WO2009098793A1 - Organic el display and manufacturing method thereof - Google Patents

Organic el display and manufacturing method thereof Download PDF

Info

Publication number
WO2009098793A1
WO2009098793A1 PCT/JP2008/064308 JP2008064308W WO2009098793A1 WO 2009098793 A1 WO2009098793 A1 WO 2009098793A1 JP 2008064308 W JP2008064308 W JP 2008064308W WO 2009098793 A1 WO2009098793 A1 WO 2009098793A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
substrate
display
color conversion
Prior art date
Application number
PCT/JP2008/064308
Other languages
French (fr)
Japanese (ja)
Inventor
Kouki Kasai
Original Assignee
Fuji Electric Holdings Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Co., Ltd. filed Critical Fuji Electric Holdings Co., Ltd.
Priority to TW098103684A priority Critical patent/TW201002123A/en
Publication of WO2009098793A1 publication Critical patent/WO2009098793A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present invention relates to an organic electroluminescence display (hereinafter also referred to as “organic EL display”). More specifically, the organic EL display according to the present invention relates to an organic EL display in which light emitted from the organic EL element portion to the outside does not exhibit a different emission color depending on a viewing angle. The present invention relates to a method for manufacturing such an organic EL display.
  • display devices such as liquid crystal displays and organic EL displays are used as display units for electronic devices such as mobile phones, personal computers, digital copiers, and printers.
  • the light emitting form of the display device includes a self light emitting type and a non-light emitting type.
  • the self-luminous type is applied to an electroluminescence element (EL element), a field emission display (FED), a cathode ray tube (CRT), and the like.
  • the non-light emitting type is applied to a liquid crystal display element or the like.
  • the color display method of the display device includes a multi-color method or a full-color method that realizes light emission of three primary colors of red, green, and blue.
  • a means for interposing a color filter layer between the light exit surface of the light emitting element and the image surface is frequently used. According to this means, it is possible to selectively emit light of a specific wavelength from the light emitting element and improve the color purity of light emission of the three primary colors, thereby improving the image display quality.
  • Patent Document 1 discloses an organic EL element portion having an organic EL material portion and a fluorescent material portion that absorbs light emitted from the organic EL material portion and emits visible light fluorescence. This element is equipped with a color conversion filter containing a fluorescent material in the fluorescent material part, so that the light emitted from the organic EL material part is absorbed by the fluorescent material part to emit fluorescence in the visible light range, thereby realizing a color conversion method. To do.
  • the light emission color of the organic EL element portion is not limited to white.
  • an organic EL element part having higher luminance than conventional ones can be applied as a light source.
  • blue light is wavelength-converted into green light or red light by a color conversion method using a blue light emitting organic EL element part. Can do.
  • the color conversion layer (corresponding to the fluorescent material part) used in the color conversion method can be formed mainly by a wet process using a photoresist or a dry process using a vapor deposition method.
  • the material used for the color conversion layer has low heat resistance, it is difficult to completely dry the color conversion layer and the photoresist when a wet process is employed. For this reason, according to the wet process, moisture remaining after drying may move from the color conversion layer to the organic EL layer, and a non-luminous defect called a dark area may occur in the organic EL layer. Therefore, the color conversion layer is actively formed not by a wet process but by a dry process. For example, the following techniques have been proposed.
  • Patent Document 2 a color filter layer, a fluorescence conversion layer (corresponding to a color conversion layer), a barrier layer, a hole injection electrode, and an electron injection electrode are provided on a substrate, and an organic layer involved in a light emitting function is provided between the electrodes.
  • An organic EL display device having a color filter layer formed by a vapor deposition method is disclosed.
  • the color filter layer not only the color filter layer but also the color conversion layer is formed by a vapor deposition method (dry process). This is because the color conversion layer is weak against moisture and it is desired to suppress the occurrence of the dark area.
  • the color conversion layer is formed by a dry process and the color filter layer or the flattening layer that is the base of the color conversion layer is formed by a wet process, the color conversion is performed after these are completely dried at a high temperature. It is desirable to form a layer.
  • the color conversion layer can be selectively formed on the flattening layer according to the red, green, and blue subpixels. Since the refractive index of the planarization layer and the glass substrate is about 1.5, whereas the refractive index of the color conversion layer is about 2, the sub-pixel formed with the color conversion layer does not form the color conversion layer. Compared with sub-pixels, light directivity is low. For example, when the color conversion layer is formed only on the red sub-pixel, the red sub-pixel has lower light directivity than the green sub-pixel and the blue sub-pixel.
  • the refractive index between the color conversion layers of the respective colors is different, so that there is a difference in the light directivity between the sub-pixels on which the color conversion layers are formed. For example, when a color conversion layer is formed on a red subpixel and a green subpixel, a difference regarding the directivity of light occurs between these subpixels.
  • red, green, and blue light emitted from the display may have different directivities, and the emission color of the screen may be different depending on the viewing angle with respect to the display.
  • the refractive index of the planarization layer and / or the glass substrate In order to increase the amount of light extracted from the sub-pixel, it is important to reduce the refractive index of the planarization layer and / or the glass substrate. However, when the refractive index of the flattening layer or the like is reduced, the difference in refractive index between the flattening layer or the like and the color conversion layer increases. For this reason, the difference in the directivity of light between the subpixel in which the color conversion layer is formed and the subpixel in which the color conversion layer is not formed is further increased, and the emission color of the screen may be further different depending on the viewing angle.
  • Patent Document 3 includes a pixel having a light emitting functional layer sandwiched between a first electrode and a second electrode on a substrate and a unit pixel group including a plurality of the pixels, and is selected from the unit pixel group.
  • an organic electroluminescence device is disclosed in which each pixel is provided with a scattering portion that scatters light emitted from the light emitting functional layer.
  • Patent Document 3 since the unevenness in Patent Document 3 is formed under the same dimensional design in the blue subpixel and the green subpixel, the difference in the directivity of light between subpixels that generate light of different colors is finely adjusted. Therefore, it is impossible to prevent a change in emission color due to the viewing angle at a high level.
  • the change in the emission color depending on the viewing angle is caused by the occurrence of different directivities in the red, green, and blue light emitted by the color conversion layer.
  • the red directivity is small, while the green and blue directivities are large. Therefore, the above problem can be solved if the difference in directivity of light between red, green, and blue can be reduced.
  • the object of the present invention is to reduce the difference in the directivity of light between the sub-pixels of each color without adversely affecting the color purity and brightness of the light of each color generated from the color conversion layer, and depending on the viewing angle.
  • An object of the present invention is to provide an organic EL display that does not exhibit different emission colors.
  • the objective of this invention is providing the manufacturing method of the said organic EL display.
  • the present invention includes a substrate, a color conversion filter unit including a planarization layer and at least one color conversion layer, and an organic EL element unit having a plurality of light emitting units, and a plurality of subpixels by the plurality of light emitting units. And an interface having a concavo-convex shape between the substrate and the planarizing layer, and the concavo-convex shape relates to an organic EL display having a different concavo-convex density for each sub-pixel.
  • the organic EL display of the present invention can be used as a display unit of an electronic device such as a mobile phone.
  • the present invention also includes a substrate, a first laminate including a color conversion filter unit including a planarization layer and at least one color conversion layer, a base, and an organic EL element unit having a plurality of light emitting units.
  • a plurality of sub-pixels are defined by the plurality of light emitting portions, an interface having a concavo-convex shape between the substrate and the planarization layer, and the concavo-convex shape is
  • An organic EL display having different uneven density is included for each subpixel.
  • At least one color filter layer can be interposed between the substrate and the planarizing layer.
  • the interface between the substrate and the color filter layer has an uneven shape, and the uneven shape has a different uneven density for each sub-pixel.
  • the concavo-convex shape can be an array shape of a plurality of concave portions and convex portions having at least one period and smaller than the sub-pixel width.
  • corrugated shape can be made into the shape which has a different period for every said subpixel.
  • the present invention provides a step of forming a color conversion filter portion including a planarization layer and at least one color conversion layer on a substrate, and an organic EL element portion having a plurality of light emitting portions on the color conversion filter portion.
  • a concavo-convex shape is formed on a substrate surface in contact with the planarization layer, and the concavo-convex shape is formed for each sub-pixel.
  • corrugated density is included.
  • the present invention also includes a step of forming a color conversion filter portion including a planarization layer and at least one color conversion layer on a substrate to obtain a first laminate, and an organic having a plurality of light emitting portions on a substrate.
  • an organic EL display manufacturing method is provided in which an uneven shape is formed on a substrate surface in contact with the planarization layer, and the uneven shape is adjusted to a different uneven density for each subpixel. Include.
  • At least one color filter layer can be formed between the substrate and the planarization layer.
  • an uneven shape is formed on the substrate surface in contact with the color filter layer, and the uneven shape is adjusted to a different uneven density for each sub-pixel.
  • the concavo-convex shape can be adjusted to at least one cycle to form an array shape of a plurality of concave portions and convex portions smaller than the sub-pixel width.
  • corrugated shape can be adjusted to a different period for every said subpixel.
  • the organic EL display of the present invention finely adjusts the directivity of light between sub-pixels of different colors by forming the substrate surface into a predetermined shape for each sub-pixel defined by the light emitting unit of the organic EL element unit. In addition, it is possible to prevent a change in emission color due to the viewing angle at a high level.
  • FIG. 1 is a side sectional view showing an organic EL display of the present invention.
  • FIG. 2 is a side sectional view showing the organic EL display of the present invention.
  • FIG. 3 is a side sectional view showing the organic EL display of Comparative Example 1.
  • FIG. 4 is a side sectional view showing the organic EL display of Comparative Example 2.
  • uneven portions having different densities are formed for different subpixels.
  • the light of R, G, B emitted from the organic EL element part is allowed to pass through the uneven part.
  • the directivity of light of each color at the interface is controlled independently by the principle of light scattering, the difference in directivity of light of each color is reduced, and the emission color changes depending on the angle at which the organic EL display is viewed. Can solve the problem.
  • this inventor observed the organic EL display from the front and the diagonal direction, and measured the angular distribution of the emission spectrum. As a result, it has been concluded that the reduction of the directivity difference in the light of each color can be realized while maintaining the performance of the organic EL element part such as chromaticity and luminance.
  • the organic EL display (bottom emission type) of the present invention includes a transparent substrate 100, a color conversion filter unit 200 laminated on one surface of the transparent substrate 100, and light incident on the color conversion filter unit 200.
  • the organic EL element unit 300 having the light-emitting surface facing the surface, and a sealing material (not shown) that blocks the color conversion filter unit 200 and the organic EL element unit 300 from outside air.
  • the transparent substrate 100 is a layer for supporting each component of the organic EL display sequentially formed thereon.
  • the transparent substrate 100 is rich in light transmission, and the color filter layer 210 (R, G, B), the light shielding layer 220, a red conversion layer 240 described later, and the organic EL element unit 300 (electrode, organic light emitting layer, etc.) ) That can withstand the conditions (solvent, temperature, etc.) used in the formation of).
  • the transparent substrate 100 is preferably excellent in dimensional stability because it is exposed to repeated formation conditions of each layer in each subsequent forming step. Further, it is important to use a transparent substrate 100 that does not cause a decrease in the light emission performance of the multicolor light emitting display, and examples thereof include glass, various plastics, and various films.
  • the color conversion filter unit 200 is a color filter including red (R), green (G), and blue (B) color filter layers 210R, 210G, and 210B formed in a stripe shape on one surface of the transparent substrate 100.
  • a red conversion layer 240 formed at a position corresponding to the color filter layer 210R, and a gas barrier layer 250 formed on the planarization layer 230 so as to wrap the red conversion layer 240.
  • the organic EL element unit 300 is formed on the gas barrier layer 250 and formed on the gas barrier layer 250 so as to wrap around the transparent electrode 310 formed at a position corresponding to the color filter layer 210. And an organic EL layer 320 and a reflective electrode 330 formed on the organic EL layer 320.
  • At least one color filter layer (green color filter layer 210G and blue color filter layer 210B in the example shown in FIG. 1) selected from the color filter layers 210R, 210G, and 210B of each color,
  • the interface with the transparent substrate 100 in contact has an uneven shape.
  • the uneven shape of the interface (interface 1) between the green color filter layer 210G and the transparent substrate 100 and the uneven shape of the interface (interface 2) between the blue color filter layer 210B and the transparent substrate 100 are reflected at the interface of incident external light. And a shape that can enhance the amount of light outside the incident to the organic EL element unit 300 due to refraction.
  • the uneven shape is a shape that allows the emitted light from the organic EL element unit 300 to be sufficiently scattered and emitted to the image plane.
  • the average depth of the valley is 0.4 to 0.625 ⁇ m.
  • the average depth of the valley is the vertical direction of the paper surface of the concave portion adjacent to the position of the vertical direction of the paper surface in each interface shape between each color filter layer 210 (G, B) and the transparent substrate 100 in FIG.
  • the difference from the position means an average value obtained by measuring one representative position in the entire horizontal region of each color filter layer 210 (G, B).
  • the depth is preferably 0.525 to 0.625 ⁇ m.
  • the uneven shape of the interfaces 1 and 2 has an uneven density of 0.83 to 1.99 / ⁇ m 2 .
  • the uneven density is the number of protrusions per 1 ⁇ m 2 in the shape of the interface between the green color filter layer 210G or the blue color filter layer 210B and the transparent substrate 100 (horizontal direction in FIG. 1 ⁇ vertical direction in FIG. 1). It means number.
  • the uneven density is preferably 0.83 to 1.18 / ⁇ m 2 .
  • the uneven shape of the interfaces 1 and 2 can be a regular or irregular shape having such an average depth of the valley and uneven density. By not excessively increasing the average depth or average density of the valleys, it is possible to suppress excessive irregular reflection of incident external light and to prevent luminance loss of the light emitting surface.
  • Such a concavo-convex shape has a different concavo-convex density for each sub-pixel (in the example shown in FIG. 1, for each of the green color filter layer 210G and the blue color filter layer 210B). This is to prevent a change in emission color due to the viewing angle at a high level by utilizing the directivity of light based on the principle of scattering.
  • the concave / convex shape is determined with a period of 1 ⁇ 2 or more of the wavelength of the light to be changed, thereby adjusting the concave / convex density, and changing the refractive index for each sub-pixel to direct the light emitted from each sub-pixel. Adjust gender.
  • FIG. 1 1 ⁇ 2 or more of the wavelength of the light to be changed
  • the period of the concavo-convex shape refers to a horizontal distance in the drawing between adjacent convex portions in each color filter layer 210 (G, B).
  • the unevenness density of the uneven shape of the interface 1 is 0.83 to 0.91 piece / ⁇ m 2
  • the uneven density of the uneven shape of the interface 2 is 1.01 to 1.18 piece / ⁇ m 2. Is preferred.
  • the sub-pixel means a part corresponding to the light emitting part of the organic EL element part, that is, a part having the width of the transparent electrode 310 in the pixel (the whole of FIG. 1) as shown in FIG. .
  • corrugation is not attached
  • such a concavo-convex shape can be an array shape of a plurality of concave portions and convex portions having at least one period and smaller than the sub-pixel width.
  • a specific means for making the uneven density of the uneven shapes of the interfaces 1 and 2 different there is a means for attaching uneven shapes having different periods to each sub-pixel (for each of the interfaces 1 and 2).
  • the unevenness is formed on the surface of the transparent substrate 100 corresponding to the pattern of the color filter layers 210G and 210B.
  • the selected color filter layers 210G and 210B are stacked on the pattern.
  • a method generally used for surface roughening treatment for example, a method of etching with a chemical agent, plasma or the like using a resist pattern as a mask can be used.
  • a sandblasting method for example, a mechanical method of scratching the surface using comb teeth, or the like, using a mask and an abrasive.
  • a suitable irregularity is formed on the surface of the glass substrate by using an abrasive having an average particle size of 5 ⁇ m by sandblasting and treating for 2 to 8 seconds, preferably 3 to 7.5 seconds. Can be formed.
  • the interface between the red color filter layer 210 ⁇ / b> R and the transparent substrate 100 is not provided with an uneven shape.
  • the red color filter layer 210R can be laminated on the transparent substrate 100 by various known methods. For example, it can be formed by applying a known red color filter material by spin coating and performing patterning by photolithography.
  • the color filter layer 210 is a layer for improving the color purity of light having a certain region of the incident light incident on the layer by blocking a specific wavelength.
  • the color filter layer 210 (R, G, B) can be formed on the transparent substrate 100 using a material for a flat panel display.
  • the color filter layer 210 has a structure in which a blue color filter layer that transmits a wavelength of 400 to 550 nm, a green color filter layer that transmits a wavelength of 500 to 600 nm, and a red color filter layer that transmits a wavelength of 600 nm or more are arranged. be able to.
  • These color filter layers are composed of a photosensitive resin layer in which a dye or pigment, preferably a pigment is dispersed.
  • a dye or pigment preferably a pigment is dispersed.
  • azo lake insoluble azo, condensed azo, phthalocyanine, quinacridone, dioxazine, Indolinone, anthraquinone, berylone, thioin, berylene, and mixtures thereof are preferably used.
  • the color filter layer 210 has a stripe pattern composed of red (R), green (G), and blue (B) repetitions. Each pattern is transparent with a pattern width of 60 to 100 ⁇ m and a pattern interval of 70 to 90 ⁇ m. It is provided on one surface of the substrate 100.
  • a coating method can be used, and it is particularly preferable to use a photo process.
  • the light shielding layer 220 is formed for the purpose of improving the contrast by preventing the visible region from being transmitted between the color filter layers.
  • the light shielding layer 220 is formed using a material for a normal flat panel display.
  • a coating method can be used, and it is particularly preferable to use a photo process.
  • planarization layer 230 is a layer formed for the purpose of protecting the color filter layer 210 (R, G, B). Further, the planarizing layer 230 is formed so that a step generated by the color filter layer 210 and the light shielding layer 220 does not adversely affect the dimensional accuracy of each layer formed above the layers 210 and 220. Layer. For this reason, the planarization layer 230 needs to be formed by selecting a material and a process that are rich in light transmittance and do not deteriorate the color filter layer 210 (R, G, B).
  • a photocurable or photothermal combination type curable resin is subjected to light and / or heat treatment to generate radical species and ionic species to be polymerized or crosslinked to be insoluble and infusible. Is common.
  • the photocurable or photothermal combination type curable resin is preferably soluble in an organic solvent or an alkaline solution before curing in order to perform patterning.
  • photocurable or photothermal combination type curable resin (1) A composition film composed of an acrylic polyfunctional monomer or oligomer having a plurality of acroyl groups and methacryloyl groups, and light or a thermal polymerization initiator is subjected to light or heat treatment to generate photo radicals or heat radicals for polymerization.
  • a composition comprising a polyvinyl cinnamate ester and a sensitizer, which is dimerized by light or heat treatment and crosslinked.
  • composition film composed of a chain or cyclic olefin and a bisazide generated by nitrene generation by light or heat treatment to be crosslinked with the olefin, and (4) a monomer having an epoxy group and a photoacid generator And a composition film obtained by polymerizing an acid (cation) by light or heat treatment.
  • photocurable or photothermal combination type curable resins include polycarbonate (PC), polyethylene terephthalate (PET), polyethersulfone, polyvinyl butyral, polyphenylene ether, polyamide, polyetherimide, norbornene resin, and methacrylic resin. , Isobutylene maleic anhydride copolymer resin, cyclic olefin thermoplastic resin, epoxy resin, phenol resin, urethane resin, acrylic resin, vinyl ester resin, imide resin, urethane resin, urea resin, melamine resin, etc. Examples thereof include a curable resin, or a polymer hybrid containing a trifunctional or tetrafunctional alkoxysilane with polystyrene, polyacrylonitrile, polycarbonate, or the like.
  • a coating method can be used, and it is particularly preferable to use a photo process.
  • FIG. 1 is an example including the color filter layer 210, but when the color filter layer 210 is not included at all, an uneven shape is formed at the interface between the transparent substrate 100 and the planarization layer 230. Also in this case, a coating method can be used, and it is particularly preferable to use a photo process.
  • the color conversion layer is a photosensitive material in which a fluorescent dye having a function of causing the fluorescent dye to absorb incident light having a wavelength in the near ultraviolet region or visible region and emitting fluorescent light in a visible light region having a wavelength different from that of the incident light is dispersed. It consists of a functional resin layer. In the example shown in FIG. 1, only the red color conversion layer 240 is used among the red color conversion layer, the green color conversion layer, and the blue color conversion layer.
  • Examples of the fluorescent dye used in the red conversion layer 240 that absorbs light in the blue or blue-green region emitted from the organic EL element unit 300 and emits fluorescence in the red region include, for example, rhodamine B, rhodamine 6G, rhodamine 3B, Rhodamine 101, rhodamine 110, sulforhodamine, basic violet 11, basic red 2 and other rhodamine dyes, cyanine dyes, 1-ethyl-2- [4- (p-dimethylaminophenyl) -1,3-butadienyl]- Examples thereof include pyridine dyes such as pyridinium perchlorate (pyridine 1), and oxazine dyes. Various dyes such as direct dyes, acid dyes, basic dyes, and disperse dyes can be used as long as they exhibit fluorescence.
  • a fluorescent dye used for a green conversion layer that absorbs light in a blue to blue-green region emitted from the organic EL element unit 300 and emits fluorescence in a green region
  • a fluorescent dye used for a green conversion layer that absorbs light in a blue to blue-green region emitted from the organic EL element unit 300 and emits fluorescence in a green region
  • a coumarin dye such as diethylamino-coumarin (coumarin 30), 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9,9a, 1-gh) coumarin (coumarin 153), Coumarin dyes such as Basic Yellow 51, phthalimide colors such as Solvent Yellow
  • the blue conversion layer is usually omitted because the light emitted from the organic EL element unit 300 has substantially the same wavelength region as the wavelength region selected by the blue color filter layer 210B, and is not used in the example shown in FIG. .
  • a transparent photosensitive resin layer can be formed as a dummy.
  • the color conversion layer (red conversion layer 240 in the example shown in FIG. 1) can be formed by various dry processes, and is preferably formed by vacuum deposition because it can be formed without decomposing the organic material.
  • a heating method of the vacuum evaporation method either a direct heating method or an indirect heating method can be used, and specifically, resistance heating, electron beam heating, infrared heating, or the like can be used.
  • a preliminary mixture prepared by mixing a plurality of types of color conversion dyes in a predetermined ratio is prepared in advance, and co-evaporation is performed using the preliminary mixture. Can do.
  • the film thickness of the color conversion layer is preferably 1 ⁇ m or less from the viewpoint of exhibiting the function of the color conversion layer, and is preferably 200 nm to 1 ⁇ m. It is more preferable at the point which can utilize a layer effectively.
  • the gas barrier layer 250 is a layer formed to prevent moisture and / or oxygen from entering the color conversion layer (the red conversion layer 240 in the case shown in the figure) from the outside. This is because the color conversion dye is an organic substance and thus is vulnerable to moisture and oxygen.
  • the purpose of forming the gas barrier layer 250 is to protect the red color conversion layer 240, but in the example shown in FIG. 1, not only the red color conversion layer 240 but also the planarization layer 230 is protected.
  • This structure is also effective for protecting the organic EL layer 320, which will be described later, since it is necessary to prevent moisture from being emitted from the color conversion filter unit 200.
  • a material applicable to the gas barrier layer 250 a material having electrical insulating properties and a barrier property against a gas and an organic solvent and having high transparency in the visible region (transmittance in a range of 400 to 700 nm). 50% or more) can be used. Further, it is preferable to use a material having a film hardness (pencil hardness) of 2H or more, which is a hardness that can withstand the formation of a transparent electrode 310 and the like, which will be described later, formed on the gas barrier layer 250.
  • the film hardness (pencil hardness) conforms to JIS K5600-5-4.
  • an inorganic oxide such as SiOx, SiNx, SiNxOy, AlOx, TiOx, TaOx, ZnOx, or an inorganic nitride can be used.
  • the formation method of the gas barrier layer 250 is not particularly limited, and a sputtering method, a CVD method, a vacuum deposition method, or the like can be used.
  • the gas barrier layer 250 can be a single layer or a laminate including a plurality of layers.
  • the color conversion filter unit 200 is formed on the transparent substrate 100.
  • Transparent electrode 310 Materials applicable to the transparent electrode 310 include ITO, tin oxide, indium oxide, IZO, zinc oxide, zinc-aluminum oxide, zinc-gallium oxide, or a dopant such as F or Sb added to these oxides. Conductive transparent metal oxides can be used.
  • the transparent electrode 310 can be obtained by forming using a vapor deposition method, a sputtering method, or a chemical vapor deposition (CVD) method and then patterning using a photolithographic method or the like. Among such formation methods, it is particularly preferable to use a sputtering method.
  • the transparent electrode 310 can be either an anode or a cathode.
  • a cathode buffer layer (not shown) between the transparent electrode 310 and the organic EL layer 320 to improve the electron injection efficiency for the organic EL layer 320.
  • an alkali metal such as Li, Na, K or Cs, an alkaline earth metal such as Ba or Sr, an alloy containing them, a rare earth metal, or a fluoride of these metals is used. be able to.
  • the thickness of the cathode buffer layer is preferably 10 nm or less from the viewpoint of ensuring transparency.
  • a conductive transparent metal oxide layer is provided between the transparent electrode 310 and the organic EL layer 320 to increase the hole injection efficiency for the organic EL layer 320. It is preferable to improve.
  • materials applicable as the conductive transparent metal oxide include ITO, tin oxide, indium oxide, IZO, zinc oxide, zinc-aluminum oxide, zinc-gallium oxide, and oxides such as F or Sb. A material to which a dopant is added can be used.
  • the organic EL layer 320 includes at least an organic light emitting layer, and has a structure in which a hole injection layer, a hole transport layer, an electron transport layer and / or an electron injection layer are interposed as required.
  • a specific layer structure of the organic EL element portion the following structure can be adopted.
  • anode / organic light emitting layer / cathode (2) Anode / hole injection layer / organic light emitting layer / cathode (3) Anode / organic light emitting layer / electron injection layer / cathode (4) Anode / hole injection layer / organic light emitting layer / electron injection layer / cathode (5) Anode / hole transport layer / organic light emitting layer / electron injection layer / cathode (6) Anode / hole injection layer / hole transport layer / organic light emitting layer / electron injection layer / cathode (7) Anode / hole injection layer / hole transport layer / organic light emitting layer / electron transport layer / electron injection layer / cathode In the layer structures (1) to (7), the anode and the cathode are either the transparent electrode 310 or the reflective electrode 330.
  • each layer constituting the organic EL layer 320 As a material of each layer constituting the organic EL layer 320, a known material can be used. Moreover, each layer which comprises the organic EL layer 320 can be formed using arbitrary methods well-known in the said techniques, such as a vapor deposition method.
  • the organic EL layer 320 realizes light emission from blue to blue-green.
  • materials applicable to the organic light emitting layer for obtaining blue to blue-green light emission include fluorescent brighteners such as benzothiazole, benzimidazole, or benzoxazole, metal chelated oxonium compounds, and styrylbenzene. It is preferable to use a compound or an aromatic dimethylidin compound.
  • the light emission of the organic light emitting layer can be white light as necessary. In this case, it is important to use a known red dopant.
  • Reflective electrode 330 As a material applicable to the reflective electrode 330, it is preferable to use a metal with high reflectivity, an amorphous alloy with high reflectivity, or a microcrystalline alloy with high reflectivity.
  • the highly reflective metal include Al, Ag, Mo, W, Ni, and Cr.
  • the highly reflective amorphous alloy include NiP, NiB, CrP, and CrB.
  • An example of the highly reflective microcrystalline alloy is NiAl.
  • the reflective electrode 330 can be either a cathode or an anode.
  • a cathode buffer layer (not shown) between the reflective electrode 330 and the organic EL layer 320 to improve the electron injection efficiency for the organic EL layer 320.
  • a conductive transparent metal oxide layer is provided between the reflective electrode 330 and the organic EL layer 320 to increase the hole injection efficiency for the organic EL layer 320. It is preferable to improve.
  • materials applicable as the conductive transparent metal oxide include ITO, tin oxide, indium oxide, IZO, zinc oxide, zinc-aluminum oxide, zinc-gallium oxide, and oxides such as F or Sb. A material to which a dopant is added can be used.
  • the reflective electrode 330 As a method for forming the reflective electrode 330, any means known in the technical field such as vacuum deposition, sputtering, ion plating, or laser ablation can be used depending on the material to be used. Unlike the example shown in FIG. 1, when the reflective electrode 330 made up of a plurality of partial electrodes is required, the reflective electrode 330 made up of the plurality of partial electrodes is formed using a mask that gives a desired shape. You can also.
  • the reflective electrode 330 has a striped pattern that intersects the pattern of the transparent electrode 310, and this intersecting region forms a light emitting subpixel.
  • the organic EL display obtained as described above is bonded to a sealing glass (not shown) by UV curing in a dry nitrogen atmosphere in the glove box (an atmosphere in which both O 2 concentration and H 2 O concentration are 10 ppm or less). It seals using the contact bonding layer which consists of an agent.
  • the organic EL display (top emission type) of the present invention As shown in FIG. 2, the first laminate X in which the color conversion filter unit 200 is formed on the substrate 100 and the organic EL element unit 300 on the base 400 are formed.
  • the second laminated body Y is bonded to the light incident surface of the color conversion filter unit 200 with the light emitting surface of the organic EL element unit 300 by a thermosetting adhesive layer 500. is there.
  • the organic EL display shown in FIG. 2 includes a sealing material (not shown) that blocks the color conversion filter unit 200 and the organic EL element unit 300 from the outside air.
  • the transparent substrate 100 supports the components (the color filter layer 210, the light shielding layer 220, the planarization layer 230, the red color conversion layer 240, and the gas barrier layer 250) of the color conversion filter unit 200 that are sequentially formed thereon. Is a layer.
  • the transparent substrate 100 is one that can withstand the conditions (solvent, temperature, etc.) used for forming these components. Other conditions for the transparent substrate 100 are the same as those of the transparent substrate 100 shown in FIG.
  • the substrate 400 is a component for supporting the organic EL element 300.
  • a substrate that can withstand the conditions (solvent, temperature, etc.) used for forming the organic EL element 300 is used.
  • Other conditions for the substrate 400 are the same as those of the transparent substrate 100.
  • the adhesive layer 500 is a component used for bonding the first laminate X and the second laminate Y together.
  • the adhesive layer 500 is not particularly limited as long as it has visible light transparency and can be formed without causing adverse effects such as damage to the red color conversion layer 240 and the organic EL layer 320.
  • a general thermoplastic resin, a thermosetting resin that can be cured by heat at room temperature to 120 ° C., a resin that can be cured by visible light, or a combination of heat and light can be used.
  • the reflective electrode 330, the organic EL layer 320, and the transparent electrode 310 are sequentially formed on the substrate 400 to obtain the second stacked body Y.
  • the formation mode of the reflective electrode 330 and the like on the substrate 400 is performed in accordance with the formation mode of the corresponding component in the organic EL display (type 1) shown in FIG.
  • first stacked body X and the second stacked body Y are interposed through the thermosetting adhesive layer 500 in a state where the light incident surface of the color conversion filter unit 200 faces the light emitting surface of the organic EL element unit 300. to paste together.
  • the obtained organic EL display was subjected to a sealing layer made of a UV curable sealing agent (not shown) under a dry nitrogen atmosphere (an atmosphere in which both O 2 concentration and H 2 O concentration were 10 ppm or less) in the glove box. Is used to seal the color conversion filter unit 200 and the organic EL element unit 300.
  • examples and comparative examples all relate to an organic EL display in which 160 pixels including R, G, and B subpixels are formed at a pitch of 0.33 mm in the vertical direction and 120 in the horizontal direction.
  • Example 1 The organic EL display of Example 1 was a display of the type shown in FIG. A glass substrate of 200 mm ⁇ 200 mm ⁇ 0.7 mm was prepared. A dry etching method (C 4 F 8 : 16 msccm, CH 2 F 2 : 16 sccm, gas pressure 0.8 Pa, and power 2 kW) is used with a Cr film (film thickness 100 nm) first patterned at a predetermined pitch as a mask.
  • C 4 F 8 16 msccm
  • CH 2 F 2 16 sccm
  • gas pressure 0.8 Pa gas pressure 0.8 Pa
  • power 2 kW power 2 kW
  • the blue subpixel area on the color filter layer side of the substrate is formed into a right-cone-shaped irregularity with a depth of 0.6 ⁇ m and a pitch of 0.2 ⁇ m, and then the green subpixel area is formed with a depth of 0.4 ⁇ m and a pitch of 0.
  • a substrate 100 having a 3 ⁇ m right conical unevenness was obtained.
  • a light-shielding layer coating solution (CK8400L manufactured by Fuji Film ARCH) was applied to the entire surface by a spin coating method, and dried at 80 ° C. by heating. Thereafter, a pattern having a sub-pixel size (vertical direction of 80 ⁇ m ⁇ horizontal direction of 300 ⁇ m, thickness direction of 1 ⁇ m) was formed at a pitch of 330 ⁇ m by using a photolithography method, and the light shielding layer 220 was laminated on the substrate 100.
  • CK8400L manufactured by Fuji Film ARCH
  • the blue color filter layer 210B a blue color filter material (manufactured by Fuji Film ARCH: Color Mosaic CB-7001) was applied on the substrate 100 by spin coating, and patterning was performed by photolithography. Specifically, the substrate 100 formed into a conical unevenness having a depth of 0.6 ⁇ m and a pitch of 0.2 ⁇ m was traced. As a result, the substrate side of the blue color filter layer 210B has an area size of 80 ⁇ m ⁇ 300 ⁇ m and a thickness of 0.6 ⁇ m in depth, a pitch of 0.2 ⁇ m, and an average density of 0.88 pieces / ⁇ m 2 formed into a right cone shape. A 2 ⁇ m line pattern was obtained.
  • the green color filter layer 210G For the formation of the green color filter layer 210G, a green color filter material (manufactured by Fuji Film ARCH: Color Mosaic CG-7001) was applied on the substrate 100 by spin coating, and patterning was performed by photolithography. Specifically, the substrate 100 formed into a conical unevenness having a depth of 0.4 ⁇ m and a pitch of 0.3 ⁇ m was traced. As a result, the substrate side of the green color filter layer 210G is an area size of 80 ⁇ m ⁇ 300 ⁇ m, formed into a conical unevenness having a depth of 0.4 ⁇ m, a pitch of 0.3 ⁇ m, and an average density of 1.99 / ⁇ m 2 A 2 ⁇ m line pattern was obtained.
  • a green color filter material manufactured by Fuji Film ARCH: Color Mosaic CG-7001
  • the substrate side of the green color filter layer 210G is an area size of 80 ⁇ m ⁇ 300 ⁇ m, formed into a conical unevenness having
  • red color filter layer 210R For the formation of the red color filter layer 210R, a red color filter material (manufactured by Fuji Film ARCH: Color Mosaic CR-7001) was applied on the substrate 100 by spin coating, and patterning was performed by photolithography. Specifically, a line pattern having an area size of 80 ⁇ m ⁇ 300 ⁇ m and a film thickness of 2 ⁇ m was obtained.
  • the planarization layer 230 was formed by applying a planarization layer material (Nippon Steel Chemical Co., Ltd .: V-259PA) on the color filter layer 210 and the light shielding layer 220 by spin coating.
  • the thickness of the planarizing layer 230 in the region in contact with the light shielding layer 220 was 2.5 ⁇ m.
  • a planarization film was separately formed under the same conditions on a glass substrate and the refractive index was measured, it was found that the planarization layer of this example had a refractive index of 1.5.
  • the layered product having the flattening layer 230 or less obtained as described above is heated to 200 ° C. for 20 minutes under a dry nitrogen atmosphere (moisture concentration of 1 ppm or less) to remove residual moisture. Removed.
  • This laminate was attached to a vacuum deposition apparatus, and DCM-R was deposited at a deposition rate of 0.3 ⁇ / s under a pressure of 1 ⁇ 10 ⁇ 4 Pa to form a red conversion layer 240 having a thickness of 500 nm. .
  • a DCM-R film was separately formed on a glass substrate under the same conditions and the refractive index was measured, it was found that the red conversion layer of this example had a refractive index of 1.9.
  • a 300 nm-thick SiNH film was laminated by using a plasma CVD method to obtain a gas barrier layer 250.
  • 100 SCCM SiH 4 , 500 SCCM NH 3 , and 2000 SCCM N 2 were used as source gases, and the gas pressure was set to 80 Pa.
  • 0.5 kW of 27 MHz RF power was applied as plasma generation power.
  • the gas barrier layer of this example had a refractive index of 1.95.
  • the transparent electrode 310 / organic EL layer 320 (hole injection layer / hole transport layer / organic light emitting layer / electron transport layer) / reflection electrode 330
  • the organic EL element part 300 which consists of was formed.
  • the transparent electrode 310 formed an In—Zn oxide pattern.
  • An In—Zn oxide film having a thickness of 200 nm was formed at room temperature by DC sputtering.
  • An In—Zn oxide target was used as the sputtering target, and Ar and oxygen were used as the sputtering gas.
  • patterning was performed using oxalic acid as an etchant to form a pattern with a wiring width of 100 ⁇ m.
  • drying treatment 150 ° C.
  • UV treatment room temperature and 150 ° C.
  • the laminate is mounted in a resistance heating vapor deposition apparatus, and a hole injection layer, a hole transport layer, an organic light emitting layer, and an electron injection layer are sequentially formed without breaking the vacuum to form an organic EL layer 320. did.
  • the internal pressure of the vacuum chamber was reduced to 1 ⁇ 10 ⁇ 5 Pa.
  • As the hole injection layer copper phthalocyanine (CuPc) was laminated to a thickness of 100 nm.
  • As the hole transport layer 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl ( ⁇ -NPD) was laminated to a thickness of 20 nm.
  • DPVBi 4,4′-bis (2,2′-diphenylvinyl) biphenyl
  • a reflection made of a Mg / Ag (10: 1 weight ratio) layer having a thickness of 200 nm is used by using a mask capable of obtaining a stripe pattern having a width of 0.30 mm and a gap of 0.03 mm perpendicular to the line of the transparent electrode 310.
  • the electrode 330 was formed without breaking the vacuum.
  • a UV curable adhesive (trade name 30Y-437, manufactured by ThreeBond Co., Ltd.) in which beads having a diameter of 6 ⁇ m were dispersed was placed on the outer periphery of the laminate thus obtained using a dispenser robot in a dry nitrogen atmosphere inside the glove box.
  • the organic EL display of Example 1 was obtained by bonding using the sealing glass applied to the substrate and irradiating with 100 mW / cm 2 ultraviolet rays for 30 seconds to cure the outer peripheral sealing layer.
  • Example 2 The organic EL display of Example 2 was a display of the type shown in FIG. The formation of the substrate 100 and the sequential formation of the light shielding layer 220, the color filter layer 210, the planarization layer 230, the red color conversion layer 240, and the gas barrier layer 250 on the substrate 100 are performed in the same manner as in Example 1. 1 laminate X was obtained.
  • a glass substrate as a substrate 400 was separately prepared, and a reflective electrode 330 made of indium / tin oxide (ITO) having a thickness of 200 nm was formed by sputtering and photolithography.
  • the shape of the reflective electrode 330 was a stripe pattern with a wiring width of 100 ⁇ m extending in the vertical direction.
  • the laminated body in which the reflective electrode 330 is formed on the substrate 400 is mounted in a resistance heating vapor deposition apparatus, and the electron injection layer, the organic EL light emitting layer, the hole transport layer, and the hole injection layer are set in a vacuum chamber.
  • a passivation layer (not shown) made of SiN having a thickness of 500 nm was formed so as to cover the stacked body from the base body 400 to the transparent electrode 310, and a second stacked body Y was obtained.
  • the first laminated body X and the second laminated body Y obtained in this manner were carried into a bonding apparatus managed with a moisture concentration of 1 ppm and an oxygen concentration of 1 ppm.
  • a UV curable adhesive (trade name 30Y-437, manufactured by ThreeBond Co., Ltd.) in which beads having a diameter of 6 ⁇ m are dispersed is applied to the first laminate X as an outer peripheral sealing layer, and at the center.
  • a predetermined amount of a thermosetting adhesive was dropped, and the atmosphere was removed with a vacuum of 1 Pa in a bonding apparatus.
  • the gas barrier layer 250 and a passivation layer (not shown) were opposed to each other, the laminated body Y was placed on the upper surface of the passivation layer, and the laminated bodies X and Y were bonded together by pressure bonding.
  • 100 mW / cm 2 ultraviolet ray was irradiated for 30 seconds to cure, then heating at 100 ° C. for 1 hour to heat the outer periphery sealing part and the thermosetting adhesive Curing was performed to obtain an organic EL display of Example 2.
  • Comparative Example 1 The organic EL display of Comparative Example 1 was a display of the type shown in FIG. A glass substrate of 200 mm ⁇ 200 mm ⁇ 0.7 mm was prepared. First, a light shielding layer coating solution (CK8400L manufactured by Fuji Film ARCH) was applied on the entire surface of the substrate 100 by a spin coat method and dried by heating at 80 ° C. Then, using a photolithographic method, at a pitch of 330 ⁇ m, A pattern with a subpixel size (vertical direction 80 ⁇ m ⁇ horizontal direction 300 ⁇ m, thickness direction 1 ⁇ m) was formed, and a light shielding layer 220 was laminated on the substrate 100.
  • CK8400L manufactured by Fuji Film ARCH
  • a blue color filter material manufactured by Fuji Film ARCH: Color Mosaic CB-7001 was applied on the substrate 100 by spin coating, and patterning was performed by photolithography. Specifically, a line pattern having an area size of 80 ⁇ m ⁇ 300 ⁇ m and a film thickness of 2 ⁇ m was obtained.
  • the green color filter layer 210G For the formation of the green color filter layer 210G, a green color filter material (manufactured by Fuji Film ARCH: Color Mosaic CG-7001) was applied on the substrate 100 by a spin coating method, and patterning was performed by a photolithographic method. Specifically, a line pattern having an area size of 80 ⁇ m ⁇ 300 ⁇ m and a film thickness of 2 ⁇ m was obtained.
  • the red color filter layer 210R the flattening layer 230, the red color conversion layer 240, the gas barrier layer 250, the transparent electrode 310, the organic EL layer 320, and the reflective electrode 330 are formed and sealed in the same manner as in the example.
  • the organic EL display of Comparative Example 1 was obtained.
  • Comparative Example 2 The organic EL display of Comparative Example 2 was a display of the type shown in FIG.
  • a glass substrate of 200 mm ⁇ 200 mm ⁇ 0.7 mm was prepared.
  • a dry etching method (C 4 F 8 : 16 msccm, CH 2 F 2 : 16 sccm, gas pressure 0.8 Pa, and power 2 kW) is used with a Cr film (film thickness 100 nm) first patterned at a predetermined pitch as a mask.
  • a substrate 100 was obtained in which the blue subpixel area and the green subpixel area on the color filter layer side of the substrate were formed in a conical irregularity having a depth of 0.6 ⁇ m and a pitch of 0.2 ⁇ m.
  • a light-shielding layer coating solution (CK8400L manufactured by Fuji Film ARCH) was applied to the entire surface by a spin coating method, and dried at 80 ° C. by heating. Thereafter, a pattern having a sub-pixel size (vertical direction of 80 ⁇ m ⁇ horizontal direction of 300 ⁇ m, thickness direction of 1 ⁇ m) was formed at a pitch of 330 ⁇ m by using a photolithography method, and the light shielding layer 220 was laminated on the substrate 100.
  • CK8400L manufactured by Fuji Film ARCH
  • the blue color filter layer 210B a blue color filter material (manufactured by Fuji Film ARCH: Color Mosaic CB-7001) was applied on the substrate 100 by spin coating, and patterning was performed by photolithography. Specifically, the substrate 100 formed into a conical unevenness with a depth of 0.6 ⁇ m and a pitch of 0.2 ⁇ m was traced. As a result, the substrate side of the blue color filter layer 210B has an area size of 80 ⁇ m ⁇ 300 ⁇ m and a thickness of 0.6 ⁇ m in depth, a pitch of 0.2 ⁇ m, and an average density of 0.88 pieces / ⁇ m 2 formed into a right cone shape. A 2 ⁇ m line pattern was obtained.
  • the green color filter layer 210G For the formation of the green color filter layer 210G, a green color filter material (manufactured by Fuji Film ARCH: Color Mosaic CG-7001) was applied on the substrate 100 by spin coating, and patterning was performed by photolithography. Specifically, the substrate 100 formed into a conical unevenness having a depth of 0.6 ⁇ m and a pitch of 0.2 ⁇ m was traced. As a result, the substrate side of the green color filter layer 210G is an area size of 80 ⁇ m ⁇ 300 ⁇ m formed in a right-cone-shaped unevenness with a depth of 0.6 ⁇ m, a pitch of 0.2 ⁇ m, and an average density of 0.88 / ⁇ m 2. A 2 ⁇ m line pattern was obtained.
  • the red color filter layer 210R the flattening layer 230, the red color conversion layer 240, the gas barrier layer 250, the transparent electrode 310, the organic EL layer 320, and the reflective electrode 330 are formed and sealed in the same manner as in the example.
  • the organic EL display of Comparative Example 2 was obtained.
  • Comparative Example 1 where the interface between the substrate 100 and the blue and green color filter layers 210B and 210G is not uneven, it was found that the change in the emission color of the screen depending on the observation angle was significant.
  • the organic EL displays of Examples 1 and 2 have a structure in which the unevenness density is adjusted for each of R, G, and B at the interface between the substrate and the color filter, so that the luminance and chromaticity are maintained. It has been found that the difference in directivity of light between G, B and B can be reduced.
  • the present invention has a predetermined shape at the interface between the substrate and the color filter or the flattening layer, thereby finely adjusting the difference in directivity of light between different-colored subpixels and increasing the change in emission color depending on the viewing angle. Can be prevented by level. Therefore, the present invention is promising in that it can provide various electronic devices such as a mobile phone having a display unit that does not change the emission color depending on the viewing angle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

An organic EL display has a substrate; a color conversion filter section including a planarized layer and at least one kind of color conversion layer; an organic EL element section having a plurality of luminescent sections, which define a plurality of sub-pixels; and an interface in the uneven form between the substrate and the planarized layer, wherein the uneven form has uneven density different for each of the sub-pixels. In such an arrangement, the top surface of the substrate has a predetermined form for each of the sub-pixels defined by the luminescent sections on the organic EL element section to make a fine adjustment of the directivity of light among different color sub-pixels, thereby preventing variation in the luminescent colors depending on viewing field angles at high levels.

Description

有機ELディスプレイおよびその製造方法Organic EL display and manufacturing method thereof
 本発明は、有機エレクトロルミネッセンスディスプレイ(以下、「有機ELディスプレイ」とも称する)に関する。より詳しくは、本発明の有機ELディスプレイは、有機EL素子部から外部へ出射される光が視野角によって異なる発光色を呈することのない、有機ELディスプレイに関する。本発明は、このような有機ELディスプレイの製造方法に関する。 The present invention relates to an organic electroluminescence display (hereinafter also referred to as “organic EL display”). More specifically, the organic EL display according to the present invention relates to an organic EL display in which light emitted from the organic EL element portion to the outside does not exhibit a different emission color depending on a viewing angle. The present invention relates to a method for manufacturing such an organic EL display.
 現在、液晶ディスプレイおよび有機ELディスプレイなどの表示装置が、携帯電話機、パーソナルコンピュータ、デジタル複写機、およびプリンタなどの電子機器の表示部として使用されている。 Currently, display devices such as liquid crystal displays and organic EL displays are used as display units for electronic devices such as mobile phones, personal computers, digital copiers, and printers.
 上記表示装置の発光形態には、自発光型と非発光型とがある。自発光型は、エレクトロルミネッセンス素子(EL素子)、フィールド・エミッション・ディスプレイ(FED)、およびブラウン管(CRT)などに適用される。これに対し、非発光型は、液晶表示素子などに適用される。 The light emitting form of the display device includes a self light emitting type and a non-light emitting type. The self-luminous type is applied to an electroluminescence element (EL element), a field emission display (FED), a cathode ray tube (CRT), and the like. On the other hand, the non-light emitting type is applied to a liquid crystal display element or the like.
 また、上記表示装置のカラー表示方式には、赤、緑、青の3原色の発光を実現した、マルチカラー方式またはフルカラー方式がある。これらの方式においては、発光素子の出光面と画像面との間にカラーフィルタ層を介在させる手段が多用される。当該手段によれば、発光素子からの特定波長光を選択的に出射し、3原色の発光の色純度をそれぞれ向上させて、画像表示を高品質とすることができる。 Also, the color display method of the display device includes a multi-color method or a full-color method that realizes light emission of three primary colors of red, green, and blue. In these systems, a means for interposing a color filter layer between the light exit surface of the light emitting element and the image surface is frequently used. According to this means, it is possible to selectively emit light of a specific wavelength from the light emitting element and improve the color purity of light emission of the three primary colors, thereby improving the image display quality.
 このような表示装置のうち、特に、有機ELディスプレイについては、以下の技術が提案されている。 Among such display devices, the following technologies have been proposed particularly for organic EL displays.
 特許文献1には、有機EL材料部と、有機EL材料部での発光を吸収し、可視光の蛍光を発光する蛍光材料部とを有する有機EL素子部が開示されている。この素子は、蛍光材料部に蛍光材料を含む色変換フィルタを備えることで、有機EL材料部での発光を、蛍光材料部で吸収して可視光域の蛍光を発光し、色変換方式を実現するものである。 Patent Document 1 discloses an organic EL element portion having an organic EL material portion and a fluorescent material portion that absorbs light emitted from the organic EL material portion and emits visible light fluorescence. This element is equipped with a color conversion filter containing a fluorescent material in the fluorescent material part, so that the light emitted from the organic EL material part is absorbed by the fluorescent material part to emit fluorescence in the visible light range, thereby realizing a color conversion method. To do.
 特許文献1に開示された技術では、有機EL素子部の発光色は白色に限定されない。このため、従来に比べて輝度の高い有機EL素子部を光源に適用でき、例えば、青色発光の有機EL素子部を用いた色変換方式によって、青色光を緑色光または赤色光に波長変換することができる。 In the technique disclosed in Patent Document 1, the light emission color of the organic EL element portion is not limited to white. For this reason, an organic EL element part having higher luminance than conventional ones can be applied as a light source. For example, blue light is wavelength-converted into green light or red light by a color conversion method using a blue light emitting organic EL element part. Can do.
 近年においては、特許文献1に開示されているような、蛍光材料色素を含む蛍光材料部を高精細にパターニングすることで、発光体の近紫外光から可視光の波長範囲の、弱いエネルギー線を用いた色変換方式フルカラーディスプレイが注目されている。 In recent years, a weak energy ray in the wavelength range of near-ultraviolet light to visible light of an illuminant is obtained by patterning a fluorescent material portion containing a fluorescent material dye with high definition as disclosed in Patent Document 1. The color conversion type full color display used is attracting attention.
 当該色変換方式に用いられる色変換層(上記蛍光材料部に相当)は、主にフォトレジストによるウェットプロセス、または蒸着法によるドライプロセスによって形成することができる。しかしながら、色変換層に用いる材料は耐熱性が低いことから、ウェットプロセスを採用した場合には、色変換層とフォトレジストとを完全に乾燥させることが困難である。このため、ウェットプロセスによれば、乾燥後に残留する水分が色変換層から有機EL層に移動して、有機EL層に、ダークエリアと称される非発光欠陥を発生するおそれがある。そこで、色変換層をウェットプロセスではなくドライプロセスによって形成することが盛んに行なわれており、例えば、以下の技術が提案されている。 The color conversion layer (corresponding to the fluorescent material part) used in the color conversion method can be formed mainly by a wet process using a photoresist or a dry process using a vapor deposition method. However, since the material used for the color conversion layer has low heat resistance, it is difficult to completely dry the color conversion layer and the photoresist when a wet process is employed. For this reason, according to the wet process, moisture remaining after drying may move from the color conversion layer to the organic EL layer, and a non-luminous defect called a dark area may occur in the organic EL layer. Therefore, the color conversion layer is actively formed not by a wet process but by a dry process. For example, the following techniques have been proposed.
 特許文献2には、基板上に、カラーフィルタ層、蛍光変換層(色変換層に相当)、バリア層、ホール注入電極、電子注入電極を有し、電極間に発光機能に関与する有機層を有し、カラーフィルタ層が蒸着法により形成されている有機EL表示装置が開示されている。特許文献2では、カラーフィルタ層のみならず、色変換層も蒸着法(ドライプロセス)で形成している。これは、色変換層が水分に弱く、しかも、上記ダークエリアの発生を抑制することが望まれるためである。ここで、色変換層をドライプロセスで形成するに際し、色変換層の下地となるカラーフィルタ層または平坦化層をウェットプロセスによって形成する場合には、これらを高温で完全に乾燥させた後に色変換層を形成することが望まれる。 In Patent Document 2, a color filter layer, a fluorescence conversion layer (corresponding to a color conversion layer), a barrier layer, a hole injection electrode, and an electron injection electrode are provided on a substrate, and an organic layer involved in a light emitting function is provided between the electrodes. An organic EL display device having a color filter layer formed by a vapor deposition method is disclosed. In Patent Document 2, not only the color filter layer but also the color conversion layer is formed by a vapor deposition method (dry process). This is because the color conversion layer is weak against moisture and it is desired to suppress the occurrence of the dark area. Here, when the color conversion layer is formed by a dry process and the color filter layer or the flattening layer that is the base of the color conversion layer is formed by a wet process, the color conversion is performed after these are completely dried at a high temperature. It is desirable to form a layer.
 このようなドライプロセスによる色変換層の形成においては、色変換層を平坦化層の上に、赤、緑、および青の各副画素に応じて選択的に形成することができる。平坦化層およびガラス基板の屈折率が約1.5であるのに対し、色変換層の屈折率が約2であることから、色変換層を形成した副画素は、色変換層を形成しない副画素比べて、光の指向性が低い。例えば、赤色の副画素のみに色変換層を形成する場合には、緑色の副画素および青色の副画素に対して赤色の副画素は、光の指向性が低くなる。 In the formation of the color conversion layer by such a dry process, the color conversion layer can be selectively formed on the flattening layer according to the red, green, and blue subpixels. Since the refractive index of the planarization layer and the glass substrate is about 1.5, whereas the refractive index of the color conversion layer is about 2, the sub-pixel formed with the color conversion layer does not form the color conversion layer. Compared with sub-pixels, light directivity is low. For example, when the color conversion layer is formed only on the red sub-pixel, the red sub-pixel has lower light directivity than the green sub-pixel and the blue sub-pixel.
 また、色変換層を複数種類形成する場合には、各色の色変換層間での屈折率が異なるため、色変換層を形成した副画素同士間においても、光の指向性に関する差異が生じる。例えば、赤色の副画素および緑色の副画素に色変換層を形成する場合には、これらの副画素間にも光の指向性に関する差異が生じる。 Further, when a plurality of types of color conversion layers are formed, the refractive index between the color conversion layers of the respective colors is different, so that there is a difference in the light directivity between the sub-pixels on which the color conversion layers are formed. For example, when a color conversion layer is formed on a red subpixel and a green subpixel, a difference regarding the directivity of light occurs between these subpixels.
 これらの理由により、ディスプレイから出射される赤、緑、青の各光にそれぞれ異なる指向性が生じる可能性があり、ディスプレイに対する視野角によっては、画面の発光色が異なるおそれがある。 For these reasons, red, green, and blue light emitted from the display may have different directivities, and the emission color of the screen may be different depending on the viewing angle with respect to the display.
 なお、副画素からの光取出量を増大させるには、平坦化層および/またはガラス基板の屈折率を小さくすることが肝要である。しかしながら、平坦化層等の屈折率を小さくした場合には、平坦化層等と色変換層との間の屈折率の差が大きくなる。このため、色変換層を形成した副画素と色変換層を形成しない副画素との間で、光の指向性の差がさらに大きくなり、視野角によって画面の発光色がさらに異なるおそれがある。 In order to increase the amount of light extracted from the sub-pixel, it is important to reduce the refractive index of the planarization layer and / or the glass substrate. However, when the refractive index of the flattening layer or the like is reduced, the difference in refractive index between the flattening layer or the like and the color conversion layer increases. For this reason, the difference in the directivity of light between the subpixel in which the color conversion layer is formed and the subpixel in which the color conversion layer is not formed is further increased, and the emission color of the screen may be further different depending on the viewing angle.
 このような事情に鑑み、ディスプレイに対する視野角による画面の発光色の変化を防止する手段として、以下の技術が開示されている。 In view of such circumstances, the following techniques have been disclosed as means for preventing a change in the emission color of the screen depending on the viewing angle with respect to the display.
 特許文献3には、基板上に、第1電極および第2電極に挟持された発光機能層を有する画素と、複数の上記画素からなる単位画素群を備え、上記単位画素群のうちの選択された画素には、上記発光機能層の発光光を散乱させる散乱部が設けられている有機エレクトロルミネッセンス装置が開示されている。 Patent Document 3 includes a pixel having a light emitting functional layer sandwiched between a first electrode and a second electrode on a substrate and a unit pixel group including a plurality of the pixels, and is selected from the unit pixel group. In addition, an organic electroluminescence device is disclosed in which each pixel is provided with a scattering portion that scatters light emitted from the light emitting functional layer.
 特許文献3に開示された技術では、青色副画素および緑色副画素の副画素だけに、凹凸による光拡散面を設け、視野角による発光色の変化を防止することができる、とされている。 In the technique disclosed in Patent Document 3, it is said that only a blue subpixel and a green subpixel can be provided with a light diffusing surface by unevenness to prevent a change in emission color due to a viewing angle.
特開2003-152897号公報Japanese Patent Laid-Open No. 2003-152897 特開2001-196175号公報JP 2001-196175 A 特開2007- 73219号公報JP 2007-73219 A
 しかしながら、特許文献3における上記凹凸は、青色副画素と緑色副画素とにおいて同じ寸法設計の下に形成されているため、異色の光を生ずる副画素間における光の指向性の差を微調整し、視野角による発光色の変化を高いレベルで防止することができない。 However, since the unevenness in Patent Document 3 is formed under the same dimensional design in the blue subpixel and the green subpixel, the difference in the directivity of light between subpixels that generate light of different colors is finely adjusted. Therefore, it is impossible to prevent a change in emission color due to the viewing angle at a high level.
 よって、視野角による発光色の変化への対策が種々検討されている。例えば、赤、緑、および青の各色変換層に用いる材料の変更が試みられている。しかしながら、色変換層に用いる材料の変更は、色変換層から出射される光の色純度および/または輝度に悪影響を及ぼすおそれがあるため、安易に行なうことはできない。 Therefore, various countermeasures against changes in emission color depending on the viewing angle have been studied. For example, attempts have been made to change the materials used for the red, green, and blue color conversion layers. However, the change of the material used for the color conversion layer cannot be easily performed because it may adversely affect the color purity and / or luminance of the light emitted from the color conversion layer.
 そこで、色変換層材料の変更を行なわずに、視野角による発光色の変化を解決することが望まれる。視野角による発光色の変化は、上述のとおり、色変換層によって出射される赤、緑、および青の光にそれぞれ異なった指向性が生ずることに起因する。具体的には、赤の指向性が小さい一方、緑および青の指向性が大きいことが原因である。よって、赤と、緑および青との間で、光の指向性の差を低減できれば、上記問題は解決される。 Therefore, it is desired to solve the change in emission color due to the viewing angle without changing the color conversion layer material. As described above, the change in the emission color depending on the viewing angle is caused by the occurrence of different directivities in the red, green, and blue light emitted by the color conversion layer. Specifically, the red directivity is small, while the green and blue directivities are large. Therefore, the above problem can be solved if the difference in directivity of light between red, green, and blue can be reduced.
 従って、本発明の目的は、色変換層から生じる各色の光について、その色純度および輝度等に悪影響を与えずに、各色の副画素間における光の指向性の差を低減し、視野角によって異なる発光色を呈することのない、有機ELディスプレイを提供することにある。また、本発明の目的は、当該有機ELディスプレイの製造方法を提供することにある。 Therefore, the object of the present invention is to reduce the difference in the directivity of light between the sub-pixels of each color without adversely affecting the color purity and brightness of the light of each color generated from the color conversion layer, and depending on the viewing angle. An object of the present invention is to provide an organic EL display that does not exhibit different emission colors. Moreover, the objective of this invention is providing the manufacturing method of the said organic EL display.
 本発明は、基板と、平坦化層および少なくとも1種の色変換層を含む色変換フィルタ部と、複数の発光部を有する有機EL素子部とを備え、上記複数の発光部により複数の副画素が規定され、上記基板と上記平坦化層との間に凹凸形状を持つ界面を有し、上記凹凸形状は、上記副画素ごとに、異なる凹凸密度を有する有機ELディスプレイに関する。本発明の有機ELディスプレイは、携帯電話機などの電子機器の表示部として使用することができる。 The present invention includes a substrate, a color conversion filter unit including a planarization layer and at least one color conversion layer, and an organic EL element unit having a plurality of light emitting units, and a plurality of subpixels by the plurality of light emitting units. And an interface having a concavo-convex shape between the substrate and the planarizing layer, and the concavo-convex shape relates to an organic EL display having a different concavo-convex density for each sub-pixel. The organic EL display of the present invention can be used as a display unit of an electronic device such as a mobile phone.
 また、本発明は、基板、ならびに平坦化層および少なくとも1種の色変換層を含む色変換フィルタ部を備える第1の積層体と、基体、および複数の発光部を有する有機EL素子部を備える第2の積層体とが貼り合わされ、上記複数の発光部により複数の副画素が規定され、上記基板と上記平坦化層との間に凹凸形状を持つ界面を有し、上記凹凸形状は、上記副画素ごとに、異なる凹凸密度を有する有機ELディスプレイを包含する。 The present invention also includes a substrate, a first laminate including a color conversion filter unit including a planarization layer and at least one color conversion layer, a base, and an organic EL element unit having a plurality of light emitting units. A plurality of sub-pixels are defined by the plurality of light emitting portions, an interface having a concavo-convex shape between the substrate and the planarization layer, and the concavo-convex shape is An organic EL display having different uneven density is included for each subpixel.
 このような有機ELディスプレイにおいては、上記基板と上記平坦化層との間に少なくとも1種のカラーフィルタ層を介在させることができる。この場合には、上記基板と上記カラーフィルタ層との界面が凹凸形状を有し、上記凹凸形状は、上記副画素ごとに、異なる凹凸密度を有する。 In such an organic EL display, at least one color filter layer can be interposed between the substrate and the planarizing layer. In this case, the interface between the substrate and the color filter layer has an uneven shape, and the uneven shape has a different uneven density for each sub-pixel.
 これらの有機ELディスプレイにおいては、上記凹凸形状を、少なくとも1つの周期を有し、副画素幅より小さな複数の凹部および凸部の配列形状とすることができる。また、上記凹凸形状を、上記副画素ごとに、異なる周期を有する形状とすることができる。 In these organic EL displays, the concavo-convex shape can be an array shape of a plurality of concave portions and convex portions having at least one period and smaller than the sub-pixel width. Moreover, the said uneven | corrugated shape can be made into the shape which has a different period for every said subpixel.
 本発明は、基板上に平坦化層および少なくとも1種の色変換層を含む色変換フィルタ部を形成する工程、ならびに上記色変換フィルタ部上に複数の発光部を有する有機EL素子部を形成する工程を含み、上記複数の発光部により複数の副画素が規定される有機ELディスプレイを製造するにあたり、上記平坦化層と接する基板面に凹凸形状を形成し、上記凹凸形状を、上記副画素ごとに、異なる凹凸密度に調整する有機ELディスプレイの製造方法を包含する。 The present invention provides a step of forming a color conversion filter portion including a planarization layer and at least one color conversion layer on a substrate, and an organic EL element portion having a plurality of light emitting portions on the color conversion filter portion. In manufacturing an organic EL display in which a plurality of sub-pixels are defined by the plurality of light emitting units, a concavo-convex shape is formed on a substrate surface in contact with the planarization layer, and the concavo-convex shape is formed for each sub-pixel. The manufacturing method of the organic electroluminescent display adjusted to different uneven | corrugated density is included.
 また、本発明は、基板上に平坦化層および少なくとも1種の色変換層を含む色変換フィルタ部を形成して第1の積層体を得る工程と、基体上に複数の発光部を有する有機EL素子部を形成して第2の積層体を得る工程と、上記第1の積層体と上記第2の積層体とを貼り合わせる工程とを含み、上記複数の発光部により複数の副画素が規定される有機ELディスプレイを製造するにあたり、上記平坦化層と接する基板面に凹凸形状を形成し、上記凹凸形状を、上記副画素ごとに、異なる凹凸密度に調整する有機ELディスプレイの製造方法を包含する。 The present invention also includes a step of forming a color conversion filter portion including a planarization layer and at least one color conversion layer on a substrate to obtain a first laminate, and an organic having a plurality of light emitting portions on a substrate. Including a step of forming an EL element portion to obtain a second stacked body, and a step of bonding the first stacked body and the second stacked body, wherein a plurality of sub-pixels are formed by the plurality of light emitting portions. In manufacturing an organic EL display as defined, an organic EL display manufacturing method is provided in which an uneven shape is formed on a substrate surface in contact with the planarization layer, and the uneven shape is adjusted to a different uneven density for each subpixel. Include.
 このような有機ELディスプレイの製造方法においては、上記基板と上記平坦化層との間に少なくとも1種のカラーフィルタ層を形成することができる。この場合には、上記カラーフィルタ層と接する基板面に凹凸形状を形成し、上記凹凸形状を、上記副画素ごとに、異なる凹凸密度に調整する。 In such an organic EL display manufacturing method, at least one color filter layer can be formed between the substrate and the planarization layer. In this case, an uneven shape is formed on the substrate surface in contact with the color filter layer, and the uneven shape is adjusted to a different uneven density for each sub-pixel.
 これらの有機ELディスプレイにおいては、上記凹凸形状を、少なくとも1つの周期に調整し、副画素幅より小さな複数の凹部および凸部の配列形状とすることができる。また、上記凹凸形状を、上記副画素ごとに、異なる周期に調整することができる。 In these organic EL displays, the concavo-convex shape can be adjusted to at least one cycle to form an array shape of a plurality of concave portions and convex portions smaller than the sub-pixel width. Moreover, the said uneven | corrugated shape can be adjusted to a different period for every said subpixel.
 本発明の有機ELディスプレイは、有機EL素子部の発光部により規定される副画素ごとに、基板表面を所定形状とすることで、別異の色の副画素間において光の指向性を微調整し、視野角による発光色の変化を高いレベルで防止することができる。 The organic EL display of the present invention finely adjusts the directivity of light between sub-pixels of different colors by forming the substrate surface into a predetermined shape for each sub-pixel defined by the light emitting unit of the organic EL element unit. In addition, it is possible to prevent a change in emission color due to the viewing angle at a high level.
図1は本発明の有機ELディスプレイを示す側方断面図である。FIG. 1 is a side sectional view showing an organic EL display of the present invention. 図2は本発明の有機ELディスプレイを示す側方断面図である。FIG. 2 is a side sectional view showing the organic EL display of the present invention. 図3は比較例1の有機ELディスプレイを示す側方断面図である。FIG. 3 is a side sectional view showing the organic EL display of Comparative Example 1. 図4は比較例2の有機ELディスプレイを示す側方断面図である。FIG. 4 is a side sectional view showing the organic EL display of Comparative Example 2.
符号の説明Explanation of symbols
100  基板
200  色変換フィルタ部
210  カラーフィルタ層
210R 赤色カラーフィルタ層
210G 緑色カラーフィルタ層
210B 青色カラーフィルタ層
220  遮光層
230  平坦化層
240  赤色変換層
250  ガスバリア層
300  有機EL素子部
310  透明電極
320  有機EL層
330  反射電極
400  基体
500  接着層
X    第1の積層体
Y    第2の積層体
DESCRIPTION OF SYMBOLS 100 Substrate 200 Color conversion filter part 210 Color filter layer 210R Red color filter layer 210G Green color filter layer 210B Blue color filter layer 220 Light-shielding layer 230 Flattening layer 240 Red conversion layer 250 Gas barrier layer 300 Organic EL element part 310 Transparent electrode 320 Organic EL layer 330 Reflective electrode 400 Base 500 Adhesive layer X First laminate Y Second laminate
 以下に、本発明の原理、ならびに本発明の有機ELディスプレイおよびその製造方法について説明する。 Hereinafter, the principle of the present invention, the organic EL display of the present invention, and the manufacturing method thereof will be described.
 <本発明の原理>
 本発明者は、有機ELディスプレイを見る角度によって発光色が変化する現象について鋭意検討した結果、この現象は、異色(R,G,B)の副画素間において光の指向性が異なることに起因することが判明した。そこで、本発明者は、これらの副画素間における光の指向性の差を低減することで、このような現象を回避できるとの結論に達した。
<Principle of the present invention>
As a result of intensive studies on the phenomenon in which the emission color changes depending on the angle at which the organic EL display is viewed, the present inventor results from the fact that the directivity of light differs among sub-pixels of different colors (R, G, B). Turned out to be. Therefore, the present inventor has reached a conclusion that such a phenomenon can be avoided by reducing the difference in the directivity of light between these sub-pixels.
 具体的には、基板とカラーフィルタ層または平坦化層との界面部分のうち有機EL素子部の発光部により規定される副画素領域において、異色の副画素ごとに異なる密度の凹凸部を形成し、この凹凸部に有機EL素子部から発せられるR,G,Bの光を通過させる。これにより、上記界面における各色の光の指向性を、光の散乱の原理によって独立に制御し、各色の光における指向性の差を低減して、有機ELディスプレイを見る角度によって発光色が変化する問題を解決できる。 Specifically, in the subpixel region defined by the light emitting portion of the organic EL element portion in the interface portion between the substrate and the color filter layer or the flattening layer, uneven portions having different densities are formed for different subpixels. The light of R, G, B emitted from the organic EL element part is allowed to pass through the uneven part. As a result, the directivity of light of each color at the interface is controlled independently by the principle of light scattering, the difference in directivity of light of each color is reduced, and the emission color changes depending on the angle at which the organic EL display is viewed. Can solve the problem.
 なお、本発明者は、当該手法によって作成した有機ELディスプレイについて、有機ELディスプレイを正面および斜め方向から観察するとともに、発光スペクトルの角度分布測定を行なった。その結果、各色の光における指向性の差の低減は、色度および輝度等の有機EL素子部の性能を維持したまま実現できるとの結論にも達した。 In addition, about this organic EL display created by the said method, this inventor observed the organic EL display from the front and the diagonal direction, and measured the angular distribution of the emission spectrum. As a result, it has been concluded that the reduction of the directivity difference in the light of each color can be realized while maintaining the performance of the organic EL element part such as chromaticity and luminance.
 <有機ELディスプレイおよびその製造方法>
 [有機ELディスプレイ(タイプ1)]
 以下に、本発明の実施形態を図1に基づいて詳細に説明する。なお、以下に示す例は、カラーフィルタ層を含む例であるが、本発明の単なる例示であって、当業者であれば、適宜設計変更することができる。即ち、カラーフィルタ層を含まない例についても以下の説明と同様に解釈することができる。
<Organic EL display and manufacturing method thereof>
[Organic EL display (Type 1)]
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG. In addition, although the example shown below is an example containing a color filter layer, it is a mere illustration of this invention, Comprising: Those skilled in the art can change a design suitably. That is, an example that does not include a color filter layer can be interpreted in the same manner as the following description.
 (全体の構成について)
 本発明の有機ELディスプレイ(ボトムエミッション型)は、図1に示すように、透明基板100、透明基板100の一方の面上に積層された色変換フィルタ部200、色変換フィルタ部200の入光面に出光面を対峙させた有機EL素子部300、および色変換フィルタ部200および有機EL素子部300を外気と遮断する(図示しない)封止材から構成される。
(About overall configuration)
As shown in FIG. 1, the organic EL display (bottom emission type) of the present invention includes a transparent substrate 100, a color conversion filter unit 200 laminated on one surface of the transparent substrate 100, and light incident on the color conversion filter unit 200. The organic EL element unit 300 having the light-emitting surface facing the surface, and a sealing material (not shown) that blocks the color conversion filter unit 200 and the organic EL element unit 300 from outside air.
 透明基板100は、その上に順次形成される有機ELディスプレイの各構成要素を支持するための層である。透明基板100は、光透過性に富み、かつ、カラーフィルタ層210(R,G,B)、遮光層220、および後述する赤色変換層240、ならびに有機EL素子部300(電極、有機発光層等)の形成に用いられる条件(溶媒、温度等)に耐え得るものを用いる。また、透明基板100は、後続の各形成工程において、度重なる各層の形成条件に曝されるため、寸法安定性に優れていることが好ましい。さらに、透明基板100としては、多色発光ディスプレイの発光性能の低下を引き起こさないものを用いることが肝要であり、例えば、ガラス、各種プラスチック、および各種フィルム等が挙げられる。 The transparent substrate 100 is a layer for supporting each component of the organic EL display sequentially formed thereon. The transparent substrate 100 is rich in light transmission, and the color filter layer 210 (R, G, B), the light shielding layer 220, a red conversion layer 240 described later, and the organic EL element unit 300 (electrode, organic light emitting layer, etc.) ) That can withstand the conditions (solvent, temperature, etc.) used in the formation of). In addition, the transparent substrate 100 is preferably excellent in dimensional stability because it is exposed to repeated formation conditions of each layer in each subsequent forming step. Further, it is important to use a transparent substrate 100 that does not cause a decrease in the light emission performance of the multicolor light emitting display, and examples thereof include glass, various plastics, and various films.
 色変換フィルタ部200は、透明基板100の一方の面上にストライプ状に形成された赤色(R)、緑色(G)および青色(B)の各カラーフィルタ層210R、210G、210Bからなるカラーフィルタ層210と、各カラーフィルタ層間の隙間を埋める遮光層220と、カラーフィルタ層210および遮光層220の上に形成された平坦化層230と、平坦化層230上に形成され、かつ赤色(R)カラーフィルタ層210Rに対応する位置に形成された赤色変換層240と、赤色変換層240を包み込むように平坦化層230上に形成されたガスバリア層250とから構成される。 The color conversion filter unit 200 is a color filter including red (R), green (G), and blue (B) color filter layers 210R, 210G, and 210B formed in a stripe shape on one surface of the transparent substrate 100. A layer 210, a light shielding layer 220 that fills the gaps between the color filter layers, a planarization layer 230 formed on the color filter layer 210 and the light shielding layer 220, a red color (R ) A red conversion layer 240 formed at a position corresponding to the color filter layer 210R, and a gas barrier layer 250 formed on the planarization layer 230 so as to wrap the red conversion layer 240.
 有機EL素子部300は、ガスバリア層250上に形成され、カラーフィルタ層210に対応する位置に形成された透明電極310と、ガスバリア層250上に形成され、かつ透明電極310を包み込むように形成された有機EL層320と、有機EL層320上に形成された反射電極330とから構成される。 The organic EL element unit 300 is formed on the gas barrier layer 250 and formed on the gas barrier layer 250 so as to wrap around the transparent electrode 310 formed at a position corresponding to the color filter layer 210. And an organic EL layer 320 and a reflective electrode 330 formed on the organic EL layer 320.
 (凹凸形状について)
 図1に示す例では、各色のカラーフィルタ層210R、210G、210Bから選択された少なくとも1色のカラーフィルタ層(図1に示す例では緑色カラーフィルタ層210Gおよび青色カラーフィルタ層210B)とそれらに接する透明基板100との界面が凹凸形状を有する。
(About uneven shape)
In the example shown in FIG. 1, at least one color filter layer (green color filter layer 210G and blue color filter layer 210B in the example shown in FIG. 1) selected from the color filter layers 210R, 210G, and 210B of each color, The interface with the transparent substrate 100 in contact has an uneven shape.
 緑色カラーフィルタ層210Gと透明基板100との界面(界面1)の凹凸形状、および青色カラーフィルタ層210Bと透明基板100との界面(界面2)の凹凸形状は、入射外光の界面での反射を抑制し、屈折による有機EL素子部300内への入射外光量を増強できる形状とする。また、当該凹凸形状は、有機EL素子部300からの出射光を画像面に十分に散乱して出射できる形状とする。 The uneven shape of the interface (interface 1) between the green color filter layer 210G and the transparent substrate 100 and the uneven shape of the interface (interface 2) between the blue color filter layer 210B and the transparent substrate 100 are reflected at the interface of incident external light. And a shape that can enhance the amount of light outside the incident to the organic EL element unit 300 due to refraction. The uneven shape is a shape that allows the emitted light from the organic EL element unit 300 to be sufficiently scattered and emitted to the image plane.
 界面1,2の凹凸形状は、谷の平均深さを0.4~0.625μmとする。ここで、谷の平均深さとは、図1の各カラーフィルタ層210(G,B)と透明基板100との各界面形状において、ある凸部の紙面鉛直方向位置と隣接する凹部の紙面鉛直方向位置との差を、各カラーフィルタ層210(G,B)の紙面水平方向の全領域において、代表的に一箇所計測したもの平均値を意味する。当該深さは、0.525~0.625μmであることが好ましい。 In the uneven shape of the interfaces 1 and 2, the average depth of the valley is 0.4 to 0.625 μm. Here, the average depth of the valley is the vertical direction of the paper surface of the concave portion adjacent to the position of the vertical direction of the paper surface in each interface shape between each color filter layer 210 (G, B) and the transparent substrate 100 in FIG. The difference from the position means an average value obtained by measuring one representative position in the entire horizontal region of each color filter layer 210 (G, B). The depth is preferably 0.525 to 0.625 μm.
 また、界面1,2の凹凸形状は、凹凸密度を0.83~1.99個/μm2とする。ここで、凹凸密度とは、同図の緑色カラーフィルタ層210Gまたは青色カラーフィルタ層210Bと透明基板100との界面形状における(図1の紙面水平方向×紙面垂直方向)1μm2当たりの凸部の個数を意味する。当該凹凸密度は、0.83~1.18個/μm2であることが好ましい。 The uneven shape of the interfaces 1 and 2 has an uneven density of 0.83 to 1.99 / μm 2 . Here, the uneven density is the number of protrusions per 1 μm 2 in the shape of the interface between the green color filter layer 210G or the blue color filter layer 210B and the transparent substrate 100 (horizontal direction in FIG. 1 × vertical direction in FIG. 1). It means number. The uneven density is preferably 0.83 to 1.18 / μm 2 .
 さらに、界面1,2の凹凸形状は、このような谷の平均深さおよび凹凸密度を有する、規則的なあるいは不規則な形状とすることができる。谷の平均深さまたは平均密度を過度に大きくしないことにより、入射外光の乱反射が過大となることを抑制し、発光面の輝度の損失を防止することができる。 Furthermore, the uneven shape of the interfaces 1 and 2 can be a regular or irregular shape having such an average depth of the valley and uneven density. By not excessively increasing the average depth or average density of the valleys, it is possible to suppress excessive irregular reflection of incident external light and to prevent luminance loss of the light emitting surface.
 このような凹凸形状は、副画素ごと(図1に示す例では緑色カラーフィルタ層210G、青色カラーフィルタ層210Bごと)に、異なる凹凸密度を有する。これは、散乱の原理に基づく光の指向性を利用することで、視野角による発光色の変化を高いレベルで防止するためである。具体的には、変化させる光の波長の1/2以上の周期で凹凸形状を定め、これにより凹凸密度を調整し、屈折率を副画素ごとに異ならせて各副画素から出射する光の指向性を調整する。ここで、凹凸形状の周期とは、図1に示す例では、各カラーフィルタ層210(G,B)における隣り合う凸部間の紙面水平方向距離をいう。例えば、界面1の凹凸形状の凹凸密度を0.83~0.91個/μm2とした場合に、界面2の凹凸形状の凹凸密度を1.01~1.18個/μm2とすることが好ましい。このように凹凸密度を副画素間で微調整することで、副画素間における光の指向性の差を低減し、視野角によって異なる発光色を呈することを十分に防止できる。 Such a concavo-convex shape has a different concavo-convex density for each sub-pixel (in the example shown in FIG. 1, for each of the green color filter layer 210G and the blue color filter layer 210B). This is to prevent a change in emission color due to the viewing angle at a high level by utilizing the directivity of light based on the principle of scattering. Specifically, the concave / convex shape is determined with a period of ½ or more of the wavelength of the light to be changed, thereby adjusting the concave / convex density, and changing the refractive index for each sub-pixel to direct the light emitted from each sub-pixel. Adjust gender. Here, in the example shown in FIG. 1, the period of the concavo-convex shape refers to a horizontal distance in the drawing between adjacent convex portions in each color filter layer 210 (G, B). For example, when the unevenness density of the uneven shape of the interface 1 is 0.83 to 0.91 piece / μm 2 , the uneven density of the uneven shape of the interface 2 is 1.01 to 1.18 piece / μm 2. Is preferred. By finely adjusting the unevenness density between the sub-pixels in this way, it is possible to reduce the difference in the directivity of light between the sub-pixels and to sufficiently prevent the emission color that varies depending on the viewing angle.
 ここで、副画素とは、図1に示すところでは、画素(図1の全体)のうち有機EL素子部の発光部に対応する部分、即ち、透明電極310の幅を持った部分を意味する。なお、図1に示す赤色カラーフィルタ層210Rと透明基板100との界面には凹凸が全く付されていないが、本発明では、このような界面における凹凸密度は0とし、当該界面も含めて、副画素ごとに異なる凹凸密度を有するものと解釈する。 Here, the sub-pixel means a part corresponding to the light emitting part of the organic EL element part, that is, a part having the width of the transparent electrode 310 in the pixel (the whole of FIG. 1) as shown in FIG. . In addition, although the unevenness | corrugation is not attached | subjected at all to the interface of the red color filter layer 210R and transparent substrate 100 shown in FIG. 1, in this invention, the uneven | corrugated density in such an interface is set to 0, and also includes the said interface, This is interpreted as having different uneven density for each sub-pixel.
 このような凹凸形状の具体例としては、少なくとも1つの周期を有し、副画素幅より小さな複数の凹部および凸部の配列形状とすることができる。また、界面1,2の凹凸形状の凹凸密度を異ならせる具体的手段としては、副画素ごと(界面1,2ごと)に、異なる周期の凹凸形状を付する手段が挙げられる。 As a specific example of such a concavo-convex shape, it can be an array shape of a plurality of concave portions and convex portions having at least one period and smaller than the sub-pixel width. Moreover, as a specific means for making the uneven density of the uneven shapes of the interfaces 1 and 2 different, there is a means for attaching uneven shapes having different periods to each sub-pixel (for each of the interfaces 1 and 2).
 界面1,2の凹凸形状の形成については、まずカラーフィルタ層210G、210Bのパターンに対応した透明基板100の面に凹凸を形成する。次いで、該パターン上に選択されたカラーフィルタ層210G、210Bを積層する。 Regarding the formation of the uneven shape of the interfaces 1 and 2, first, the unevenness is formed on the surface of the transparent substrate 100 corresponding to the pattern of the color filter layers 210G and 210B. Next, the selected color filter layers 210G and 210B are stacked on the pattern.
 透明基板100に凹凸を形成する方法としては、表面の粗面化処理に一般的に用いられる方法、例えば、レジストパターンをマスクに用いて化学剤、プラズマ等によりエッチングする方法を用いることができる。また、マスクと研磨剤を用いて表面を削る、たとえばサンドブラスト法、櫛歯を用いて表面を引っ掻く機械的な方法などを採用することもできる。 As a method of forming irregularities on the transparent substrate 100, a method generally used for surface roughening treatment, for example, a method of etching with a chemical agent, plasma or the like using a resist pattern as a mask can be used. Further, it is also possible to employ a sandblasting method, for example, a mechanical method of scratching the surface using comb teeth, or the like, using a mask and an abrasive.
 透明基板100としてガラス基板を用いた場合、サンドブラスト法により平均粒径が5μmの研磨材を用い、2~8秒間、好ましくは3~7.5秒間処理することにより、好適な凹凸をガラス基板面に形成することができる。処理時間を過度に長くしないことで、凹凸形状の凹凸均密度が過大となることを抑制し、処理表面の輝度が損なわれることを防止することができる。 When a glass substrate is used as the transparent substrate 100, a suitable irregularity is formed on the surface of the glass substrate by using an abrasive having an average particle size of 5 μm by sandblasting and treating for 2 to 8 seconds, preferably 3 to 7.5 seconds. Can be formed. By not excessively increasing the treatment time, it is possible to suppress the uneven density of the uneven shape from becoming excessive, and to prevent the brightness of the treatment surface from being impaired.
 なお、図1に示す例では、赤色カラーフィルタ層210Rと透明基板100との界面には凹凸形状を付していない。赤色カラーフィルタ層210Rについては、透明基板100上に公知の種々の方法により積層することができる。例えば、公知の赤色カラーフィルタ材料をスピンコート法によって塗布し、フォトリソグラフ法によりパターングを行うことによって形成することができる。 In the example illustrated in FIG. 1, the interface between the red color filter layer 210 </ b> R and the transparent substrate 100 is not provided with an uneven shape. The red color filter layer 210R can be laminated on the transparent substrate 100 by various known methods. For example, it can be formed by applying a known red color filter material by spin coating and performing patterning by photolithography.
 (有機ELディスプレイの構成要素について)
 以下、図1に示す有機ELディスプレイの各構成要素のうち、上述した基板100以外の要素について、詳細に説明する。
(About components of organic EL display)
Hereinafter, among the constituent elements of the organic EL display shown in FIG. 1, elements other than the above-described substrate 100 will be described in detail.
 カラーフィルタ層210
 カラーフィルタ層210は、該層に入射された入射光のうち、一定領域の波長を有することとなった光の色純度を、特定波長の遮断により向上させるための層である。カラーフィルタ層210(R,G,B)は、透明基板100上に、フラットパネルディスプレイ用の材料を用いて形成することができる。カラーフィルタ層210は、400~550nmの波長を透過する青色カラーフィルタ層、500~600nmの波長を透過する緑色カラーフィルタ層、および600nm以上の波長を透過する赤色カラーフィルタ層を配列した構造とすることができる。
Color filter layer 210
The color filter layer 210 is a layer for improving the color purity of light having a certain region of the incident light incident on the layer by blocking a specific wavelength. The color filter layer 210 (R, G, B) can be formed on the transparent substrate 100 using a material for a flat panel display. The color filter layer 210 has a structure in which a blue color filter layer that transmits a wavelength of 400 to 550 nm, a green color filter layer that transmits a wavelength of 500 to 600 nm, and a red color filter layer that transmits a wavelength of 600 nm or more are arranged. be able to.
 これらのカラーフィルタ層は、染料や顔料、好ましくは顔料を分散させた感光性樹脂層からなり、分散顔料として、アゾレーキ系、不溶性アゾ系、縮合アゾ系、フタロシアニン系、キナクリドン系、ジオキサジン系、イソインドリノン系、アントラキノン系、ベリノン系、チオイン系、ベリレン系、およびこれらの混合系等が好適に用いられる。 These color filter layers are composed of a photosensitive resin layer in which a dye or pigment, preferably a pigment is dispersed. As the dispersed pigment, azo lake, insoluble azo, condensed azo, phthalocyanine, quinacridone, dioxazine, Indolinone, anthraquinone, berylone, thioin, berylene, and mixtures thereof are preferably used.
 カラーフィルタ層210は、赤色(R)、緑色(G)および青色(B)の繰返しからなるストライプ状のパターンを有し、各パターンは60~100μmのパターン幅、70~90μmのパターン間隔で透明基板100の一方の面上に設けられている。カラーフィルタ層210の形成方法としては、塗布法を用いることができ、特に、フォトプロセスを用いることが好ましい。 The color filter layer 210 has a stripe pattern composed of red (R), green (G), and blue (B) repetitions. Each pattern is transparent with a pattern width of 60 to 100 μm and a pattern interval of 70 to 90 μm. It is provided on one surface of the substrate 100. As a method for forming the color filter layer 210, a coating method can be used, and it is particularly preferable to use a photo process.
 遮光層220
 遮光層220は、各カラーフィルタ層間に可視域を透過させないことで、コントラストの向上を図ることを目的として形成する。遮光層220は、通常のフラットパネルディスプレイ用の材料を用いて形成する。遮光層220の形成方法としては、塗布法を用いることができ、特に、フォトプロセスを用いることが好ましい。
Light shielding layer 220
The light shielding layer 220 is formed for the purpose of improving the contrast by preventing the visible region from being transmitted between the color filter layers. The light shielding layer 220 is formed using a material for a normal flat panel display. As a method for forming the light shielding layer 220, a coating method can be used, and it is particularly preferable to use a photo process.
 平坦化層230
 平坦化層230は、カラーフィルタ層210(R,G,B)を保護する目的で形成される層である。また、平坦化層230は、カラーフィルタ層210および遮光層220により生じた段差が、これらの層210,220より上方に形成される各層の寸法精度に悪影響を与えないようにするために形成される層である。このため、平坦化層230は、光透過性に富み、かつ、カラーフィルタ層210(R,G,B)を劣化させることのない材料およびプロセスを選択して形成する必要がある。
Planarization layer 230
The planarization layer 230 is a layer formed for the purpose of protecting the color filter layer 210 (R, G, B). Further, the planarizing layer 230 is formed so that a step generated by the color filter layer 210 and the light shielding layer 220 does not adversely affect the dimensional accuracy of each layer formed above the layers 210 and 220. Layer. For this reason, the planarization layer 230 needs to be formed by selecting a material and a process that are rich in light transmittance and do not deteriorate the color filter layer 210 (R, G, B).
 平坦化層230に適用可能な材料としては、光硬化性または光熱併用型硬化性樹脂を、光および/または熱処理して、ラジカル種、イオン種を発生させて重合または架橋させ、不溶不融化させたものが一般的である。また、光硬化性または光熱併用型硬化性樹脂は、パターニングを行うために、硬化をする前は有機溶媒またはアルカリ溶液に可溶性であることが好ましい。 As a material applicable to the planarization layer 230, a photocurable or photothermal combination type curable resin is subjected to light and / or heat treatment to generate radical species and ionic species to be polymerized or crosslinked to be insoluble and infusible. Is common. In addition, the photocurable or photothermal combination type curable resin is preferably soluble in an organic solvent or an alkaline solution before curing in order to perform patterning.
 具体的に、光硬化性または光熱併用型硬化性樹脂としては、
 (1)アクロイル基、メタクロイル基を複数有するアクリル系多官能モノマーまたはオリゴマーと、光または熱重合開始剤とからなる組成物膜を、光または熱処理して、光ラジカルまたは熱ラジカルを発生させて重合させたもの、
 (2)ポリビニル桂皮酸エステルと増感剤とからなる組成物を、光または熱処理により二量化させて架橋したもの、
 (3)鎖状または環状オレフィンとビスアジドとからなる組成物膜を、光または熱処理によりナイトレンを発生させて、オレフィンと架橋させたもの、ならびに
 (4)エポキシ基を有するモノマーと光酸発生剤からなる組成物膜とを、光または熱処理により酸(カチオン)を発生させて重合させたもの
などが挙げられる。
Specifically, as photocurable or photothermal combination type curable resin,
(1) A composition film composed of an acrylic polyfunctional monomer or oligomer having a plurality of acroyl groups and methacryloyl groups, and light or a thermal polymerization initiator is subjected to light or heat treatment to generate photo radicals or heat radicals for polymerization. What
(2) A composition comprising a polyvinyl cinnamate ester and a sensitizer, which is dimerized by light or heat treatment and crosslinked.
(3) A composition film composed of a chain or cyclic olefin and a bisazide generated by nitrene generation by light or heat treatment to be crosslinked with the olefin, and (4) a monomer having an epoxy group and a photoacid generator And a composition film obtained by polymerizing an acid (cation) by light or heat treatment.
 特に上記(1)の光硬化性または光熱併用型硬化性樹脂を用いた場合には、フォトプロセスのため、パターニングが可能であり、耐溶剤性、耐熱性等の信頼性の面でも好ましい。 In particular, when the photocurable or photothermal combination curable resin (1) is used, patterning is possible because of a photo process, which is also preferable in terms of reliability such as solvent resistance and heat resistance.
 その他の、光硬化性または光熱併用型硬化性樹脂としては、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエーテルサルホン、ポリビニルブチラール、ポリフェニレンエーテル、ポリアミド、ポリエーテルイミド、ノルボルネン系樹脂、メタクリル樹脂、イソブチレン無水マレイン酸共重合樹脂、環状オレフィン系等の熱可塑性樹脂、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、アクリル樹脂、ビニルエステル樹脂、イミド系樹脂、ウレタン系樹脂、ユリア樹脂、メラミン樹脂等の熱硬化性樹脂、あるいはポリスチレン、ポリアクリロニトリル、ポリカーボネート等と3官能性、あるいは4官能性のアルコキシシランを含むポリマーハイブリッド等が挙げられる。 Other photocurable or photothermal combination type curable resins include polycarbonate (PC), polyethylene terephthalate (PET), polyethersulfone, polyvinyl butyral, polyphenylene ether, polyamide, polyetherimide, norbornene resin, and methacrylic resin. , Isobutylene maleic anhydride copolymer resin, cyclic olefin thermoplastic resin, epoxy resin, phenol resin, urethane resin, acrylic resin, vinyl ester resin, imide resin, urethane resin, urea resin, melamine resin, etc. Examples thereof include a curable resin, or a polymer hybrid containing a trifunctional or tetrafunctional alkoxysilane with polystyrene, polyacrylonitrile, polycarbonate, or the like.
 平坦化層230の形成方法としては、塗布法を用いることができ、特に、フォトプロセスを用いることが好ましい。 As a method for forming the planarization layer 230, a coating method can be used, and it is particularly preferable to use a photo process.
 なお、図1は、カラーフィルタ層210を含む例であるが、カラーフィルタ層210を全く含まない場合には、透明基板100と平坦化層230との界面に凹凸形状を形成する。この場合にも、塗布法を用いることができ、特に、フォトプロセスを用いることが好ましい。 Note that FIG. 1 is an example including the color filter layer 210, but when the color filter layer 210 is not included at all, an uneven shape is formed at the interface between the transparent substrate 100 and the planarization layer 230. Also in this case, a coating method can be used, and it is particularly preferable to use a photo process.
 赤色変換層240
 色変換層は、波長が近紫外領域ないし可視領域にある入射光を蛍光色素に吸収させ、入射光とは波長が異なる可視光領域にある蛍光を発光させる機能を有する蛍光色素を分散させた感光性樹脂層からなる。図1に示す例では、赤色変換層、緑色変換層、および青色変換層のうち、赤色変換層240のみを用いる。
Red conversion layer 240
The color conversion layer is a photosensitive material in which a fluorescent dye having a function of causing the fluorescent dye to absorb incident light having a wavelength in the near ultraviolet region or visible region and emitting fluorescent light in a visible light region having a wavelength different from that of the incident light is dispersed. It consists of a functional resin layer. In the example shown in FIG. 1, only the red color conversion layer 240 is used among the red color conversion layer, the green color conversion layer, and the blue color conversion layer.
 有機EL素子部300で発光された青色ないし青緑色領域の光を吸収し、赤色領域の蛍光を発光させる赤色変換層240に用いられる蛍光色素としては、例えば、ローダミンB、ローダミン6G、ローダミン3B、ローダミン101、ローダミン110、スルホローダミン、ベーシックバイオレット11、ベーシックレッド2などのローダミン系色素、シアニン系色素、1-エチル-2-[4-(p-ジメチルアミノフェニル)-1,3-ブタジエニル]-ピリジニウムパークロレート(ピリジン1)などのピリジン系色素、およびオキサジン系色素が挙げられる。また、直接染料、酸性染料、塩基性染料、分散染料などの各種染料も蛍光性を示すものであれば使用することができる。 Examples of the fluorescent dye used in the red conversion layer 240 that absorbs light in the blue or blue-green region emitted from the organic EL element unit 300 and emits fluorescence in the red region include, for example, rhodamine B, rhodamine 6G, rhodamine 3B, Rhodamine 101, rhodamine 110, sulforhodamine, basic violet 11, basic red 2 and other rhodamine dyes, cyanine dyes, 1-ethyl-2- [4- (p-dimethylaminophenyl) -1,3-butadienyl]- Examples thereof include pyridine dyes such as pyridinium perchlorate (pyridine 1), and oxazine dyes. Various dyes such as direct dyes, acid dyes, basic dyes, and disperse dyes can be used as long as they exhibit fluorescence.
 図1に示す例では使用しないが、有機EL素子部300で発光された青色ないし青緑色領域の光を吸収し、緑色領域の蛍光を発光させる緑色変換層に用いられる蛍光色素としては、例えば、3-(2´-ベンゾチアゾリル)-7-ジエチルアミノ-クマリン(クマリン6)、3-(2´-ベンゾイミダゾリル)-7-ジエチルアミノ-クマリン(クマリン7)、3-(2´-N-ベンゾイミダゾリル)-7-ジエチルアミノ-クマリン(クマリン30)、2,3,5,6-1H,4H-テトラヒドロ-8-トリフルオロメチルキノリジン(9,9a,1-gh)クマリン(クマリン153)などのクマリン系色素、ベーシックイエロー51などのクマリン系染料、ソルベントイエロー11、ソルベントイエロー116などのフタルイミド系色素などが挙げられる。また、直接染料、酸性染料、塩基性染料、分散染料などの各種染料も蛍光性を示すものであれば使用することができる。 Although not used in the example shown in FIG. 1, as a fluorescent dye used for a green conversion layer that absorbs light in a blue to blue-green region emitted from the organic EL element unit 300 and emits fluorescence in a green region, for example, 3- (2'-benzothiazolyl) -7-diethylamino-coumarin (coumarin 6), 3- (2'-benzoimidazolyl) -7-diethylamino-coumarin (coumarin 7), 3- (2'-N-benzoimidazolyl) -7 A coumarin dye such as diethylamino-coumarin (coumarin 30), 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9,9a, 1-gh) coumarin (coumarin 153), Coumarin dyes such as Basic Yellow 51, phthalimide colors such as Solvent Yellow 11 and Solvent Yellow 116 And the like. Various dyes such as direct dyes, acid dyes, basic dyes, and disperse dyes can be used as long as they exhibit fluorescence.
 青色変換層は、有機EL素子部300で発光した光が青色カラーフィルタ層210Bで選択される波長領域とほぼ同一の波長領域を有することから、通常省略され、図1に示す例においても用いない。なお、青色変換層を省略する代わりに、透明な感光性樹脂層をダミーとして形成することができる。 The blue conversion layer is usually omitted because the light emitted from the organic EL element unit 300 has substantially the same wavelength region as the wavelength region selected by the blue color filter layer 210B, and is not used in the example shown in FIG. . Instead of omitting the blue conversion layer, a transparent photosensitive resin layer can be formed as a dummy.
 色変換層(図1に示す例では赤色変換層240)は、各種ドライプロセスによって形成することができ、真空蒸着法によって形成することが有機材料を分解させずに形成できるため好ましい。真空蒸着法の加熱方式としては、直接加熱法または間接加熱法のいずれを用いることもでき、具体的には、抵抗加熱、電子ビーム加熱、または赤外線加熱等を用いることができる。複数種の色変換色素を用いて色変換層を形成する場合には、複数種の色変換色素を所定の比率で混合した予備混合物を予め作製し、この予備混合物を用いて共蒸着を行うことができる。また、複数種の色変換色素を別個の加熱部位に配置し、各色変換色素を別個に加熱して共蒸着を行うこともできる。特に、複数種の色変換色素において、蒸着速度および/または蒸気圧などの特性が大きく異なる場合には、後者の方法を用いることが有利である。 The color conversion layer (red conversion layer 240 in the example shown in FIG. 1) can be formed by various dry processes, and is preferably formed by vacuum deposition because it can be formed without decomposing the organic material. As a heating method of the vacuum evaporation method, either a direct heating method or an indirect heating method can be used, and specifically, resistance heating, electron beam heating, infrared heating, or the like can be used. When forming a color conversion layer using a plurality of types of color conversion dyes, a preliminary mixture prepared by mixing a plurality of types of color conversion dyes in a predetermined ratio is prepared in advance, and co-evaporation is performed using the preliminary mixture. Can do. It is also possible to perform co-evaporation by arranging a plurality of types of color conversion dyes in separate heating sites and heating each color conversion dye separately. In particular, in the case of a plurality of types of color conversion dyes, when the characteristics such as vapor deposition rate and / or vapor pressure are greatly different, it is advantageous to use the latter method.
 色変換層(図1に示す例では赤色変換層240)の膜厚は、1μm以下とすることが色変換層の機能を発揮させることができる点で好ましく、200nm~1μmとすることが色変換層を有効に利用することができる点でより好ましい。 The film thickness of the color conversion layer (red conversion layer 240 in the example shown in FIG. 1) is preferably 1 μm or less from the viewpoint of exhibiting the function of the color conversion layer, and is preferably 200 nm to 1 μm. It is more preferable at the point which can utilize a layer effectively.
 ガスバリア層250
 ガスバリア層250は、外部から色変換層(同図に示す場合においては、赤色変換層240)に、水分および/または酸素が侵入することを防止するために形成される層である。これは、色変換色素は有機物であるから、水分・酸素に弱いためである。
Gas barrier layer 250
The gas barrier layer 250 is a layer formed to prevent moisture and / or oxygen from entering the color conversion layer (the red conversion layer 240 in the case shown in the figure) from the outside. This is because the color conversion dye is an organic substance and thus is vulnerable to moisture and oxygen.
 ここで、ガスバリア層250の形成目的は、赤色変換層240の保護であるが、図1に示す例では、赤色変換層240のみならず、平坦化層230をも保護することとなる。なお、この構造は、色変換フィルタ部200からの水分を出さないためにも必要なため、後述する有機EL層320の保護にも有効である。 Here, the purpose of forming the gas barrier layer 250 is to protect the red color conversion layer 240, but in the example shown in FIG. 1, not only the red color conversion layer 240 but also the planarization layer 230 is protected. This structure is also effective for protecting the organic EL layer 320, which will be described later, since it is necessary to prevent moisture from being emitted from the color conversion filter unit 200.
 ガスバリア層250に適用可能な材料としては、電気絶縁性を有し、かつ、ガスおよび有機溶剤に対するバリア性を有する、可視域での透明性が高い材料(400~700nmの範囲での透過率が50%以上)を用いることができる。また、ガスバリア層250上に形成される、後述の透明電極310等の形成に耐え得る硬度である、好ましくは2H以上の膜硬度(鉛筆硬度)を有する材料を用いることが好ましい。なお、この膜硬度(鉛筆硬度)は、JIS K5600-5-4に準拠したものである。具体的なガスバリア層250としては、例えば、SiOx、SiNx、SiNxOy、AlOx、TiOx、TaOx、ZnOx等の無機酸化物、または無機窒化物等を使用することができる。 As a material applicable to the gas barrier layer 250, a material having electrical insulating properties and a barrier property against a gas and an organic solvent and having high transparency in the visible region (transmittance in a range of 400 to 700 nm). 50% or more) can be used. Further, it is preferable to use a material having a film hardness (pencil hardness) of 2H or more, which is a hardness that can withstand the formation of a transparent electrode 310 and the like, which will be described later, formed on the gas barrier layer 250. The film hardness (pencil hardness) conforms to JIS K5600-5-4. As the specific gas barrier layer 250, for example, an inorganic oxide such as SiOx, SiNx, SiNxOy, AlOx, TiOx, TaOx, ZnOx, or an inorganic nitride can be used.
 ガスバリア層250の形成方法としては、特に制約はなく、スパッタ法、CVD法、または真空蒸着法等を使用することができる。また、ガスバリア層250は、単層とすることは勿論、複数の層からなる積層体とすることもできる。以上により、透明基板100上に色変換フィルタ部200が形成される。 The formation method of the gas barrier layer 250 is not particularly limited, and a sputtering method, a CVD method, a vacuum deposition method, or the like can be used. In addition, the gas barrier layer 250 can be a single layer or a laminate including a plurality of layers. As a result, the color conversion filter unit 200 is formed on the transparent substrate 100.
 透明電極310
 透明電極310に適用可能な材料としては、ITO、酸化スズ、酸化インジウム、IZO、酸化亜鉛、亜鉛-アルミニウム酸化物、亜鉛-ガリウム酸化物、またはこれらの酸化物にFもしくはSbなどのドーパントを添加した導電性透明金属酸化物を用いることができる。また、透明電極310は、蒸着法、スパッタ法または化学気相堆積(CVD)法を用いて形成した後に、フォトリソグラフ法等を用いてパターニングすることにより得ることができる。このような形成法の中でも、特にスパッタ法を用いることが、好ましい。
Transparent electrode 310
Materials applicable to the transparent electrode 310 include ITO, tin oxide, indium oxide, IZO, zinc oxide, zinc-aluminum oxide, zinc-gallium oxide, or a dopant such as F or Sb added to these oxides. Conductive transparent metal oxides can be used. The transparent electrode 310 can be obtained by forming using a vapor deposition method, a sputtering method, or a chemical vapor deposition (CVD) method and then patterning using a photolithographic method or the like. Among such formation methods, it is particularly preferable to use a sputtering method.
 透明電極310は、陽極、陰極のいずれとすることもできる。透明電極310を陰極として使用する場合には、透明電極310と有機EL層320との間に図示しない陰極バッファ層を形成し、有機EL層320に対する電子注入効率を向上させることが好ましい。陰極バッファ層に適用可能な材料としては、Li、Na、KもしくはCsなどのアルカリ金属、BaもしくはSrなどのアルカリ土類金属、これらを含む合金、希土類金属、またはこれら金属のフッ化物などを用いることができる。陰極バッファ層の膜厚は、透明性を確保する観点から、10nm以下とすることが好ましい。これに対し、透明電極310を陽極として使用する場合には、透明電極310と有機EL層320との間に、導電性透明金属酸化物の層を設けて有機EL層320に対する正孔注入効率を向上させることが好ましい。導電性透明金属酸化物として適用可能な材料としては、ITO、酸化スズ、酸化インジウム、IZO、酸化亜鉛、亜鉛-アルミニウム酸化物、亜鉛-ガリウム酸化物、またはこれらの酸化物にFもしくはSbなどのドーパントを添加した材料を用いることができる。 The transparent electrode 310 can be either an anode or a cathode. When the transparent electrode 310 is used as a cathode, it is preferable to form a cathode buffer layer (not shown) between the transparent electrode 310 and the organic EL layer 320 to improve the electron injection efficiency for the organic EL layer 320. As a material applicable to the cathode buffer layer, an alkali metal such as Li, Na, K or Cs, an alkaline earth metal such as Ba or Sr, an alloy containing them, a rare earth metal, or a fluoride of these metals is used. be able to. The thickness of the cathode buffer layer is preferably 10 nm or less from the viewpoint of ensuring transparency. On the other hand, when the transparent electrode 310 is used as an anode, a conductive transparent metal oxide layer is provided between the transparent electrode 310 and the organic EL layer 320 to increase the hole injection efficiency for the organic EL layer 320. It is preferable to improve. Examples of materials applicable as the conductive transparent metal oxide include ITO, tin oxide, indium oxide, IZO, zinc oxide, zinc-aluminum oxide, zinc-gallium oxide, and oxides such as F or Sb. A material to which a dopant is added can be used.
 有機EL層320
 有機EL層320は、少なくとも有機発光層を含み、必要に応じて正孔注入層、正孔輸送層、電子輸送層および/または電子注入層を介在させた構造を有する。具体的な有機EL素子部の層構造としては、下記の構造を採用することができる。 
 (1)陽極/有機発光層/陰極 
 (2)陽極/正孔注入層/有機発光層/陰極 
 (3)陽極/有機発光層/電子注入層/陰極 
 (4)陽極/正孔注入層/有機発光層/電子注入層/陰極 
 (5)陽極/正孔輸送層/有機発光層/電子注入層/陰極 
 (6)陽極/正孔注入層/正孔輸送層/有機発光層/電子注入層/陰極 
 (7)陽極/正孔注入層/正孔輸送層/有機発光層/電子輸送層/電子注入層/陰極 
 なお、上記(1)~(7)の層構造中、陽極および陰極は、透明電極310および反射電極330のいずれかである。
Organic EL layer 320
The organic EL layer 320 includes at least an organic light emitting layer, and has a structure in which a hole injection layer, a hole transport layer, an electron transport layer and / or an electron injection layer are interposed as required. As a specific layer structure of the organic EL element portion, the following structure can be adopted.
(1) Anode / organic light emitting layer / cathode
(2) Anode / hole injection layer / organic light emitting layer / cathode
(3) Anode / organic light emitting layer / electron injection layer / cathode
(4) Anode / hole injection layer / organic light emitting layer / electron injection layer / cathode
(5) Anode / hole transport layer / organic light emitting layer / electron injection layer / cathode
(6) Anode / hole injection layer / hole transport layer / organic light emitting layer / electron injection layer / cathode
(7) Anode / hole injection layer / hole transport layer / organic light emitting layer / electron transport layer / electron injection layer / cathode
In the layer structures (1) to (7), the anode and the cathode are either the transparent electrode 310 or the reflective electrode 330.
 有機EL層320を構成する各層の材料としては、公知のものを使用することができる。また、有機EL層320を構成する各層は、蒸着法などの当該技術において公知の任意の方法を用いて形成することができる。 As a material of each layer constituting the organic EL layer 320, a known material can be used. Moreover, each layer which comprises the organic EL layer 320 can be formed using arbitrary methods well-known in the said techniques, such as a vapor deposition method.
 図1に示すような赤色変換層240を用いる場合には、有機EL層320が青色から青緑色の発光を実現することが肝要である。青色から青緑色の発光を得るための有機発光層に適用可能な材料としては、例えばベンゾチアゾール系、ベンゾイミダゾール系、もしくはベンゾオキサゾール系などの蛍光増白剤、金属キレート化オキソニウム化合物、スチリルベンゼン系化合物、または芳香族ジメチリディン系化合物などを用いることが好ましい。また、図1に示す例においては、有機発光層の発光は、必要に応じて白色光とすることもできるが、この場合には、公知の赤色ドーパントを使用することが肝要である。 In the case of using the red conversion layer 240 as shown in FIG. 1, it is important that the organic EL layer 320 realizes light emission from blue to blue-green. Examples of materials applicable to the organic light emitting layer for obtaining blue to blue-green light emission include fluorescent brighteners such as benzothiazole, benzimidazole, or benzoxazole, metal chelated oxonium compounds, and styrylbenzene. It is preferable to use a compound or an aromatic dimethylidin compound. In the example shown in FIG. 1, the light emission of the organic light emitting layer can be white light as necessary. In this case, it is important to use a known red dopant.
 これに対し、図1には示していないが、色変換層として緑色変換層を使用する場合には、有機発光層の発光を青色から赤色の発光とすることが肝要である。 On the other hand, although not shown in FIG. 1, when a green conversion layer is used as the color conversion layer, it is important that the light emission of the organic light emitting layer is changed from blue to red.
 反射電極330
 反射電極330に適用可能な材料としては、高反射率の金属、高反射率のアモルファス合金、または高反射率の微結晶性合金を用いることが好ましい。高反射率の金属としては、例えば、Al、Ag、Mo、W、Ni、またはCrが挙げられる。高反射率のアモルファス合金としては、例えば、NiP、NiB、CrPまたはCrBが挙げられる。高反射率の微結晶性合金としては、例えば、NiAlが挙げられる。
Reflective electrode 330
As a material applicable to the reflective electrode 330, it is preferable to use a metal with high reflectivity, an amorphous alloy with high reflectivity, or a microcrystalline alloy with high reflectivity. Examples of the highly reflective metal include Al, Ag, Mo, W, Ni, and Cr. Examples of the highly reflective amorphous alloy include NiP, NiB, CrP, and CrB. An example of the highly reflective microcrystalline alloy is NiAl.
 反射電極330は、陰極、陽極のいずれとすることもできる。反射電極330を陰極として使用する場合には、反射電極330と有機EL層320との間に図示しない陰極バッファ層を形成し、有機EL層320に対する電子注入効率を向上させることが好ましい。あるいはまた、上述の高反射率特性を有する、金属、アモルファス合金または微結晶性合金に対して仕事関数が小さい材料、即ちリチウム、ナトリウムもしくはカリウム等のアルカリ金属、またはカルシウム、マグネシウムもしくはストロンチウムなどのアルカリ土類金属を添加して合金化し、電子注入効率を向上させることも好ましい。これに対し、反射電極330を陽極として使用する場合には、反射電極330と有機EL層320との間に、導電性透明金属酸化物の層を設けて有機EL層320に対する正孔注入効率を向上させることが好ましい。導電性透明金属酸化物として適用可能な材料としては、ITO、酸化スズ、酸化インジウム、IZO、酸化亜鉛、亜鉛-アルミニウム酸化物、亜鉛-ガリウム酸化物、またはこれらの酸化物にFもしくはSbなどのドーパントを添加した材料を用いることができる。 The reflective electrode 330 can be either a cathode or an anode. When the reflective electrode 330 is used as a cathode, it is preferable to form a cathode buffer layer (not shown) between the reflective electrode 330 and the organic EL layer 320 to improve the electron injection efficiency for the organic EL layer 320. Alternatively, a material having a high reflectivity characteristic as described above and having a low work function relative to a metal, an amorphous alloy or a microcrystalline alloy, ie, an alkali metal such as lithium, sodium or potassium, or an alkali such as calcium, magnesium or strontium It is also preferable to add an earth metal and alloy it to improve the electron injection efficiency. On the other hand, when the reflective electrode 330 is used as an anode, a conductive transparent metal oxide layer is provided between the reflective electrode 330 and the organic EL layer 320 to increase the hole injection efficiency for the organic EL layer 320. It is preferable to improve. Examples of materials applicable as the conductive transparent metal oxide include ITO, tin oxide, indium oxide, IZO, zinc oxide, zinc-aluminum oxide, zinc-gallium oxide, and oxides such as F or Sb. A material to which a dopant is added can be used.
 反射電極330の形成方法としては、用いる材料に依存して、真空蒸着、スパッタ、イオンプレーティング、またはレーザーアブレーションなどの当該技術分野において公知の任意の手段を用いることができる。なお、図1に示す例とは異なり、複数の部分電極からなる反射電極330が必要となる場合には、所望の形状を付与するマスクを用いて複数の部分電極からなる反射電極330を形成することもできる。 As a method for forming the reflective electrode 330, any means known in the technical field such as vacuum deposition, sputtering, ion plating, or laser ablation can be used depending on the material to be used. Unlike the example shown in FIG. 1, when the reflective electrode 330 made up of a plurality of partial electrodes is required, the reflective electrode 330 made up of the plurality of partial electrodes is formed using a mask that gives a desired shape. You can also.
 図1に示す例では、反射電極330は、透明電極310のパターンと交差するストライプ状のパターンを有し、この交差領域が発光副画素を形成する。 In the example shown in FIG. 1, the reflective electrode 330 has a striped pattern that intersects the pattern of the transparent electrode 310, and this intersecting region forms a light emitting subpixel.
 なお、以上のようにして得られた有機ELディスプレイは、グローブボックス内の乾燥窒素雰囲気(O2濃度およびH2O濃度がともに10ppm以下の雰囲気)下において、図示しない封止ガラスとUV硬化接着剤からなる接着層とを用いて封止する。 The organic EL display obtained as described above is bonded to a sealing glass (not shown) by UV curing in a dry nitrogen atmosphere in the glove box (an atmosphere in which both O 2 concentration and H 2 O concentration are 10 ppm or less). It seals using the contact bonding layer which consists of an agent.
 [有機ELディスプレイ(タイプ2)]
 次に、本発明の他の実施形態(タイプ2)を図2に基づいて説明する。なお、以下では、全体の構成、および上述した有機ELディスプレイ(タイプ1)との差異点のみについて詳述する。
[Organic EL display (Type 2)]
Next, another embodiment (type 2) of the present invention will be described with reference to FIG. In the following, only the overall configuration and differences from the above-described organic EL display (type 1) will be described in detail.
 (全体の構成)
 本発明の有機ELディスプレイ(トップエミッション型)は、図2に示すように、基板100に色変換フィルタ部200が形成された第1の積層体Xと、基体400に有機EL素子部300が形成された第2の積層体Yとが、色変換フィルタ部200の入光面に有機EL素子部300の出光面を対峙させた状態で、熱硬化型の接着層500によって貼り合わせられた構造である。また、図2に示す有機ELディプレイは、色変換フィルタ部200および有機EL素子部300を外気と遮断する(図示しない)封止材を含む。
(Overall configuration)
In the organic EL display (top emission type) of the present invention, as shown in FIG. 2, the first laminate X in which the color conversion filter unit 200 is formed on the substrate 100 and the organic EL element unit 300 on the base 400 are formed. The second laminated body Y is bonded to the light incident surface of the color conversion filter unit 200 with the light emitting surface of the organic EL element unit 300 by a thermosetting adhesive layer 500. is there. The organic EL display shown in FIG. 2 includes a sealing material (not shown) that blocks the color conversion filter unit 200 and the organic EL element unit 300 from the outside air.
 透明基板100は、その上に順次形成される色変換フィルタ部200の構成要素(カラーフィルタ層210、遮光層220、平坦化層230、赤色変換層240、およびガスバリア層250)を支持するための層である。透明基板100は、これらの構成要素の形成に用いられる条件(溶媒、温度等)に耐え得るものを用いる。透明基板100についてのその他の諸条件は、図1に示す透明基板100と同様である。 The transparent substrate 100 supports the components (the color filter layer 210, the light shielding layer 220, the planarization layer 230, the red color conversion layer 240, and the gas barrier layer 250) of the color conversion filter unit 200 that are sequentially formed thereon. Is a layer. The transparent substrate 100 is one that can withstand the conditions (solvent, temperature, etc.) used for forming these components. Other conditions for the transparent substrate 100 are the same as those of the transparent substrate 100 shown in FIG.
 色変換フィルタ部200、および有機EL素子300についての諸条件は、図1に示す透明基板100と同様である。 Various conditions for the color conversion filter unit 200 and the organic EL element 300 are the same as those of the transparent substrate 100 shown in FIG.
 基体400は、有機EL素子300を支持するための構成要素である。基体400は、有機EL素子300の形成に用いられる条件(溶媒、温度等)に耐え得るものを用いる。
基体400についてのその他の諸条件は、透明基板100と同様である。
The substrate 400 is a component for supporting the organic EL element 300. As the substrate 400, a substrate that can withstand the conditions (solvent, temperature, etc.) used for forming the organic EL element 300 is used.
Other conditions for the substrate 400 are the same as those of the transparent substrate 100.
 接着層500は、第1の積層体Xと第2の積層体Yとを貼り合わせるために用いる構成要素である。接着層500としては、可視光透過性を有し、赤色変換層240および有機EL層320へ損傷等の悪影響を与えることなく形成できるものであれば特に限定されない。例えば、一般的な熱可塑性樹脂、常温~120℃以下の熱によって硬化可能な熱硬化型樹脂、可視光、または熱・光併用により硬化可能な樹脂等を用いることができる。 The adhesive layer 500 is a component used for bonding the first laminate X and the second laminate Y together. The adhesive layer 500 is not particularly limited as long as it has visible light transparency and can be formed without causing adverse effects such as damage to the red color conversion layer 240 and the organic EL layer 320. For example, a general thermoplastic resin, a thermosetting resin that can be cured by heat at room temperature to 120 ° C., a resin that can be cured by visible light, or a combination of heat and light can be used.
 (有機ELディスプレイ(タイプ2)の製造方法)
 まず、図1に示す有機ELディスプレイ(タイプ1)と同様に、基板100上に、カラーフィルタ210、遮光層220、平坦化層230、赤色変換層240、およびガスバリア層250を順次形成し、第1の積層体Xを得る。
(Manufacturing method of organic EL display (type 2))
First, similarly to the organic EL display (type 1) shown in FIG. 1, a color filter 210, a light shielding layer 220, a planarization layer 230, a red color conversion layer 240, and a gas barrier layer 250 are sequentially formed on the substrate 100. 1 laminate X is obtained.
 次に、第1の積層体Xとは別個に、基体400に、反射電極330、有機EL層320、および透明電極310を順次形成し、第2の積層体Yを得る。基体400への反射電極330等の形成態様は、図1に示す有機ELディスプレイ(タイプ1)における、対応する構成要素の形成態様に準じて行う。 Next, separately from the first stacked body X, the reflective electrode 330, the organic EL layer 320, and the transparent electrode 310 are sequentially formed on the substrate 400 to obtain the second stacked body Y. The formation mode of the reflective electrode 330 and the like on the substrate 400 is performed in accordance with the formation mode of the corresponding component in the organic EL display (type 1) shown in FIG.
 さらに、色変換フィルタ部200の入光面に有機EL素子部300の出光面を対峙させた状態で、第1の積層体Xと第2の積層体Yとを熱硬化接着層500を介して貼り合わせる。 Further, the first stacked body X and the second stacked body Y are interposed through the thermosetting adhesive layer 500 in a state where the light incident surface of the color conversion filter unit 200 faces the light emitting surface of the organic EL element unit 300. to paste together.
 最後に、得られた有機ELディスプレイを、グローブボックス内の乾燥窒素雰囲気(O2濃度およびH2O濃度がともに10ppm以下の雰囲気)下において、図示しないUV硬化封止剤からなる封止層とを用いて色変換フィルタ部200および有機EL素子部300を封止する。 Finally, the obtained organic EL display was subjected to a sealing layer made of a UV curable sealing agent (not shown) under a dry nitrogen atmosphere (an atmosphere in which both O 2 concentration and H 2 O concentration were 10 ppm or less) in the glove box. Is used to seal the color conversion filter unit 200 and the organic EL element unit 300.
 以下に、実施例および比較例によって本発明の効果を実証する。なお、以下の実施例および比較例は、全て、R,G,Bの各副画素を含む画素がピッチ0.33mmで縦方向に160個、横方向に120個形成された有機ELディスプレイに関する。 Hereinafter, the effects of the present invention will be demonstrated by examples and comparative examples. The following examples and comparative examples all relate to an organic EL display in which 160 pixels including R, G, and B subpixels are formed at a pitch of 0.33 mm in the vertical direction and 120 in the horizontal direction.
 <有機ELディスプレイの作製>
(実施例1)
 実施例1の有機ELディスプレイは、図1に示すタイプのディスプレイとした。200mm×200mm×0.7mmのガラス基板を用意した。最初に所定のピッチでパターン形成したCr膜(膜厚100nm)をマスクとしてドライエッチング法(C48:16msccm、CH22:16sccm、ガス圧0.8Pa、およびパワー2kW))を用いて基板のカラーフィルタ層側の青色副画素エリアを、深さ0.6μmでピッチ0.2μmの直円錐状の凸凹に形成し、次いで緑色副画素エリアを、深さ0.4μmでピッチ0.3μmの直円錐状の凸凹に形成した基板100を得た。
<Production of organic EL display>
Example 1
The organic EL display of Example 1 was a display of the type shown in FIG. A glass substrate of 200 mm × 200 mm × 0.7 mm was prepared. A dry etching method (C 4 F 8 : 16 msccm, CH 2 F 2 : 16 sccm, gas pressure 0.8 Pa, and power 2 kW) is used with a Cr film (film thickness 100 nm) first patterned at a predetermined pitch as a mask. The blue subpixel area on the color filter layer side of the substrate is formed into a right-cone-shaped irregularity with a depth of 0.6 μm and a pitch of 0.2 μm, and then the green subpixel area is formed with a depth of 0.4 μm and a pitch of 0. A substrate 100 having a 3 μm right conical unevenness was obtained.
 基板100上に、遮光層用塗液(CK8400L 富士フィルムARCH製)をスピンコート法にて全面に塗布し、80℃にて加熱乾燥した。その後、フォトリソグラフ法を用いて、330μmピッチで、副画素サイズ(縦方向80μm×横方向300μm、厚さ方向1μm)のパターンを形成して、基板100上に遮光層220を積層した。 On the substrate 100, a light-shielding layer coating solution (CK8400L manufactured by Fuji Film ARCH) was applied to the entire surface by a spin coating method, and dried at 80 ° C. by heating. Thereafter, a pattern having a sub-pixel size (vertical direction of 80 μm × horizontal direction of 300 μm, thickness direction of 1 μm) was formed at a pitch of 330 μm by using a photolithography method, and the light shielding layer 220 was laminated on the substrate 100.
 青色カラーフィルタ層210Bの形成については、基板100上に、青色カラーフィルタ材料(富士フィルムARCH製:カラーモザイクCB-7001)をスピンコート法によって塗布し、フォトリソグラフ法によるパターニングを実施した。具体的には、深さ0.6μm、ピッチ0.2μmの直円錐状の凸凹に形成された基板100をトレースした。これにより、青色カラーフィルタ層210Bの基板側を深さ0.6μm、ピッチ0.2μm、平均密度0.88個/μm2の直円錐状の凸凹に形成されたエリアサイズ80μm×300μm、膜厚2μmのラインパターンを得た。 Regarding the formation of the blue color filter layer 210B, a blue color filter material (manufactured by Fuji Film ARCH: Color Mosaic CB-7001) was applied on the substrate 100 by spin coating, and patterning was performed by photolithography. Specifically, the substrate 100 formed into a conical unevenness having a depth of 0.6 μm and a pitch of 0.2 μm was traced. As a result, the substrate side of the blue color filter layer 210B has an area size of 80 μm × 300 μm and a thickness of 0.6 μm in depth, a pitch of 0.2 μm, and an average density of 0.88 pieces / μm 2 formed into a right cone shape. A 2 μm line pattern was obtained.
 緑色カラーフィルタ層210Gの形成については、基板100上に、緑色カラーフィルタ材料(富士フィルムARCH製:カラーモザイクCG-7001)をスピンコート法によって塗布し、フォトリソグラフ法によるパターニングを実施した。具体的には、深さ0.4μm、ピッチ0.3μmの直円錐状の凸凹に形成された基板100をトレースした。これにより、緑色カラーフィルタ層210Gの基板側を深さ0.4μm、ピッチ0.3μm、平均密度1.99個/μm2の直円錐状の凸凹に形成されたエリアサイズ80μm×300μm、膜厚2μmのラインパターンを得た。 For the formation of the green color filter layer 210G, a green color filter material (manufactured by Fuji Film ARCH: Color Mosaic CG-7001) was applied on the substrate 100 by spin coating, and patterning was performed by photolithography. Specifically, the substrate 100 formed into a conical unevenness having a depth of 0.4 μm and a pitch of 0.3 μm was traced. As a result, the substrate side of the green color filter layer 210G is an area size of 80 μm × 300 μm, formed into a conical unevenness having a depth of 0.4 μm, a pitch of 0.3 μm, and an average density of 1.99 / μm 2 A 2 μm line pattern was obtained.
 赤色カラーフィルタ層210Rの形成については、基板100上に、赤色カラーフィルタ材料(富士フィルムARCH製:カラーモザイクCR-7001)をスピンコート法によって塗布し、フォトリソグラフ法によるパターニングを実施した。具体的には、エリアサイズ80μm×300μm、膜厚2μmのラインパターンを得た。 For the formation of the red color filter layer 210R, a red color filter material (manufactured by Fuji Film ARCH: Color Mosaic CR-7001) was applied on the substrate 100 by spin coating, and patterning was performed by photolithography. Specifically, a line pattern having an area size of 80 μm × 300 μm and a film thickness of 2 μm was obtained.
 次いで、平坦化層230の形成については、カラーフィルタ層210および遮光層220上に、平坦化層材料(新日鐵化学製:V-259PA)をスピンコート法によって塗布して形成した。遮光層220と接触する領域における平坦化層230の膜厚は2.5μmとした。ちなみに、別途、ガラス基板上に同条件で平坦化膜を形成し、屈折率を測定したところ、本実施例の平坦化層は1.5の屈折率を有することが明らかとなった。 Next, the planarization layer 230 was formed by applying a planarization layer material (Nippon Steel Chemical Co., Ltd .: V-259PA) on the color filter layer 210 and the light shielding layer 220 by spin coating. The thickness of the planarizing layer 230 in the region in contact with the light shielding layer 220 was 2.5 μm. Incidentally, when a planarization film was separately formed under the same conditions on a glass substrate and the refractive index was measured, it was found that the planarization layer of this example had a refractive index of 1.5.
 以上のようにして得られた平坦化層230以下の層を有する積層体を、乾燥窒素雰囲気(水分濃度1ppm以下)下、20分間にわたって200℃に加熱して、残存する可能性のある水分を除去した。 The layered product having the flattening layer 230 or less obtained as described above is heated to 200 ° C. for 20 minutes under a dry nitrogen atmosphere (moisture concentration of 1 ppm or less) to remove residual moisture. Removed.
 この積層体を、真空蒸着装置に装着し、1×10-4Paの圧力下で、0.3Å/sの蒸着速度でDCM-Rを蒸着し、膜厚500nmの赤色変換層240を形成した。ちなみに、別途、ガラス基板上に同条件でDCM-R膜を形成し、屈折率を測定したところ、本実施例の赤色変換層は1.9の屈折率を有することが明らかとなった。 This laminate was attached to a vacuum deposition apparatus, and DCM-R was deposited at a deposition rate of 0.3 Å / s under a pressure of 1 × 10 −4 Pa to form a red conversion layer 240 having a thickness of 500 nm. . Incidentally, when a DCM-R film was separately formed on a glass substrate under the same conditions and the refractive index was measured, it was found that the red conversion layer of this example had a refractive index of 1.9.
 さらに、プラズマCVD法を用いて膜厚300nmのSiNH膜を積層して、ガスバリア層250を得た。原料ガスとして100SCCMのSiH4、500SCCMのNH3、および2000SCCMのN2を用い、ガス圧を80Paとした。また、プラズマ発生用電力として、27MHzのRF電力を0.5kW印加した。ちなみに、別途、ガラス基板上に同条件でSiNH膜を形成し、屈折率を測定したところ、本実施例のガスバリア層は1.95の屈折率を有することが明らかとなった。 Further, a 300 nm-thick SiNH film was laminated by using a plasma CVD method to obtain a gas barrier layer 250. 100 SCCM SiH 4 , 500 SCCM NH 3 , and 2000 SCCM N 2 were used as source gases, and the gas pressure was set to 80 Pa. Moreover, 0.5 kW of 27 MHz RF power was applied as plasma generation power. Incidentally, when a SiNH film was separately formed on a glass substrate under the same conditions and the refractive index was measured, it was found that the gas barrier layer of this example had a refractive index of 1.95.
 上記のようにして順次形成した基板100および色変換フィルタ部200上に、透明電極310/有機EL層320(正孔注入層/正孔輸送層/有機発光層/電子輸送層)/反射電極330からなる有機EL素子部300を形成した。 On the substrate 100 and the color conversion filter part 200 formed sequentially as described above, the transparent electrode 310 / organic EL layer 320 (hole injection layer / hole transport layer / organic light emitting layer / electron transport layer) / reflection electrode 330 The organic EL element part 300 which consists of was formed.
 透明電極310は、In-Zn酸化物パターンを形成した。DCスパッタ法により室温において、In-Zn酸化物膜を200nm形成した。スパッタターゲットにはIn-Zn酸化物ターゲットを用い、スパッタガスとしてArおよび酸素を用いた。フォトリソグラフによりレジストをパターニングした後にシュウ酸をエッチング液として用いてパターニングすることにより配線幅100μmのパターンを形成した。パターニング後、乾燥処理(150℃)およびUV処理(室温および150℃)を行なった。 The transparent electrode 310 formed an In—Zn oxide pattern. An In—Zn oxide film having a thickness of 200 nm was formed at room temperature by DC sputtering. An In—Zn oxide target was used as the sputtering target, and Ar and oxygen were used as the sputtering gas. After patterning the resist by photolithography, patterning was performed using oxalic acid as an etchant to form a pattern with a wiring width of 100 μm. After patterning, drying treatment (150 ° C.) and UV treatment (room temperature and 150 ° C.) were performed.
 UV処理後に積層体を抵抗加熱蒸着装置内に装着し、正孔注入層、正孔輸送層、有機発光層、電子注入層を、真空を破らずに順次成膜して有機EL層320を形成した。成膜に際して真空槽内圧は1×10-5Paまで減圧した。正孔注入層は銅フタロシアニン(CuPc)を100nm積層した。正孔輸送層は4,4'-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(α-NPD)を20nm積層した。有機発光層は4,4'-ビス(2,2'-ジフェニルビニル)ビフェニル(DPVBi)を30nm積層した。電子注入層はアルミキレート(Alq)を20nm積層した。 After the UV treatment, the laminate is mounted in a resistance heating vapor deposition apparatus, and a hole injection layer, a hole transport layer, an organic light emitting layer, and an electron injection layer are sequentially formed without breaking the vacuum to form an organic EL layer 320. did. During film formation, the internal pressure of the vacuum chamber was reduced to 1 × 10 −5 Pa. As the hole injection layer, copper phthalocyanine (CuPc) was laminated to a thickness of 100 nm. As the hole transport layer, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (α-NPD) was laminated to a thickness of 20 nm. As the organic light emitting layer, 4,4′-bis (2,2′-diphenylvinyl) biphenyl (DPVBi) was laminated to 30 nm. The electron injection layer was formed by laminating 20 nm of aluminum chelate (Alq).
 次いで、透明電極310のラインと垂直に幅0.30mm、空隙0.03mmギャップのストライプパターンが得られるマスクを用いて、厚さ200nmのMg/Ag(10:1の重量比率)層からなる反射電極330を、真空を破らずに形成した。こうして得られた積層体を、グローブボックス内乾燥窒素雰囲気下において、ディスペンサーロボットを用いて、直径6μmのビーズを分散させたUV硬化型接着剤(スリーボンド社製、商品名30Y-437)を、外周に塗布した封止硝子を用いて接着し、100mW/cmの紫外線を30秒間にわたって照射して、外周封止層を硬化させて実施例1の有機ELディプレイを得た。 Next, a reflection made of a Mg / Ag (10: 1 weight ratio) layer having a thickness of 200 nm is used by using a mask capable of obtaining a stripe pattern having a width of 0.30 mm and a gap of 0.03 mm perpendicular to the line of the transparent electrode 310. The electrode 330 was formed without breaking the vacuum. Using a dispenser robot, a UV curable adhesive (trade name 30Y-437, manufactured by ThreeBond Co., Ltd.) in which beads having a diameter of 6 μm were dispersed was placed on the outer periphery of the laminate thus obtained using a dispenser robot in a dry nitrogen atmosphere inside the glove box. The organic EL display of Example 1 was obtained by bonding using the sealing glass applied to the substrate and irradiating with 100 mW / cm 2 ultraviolet rays for 30 seconds to cure the outer peripheral sealing layer.
 (実施例2)
 実施例2の有機ELディスプレイは、図2に示すタイプのディスプレイとした。基板100の形成、ならびに基板100上への遮光層220、カラーフィルタ層210、平坦化層230、赤色変換層240、およびガスバリア層250の順次の形成については、実施例1と同様に行い、第1の積層体Xを得た。
(Example 2)
The organic EL display of Example 2 was a display of the type shown in FIG. The formation of the substrate 100 and the sequential formation of the light shielding layer 220, the color filter layer 210, the planarization layer 230, the red color conversion layer 240, and the gas barrier layer 250 on the substrate 100 are performed in the same manner as in Example 1. 1 laminate X was obtained.
 次いで、別個に基体400としてのガラス基板を用意し、スパッタ法およびフォトリソグラフ法を用いて、膜厚200nmのインジウム・錫酸化物(ITO)からなる反射電極330を形成した。反射電極330の形状は、縦方向に延びる配線幅100μmのストライプパターンとした。 Next, a glass substrate as a substrate 400 was separately prepared, and a reflective electrode 330 made of indium / tin oxide (ITO) having a thickness of 200 nm was formed by sputtering and photolithography. The shape of the reflective electrode 330 was a stripe pattern with a wiring width of 100 μm extending in the vertical direction.
 さらに、基体400に反射電極330を形成した積層体を、抵抗加熱蒸着装置内に装着し、電子注入層、有機EL発光層、正孔輸送層、および正孔注入層を、真空槽内圧力を1×10-5Paに保持したまま順次積層し、有機EL層320を形成した。
その後、有機EL層320上に、パターン幅0.30mm、パターン間距離0.03mmの反射電極330に直交するストライプパターンが得られるマスクを用い、上記真空を維持したまま、厚さ200nmのMg/Ag層(重量比が、Mg:Ag=10:1)を透明電極310として形成した。
Furthermore, the laminated body in which the reflective electrode 330 is formed on the substrate 400 is mounted in a resistance heating vapor deposition apparatus, and the electron injection layer, the organic EL light emitting layer, the hole transport layer, and the hole injection layer are set in a vacuum chamber. The organic EL layer 320 was formed by sequentially stacking the layers while maintaining the pressure at 1 × 10 −5 Pa.
Thereafter, using a mask on which a stripe pattern orthogonal to the reflective electrode 330 having a pattern width of 0.30 mm and an inter-pattern distance of 0.03 mm is obtained on the organic EL layer 320, the Mg / An Ag layer (weight ratio: Mg: Ag = 10: 1) was formed as the transparent electrode 310.
 最後に基体400から透明電極310までの積層体を覆うように、膜厚500nmのSiNからなるパッシベーション層(図示せず)を形成し、第2の積層体Yを得た。 Finally, a passivation layer (not shown) made of SiN having a thickness of 500 nm was formed so as to cover the stacked body from the base body 400 to the transparent electrode 310, and a second stacked body Y was obtained.
 このようにして得られた第1の積層体Xおよび第2の積層体Yを、水分濃度1ppm、酸素濃度1ppmに管理された貼り合せ装置内に搬入した。ディスペンサーロボットを用いて、第1の積層体Xに、直径6μmのビーズを分散させたUV硬化型接着剤(スリーボンド社製、商品名30Y-437)を外周封止層として塗布し、その中心に熱硬化接着剤を所定量滴下し、貼り合せ装置中で1Paの真空で大気を除去した。次いで、ガスバリア層250と(図示しない)パッシベーション層とを対峙させ、パッシベーション層の上面に積層体Yをのせ、圧着して積層体X,Yを貼り合わせた。外周封止部以外はマスクで保護後、100mW/cmの紫外線を30秒間にわたって照射して硬化させたのち、100℃1時間の加熱を実施し、外周封止部および熱硬化接着剤の加熱硬化を行い、実施例2の有機ELディスプレイを得た。 The first laminated body X and the second laminated body Y obtained in this manner were carried into a bonding apparatus managed with a moisture concentration of 1 ppm and an oxygen concentration of 1 ppm. Using a dispenser robot, a UV curable adhesive (trade name 30Y-437, manufactured by ThreeBond Co., Ltd.) in which beads having a diameter of 6 μm are dispersed is applied to the first laminate X as an outer peripheral sealing layer, and at the center. A predetermined amount of a thermosetting adhesive was dropped, and the atmosphere was removed with a vacuum of 1 Pa in a bonding apparatus. Next, the gas barrier layer 250 and a passivation layer (not shown) were opposed to each other, the laminated body Y was placed on the upper surface of the passivation layer, and the laminated bodies X and Y were bonded together by pressure bonding. After protecting with a mask except for the outer periphery sealing part, 100 mW / cm 2 ultraviolet ray was irradiated for 30 seconds to cure, then heating at 100 ° C. for 1 hour to heat the outer periphery sealing part and the thermosetting adhesive Curing was performed to obtain an organic EL display of Example 2.
 (比較例1)
 比較例1の有機ELディスプレイは、図3に示すタイプのディスプレイとした。200mm×200mm×0.7mmのガラス基板を用意した。最初に基板100上に遮光層用塗液(CK8400L 富士フィルムARCH製)をスピンコート法にて全面に塗布し、80℃にて加熱乾燥した、その後、フォトリソグラフ法を用いて、330μmピッチで、副画素サイズ(縦方向80μm×横方向300μm、厚さ方向1μm)のパターンを形成して、基板100上に遮光層220を積層した。
(Comparative Example 1)
The organic EL display of Comparative Example 1 was a display of the type shown in FIG. A glass substrate of 200 mm × 200 mm × 0.7 mm was prepared. First, a light shielding layer coating solution (CK8400L manufactured by Fuji Film ARCH) was applied on the entire surface of the substrate 100 by a spin coat method and dried by heating at 80 ° C. Then, using a photolithographic method, at a pitch of 330 μm, A pattern with a subpixel size (vertical direction 80 μm × horizontal direction 300 μm, thickness direction 1 μm) was formed, and a light shielding layer 220 was laminated on the substrate 100.
 青色カラーフィルタ層210Bの形成については、基板100上に、青色カラーフィルタ材料(富士フィルムARCH製:カラーモザイクCB-7001)をスピンコート法によって塗布し、フォトリソグラフ法によるパターニングを実施した。具体的には、エリアサイズ80μm×300μm、膜厚2μmのラインパターンを得た。 For the formation of the blue color filter layer 210B, a blue color filter material (manufactured by Fuji Film ARCH: Color Mosaic CB-7001) was applied on the substrate 100 by spin coating, and patterning was performed by photolithography. Specifically, a line pattern having an area size of 80 μm × 300 μm and a film thickness of 2 μm was obtained.
 緑色カラーフィルタ層210Gの形成については、基板100上に、緑色カラーフィルタ材料(富士フィルムARCH製:カラーモザイクCG-7001)をスピンコート法によって塗布し、フォトリソグラフ法によるパターニングを実施した。具体的には、エリアサイズ80μm×300μm、膜厚2μmのラインパターンを得た。 For the formation of the green color filter layer 210G, a green color filter material (manufactured by Fuji Film ARCH: Color Mosaic CG-7001) was applied on the substrate 100 by a spin coating method, and patterning was performed by a photolithographic method. Specifically, a line pattern having an area size of 80 μm × 300 μm and a film thickness of 2 μm was obtained.
 その後、赤色カラーフィルタ層210R、平坦化層230、赤色変換層240、ガスバリア層250、透明電極310、有機EL層320、および反射電極330の形成、ならびに封止処理について、実施例と同様の手段を採用し、比較例1の有機ELディスプレイを得た。 Thereafter, the red color filter layer 210R, the flattening layer 230, the red color conversion layer 240, the gas barrier layer 250, the transparent electrode 310, the organic EL layer 320, and the reflective electrode 330 are formed and sealed in the same manner as in the example. The organic EL display of Comparative Example 1 was obtained.
 (比較例2)
 比較例2の有機ELディスプレイは、図4に示すタイプのディスプレイとした。200mm×200mm×0.7mmのガラス基板を用意した。最初に所定のピッチでパターン形成したCr膜(膜厚100nm)をマスクとしてドライエッチング法(C48:16msccm、CH22:16sccm、ガス圧0.8Pa、およびパワー2kW))を用いて基板のカラーフィルタ層側の青色副画素エリアおよび緑色副画素エリアを、深さ0.6μmでピッチ0.2μmの直円錐状の凸凹に形成した基板100を得た。
(Comparative Example 2)
The organic EL display of Comparative Example 2 was a display of the type shown in FIG. A glass substrate of 200 mm × 200 mm × 0.7 mm was prepared. A dry etching method (C 4 F 8 : 16 msccm, CH 2 F 2 : 16 sccm, gas pressure 0.8 Pa, and power 2 kW) is used with a Cr film (film thickness 100 nm) first patterned at a predetermined pitch as a mask. Thus, a substrate 100 was obtained in which the blue subpixel area and the green subpixel area on the color filter layer side of the substrate were formed in a conical irregularity having a depth of 0.6 μm and a pitch of 0.2 μm.
 基板100上に、遮光層用塗液(CK8400L 富士フィルムARCH製)をスピンコート法にて全面に塗布し、80℃にて加熱乾燥した。その後、フォトリソグラフ法を用いて、330μmピッチで、副画素サイズ(縦方向80μm×横方向300μm、厚さ方向1μm)のパターンを形成して、基板100上に遮光層220を積層した。 On the substrate 100, a light-shielding layer coating solution (CK8400L manufactured by Fuji Film ARCH) was applied to the entire surface by a spin coating method, and dried at 80 ° C. by heating. Thereafter, a pattern having a sub-pixel size (vertical direction of 80 μm × horizontal direction of 300 μm, thickness direction of 1 μm) was formed at a pitch of 330 μm by using a photolithography method, and the light shielding layer 220 was laminated on the substrate 100.
 青色カラーフィルタ層210Bの形成については、基板100上に、青色カラーフィルタ材料(富士フィルムARCH製:カラーモザイクCB-7001)をスピンコート法によって塗布し、フォトリソグラフ法によるパターニングを実施した。具体的には、深さ0.6μm、ピッチ0.2μmの直円錐状の凸凹に形成された基板100をトレースした。これにより、青色カラーフィルタ層210Bの基板側を深さ0.6μm、ピッチ0.2μm、平均密度0.88個/μm2の直円錐状の凸凹に形成されたエリアサイズ80μm×300μm、膜厚2μmのラインパターンを得た。 Regarding the formation of the blue color filter layer 210B, a blue color filter material (manufactured by Fuji Film ARCH: Color Mosaic CB-7001) was applied on the substrate 100 by spin coating, and patterning was performed by photolithography. Specifically, the substrate 100 formed into a conical unevenness with a depth of 0.6 μm and a pitch of 0.2 μm was traced. As a result, the substrate side of the blue color filter layer 210B has an area size of 80 μm × 300 μm and a thickness of 0.6 μm in depth, a pitch of 0.2 μm, and an average density of 0.88 pieces / μm 2 formed into a right cone shape. A 2 μm line pattern was obtained.
 緑色カラーフィルタ層210Gの形成については、基板100上に、緑色カラーフィルタ材料(富士フィルムARCH製:カラーモザイクCG-7001)をスピンコート法によって塗布し、フォトリソグラフ法によるパターニングを実施した。具体的には、深さ0.6μm、ピッチ0.2μmの直円錐状の凸凹に形成された基板100をトレースした。これにより、緑色カラーフィルタ層210Gの基板側を深さ0.6μm、ピッチ0.2μm、平均密度0.88個/μm2の直円錐状の凸凹に形成されたエリアサイズ80μm×300μm、膜厚2μmのラインパターンを得た。 For the formation of the green color filter layer 210G, a green color filter material (manufactured by Fuji Film ARCH: Color Mosaic CG-7001) was applied on the substrate 100 by spin coating, and patterning was performed by photolithography. Specifically, the substrate 100 formed into a conical unevenness having a depth of 0.6 μm and a pitch of 0.2 μm was traced. As a result, the substrate side of the green color filter layer 210G is an area size of 80 μm × 300 μm formed in a right-cone-shaped unevenness with a depth of 0.6 μm, a pitch of 0.2 μm, and an average density of 0.88 / μm 2. A 2 μm line pattern was obtained.
 その後、赤色カラーフィルタ層210R、平坦化層230、赤色変換層240、ガスバリア層250、透明電極310、有機EL層320、および反射電極330の形成、ならびに封止処理について、実施例と同様の手段を採用し、比較例2の有機ELディスプレイを得た。 Thereafter, the red color filter layer 210R, the flattening layer 230, the red color conversion layer 240, the gas barrier layer 250, the transparent electrode 310, the organic EL layer 320, and the reflective electrode 330 are formed and sealed in the same manner as in the example. The organic EL display of Comparative Example 2 was obtained.
 <評価項目>
 実施例1,2および比較例1,2の有機ELディスプレイ関し、D65白色光点灯時に正面および斜めから観察した発光主観評価を行った。その結果を表1に示す。なお、斜めからの観察とは、有機ELディスプレイ画面の法線に対して45度の位置からの観察である。
<Evaluation items>
The organic EL displays of Examples 1 and 2 and Comparative Examples 1 and 2 were subjected to subjective light emission evaluation observed from the front and oblique directions when D65 white light was lit. The results are shown in Table 1. The oblique observation is observation from a position at 45 degrees with respect to the normal line of the organic EL display screen.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、基板100と青色および緑色カラーフィルタ層210B,210Gとの界面を異なる凸凹密度とした実施例1,2では、ボトムエミッション型(実施例1)およびトップエミッション型(実施例2)のいずれにおいても、観察角度による画面の発光色の変化はないことが判明した。 From the results of Table 1, in Examples 1 and 2 in which the interface between the substrate 100 and the blue and green color filter layers 210B and 210G has different uneven density, the bottom emission type (Example 1) and the top emission type (Example 2). In either case, it was found that there was no change in the light emission color of the screen depending on the observation angle.
 これに対し、基板100と青色および緑色カラーフィルタ層210B,210Gとの界面を凸凹形状としない比較例1では、観察角度による画面の発光色の変化が著しいことが判明した。 On the other hand, in Comparative Example 1 where the interface between the substrate 100 and the blue and green color filter layers 210B and 210G is not uneven, it was found that the change in the emission color of the screen depending on the observation angle was significant.
 また、基板100と青色および緑色カラーフィルタ層210B,210Gとの界面を同じ凸凹密度とした比較例2では、観察角度による画面の発光色の変化があることが判明した。 Further, it was found that in the comparative example 2 in which the interface between the substrate 100 and the blue and green color filter layers 210B and 210G has the same uneven density, the emission color of the screen changes depending on the observation angle.
 ちなみに、実施例1,2と比較例1,2とにおける輝度、色度に変化は見られなかった。 Incidentally, no change was seen in the luminance and chromaticity in Examples 1 and 2 and Comparative Examples 1 and 2.
 従って、実施例1,2の有機ELディスプレイは、基板とカラーフィルタとの界面を、R,G,B毎に凸凹密度を調整した構造を有することで、輝度、色度を維持したまま、R,G,B間の光の指向性の差を減少できることが判明した。 Therefore, the organic EL displays of Examples 1 and 2 have a structure in which the unevenness density is adjusted for each of R, G, and B at the interface between the substrate and the color filter, so that the luminance and chromaticity are maintained. It has been found that the difference in directivity of light between G, B and B can be reduced.
 なお、以上の結果は、基板とカラーフィルタとの界面を適宜調整した例であるが、カラーフィルタが存在しない場合に、基板と平坦化層との界面を適宜調整した例においても同等の結果が得られることが予想される。 The above results are examples in which the interface between the substrate and the color filter is appropriately adjusted, but when the color filter is not present, an equivalent result is obtained in an example in which the interface between the substrate and the planarization layer is appropriately adjusted. Expected to be obtained.
 本発明は、基板とカラーフィルタまたは平坦化層との界面を所定の形状とすることで、異色の副画素間において光の指向性の差を微調整し、視野角による発光色の変化を高いレベルで防止することができる。よって、本発明は、視野角による発光色に関する変化がない表示部を有する携帯電話機等の種々の電子機器を提供できる点で有望である。 The present invention has a predetermined shape at the interface between the substrate and the color filter or the flattening layer, thereby finely adjusting the difference in directivity of light between different-colored subpixels and increasing the change in emission color depending on the viewing angle. Can be prevented by level. Therefore, the present invention is promising in that it can provide various electronic devices such as a mobile phone having a display unit that does not change the emission color depending on the viewing angle.

Claims (10)

  1.  基板と、平坦化層および少なくとも1種の色変換層を含む色変換フィルタ部と、複数の発光部を有する有機EL素子部とを備え、前記複数の発光部により複数の副画素が規定された有機ELディスプレイにおいて、
     前記基板と前記平坦化層との間に凹凸形状を持つ界面を有し、前記凹凸形状は、前記副画素ごとに、異なる凹凸密度を有することを特徴とする有機ELディスプレイ。
    A substrate, a color conversion filter unit including a planarization layer and at least one color conversion layer, and an organic EL element unit having a plurality of light emitting units, wherein a plurality of subpixels are defined by the plurality of light emitting units. In organic EL displays,
    An organic EL display comprising an interface having a concavo-convex shape between the substrate and the planarization layer, wherein the concavo-convex shape has a different concavo-convex density for each sub-pixel.
  2.  基板、ならびに平坦化層および少なくとも1種の色変換層を含む色変換フィルタ部を備える第1の積層体と、基体、および複数の発光部を有する有機EL素子部を備える第2の積層体とが貼り合わされ、前記複数の発光部により複数の副画素が規定された有機ELディスプレイにおいて、
     前記基板と前記平坦化層との間に凹凸形状を持つ界面を有し、前記凹凸形状は、前記副画素ごとに、異なる凹凸密度を有することを特徴とする有機ELディスプレイ。
    A first laminate including a substrate, a color conversion filter portion including a planarization layer and at least one color conversion layer, and a second laminate including an organic EL element portion having a base and a plurality of light-emitting portions; In an organic EL display in which a plurality of sub-pixels are defined by the plurality of light emitting units,
    An organic EL display comprising an interface having a concavo-convex shape between the substrate and the planarization layer, wherein the concavo-convex shape has a different concavo-convex density for each sub-pixel.
  3.  前記基板と前記平坦化層との間に、少なくとも1種のカラーフィルタ層をさらに備えることを特徴とする、請求項1または2に記載の有機ELディスプレイ。 The organic EL display according to claim 1, further comprising at least one color filter layer between the substrate and the planarizing layer.
  4.  前記凹凸形状は、少なくとも1つの周期を有し、副画素幅より小さな複数の凹部および凸部の配列形状であることを特徴とする、請求項1~3のいずれかに記載の有機ELディスプレイ。 4. The organic EL display according to claim 1, wherein the concavo-convex shape is an array shape of a plurality of concave portions and convex portions having at least one period and smaller than the sub-pixel width.
  5.  前記凹凸形状は、前記副画素ごとに、異なる周期を有することを特徴とする、請求項1~4のいずれかに記載の有機ELディスプレイ。 5. The organic EL display according to claim 1, wherein the uneven shape has a different period for each sub-pixel.
  6.  基板上に平坦化層および少なくとも1種の色変換層を含む色変換フィルタ部を形成する工程、ならびに前記色変換フィルタ部上に複数の発光部を有する有機EL素子部を形成する工程を含み、前記複数の発光部により複数の副画素が規定される有機ELディスプレイの製造方法であって、
     前記平坦化層と接する基板面に凹凸形状を形成し、前記凹凸形状を、前記副画素ごとに、異なる凹凸密度に調整することを特徴とする有機ELディスプレイの製造方法。
    Including a step of forming a color conversion filter portion including a planarization layer and at least one color conversion layer on a substrate, and a step of forming an organic EL element portion having a plurality of light emitting portions on the color conversion filter portion, A method of manufacturing an organic EL display in which a plurality of subpixels are defined by the plurality of light emitting units,
    A method of manufacturing an organic EL display, comprising: forming a concavo-convex shape on a substrate surface in contact with the planarizing layer; and adjusting the concavo-convex shape to a different concavo-convex density for each subpixel.
  7.  基板上に平坦化層および少なくとも1種の色変換層を含む色変換フィルタ部を形成して第1の積層体を得る工程と、基体上に複数の発光部を有する有機EL素子部を形成して第2の積層体を得る工程と、前記第1の積層体と前記第2の積層体とを貼り合わせる工程とを含み、前記複数の発光部により複数の副画素が規定される有機ELディスプレイの製造方法であって、
     前記平坦化層と接する基板面に凹凸形状を形成し、前記凹凸形状を、前記副画素ごとに、異なる凹凸密度に調整することを特徴とする有機ELディスプレイの製造方法。
    Forming a color conversion filter portion including a planarizing layer and at least one color conversion layer on a substrate to obtain a first laminate, and forming an organic EL element portion having a plurality of light emitting portions on a substrate. An organic EL display including a step of obtaining a second stacked body and a step of bonding the first stacked body and the second stacked body, wherein a plurality of sub-pixels are defined by the plurality of light emitting portions. A manufacturing method of
    A method of manufacturing an organic EL display, comprising: forming a concavo-convex shape on a substrate surface in contact with the planarizing layer; and adjusting the concavo-convex shape to a different concavo-convex density for each subpixel.
  8.  前記基板と前記平坦化層との間に、少なくとも1種のカラーフィルタ層をさらに形成することを特徴とする、請求項6または7に記載の有機ELディスプレイの製造方法。 8. The method of manufacturing an organic EL display according to claim 6, wherein at least one color filter layer is further formed between the substrate and the planarizing layer.
  9.  前記凹凸形状を、少なくとも1つの周期に調整し、副画素幅より小さな複数の凹部および凸部の配列形状とすることを特徴とする、請求項6~8のいずれかに記載の有機ELディスプレイの製造方法。 The organic EL display according to any one of claims 6 to 8, wherein the uneven shape is adjusted to at least one cycle to form an array shape of a plurality of recesses and protrusions smaller than the sub-pixel width. Production method.
  10.  前記凹凸形状を、前記副画素ごとに、異なる周期に調整することを特徴とする、請求項6~9のいずれかに記載の有機ELディスプレイの製造方法。 10. The method of manufacturing an organic EL display according to claim 6, wherein the uneven shape is adjusted to a different period for each sub-pixel.
PCT/JP2008/064308 2008-02-07 2008-08-08 Organic el display and manufacturing method thereof WO2009098793A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098103684A TW201002123A (en) 2008-02-07 2009-02-05 Organic el display and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008027678 2008-02-07
JP2008-027678 2008-02-07

Publications (1)

Publication Number Publication Date
WO2009098793A1 true WO2009098793A1 (en) 2009-08-13

Family

ID=40951880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/064308 WO2009098793A1 (en) 2008-02-07 2008-08-08 Organic el display and manufacturing method thereof

Country Status (2)

Country Link
TW (1) TW201002123A (en)
WO (1) WO2009098793A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504863A (en) * 2009-09-10 2013-02-07 サン−ゴバン パフォーマンス プラスティックス コーポレイション Layered element for encapsulating sensitive elements
US8766280B2 (en) 2009-09-10 2014-07-01 Saint-Gobain Performance Plastics Corporation Protective substrate for a device that collects or emits radiation
US10036832B2 (en) 2011-04-08 2018-07-31 Saint-Gobain Performance Plastics Corporation Multilayer component for the encapsulation of a sensitive element
JP2020506442A (en) * 2017-02-14 2020-02-27 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Color filter and image display device
CN111769148A (en) * 2020-06-30 2020-10-13 武汉天马微电子有限公司 Display panel and display device
WO2021101808A1 (en) * 2019-11-20 2021-05-27 Tectus Corporation Ultra-dense quantum dot color converters

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI695530B (en) * 2018-12-11 2020-06-01 友達光電股份有限公司 Flexible display
TWI777545B (en) * 2021-05-06 2022-09-11 友達光電股份有限公司 Light-emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162958A (en) * 1996-11-28 1998-06-19 Casio Comput Co Ltd El element
JP2003109749A (en) * 2001-09-25 2003-04-11 Korea Advanced Inst Of Science & Technol Optical crystalline organic light emitting element of high luminous efficiency
JP2007287697A (en) * 2007-06-15 2007-11-01 Idemitsu Kosan Co Ltd Organic electroluminescent element and light emitting device
JP2007311046A (en) * 2006-05-16 2007-11-29 Seiko Epson Corp Light-emitting device, method of manufacturing light-emitting device, and electronic equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162958A (en) * 1996-11-28 1998-06-19 Casio Comput Co Ltd El element
JP2003109749A (en) * 2001-09-25 2003-04-11 Korea Advanced Inst Of Science & Technol Optical crystalline organic light emitting element of high luminous efficiency
JP2007311046A (en) * 2006-05-16 2007-11-29 Seiko Epson Corp Light-emitting device, method of manufacturing light-emitting device, and electronic equipment
JP2007287697A (en) * 2007-06-15 2007-11-01 Idemitsu Kosan Co Ltd Organic electroluminescent element and light emitting device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504863A (en) * 2009-09-10 2013-02-07 サン−ゴバン パフォーマンス プラスティックス コーポレイション Layered element for encapsulating sensitive elements
US8766280B2 (en) 2009-09-10 2014-07-01 Saint-Gobain Performance Plastics Corporation Protective substrate for a device that collects or emits radiation
US9246131B2 (en) 2009-09-10 2016-01-26 Saint-Gobain Performance Plastics Corporation Layered element for encapsulating a senstive element
US10036832B2 (en) 2011-04-08 2018-07-31 Saint-Gobain Performance Plastics Corporation Multilayer component for the encapsulation of a sensitive element
JP2020506442A (en) * 2017-02-14 2020-02-27 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Color filter and image display device
WO2021101808A1 (en) * 2019-11-20 2021-05-27 Tectus Corporation Ultra-dense quantum dot color converters
US11121289B2 (en) 2019-11-20 2021-09-14 Tectus Corporation Ultra-dense quantum dot color converters
CN111769148A (en) * 2020-06-30 2020-10-13 武汉天马微电子有限公司 Display panel and display device
CN111769148B (en) * 2020-06-30 2022-09-13 武汉天马微电子有限公司 Display panel and display device

Also Published As

Publication number Publication date
TW201002123A (en) 2010-01-01

Similar Documents

Publication Publication Date Title
US7215075B2 (en) Organic el device having upper electrode including plurality of transparent electrode layers and method for manufacturing the same
WO2009098793A1 (en) Organic el display and manufacturing method thereof
KR101237638B1 (en) Color conversion film and multicolor emitting organic electroluminescent device comprising color conversion
JP5609878B2 (en) Organic EL display device, color filter substrate, and organic EL display device manufacturing method
JP2005123089A (en) Color organic el display and its manufacturing method
JP2007164123A (en) Color filter with color conversion function, organic el display and producing method thereof
JP2008226718A (en) Organic el device
JP2008165108A (en) Color filter substrate combinedly having rib function, color conversion filter substrate combinedly having rib function, color organic el element using them and manufacturing method of them
JP4674524B2 (en) Manufacturing method of organic EL light emitting display
JP4676168B2 (en) Filter substrate and color display using the same
JP2010146760A (en) Color conversion filter panel, panel type organic el emission portion, and color organic el display
JP2008077943A (en) Multicolor light-emitting device
JP4618562B2 (en) Manufacturing method of organic EL display
JP2009129586A (en) Organic el element
JP2008305730A (en) Manufacturing method for multicolor light-emitting device
JP2009205929A (en) Full-color organic el display panel
JP2007220431A (en) Multi-color luminescent device and its manufacturing method
JP2014199322A (en) Color filter substrate for top emission type organic el display device and top emission type organic el display device
JP5334341B2 (en) Organic EL device
JP3861821B2 (en) Organic EL display panel and manufacturing method thereof
JP5067950B2 (en) Organic EL device and manufacturing method thereof
JP2008010417A (en) Insulation film for organic el element and organic el display device
JP2006107836A (en) Color conversion filter, its manufacturing method, and organic el display using it
JP2005196075A (en) Color conversion type color display and control method for the color conversion type color display
JP2008218344A (en) Method of patterning color conversion layer and method of manufacturing organic el display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08872108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08872108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP