WO2009111110A1 - Complimentary application specific integrated circuit for compact fluorescent lamps - Google Patents
Complimentary application specific integrated circuit for compact fluorescent lamps Download PDFInfo
- Publication number
- WO2009111110A1 WO2009111110A1 PCT/US2009/031856 US2009031856W WO2009111110A1 WO 2009111110 A1 WO2009111110 A1 WO 2009111110A1 US 2009031856 W US2009031856 W US 2009031856W WO 2009111110 A1 WO2009111110 A1 WO 2009111110A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transistor
- integrated circuit
- transistors
- signal
- set forth
- Prior art date
Links
- 238000000034 method Methods 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 2
- 239000003990 capacitor Substances 0.000 description 12
- 238000009499 grossing Methods 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- DZSVIVLGBJKQAP-UHFFFAOYSA-N 1-(2-methyl-5-propan-2-ylcyclohex-2-en-1-yl)propan-1-one Chemical compound CCC(=O)C1CC(C(C)C)CC=C1C DZSVIVLGBJKQAP-UHFFFAOYSA-N 0.000 description 1
- 206010011906 Death Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/26—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
- H05B41/28—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
- H05B41/282—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
- H05B41/2825—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
- H05B41/2827—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage using specially adapted components in the load circuit, e.g. feed-back transformers, piezoelectric transformers; using specially adapted load circuit configurations
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
- H02M5/42—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
- H02M5/44—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
- H02M5/453—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
Definitions
- the present invention relates to lamp ballasts. It finds particular application in simplifying lamp ballast circuitry through the use of application specific integrated circuits (ASICs) and will be described with particular reference thereto. It is to be appreciated, however, that the present invention is also applicable to other circuits as well as lamp ballasts, and is not limited to the aforementioned application.
- ASICs application specific integrated circuits
- Typical lamp ballasts driven off of a direct current (DC) bus signal include a pair of transistors that convert the DC signal to an alternating current (AC) signal for driving a lamp operably connected to the ballast.
- DC direct current
- AC alternating current
- BJTs bipolar junction transistors
- Such a circuit topology is described in U.S. Patent No. 6,847,175, issued January 25, 2005 to Nerone, which is incorporated by reference herein in its entirety.
- a lighting ballast circuit includes a lamp portion that has contacts for receiving a light source.
- the ballast also includes an integrated circuit.
- the integrated circuit includes a first transistor and a second transistor in series with the first transistor, the first and second transistors being conductive in alternating periods of time.
- a first diode sits in an anti-parallel combination with the first transistor and substantially diminishes reverse current flow through the first transistor.
- a second diode sits in an anti-parallel combination with the second transistor and substantially diminishes reverse current flow through the second transistor.
- a drive portion supplies drive signals to the integrated circuit.
- an integrated circuit is provided.
- a first transistor and a second transistor are in series with each other.
- a first diode sits in an anti-parallel combination with the first transistor and substantially diminishes reverse current flow through the first transistor.
- a second diode sits in an anti-parallel combination with the second transistor and helps prevent reverse current flow through the second transistor.
- a method of manufacturing a monolithic integrated circuit is provided.
- First and second bipolar junction transistors are placed in a series relationship with respective emitters connected at a first contact and respective bases connected at a second contact.
- a first diode is placed in an anti-parallel relationship with the first transistor, connected with a positive bus voltage.
- a second diode is placed in an anti-parallel relationship with the second transistor, connected with a negative bus voltage.
- a method of powering a lamp is disclosed.
- a first AC signal is provided to a monolithic integrated circuit.
- the first AC signal is converted into a DC signal by a rectifier integrated into the integrated circuit.
- the DC signal is converted into a second AC signal with first and second transistors resident on the integrated circuit.
- the transistors are protected by diodes integrated into the integrated circuit in anti-parallel relationships with the transistors.
- the second AC signal is provided to a lamp with the integrated circuit.
- the invention may take form in various components and arrangements of components, and in various steps and arrangements of steps.
- the drawings are only for purposes of illustrating preferred embodiments and are not to be construed as limiting the invention.
- FIGURE 1 is a circuit diagram of a ballast circuit with components indicated that are included on an ASIC;
- FIGURE 2 is a circuit diagram of an ASIC that takes the place of the components indicated in FIGURE 1
- FIGURE 3 is a depiction of the ballast circuit of FIGURE 1 with the ASIC of FIGURE 2 substituted for the indicated components in FIGURE 1.
- a light source 10 is operably connected between contacts 12, of a ballast circuit 13.
- the circuit 13 has a DC bus rail 14.
- the DC bus rail 14 can have a potential on the order of 450 V.
- the circuit 13 is referenced at point 16 to ground.
- the light source 10 is preferably a fluorescent lamp that operates at a particular frequency or range of frequencies.
- a DC blocking capacitor 18 is included between the lamp and ground.
- the ballast circuit provides AC power at the operational frequency of the lamp.
- a first transistor 20 and a second transistor 22 alternate between periods of conductivity and periods of non- conductivity, out of phase with each other. That is, when the first transistor 20 is conductive, the second transistor 22 is non-conductive, and vice-versa. The action of alternating periods of conduction of the transistors provides an AC signal across the contacts 12.
- the first transistor is a 13003 type transistor
- the second transistor is a 93003 type transistor.
- Each transistor 20, 22 has a respective base and emitter. The voltage from base to emitter on either transistor defines the conduction state of that transistor. That is, the base-to-emitter voltage of transistor 20 defines the conductivity of transistor 20 and the base-to-emitter voltage of transistor 22 defines the conductivity of transistor 22. As shown, the emitters of the two transistors 20, 22 are connected at a common node E. The bases of the transistors 20, 22 are connected at a control node B. The single voltage between the control node B and the common node E determines the conductivity of both transistors 20, 22. The collectors of the transistors 20, 22 are connected to the bus voltage 14 and ground 16, respectively.
- a gate drive circuit connected between the common node E and the control node B controls the conduction states of the transistors 20, 22.
- the gate drive circuit includes a serial capacitor 24, and a drive inductor 26 that is connected to a resonant inductor 28 at the common node E.
- the other end of the drive inductor 26 is coupled to a phase inductor 30.
- the phase inductor 30 is used to adjust the phase angle of the base-emitter voltage appearing between nodes E and B.
- the drive inductor 26 provides a driving energy for the operation of the drive circuit.
- the resonant inductor 28 along with a resonant capacitor 32 connected between nodes 14 and 18 determine the operating frequency of the lamp 10.
- the serial capacitor 24 charges to provide sufficient voltage to turn the first transistor 20 conductive. During steady state operation of the ballast, the serial capacitor 24 aids in switching between the two transistors 20, 22.
- a first diode 34 is included in the circuit in an anti-parallel relationship with respect to the first transistor 20.
- the first diode 34 provides a current shunt that redirects current from flowing in a reverse direction across the first transistor 20.
- a second diode 36 is disposed in an anti-parallel relationship with the second transistor 22 that substantially diminishes current flow in a reverse direction across the second transistor 22 while the first transistor 20 is conductive.
- the diodes 34, and 36 are PIN diodes.
- PIN diodes have an intrinsic semi-conducting region between a p-doped region and an n-doped region.
- the diodes used are 1N4004 type diodes. It is to be appreciated, of course, that other diodes having the required characteristics may also be used.
- the ballast circuit includes a smoothing capacitor 40 between the bus voltage 14 and ground 16 to smooth abnormalities and noise in the bus voltage signal.
- Starting resistors 42, 44, 46 prevent current in the ballast circuit from exceeding tolerable levels during startup, before the capacitors and inductors are charged.
- a so-called snubbing capacitor 48 is located between the node E and ground 16.
- An alternating current source 50 provides power to the ballast.
- the AC signal is converted to a DC signal by a rectifier 52.
- the rectifier 52 shown in FIGURE 1 is a full wave rectifier that includes four diodes 52a, 52b, 52c, and 52d. Alternately, a half-wave rectifier could also be used. Additional smoothing and shaping circuitry is also contemplated. As mentioned previously, the AC source 50 and the rectifier 52 combine to provide a DC signal on the order of substantially 450 Volts, but certainly other potentials are possible depending on the intended application.
- the circuit of FIGURE 1 can be simplified to provide a ballast that performs the same function, but is easier and less expensive to manufacture, and more robust and resistant to failure.
- FIGURE 1 shows portions of the ballast that are included in an application specific integrated circuit (ASIC).
- FIGURE 2 shows the circuit topology of an ASIC 60 that includes the indicated components of FIGURE 1.
- the ASIC 60 is a six pin chip. Two pins are connected to the AC power source. One pin is connected to the circuit bus 14, and one pin is connected to circuit ground 16. The remaining two pins represent nodes E and B, that is, the base and emitter nodes.
- the rectifier 52 could be external, and does not necessarily have to be housed on the ASIC 60.
- Additional circuitry such as voltage clamps, protective diodes, and the like, could also be included on the ASIC 60.
- the ASIC 60 could have more pins, and the ASIC 60 could carry additional circuitry, such as end-of-life testing circuitry, monitoring/diagnostic circuitry, or the like.
- FIGURE 3 depicts the circuit of FIGURE 1, with the ASIC 60 in place. Again, like components are indicated with like reference numerals.
- the ASIC 60 is a monolithic unit. This has the advantage of replacing the discrete circuit components and housing them on a single crystal substrate. By taking the discrete complimentary pair of transistors, and their associated starting resistors and companion diodes, the overall cost of the ballast is decreased, and reliability is increased. Additionally, the ballast does not take up as much physical space upon being implemented into a product.
- ballast circuit [0021] Exemplary component values for the ballast circuit are as follows:
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Circuit Arrangements For Discharge Lamps (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009801088303A CN101965753A (en) | 2008-03-07 | 2009-01-23 | Complimentary application specific integrated circuit for compact fluorescent lamps |
MX2010009621A MX2010009621A (en) | 2008-03-07 | 2009-01-23 | Complimentary application specific integrated circuit for compact fluorescent lamps. |
EP09716495A EP2263424A1 (en) | 2008-03-07 | 2009-01-23 | Complimentary application specific integrated circuit for compact fluorescent lamps |
CA2716943A CA2716943A1 (en) | 2008-03-07 | 2009-01-23 | Complimentary application specific integrated circuit for compact fluorescent lamps |
JP2010549688A JP2011513933A (en) | 2008-03-07 | 2009-01-23 | Complementary application specific integrated circuits for compact fluorescent lamps |
IL207862A IL207862A0 (en) | 2008-03-07 | 2010-08-30 | Complimentary application specific integrated circuit for compact fluorescent lamps |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/044,150 | 2008-03-07 | ||
US12/044,150 US7956550B2 (en) | 2008-03-07 | 2008-03-07 | Complementary application specific integrated circuit for compact fluorescent lamps |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009111110A1 true WO2009111110A1 (en) | 2009-09-11 |
Family
ID=40467101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/031856 WO2009111110A1 (en) | 2008-03-07 | 2009-01-23 | Complimentary application specific integrated circuit for compact fluorescent lamps |
Country Status (9)
Country | Link |
---|---|
US (1) | US7956550B2 (en) |
EP (1) | EP2263424A1 (en) |
JP (1) | JP2011513933A (en) |
CN (1) | CN101965753A (en) |
CA (1) | CA2716943A1 (en) |
CR (1) | CR11706A (en) |
IL (1) | IL207862A0 (en) |
MX (1) | MX2010009621A (en) |
WO (1) | WO2009111110A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8749161B2 (en) * | 2010-10-28 | 2014-06-10 | General Electric Company | Compact fluorescent lamp and LED light source with electronic components in base |
GB201309340D0 (en) * | 2013-05-23 | 2013-07-10 | Led Lighting Consultants Ltd | Improvements relating to power adaptors |
CN110557262B (en) * | 2018-05-30 | 2021-05-18 | 华为技术有限公司 | Power receiving equipment |
WO2021051254A1 (en) | 2019-09-17 | 2021-03-25 | Redisem Ltd. | Controller for Power Converter |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5986410A (en) * | 1997-02-20 | 1999-11-16 | General Electric Company | Integrated circuit for use in a ballast circuit for a gas discharge lamp |
US20020096779A1 (en) * | 2001-01-24 | 2002-07-25 | Martin Feldtkeller | Half-bridge circuit |
US20020140371A1 (en) * | 2000-05-12 | 2002-10-03 | O2 Micro International Limited | Integrated circuit for lamp heating and dimming control |
US6628090B1 (en) * | 2002-05-31 | 2003-09-30 | Stmicroelectronics, S.R.L. | Resonant driving system for a fluorescent lamp |
US20040207335A1 (en) * | 2003-04-16 | 2004-10-21 | Nerone Louis R. | Continuous mode voltage fed inverter |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4170747A (en) * | 1978-09-22 | 1979-10-09 | Esquire, Inc. | Fixed frequency, variable duty cycle, square wave dimmer for high intensity gaseous discharge lamp |
US4866350A (en) * | 1988-04-04 | 1989-09-12 | Usi Lighting, Inc. | Fluorescent lamp system |
US6429604B2 (en) * | 2000-01-21 | 2002-08-06 | Koninklijke Philips Electronics N.V. | Power feedback power factor correction scheme for multiple lamp operation |
DE10100037A1 (en) * | 2001-01-03 | 2002-07-04 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Circuit for operating electric lamps, comprises start circuit for inverter and system for deactivating start circuit |
WO2002060228A1 (en) * | 2001-01-24 | 2002-08-01 | Stmicroelectronics S.R.L. | Fault management method for electronic ballast |
US6756746B2 (en) | 2001-09-19 | 2004-06-29 | General Electric Company | Method of delaying and sequencing the starting of inverters that ballast lamps |
US6847175B2 (en) | 2001-09-19 | 2005-01-25 | General Electric Company | Lighting ballast with reverse current flow protection |
US6891339B2 (en) * | 2002-09-19 | 2005-05-10 | International Rectifier Corporation | Adaptive CFL control circuit |
EP1712112B1 (en) * | 2004-01-23 | 2008-10-29 | Koninklijke Philips Electronics N.V. | High frequency driver for gas discharge lamp |
US7408307B2 (en) * | 2004-02-19 | 2008-08-05 | International Rectifier Corporation | Ballast dimming control IC |
DE102005037409A1 (en) * | 2004-08-09 | 2006-03-30 | International Rectifier Corp., El Segundo | Start-up switch to provide a start-up voltage to an application circuit |
US8729828B2 (en) * | 2007-06-15 | 2014-05-20 | System General Corp. | Integrated circuit controller for ballast |
US20090128057A1 (en) * | 2007-09-15 | 2009-05-21 | Frank Alexander Valdez | Fluorescent lamp and ballast with balanced energy recovery pump |
-
2008
- 2008-03-07 US US12/044,150 patent/US7956550B2/en not_active Expired - Fee Related
-
2009
- 2009-01-23 EP EP09716495A patent/EP2263424A1/en not_active Withdrawn
- 2009-01-23 WO PCT/US2009/031856 patent/WO2009111110A1/en active Application Filing
- 2009-01-23 CA CA2716943A patent/CA2716943A1/en not_active Abandoned
- 2009-01-23 MX MX2010009621A patent/MX2010009621A/en active IP Right Grant
- 2009-01-23 JP JP2010549688A patent/JP2011513933A/en active Pending
- 2009-01-23 CN CN2009801088303A patent/CN101965753A/en active Pending
-
2010
- 2010-08-30 IL IL207862A patent/IL207862A0/en unknown
- 2010-09-30 CR CR11706A patent/CR11706A/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5986410A (en) * | 1997-02-20 | 1999-11-16 | General Electric Company | Integrated circuit for use in a ballast circuit for a gas discharge lamp |
US20020140371A1 (en) * | 2000-05-12 | 2002-10-03 | O2 Micro International Limited | Integrated circuit for lamp heating and dimming control |
US20020096779A1 (en) * | 2001-01-24 | 2002-07-25 | Martin Feldtkeller | Half-bridge circuit |
US6628090B1 (en) * | 2002-05-31 | 2003-09-30 | Stmicroelectronics, S.R.L. | Resonant driving system for a fluorescent lamp |
US20040207335A1 (en) * | 2003-04-16 | 2004-10-21 | Nerone Louis R. | Continuous mode voltage fed inverter |
Also Published As
Publication number | Publication date |
---|---|
IL207862A0 (en) | 2010-12-30 |
EP2263424A1 (en) | 2010-12-22 |
US7956550B2 (en) | 2011-06-07 |
CA2716943A1 (en) | 2009-09-11 |
US20090224683A1 (en) | 2009-09-10 |
CR11706A (en) | 2011-02-24 |
CN101965753A (en) | 2011-02-02 |
JP2011513933A (en) | 2011-04-28 |
MX2010009621A (en) | 2010-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7859866B2 (en) | Controller IC, DC-AC conversion apparatus, and parallel running system of DC-AC conversion apparatuses | |
JP2004512662A (en) | Electronic ballast for continuous conduction of line current | |
WO2004032315A1 (en) | Dc/ac conversion device and ac power supply method | |
WO2004059826A1 (en) | Dc-ac converter parallel operation system and controller ic thereof | |
US8247997B2 (en) | Ballast with lamp filament detection | |
KR940009514B1 (en) | Discharge lamp lighting device and luminate | |
US7956550B2 (en) | Complementary application specific integrated circuit for compact fluorescent lamps | |
US6222326B1 (en) | Ballast circuit with independent lamp control | |
JP2002110388A (en) | Lighting device of discharge tube | |
US6657400B2 (en) | Ballast with protection circuit for preventing inverter startup during an output ground-fault condition | |
US8482213B1 (en) | Electronic ballast with pulse detection circuit for lamp end of life and output short protection | |
US20080088250A1 (en) | Circuit for Powering a High Intensity Discharge Lamp | |
WO1999052329A1 (en) | Circuit arrangement | |
JP3521687B2 (en) | Discharge lamp lighting device | |
JP2007066700A (en) | Discharge lamp lighting device | |
WO2001003280A1 (en) | El driver with half-bridge output coupled to high voltage rail | |
JPH11162677A (en) | Discharge-lamp lighting device | |
US6847175B2 (en) | Lighting ballast with reverse current flow protection | |
CN100431392C (en) | Discharge lamp lighting device | |
US6492780B1 (en) | Lamp ballast system | |
JP4706148B2 (en) | Discharge lamp lighting device | |
JP3669088B2 (en) | Discharge lamp lighting device | |
JP3584678B2 (en) | Inverter device | |
JP4442241B2 (en) | Discharge lamp lighting device and lighting apparatus using the same | |
KR100865746B1 (en) | Ballast for lamp and method for operating thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980108830.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09716495 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009716495 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6007/DELNP/2010 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2716943 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010549688 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 207862 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2010/009621 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201011706 Country of ref document: CR Ref document number: CR2010-011706 Country of ref document: CR |