WO2009104651A1 - 白色発光装置及びこれを用いた車両用灯具 - Google Patents

白色発光装置及びこれを用いた車両用灯具 Download PDF

Info

Publication number
WO2009104651A1
WO2009104651A1 PCT/JP2009/052818 JP2009052818W WO2009104651A1 WO 2009104651 A1 WO2009104651 A1 WO 2009104651A1 JP 2009052818 W JP2009052818 W JP 2009052818W WO 2009104651 A1 WO2009104651 A1 WO 2009104651A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting device
phosphor
white light
range
Prior art date
Application number
PCT/JP2009/052818
Other languages
English (en)
French (fr)
Inventor
大長 久芳
正宣 水野
明 山元
快暢 宮本
奉九 尹
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2009554352A priority Critical patent/JP5635268B2/ja
Priority to EP09711859.0A priority patent/EP2246909B1/en
Priority to KR1020107017812A priority patent/KR101245005B1/ko
Priority to US12/866,770 priority patent/US8299487B2/en
Priority to CN2009801052994A priority patent/CN101946336B/zh
Publication of WO2009104651A1 publication Critical patent/WO2009104651A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77347Silicon Nitrides or Silicon Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a white light emitting device used for a vehicular lamp and a vehicular lamp using the same. More specifically, white light having high visibility within a chromaticity stipulated range of a white light source used for a vehicular lamp using a semiconductor light emitting element and a phosphor that is efficiently excited and emitted by light from the semiconductor light emitting element.
  • the present invention relates to a white light emitting device capable of emitting light with high light emission intensity, and a vehicular lamp using the same.
  • a white light emitting device with long life and low power consumption a semiconductor light emitting diode (LED) or a laser diode (LD) emitting blue light and a phosphor using these as an excitation light source are combined.
  • LED semiconductor light emitting diode
  • LD laser diode
  • White light-emitting devices configured to obtain white light as a combined spectrum obtained by additive color mixing of light emission obtained from the above are attracting attention, and the use thereof is used as a white light source for vehicle lamps, particularly vehicle headlamps. Is expected.
  • the white light source of the vehicular lamp is required to have an emission spectrum within a predetermined chromaticity coordinate (cx, cy) range according to chromaticity regulations. For example, according to JIS: D5500, FIG.
  • the region A is represented by the following formula. ⁇ Chromaticity regulation of white light source for vehicle headlamps (JIS: D5500)> Yellow direction cx ⁇ 0.50 Blue direction cx ⁇ 0.31 Green direction cy ⁇ 0.44 and cy ⁇ 0.15 + 0.64cx Purple direction cy ⁇ 0.05 + 0.75 cx and cy ⁇ 0.382
  • a light-emitting device that realizes white light emission in combination with a cerium-activated yttrium-aluminum-garnet (YAG) -based yellow light-emitting phosphor having an emission peak wavelength between ⁇ 600 nm.
  • YAG cerium-activated yttrium-aluminum-garnet
  • the chromaticity range that can be reproduced by a white light emitting device combining a semiconductor light emitting element that emits blue light and a yellow phosphor is the chromaticity coordinates of blue light emitted from the semiconductor light emitting element and the yellow light emitted from the phosphor.
  • a white light emitting device in which a blue semiconductor light emitting element having an emission peak wavelength of 450 nm and a yellow phosphor having a dominant wavelength of 572 nm are combined. It is a straight line showing a chromaticity range.
  • the visual sensitivity with which the human eye perceives brightness is about 20 times higher for yellow light than for blue light. Therefore, in the case of white light that is a mixture of blue light and yellow light, the luminous intensity is the same. However, white light with a lot of yellow light component feels brighter to human eyes. This means that the light of each chromaticity coordinate on the straight line L is felt brighter to the human eye when it has the same emission intensity, closer to the yellow phosphor side. Further, the chromaticity coordinate having the highest visibility within the range of the region A (the chromaticity regulation of the white light source of the vehicular lamp) is the intersection X between the yellow phosphor side boundary line of the region A and the straight line L.
  • the coordinates of the intersection X are more on the yellow phosphor side (X ′ side in FIG. 6). It is necessary to select the light emission color of the semiconductor light emitting element and the light emission color of the phosphor so as to be close to. Specifically, when the emission peak wavelength of the semiconductor light emitting device is around 450 nm, the coordinates of the intersection X are in the range where the visibility is high, the dominant wavelength of the yellow phosphor is in the range of 575 nm to 590 nm. .
  • a YAG phosphor that has a high emission intensity within a dominant wavelength range of 575 nm to 590 nm is known. Therefore, it has been difficult to realize a white light emitting device capable of emitting white light with high luminous intensity with high emission intensity.
  • the present invention has been made in view of the circumstances as described above, and an object of the present invention is to use a semiconductor light emitting element and a phosphor that is efficiently excited by light of the semiconductor light emitting element to emit light, and used for a vehicle lamp. It is an object of the present invention to provide a white light emitting device capable of emitting white light with high luminous intensity within a chromaticity regulation range of a white light source, and a vehicle lamp using the same.
  • the present inventors have expressed a general formula of Sr 1-xy Ba x Si 2 O 2 N 2 : Eu 2+ y , and x in the general formula is 0. .3 ⁇ x ⁇ 1.0, phosphors in which y is in the range of 0.03 ⁇ y ⁇ 0.3, and x + y is in the range of x + y ⁇ 1.0 are excited efficiently in the wavelength range of 370 to 480 nm, and the yellow component
  • the inventors have newly found that visible light containing a large amount of light is emitted with high emission intensity, and the present invention has been completed by constructing a white light emitting device using this phosphor.
  • the white light-emitting device is a white light-emitting device used for a vehicle lamp, a semiconductor light-emitting element having an emission spectrum peak in a wavelength range of 370 to 480 nm, and the semiconductor light-emitting device.
  • the phosphor has a general formula of Sr 1-xy Ba x Si 2 O 2 N 2 : Eu 2+. y (where x is in the range of 0.3 ⁇ x ⁇ 1.0, y is in the range of 0.03 ⁇ y ⁇ 0.3, and x + y is in the range of x + y ⁇ 1.0).
  • the phosphor included in the white light emitting device may have a general formula where x is in the range of 0.3 ⁇ x ⁇ 0.90, y is in the range of 0.05 ⁇ y ⁇ 0.25, and x + y is in the range of x + y ⁇ 0.98. Higher luminous flux can be obtained.
  • the emission spectrum of the phosphor is not particularly limited as long as it emits visible light. However, in order to obtain warm white light having a low color temperature and good visibility, the phosphor emits light.
  • the dominant wavelength of the spectrum is preferably in the wavelength range of 567 to 590 nm, more preferably 575 to 590 nm.
  • the emission spectrum of the phosphor preferably has a peak wavelength in the wavelength range of 540 to 595 nm, more preferably 575 to 590 nm, and a half width of 80 nm or more from the viewpoint of color rendering.
  • the phosphor is composed of a precursor of europium-activated orthosilicate prepared by first firing a mixture of SrCO 3 , BaCO 3 , SiO 2 and Eu 2 O 3 in a reducing atmosphere. It is preferably produced by secondary firing of a mixture of Si 3 N 4 and NH 4 Cl in a reducing atmosphere.
  • the phosphor thus manufactured can exhibit good green to orange light emission.
  • the semiconductor light emitting device is not particularly limited as long as it has an emission spectrum peak in the wavelength range of 370 to 480 nm.
  • the emission spectrum peak is from 430 nm to 430 nm. It is preferably in the wavelength region of 470 nm, and a suitable example is an InGaN-based LED having good light emission characteristics in the wavelength region near 450 nm.
  • the vehicular lamp according to the second embodiment of the present invention is characterized by using the white light emitting device as a light source.
  • the white light emitting device of the present invention has high color rendering properties and can emit white light with high output suitable for chromaticity defined as a light source for a vehicle headlamp.
  • the same effect can be obtained in a vehicular lamp using such a white light emitting device as a light source. Can be obtained.
  • FIG. 1 It is a schematic sectional drawing of the white light-emitting device 1 which is embodiment of this invention. It is a figure which shows the emission spectrum (solid line) of the fluorescent substance 1, and the emission spectrum (dotted line) of the fluorescent substance 1 for a comparison. It is a figure which shows the excitation spectrum (solid line) of the fluorescent substance 1, and the excitation spectrum (dotted line) of the fluorescent substance 1 for a comparison. It is a chromaticity diagram showing the chromaticity coordinates of each phosphor and the reproducible chromaticity range of a white light emitting device using these phosphors. It is drawing which shows the emission spectrum (solid line) of Example 1 of this invention, and the emission spectrum (dotted line) of the comparative example 1. FIG. It is a chromaticity diagram showing a chromaticity range and the like that can be reproduced by a white light emitting device that combines a semiconductor light emitting element that emits blue light and a yellow phosphor.
  • Light-emitting device 2 Substrate 3a: Electrode (anode) 3b: Electrode (cathode) 4: Semiconductor light emitting element 5: Mount member 6: Wire 7: Fluorescent layer
  • FIG. 1 is a schematic sectional view of a white light emitting device 1 according to an embodiment of the present invention.
  • a pair of electrodes 3 a (anode) and 3 b (cathode) are formed on a substrate 2.
  • a semiconductor light emitting element 4 is fixed on the electrode 3 a by a mount member 5.
  • the semiconductor light emitting element 4 and the electrode 3 a are energized by the mount member 5, and the semiconductor light emitting element 4 and the electrode 3 b are energized by the wire 6.
  • a fluorescent layer 7 is formed on the semiconductor light emitting device.
  • the substrate 2 is preferably formed of a material that has no electrical conductivity but high thermal conductivity.
  • a ceramic substrate aluminum nitride substrate, alumina substrate, mullite substrate, glass ceramic substrate, a glass epoxy substrate, or the like is used. be able to.
  • the electrodes 3a and 3b are conductive layers formed of a metal material such as gold or copper.
  • the semiconductor light-emitting element 4 is an example of a light-emitting element used in the white light-emitting device of the present invention.
  • an LED or LD that emits ultraviolet light or short-wavelength visible light can be used.
  • Specific examples include InGaN-based compound semiconductors.
  • the emission wavelength range of the InGaN-based compound semiconductor varies depending on the In content. When the In content is large, the emission wavelength becomes a long wavelength, and when it is small, the wavelength tends to be a short wavelength.
  • the mounting member 5 is, for example, a conductive adhesive such as silver paste or gold-tin eutectic solder, and the lower surface of the semiconductor light emitting element 4 is fixed to the electrode 3a.
  • the electrode 3a is electrically connected.
  • the wire 6 is a conductive member such as a gold wire, and is joined to the upper surface side electrode of the semiconductor light emitting element 4 and the electrode 3b by, for example, ultrasonic thermocompression bonding, and electrically connects both.
  • a phosphor described later is sealed in a film shape covering the upper surface of the semiconductor light emitting element 4 with a binder member.
  • a phosphor layer 7 is prepared by preparing a phosphor paste in which a phosphor is mixed in a liquid or gel binder member, and then applying the phosphor paste on the upper surface of the semiconductor light emitting element 4. It can be formed by curing the binder member of the phosphor paste.
  • the binder member for example, a silicone resin or a fluorine resin can be used.
  • the phosphor used in the white light emitting device of the present invention has a general formula Sr 1-xy Ba x Si 2 O 2 N 2 : Eu 2+ y (where x is 0.3 ⁇ x ⁇ 1.0, y is 0.03 ⁇ y ⁇ 0.3 x + y is a range of x + y ⁇ 1.0), and can be obtained, for example, as follows.
  • a mixed powder of SrCO 3 , BaCO 3 , SiO 2 , Eu 2 O 3 is fired in a reducing atmosphere to produce europium-activated orthosilicate as a precursor.
  • the phosphor of the present invention can be obtained by pulverizing this precursor, adding Si 3 N 4 and NH 4 Cl, and firing in a reducing atmosphere.
  • the fluorescent layer 7 can be mixed with one or more kinds of phosphors having emission characteristics different from those of the phosphors.
  • the chromaticity of white light obtained from the white light emitting device can be adjusted by changing the blending amount of these phosphors.
  • the fluorescent layer 7 can also be mixed with substances other than phosphors having various physical properties.
  • the refractive index of the fluorescent layer 7 can be increased by mixing the fluorescent layer 7 with a substance having a higher refractive index than that of a binder member such as a metal oxide, a fluorine compound, or a sulfide.
  • a binder member such as a metal oxide, a fluorine compound, or a sulfide.
  • the refractive index can be increased without reducing the transparency of the fluorescent layer 7 by making the particle size of the substance to be mixed nanosize.
  • white powder having an average particle size of about 0.3 to 2 ⁇ m such as alumina, zirconia, titanium oxide or the like, can be mixed in the fluorescent layer 7 as a light scattering agent. Thereby, unevenness in luminance and chromaticity of the light emitting surface can be prevented.
  • the semiconductor light emitting element 4 when a drive current is applied to the electrodes 3a and 3b, the semiconductor light emitting element 4 is energized, and the semiconductor light emitting element 4 emits light in a specific wavelength region including blue light toward the fluorescent layer 7. Irradiate. Part of this light is used to excite the phosphor in the fluorescent layer 7, and the remaining light passes through the fluorescent layer 7 and is directly irradiated to the outside. The phosphor is excited by light from the semiconductor light emitting element 4 and emits light in a specific wavelength range.
  • White light can be obtained by additively mixing the light from the semiconductor light emitting element 4 that has passed through the fluorescent layer 7 and the light emitted from the phosphor.
  • the white light emitting device 1 will be described in more detail with reference to examples of the light emitting device.
  • description of the raw material of the following light-emitting device, a manufacturing method, the chemical composition of fluorescent substance, etc. does not limit this invention at all.
  • ⁇ Phosphor 1> A phosphor represented by Sr 0.425 Ba 0.425 Si 2 O 2 N 2 : Eu 2+ 0.15 .
  • the phosphor 1 is manufactured by first weighing 1.321 g of SrCO 3 , 1.766 g of BaCO 3 , 0.556 g of Eu 2 O 3 , and 0.632 g of SiO 2 , and putting each raw material in an alumina mortar. The mixture was pulverized for about 20 minutes, and this mixture was put in an alumina crucible, capped, and calcined in a reducing atmosphere H 2 / N 2 (5/95) in an electric furnace at 1100 ° C.
  • ⁇ Phosphor 2> A phosphor represented by Sr 0.05 Ba 0.75 Si 2 O 2 N 2 : Eu 2+ 0.2 .
  • the phosphor 2 was manufactured by first weighing 0.114 g of SrCO 3 , 2.277 g of BaCO 3 , 0.541 g of Eu 2 O 3, and 0.462 g of SiO 2 , and putting each raw material in an alumina mortar. The mixture was pulverized for about 20 minutes, and this mixture was put in an alumina crucible, covered, and calcined in a reducing atmosphere H 2 / N 2 (5/95) in an electric furnace at 1100 ° C. for 3 hours, and the precursor Sr 0.1 Ba 1 .5 SiO 4 : Eu 2+ 0.4 was obtained.
  • ⁇ Phosphor 3> A phosphor represented by Sr 0.225 Ba 0.675 Si 2 O 2 N 2 : Eu 2+ 0.1 .
  • Production of the phosphor 3 first, a SrCO 3 0.511 g, a BaCO 3 2.049G, the Eu 2 O 3 0.271 g, a SiO 2 0.462 g were weighed, put into the raw materials into an alumina mortar The mixture was pulverized for about 20 minutes, the mixture was put in an alumina crucible, the lid was closed, and the mixture was calcined in a reducing atmosphere H 2 / N 2 (5/95), 1100 ° C. for 3 hours, and the precursor Sr 0.45 Ba 1 .35 SiO 4 : Eu 2+ 0.2 was obtained.
  • ⁇ Reference phosphor 1> As reference phosphor 1, a phosphor represented by Sr 0.93 Si 2 O 2 N 2 : Eu 2+ 0.07 was prepared.
  • the phosphor 1 for reference is manufactured by first weighing 3.051 g of SrCO 3 , 0.274 g of Eu 2 O 3 and 0.668 g of SiO 2 , putting each raw material in an alumina mortar and mixing and grinding for about 20 minutes. Then, the mixture was put in an alumina crucible, covered, and calcined in a reducing atmosphere H 2 / N 2 (5/95) in an electric furnace at 1100 ° C. for 3 hours, and the precursor Sr 1.86 SiO 4 : Eu 2+ 0. 14 was obtained.
  • a phosphor represented by Sr 0.67 Ba 0.25 Si 2 O 2 N 2 : Eu 2+ 0.08 was prepared.
  • the preparation of the reference phosphor 2 first, a SrCO 3 1.517g, the BaCO 3 0.759 g, the Eu 2 O 3 0.217 g, a SiO 2 0.462 g were weighed, each raw material alumina mortar The mixture was pulverized for about 20 minutes, and the mixture was put in an alumina crucible, capped, calcined in a reducing atmosphere H 2 / N 2 (5/95), 1100 ° C. for 3 hours, and precursor Sr 1.34. Ba 0.5 SiO 4 : Eu 2+ 0.16 was obtained.
  • ⁇ Comparative phosphor 1> As the comparative phosphor 1, a cerium-activated yttrium aluminum garnet phosphor (P46-Y3, manufactured by Kasei Optonics) was used. As an example of a white light emitting device capable of emitting white light meeting such chromaticity regulations with high emission intensity, an InGaN-based semiconductor light emitting element having an emission peak wavelength in a blue wavelength range (420 to 490 nm), 510 2. Description of the Related Art A light-emitting device that realizes white light emission by combining a cerium-activated yttrium aluminum garnet (YAG) -based yellow phosphor having an emission peak wavelength between ⁇ 600 nm is known. This phosphor is known as a phosphor that emits yellow light when excited by light in the blue wavelength region.
  • YAG cerium-activated yttrium aluminum garnet
  • This phosphor is known as a phosphor that emits yellow light when excited by light in the blue wavelength region
  • Table 1 shows the integrated emission intensity ratio, chromaticity coordinates (cx, cy), and dominant wavelength (nm) of each phosphor under 450 nm excitation.
  • the integrated emission intensity ratio is shown as a relative value when the integrated emission intensity of the comparative phosphor 1 under 450 nm excitation is 100.
  • FIG. 2 shows an emission spectrum (solid line) of phosphor 1 under excitation of 450 nm and an emission spectrum (dotted line) of phosphor 1 for comparison. Note that the vertical axis of the graph in FIG. 2 indicates the relative light emission intensity of the phosphor 1 and the comparative phosphor 1.
  • the phosphor 1 has an emission spectrum peak in the wavelength range of 560 to 580 nm and a full width at half maximum of 90 nm or more. From this, it can be seen that the phosphor 1 emits yellow light which is a complementary color of blue.
  • FIG. 3 shows the excitation spectrum (solid line) of the phosphor 1 and the excitation spectrum (dotted line) of the comparative phosphor 1.
  • the vertical axis of the graph in FIG. 3 indicates the relative excitation intensity of the phosphor 1 and the comparative phosphor 1. From FIG. 3, it can be seen that phosphor 1 has a broad excitation spectrum peak at 400 to 470 nm. From this, it can be seen that the phosphor 1 is efficiently excited by the light of the semiconductor light emitting element having the emission spectrum peak in the wavelength range of 370 to 480 nm and can emit light.
  • L1 to L3 (phosphors 1 to 3) and L6 (comparative phosphor 1) are the range of the area A indicating the range of the chromaticity regulation (JIS: D5500) of the white light source of the vehicle headlamp. Therefore, it is expected that white light that satisfies the chromaticity specification can be emitted by combination with a semiconductor light emitting element that emits blue light. On the other hand, since L4 and L5 do not pass through the range of the region A, it is expected that white light that satisfies the chromaticity rule cannot be emitted.
  • the point with the highest visibility within the region A is the boundary on the yellow phosphor side of the region A This is points X1 to X3 and X6 which are the intersections of the line and the straight lines L1 to L3 and L6.
  • Table 2 shows the chromaticity coordinates of points X1 to X3 and X6, color difference ⁇ : color difference between each point and the chromaticity coordinate (point B) of the semiconductor light emitting element, color difference ⁇ : chromaticity coordinate between each point and each phosphor ( A color difference (color difference ⁇ ) and a color difference ratio (color difference ⁇ : color difference ⁇ ) from the points Y1 to Y3, Y6) are shown. From Table 2 and FIG. 4, the points X1 to X3 (phosphors 1 to 3) all have a larger ratio of the color difference ⁇ to the color difference ⁇ than the point X6 (phosphor 1 for comparison), and the chromaticity of the phosphor.
  • the structure of the light-emitting device of an Example is explained in full detail.
  • the structure of the following light-emitting device is a structure common to all the Examples and the comparative examples except the kind of the used phosphor.
  • the light emitting device of this example uses the following specific configuration in the above embodiment.
  • an aluminum nitride substrate was used as the substrate 2, and an electrode 3a (anode) and an electrode 3b (cathode) were formed using gold on the surface.
  • a 1 mm square LED (SemiLEDs: MvpLEDTMSL-V-B40AC) having a light emission peak at 450 nm is used as the semiconductor light emitting element 4, and a silver paste (Able) dropped using a dispenser on the electrode 3 a (anode).
  • the lower surface of the LED was adhered onto a stick (84-1LMISS4), and the silver paste was cured at 175 ° C. for 1 hour.
  • a ⁇ 45 ⁇ m gold wire was used as the wire 6, and this gold wire was bonded to the upper surface side electrode of the LED and the electrode 3b (cathode) by ultrasonic thermocompression bonding.
  • a silicone resin manufactured by Toray Dow Corning Silicone Co., Ltd .: JCR6140
  • JCR6140 a 30 vol% phosphor paste in which various phosphors are mixed is prepared, and the phosphor paste is applied to the upper surface of the semiconductor light emitting device 4. did.
  • the coating amount was applied while adjusting the film thickness so as to obtain a desired chromaticity.
  • the phosphor layer 7 was formed by fixing the applied phosphor paste by step curing for 40 minutes in an 80 ° C. environment and then for 60 minutes in a 150 ° C. environment.
  • Example 1 In Example 1, a phosphor paste was prepared using the phosphor 1, and a light emitting device was prepared using the phosphor paste so that the coating amount was adjusted to be close to the point X1 in the chromaticity diagram of FIG. .
  • Example 2 In Example 2, a phosphor paste was prepared using the phosphor 2, and a light emitting device was prepared using the phosphor paste so that the coating amount was adjusted to be close to the point X2 in the chromaticity diagram of FIG. .
  • Example 3 In Example 3, a phosphor paste was prepared using the phosphor 3, and a light emitting device was prepared using the phosphor paste so that the coating amount was adjusted to be close to the point X3 in the chromaticity diagram of FIG. .
  • ⁇ Comparative Example 1> In this comparative example 1, a phosphor paste was prepared using the comparative phosphor 1, and a light emitting device was adjusted using the phosphor paste so that the coating amount was close to the point X6 in the chromaticity diagram of FIG. Produced.
  • Each light-emitting device was caused to emit light by applying a current of 50 mA in the integrating sphere, and the light flux and the spectral spectrum were measured with a spectroscope (CAS 140B-152 manufactured by Instrument System). The measurement results will be described in detail below.
  • Table 3 shows the luminous flux ratio, chromaticity coordinates (cx, cy), and color temperature (K) when a drive current of 50 mA is applied to each light emitting device.
  • the luminous flux ratio is shown as a relative value where the luminous flux is 100 when a drive current of 50 mA is applied to the light emitting device of Comparative Example 1.
  • the phosphor of the present invention has been described according to the embodiments. However, it is needless to say that the present invention is not limited to these embodiments, and various modifications, improvements, combinations, usage forms, and the like can be considered.
  • the white light emitting device of the present invention can be used for a vehicular lamp having a white light source having a functional color, such as a head lamp, a fog lamp, a cornering lamp, a license plate lamp, a backup lamp, and a room lamp. Further, the white light emitting device of the present invention is a vehicular lamp that is a combination of a white light source and a color filter, and can be used for a functional color other than a white system, for example, a tail lamp, a stop lamp, a turn signal lamp, or the like. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

 半導体発光素子とこの半導体発光素子の光で効率よく励起され発光する蛍光体を用いて、車両用灯具に用いられる白色光源の色度規定の範囲内にある視感度の高い白色光を高い発光強度で発光可能な白色発光装置、及びこれを用いた車両用灯具を提供することを目的としている。  370~480nmの波長域に発光スペクトルのピークを持つ半導体発光素子と、前記半導体発光素子の発する光により励起され可視光を発光する少なくとも1種以上の蛍光体を備えた発光装置において、前記蛍光体は、Sr1-x-yBaSi:Eu2+ の一般式で表され、前記一般式のxは0.3<x<1.0、yは0.03<y<0.3、x+yはx+y<1.0の範囲であることを特徴とする白色発光装置、及びこれを用いた車両用灯具。

Description

白色発光装置及びこれを用いた車両用灯具
 本発明は、車両用灯具に用いられる白色発光装置、及びこれを用いた車両用灯具に関する。より詳しくは、半導体発光素子とこの半導体発光素子の光で効率よく励起され発光する蛍光体を用いて、車両用灯具に用いられる白色光源の色度規定の範囲内にある視感度の高い白色光を高い発光強度で発光可能な白色発光装置、及びこれを用いた車両用灯具に関する。
 近年、長寿命且つ消費電力が少ない白色発光装置として、青色光を発光する発光ダイオード(LED)やレーザダイオード(LD)等の半導体発光素子と、これらを励起光源とする蛍光体とを組み合わせ、両者から得られる発光の加色混合による合成スペクトルとして白色光を得るように構成された白色発光装置が注目されており、その用途として、車両用灯具、特に車両用前照灯の白色光源としての利用が期待されている。(特許文献1参照)
 ここで、車両用灯具の白色光源は、色度規定により発光スペクトルが所定の色度座標(cx,cy)の範囲内にあることが要求されており、例えば、JIS:D5500によれば図6の色度図に示す領域Aの範囲内にあることが要求される。
 尚、領域Aは下記式によって表される。
<車両用前照灯の白色光源の色度規定(JIS:D5500)>
 黄色方向  cx≦0.50
 青色方向  cx≧0.31
 緑色方向  cy≦0.44 及び cy≦0.15+0.64cx
 紫色方向  cy≧0.05+0.75cx 及び cy≧0.382
 このような色度規定に合致した白色光を高い発光強度で発光可能とした白色発光装置の例として、青色波長域(420~490nm)に発光ピーク波長を持つInGaN系の半導体発光素子と、510~600nmの間に発光ピーク波長を持つセリウム付活のイットリウム・アルミニウム・ガーネット(YAG)系の黄色発光蛍光体とを組み合わせて白色発光を実現する発光装置が知られている。(特許文献2参照)
日本国特許出願公開2004-095480号公報 日本国特許第3503139号公報
 ところで、青色光を発光する半導体発光素子と黄色蛍光体とを組み合わせた白色発光装置が再現可能な色度範囲は、半導体発光素子が発光する青色光の色度座標と蛍光体の発光する黄色光の色度座標とを結んだ直線により近似的に表すことができ、両者の発光強度を調整することで当該直線上における任意の色度座標の光を得ることができる。
 図6の色度図に示す直線Lは、このような直線の一例であり、発光ピーク波長が450nmの青色半導体発光素子とドミナント波長が572nmの黄色蛍光体とを組み合わせた白色発光装置によって再現可能な色度範囲を示す直線である。
 ここで、人の目が明るさを感じる視感度は、青色光に比べ黄色光は約20倍高いことから、青色光と黄色光を加色混合した白色光の場合、同じ発光強度であっても黄色光成分が多い白色光のほうが人の目には明るく感じられる。このことは、前記直線L上の各色度座標の光は、同じ発光強度であれば黄色蛍光体側に近い方が人の目に明るく感じられることを示す。また、前記領域A(車両用灯具の白色光源の色度規定)の範囲内において最も視感度が高い色度座標は領域Aの黄色蛍光体側境界線と前記直線Lの交差点Xとなる。
 従って、前記領域A(車両用灯具の白色光源の色度規定)の範囲内において白色光の視感度の高さを追求すると、交差点Xの座標がより黄色蛍光体側(図6中のX’側)へと近くなるように半導体発光素子の発光色と蛍光体の発光色を選択する必要がある。
 具体的には、半導体発光素子の発光ピーク波長を450nm前後とした場合に、前記交差点Xの座標が視感度の高い範囲となるのは、黄色蛍光体のドミナント波長が575nm~590nmの範囲である。
 しかし、従来知られた青色光を発光する半導体発光素子とYAG系蛍光体を組み合わせた白色発光装置においては、ドミナント波長が575nm~590nmの範囲内において高い発光強度が得られるYAG系蛍光体が知られていないため、視感度の高い白色光を高い発光強度で発光可能な白色発光装置の実現が困難であった。
 本発明は、上記のような事情を鑑みてなされたものであり、その目的は、半導体発光素子とこの半導体発光素子の光で効率よく励起され発光する蛍光体を用いて、車両用灯具に用いられる白色光源の色度規定の範囲内にある視感度の高い白色光を高い発光強度で発光可能な白色発光装置、及びこれを用いた車両用灯具を提供することを目的としている。
 本発明者らは、上記課題を解決すべく研究を重ねた結果、一般式がSr1-x-yBaSi:Eu2+ で表され、当該一般式のxが0.3<x<1.0、yが0.03<y<0.3、x+yがx+y<1.0の範囲である蛍光体は、370~480nmの波長域で効率良く励起され、黄色成分を多く含む可視光を高い発光強度で発光することを新たに見出し、この蛍光体を用いて白色発光装置を構成することで本発明を完成するに至った。
 すなわち、本発明の第1の形態である白色発光装置は、車両用灯具に用いられる白色発光装置であって、370~480nmの波長域に発光スペクトルのピークを持つ半導体発光素子と、前記半導体発光素子の発する光により励起され可視光を発光する少なくとも1種以上の蛍光体を備えた発光装置において、前記蛍光体として、一般式Sr1-x-yBaSi:Eu2+  (但し、xは0.3<x<1.0、yは0.03<y<0.3、x+yはx+y<1.0の範囲である)で表される蛍光体を備えることを特徴とする。
 前記白色発光装置が備える前記蛍光体は、前記一般式のxが0.3<x<0.90、yが0.05<y<0.25、x+yはx+y<0.98の範囲であればより高い光束を得ることができる。
 また、前記蛍光体は、可視光を発光するものであればその発光スペクトルは特に限定されないが、視感度が良好な色温度の低い暖色系の白色光を得るためには、前記蛍光体の発光スペクトルのドミナント波長が567~590nm、より好ましくは575~590nmの波長域にあることが好ましい。
 また、前記蛍光体の発光スペクトルは、ピーク波長が540~595nm、より好ましくは575~590nmの波長域にあり、半値幅が80nm以上であることが、演色性の観点から好ましい。
 また、前記蛍光体は、SrCO、BaCO、SiO及びEuの混合物を還元雰囲気中で1次焼成して作製したユーロピウム付活のオルソ珪酸塩を前駆体とし、この前駆体とSi及びNHClの混合物を還元雰囲気中で2次焼成することにより製造されることが好ましい。このように製造された前記蛍光体は、良好な緑~橙色の発光を示すことができる。
 前記半導体発光素子は、370~480nmの波長域に発光スペクトルのピークを持つものであれば特に限定されるものではないが、前記蛍光体の励起波長域の観点から、発光スペクトルのピークが430nm~470nmの波長域にあることが好ましく、好適な例として、450nm付近の波長域の発光特性が良好であるInGaN系LEDを挙げることができる。
 本発明の第2の形態である車両用灯具は、上記の白色発光装置を光源として用いることを特徴とする。
 本発明の白色発光装置は、演色性が高く車両用前照灯の光源として規定される色度に適合した白色光を高出力で発光することができる。また、このような白色発光装置を光源として用いた車両用灯具においても、同様の効果を奏する。
を得ることができる。
本発明の実施形態である白色発光装置1の概略断面図である。 蛍光体1の発光スペクトル(実線)及び比較用蛍光体1の発光スペクトル(点線)を示す図である。 蛍光体1の励起スペクトル(実線)及び比較用蛍光体1の励起スペクトル(点線)を示す図である。 各蛍光体の色度座標及びこれらの蛍光体を用いた白色発光装置の再現可能な色度範囲等を示す色度図である。 本発明の実施例1の発光スペクトル(実線)及び比較例1の発光スペクトル(点線)を示す図面である。 青色光を発光する半導体発光素子と黄色蛍光体とを組み合わせた白色発光装置が再現可能な色度範囲等を示す色度図である。
符号の説明
1:発光装置
2:基板
3a:電極(陽極)
3b:電極(陰極)
4:半導体発光素子
5:マウント部材
6:ワイヤー
7:蛍光層
 以下、本発明の実施の形態について図面を参照して説明する。なお、本発明は、以下の説明における例示などによって何ら限定されるものではない。
 図1は、本発明の実施形態である白色発光装置1の概略断面図である。図1に示すように、白色発光装置1は、基板2上に一対の電極3a(陽極)及び3b(陰極)が形成されている。電極3a上には半導体発光素子4がマウント部材5により固定されている。半導体発光素子4と電極3aは前記マウント部材5により通電されており、半導体発光素子4と電極3bはワイヤー6により通電されている。半導体発光素子の上には蛍光層7が形成されている。
 基板2は、導電性を有しないが熱伝導性は高い材料によって形成されることが好ましく、例えば、セラミック基板(窒化アルミニウム基板、アルミナ基板、ムライト基板、ガラスセラミック基板)やガラスエポキシ基板等を用いることができる。
 電極3a及び3bは、金や銅等の金属材料によって形成された導電層である。
 半導体発光素子4は、本発明の白色発光装置に用いられる発光素子の一例であり、例えば、紫外線又は短波長可視光を発光するLEDやLD等を用いることができる。具体例として、InGaN系の化合物半導体を挙げることができる。InGaN系の化合物半導体は、Inの含有量によって発光波長域が変化する。Inの含有量が多いと発光波長が長波長となり、少ない場合は短波長となる傾向を示す。
 マウント部材5は、例えば銀ペースト等の導電性接着材または金錫共晶はんだ等であり、半導体発光素子4の下面を電極3aに固定し、半導体発光素子4の下面側電極と基板2上の電極3aを電気的に接続する。
 ワイヤー6は、金ワイヤー等の導電部材であり、例えば超音波熱圧着等により半導体発光素子4の上面側電極及び電極3bに接合され、両者を電気的に接続する。
 蛍光層7には、後述する蛍光体がバインダー部材によって半導体発光素子4の上面を覆う膜状に封止されている。このような蛍光層7は、例えば、液状又はゲル状のバインダー部材に蛍光体を混入した蛍光体ペーストを作製した後、当該蛍光体ペーストを半導体発光素子4の上面に塗布し、その後に塗布した蛍光体ペーストのバインダー部材を硬化することにより形成することができる。バインダー部材としては、例えば、シリコーン樹脂やフッ素樹脂等を用いることができる。
 本発明の白色発光装置に用いられる蛍光体は、一般式Sr1-x-yBaSi:Eu2+  (但し、xは0.3<x<1.0、yは0.03<y<0.3 x+yはx+y<1.0の範囲である)で表される蛍光体であり、例えば、次のようにして得ることができる。
 SrCO、BaCO、SiO、Euの混合粉末を還元雰囲気中で焼成し、ユーロピウム付活のオルソ珪酸塩を前駆体として作製する。この前駆体を粉砕し、SiとNHClを加え、還元雰囲気中で焼成することで本発明の蛍光体を得ることができる。
 蛍光層7には、上記蛍光体とは異なる発光特性を有する1種又は複数種類の蛍光体を混入することができる。これらの蛍光体の配合量を変化させることにより白色発光装置から得られる白色光の色度を調整することができる。
 また、蛍光層7には、種々の物性を有する蛍光体以外の物質を混入することもできる。例えば、金属酸化物、フッ素化合物、硫化物等のバインダー部材よりも屈折率の高い物質を蛍光層7に混入することにより、蛍光層7の屈折率を高めることができる。これにより、半導体発光素子4から発生する光が蛍光層7入射する際に生ずる全反射を低減させ、蛍光層7への励起光の取り込み効率を向上させるという効果が得られる。更に、混入する物質の粒子径をナノサイズにすることで、蛍光層7の透明度を低下させることなく屈折率を高めることができる。
 また、アルミナ、ジルコニア、酸化チタン等の平均粒径0.3~2μm程度の白色粉末を光散乱剤として蛍光層7に混入することもできる。これにより、発光面の輝度、色度むらを防止することができる。
 上記の白色発光装置1において、電極3a、3bに対し駆動電流を印加すると、半導体発光素子4が通電され、半導体発光素子4は蛍光層7へ向けて青色光を含む固有の波長域の光を照射する。この光の一部は蛍光層7内の蛍光体の励起に用いられ、残りの光は蛍光層7を透過してそのまま外部へと照射される。蛍光体は半導体発光素子4からの光により励起され固有の波長域の光を照射する。蛍光層7を透過した半導体発光素子4からの光と蛍光体が発する光を加色混合することにより白色光を得ることができる。
 上記の白色発光装置1について、以下において、発光装置の実施例を用いて更に具体的に説明する。なお、下記の発光装置の原料、製造方法、蛍光体の化学組成等の記載は本発明を何ら限定するものではない。
 まず、本実施例の発光装置において用いた蛍光体について詳述する。
<蛍光体1>
 Sr0.425Ba0.425Si:Eu2+ 0.15で表される蛍光体。
 本蛍光体1の製造は、まず、SrCOを1.321g、BaCOを1.766g、 Euを0.556g、SiOを0.632gそれぞれ秤量し、各原料をアルミナ乳鉢に入れ約20分混合粉砕し、この混合物をアルミナ坩堝に入れ蓋をし、還元雰囲気H/N(5/95)、1100℃の電気炉で3時間焼成し、前駆体Sr0.85Ba0.85SiO:Eu2+ 0.30を得た。
 次に、上記前駆体を3.289g、Siを1.403g、NHClをフラックスとして0.047gそれぞれ秤量し、各原料をアルミナ乳鉢に入れ約20分混合粉砕し、この混合物をアルミナ坩堝に入れ蓋をし、還元雰囲気H/N(5/95)、1200~1400℃で6時間焼成し、蛍光体1を得た。
<蛍光体2>
 Sr0.05Ba0.75Si:Eu2+ 0.2で表される蛍光体。
 本蛍光体2の製造は、まず、SrCOを0.114g、BaCOを2.277g、Euを0.541g、SiOを0.462gそれぞれ秤量し、各原料をアルミナ乳鉢に入れ約20分混合粉砕し、この混合物をアルミナ坩堝に入れ蓋をし、還元雰囲気H/N(5/95)、1100℃の電気炉で3時間焼成し、前駆体Sr0.1Ba1.5SiO:Eu2+ 0.4を得た。
 次に、上記前駆体を2.451g、Siを0.935g、NHClをフラックスとして0.034gそれぞれ秤量し、各原料をアルミナ乳鉢に入れ約20分混合粉砕し、この混合物をアルミナ坩堝に入れ蓋をし、還元雰囲気H/N(5/95)、1200~1400℃で6時間焼成し、蛍光体2を得た。
<蛍光体3>
 Sr0.225Ba0.675Si:Eu2+ 0.1で表される蛍光体。
 本蛍光体3の製造は、まず、SrCOを0.511g、BaCOを2.049g、Euを0.271g、SiOを0.462gそれぞれ秤量し、各原料をアルミナ乳鉢に入れ約20分混合粉砕し、この混合物をアルミナ坩堝に入れ蓋をし、還元雰囲気H/N(5/95)、1100℃の電気炉で3時間焼成し、前駆体Sr0.45Ba1.35SiO:Eu2+ 0.2を得た。
 次に、上記前駆体を2.315g、Siを0.935g、NHClをフラックスとして0.03gそれぞれ秤量し、各原料をアルミナ乳鉢に入れ約20分混合粉砕し、この混合物をアルミナ坩堝に入れ蓋をし、還元雰囲気H/N(5/95)、1200~1400℃で6時間焼成し、蛍光体3を得た。
<参考用蛍光体1>
 参考用蛍光体1として、Sr0.93Si:Eu2+ 0.07で表される蛍光体を作製した。
 この参考用蛍光体1の製造は、まず、SrCO を3.051g、Eu を0.274g、SiO を0.668gそれぞれ秤量し、各原料をアルミナ乳鉢に入れ約20分混合粉砕し、この混合物をアルミナ坩堝に入れ蓋をし、還元雰囲気H/N(5/95)、1100℃の電気炉で3時間焼成し、前駆体Sr1.86SiO:Eu2+ 0.14を得た。
 次に、上記前駆体を2.763g、Siを1.402g、NHClをフラックスとして0.04gそれぞれ秤量し、各原料をアルミナ乳鉢に入れ約20分混合粉砕し、この混合物をアルミナ坩堝に入れ蓋をし、還元雰囲気H/N(5/95)、1200~1400℃で6時間焼成し、参考用蛍光体1を得た。
<参考用蛍光体2>
 参考用蛍光体2として、Sr0.67Ba0.25Si:Eu2+ 0.08で表される蛍光体を作製。
 この参考用蛍光体2の製造は、まず、SrCO を1.517g、BaCO を0.759g、Eu を0.217g、SiO を0.462gそれぞれ秤量し、各原料をアルミナ乳鉢に入れ約20分混合粉砕し、この混合物をアルミナ坩堝に入れ蓋をし、還元雰囲気H/N(5/95)、1100℃の電気炉で3時間焼成し、前駆体Sr1.34Ba0.5SiO:Eu2+ 0.16を得た。
 次に、上記前駆体を2.016g、Siを0.935g、NHClをフラックスとして0.03gそれぞれ秤量し、各原料をアルミナ乳鉢に入れ約20分混合粉砕し、この混合物をアルミナ坩堝に入れ蓋をし、還元雰囲気H/N(5/95)、1200~1400℃で6時間焼成し、参考用蛍光体2を得た。
<比較用蛍光体1>
 比較用蛍光体1としてセリウム付活のイットリウム・アルミニウム・ガーネット蛍光体(化成オプトニクス製:P46-Y3)を用いた。
 このような色度規定に合致した白色光を高い発光強度で発光可能とした白色発光装置の例として、青色波長域(420~490nm)に発光ピーク波長を持つInGaN系の半導体発光素子と、510~600nmの間に発光ピーク波長を持つセリウム付活のイットリウム・アルミニウム・ガーネット(YAG)系の黄色蛍光体とを組み合わせて白色発光を実現する発光装置が知られている。
 この蛍光体は、青色波長域の光で励起し黄色発光する蛍光体として知られている。
<蛍光体1~3の評価結果>
 以下、蛍光体1~3、参考用蛍光体1~2、及び比較用蛍光体1について測定した450nm励起下における各種の発光特性を詳述する。
 表1に、450nm励起下における各蛍光体の積分発光強度比、色度座標(cx,cy)、及びドミナント波長(nm)を示す。
 尚、積分発光強度比は、450nm励起下における比較用蛍光体1の積分発光強度を100としたときの相対値として示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、蛍光体1~3は、いずれも比較用蛍光体1より強い積分発光強度を示しており、450nm付近の波長域で効率良く励起され高い発光強度の可視光を発光可能であることが分かる。
 また、蛍光体1~3は、色度座標がcx=0.47~0.52、cy=0.47~0.51の範囲内にあり、ドミナント波長が比較用蛍光体1に比べて長波長となる575nm~581nmの波長域にあることが分かる。
 図2に、450nm励起下における蛍光体1の発光スペクトル(実線)及び比較用蛍光体1の発光スペクトル(点線)を示す。
 尚、図2におけるグラフの縦軸は蛍光体1と比較用蛍光体1の相対的な発光強度を示すものである。
 この図2から、蛍光体1は、発光スペクトルのピークが560~580nmの波長域にあり、半値幅が90nm以上であることが分かる。このことから、蛍光体1は青色の補色である黄色に発光することが分かる。
 図3に、蛍光体1の励起スペクトル(実線)及び比較用蛍光体1の励起スペクトル(点線)を示す。
 尚、図3におけるグラフの縦軸は蛍光体1と比較用蛍光体1の相対的な励起強度を示すものである。
 この図3から、蛍光体1は、励起スペクトルのピークが400~470nmにブロードに存在することが分かる。
 このことから、蛍光体1は、370~480nmの波長域に発光スペクトルのピークを持つ半導体発光素子の光により効率良く励起され、発光可能であることが分かる。
<加色混合による白色光化の検討>
図4に示すように、発光スペクトルのピーク波長が450nmである半導体発光素子と各蛍光体の加色混合によって再現可能な色度範囲は、当該半導体発光素子の色度座標ポイントB(cx=0.152、cy=0.025)と、表1に示した各蛍光体の色度座標であるポイントY1~Y6とを結んだ直線(点線)L1~L6により近似的に表すことができる。
 この図4より、L1~L3(蛍光体1~3)及びL6(比較用蛍光体1)は車両用前照灯の白色光源の色度規定(JIS:D5500)の範囲を示す領域Aの範囲を通過するため、青色発光の半導体発光素子との組み合わせにより当該色度規定を満たす白色光の発光が可能であることが予想される。
 一方、L4及びL5は領域Aの範囲を通過しないため当該色度規定を満たす白色光の発光が不可能であることが予想される。
 また、前述の通り、直線L1~L3(蛍光体1~3)又は直線L6(比較用蛍光体1)において、領域Aの範囲内において最も視感度が高いポイントは、領域Aの黄色蛍光体側境界線と各直線L1~L3、L6との交差点であるポイントX1~3、X6となる。
 表2に、ポイントX1~3、X6の色度座標、色差α:各ポイントと半導体発光素子の色度座標(ポイントB)との色差、色差β:各ポイントと各蛍光体の色度座標(ポイントY1~Y3、Y6)との色差(色差β)、色差比(色差α:色差β)を示す。
 この表2及び図4より、ポイントX1~X3(蛍光体1~3)はポイントX6(比較用蛍光体1)に比べて、いずれも色差β対する色差αの比率が大きく、蛍光体の色度座標側に近いことが分かる。このことから、蛍光体1~3と青色発光の半導体発光素子との組み合わせることにより、領域Aの範囲において比較用蛍光体1を用いた場合よりもより視感度の高い白色光の発光が可能であることが予想される。
Figure JPOXMLDOC01-appb-T000002
 次に、実施例の発光装置の構成について詳述する。
 尚、下記発光装置の構成は、用いた蛍光体の種類を除き、全ての実施例及び比較例について共通の構成である。
<発光装置の構成>
 本実施例の発光装置は、上記の実施形態において下記の具体的な構成を用いたものである。
 まず、基板2として窒化アルミニウム基板を用い、その表面に金を用いて電極3a(陽極)及び電極3b(陰極)を形成した。
 また、半導体発光素子4として、450nmに発光ピークを持つ1mm四方のLED(SemiLEDs社製:MvpLEDTMSL-V-B40AC)を用い、前記電極3a(陽極)上にディスペンサーを用いて滴下した銀ペースト(エイブルスティック社製:84-1LMISR4)の上に当該LEDの下面を接着させ、当該銀ペーストを175℃環境下で1時間硬化させた。
 また、ワイヤー6としてΦ45μmの金ワイヤーを用い、この金ワイヤーを超音波熱圧着にてLEDの上面側電極及び電極3b(陰極)に接合した。
 また、バインダー部材としてシリコーン樹脂(東レダウコーニングシリコーン社製:JCR6140)を用い、これに各種蛍光体を混入した30vol%蛍光体ペーストを作製し、当該蛍光体ペーストを半導体発光素子4の上面に塗布した。塗布量は所望の色度が得られるように膜厚を調整しながら塗布した。
 塗布した蛍光体ペーストを80℃環境下で40分、その後に150℃環境下で60分のステップ硬化にて固定化することで蛍光層7を形成した。
 以上の蛍光体及び発光装置の構成に基づいて下記実施例、参考例、及び比較例を作製した。
<実施例1>
 本実施例1は、前記蛍光体1を用いて蛍光体ペーストを作製し、当該蛍光体ペーストを用いて塗布量を図4の色度図におけるポイントX1に近づけるように調整した発光装置を作製した。
<実施例2>
 本実施例2は、前記蛍光体2を用いて蛍光体ペーストを作製し、当該蛍光体ペーストを用いて塗布量を図4の色度図におけるポイントX2に近づけるように調整した発光装置を作製した。
<実施例3>
 本実施例3は、前記蛍光体3を用いて蛍光体ペーストを作製し、当該蛍光体ペーストを用いて塗布量を図4の色度図におけるポイントX3に近づけるように調整した発光装置を作製した。
<比較例1>
 本比較例1は、前記比較用蛍光体1を用いて蛍光体ペーストを作製し、当該蛍光体ペーストを用いて塗布量を図4の色度図におけるポイントX6に近づけるように調整した発光装置を作製した。
<実施例の評価>
 各発光装置を積分球内で50mAの電流を投入し発光させ、分光器(Instrument System社製 CAS140B-152)で光束及び分光スペクトルを測定した。その測定結果を以下詳述する。
 表3に、各発光装置に50mAの駆動電流を印加したときの光束比、色度座標(cx,cy)、及び色温度(K)を示す。
 尚、光束比は、比較例1の発光装置に50mAの駆動電流を印加したときの光束を100とする相対値として示す。
Figure JPOXMLDOC01-appb-T000003
 この表3より、いずれの実施例も比較例1より高光束であることが分かる。
 また、いずれの実施例の色度座標も図4の色度図における領域Aの範囲にあり、すなわち車両用灯具の白色光源の色度規定に合致した白色光であり、且つ比較例1に対して蛍光体側に近い位置にある、すなわち視感度が高い白色光であることが分かる。
 更に、比較例1の色温度が4000K以上であるのに対し、実施例1~3の色温度はいずれも4000K以下の暖系色であることが分かる。
 以上、本発明の蛍光体を実施例に沿って説明したが、本発明はこれらの実施例に限られるものではなく、種々の変更、改良、組み合わせ、利用形態等が考えられることは言うまでもない。
 本出願は、2008年2月18日出願の日本特許出願(特願2008-035453)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の白色発光装置は、車両用灯具であって光源の機能色が白色系のもの、例えばヘッドランプ、フォグランプ、コーナーリングランプ、ライセンスプレートランプ、バックアップランプ、ルームランプ等に利用することができる。
 また、本発明の白色発光装置は、白色光源とカラーフィルター等を組み合わせた車両用灯具であって機能色が白色系以外のもの、例えばテールランプ、ストップランプ、ターンシグナルランプ等に利用することもできる。

Claims (9)

  1.  車両用灯具に用いられる白色発光装置であって、370~480nmの波長域に発光スペクトルのピークを持つ半導体発光素子と、前記半導体発光素子の発する光により励起され可視光を発光する少なくとも1種以上の蛍光体を備え、
     前記蛍光体は、Sr1-x-yBaSi:Eu2+ の一般式で表され、前記一般式のxは0.3<x<1.0、yは0.03<y<0.3、x+yはx+y<1.0の範囲であることを特徴とする白色発光装置。
  2.  前記一般式のxが0.3<x<0.90、yが0.05<y<0.25、x+yがx+y<0.98の範囲であることを特徴とする請求項1に記載の白色発光装置。
  3.  前記蛍光体の発光スペクトルのドミナント波長が567~590nmの波長域にあることを特徴とする請求項1~2のいずれかに記載の白色発光装置。
  4.  前記蛍光体の発光スペクトルのドミナント波長が575~590nmの波長域にあることを特徴とする請求項3に記載の白色発光装置。
  5.  前記蛍光体の発光スペクトルのピーク波長が540~595nmの波長域にあり、半値幅が80nm以上であることを特徴とする請求項1~4のいずれかに記載の白色発光装置。
  6.  前記蛍光体の発光スペクトルのピーク波長が575~590nmの波長域にあることを特徴とする請求項5に記載の白色発光装置。
  7.  前記蛍光体は、SrCO、BaCO、SiO及びEuの混合物を還元雰囲気中で1次焼成して作製したユーロピウム付活のオルソ珪酸塩を前駆体とし、この前駆体とSi及びNHClの混合物を還元雰囲気中で2次焼成することで得られることを特徴とする請求項1~6のいずれかに記載の白色発光装置。
  8.  前記半導体発光素子のピーク波長が430nm~470nmの波長域にあるInGaN系LEDであることを特徴とする請求項1~7のいずれかに記載の白色発光装置。
  9.  請求項1~8のいずれかに記載の白色発光装置を光源とした車両用灯具。
PCT/JP2009/052818 2008-02-18 2009-02-18 白色発光装置及びこれを用いた車両用灯具 WO2009104651A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009554352A JP5635268B2 (ja) 2008-02-18 2009-02-18 白色発光装置及びこれを用いた車両用灯具
EP09711859.0A EP2246909B1 (en) 2008-02-18 2009-02-18 White light emitting device and lighting fitting for vehicles using the white light emitting device
KR1020107017812A KR101245005B1 (ko) 2008-02-18 2009-02-18 백색 발광 장치 및 이것을 이용한 차량용 등기구
US12/866,770 US8299487B2 (en) 2008-02-18 2009-02-18 White light emitting device and vehicle lamp using the same
CN2009801052994A CN101946336B (zh) 2008-02-18 2009-02-18 白色发光装置以及使用该白色发光装置的车辆用灯具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-035453 2008-02-18
JP2008035453 2008-02-18

Publications (1)

Publication Number Publication Date
WO2009104651A1 true WO2009104651A1 (ja) 2009-08-27

Family

ID=40985529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052818 WO2009104651A1 (ja) 2008-02-18 2009-02-18 白色発光装置及びこれを用いた車両用灯具

Country Status (6)

Country Link
US (1) US8299487B2 (ja)
EP (1) EP2246909B1 (ja)
JP (1) JP5635268B2 (ja)
KR (1) KR101245005B1 (ja)
CN (1) CN101946336B (ja)
WO (1) WO2009104651A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012044026A2 (ko) * 2010-09-27 2012-04-05 삼성엘이디 주식회사 형광체 및 이의 제조방법
US20120326196A1 (en) * 2010-03-31 2012-12-27 Osram Sylvania, Inc. Phosphor and leds containing same
JP2013163724A (ja) * 2012-02-09 2013-08-22 Denki Kagaku Kogyo Kk 蛍光体及び発光装置
JP2017212340A (ja) * 2016-05-25 2017-11-30 スタンレー電気株式会社 発光ダイオード装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3417203B1 (en) 2016-02-23 2020-12-16 MLS Automotive, Inc. Vehicle lighting assembly and method for achieving yellow colored turn signals
KR101907756B1 (ko) 2016-12-07 2018-10-12 신라대학교 산학협력단 결함에 의하여 발광하는 자기 발광 형광체 및 그 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3503139B2 (ja) 1996-07-29 2004-03-02 日亜化学工業株式会社 発光装置と表示装置
JP2004095480A (ja) 2002-09-03 2004-03-25 Koito Mfg Co Ltd 車両用前照灯
JP2005281700A (ja) * 2002-10-16 2005-10-13 Nichia Chem Ind Ltd オキシ窒化物蛍光体を用いた発光装置
JP2007242717A (ja) * 2006-03-06 2007-09-20 Koito Mfg Co Ltd 車両用灯具

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632379B2 (en) * 2001-06-07 2003-10-14 National Institute For Materials Science Oxynitride phosphor activated by a rare earth element, and sialon type phosphor
EP1554914B1 (en) * 2002-10-14 2006-06-07 Philips Intellectual Property & Standards GmbH Light-emitting device comprising an eu(ii)-activated phosphor
JP4805829B2 (ja) * 2003-09-24 2011-11-02 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング 定義された色温度を有する白色発光led
DE102004051395A1 (de) * 2004-10-21 2006-04-27 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Hocheffizienter stabiler Oxinitrid-Leuchtstoff
DE102006008300A1 (de) * 2006-02-22 2007-08-30 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Leuchtstoff und Lichtquelle mit derartigem Leuchtstoff sowie Herstellverfahren für den Leuchtstoff

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3503139B2 (ja) 1996-07-29 2004-03-02 日亜化学工業株式会社 発光装置と表示装置
JP2004095480A (ja) 2002-09-03 2004-03-25 Koito Mfg Co Ltd 車両用前照灯
JP2005281700A (ja) * 2002-10-16 2005-10-13 Nichia Chem Ind Ltd オキシ窒化物蛍光体を用いた発光装置
JP2007242717A (ja) * 2006-03-06 2007-09-20 Koito Mfg Co Ltd 車両用灯具

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Extended Abstracts, 67th Autumn Meeting, The Japan Society of Applied Physics, 2006", article KAICHO MIYAMOTO ET AL.: "Sanchikkabutsu Aoiro Keikotai (Sr, Ba) Si2O2N2: Eu2+ no Hakko Tokusei", pages: 1305, XP008139594 *
BONG-GOO YUN ET AL.: "Luminescence Properties of (Sr1-uBau)Si2O2N2:Eu2+, Yellow or Orange Phosphors for White LEDs, Synthesized with (Sr1-uBau) SiO4: Eu2+ as a Precursor", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 154, no. 10, 15 August 2007 (2007-08-15), pages J320 - J325, XP002613545 *
See also references of EP2246909A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120326196A1 (en) * 2010-03-31 2012-12-27 Osram Sylvania, Inc. Phosphor and leds containing same
US8928019B2 (en) * 2010-03-31 2015-01-06 Osram Sylvania Inc. Phosphor and LEDs containing same
WO2012044026A2 (ko) * 2010-09-27 2012-04-05 삼성엘이디 주식회사 형광체 및 이의 제조방법
WO2012044026A3 (ko) * 2010-09-27 2012-07-19 삼성엘이디 주식회사 형광체 및 이의 제조방법
CN103347981A (zh) * 2010-09-27 2013-10-09 三星电子株式会社 荧光物质及其制备方法
US9127204B2 (en) 2010-09-27 2015-09-08 Samsung Electronics Co., Ltd. Fluorescent substance and method for preparing same
JP2013163724A (ja) * 2012-02-09 2013-08-22 Denki Kagaku Kogyo Kk 蛍光体及び発光装置
JP2017212340A (ja) * 2016-05-25 2017-11-30 スタンレー電気株式会社 発光ダイオード装置

Also Published As

Publication number Publication date
JPWO2009104651A1 (ja) 2011-06-23
KR20100112619A (ko) 2010-10-19
CN101946336B (zh) 2012-06-27
US20100320495A1 (en) 2010-12-23
EP2246909A1 (en) 2010-11-03
CN101946336A (zh) 2011-01-12
EP2246909A4 (en) 2012-11-21
US8299487B2 (en) 2012-10-30
EP2246909B1 (en) 2015-07-22
KR101245005B1 (ko) 2013-03-18
JP5635268B2 (ja) 2014-12-03

Similar Documents

Publication Publication Date Title
CN111615753B (zh) 可调光固态光发射装置
JP4559496B2 (ja) 発光装置
CN101828273B (zh) 发光装置、使用该发光装置的车辆用灯具及前照灯
EP2544252B1 (en) Light emitting device
US20070090381A1 (en) Semiconductor light emitting device
US10199547B2 (en) Red phosphor and light emitting device including the same
EP2056364A1 (en) Illuminating apparatus
WO2009093427A1 (ja) 発光装置
WO2009104653A1 (ja) 白色発光装置及びこれを用いた車両用灯具
WO2007120582A1 (en) WHITE LEDs WITH TAILORABLE COLOR TEMPERATURE
WO2011129429A1 (ja) Led発光装置
JP5635268B2 (ja) 白色発光装置及びこれを用いた車両用灯具
JP2011159809A (ja) 白色発光装置
JP5370047B2 (ja) 白色発光装置のための演色性改善方法および白色発光装置
JP5323308B2 (ja) 発光モジュール
WO2009104652A1 (ja) 白色発光装置及びこれを用いた車両用灯具
JP2009073914A (ja) 緑色発光蛍光体とそれを用いた発光モジュール
JP2006332202A (ja) 発光装置、発光装置の製造方法、及びそれを用いた照明装置、画像表示装置用バックライト並びに画像表示装置
JP2021190701A (ja) 発光装置
JP2010013608A (ja) 蛍光体および発光装置
WO2009093611A1 (ja) 蛍光体を用いた発光モジュール及びこれを用いた車両用灯具
EP3916073B1 (en) Light emitting device
JP2013089769A (ja) 発光モジュール
JPWO2013176195A1 (ja) 可視領域での発光光の発光強度と演色性とが最適化された蛍光体混合物
JP2009029894A (ja) 緑色発光蛍光体とそれを用いた発光モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105299.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09711859

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009554352

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12866770

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107017812

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009711859

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE