WO2009115086A1 - Procédé et système de lentilles pour concentrer de la lumière - Google Patents

Procédé et système de lentilles pour concentrer de la lumière Download PDF

Info

Publication number
WO2009115086A1
WO2009115086A1 PCT/DE2009/000376 DE2009000376W WO2009115086A1 WO 2009115086 A1 WO2009115086 A1 WO 2009115086A1 DE 2009000376 W DE2009000376 W DE 2009000376W WO 2009115086 A1 WO2009115086 A1 WO 2009115086A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
focal point
lenses
lens arrangement
Prior art date
Application number
PCT/DE2009/000376
Other languages
German (de)
English (en)
Inventor
Juri Koulechoff
Original Assignee
Juri Koulechoff
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juri Koulechoff filed Critical Juri Koulechoff
Publication of WO2009115086A1 publication Critical patent/WO2009115086A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/12Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • G02B19/0042Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the invention relates to a method and a lens arrangement for light concentration from different directions with which a high energy concentration is generated for energy production by superposition of light rays detected by lenses.
  • the object of the invention is to provide a method and a lens arrangement for light concentration, with the light from different parallel and non-parallel directions in high concentration in a focal point is bundled to then convert it depending on the application in parallel light or to another use.
  • an optimal light concentration should be achieved for optimum utilization of solar energy.
  • the method and the lens assembly concentrates the light from different directions such that light rays from different directions and / or parallel light rays are detected by a plurality of lens or lens systems and concentrated on a common focus and then behind the focal point, the light rays passing through the focal point another lens or lens system can be converted into parallel light rays.
  • the lens array for light concentration of light rays consists of at least two lenses or lens systems aligned with each other such that a light spot located in front of the lens in the optical axis or an already focused focal spot replicates behind the lens Points of light in a point of light merge by overlapping and a common new focal point arises.
  • the invention does not necessarily use parallel light beams for focusing a focal point, but light emanating from a point in space of natural or artificial origin or an already focused focal point.
  • a conventional lens focuses parallel light into a focal point with which the light concentration is completed.
  • the newly created focal point can be easily fed into a light guide and thus transported. For this reason, the lenses are also able to work regardless of location.
  • Several newly created foci could now be the output of a new light concentration to create a new focal point. This process can be repeated in successive stages.
  • the lens can fuse different light sources into one focal point, it has the possibility of combining different light properties.
  • the solution according to the invention makes it possible to combine entire solar collector fields with one another in order to obtain extremely high energy concentrations.
  • FIG. 1 shows a lens arrangement consisting of a plurality of lenses, which is shown in a view from the side and from the front,
  • 5 is a representation of the alignment of the optical axes of the individual lenses to a focal point
  • 6 shows a stage arrangement for repeated light concentration
  • FIG. 7 shows the concentration of light in the case of a spherical ring or spherical shape of the lens arrangement
  • FIG. 8 shows an arrangement in combination of FIG. 6 and FIG. 7,
  • FIG. 10b shows a detail from FIG. 10a for illustrating the different focal length in front of and behind a lens
  • a part of the lens arrangement 1 is shown according to the invention, the z. B. light 3 (shown in Fig. 9) from different directions in a focal point 7 can focus.
  • a converging lens 2 focuses parallel light 4 into a focal point 5.
  • This resulting focal point 5 is fed into a light guide 6 in order to transport it.
  • the light emerges conically from the light guide 6.
  • a converging lens for example a Cartesian oval
  • a focal point 5 is fed into a light guide 6 according to FIG. 3, but several foci 5 are fed into the associated light guide 6.
  • the individual light guides 6 are joined together in Fig. 3 with their converging lenses 2 to form a circle, as shown in Fig. 4.
  • 37 converging lenses 2 are joined together to form a circular hexagon.
  • the optical axis of each individual lens 2 is changed so that the individual focal points 5 can be combined via a lens arrangement 1 in a new common focal point 7.
  • This newly formed common focal point 7 has the same physical properties as a conventional focal point 5.
  • this newly formed focal point 7 can also be fed into a light guide 6.
  • the number of original 37 optical fibers 6 has been reduced to one optical fiber 6a.
  • this also means an area reduction of 1/37.
  • the focused focus 7 from the light guide 6a could now again be the starting position of a new focus. Since this is a reproduction with recurring initial situation, the process is theoretically unlimited feasible.
  • the lens assembly 1 presented herein may have different numbers, sizes, and shapes of individual segments (lens or lens group), and the angle of curvature may vary individually depending on the application. This makes it possible to produce the focal point 7 in different ways.
  • FIG. 7 shows a closed form of the lens arrangement 1. That is, the lens assembly 1 forms a ring having a focal point 7 of 360 °.
  • the lens assembly 1 itself constitutes a closed unit and therefore may be part of a closed system. Since it forms a cavity in a closed system, it is conceivable a medium z.
  • a mathematical comparison of the energy concentration is used.
  • a conventional lens array 2 attains a ratio of the light concentration from the diameter area of a lens to the focal point area of about 1: 800. Here ends the possibility to focus the light 4.
  • the presented lens system 1 in Fig. 8 is now used.
  • the light penetrates four lens arrays altogether, which is technically not a problem.
  • the first lens arrangement 2 corresponds to normal converging lenses which focus the light 4 into a focal point 5.
  • the second lens arrangement 1 consists of 37 individual segments of lenses. This focuses the individual focal points 5 to a new focal point 7 by a factor of 37.
  • the third lens arrangement 1 also focuses by the factor 37 now the respective focal points 7 to a single new focal point 7.
  • the fourth lens arrangement 1 consists of an annular arrangement with the factor 481 (consisting of 481 individual segments of lenses). It focuses all the focal points 7 from the third lens arrangement 1 into a central focal point 7 a in the middle of the fourth lens arrangement 1.
  • the first lens system 2 has a light concentration of 1: 800
  • the second lens system 1 has 37 individual elements
  • the third lens system 1 also has 37 individual elements
  • the fourth lens system 1 has 481 individual elements.
  • the light output area in front of the first lens system 2 is reduced in the newly formed focal point 7a by a factor of 526,791,200 with a constant amount of light. If one were to extend this test arrangement only by a further lens arrangement 1 with the factor 37, the light output area in the focal point 7a decreases to 1: 19,491,274,000.
  • the starting position for the lens arrangement 1 does not necessarily have to be a lens arrangement 2 as previously described, which focuses parallel light 4 into a focal point 5. If one leaves these away, it is possible to focus light 3 from the most different directions into a new focal point 7.
  • the device Since different combination possibilities are now available to produce a focal point 7, it is also possible to convert already highly concentrated focused light 3, as shown in FIG. 9, into parallel light 4.
  • the device requires a further lens arrangement 2 in order to convert the light beams 3 which run to the newly formed focal point 7 or which have already passed through the focal point 7, into parallel light beams 4.
  • a focal point 7 can now be composed of different light sources. It is therefore also possible to put light together according to certain desired criteria. So it is z. B. possible to combine sunlight with artificial light individually in a focal point 7 or parallel light 4. There is also the possibility k ⁇ it, not only to filter certain light properties out of the light as before, but to incorporate specifically desired properties.
  • FIG. 10a For this purpose, a completely closed lens arrangement 1 in spherical form is required in FIG. 10a (only a section through the sphere is shown).
  • the latter can focus a focal point 7b in the center of the lens arrangement 1 in an absolutely diffuse light space 8 (FIG. 11).
  • the prerequisite for this is that the focal length from the focal point 5 in front of the lens is smaller than the reproduced focal point 7 behind the lens (FIG. 10b).
  • the lens arrangement 1 belongs to the group of converging lenses 2, which makes the use of such a lens arrangement 1 in the optical region conceivable. So it is conceivable that lens telescopes no longer consist of a large and difficult-to-manufacture single lens but of several lenses that are assembled into a lens assembly 1. [REFERENCE LIST]
  • Lens arrangement for light concentration of light from different directions Condense lens or collecting lens arrangement according to the prior art non-parallel light beams (light from different directions) parallel light beams and 5a focal points for light transmission fiber optic newly created common focus a focus in closed ring b focal point at light concentration in diffuse light space more diffuse Light room solar panel

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

L'invention concerne un procédé et un système de lentilles (1) pour réunir des rayons de lumière (3, 4) provenant de diverses directions, en un foyer (7), et pour transformer ces rayons en lumière parallèle (4) si nécessaire, pour les transmettre au moyen de photoconducteurs (6) et/ou les guider vers une autre utilisation. Des points lumineux différents sont superposés dans un espace pour former un foyer (7). Ce processus peut en théorie être répété à l'infini. Il est ainsi possible de concentrer de très grandes quantités de lumière.
PCT/DE2009/000376 2008-03-19 2009-03-17 Procédé et système de lentilles pour concentrer de la lumière WO2009115086A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008016109.8 2008-03-19
DE102008016109A DE102008016109A1 (de) 2008-03-19 2008-03-19 Verfahren und Linsenanordnung zur Lichtkonzentration

Publications (1)

Publication Number Publication Date
WO2009115086A1 true WO2009115086A1 (fr) 2009-09-24

Family

ID=40852046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2009/000376 WO2009115086A1 (fr) 2008-03-19 2009-03-17 Procédé et système de lentilles pour concentrer de la lumière

Country Status (2)

Country Link
DE (1) DE102008016109A1 (fr)
WO (1) WO2009115086A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2396103B1 (es) * 2011-07-05 2014-01-30 Abengoa Solar New Technologies, S.A. Planta solar.

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934573A (en) * 1975-02-28 1976-01-27 Dandini Alessandro O Spherical system for the concentration and extraction of solar energy
JPS5773717A (en) * 1980-10-25 1982-05-08 Agency Of Ind Science & Technol Light and heat collector for solar energy
US4422434A (en) * 1982-05-06 1983-12-27 Capitol Stampings Corp. Solar energy collection apparatus
JPS59131853A (ja) * 1983-01-17 1984-07-28 Masaichi Kanayama 太陽熱集熱装置
JPS61272702A (ja) * 1985-05-27 1986-12-03 Yamamoto Kogaku Kk 太陽光集光装置
JPH11183838A (ja) * 1997-12-24 1999-07-09 Iwao Umeda 太陽光線集束装置
EP1033591A2 (fr) * 1999-03-01 2000-09-06 Masanobu Inui Lentille à condenseur discontinue pour faisceau lumineux
JP2000321525A (ja) * 1999-05-14 2000-11-24 Hitachi Cable Ltd 太陽光集光装置
DE102006010056A1 (de) * 2006-03-04 2007-09-06 Anika Behrens Nachführbarer Linsen-/Winkelspiegel-Sonnenkollektor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069812A (en) * 1976-12-20 1978-01-24 E-Systems, Inc. Solar concentrator and energy collection system
US4334522A (en) * 1977-05-06 1982-06-15 Joseph Dukess Solar heat apparatus
US4337759A (en) * 1979-10-10 1982-07-06 John M. Popovich Radiant energy concentration by optical total internal reflection
DE19705046A1 (de) * 1996-08-20 1998-02-26 Fraunhofer Ges Forschung Vorrichtung und Verfahren zur Nutzung der Solarenergie

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934573A (en) * 1975-02-28 1976-01-27 Dandini Alessandro O Spherical system for the concentration and extraction of solar energy
JPS5773717A (en) * 1980-10-25 1982-05-08 Agency Of Ind Science & Technol Light and heat collector for solar energy
US4422434A (en) * 1982-05-06 1983-12-27 Capitol Stampings Corp. Solar energy collection apparatus
JPS59131853A (ja) * 1983-01-17 1984-07-28 Masaichi Kanayama 太陽熱集熱装置
JPS61272702A (ja) * 1985-05-27 1986-12-03 Yamamoto Kogaku Kk 太陽光集光装置
JPH11183838A (ja) * 1997-12-24 1999-07-09 Iwao Umeda 太陽光線集束装置
EP1033591A2 (fr) * 1999-03-01 2000-09-06 Masanobu Inui Lentille à condenseur discontinue pour faisceau lumineux
JP2000321525A (ja) * 1999-05-14 2000-11-24 Hitachi Cable Ltd 太陽光集光装置
DE102006010056A1 (de) * 2006-03-04 2007-09-06 Anika Behrens Nachführbarer Linsen-/Winkelspiegel-Sonnenkollektor

Also Published As

Publication number Publication date
DE102008016109A1 (de) 2009-10-01

Similar Documents

Publication Publication Date Title
DE19915000C2 (de) Vorrichtung und Verfahren zum Steuern der Intensitätsverteilung eines Laserstrahls
WO2008043491A2 (fr) Dispositif d'homogénéisation de rayonnements au moyen de réseaux de microlentilles irrégulières
EP2663892A2 (fr) Dispositif de conversion du profil d'un faisceau laser en un faisceau laser à répartition d'intensité symétrique en rotation
DE102017217345B4 (de) Optischer Strahlformer
DE102009021251A1 (de) Vorrichtung zur Formung von Laserstrahlung sowie Laservorrichtung mit einer derartigen Vorrichtung
WO2017186681A1 (fr) Optique de formation de faisceau destinée à la découpe laser et dispositif pourvu de cette optique
DE102013110272A1 (de) Beleuchtungsvorrichtung für Fahrzeuge
DE3418188C2 (fr)
DE102007018400A1 (de) Optisches System für einen Lasermaterialbearbeitungskopf
DE19635792A1 (de) Zoomvorrichtung
DE102013103422B4 (de) Vorrichtung zur Erzeugung von Laserstrahlung mit einer linienförmigen Intensitätsverteilung
CH697509B1 (de) Laserschweisseinrichtung, bestehend aus einem Lichtleiter oder einem Lichtwellenleiter mit einem optischen Trichter.
EP2976672B1 (fr) Dispositif d'homogénéisation d'un rayon laser
WO2008087012A1 (fr) Dispositif pour homogénéiser la lumière et dispositif pour produire une distribution linéaire de l'intensité dans un plan de travail
WO2009115086A1 (fr) Procédé et système de lentilles pour concentrer de la lumière
EP4041479A1 (fr) Dispositif laser pour générer un rayonnement laser et dispositif d'impression 3d comprenant un tel dispositif laser
DE102012109937A1 (de) Vorrichtung zur Beaufschlagung einer Innenseite eines Zylinders mit Licht sowie Strahltransformationsvorrichtung für eine derartige Vorrichtung
DE2454996A1 (de) Einrichtung zur ankopplung von lichtfuehrungselementen an eine lichtquelle
WO2012041711A1 (fr) Système et procédé pour générer un faisceau de lumière pour l'usinage de matériaux
WO2012156230A1 (fr) Dispositif d'éclairage
DE102022110078A1 (de) Vorrichtung und Verfahren zur Modifikation des Strahlprofils eines Laserstrahls
EP1018053A1 (fr) Systeme optique d'injection d'un rayonnement laser dans une fibre optique et son procede de fabrication
DE19931976A1 (de) Prismensysteme in Kombination mit optischen Elementen zur Nutzung der Totalreflexion und nachfolgender Umwandlung der Solarstrahlung in thermische und elektrische Energie
DE102016113978A1 (de) Vorrichtung zum Ablenken einer Laserstrahlung oder zum Ablenken von Licht
DE19630743C2 (de) Vorrichtung zum Abbilden von Laserstrahlung auf ein Substrat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721589

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 09721589

Country of ref document: EP

Kind code of ref document: A1