合係数を大きくする領域と結合係数を小さくする領域とで結合係数の差を大きくするためには、結合係数を小さくする領域において回折格子の深さを非常に浅くすることが必要になる。
 このような非常に浅い回折格子は精度良く安定して作製することが難しいため、結合係数にばらつきが生じてしまい、素子特性(ここではレーザの発振しきい値)が変動してしまうことになる。また、歩留まりも良くない。
 また、例えば上記特許文献1に記載されているように、埋込回折格子の幅を変える場合、結合係数を最大にする領域の回折格子の幅は回折格子の周期の半分(デューティ比50%)にし、それよりも回折格子の幅を広く(デューティ比50%よりも大きく)又は狭く(デューティ比50%よりも小さく)することで結合係数の小さい領域の回折格子を形成することになる。
 しかしながら、結合係数を大きくする領域と結合係数を小さくする領域とで結合係数の差を大きくするためには、結合係数を小さくする領域において回折格子の幅を非常に広くするか、又は、非常に狭くする必要がある。
 回折格子の幅を非常に広くする場合、回折格子を形成するためのマスクの開口部が非常に狭くなるため、エッチングによって加工して回折格子を形成するのが困難である。一方、回折格子の幅を非常に狭くする場合、エッチングマスクの幅も非常に狭くすることになるが、例えば数%幅のマスクを精度良く安定して作製することは困難である。また、非常に幅の狭い回折格子が形成できたとしても、これを埋め込むと消えてしまう場合があり、安定して埋込回折格子を作製することが難しい。このため、歩留まりも良くない。
 そこで、回折格子の結合係数を共振器内で分布させた構造の光素子において、回折格子を精度良く安定して作製できるようにし、歩留まりを向上させるとともに、結合係数を大きくする領域と結合係数を小さくする領域とで結合係数の差を大きくする(結合係数のコントラストを大きくする)ことができるようにして、素子特性を向上させたい。
 このため、本光素子は、光導波路と、光導波路に沿って設けられた複数の回折格子層とを備え、各回折格子層は、分断された一の半導体層と、一の半導体層と屈折率が異なり、一の半導体層を埋め込む他の半導体層とによって構成される回折格子を含み、複数の回折格子層は、回折格子が形成されている領域の長さが異なる少なくとも2つの回折格子層を含み、複数の回折格子層は、対応する領域に形成されている回折格子の位相、周期が同一であることを要件とする。
 また、本光素子の製造方法は、基板上に、複数の層を積層し、表面上に、回折格子パターンを有する一のマスクを形成し、一のマスクを用いてエッチングして複数の層の中の一の層に回折格子パターンを転写し、一のマスクの一部の領域の表面を覆うように他のマスクを形成し、一のマスク及び他のマスクを用いてエッチングして複数の層の中の他の層に回折格子パターンを転写し、一のマスク及び他のマスクを除去し、他の層によって埋め込むことによって複数の回折格子層を形成することを要件とする。
 したがって、本光素子及びその製造方法によれば、回折格子の結合係数を共振器内で分布させた構造の光素子において、回折格子を精度良く安定して作製できるようになり、歩留まりが向上するとともに、結合係数を大きくする領域と結合係数を小さくする領域とで結合係数の差を大きくする(結合係数のコントラストを大きくする)ことができ、素子特性を向上させることができるという利点がある。
本発明の第1実施形態にかかる光素子(DFBレーザ)の構成を示す模式的断面図である。 図2(A)~図2(E)は、本発明の第1実施形態にかかる光素子(DFBレーザ)の一構成例の製造方法を説明するための模式的斜視図である。 図3(A)~図3(E)は、本発明の第1実施形態にかかる光素子(DFBレーザ)の一構成例の製造方法を説明するための模式的斜視図である。 図4(A)~図4(E)は、本発明の第1実施形態にかかる光素子(DFBレーザ)の一構成例の製造方法を説明するための模式的斜視図である。 本発明の第2実施形態にかかる光素子(DFBレーザ)の構成を示す模式的断面図である。 図6(A)~図6(E)は、本発明の第2実施形態にかかる光素子(DFBレーザ)の一構成例の製造方法を説明するための模式的斜視図である。 図7(A)~図7(E)は、本発明の第2実施形態にかかる光素子(DFBレーザ)の一構成例の製造方法を説明するための模式的斜視図である。 図8(A)~図8(E)は、本発明の第2実施形態にかかる光素子(DFBレーザ)の一構成例の製造方法を説明するための模式的斜視図である。 本発明の第2実施形態にかかる光素子(DFBレーザ)の他の構成例を示す模式的断面図である。 本発明の第3実施形態にかかる光素子(DFBレーザ)の構成を示す模式的断面図である。 図11(A)~図11(E)は、本発明の第3実施形態にかかる光素子(DFBレーザ)の一構成例の製造方法を説明するための模式的斜視図である。 図12(A)~図12(E)は、本発明の第3実施形態にかかる光素子(DFBレーザ)の一構成例の製造方法を説明するための模式的斜視図である。 図13(A)~図13(E)は、本発明の第3実施形態にかかる光素子(DFBレーザ)の一構成例の製造方法を説明するための模式的斜視図である。 本発明の第1実施形態にかかる光素子(DFBレーザ)の他の構成例を示す模式的断面図である。
符号の説明
 1 光導波路
 2,3,20,30,40,21,31 回折格子層
 2A,3A,20A,30A,40A,21A,31A 回折格子(埋込回折格子)
 4,5,41,42,51,43,52 スペーサ層
 101,201,301 n型ドープInP基板
 102,202,104,204,206,302,304 n型ドープGaInAsP層
 103,203,107,205,210,303,307 n型ドープInP層
 105,207,305 電子ビームレジストマスク
 106,208,306 ポジ型フォトレジスト
 106A,208A,306A ポジ型フォトレジストマスク
 108,211,308 量子井戸活性層
 109,114,212,309,314 p型InPクラッド層
 110,214,310 SiOマスク
 111,311 p型InP層
 112,312 n型InP層
 113,313 p型InP層
 115,213,315 p型GaInAsコンタクト層
 116,216,316 p側電極
 117,217,317 n側電極
 118,119,218,219,318,319 無反射コート
 209 ネガ型フォトレジスト
 209A ネガ型フォトレジストマスク
 215 Feドープ型InP電流狭窄層
 以下、図面により、本実施形態にかかる光素子及びその製造方法について説明する。
[第1実施形態]
 まず、第1実施形態にかかる光素子及びその製造方法について、図1~図4(E)を参照しながら説明する。
 本実施形態にかかる光素子は、例えば、回折格子の結合係数を共振器内で分布させた構造を有するDFB(Distributed Feed-Back;分布帰還型)レーザ(レーザ素子;導波路型光素子;アクティブ型光素子;発光素子)であって、図1に示すように、光導波路1と、光導波路1に沿って設けられた複数(ここでは2つ)の回折格子層2,3とを備える。
 ここでは、図1に示すように、複数の回折格子層として、第1回折格子層2と、第2回折格子層3とが設けられており、これらの回折格子層2,3は、光導波路1の下側(光導波路1に対して基板側;光導波路1の片側)に全て設けられている。なお、これらの回折格子層2,3は光導波路1に近接して装荷されている。
 各回折格子層2,3は、図1に示すように、分断された一の半導体層102,104と、一の半導体層102,104と屈折率が異なり、一の半導体層102,104を埋め込む他の半導体層103,107とによって構成される回折格子(埋込回折格子;埋込型回折格子)2A,3Aを含むものとして構成される。
 また、複数の回折格子層2,3は、対応する領域に形成されている回折格子2A,3Aの位相、周期、デューティ比(回折格子の周期に対するエッチングによって残される部分の割合)が同一になっている。なお、本実施形態では、各回折格子層2,3に備えられる回折格子2A,3Aのデューティ比は、それぞれ、一定になっている。
 本実施形態では、第1回折格子層2は、図1に示すように、回折格子2Aが光導波路1に沿う方向(共振器の長さ方向)の中央領域のみに形成されている。つまり、第1回折格子層2の回折格子2Aが形成されている領域は、光導波路1に沿う方向の中央領域である。
 また、第2回折格子層3は、図1に示すように、回折格子3Aが光導波路1に沿う方向の全長にわたって形成されている。つまり、第2回折格子層3の回折格子3Aが形成されている領域は、光導波路1に沿う方向の全領域である。
 このように、本実施形態では、第1回折格子層2の回折格子2Aが形成されている領域の光導波路1に沿う方向の長さが、第2回折格子層3の回折格子3Aが形成されている領域の光導波路1に沿う方向の長さよりも短くなっており、第1回折格子層2と第2回折格子層3とで回折格子2A,3Aが形成されている領域の長さが異なっている。この場合、これらの回折格子層2,3の対応する領域は、光導波路1に沿う方向の中央領域である。
 なお、本実施形態では、複数の回折格子層として2つの回折格子層2,3を設けており、これらの回折格子層2,3の回折格子2A,3Aが形成されている領域の長さが互いに異なっているが、これに限られるものではない。例えば、第3回折格子層(回折格子が形成されている領域の光導波路1に沿う方向の長さが第1回折格子層2と同じ層)をさらに設け、光導波路1に沿う方向の中央領域において、より結合係数を大きくするようにしても良い。このため、複数の回折格子層は、回折格子が形成されている領域の長さが異なる少なくとも2つの回折格子層を含んでいれば良い。
 このように、本実施形態では、埋込回折格子を用い、埋込回折格子が形成されている領域を含む複数の回折格子層を多層化し、結合係数を最大にしたい領域では多層化された回折格子層のすべて(ここでは第1回折格子層2と第2回折格子層3の2つ)に埋込回折格子を形成し、結合係数をそれよりも小さくしたい領域では一部の回折格子層(ここでは第2回折格子層3)にだけ回折格子を形成するようにしている。
 具体的には、図1に示すように、第1回折格子層2上に第2回折格子層3が積層されており、光導波路1に沿う方向の中央領域で、各回折格子層2,3の回折格子2A,3Aが積層された構造になっている。つまり、回折格子の積層数が光導波路1に沿う方向で異なるように構成されている。このようにして、光導波路1に沿う方向の中央領域の結合係数が大きくなり、この中央領域と比較してそれ以外の領域(両端面近傍領域)の結合係数が小さくなるようにしている。
 また、本DFBレーザ(光半導体素子)は、波長1.55μm帯で発振するDFBレーザであって、図1に示すように、n型ドープInP基板101上に、中央領域で分断されたn型ドープGaInAsP層(例えば、組成波長1.25μm、厚さ25nm)102を、屈折率が異なるn型ドープInP層(例えば厚さ15nm;埋込層)103によって埋め込むことによって形成された埋込回折格子2Aを含む第1回折格子層2と、全領域で分断されたn型ドープGaInAsP層(例えば、組成波長1.15μm、厚さ20nm)104を、屈折率が異なるn型ドープInP層107によって埋め込むことによって形成された埋込回折格子3Aを含む第2回折格子層3と、導波路コア層として量子井戸活性層108を含む光導波路1とを備えるものとして構成される。
 このように、本実施形態の具体的構成例では、第1回折格子層2の回折格子2Aを、組成波長1.25μmのn型ドープGaInAsP層102とn型ドープInP層103とによって構成し、第2回折格子層3の回折格子3Aを、組成波長1.15μmのn型ドープGaInAsP層104とn型ドープInP層107とによって構成することで、第1回折格子層2の回折格子2Aを構成する半導体層102,103の屈折率差を、第2回折格子層3の回折格子3Aを構成する半導体層104,107の屈折率差よりも大きくしている。つまり、第1回折格子層2の厚さをそれほど厚くしないで結合係数を大きくして、結合係数が大きい領域と結合係数が小さい領域との間の結合係数差を大きくしている。
 つまり、n型InP埋込層103のうち、分断されたn型GaInAsP層102の間に埋め込まれた部分は回折格子2Aを構成し、n型InP埋込層107のうち、分断されたn型GaInAsP層104の間に埋め込まれた部分は回折格子3Aを構成する。
 なお、n型InP埋込層103のうち、n型GaInAsP層102の上側に形成される部分は第1回折格子層2と第2回折格子層3との間のスペーサ層4を構成し、n型InP埋込層107のうち、n型GaInAsP層104の上側に形成される部分は第2回折格子層3と活性層108との間のスペーサ層(クラッド層)5を構成する。なお、スペーサ層4の厚さは、エッチングのばらつきを吸収できる程度にできるだけ薄くするのが好ましい。
 また、本実施形態の具体的構成例では、第1回折格子層2の回折格子2Aを構成するn型ドープGaInAsP層102の厚さを25nmとし、第2回折格子層3の回折格子3Aを構成するn型ドープGaInAsP層104の厚さ20nmとし、第1回折格子層2と第2回折格子層3とが異なる厚さを有するものとして構成されている。
 また、第1回折格子層2の回折格子2Aを構成する半導体層102,103の屈折率差を、第2回折格子層3の回折格子3Aを構成する半導体層104,107の屈折率差よりも大きくし、第1回折格子層2と第2回折格子層3とが異なる屈折率差を有するものとして構成されている。
 このため、第1回折格子層2と第2回折格子層3とは、回折格子2A,3Aのデューティ比が同一であるが、回折格子2A,3Aの結合係数は異なる。
 このように、本実施形態の構成によれば、複数の回折格子層2,3を積層することによって結合係数のコントラストを大きくすることができるため、所望の要求を満たす素子を実現できるようになり、素子特性を向上させることができる。
 本実施形態のように複数の回折格子層を積層することなく、例えば表面回折格子(基板表面に凹凸を形成し、これを半導体層で埋め込むことによって形成される回折格子、あるいは、一の半導体層の表面に凹凸を形成し、これを他の半導体層で埋め込むことによって形成される回折格子)のみを用いて結合係数のコントラストを大きくしようとすると、例えば、結合係数を大きくする領域の回折格子の深さを約17nm程度に深くし、結合係数を小さくする領域の回折格子の深さを約7nm程度に浅くしなければならず、共に回折格子の深さが1nmずれてしまうと結合係数の値が約4cm-1変動してしまうことになる。
 つまり、このような回折格子を、例えばエタン/水素混合ガスによるリアクティブ・イオン・エッチングを用いて加工する場合、上記非特許文献5によるとエッチレートは55nm/minであるため、7nmのエッチングに要する時間は約7.6秒と非常に短く、エッチングプラズマの立ち上がりのばらつきや高周波スイッチのオフのタイミングを0.1秒のオーダで制御することはほぼ不可能である。
 このため、エッチング時間に換算すると大体±1秒の誤差が生じることと同等と考えることができ、この場合、エッチング深さのばらつきは約±1nmとなり、これによる結合係数のばらつきは約±4cm-1となる。
 この例の加工精度を仮に適用し、共振器内全体で結合係数が小さくなる方向に変動したとすると、発振しきい値利得が、変動しない場合と比べて約1.4倍の値となり、これはレーザの発振しきい値の上昇をもたらすことになる。
 これに対し、本実施形態では、複数の回折格子層2,3を積層することによって結合係数のコントラストを大きくすることができるため、結合係数のコントラストを大きくするために回折格子の深さ(厚さ)を非常に浅く(薄く)する必要はない。このため、結合係数のばらつきが許容範囲内となるように回折格子の厚さを設定することで、レーザの発振しきい値の上昇を抑えることが可能である。
 また、例えば表面回折格子のみを用いて結合係数のコントラストを大きくしようとすると、非常に深い部分と非常に浅い部分を含む凹凸を埋込層によって埋め込むことになるため、埋込層の厚さを厚くしないと、その表面が平坦にならない。しかしながら、埋込層の厚さを厚くすると、所望の結合係数が得られないことになる。
 これに対し、本実施形態では、複数の回折格子層2,3を積層することによって結合係数のコントラストを大きくすることができるため、結合係数のコントラストを大きくするために埋込層によって埋め込まれる溝を非常に深い部分と非常に浅い部分とを含むものにする必要はない。このため、埋込層の厚さをそれほど厚くしなくても、その表面を平坦にすることができ、所望の結合係数が得られることになる。
 また、本実施形態では、上述のように、分断されたGaInAsP層102,104をInP層103,107によって埋め込むことによって形成される埋込回折格子2,3を用いているため、回折格子を精度良く安定して作製でき、歩留まりを向上させることができる。
 まず、表面回折格子を用いる場合、基板の途中又は一の半導体層の途中でエッチングを止めることで回折格子の深さが規定されることになるため、結合係数を精度良く制御するのは難しい。
 これに対し、分断された一の半導体層を他の半導体層によって埋め込むことによって形成される埋込回折格子を形成する場合、一の半導体層を分断するためのエッチングは、一の半導体層を全部除去し、その下側の半導体層の途中まで除去したところで止めれば良い。そして、その下側の半導体層と同じ半導体材料からなる他の半導体層によって埋め込むことで、エッチング深さのばらつきを吸収することができる。この場合、一の半導体層の厚さによって回折格子の深さが決まるため、結合係数を精度良く制御することが可能であり、歩留まりを向上させることができる。
 次に、通常、表面回折格子を用いる場合、InP基板の表面上に凹凸を形成し、その上にGaInAsP四元混晶成長をさせることになるため、回折格子の深さが深くなるほど組成変調や結晶欠陥が発生しやすくなる。また、結晶成長昇温時にマストランスポートによりInP基板上に形成された凹凸が変形してしまう場合がある。これらの結果、設計どおりの結合係数が得られにくい。
 また、深い回折格子は採用しにくいため、大きな結合係数を得るために、InPとの屈折率差ができるだけ大きな四元混晶半導体層を用いなくてはならない。この場合、組成波長1.3μmよりも長波の組成の半導体材料を用いると、今度は光の吸収が増大してしまい、レーザ特性を劣化させることになる。
 これに対し、分断されたGaInAsP層102,104をInP層(埋込層)103,107によって埋め込むことによって形成される埋込回折格子2,3は、GaInAsP四元混晶層をInP埋込層で埋め込むため、基本的に分断されたGaInAsP層102,104の変形は生じない。
 また、表面回折格子の場合と比較して、GaInAsP層102,104に形成される溝の深さが深くても、InP埋込層103,107で埋め込むため、組成変調(屈折率変調)は発生しない。
 このため、設計どおりの結合係数を得ることができ、歩留まりを向上させることができる。また、複数の回折格子層2,3を積層することによって結合係数のコントラストを大きくすることができるため、結合係数のコントラストを大きくするために一のGaInAsP層に形成される溝の深さを非常に深くする必要がないため、結晶欠陥が発生しにくく、また、InPとの屈折率差がそれほど大きなものを用いなくても良いため、レーザ特性を劣化させることもない。
 また、回折格子の変形、組成変調、結晶欠陥等が生じることなく、回折格子を形成することができるため、仮に埋込層を50nm以上と厚くしても所望の結合係数が得られ、InP埋込層107の表面上に活性層108を成長しても結晶的に問題ない程度まで平坦にすることが可能となる。
 さらに、InP埋込層107の厚さ(スペーサ層5の厚さ;活性層108と第2回折格子層3との間の間隔)を変化させることで、全体の結合係数の値を微調整することができる。
 次に、本実施形態の具体的構成例にかかるDFBレーザの製造方法について、図2(A)~図4(E)を参照しながら説明する。
 まず、図2(A)に示すように、n型ドープInP基板101上に、n型ドープGaInAsP層(例えば、組成波長1.25μm、厚さ25nm;基板101と屈折率が異なる層)102、n型ドープInP層(例えば厚さ15nm;基板101と屈折率が同一の層)103、n型ドープGaInAsP層(例えば、組成波長1.15μm、厚さ20nm;基板101と屈折率が異なる層)104を、例えば有機金属気相成長(MOVPE;Metal Organic Chemical Vapor Deposition)法を用いて、順次積層させる。なお、n型ドープInP基板101とn型ドープGaInAsP層102との間にn型ドープInPクラッド層を形成しても良い。
 次に、図2(B)に示すように、例えば、電子ビーム露光法によって、回折格子パターンを有し、電子ビームレジスト(日本ゼオン製ZEP520)からなるマスク105を、n型GaInAsP層104の表面上に形成する。
 なお、ここでは、マスク105に形成された回折格子パターンには、個々の素子の共振器中央に位相がπラジアンの位相シフト(λ/4位相シフト)を形成するためのパターンが含まれている。
 次いで、このマスク105を用いて、例えばエタン/水素混合ガスによるリアクティブ・イオン・エッチング(RIE)によって、n型GaInAsP層104及びn型InP層103の一部を除去する。
 ここでは、図2(C)に示すように、n型GaInAsP層104を分断し、n型InP層103の途中でエッチングが停止するようにしている。これにより、n型GaInAsP層104の全面に回折格子パターンが転写され、n型GaInAsP層104が分断されることになる。
 次に、この表面上に、図2(D)に示すように、例えばポジ型フォトレジスト(東京応化製OFPR8600;例えば厚さ300nm)106を塗布する。なお、マスク105を構成する電子ビームレジストとポジ型フォトレジスト106は混ざり合うことはないため、マスク105が変形することはない。
 次に、通常のフォトリソグラフィ技術を用いて、図2(E)に示すように、ポジ型フォトレジスト106の一部(ここでは共振器中央部分;光導波路に沿う方向の中央領域)を除去して、光導波路に沿う方向の両端側の部分を覆う(マスク105の一部の領域の表面を覆う;光導波路の両端側の領域に対応する領域の表面を覆う)ポジ型フォトレジストマスク106Aを形成する。
 その後、再び表面に露出した電子ビームレジストマスク105とポジ型フォトレジストマスク106Aを用いて、例えばエタン/水素混合ガスによるリアクティブ・イオン・エッチング(RIE)によって、n型InP層103の残りの部分、n型GaInAsP層102及びn型InP基板101の一部を除去する。
 ここでは、図3(A)に示すように、n型InP層103とn型GaInAsP層102を分断し、n型InP基板101の途中(ここではエッチング深さ10nmの位置)でエッチングが停止するようにしている。
 これにより、n型GaInAsP層102の一部(ここでは共振器中央部分;光導波路に沿う方向の中央領域)に回折格子パターンが転写され、n型GaInAsP層102が分断されることになる。
 この場合、n型GaInAsP層104に形成される回折格子パターンと、n型GaInAsP層102に形成される回折格子パターンとは、同じマスク105を用いて形成されるため、後述のようにして形成される第1回折格子層2と第2回折格子層3とは、対応する領域に形成される回折格子2A,3Aの位相、周期、デューティ比が同一になる。
 なお、ここでは、n型GaInAsP層102の厚さ及び屈折率(第1回折格子層2の厚さ及び屈折率差)とn型GaInAsP層104の厚さ及び屈折率(第2回折格子層3の厚さ及び屈折率差)とは異なる。このため、第1回折格子層2に含まれる回折格子2Aの結合係数と第2回折格子層3に含まれる回折格子3Aの結合係数とは異なる。
 ここで、各回折格子層2,3は、層内でデューティ比が一定になっている。この場合、エッチングマスクの回折格子パターン(マスクパターン)の幅を変化させる必要がないため、回折格子の加工精度が安定する。ここでは、各回折格子層2,3は、層内で厚さ及び屈折率差も一定であるため、層内で回折格子の結合係数は一定である。
 そして、図3(B)に示すように、マスク105及びマスク106Aを通常のレジスト剥離方法を用いて表面から除去する。
 次いで、図3(C)に示すように、例えばMOVPE法を用いて、全面にn型ドープInP層(基板101と屈折率が同一の層)107を成長させる。これにより、n型InP層103の途中でエッチングが停止されて形成された溝、及び、n型InP基板101の途中でエッチングが停止されて形成された溝がn型InP層107によって埋め込まれる。
 この結果、分断されたn型GaInAsP層102がn型InP層107によって埋め込まれて、一部(ここでは共振器中央部分;光導波路に沿う方向の中央領域)に回折格子2Aが形成されている第1回折格子層2が形成される。また、分断されたn型GaInAsP層104がn型InP層107によって埋め込まれて、全面(光導波路に沿う方向の全長)に回折格子3Aが形成されている第2回折格子層3が形成される。
 さらに、第1回折格子層2と第2回折格子層3との間にはn型InP層103及びn型InP層107の一部によってスペーサ層4が形成される。また、第2回折格子層3の上側にはn型InP層107の一部によってスペーサ層5が形成される。
 次に、図3(D)に示すように、量子井戸活性層108、p型ドープInPクラッド層(例えば厚さ250nm)109を、例えばMOVPE法によって順次積層させる。
 ここで、量子井戸活性層108は、GaInAsP系化合物半導体材料を用いて構成されている。つまり、量子井戸活性層108は、アンドープGaInAsP量子井戸層(例えば、厚さ5.1nm、圧縮歪量1.0%)、及び、アンドープGaInAsPバリア層(例えば、組成波長1.2μm、厚さ10nm)で構成され、量子井戸層の層数は6層であり、その発光波長は1560nmである。
 なお、量子井戸活性層108の上下に、量子井戸活性層108を挟み込むように、アンドープGaInAsP-SCH(Separate Confinement Heterostructure)層(光ガイド層;例えば、波長1.15μm、厚さ20nm)を設けても良い。
 その後、半導体表面に、図3(E)に示すように、通常の化学気相堆積法(CVD法)及びフォトリソグラフィ技術を用いて、SiOからなるマスク(例えば、厚さ400nm、幅1.6μmのストライプ状のエッチングマスク)110を形成する。
 そして、図4(A)に示すように、例えばドライエッチング法を用いて、n型InP基板101が例えば0.7μm程掘り込まれる深さまで、上述のようにして形成された半導体積層構造をエッチングし、ストライプ状のメサ構造(メサストライプ)を形成する。
 次に、図4(B)に示すように、このメサ構造の両側に、p型InP層111/n型InP層112/p型InP層113で構成される電流狭窄層を、例えばMOVPE法を用いて成長させ、エッチングマスク110を例えばふっ酸で除去した後、図4(C)に示すように、例えばMOVPE法を用いて、p型InPクラッド層(例えば厚さ2.2μm)114、p型GaInAsコンタクト層(例えば厚さ300nm)115を順次成長させる。
 そして、図4(D)に示すように、p側電極116及びn側電極117を形成した後、図4(E)に示すように、素子の両端面に無反射コート118,119を形成して、素子が完成する。
 したがって、本実施形態にかかる光素子(DFBレーザ)及びその製造方法によれば、回折格子の結合係数を共振器内で分布させた構造の光素子において、回折格子を精度良く安定して作製できるようになり、歩留まりが向上するとともに、結合係数を大きくする領域と結合係数を小さくする領域とで結合係数の差を大きくする(結合係数のコントラストを大きくする)ことができ、素子特性を向上させることができるという利点がある。
 また、回折格子を精度良く安定して作製できるため、素子特性のばらつきを抑制することができ、素子特性を向上させることもできる。また、結合係数の制御性や結合係数の設計自由度も向上する。
 特に、上述の実施形態の構成によれば、各回折格子層を構成する一の半導体層と他の半導体層との間の屈折率差、各回折格子層の厚さ、及び、各回折格子層の間隔(スペーサ層の厚さ)をすべて任意に設定可能であるため、例えば数cm-1から数100cm-1に亘る、非常に広い範囲の値の結合係数を持つ回折格子を精度良く作製することが可能となる。この場合、複数の回折格子層の層数が多いほど設計可能な結合係数の範囲が拡大する。
 また、上述の実施形態の製造方法では、複数の回折格子層の中で下側の回折格子層が回折格子が形成されていない領域を有するものとなるため、複数の回折格子層が光導波路に対して基板側に装荷されているほど設計可能な結合係数の範囲が拡大する。
 なお、上述のように構成されるDFBレーザは、例えば、上記非特許文献6あるいは上記特許文献2に記載されているように、共振器方向で駆動電極を3分割し、中央の電極の注入電流を変調することでFM変調光源として用いることもできる。
 このようなレーザ光源は、例えばコヒーレント光伝送に用いられる。変調効率の向上には中央電極への変調電流幅を増加させることが必要であるが、過剰に電流振り幅を増大させると軸方向ホールバーニングの影響を増幅してしまい、単一モード安定性が損なわれてしまう。そこで、FM変調効率を向上させるために、軸方向ホールバーニングが増大しても主モードと副モードの間のモード間利得差の減少を抑制する構造として、上述のような構造、即ち、共振器中央の結合係数が大きく、両端の結合係数が中央に比べて小さくなっている構造を用いることができる(上記非特許文献2参照)。
 この構造によれば、縦モードの主副モード間の規格化しきい値利得差の値が1.7となり、通常のλ/4シフトDFBレーザの0.72に対して約2.4倍となるため、高電流注入時に軸方向ホールバーニングの影響によって規格化しきい値利得差が減少しても、通常のレーザの場合と異なり、単一モード動作を維持するために最低限必要な規格化しきい値利得差0.2を下回ることがなく(上記非特許文献3参照)、安定した単一縦モード動作を保ちながらFM変調効率を向上させることが可能となる(上記非特許文献4参照)。
 上述の実施形態のDFBレーザにおいては、中央の回折格子が2層になっている領域の規格化結合係数κLが5、両側の回折格子が1層になっている領域の規格化結合係数κLが2、そして、両側の回折格子が1層になっている領域の全体の共振器長に対する長さの割合が0.18となるように設計することによって、縦モードの主副モード間規格化しきい値利得差の値が1.7となり、通常のλ/4シフトDFBレーザの0.72に対して約2.4倍となるため、より安定した縦単一モード動作を実現することができる。
[第2実施形態]
 次に、第2実施形態にかかる光素子及びその製造方法について、図5~図8(E)を参照しながら説明する。
 本実施形態にかかる光素子(DFBレーザ)及びその製造方法は、上述の第1実施形態のものに対し、図5,図8(E)に示すように、3層の回折格子層20,30,40を設けている点、AlGaInAs系化合物半導体材料を用いて量子井戸活性層211を構成している点、半絶縁性埋込ヘテロ構造(SI-BH構造;Semi-Insulating Buried Heterostructure;高抵抗埋込構造)を用いている点が異なる。
 つまり、本実施形態にかかる光素子は、例えば、回折格子の結合係数を共振器内で分布させた構造を有するDFB(Distributed Feed-Back;分布帰還型)レーザ(レーザ素子;導波路型光素子;アクティブ型光素子;発光素子;符号多重通信用デバイス)であって、図5に示すように、光導波路1と、光導波路1に沿って設けられた複数(ここでは3つ)の回折格子層20,30,40とを備える。
 ここでは、図5に示すように、複数の回折格子層として、第1回折格子層20と、第2回折格子層30と、第3回折格子層40とが設けられており、これらの回折格子層20,30,40は、光導波路1の下側(光導波路1に対して基板側;光導波路1の片側)に全て設けられている。
 各回折格子層20,30,40は、図5に示すように、分断された一の半導体層202,204,206と、一の半導体層202,204,206と屈折率が異なり、一の半導体層202,204,206を埋め込む他の半導体層203,207,210とによって構成される回折格子(埋込回折格子;埋込型回折格子)20A,30A,40Aを含むものとして構成される。
 また、複数の回折格子層20,30,40は、対応する領域に形成されている回折格子20A,30A,40Aの位相、周期、デューティ比(回折格子の周期に対するエッチングによって残される部分の割合)が同一になっている。なお、本実施形態では、各回折格子層20,30,40に備えられる回折格子20A,30A,40Aのデューティ比は、それぞれ、一定になっている。
 本実施形態では、第1回折格子層20は、図5に示すように、回折格子20Aが光導波路1に沿う方向(共振器の長さ方向)の中央近傍領域のみに形成されている。つまり、第1回折格子層20の回折格子20Aが形成されている領域は、光導波路1に沿う方向の中央近傍領域である。
 また、第2回折格子層30は、図5に示すように、回折格子30Aが光導波路1に沿う方向(共振器の長さ方向)の中央領域のみに形成されている。つまり、第2回折格子層30の回折格子30Aが形成されている領域は、光導波路1に沿う方向の中央領域である。
 さらに、第3回折格子層40は、図5に示すように、回折格子40Aが光導波路1に沿う方向の全長にわたって形成されている。つまり、第3回折格子層40の回折格子40Aが形成されている領域は、光導波路1に沿う方向の全領域である。
 このように、本実施形態では、図5に示すように、第1回折格子層20の回折格子20Aが形成されている領域の光導波路1に沿う方向の長さが、第2回折格子層30の回折格子30Aが形成されている領域の光導波路1に沿う方向の長さよりも短くなっている。また、第2回折格子層30の回折格子30Aが形成されている領域の光導波路1に沿う方向の長さが、第3回折格子層40の回折格子40Aが形成されている領域の光導波路1に沿う方向の長さよりも短くなっている。つまり、第1回折格子層20、第2回折格子層30、第3回折格子層40で回折格子20A,30A,40Aが形成されている領域の長さが異なっている。この場合、これらの回折格子層20,30,40の対応する領域は、光導波路1に沿う方向の中央近傍領域である。
 なお、本実施形態では、複数の回折格子層として3つの回折格子層20,30,40を設けており、これらの回折格子層20,30,40の回折格子20A,30A,40Aが形成されている領域の長さが互いに異なっているが、これに限られるものではない。例えば、第4回折格子層(回折格子が形成されている領域の光導波路1に沿う方向の長さが第1回折格子層20又は第2回折格子層30と同じ層)をさらに設け、光導波路1に沿う方向の中央領域又は中央近傍領域において、より結合係数を大きくするようにしても良い。このため、複数の回折格子層は、回折格子が形成されている領域の長さが異なる少なくとも2つの回折格子層を含んでいれば良い。
 このように、本実施形態では、埋込回折格子を用い、埋込回折格子が形成されている領域を含む複数の回折格子層を多層化し、結合係数を最大にしたい領域では多層化された回折格子層のすべて(ここでは第1回折格子層20、第2回折格子層30、第3回折格子層40の3つ)に埋込回折格子を形成し、結合係数をそれよりも小さくしたい領域では、段階的に、一部の回折格子層(ここでは第2回折格子層30、又は、第2回折格子層30及び第3回折格子層40)にだけ回折格子を形成するようにしている。
 本実施形態では、図5に示すように、第1回折格子層20上に第2回折格子層30及び第3回折格子層40が積層されており、光導波路1に沿う方向の中央近傍領域で各回折格子層20,30,40の回折格子20A,30A,40Aが積層され、光導波路1に沿う方向の中央領域で各回折格子層30,40の回折格子30A,40Aが積層された構造になっている。つまり、回折格子の積層数が光導波路1に沿う方向で異なるように構成されている。このようにして、光導波路1に沿う方向の中央近傍領域の結合係数が大きくなり、段階的に、中央領域、両端面近傍領域の結合係数が小さくなるようにしている。
 具体的には、本DFBレーザ(光半導体素子)は、図5に示すように、n型ドープInP基板201上に、中央近傍領域で分断されたn型ドープGaInAsP層(例えば、組成波長1.25μm、厚さ15nm)202を、屈折率が異なるn型ドープInP層(例えば厚さ15nm;埋込層)203によって埋め込むことによって形成された埋込回折格子20Aを含む第1回折格子層20と、中央領域で分断されたn型ドープGaInAsP層(例えば、組成波長1.25μm、厚さ20nm)204を、屈折率が異なるn型ドープInP層(例えば厚さ15nm;埋込層)205によって埋め込むことによって形成された埋込回折格子30Aを含む第2回折格子層30と、全領域で分断されたn型ドープGaInAsP層(例えば、組成波長1.15μm、厚さ15nm)206を、屈折率が異なるn型ドープInP層210によって埋め込むことによって形成された埋込回折格子40Aを含む第3回折格子層40と、導波路コア層として量子井戸活性層211を含む光導波路1とを備えるものとして構成される。
 このように、本実施形態の具体的構成例では、第1回折格子層20の回折格子20Aを、組成波長1.25μmのn型ドープGaInAsP層202とn型ドープInP層203とによって構成し、第3回折格子層40の回折格子40Aを、組成波長1.15μmのn型ドープGaInAsP層206とn型ドープInP層210とによって構成することで、第1回折格子層20の回折格子20Aを構成する半導体層202,203の屈折率差を、第3回折格子層40の回折格子40Aを構成する半導体層206,210の屈折率差よりも大きくしている。このように、第1回折格子層20の厚さをそれほど厚くしないで結合係数を大きくして、結合係数が大きい領域と結合係数が小さい領域との間の結合係数差を大きくしている。
 また、n型InP埋込層203のうち、分断されたn型GaInAsP層202の間に埋め込まれた部分は回折格子20Aを構成し、n型InP埋込層205のうち、分断されたn型GaInAsP層204の間に埋め込まれた部分は回折格子30Aを構成し、n型InP埋込層210のうち、分断されたn型GaInAsP層206の間に埋め込まれた部分は回折格子40Aを構成する。そして、n型InP埋込層203のうち、n型GaInAsP層202の上側に形成される部分は第1回折格子層20と第2回折格子層30との間のスペーサ層41を構成し、n型InP埋込層205のうち、n型GaInAsP層204の上側に形成される部分は第2回折格子層30と第3回折格子層40との間のスペーサ層42を構成し、n型InP埋込層210のうち、n型GaInAsP層206の上側に形成される部分は第3回折格子層40と活性層211との間のスペーサ層(クラッド層)51を構成する。なお、スペーサ層41,42の厚さは、エッチングのばらつきを吸収できる程度にできるだけ薄くするのが好ましい。
 本実施形態の具体的構成例では、n型ドープInP層203の厚さを15nmとし、n型ドープInP層205の厚さを15nmとし、スペーサ層41とスペーサ層42の厚さを同一にして、第1回折格子層20、第2回折格子層30、第3回折格子層40を同一の間隔をあけて設けている。
 また、本実施形態の具体的構成例では、第1回折格子層20の回折格子20Aを構成するn型ドープGaInAsP層202の厚さを15nmとし、第2回折格子層30の回折格子30Aを構成するn型ドープGaInAsP層204の厚さ20nmとし、第3回折格子層40の回折格子40Aを構成するn型ドープGaInAsP層206の厚さを15nmとし、第1回折格子層20又は第3回折格子層40と第2回折格子層30とが異なる厚さを有するものとして構成されている。つまり、複数の回折格子層は、厚さが異なる回折格子層を含み、一部の回折格子層の厚さが異なる。
 また、第1回折格子層20の回折格子20Aを構成する半導体層202,203の屈折率差、又は、第2回折格子層30の回折格子3Aを構成する半導体層204,205の屈折率差を、第3回折格子層40の回折格子40Aを構成する半導体層206,210の屈折率差よりも大きくし、第1回折格子層20又は第2回折格子層30と第3回折格子層40とが異なる屈折率差を有するものとして構成されている。つまり、複数の回折格子層は、屈折率差が異なる回折格子層を含み、一部の回折格子層の回折格子を構成する半導体層の屈折率差が異なる。
 このため、第1回折格子層20、第2回折格子層30、第3回折格子層40は、回折格子20A,30A,40Aのデューティ比が同一であるが、回折格子20A,30A,40Aの結合係数は異なる。
 このように、本実施形態の構成によれば、上述の第1実施形態の場合と同様に、複数の回折格子層20,30,40を積層することによって結合係数のコントラストを大きくすることができるため、所望の要求を満たす素子を実現できるようになり、素子特性を向上させることができる。
 なお、その他の構成の詳細については、上述の第1実施形態の構成及びその具体的な構成例と同様であるため、ここでは、説明を省略する。
 次に、本実施形態の具体的構成例にかかるDFBレーザの製造方法について、図6(A)~図8(E)を参照しながら説明する。
 まず、図6(A)に示すように、n型ドープInP基板201上に、n型ドープGaInAsP層(例えば、組成波長1.25μm、厚さ15nm;基板201と屈折率が異なる層)202、n型ドープInP層(例えば厚さ15nm;基板201と屈折率が同一の層)203、n型ドープGaInAsP層(例えば、組成波長1.25μm、厚さ20nm;基板201と屈折率が異なる層)204、n型ドープInP層(例えば厚さ15nm;基板201と屈折率が同一の層)205、n型ドープGaInAsP層(例えば、組成波長1.15μm、厚さ15nm;基板201と屈折率が異なる層)206を、例えば有機金属気相成長法(MOVPE法)を用いて、順次積層させる。なお、n型InP基板201とn型GaInAsP層202との間にn型InPクラッド層を形成しても良い。
 次に、図6(B)に示すように、例えば、電子ビーム露光法によって、回折格子パターンを有し、電子ビームレジスト(日本ゼオン製ZEP520)からなるマスク207を、n型GaInAsP層206の表面上に形成する。
 なお、ここでは、マスク207に形成された回折格子パターンには、個々の素子の共振器中央に位相がπラジアンの位相シフト(λ/4位相シフト)を形成するためのパターンが含まれている。
 次いで、このマスク207を用いて、例えばエタン/水素混合ガスによるリアクティブ・イオン・エッチング(RIE)によって、n型GaInAsP層206及びn型ドープInP層205の一部を除去する。ここでは、図6(C)に示すように、n型GaInAsP層206を分断し、n型InP層205の途中でエッチングを停止するようにしている。これにより、n型GaInAsP層206の全面に回折格子パターンが転写され、n型GaInAsP層206が分断されることになる。
 次に、この表面に、図6(C)に示すように、例えばポジ型フォトレジスト(東京応化製OFR8600;厚さ300nm)208を塗布する。なお、マスク207を構成する電子ビームレジストとポジ型フォトレジスト208は混ざり合うことはないため、マスク207が変形することはない。
 次に、通常のフォトリソグラフィ技術を用いて、図6(D)に示すように、ポジ型フォトレジスト208の一部(ここでは共振器中央部分;光導波路に沿う方向の中央領域)を除去して、光導波路に沿う方向の両端側近傍部分を覆う(マスク207の一部の領域の表面を覆う;光導波路の両端側の領域に対応する領域の表面を覆う)ポジ型フォトレジストマスク208Aを形成する。
 その後、再び表面に露出した電子ビームレジストマスク207とポジ型フォトレジストマスク208Aを用いて、例えばエタン/水素混合ガスによるリアクティブ・イオン・エッチング(RIE)によって、n型InP層205の残りの部分、n型GaInAsP層204、n型InP層203の一部を除去する。
 ここでは、図6(E)に示すように、n型InP層205とn型GaInAsP層204を分断し、n型InP層203の途中でエッチングを停止するようにしている。
 これにより、n型GaInAsP層204の一部(ここでは共振器中央部分;光導波路に沿う方向の中央領域)に回折格子パターンが転写され、n型GaInAsP層204が分断されることになる。
 次に、この表面に、図7(A)に示すように、例えばネガ型フォトレジスト(東京応化製OMR85;厚さ300nm)209を塗布する。なお、マスク207を構成する電子ビームレジスト、マスク208Aを構成するポジ型フォトレジスト208、ネガ型フォトレジスト209は混ざり合うことはないため、マスク207が変形することはない。
 次に、通常のフォトリソグラフィ技術を用いて、図7(B)に示すように、ネガ型フォトレジスト209の一部(ここでは共振器中央部分に含まれる共振器中央近傍部分;光導波路に沿う方向の中央領域に含まれる中央近傍領域)を除去して、光導波路に沿う方向の両端側の部分を覆う(ポジ型フォトレジスト208の一部の領域の表面を覆う;光導波路の両端側の領域に対応する領域の表面を覆う)ネガ型フォトレジストマスク209Aを形成する。
 その後、再び表面に露出した電子ビームレジストマスク207、ポジ型フォトレジストマスク208A及びネガ型フォトレジストマスク209Aを用いて、例えばエタン/水素混合ガスによるリアクティブ・イオン・エッチング(RIE)によって、n型InP層203、n型GaInAsP層202、n型InP基板201の一部を除去する。
 ここでは、図7(C)に示すように、n型InP層203とn型GaInAsP層202を分断し、n型InP基板201の途中(ここではエッチング深さが10nmの位置)でエッチングを停止するようにしている。
 これにより、n型GaInAsP層202の一部(ここでは共振器中央近傍部分;光導波路に沿う方向の中央近傍領域)に回折格子パターンが転写され、n型GaInAsP層202が分断されることになる。
 この場合、n型GaInAsP層202に形成される回折格子パターンと、n型GaInAsP層204に形成される回折格子パターンと、n型GaInAsP層206に形成される回折格子パターンとは、同じマスク207を用いて形成されるため、後述のようにして形成される第1回折格子層20、第2回折格子層30、第3回折格子層40とは、対応する領域に形成される回折格子20A,30A,40Aの位相、周期、デューティ比が同一になる。
 なお、ここでは、n型GaInAsP層202の厚さ(第1回折格子層20の厚さ)とn型GaInAsP層206の厚さ(第3回折格子層40の厚さ)とは同一であるが、n型GaInAsP層202の屈折率(第1回折格子層20の屈折率差)とn型GaInAsP層206の屈折率(第3回折格子層40の屈折率差)とは異なる。このため、第1回折格子層20に含まれる回折格子20Aの結合係数と第3回折格子層40に含まれる回折格子40Aの結合係数とは異なる。
 また、n型GaInAsP層202の屈折率(第1回折格子層20の屈折率差)とn型GaInAsP層204の屈折率(第2回折格子層30の屈折率差)とは同一であるが、n型GaInAsP層202の厚さ(第1回折格子層20の厚さ)とn型GaInAsP層204の厚さ(第2回折格子層30の厚さ)とは異なる。このため、第1回折格子層20に含まれる回折格子20Aの結合係数と第2回折格子層30に含まれる回折格子30Aの結合係数とは異なる。
 また、n型GaInAsP層204の厚さ及び屈折率(第2回折格子層30の厚さ及び屈折率差)とn型GaInAsP層206の厚さ及び屈折率(第3回折格子層40の厚さ及び屈折率差)とは異なる。このため、第2回折格子層30に含まれる回折格子30Aの結合係数と第3回折格子層40に含まれる回折格子40Aの結合係数とは異なる。
 ここで、各回折格子層20,30,40は、層内でデューティ比が一定になっている。この場合、エッチングマスクの回折格子パターン(マスクパターン)の幅を変化させる必要がないため、回折格子の加工精度が安定する。ここでは、各回折格子層20,30,40は、層内で厚さ及び屈折率差も一定であるため、層内で回折格子の結合係数は一定である。
 そして、図7(D)に示すように、マスク207、マスク208A及びマスク209Aを通常のレジスト剥離方法を用いて表面から除去する。
 次いで、図7(E)に示すように、例えばMOVPE法を用いて、全面にn型ドープInP層(基板201と屈折率が同一の層)210を成長させる。これにより、n型InP層205の途中でエッチングが停止されて形成された溝、n型InP層203の途中でエッチングが停止されて形成された溝、及び、n型InP基板201の途中でエッチングが停止されて形成された溝がn型InP層210によって埋め込まれる。
 この結果、分断されたn型GaInAsP層202がn型InP層210によって埋め込まれて、一部(ここでは共振器中央近傍部分;光導波路に沿う方向の中央近傍領域)に回折格子20Aが形成されている第1回折格子層20が形成される。また、分断されたn型GaInAsP層204がn型InP層210によって埋め込まれて、一部(ここでは共振器中央部分;光導波路に沿う方向の中央領域)に回折格子30Aが形成されている第2回折格子層30が形成される。さらに、分断されたn型GaInAsP層206がn型InP層210によって埋め込まれて、全面(光導波路に沿う方向の全長)に回折格子40Aが形成されている第3回折格子層40が形成される。
 さらに、第1回折格子層20と第2回折格子層30との間にはn型InP層203及びn型InP層210の一部によってスペーサ層41が形成される。また、第2回折格子層30と第3回折格子層40との間にはn型InP層205及びn型InP層210の一部によってスペーサ層42が形成される。さらに、第3回折格子層40の上側にはn型InP層210の一部によってスペーサ層51が形成される。
 ここで、第1回折格子層20と第2回折格子層30との間のスペーサ層41の厚さはn型InP層203の厚さ(n型GaInAsP層202の上側に形成された部分の厚さ)によって決まり、第2回折格子層30と第3回折格子層40との間のスペーサ層42の厚さはn型InP層205の厚さ(n型GaInAsP層204の上側に形成された部分の厚さ)によって決まり、いずれも15nmで同一であるため、各回折格子層20,30,40は同一の間隔をあけて設けられていることになる。
 次に、図8(A)に示すように、量子井戸活性層211、p型ドープInPクラッド層(例えば厚さ2.5μm)212、p型GaInAsコンタクト層213(例えば厚さ300nm)を、例えばMOVPE法によって順次積層させる。
 ここで、量子井戸活性層211は、アンドープAlGaInAs量子井戸層(例えば、厚さ6.0nm、圧縮歪量1.0%)、及び、アンドープAlGaInAsバリア層(例えば、組成波長1.05μm、厚さ10nm)で構成され、量子井戸層の層数は10層であり、その発光波長は1310nmである。
 なお、量子井戸活性層211の上下に、量子井戸活性層211を挟み込むように、アンドープAlGaInAs-SCH(例えば、波長1.0μm、厚さ20nm)を設けても良い。
 その後、半導体表面に、図8(B)に示すように、通常の化学気相堆積法(CVD法)及びフォトリソグラフィ技術を用いて、SiOからなるマスク(例えば、厚さ400nm、幅1.3μmのストライプ状のエッチングマスク)214を形成する。
 そして、図8(C)に示すように、例えばドライエッチング法を用いて、n型InP基板201が例えば0.7μm程掘り込まれる深さまで、上述のようにして形成された半導体積層構造をエッチングし、ストライプ状のメサ構造(メサストライプ)を形成する。
 次に、図8(D)に示すように、このメサ構造の両側に、Feドープ型InPで構成される電流狭窄層215を、例えばMOVPE法を用いて成長させ、エッチングマスク214を例えばふっ酸で除去した後、図8(E)に示すように、p側電極216及びn側電極217を形成した後、素子の両端面に無反射コート218,219を形成して、素子が完成する。
 したがって、本実施形態にかかる光素子(DFBレーザ)及びその製造方法によれば、上述の第1実施形態のものと同様に、回折格子の結合係数を共振器内で分布させた構造の光素子において、回折格子を精度良く安定して作製できるようになり、歩留まりが向上するとともに、結合係数を大きくする領域と結合係数を小さくする領域とで結合係数の差を大きくする(結合係数のコントラストを大きくする)ことができ、素子特性を向上させることができるという利点がある。
 また、回折格子を精度良く安定して作製できるため、素子特性のばらつきを抑制することができ、素子特性を向上させることもできる。また、結合係数の制御性や結合係数の設計自由度も向上する。
 特に、本実施形態の素子では、上述の第1実施形態のものと比較して、結合係数がさらに中央に強く分布するように構成されているため、より高いFM変調効率が得られ、また、単一モード発振の安定性も高まるという利点がある。
 なお、上述の実施形態では、各回折格子層20,30,40は同一の間隔をあけて設けられているが、これに限られるものではない。例えば、上述の実施形態の構成において、図9に示すように、第1回折格子層20と第2回折格子層30との間隔(スペーサ層41の厚さ;n型InP層203のn型GaInAsP層202の上側部分の厚さ)を例えば25nmとし、第2回折格子層30と第3回折格子層40との間隔(スペーサ層42の厚さ;n型InP層205のn型GaInAsP層204の上側部分の厚さ)を例えば10nmとして、各回折格子層20,30,40を、異なる間隔をあけて設けても良い。また、回折格子層を3層よりも多く設ける場合には、複数の回折格子層は、同一の間隔をあけて設けても良いし、異なる間隔をあけて設けても良いし、一部が異なる間隔をあけて設けても良い。
[第3実施形態]
 次に、第3実施形態にかかる光素子及びその製造方法について、図10~図13(E)を参照しながら説明する。
 本実施形態にかかる光素子(DFBレーザ)及びその製造方法は、上述の第1実施形態のものに対し、図10に示すように、複数の回折格子層21,31に含まれる回折格子21A,31Aが積層されている領域を光導波路1に沿う方向の両端側の領域にしている点、及び、複数の回折格子層21,31の厚さを同一にしている点、複数の回折格子層21,31の間隔の大きさが異なる。
 つまり、本実施形態にかかる光素子は、例えば、回折格子の結合係数を共振器内で分布させた構造を有するDFB(Distributed Feed-Back;分布帰還型)レーザ(レーザ素子;導波路型光素子;アクティブ型光素子;発光素子;符号多重通信用デバイス)であって、図10に示すように、光導波路1と、光導波路1に沿って設けられた複数(ここでは2つ)の回折格子層21,31とを備える。
 ここでは、図10に示すように、複数の回折格子層として、第1回折格子層21と、第2回折格子層31とが設けられており、これらの回折格子層21,31は、光導波路1の下側(光導波路1に対して基板側;光導波路1の片側)に全て設けられている。
 各回折格子層21,31は、図10に示すように、分断された一の半導体層302,304と、一の半導体層302,304と屈折率が異なり、一の半導体層302,304を埋め込む他の半導体層303,307とによって構成される回折格子(埋込回折格子;埋込型回折格子)21A,31Aを含むものとして構成される。
 また、複数の回折格子層21,31は、対応する領域に形成されている回折格子21A,31Aの位相、周期、デューティ比(回折格子の周期に対するエッチングによって残される部分の割合)が同一になっている。なお、本実施形態では、各回折格子層21,31に備えられる回折格子21A,31Aのデューティ比は、それぞれ、一定になっている。
 本実施形態では、第1回折格子層21は、図10に示すように、回折格子21Aが光導波路1に沿う方向(共振器の長さ方向)の両端側の領域のみに形成されている。つまり、第1回折格子層21の回折格子21Aが形成されている領域は、光導波路1に沿う方向の両端側の領域である。
 また、第2回折格子層31は、図10に示すように、回折格子31Aが光導波路1に沿う方向の全長にわたって形成されている。つまり、第2回折格子層31の回折格子31Aが形成されている領域は、光導波路1に沿う方向の全領域である。
 このように、本実施形態では、第1回折格子層21の回折格子21Aが形成されている領域の光導波路1に沿う方向の長さが、第2回折格子層31の回折格子31Aが形成されている領域の光導波路1に沿う方向の長さよりも短くなっており、第1回折格子層21と第2回折格子層31とで回折格子21A,31Aが形成されている領域の長さが異なっている。この場合、これらの回折格子層21,31の対応する領域は、光導波路1に沿う方向の両端側の領域である。
 なお、本実施形態では、複数の回折格子層として2つの回折格子層21,31を設けており、これらの回折格子層21,31の回折格子21A,31Aが形成されている領域の長さが互いに異なっているが、これに限られるものではない。例えば、第3回折格子層(回折格子が形成されている領域の光導波路1に沿う方向の長さが第1回折格子層21と同じ層)をさらに設け、光導波路1に沿う方向の両端側の領域において、より結合係数を大きくするようにしても良い。このため、複数の回折格子層は、回折格子が形成されている領域の長さが異なる少なくとも2つの回折格子層を含んでいれば良い。
 このように、本実施形態では、埋込回折格子を用い、埋込回折格子が形成されている領域を含む複数の回折格子層を多層化し、結合係数を最大にしたい領域では多層化された回折格子層のすべて(ここでは第1回折格子層21と第2回折格子層31の2つ)に埋込回折格子を形成し、結合係数をそれよりも小さくしたい領域では一部の回折格子層(ここでは第2回折格子層31)にだけ回折格子を形成するようにしている。
 具体的には、図10に示すように、第1回折格子層21上に第2回折格子層31が積層されており、光導波路1に沿う方向の両端側の領域で、各回折格子層21,31の回折格子21A,31Aが積層された構造になっている。つまり、回折格子の積層数が光導波路1に沿う方向で異なるように構成されている。このようにして、光導波路1に沿う方向の両端側の領域の結合係数が大きくなり、この両端側の領域と比較してそれ以外の領域(中央領域)の結合係数が小さくなるようにしている。
 具体的には、本DFBレーザ(光半導体素子)は、図10に示すように、n型ドープInP基板301上に、両端側の領域で分断されたn型ドープGaInAsP層(例えば、組成波長1.15μm、厚さ20nm)302を、屈折率が異なるn型ドープInP層(例えば厚さ20nm;埋込層)303によって埋め込むことによって形成された埋込回折格子21Aを含む第1回折格子層21と、全領域で分断されたn型ドープGaInAsP層(例えば、組成波長1.15μm、厚さ20nm)304を、屈折率が異なるn型ドープInP層307によって埋め込むことによって形成された埋込回折格子31Aを含む第2回折格子層31と、導波路コア層として量子井戸活性層308を含む光導波路1とを備えるものとして構成される。
 また、本実施形態の具体的構成例では、図10に示すように、n型InP埋込層303のうち、分断されたn型GaInAsP層302の間に埋め込まれた部分は回折格子21Aを構成し、n型InP埋込層307のうち、分断されたn型GaInAsP層304の間に埋め込まれた部分は回折格子31Aを構成する。
 なお、n型InP埋込層303のうち、n型GaInAsP層302の上側に形成される部分は第1回折格子層21と第2回折格子層31との間のスペーサ層43を構成し、n型InP埋込層307のうち、n型GaInAsP層304の上側に形成される部分は第2回折格子層31と活性層308との間のスペーサ層(クラッド層)52を構成する。また、スペーサ層43の厚さは、エッチングのばらつきを吸収できる程度にできるだけ薄くするのが好ましい。
 また、本実施形態の具体的構成例では、第1回折格子層21の回折格子21Aを構成するn型ドープGaInAsP層302の厚さを20nmとし、第2回折格子層31の回折格子31Aを構成するn型ドープGaInAsP層304の厚さ20nmとし、第1回折格子層21と第2回折格子層31とが同一の厚さを有するものとして構成されている。
 また、第1回折格子層21の回折格子21Aを構成する半導体層302,303の屈折率差を、第2回折格子層31の回折格子31Aを構成する半導体層304,307の屈折率差と同一にし、第1回折格子層21と第2回折格子層31とが同一の屈折率差を有するものとして構成されている。
 このため、第1回折格子層21と第2回折格子層31とは、回折格子21A,31Aのデューティ比も同一であるため、回折格子21A,31Aの結合係数は同一である。
 このように、本実施形態の構成によれば、複数の回折格子層21,31を積層することによって結合係数のコントラストを大きくすることができるため、所望の要求を満たす素子を実現できるようになり、素子特性を向上させることができる。
 なお、その他の構成の詳細については、上述の第1実施形態の構成及びその具体的な構成例と同様であるため、ここでは、説明を省略する。
 次に、本実施形態の具体的構成例にかかるDFBレーザの製造方法について、図11(A)~図13(E)を参照しながら説明する。
 まず、図11(A)に示すように、n型ドープInP基板301上に、n型ドープGaInAsP層(例えば、組成波長1.15μm、厚さ20nm;基板と屈折率が異なる層)302、n型ドープInP層(例えば厚さ20nm;基板と屈折率が同一の層)303、n型ドープGaInAsP層(例えば、組成波長1.15μm、厚さ20nm;基板と屈折率が異なる層)304を、例えば有機金属気相成長法(MOVPE法)を用いて、順次積層させる。なお、n型InP基板301とn型GaInAsP層302との間にn型InPクラッド層を形成しても良い。
 次に、図11(B)に示すように、例えば、電子ビーム露光法によって、回折格子パターンを有し、電子ビームレジスト(日本ゼオン製ZEP520)からなるマスク305を、n型GaInAsP層304の表面上に形成する。なお、ここでは、マスク305に形成された回折格子パターンには、個々の素子の共振器中央に位相がπラジアンの位相シフト(λ/4位相シフト)を形成するためのパターンが含まれている。
 次いで、このマスク305を用いて、例えばエタン/水素混合ガスによるリアクティブ・イオン・エッチング(RIE)によって、n型GaInAsP層304及びn型InP層303の一部を除去する。
 ここでは、図11(C)に示すように、n型GaInAsP層304を分断し、n型InP層303の途中でエッチングが停止するようにしている。これにより、n型GaInAsP層304の全面に回折格子パターンが転写され、n型GaInAsP層304が分断されることになる。
 次に、この表面に、図11(D)に示すように、例えばポジ型フォトレジスト(東京応化製OFPR8600;例えば厚さ300nm)306を塗布する。なお、マスク305を構成する電子ビームレジストとポジ型フォトレジスト306は混ざり合うことはないため、マスク305が変形することはない。
 次に、通常のフォトリソグラフィ技術を用いて、図11(E)に示すように、ポジ型フォトレジスト306の一部(ここでは共振器の両端側部分;光導波路に沿う方向の両端側の領域)を除去して、共振器中央部分を覆う(マスク305の一部の領域の表面を覆う;光導波路の中央領域に対応する領域の表面を覆う)ポジ型フォトレジストマスク306Aを形成する。
 その後、再び表面に露出した電子ビームレジストマスク305とポジ型フォトレジストマスク306Aを用いて、例えばエタン/水素混合ガスによるリアクティブ・イオン・エッチング(RIE)によって、n型InP層303の残りの部分、n型GaInAsP層302及びn型InP基板301の一部を除去する。
 ここでは、図12(A)に示すように、n型InP層303とn型GaInAsP層302を分断し、n型InP基板301の途中(ここではエッチング深さ10nmの位置)でエッチングが停止するようにしている。
 これにより、n型GaInAsP層302の一部(ここでは共振器の両端側部分;光導波路に沿う方向の両端側の領域)に回折格子パターンが転写され、n型GaInAsP層302が分断されることになる。
 この場合、n型GaInAsP層304に形成される回折格子パターンと、n型GaInAsP層302に形成される回折格子パターンとは、同じマスク305を用いて形成されるため、後述のようにして形成される第1回折格子層21と第2回折格子層31とは、対応する領域に形成される回折格子21A,31Aの位相、周期、デューティ比が同一になる。
 なお、ここでは、n型GaInAsP層302の厚さ及び屈折率(第1回折格子層21の厚さ及び屈折率差)とn型GaInAsP層304の厚さ及び屈折率(第2回折格子層31の厚さ及び屈折率差)とは同一である。このため、第1回折格子層21に含まれる回折格子21Aの結合係数と第2回折格子層31に含まれる回折格子31Aの結合係数とは同一である。
 ここで、各回折格子層21,31は、層内でデューティ比が一定になっている。この場合、エッチングマスクの回折格子パターン(マスクパターン)の幅を変化させる必要がないため、回折格子の加工精度が安定する。ここでは、各回折格子層21,31は、層内で厚さ及び屈折率差も一定であるため、層内で回折格子の結合係数は一定である。
 そして、図12(B)に示すように、マスク305及びマスク306Aを通常のレジスト剥離方法を用いて表面から除去する。
 次いで、図12(C)に示すように、例えばMOVPE法を用いて、全面にn型ドープInP層(基板301と屈折率が同一の層)307を成長させる。これにより、n型InP層303の途中でエッチングが停止されて形成された溝、及び、n型InP基板301の途中でエッチングが停止されて形成された溝がn型InP層307によって埋め込まれる。
 この結果、分断されたn型GaInAsP層302がn型InP層307によって埋め込まれて、一部(ここでは共振器の両端側部分;光導波路に沿う方向の両端側の領域)に回折格子21Aが形成されている第1回折格子層21が形成される。また、分断されたn型GaInAsP層304がn型InP層307によって埋め込まれて、全面(光導波路に沿う方向の全長)に回折格子31Aが形成されている第2回折格子層31が形成される。
 さらに、第1回折格子層21と第2回折格子層31との間にはn型InP層303及びn型InP層307の一部によってスペーサ層43が形成される。また、第2回折格子層31の上側にはn型InP層307の一部によってスペーサ層52が形成される。
 次に、図12(D)に示すように、量子井戸活性層308、p型ドープInPクラッド層(例えば厚さ250nm)309を、例えばMOVPE法によって順次積層させる。
 ここで、量子井戸活性層308は、アンドープGaInAsP量子井戸層(例えば、厚さ5.1nm、圧縮歪量1.0%)、及び、アンドープGaInAsPバリア層(例えば、組成波長1.2μm、厚さ10nm)で構成され、量子井戸層の層数は6層であり、その発光波長は1560nmである。
 なお、量子井戸活性層308の上下に、量子井戸活性層308を挟み込むように、アンドープGaInAsP-SCH(例えば、波長1.15μm、厚さ20nm)を設けても良い。
 その後、半導体表面に、図12(E)に示すように、通常の化学気相堆積法(CVD法)及びフォトリソグラフィ技術を用いて、SiOからなるマスク(例えば、厚さ400nm、幅1.6μmのストライプ状のエッチングマスク)310を形成する。
 そして、図13(A)に示すように、例えばドライエッチング法を用いて、n型InP基板301が例えば0.7μm程掘り込まれる深さまで、上述のようにして形成された半導体積層構造をエッチングし、ストライプ状のメサ構造(メサストライプ)を形成する。
 次に、図13(B)に示すように、このメサ構造の両側に、p型InP層311/n型InP層312/p型InP層313で構成される電流狭窄層を、例えばMOVPE法を用いて成長させ、エッチングマスク310を例えばふっ酸で除去した後、図13(C)に示すように、例えばMOVPE法を用いて、p型InPクラッド層(例えば厚さ2.2μm)314、p型GaInAsコンタクト層(例えば厚さ300nm)315を順次成長させる。
 そして、図13(D)に示すように、p側電極316及びn側電極317を形成した後、図13(E)に示すように、素子の両端面に無反射コート318,319を形成して、素子が完成する。
 したがって、本実施形態にかかる光素子(DFBレーザ)及びその製造方法によれば、上述の第1実施形態のものと同様に、回折格子の結合係数を共振器内で分布させた構造の光素子において、回折格子を精度良く安定して作製できるようになり、歩留まりが向上するとともに、結合係数を大きくする領域と結合係数を小さくする領域とで結合係数の差を大きくする(結合係数のコントラストを大きくする)ことができ、素子特性を向上させることができるという利点がある。
 また、回折格子を精度良く安定して作製できるため、素子特性のばらつきを抑制することができ、素子特性を向上させることもできる。また、結合係数の制御性や結合係数の設計自由度も向上する。
 特に、本実施形態の素子では、素子端面側の結合係数が大きくなっているため、長共振器化して作製した場合でも軸方向のホールバーニングを抑制できる。このため、より高い光出力でも安定した単一縦モード動作を維持することができ、また、レーザの発振線幅をより狭くすることができる。
 このため、例えば上記非特許文献1に記載されているような、結合係数を共振器中央に向かって小さくなるように分布させる構造の素子に適用して、軸方向のホールバーニングを抑制し、高光出力時の縦モード安定性を向上させることができる。
 このような素子は、例えば、コヒーレント光伝送システム、あるいは、多値変調光通信システムのように、レーザの発振線幅が100~500kHzと非常に狭いレーザ光源を必要とするシステムにおいて、そのレーザ光源として用いることができる。
 レーザの発振線幅を狭くするためには、まずDFBレーザのように単一縦モード動作することが必要であり、さらなる狭線幅化のためには、レーザの共振器長を長くすることが必要である。例えば、レーザの共振器長を1000μm以上にすることで1MHz以下の線幅にすることが可能である。
 さらに、線幅はレーザの光出力の逆数に比例するため、より高い光出力で動作させるほど狭線幅化を実現できることになる。このため、さらなる狭線幅化のためには、さらにレーザの共振器長を長くし、かつ、できる限り高い光出力で動作させれば良いが、長くしすぎると、高光出力動作時にDFBレーザにおける軸方向ホールバーニングの影響によって主モードと副モードの間のモード間利得差が減少していき、単一モード安定性が損なわれ、線幅が急激に太くなってしまうことになる。したがって、このような場合に、上述のように、高光出力動作時の軸方向ホールバーニングの影響を抑制できる構造が有効である。
[その他]
 なお、上述の各実施形態及びその変形例では、各回折格子層は、層内で回折格子のデューティ比を一定にしているが、これに限られるものではない。
 例えば、図14に示すように、上述の第1実施形態の構成において、第2回折格子層3を、第1回折格子層2の回折格子2Aが形成されている領域に対応する領域の回折格子3Aのデューティ比(ここでは50%)に対して、この領域以外の領域(光導波路に沿う方向の両端側の領域)の回折格子3Aのデューティ比(ここでは25%)が異なるように構成しても良い。つまり、複数の回折格子層のうち一の回折格子層を、デューティ比の異なる回折格子を含むものとして構成しても良い。なお、この変形例は上述の第2実施形態や第3実施形態の構成に適用することもできる。
 また、例えば、複数の回折格子層を、対応する領域に形成されている回折格子のデューティ比が同一になるように構成する一方、各回折格子層は、層内で回折格子のデューティ比を、デューティ比が非常に大きくなったり、非常に小さくなったりしない範囲内で、変えても良い。
 このように、複数の回折格子層を、デューティ比の異なる回折格子を含む回折格子層を少なくとも1層含むように構成することができる。
 また、上述の各実施形態及びその変形例では、複数の回折格子層は、対応する領域に形成されている回折格子のデューティ比が同一になっているが、これに限られるものではない。例えば、回折格子をエッチングによって形成した場合にその断面形状が矩形ではなく台形となり、この結果、対応する領域に形成されている回折格子のデューティ比が若干異なっていても、対応する領域に形成されている回折格子の位相、周期が同一であれば、上述の各実施形態及びその変形例のものとほぼ同様の効果が得られる。
 また、上述の各実施形態及びその変形例では、共振器中央に向かって結合係数が大きくなる構成(第1実施形態、第2実施形態)、共振器中央に向かって結合係数が小さくなる構成(第3実施形態)を例に挙げて説明しているが、これらに限られるものではなく、結合係数の共振器内での分布は任意であり、光素子の設計に応じて自由に設定可能である。
 例えば、上述の各実施形態及びその変形例では、共振器方向に沿って共振器中央に対して結合係数の分布が対称になっている構造を例に挙げて説明しているが、共振器方向に沿って共振器中央に対して結合係数の分布が非対称、例えば戻り光耐性を高めるためにレーザ前端面側の結合係数を大きくした構造、逆に光出力を大きくするためにレーザ前端面側の結合係数を小さくした構造などを採用することも可能である。
 また、上述の各実施形態及びその変形例では、複数の回折格子層が光導波路の下側(光導波路に対して基板側)に装荷されている場合を例に挙げて説明しているが、これに限られるものではなく、例えば、光導波路の上側(光導波路に対して基板と反対側)に装荷されていても良く、この場合も上述の各実施形態の場合と同様の効果が得られる。
 また、上述の各実施形態及びその変形例では、共振器中央に位相がπの位相シフトを1つだけ有する場合を例に挙げて説明しているが、これに限られるものではなく、例えば、位相シフトがない構造、位相シフトが複数個ある構造であっても良いし、また、1個又は複数個の位相シフトの量は任意に設定可能である。
 また、上述の各実施形態及びその変形例では、n型InP基板上にGaInAsP系化合物半導体材料(第1実施形態、第3実施形態)又はAlGaInAs系化合物半導体材料(第2実施形態)を用いた量子井戸活性層を形成してDFBレーザを構成した場合を例に挙げて説明しているが、これに限られるものではなく、本発明は光導波路の近傍に回折格子を装荷するデバイス(光素子)に広く適用することができる。
 例えば、第1実施形態や第3実施形態の構成において、AlGaInAs系化合物半導体材料を用いて量子井戸活性層を構成しても良いし、第2実施形態の構成において、GaInAsP系化合物半導体材料を用いて量子井戸活性層を構成しても良い。また、例えば、GaInNAs系化合物半導体材料などの他の化合物半導体材料を用いて量子井戸活性層を構成しても良い。この場合も、上述の各実施形態及びその変形例の場合と同様の効果が得られる。
 また、例えば、素子を構成する材料は、光素子(半導体レーザ)を構成しうる材料を用いれば良い。例えば、他の化合物半導体材料を用いても良い。また、半導体材料だけでなく、有機物材料や無機物材料を用いることもできる。この場合も、上述の各実施形態及びその変形例の場合と同様の効果が得られる。
 また、例えば、基板は、p型の導電性を有する基板や半絶縁性の基板を用いても良い。この場合、基板上に形成される各層の導電性は全て逆になる。この場合も、上述の各実施形態及びその変形例の場合と同様の効果が得られる。
 また、例えばGaAs基板を用い、GaAs基板上に結晶成長(例えばエピタキシャル成長)しうる半導体材料を用いて各層を形成しても良い。この場合も、上述の各実施形態及びその変形例の場合と同様の効果が得られる。
 また、例えばシリコン基板上に貼り合わせの方法で作製しても良い。この場合も、上述の各実施形態及びその変形例の場合と同様の効果が得られる。
 また、例えばバルク型の半導体材料を用いたバルク活性層や量子ドット活性層などの他の活性層構造を採用しても良い。この場合も、上述の各実施形態及びその変形例の場合と同様の効果が得られる。
 また、上述の実施形態及びその変形例では、導波路構造としてpn埋込構造又はSI-BH構造を採用しているが、これに限られるものではなく、例えば、他の埋込構造を用いることも可能であるし、リッジ導波路構造などを用いることも可能である。
 また、DBR(Distributed Bragg Reflector;分布ブラッグ反射型)レーザやDR(Distributed Reflector;分布反射型)レーザなどの他の半導体レーザに本発明を適用することもできる。さらに、半導体レーザのようなアクティブ型の光素子のみならず、例えば光フィルタのようなパッシブ型の光素子に本発明を適用することもできる。これらの場合も、上述の各実施形態及びその変形例と同様の効果が得られる。
 また、上述の各実施形態及びその変形例では、両端面に無反射コートを施した構造を例に挙げて説明しているが、これに限られるものではなく、端面構造の組み合わせは無反射/劈開/高反射を任意に組み合わせて用いることができる。
 なお、本発明は、上述した各実施形態やその他の欄に記載した構成に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形することが可能である。

Claims (20)

  1.  光導波路と、
     前記光導波路に沿って設けられた複数の回折格子層とを備え、
     前記各回折格子層は、分断された一の半導体層と、前記一の半導体層と屈折率が異なり、前記一の半導体層を埋め込む他の半導体層とによって構成される回折格子を含み、
     前記複数の回折格子層は、前記回折格子が形成されている領域の長さが異なる少なくとも2つの回折格子層を含み、
     前記複数の回折格子層は、対応する領域に形成されている前記回折格子の位相、周期が同一であることを特徴とする光素子。
  2.  前記複数の回折格子層は、前記対応する領域に形成されている前記回折格子のデューティ比が同一であることを特徴とする、請求項1に記載の光素子。
  3.  前記複数の回折格子層は、前記光導波路の上側又は下側のいずれかに設けられていることを特徴とする、請求項1又は2に記載の光素子。
  4.  前記複数の回折格子層の前記対応する領域は、前記光導波路に沿う方向の中央領域であることを特徴とする、請求項1~3のいずれか1項に記載の光素子。
  5.  前記複数の回折格子層の前記対応する領域は、前記光導波路に沿う方向の両端側の領域であることを特徴とする、請求項1~3のいずれか1項に記載の光素子。
  6.  前記複数の回折格子層は、デューティ比の異なる回折格子を含む回折格子層を少なくとも1層含むことを特徴とする、請求項1~5のいずれか1項に記載の光素子。
  7.  前記一の半導体層は、GaInAsP層であり、
     前記他の半導体層は、InP層であることを特徴とする、請求項1~6のいずれか1項に記載の光素子。
  8.  前記光導波路は、導波路コアとして活性層を備えることを特徴とする、請求項1~7のいずれか1項に記載の光素子。
  9.  前記複数の回折格子層は、同一の厚さを有することを特徴とする、請求項1~8のいずれか1項に記載の光素子。
  10.  前記複数の回折格子層は、厚さが異なる回折格子層を含むことを特徴とする、請求項1~8のいずれか1項に記載の光素子。
  11.  前記複数の回折格子層は、異なる厚さを有することを特徴とする、請求項1~8のいずれか1項に記載の光素子。
  12.  前記複数の回折格子層は、前記一の半導体層と前記他の半導体層との間の屈折率差が同一であることを特徴とする、請求項1~11のいずれか1項に記載の光素子。
  13.  前記複数の回折格子層は、前記一の半導体層と前記他の半導体層との間の屈折率差が異なる回折格子層を含むことを特徴とする、請求項1~11のいずれか1項に記載の光素子。
  14.  前記複数の回折格子層は、前記一の半導体層と前記他の半導体層との間の屈折率差が異なることを特徴とする、請求項1~11のいずれか1項に記載の光素子。
  15.  前記複数の回折格子層は、同一の間隔をあけて設けられていることを特徴とする、請求項1~14のいずれか1項に記載の光素子。
  16.  前記複数の回折格子層は、一部が異なる間隔をあけて設けられていることを特徴とする、請求項1~14のいずれか1項に記載の光素子。
  17.  前記複数の回折格子層は、異なる間隔をあけて設けられていることを特徴とする、請求項1~14のいずれか1項に記載の光素子。
  18.  基板上に、複数の層を積層し、
     表面上に、回折格子パターンを有する一のマスクを形成し、
     前記一のマスクを用いてエッチングして前記複数の層の中の一の層に前記回折格子パターンを転写し、
     前記一のマスクの一部の領域の表面を覆うように他のマスクを形成し、
     前記一のマスク及び前記他のマスクを用いてエッチングして前記複数の層の中の他の層に前記回折格子パターンを転写し、
     前記一のマスク及び前記他のマスクを除去し、
     他の層によって埋め込むことによって複数の回折格子層を形成することを特徴とする光素子の製造方法。
  19.  光導波路を形成する工程を含み、
     前記一のマスクの前記光導波路の両端側の領域に対応する領域の表面を覆うように前記他のマスクを形成することを特徴とする、請求項18記載の光素子の製造方法。
  20.  光導波路を形成する工程を含み、
     前記一のマスクの前記光導波路の中央領域に対応する領域の表面を覆うように前記他のマスクを形成することを特徴とする、請求項18記載の光素子の製造方法。
PCT/JP2008/055113 2008-03-19 2008-03-19 光素子及びその製造方法 WO2009116152A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2008/055113 WO2009116152A1 (ja) 2008-03-19 2008-03-19 光素子及びその製造方法
JP2010503705A JP5182362B2 (ja) 2008-03-19 2008-03-19 光素子及びその製造方法
US12/868,163 US7899283B2 (en) 2008-03-19 2010-08-25 Optical device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/055113 WO2009116152A1 (ja) 2008-03-19 2008-03-19 光素子及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/868,163 Continuation US7899283B2 (en) 2008-03-19 2010-08-25 Optical device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2009116152A1 true WO2009116152A1 (ja) 2009-09-24

Family

ID=41090574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/055113 WO2009116152A1 (ja) 2008-03-19 2008-03-19 光素子及びその製造方法

Country Status (3)

Country Link
US (1) US7899283B2 (ja)
JP (1) JP5182362B2 (ja)
WO (1) WO2009116152A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078842A (zh) * 2013-03-29 2014-10-01 富士通株式会社 光学器件以及光学模块
JP2019186539A (ja) * 2018-03-30 2019-10-24 Dowaエレクトロニクス株式会社 半導体光デバイスの製造方法及び半導体光デバイスの中間体

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5177285B2 (ja) * 2009-03-30 2013-04-03 富士通株式会社 光素子及びその製造方法
JP5440304B2 (ja) * 2010-03-19 2014-03-12 富士通株式会社 光半導体装置及びその製造方法
US9164247B2 (en) * 2011-07-28 2015-10-20 Source Photonics, Inc. Apparatuses for reducing the sensitivity of an optical signal to polarization and methods of making and using the same
JP6598202B2 (ja) * 2014-10-30 2019-10-30 住友電工デバイス・イノベーション株式会社 半導体レーザの製造方法
FR3054734B1 (fr) * 2016-07-27 2018-09-07 Universite Paris Sud Diode laser a retroaction repartie
US10756507B2 (en) * 2017-01-23 2020-08-25 Sumitomo Electric Industries, Ltd. Process of forming epitaxial substrate and semiconductor optical device
US11137536B2 (en) 2018-07-26 2021-10-05 Facebook Technologies, Llc Bragg-like gratings on high refractive index material
US10916915B2 (en) * 2018-12-21 2021-02-09 National Sun Yat-Sen University Distributed feedback semiconductor laser device
US11226446B2 (en) * 2020-05-06 2022-01-18 Facebook Technologies, Llc Hydrogen/nitrogen doping and chemically assisted etching of high refractive index gratings

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529705A (ja) * 1991-07-22 1993-02-05 Hikari Keisoku Gijutsu Kaihatsu Kk 半導体分布帰還型レーザ装置
JPH0582888A (ja) * 1991-09-19 1993-04-02 Fujitsu Ltd 分布帰還型半導体レーザ
JP2001281473A (ja) * 2000-03-28 2001-10-10 Toshiba Corp フォトニクス結晶及びその製造方法、光モジュール並びに光システム
JP2004031402A (ja) * 2002-06-21 2004-01-29 Furukawa Electric Co Ltd:The 分布帰還型半導体レーザ素子
JP2004356571A (ja) * 2003-05-30 2004-12-16 Matsushita Electric Ind Co Ltd 分布帰還型半導体レーザ装置
US6885804B2 (en) * 2002-02-07 2005-04-26 Electronics And Telecommunications Research Institute Semiconductor optical devices with differential grating structure and method for manufacturing the same
JP2005317695A (ja) * 2004-04-28 2005-11-10 Furukawa Electric Co Ltd:The レーザ装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2966485B2 (ja) 1989-07-15 1999-10-25 富士通株式会社 波長可変コヒーレント光源およびその製造方法
WO1992007401A1 (en) 1990-10-19 1992-04-30 Optical Measurement Technology Development Co., Ltd. Distributed feedback semiconductor laser
JPH08255954A (ja) 1995-03-17 1996-10-01 Mitsubishi Electric Corp 半導体レーザの構造及びその製造方法
US6990273B2 (en) * 2001-10-12 2006-01-24 Southampton Photonics, Ltd Optical multi-band device with grating
US7180930B2 (en) 2002-06-20 2007-02-20 The Furukawa Electric Co., Ltd. DFB semiconductor laser device having ununiform arrangement of a diffraction grating
US7376306B2 (en) * 2004-08-26 2008-05-20 Avanex Corporation Slanted Bragg grating gain flattening filter having spatially overlapping elementary filters and a manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529705A (ja) * 1991-07-22 1993-02-05 Hikari Keisoku Gijutsu Kaihatsu Kk 半導体分布帰還型レーザ装置
JPH0582888A (ja) * 1991-09-19 1993-04-02 Fujitsu Ltd 分布帰還型半導体レーザ
JP2001281473A (ja) * 2000-03-28 2001-10-10 Toshiba Corp フォトニクス結晶及びその製造方法、光モジュール並びに光システム
US6885804B2 (en) * 2002-02-07 2005-04-26 Electronics And Telecommunications Research Institute Semiconductor optical devices with differential grating structure and method for manufacturing the same
JP2004031402A (ja) * 2002-06-21 2004-01-29 Furukawa Electric Co Ltd:The 分布帰還型半導体レーザ素子
JP2004356571A (ja) * 2003-05-30 2004-12-16 Matsushita Electric Ind Co Ltd 分布帰還型半導体レーザ装置
JP2005317695A (ja) * 2004-04-28 2005-11-10 Furukawa Electric Co Ltd:The レーザ装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078842A (zh) * 2013-03-29 2014-10-01 富士通株式会社 光学器件以及光学模块
JP2014199882A (ja) * 2013-03-29 2014-10-23 富士通株式会社 光素子及び光モジュール
US9634465B2 (en) 2013-03-29 2017-04-25 Fujitsu Limited Optical device and optical module
JP2019186539A (ja) * 2018-03-30 2019-10-24 Dowaエレクトロニクス株式会社 半導体光デバイスの製造方法及び半導体光デバイスの中間体

Also Published As

Publication number Publication date
JP5182362B2 (ja) 2013-04-17
US20100322557A1 (en) 2010-12-23
US7899283B2 (en) 2011-03-01
JPWO2009116152A1 (ja) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5177285B2 (ja) 光素子及びその製造方法
JP5182362B2 (ja) 光素子及びその製造方法
JP5287460B2 (ja) 半導体レーザ
WO2009116140A1 (ja) 光半導体素子及びその製造方法
JP2004241570A (ja) 半導体レーザ
WO2011096040A1 (ja) 半導体レーザ素子、半導体レーザ素子の製造方法および光モジュール
JP2011204895A (ja) 半導体レーザ装置
JP6588859B2 (ja) 半導体レーザ
JP6510391B2 (ja) 半導体レーザ
WO2014126261A1 (ja) 半導体レーザ素子、集積型半導体レーザ素子、および、半導体レーザ素子の製造方法
JP5929571B2 (ja) 半導体レーザ
JP6483521B2 (ja) 半導体レーザ
JP5310533B2 (ja) 光半導体装置
JP6588858B2 (ja) 半導体レーザ
JP2009054721A (ja) 半導体素子及び半導体素子の製造方法
US20170194766A1 (en) Optical device and optical module
JP7294453B2 (ja) 直接変調レーザ
JP5163355B2 (ja) 半導体レーザ装置
US20210126430A1 (en) Semiconductor Laser
JP2003218462A (ja) 分布帰還型半導体レーザ装置
JP2006013191A (ja) 光半導体素子
US20040151224A1 (en) Distributed feedback semiconductor laser oscillating at longer wavelength mode and its manufacture method
JP2004055797A (ja) 分布帰還型半導体レーザ
JP2008085214A (ja) 波長可変レーザ
JP2001156390A (ja) 半導体レーザ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08722488

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010503705

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08722488

Country of ref document: EP

Kind code of ref document: A1