WO2009097042A1 - System for customizing electronic services for delivery to a passenger in an airborne wireless cellular network - Google Patents

System for customizing electronic services for delivery to a passenger in an airborne wireless cellular network Download PDF

Info

Publication number
WO2009097042A1
WO2009097042A1 PCT/US2008/083901 US2008083901W WO2009097042A1 WO 2009097042 A1 WO2009097042 A1 WO 2009097042A1 US 2008083901 W US2008083901 W US 2008083901W WO 2009097042 A1 WO2009097042 A1 WO 2009097042A1
Authority
WO
WIPO (PCT)
Prior art keywords
passenger
services
destination
electronic
passengers
Prior art date
Application number
PCT/US2008/083901
Other languages
French (fr)
Inventor
Eric Lemond
Anand K. Chari
Bryan A. Lauer
Richard C. Dunham
Thomas E. Weigman
Joseph M. Cruz
Dennis G. Sladky
Michael A. Moffatt
Kenneth Targosz
Original Assignee
Aircell Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/021,169 external-priority patent/US8068829B2/en
Priority claimed from US12/021,133 external-priority patent/US7702328B2/en
Priority claimed from US12/021,125 external-priority patent/US8078163B2/en
Application filed by Aircell Llc filed Critical Aircell Llc
Priority to CA2713393A priority Critical patent/CA2713393C/en
Priority to EP08871638A priority patent/EP2250573A1/en
Priority to CN2008801257684A priority patent/CN101925890A/en
Publication of WO2009097042A1 publication Critical patent/WO2009097042A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/51Discovery or management thereof, e.g. service location protocol [SLP] or web services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0251Targeted advertisements
    • G06Q30/0255Targeted advertisements based on user history
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0251Targeted advertisements
    • G06Q30/0267Wireless devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/10Network architectures or network communication protocols for network security for controlling access to devices or network resources
    • H04L63/102Entity profiles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/2866Architectures; Arrangements
    • H04L67/30Profiles
    • H04L67/306User profiles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/08Access security
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/083Network architectures or network communication protocols for network security for authentication of entities using passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0861Network architectures or network communication protocols for network security for authentication of entities using biometrical features, e.g. fingerprint, retina-scan
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • This invention relates to cellular communications and, in particular, to a system that enables a passenger's wireless device to receive customized electronic services in an airborne wireless cellular network.
  • HLR Home Location Register
  • the wireless subscriber should have the ability to originate and receive calls in a unified manner, regardless of their location.
  • a given wireless subscriber's feature set it should be possible for a given wireless subscriber's feature set to move transparently with them.
  • HLR home cellular service Home Location Register
  • VLR Visitor Location Register
  • wireless subscribers When wireless subscribers enter the non-terrestrial cellular communication network (that is, they fly in an aircraft as passengers), they encounter a unique environment that traditionally has been disconnected from the terrestrial cellular network, where the wireless network of the aircraft interfaces the subscriber (also termed "passenger” herein) to various services and content.
  • the aircraft wireless network therefore, can function as a content filter or can create unique types of content that are directed to the passengers who are on-board the aircraft. The management and generation of this content have yet to be addressed in existing wireless networks.
  • various services which relate to the subscriber's travel plans and/or the flight on which the subscriber is travelling are presently not offered to the subscriber.
  • the Customized Electronic Services Delivery System provides customized electronic services to passengers who are located onboard an aircraft by storing data indicative of a plurality of electronic services that are available to passengers who are located onboard the aircraft.
  • the Customized Electronic Services Delivery System also stores data indicative of preferences of passengers for the plurality of electronic services and associates at least one of the plurality of electronic services with an identified passenger based on the stored data. Once a correspondence is made, the Customized Electronic Services Delivery System advises the passenger of the availability of the customized electronic services and is responsive to the passenger selecting a one of the plurality of electronic services for establishing wireless communications between the passenger's wireless device and the selected one electronic service.
  • the electronic services that are customized for the passenger include in-flight entertainment services, such as multi-media presentations, as well as destination- based services, which link the passenger's existing travel plans with offers for additional services that are available to the passenger at their nominal destination and their planned travel schedule.
  • in-flight entertainment services such as multi-media presentations
  • destination- based services which link the passenger's existing travel plans with offers for additional services that are available to the passenger at their nominal destination and their planned travel schedule.
  • the passenger thereby is presented with opportunities during their flight to enhance their travel experience, both in-flight and at their destination.
  • This provision of the Customized Electronic Services Delivery System is accomplished in part by the use of an "Inner Network” that connects the two segments of the "Outer Network", comprising the Air Subsystem and the ground-based portion of the non-terrestrial cellular communication network.
  • the Inner Network transmits both the subscriber traffic (comprising voice and/or other data) and feature set data between the Air Subsystem and the ground-based portion of the non-terrestrial cellular communication network to thereby enable the passenger's wireless devices that are located in the aircraft to receive consistent wireless communication services in both the terrestrial (ground-based) and non-terrestrial regions.
  • Figure 1 illustrates, in block diagram form, the overall architecture of a composite air-to-ground network that interconnects an Air Subsystem with a Ground- Based Communication Network;
  • Figure 2 illustrates, in block diagram form, the architecture of a typical embodiment of a typical aircraft-based network for wireless devices as embodied in a multi-passenger commercial aircraft;
  • FIG. 3 illustrates, in block diagram form, the architecture of the Customized Electronic Services Delivery System
  • FIG. 4 illustrates, in flow diagram form, the typical operation of the
  • Passenger-Based Content Management System segment of the Customized Electronic Services Delivery System for the delivery of content that is customized to the passenger;
  • Figure 5 illustrates a typical mapping of content sources to passenger interests
  • Figure 6 illustrates, in block diagram form, a typical configuration of databases used by the Customized Electronic Services Delivery System
  • FIGS 7 - 8 illustrate typical sets of data used by the Customized Electronic
  • Figure 9 illustrates, in flow diagram form, the typical operation of the Destination-Based Services Management System segment of the Customized Electronic Services Delivery System for the delivery of destination services that are customized to the specific passenger.
  • Figure 1 illustrates, in block diagram form, the overall architecture of a typical non-terrestrial cellular communication network, which includes an Air-To-Ground Network 2 (Inner Network) that interconnects the two elements of an Outer Network, comprising an Air Subsystem 3 and Ground Subsystem 1.
  • This diagram illustrates the basic concepts of the non-terrestrial cellular communication network and, for the purpose of simplicity of illustration, does not comprise all of the elements found in a typical non-terrestrial cellular communication network.
  • the fundamental elements disclosed in Figure 1 provide a teaching of the interrelationship of the various elements which are used to implement a non-terrestrial cellular communication network to provide content to passengers' wireless devices which are located in an aircraft.
  • Air-To-Ground Network 2 transmitting both the passenger communication traffic (comprising voice and/or other data) and control information and feature set data between the Air
  • the "Air Subsystem” is the communications environment that is implemented in the aircraft, and these communications can be based on various technologies, including but not limited to: wired, wireless, optical, acoustic (ultrasonic), and the like.
  • An example of such a network is disclosed in US Patent No. 6,788,935, titled “Aircraft- Based Network For Wireless Subscriber Stations”.
  • the preferred embodiment for the Air Subsystem 3 is the use of wireless technology and for the wireless technology to be native to the passengers' wireless devices that passengers and crew carry on the aircraft.
  • a laptop computer can communicate via a WiFi or WiMax wireless mode (or via a wired connection, such as a LAN), or a PDA could communicate telephony voice traffic via VoIP (Voice over IP).
  • a handheld cell phone that uses the GSM protocol communicates via GSM when inside the aircraft to the Air Subsystem.
  • a CDMA cell phone would use CDMA and an analog AMPS phone would use analog AMPS when inside the aircraft to the Air Subsystem 3.
  • the connection states could be packet switched or circuit switched or both.
  • the objective on the Air Subsystem 3 is to enable seamless and ubiquitous access to the Air Subsystem 3 for the passengers' wireless devices that are carried by passengers and crew, regardless of the technology used by these wireless devices.
  • the Air Subsystem 3 also provides the mechanism to manage the provision of services to the passengers' wireless devices that are operating in the aircraft cabin. This management includes not only providing the passenger traffic connectivity but also the availability of non-terrestrial specific feature sets which each passenger is authorized to receive. These features include in-flight entertainment services, such as multi-media presentations, as well as destination-based services which link the passenger's existing travel plans with offers for additional services that are available to the passenger at their nominal destination and their planned travel schedule.
  • the passengers' wireless devices 101 used in the aircraft can be identical to those used on the cellular/PCS ground-based communication network 1 ; however, these passengers' wireless devices 101 are pre-registered with the carrier serving the aircraft and/or users have PIN numbers for authentication.
  • an antenna interconnects the passengers' wireless devices 101 with the in-cabin Base Transceiver Stations (BTS) 1 1 1 -1 14, which are typically pico-cells with BSC/MSC functions integrated. BTS/BSC/MSC modules are added for each air-interface technology supported.
  • BTS Base Transceiver Stations
  • the Switch/Router 122 acts as the bridging function (for media/content and signaling to a limited extent) between the Air Subsystem 3 and the ground-based communication network 1 , since the Switch/Router 122 places a call using the Modem 123 to the ground-based communication network 1 via the Air-To-Ground Network 2.
  • Air-To-Ground Network 2 shown in Figure 1 is clearly one that is based on wireless communications (radio frequency or optical) between the ground-based communications network 1 and the passengers' wireless devices that are located in the aircraft, with the preferred approach being that of a radio frequency connection.
  • This radio frequency connection takes on the form of a cellular topology where typically more than one cell describes the geographic footprint or coverage area of the composite Air- To-Ground Network 2.
  • the air-to-ground connection carries both passenger communications traffic and native network signaling traffic.
  • the Air-To-Ground Network 2 could be achieved through a wireless satellite connection where radio frequency links are established between the aircraft and a satellite and between the satellite and the ground-based communications network 1 , respectively.
  • These satellites could be geosynchronous (appears to be stationary from an earth reference point) or moving, as is the case for Medium Earth Orbit (MEO) and Low Earth Orbit (LEO).
  • Examples of satellites include, but are not limited to: Geosynchronous Ku Band satellites, DBS satellites (Direct Broadcast Satellite), the Iridium system, the Globalstar system, and the Inmarsat system.
  • Geosynchronous Ku Band satellites DBS satellites (Direct Broadcast Satellite)
  • the Iridium system the Globalstar system
  • Inmarsat system In the
  • the link typically is unidirectional, that is, from the satellite to the receiving platform, in this case an aircraft.
  • a link transmitting unidirectionally from the aircraft is needed to make the communication bidirectional.
  • This link could be satellite or ground- based wireless in nature as previously described.
  • other means for communicating to aircraft include broad or wide area links such as High Frequency (HF) radio and more unique systems such as troposcatter architectures.
  • HF High Frequency
  • the Air-To-Ground Network 2 can be viewed as the conduit through which the passenger communications traffic as well as the control and network feature set data is transported between the Ground Subsystem 1 and the Air Subsystem 3.
  • the Air-To-Ground Network 2 can be implemented as a single radio frequency link or multiple radio frequency links, with a portion of the signals being routed over different types of links, such as the Air-To-Ground Link and the Satellite Link.
  • the Ground Subsystem 1 consists of Edge Router 140 which connects the voice traffic of the Air-To-Ground Network 2 with the traditional cellular communication network elements, including a Base Station Controller 141 and its associated Mobile Switching Center 142 with its Visited Location Register, Home Location Register to interconnect the voice traffic to the Public Switched Telephone Network 144, and other such functionalities.
  • the Base Station Controller 141 is connected to the Internet 147 via Public Switched Data Network 143 for call completions.
  • Edge Router 140 also provides interconnection of the data traffic to the Internet 147, Public Switched Data Network 144 via Voice Over IP Server 146, and other such functionalities. These include the Authentication Server, Operating Subsystems, CALEA, and BSS servers 145.
  • the ground-based Base Station Controllers 141 of the non-terrestrial cellular communication network The enhanced functionality described below and provided by the Air Subsystem 3, the Air-To-Ground Network 2, and the ground-based Base Station Controllers 141 renders the provision of services to the passengers' wireless devices 101 located in an aircraft transparent to the passengers.
  • Figure 2 illustrates the architecture of a typical aircraft-based network for passengers' wireless devices as embodied in a multi-passenger commercial aircraft 200.
  • This system comprises a plurality of elements used to implement a communication backbone that is used to enable wireless communication for a plurality of wireless communication devices of diverse nature.
  • the aircraft-based network for passengers' wireless devices comprises a Local Area Network 206 that includes a radio frequency communication system 201 that uses a spread spectrum paradigm and having a short range of operation.
  • This network 206 supports both circuit-switched and packet-switched connections from passengers' wireless devices 221-224 and interconnects the communications of these passengers' wireless devices 221-224 via a gateway transceiver or transceivers 210 to the Public Switched Telephone Network (PSTN) 144 and other destinations, such as the Internet 147 or Public Switched Data Network (PDSN).
  • PSTN Public Switched Telephone Network
  • PDSN Public Switched Data Network
  • the passengers' wireless devices 221-224 include a diversity of communication devices, such as laptop computers 221 , cellular telephones 222, MP3 music players (not shown), Personal Digital Assistants (PDA) (not shown), WiFi-based devices 223, Wi Max-based devices 224, and the like, and for simplicity of description are all collectively termed “passengers' wireless devices” herein, regardless of their implementation specific details.
  • communication devices such as laptop computers 221 , cellular telephones 222, MP3 music players (not shown), Personal Digital Assistants (PDA) (not shown), WiFi-based devices 223, Wi Max-based devices 224, and the like, and for simplicity of description are all collectively termed “passengers' wireless devices” herein, regardless of their implementation specific details.
  • the basic elements of the aircraft-based network for passengers' wireless devices comprises at least one antenna 205 or means of coupling electromagnetic energy to/from the Air Subsystem 3 located within the aircraft 200 which serves to communicate with the plurality of passengers' wireless devices 221-224 located within the aircraft 200.
  • the at least one antenna 205 is connected to a wireless controller 201
  • the wireless controller 201 includes at least one low power radio frequency transceiver 202 for providing a circuit switched communication space using a wireless communication paradigm, such as PCS, CDMA, or GSM, for example.
  • the wireless controller 201 includes a low power radio frequency transceiver 203 for providing a data-based packet switched communication space using a wireless communication paradigm, such as WiFi (which could also convey packet switched Voice over Internet Protocol (VoIP)).
  • a wireless communication paradigm such as WiFi (which could also convey packet switched Voice over Internet Protocol (VoIP)).
  • the wireless controller 201 includes a power control segment 204 that serves to regulate the power output of the plurality of passengers' wireless devices. It also serves to, by RF noise or jamming means, prevent In-Cabin passengers' wireless devices from directly and errantly accessing the ground network when in a non- terrestrial mode.
  • the ultra-low airborne transmit power levels feature represents a control by the Power Control element 204 of the wireless controller 201 of the aircraft- based network for passengers' wireless devices to regulate the output signal power produced by the passengers' wireless devices 221 -224 to minimize the likelihood of receipt of a cellular signal by ground-based cell sites or ground-based passengers' wireless devices.
  • the wireless controller 201 is connected via a Local Area Network 206 to a plurality of other elements which serve to provide services to the passengers' wireless devices 221-224. These other elements can include an Aircraft Interface 209 for providing management, switching, routing, and aggregation functions for the communication transmissions of the passengers' wireless devices.
  • a data acquisition element 207 serves to interface with a plurality of flight system sensors 21 1-214 and a Global Positioning System element 216 to collect data from a plurality of sources as
  • pilot communication devices such as the display 217 and headset 218, are connected to this Local Area Network 206 either via a wired connection or a wireless connection.
  • a gateway transceiver(s) 210 is used to interconnect the Aircraft Interface 209 to an antenna 215 to enable signals to be transmitted from the aircraft- based network for passengers' wireless devices to transceivers located on the ground. Included in these components is a communications router function to forward the communication signals to the proper destinations. Thus, signals that are destined for passengers on the aircraft are routed to these individuals, while signals routed to passengers located, for example, on the ground are routed to the Ground Subsystem.
  • Aircraft antenna patterns that typically minimize nadir (Earth directed) effective radiated power (ERP) may be used in the implementation of the antenna(s) 215 on the aircraft to serve the aircraft-based network for passengers' wireless devices.
  • the passenger access to electronic communications typically is regulated via a passenger's wireless device registration process, where each electronic device must be identified, authenticated, and authorized to receive service. Since the aircraft is a self-contained environment with respect to the wireless communications between the passengers' wireless devices and the airborne wireless network extant in the aircraft, all communications are regulated by the network controller. Thus, when a passenger activates their passenger's wireless device, a communication session is initiated between the passenger's wireless device and the network controller to identify the type of device the passenger is using and, thus, its wireless protocol. A "splash screen" is delivered to the passenger on their wireless device to announce entry into the wireless network portal.
  • the network controller transmits a set of login displays to the passenger's wireless device to enable the passenger to identify themselves and validate their identity (if the passenger's wireless device is not equipped to automatically perform these tasks via a smart client which automatically logs the passenger into the network).
  • the passenger's wireless device is provided with a unique electronic identification (IP address), and the network can respond to the passenger's wireless
  • the authentication process may include the use of security processes, such as a password, scan of a passenger immutable characteristic (fingerprint, retina scan, etc.), and the like.
  • the Customized Electronic Services Delivery System 300 can be located on the ground as shown in Figure 3 or can optionally be implemented in whole or in part on the individual aircraft 320, 321. For simplicity of description, the Customized Electronic Services Delivery System 300 is shown herein as implemented on the ground and is used to serve a plurality of aircraft 320, 321.
  • content can include passenger generated content 361 , such as photographs of travel destinations, and community generated content 361 , such as a bulletin board where passengers can post comments and descriptions of various topics, such as ratings of restaurants at the destination to which the aircraft is traveling.
  • FIG. 3 illustrates, in block diagram form, the architecture of the Customized Electronic Services Delivery System 300.
  • a plurality of aircraft 320, 321 each having their respective set of passengers 360, (including passengers 330, 331 , 335, 336, for example) are shown as being connected via radio frequency links 301 , 302 to the Customized Electronic Services Delivery System 300.
  • passengers 330, 331 , 335, 336 for example
  • Electronic Services Delivery System 300 for each aircraft is a set of databases 341-34N which store data relating to the passengers 360 in aircraft 321 as well as their travel and entertainment preferences and travel itinerary (see Figures 5, 7, and 8).
  • the Customized Electronic Services Delivery System 300 has a Processor 31 1 which runs a plurality of programs, such as Destination-Based Services Management System 312 and Passenger-Based Content Management System 313, as are described below, and the administration routines.
  • a plurality of content sources 351-35M optionally can be included in Customized Electronic Services Delivery System 300 or may be accessed via communication links (not shown) to remote sites where the content sources are located and managed either by the airline or third party vendors.
  • the communications apparatus (such as that shown in Figure 2) located on an aircraft 321 establish wireless communications with the Customized Electronic Services Delivery System 300, which in turn establishes communication sessions with the active ones of passengers' wireless devices located on the aircraft to offer and provide electronic services.
  • the electronic services are customized for the passenger and may include in-flight entertainment services, such as multi-media presentations, as well as destination-based services which link the passenger's existing travel plans with offers for additional services that are available to the passenger at their nominal destination and their planned travel schedule.
  • the initiation of communication sessions by the passenger's wireless device includes the passenger's wireless device being identified and authenticated by the network on board the aircraft (as described above) in conjunction with the Customized Electronic Services Delivery System 300, so the passenger's wireless device is provided with a unique identification, and the Customized Electronic Services Delivery System 300 can respond to the passenger's wireless device without further administrative overhead.
  • the authentication process may include the use of security processes, such as a password, scan of a passenger immutable characteristic (fingerprint, retina scan, etc.), and the like.
  • Passenger-Based Content Management System 313 provides the passengers with access to both standard content offerings and various levels of custom content offerings, which offerings can be customized on a per passenger basis. As shown in Figure 6, there are a number of databases that are included in the
  • the database manager 670 includes software not only to manage the databases 610-690, but also to formulate queries to the passengers to offer electronic services based on the passenger's past history of purchases and present authorizations for services.
  • Airline/Aircraft database 610 that maintains a listing of the various airlines served by the Customized Electronic Services Delivery System 300 and the services that they offer to their passengers, as well as a listing of the aircraft of each airline that are presently in operation.
  • Typical entries for the Aircraft portion 700 of this airline/aircraft database 610 is shown in Figure 7, where the airline 701 , date of the flight as well as day of the week and present time 702, and the airline assigned flight number 704 are listed.
  • origin city/airport 705 estimated time of departure 706, and the departure gate 707.
  • the length of this flight 708 is also listed, as are the destination city/airport 709, estimated time of arrival including an indication of the amount of time the flight is ahead or behind schedule 710, and the arrival gate 71 1.
  • the database can be periodically updated to list the GPS coordinates 712 of this aircraft, and typically provides a listing 713 of the multi-media content resident on board the aircraft.
  • Aircraft operational data can also be included, such as altitude 714, vertical speed 715, horizontal speed 716 and a listing of connecting flights 717 that are available at the destination airport. This data enables the Customized Electronic Services Delivery System 300 to formulate service offerings for the passengers on this flight as well as the delivery of content and offers to the passengers during the flight as is described below.
  • a Passenger database 620 maintains a listing of the passenger attributes, typically maintained for the frequent flyer passengers for the various airlines.
  • the previous behavior database 805 can record information that is specific in terms of the past browsing history of the passenger, including sites visited and the time spent on each site. This enables the system to estimate the passenger's interest in various subjects and products in order to offer electronic services that are pertinent to this passenger.
  • passenger generated content 870 can be provided, such as photographs of travel destinations.
  • the Marketing database 630 can make use of this data in the Passenger database 620 as well as data relating to destination services as stored in Destination Services database 640 (as described in more detail below) to generate offerings of additional services to the passenger based on their present travel plans.
  • Additional databases 650 can be maintained to support additional services and feature offerings and a passenger generated content database 690 can provide information, such as photographs of travel destinations, which data is obtained from the passenger specific entry 800 in the Passenger database 620.
  • the Customized Electronic Services Delivery System 300 can offer a number of electronic services that are customized for the passenger and, for the sake of illustration, two such electronic services are disclosed herein.
  • Destination-Based Services Management System 312 and Passenger-Based Content Management System 313 each provide a set of electronic services and makes use of the aircraft identification, passenger identification and authentication, and communication management capabilities provided by Processor 31 1 in Customized Electronic Services Delivery System 300. These electronic services typically are activated for each aircraft when the aircraft is in flight.
  • FIG. 4 illustrates, in flow diagram form, the typical operation of the Passenger-Based Content Management System 313 segment of the Customized
  • FIG. 284359 Electronic Services Delivery System 300 for the delivery of content that is customized to the passenger
  • Figure 6 illustrates, in block diagram form, a typical configuration of databases used by the Customized Electronic Services Delivery System 300.
  • the Passenger-Based Content Management System 313 maintains a listing in its database of the various content that are available from a plurality of sources, which sources can be resident on the aircraft, on the ground at the Customized Electronic Services Delivery System 300, or remotely located.
  • These content sources provide a multitude of entertainment and information, which are mapped by the Customized Electronic Services Delivery System 300 into a plurality of data streams that are available to the passengers on the aircraft. As shown in Figure 5, these can be categorized into typical category offerings of movies and videos 531 , live television 532, live radio 533, music and audio entertainment 534, e- commerce and shopping 535, video games 536, and gambling and other interactive services 537, wherein each of these category offerings typically include multiple choices available to the passenger.
  • the Passenger-Based Content Management System 313 initiates its operation and either launches one of the two processes (402-405 or 412-416) illustrated in Figure 4 or simultaneously runs both of these processes.
  • a first process is the passenger-generated request process (402-405), which is also termed “content request pull”, while the second process is the system-generated query (412-416), which is also termed "content request push”.
  • the two processes are described as being executed sequentially, with the order of presentation of these two processes being arbitrary.
  • Passenger-Based Content Management System 313 responds to a passenger's wireless device generated content request, where the passenger requests a content delivery service from the set of content services available from Passenger-Based Content Management System 313.
  • Passenger-Based Content Management System 313 verifies that the passenger's wireless device is subscribed to the requested content delivery service and the content is presently available. If the passenger is not pre-paid for the requested content delivery service,
  • the Passenger-Based Content Management System 313 executes a payment routine (not shown) where the passenger can pay for the requested content delivery service.
  • the Passenger-Based Content Management System 313 updates the Passenger Attributes Database entries for this passenger, to record the present content selection for the passenger and thereby to maintain a current history of the passenger preferences.
  • the Passenger-Based Content Management System 313 executes the retrieval of the requested content and delivers the content to the passenger via the aircraft-based network described in Figure 2.
  • Passenger-Based Content Management System 313 determines whether additional passenger requests remain to be served and, if so, returns to step 401 where the next one of these requests are served. If not, processing exits at step 407.
  • the Passenger-Based Content Management System 313 can serve all of the passenger requests in steps 402-405 or can alternate between this routine and the routine of steps 412-416.
  • Passenger-Based Content Management System 313 initiates a query to a selected passenger's wireless device, where the Passenger-Based Content Management System 313 offers the selected passenger a content delivery service from the set of content services available from Passenger-Based Content Management System 313. The passenger can view this query and then the passenger, at step 413, can elect to receive a content service from the Passenger-Based Content Management System 313.
  • the Passenger-Based Content Management System 313 verifies that the passenger's wireless device is subscribed to the requested content delivery service and the content is presently available. If the passenger is not pre-paid for the requested content delivery service, then the Passenger-Based Content Management System 313 executes a payment routine (not shown) where the passenger can pay for the requested content delivery service.
  • the Passenger-Based Content Management System 313 updates the Passenger Attributes Database entries for this passenger, to record the present content selection for the passenger and thereby to maintain a current history of
  • the Passenger-Based Content Management System 313 executes the retrieval of the requested content and delivers the content to the passenger via the aircraft-based network described in Figure 2.
  • Passenger-Based Content Management System 313 determines whether additional passenger requests remain to be served and, if so, returns to step 401 where the next one of these requests are served. If not, processing exits at step 407.
  • Figure 9 illustrates, in flow diagram form, the typical operation of the Destination-Based Services Management System 312 segment of the Customized Electronic Services Delivery System 300.
  • Figures 7 - 8 illustrate typical sets of data used by the Customized Electronic Services Delivery System for the delivery of destination-based services. These differ from the content described above in that the offerings are passenger specific and modified to reflect the travel plans of the passenger; hence, they are termed "destination-based services”.
  • the Destination-Based Services Management System 312 initiates its operation and either launches one of the two processes (902-905 or 912- 916) illustrated in Figure 9 or simultaneously runs both of these processes.
  • a first process is the passenger-generated request process (902-905), which is also termed “services request pull”, while the second process is the system generated query (912- 916), which is also termed “services request push”.
  • the two processes are described as being executed sequentially.
  • Destination-Based Services Management System 312 responds to a passenger's wireless device generated destination-based services request, where the passenger requests a destination-based service from the set of standard destination-based services available from Destination-Based Services Management System 312.
  • Destination-Based Services Management System 312 verifies that the passenger's wireless device is subscribed to the requested destination-based service and the destination-based service is presently available. If
  • the Destination-Based Services Management System 312 executes a payment routine (not shown) where the passenger can pay for the requested destination based service.
  • the Destination-Based Services Management System 312 updates the Passenger Attributes Database entries for this passenger, to record the present destination-based service selection for the passenger and thereby to maintain a current history of the passenger preferences.
  • the Destination-Based Services Management System 312 executes a reservation for the requested destination-based service and delivers a receipt for the destination-based service to the passenger via the aircraft-based network described in Figure 2.
  • Destination-Based Services Management System 312 determines whether additional passenger requests remain to be served and, if so, returns to step 901 where the next one of these requests are served. If not, processing exits at step 907.
  • Destination-Based Services Management System 312 initiates a query to a selected passenger's wireless device, where the Destination-Based Services Management System 312 offers the selected passenger a destination-based service from the set of destination-based services available from Destination-Based Services Management System 312 (as described in additional detail below).
  • the passenger at step 913 can elect to order a destination-based service from the Destination-Based Services Management System 312.
  • the Destination-Based Services Management System 312 verifies that the passenger is subscribed to the requested destination-based service and the service is presently available.
  • the Destination-Based Services Management System 312 executes a payment routine (not shown) where the passenger can pay for the requested destination-based service, using a credit card or charging the service to their hotel room at the destination, or any other means of payment that can be used.
  • the Destination-Based Services Management System 312 updates the Passenger Attributes Database entries for this passenger, to record the
  • the Destination-Based Services Management System 312 executes the reservation for the requested destination-based service and delivers a receipt for the destination-based service to the passenger via the aircraft-based network described in Figure 2.
  • Destination-Based Services Management System 312 determines whether additional passenger requests remain to be served and, if so, returns to step 901 where the next one of these requests are served. If not, processing exits at step 907.
  • the Customized Electronic Services Delivery System 300 can offer passenger- and destination-specific offerings for the passenger traveling on a flight. Since the flight destination, the passenger identification (and seat number on the flight), and the passenger preferences are known, the Customized Electronic Services Delivery System 300 can use the data in the marketing database 630 to create travel package offerings for a selected passenger. For example, the Destination-Based Services Management System 312 can cycle through the passengers on a particular flight and determine which passengers are traveling for pleasure (for example). The Destination-Based Services Management System 312 can read the arrival time, destination resort, ground transportation, as well as the number of people in this travel party from the databases.
  • the Destination-Based Services Management System 312 can then offer restaurant reservations for this passenger and their traveling companions, selecting the restaurant based on this passenger's past recorded preferences as well as restaurants at this location that are partner with the airline on which the passenger is traveling or the resort at which the passenger is staying.
  • resort activities can be offered and reservations made using the Destination- Based Services Management System 312, again since the passenger destination and preferences are known as well as possibly past activities engaged by the passenger.
  • the destination-based services can also be utilized in the case of bad weather and cancelled flights.
  • 284359 delayed or cancelled can be offered ground transportation, lodging, and restaurant reservations as a package once the flight is cancelled. This would, in part, reduce the turmoil caused by such travel interruptions and gain a significant amount of goodwill toward the airline for anticipating and accommodating the needs of the passengers. This also enables the airline to route delayed passengers to partner hotels and restaurants, thereby providing additional benefits to the airline.
  • the Customized Electronic Services Delivery System stores data indicative of a plurality of electronic services that are available to passengers who are located onboard an aircraft, as well as data indicative of preferences of passengers.
  • the electronic services include in-flight entertainment services, as well as destination-based services which link the passenger's existing travel plans with offers for additional services that are available to the passenger at their nominal destination and their planned travel schedule.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Development Economics (AREA)
  • Strategic Management (AREA)
  • Computer Security & Cryptography (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The Customized Electronic Services Delivery System provides customized electronic services to passengers who are located onboard an aircraft by storing data indicative of a plurality of electronic services that are available to passengers who are located onboard an aircraft, as well as data indicative of preferences of passengers for the plurality of electronic services. Once a correspondence is made between the electronic services and an identified passenger, the Customized Electronic Services Delivery System advises the passenger of the availability of the customized services and establishes wireless communications between the passenger's electronic device and the selected electronic service. The electronic services include in-flight entertainment services as well as destination-based services which link the passenger's existing travel plans with offers for additional services that are available to the passenger at their nominal destination and their planned travel schedule.

Description

SYSTEM FOR CUSTOMIZING ELECTRONIC SERVICES FOR DELIVERY TO A PASSENGER IN AN AIRBORNE WIRELESS CELLULAR NETWORK
FIELD OF THE INVENTION
This invention relates to cellular communications and, in particular, to a system that enables a passenger's wireless device to receive customized electronic services in an airborne wireless cellular network.
BACKGROUND OF THE INVENTION
It is a problem in the field of wireless communications to manage the wireless services provided to passengers who are located in an aircraft as they roam among cell sites in the non-terrestrial cellular communication network.
In the field of terrestrial cellular communications, it is common for a wireless subscriber to move throughout the area served by the network of their home cellular service provider and maintain their desired subscriber feature set. Feature set availability throughout the home network is managed by the home cellular service provider's database, often termed a Home Location Register (HLR), with data connections to one or more switches (packet or circuit), and various ancillary equipment, such as voice mail and short message servers, to enable this seamless feature set management.
If the wireless subscriber were to transition inter-network, from the coverage area of their home cellular network to a network of the same or another cellular service provider (termed "roaming cellular service provider" herein), the wireless subscriber should have the ability to originate and receive calls in a unified manner, regardless of their location. In addition, it should be possible for a given wireless subscriber's feature set to move transparently with them. However, for this feature set transportability to occur, there needs to be database file sharing wherein the home cellular service Home Location Register (HLR) transfers the subscriber's authorized feature set profile to the roaming cellular service provider's database, often called a Visitor Location Register, or VLR. The VLR then recognizes that a given roaming wireless subscriber is authorized for a certain feature set and enables the roaming cellular service provider network to transparently offer these features to the wireless subscriber. In this manner, the
284359 roaming wireless subscriber retains the same authorized feature set, or "subscriber class", as they had on their home cellular service provider network.
When wireless subscribers enter the non-terrestrial cellular communication network (that is, they fly in an aircraft as passengers), they encounter a unique environment that traditionally has been disconnected from the terrestrial cellular network, where the wireless network of the aircraft interfaces the subscriber (also termed "passenger" herein) to various services and content. The aircraft wireless network, therefore, can function as a content filter or can create unique types of content that are directed to the passengers who are on-board the aircraft. The management and generation of this content have yet to be addressed in existing wireless networks. In addition, various services which relate to the subscriber's travel plans and/or the flight on which the subscriber is travelling are presently not offered to the subscriber.
BRIEF SUMMARY OF THE INVENTION
The above-described problems are solved and a technical advance achieved in the field by the present System For Customizing Electronic Services For Delivery To A Subscriber In An Airborne Wireless Cellular Network (termed "Customized Electronic Services Delivery System" herein), which enables a passenger's wireless device, operating in an airborne wireless cellular network, to receive delivery of content which is customized for the particular subscriber.
The Customized Electronic Services Delivery System provides customized electronic services to passengers who are located onboard an aircraft by storing data indicative of a plurality of electronic services that are available to passengers who are located onboard the aircraft. The Customized Electronic Services Delivery System also stores data indicative of preferences of passengers for the plurality of electronic services and associates at least one of the plurality of electronic services with an identified passenger based on the stored data. Once a correspondence is made, the Customized Electronic Services Delivery System advises the passenger of the availability of the customized electronic services and is responsive to the passenger selecting a one of the plurality of electronic services for establishing wireless communications between the passenger's wireless device and the selected one electronic service.
284359 The electronic services that are customized for the passenger include in-flight entertainment services, such as multi-media presentations, as well as destination- based services, which link the passenger's existing travel plans with offers for additional services that are available to the passenger at their nominal destination and their planned travel schedule. The passenger thereby is presented with opportunities during their flight to enhance their travel experience, both in-flight and at their destination.
This provision of the Customized Electronic Services Delivery System is accomplished in part by the use of an "Inner Network" that connects the two segments of the "Outer Network", comprising the Air Subsystem and the ground-based portion of the non-terrestrial cellular communication network. The Inner Network transmits both the subscriber traffic (comprising voice and/or other data) and feature set data between the Air Subsystem and the ground-based portion of the non-terrestrial cellular communication network to thereby enable the passenger's wireless devices that are located in the aircraft to receive consistent wireless communication services in both the terrestrial (ground-based) and non-terrestrial regions.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 illustrates, in block diagram form, the overall architecture of a composite air-to-ground network that interconnects an Air Subsystem with a Ground- Based Communication Network;
Figure 2 illustrates, in block diagram form, the architecture of a typical embodiment of a typical aircraft-based network for wireless devices as embodied in a multi-passenger commercial aircraft;
Figure 3 illustrates, in block diagram form, the architecture of the Customized Electronic Services Delivery System;
Figure 4 illustrates, in flow diagram form, the typical operation of the
Passenger-Based Content Management System segment of the Customized Electronic Services Delivery System for the delivery of content that is customized to the passenger;
284359 Figure 5 illustrates a typical mapping of content sources to passenger interests;
Figure 6 illustrates, in block diagram form, a typical configuration of databases used by the Customized Electronic Services Delivery System;
Figures 7 - 8 illustrate typical sets of data used by the Customized Electronic
Services Delivery System for the delivery of destination-based services and subscriber specific content; and
Figure 9 illustrates, in flow diagram form, the typical operation of the Destination-Based Services Management System segment of the Customized Electronic Services Delivery System for the delivery of destination services that are customized to the specific passenger.
DETAILED DESCRIPTION OF THE INVENTION Overall System Architecture
Figure 1 illustrates, in block diagram form, the overall architecture of a typical non-terrestrial cellular communication network, which includes an Air-To-Ground Network 2 (Inner Network) that interconnects the two elements of an Outer Network, comprising an Air Subsystem 3 and Ground Subsystem 1. This diagram illustrates the basic concepts of the non-terrestrial cellular communication network and, for the purpose of simplicity of illustration, does not comprise all of the elements found in a typical non-terrestrial cellular communication network. The fundamental elements disclosed in Figure 1 provide a teaching of the interrelationship of the various elements which are used to implement a non-terrestrial cellular communication network to provide content to passengers' wireless devices which are located in an aircraft.
The overall concept illustrated in Figure 1 is the provision of an "Inner Network" that connects the two segments of the "Outer Network", comprising the Air
Subsystem 3 and the Ground Subsystem 1 . This is accomplished by the Air-To-Ground Network 2 transmitting both the passenger communication traffic (comprising voice and/or other data) and control information and feature set data between the Air
284359 Subsystem 3 and the Ground Subsystem 1 thereby to enable the passengers' wireless devices that are located in the aircraft to receive services in the aircraft.
Air Subsystem
The "Air Subsystem" is the communications environment that is implemented in the aircraft, and these communications can be based on various technologies, including but not limited to: wired, wireless, optical, acoustic (ultrasonic), and the like. An example of such a network is disclosed in US Patent No. 6,788,935, titled "Aircraft- Based Network For Wireless Subscriber Stations".
The preferred embodiment for the Air Subsystem 3 is the use of wireless technology and for the wireless technology to be native to the passengers' wireless devices that passengers and crew carry on the aircraft. Thus, a laptop computer can communicate via a WiFi or WiMax wireless mode (or via a wired connection, such as a LAN), or a PDA could communicate telephony voice traffic via VoIP (Voice over IP). Likewise, a handheld cell phone that uses the GSM protocol communicates via GSM when inside the aircraft to the Air Subsystem. A CDMA cell phone would use CDMA and an analog AMPS phone would use analog AMPS when inside the aircraft to the Air Subsystem 3. The connection states could be packet switched or circuit switched or both. Overall, the objective on the Air Subsystem 3 is to enable seamless and ubiquitous access to the Air Subsystem 3 for the passengers' wireless devices that are carried by passengers and crew, regardless of the technology used by these wireless devices.
The Air Subsystem 3 also provides the mechanism to manage the provision of services to the passengers' wireless devices that are operating in the aircraft cabin. This management includes not only providing the passenger traffic connectivity but also the availability of non-terrestrial specific feature sets which each passenger is authorized to receive. These features include in-flight entertainment services, such as multi-media presentations, as well as destination-based services which link the passenger's existing travel plans with offers for additional services that are available to the passenger at their nominal destination and their planned travel schedule. The
284359 passenger thereby is presented with opportunities during their flight to enhance their travel experience, both in-flight and at their destination.
The passengers' wireless devices 101 used in the aircraft can be identical to those used on the cellular/PCS ground-based communication network 1 ; however, these passengers' wireless devices 101 are pre-registered with the carrier serving the aircraft and/or users have PIN numbers for authentication. In addition, an antenna interconnects the passengers' wireless devices 101 with the in-cabin Base Transceiver Stations (BTS) 1 1 1 -1 14, which are typically pico-cells with BSC/MSC functions integrated. BTS/BSC/MSC modules are added for each air-interface technology supported. The Switch/Router 122 acts as the bridging function (for media/content and signaling to a limited extent) between the Air Subsystem 3 and the ground-based communication network 1 , since the Switch/Router 122 places a call using the Modem 123 to the ground-based communication network 1 via the Air-To-Ground Network 2.
Air-To-Ground Network The Air-to-Ground Network 2 shown in Figure 1 is clearly one that is based on wireless communications (radio frequency or optical) between the ground-based communications network 1 and the passengers' wireless devices that are located in the aircraft, with the preferred approach being that of a radio frequency connection. This radio frequency connection takes on the form of a cellular topology where typically more than one cell describes the geographic footprint or coverage area of the composite Air- To-Ground Network 2. The air-to-ground connection carries both passenger communications traffic and native network signaling traffic.
Alternatively, the Air-To-Ground Network 2 could be achieved through a wireless satellite connection where radio frequency links are established between the aircraft and a satellite and between the satellite and the ground-based communications network 1 , respectively. These satellites could be geosynchronous (appears to be stationary from an earth reference point) or moving, as is the case for Medium Earth Orbit (MEO) and Low Earth Orbit (LEO). Examples of satellites include, but are not limited to: Geosynchronous Ku Band satellites, DBS satellites (Direct Broadcast Satellite), the Iridium system, the Globalstar system, and the Inmarsat system. In the
284359 case of specialized satellites, such as those used for Direct Broadcast Satellite, the link typically is unidirectional, that is, from the satellite to the receiving platform, in this case an aircraft. In such a system, a link transmitting unidirectionally from the aircraft is needed to make the communication bidirectional. This link could be satellite or ground- based wireless in nature as previously described. Last, other means for communicating to aircraft include broad or wide area links such as High Frequency (HF) radio and more unique systems such as troposcatter architectures.
The Air-To-Ground Network 2 can be viewed as the conduit through which the passenger communications traffic as well as the control and network feature set data is transported between the Ground Subsystem 1 and the Air Subsystem 3. The Air-To-Ground Network 2 can be implemented as a single radio frequency link or multiple radio frequency links, with a portion of the signals being routed over different types of links, such as the Air-To-Ground Link and the Satellite Link. Thus, there is a significant amount of flexibility in the implementation of this system, using the various components and architectural concepts disclosed herein in various combinations.
Ground Subsystem
The Ground Subsystem 1 consists of Edge Router 140 which connects the voice traffic of the Air-To-Ground Network 2 with the traditional cellular communication network elements, including a Base Station Controller 141 and its associated Mobile Switching Center 142 with its Visited Location Register, Home Location Register to interconnect the voice traffic to the Public Switched Telephone Network 144, and other such functionalities. In addition, the Base Station Controller 141 is connected to the Internet 147 via Public Switched Data Network 143 for call completions. Edge Router 140 also provides interconnection of the data traffic to the Internet 147, Public Switched Data Network 144 via Voice Over IP Server 146, and other such functionalities. These include the Authentication Server, Operating Subsystems, CALEA, and BSS servers 145.
Thus, the communications between the passengers' wireless devices 101 located in an aircraft and the Ground Subsystem 1 of the ground-based communication network are transported via the Air Subsystem 3 and the Air-To-Ground Network 2 to
284359 the ground-based Base Station Controllers 141 of the non-terrestrial cellular communication network. The enhanced functionality described below and provided by the Air Subsystem 3, the Air-To-Ground Network 2, and the ground-based Base Station Controllers 141 renders the provision of services to the passengers' wireless devices 101 located in an aircraft transparent to the passengers.
Typical Aircraft-Based Network
Figure 2 illustrates the architecture of a typical aircraft-based network for passengers' wireless devices as embodied in a multi-passenger commercial aircraft 200. This system comprises a plurality of elements used to implement a communication backbone that is used to enable wireless communication for a plurality of wireless communication devices of diverse nature. The aircraft-based network for passengers' wireless devices comprises a Local Area Network 206 that includes a radio frequency communication system 201 that uses a spread spectrum paradigm and having a short range of operation. This network 206 supports both circuit-switched and packet-switched connections from passengers' wireless devices 221-224 and interconnects the communications of these passengers' wireless devices 221-224 via a gateway transceiver or transceivers 210 to the Public Switched Telephone Network (PSTN) 144 and other destinations, such as the Internet 147 or Public Switched Data Network (PDSN). The wireless passengers thereby retain their single number identity as if they were directly connected to the Public Switched Telephone Network 144. The passengers' wireless devices 221-224 include a diversity of communication devices, such as laptop computers 221 , cellular telephones 222, MP3 music players (not shown), Personal Digital Assistants (PDA) (not shown), WiFi-based devices 223, Wi Max-based devices 224, and the like, and for simplicity of description are all collectively termed "passengers' wireless devices" herein, regardless of their implementation specific details.
The basic elements of the aircraft-based network for passengers' wireless devices comprises at least one antenna 205 or means of coupling electromagnetic energy to/from the Air Subsystem 3 located within the aircraft 200 which serves to communicate with the plurality of passengers' wireless devices 221-224 located within the aircraft 200. The at least one antenna 205 is connected to a wireless controller 201
284359 that encompasses a plurality of elements that serve to regulate the wireless Communications with the plurality of passengers' wireless devices 221-224. The wireless controller 201 includes at least one low power radio frequency transceiver 202 for providing a circuit switched communication space using a wireless communication paradigm, such as PCS, CDMA, or GSM, for example. In addition, the wireless controller 201 includes a low power radio frequency transceiver 203 for providing a data-based packet switched communication space using a wireless communication paradigm, such as WiFi (which could also convey packet switched Voice over Internet Protocol (VoIP)).
Finally, the wireless controller 201 includes a power control segment 204 that serves to regulate the power output of the plurality of passengers' wireless devices. It also serves to, by RF noise or jamming means, prevent In-Cabin passengers' wireless devices from directly and errantly accessing the ground network when in a non- terrestrial mode. The ultra-low airborne transmit power levels feature represents a control by the Power Control element 204 of the wireless controller 201 of the aircraft- based network for passengers' wireless devices to regulate the output signal power produced by the passengers' wireless devices 221 -224 to minimize the likelihood of receipt of a cellular signal by ground-based cell sites or ground-based passengers' wireless devices.
It is obvious that these above-noted segments of the wireless controller 201 can be combined or parsed in various ways to produce an implementation that differs from that disclosed herein. The particular implementation described is selected for the purpose of illustrating the concept of the invention and is not intended to limit the applicability of this concept to other implementations.
The wireless controller 201 is connected via a Local Area Network 206 to a plurality of other elements which serve to provide services to the passengers' wireless devices 221-224. These other elements can include an Aircraft Interface 209 for providing management, switching, routing, and aggregation functions for the communication transmissions of the passengers' wireless devices. A data acquisition element 207 serves to interface with a plurality of flight system sensors 21 1-214 and a Global Positioning System element 216 to collect data from a plurality of sources as
284359 described below. Furthermore, pilot communication devices, such as the display 217 and headset 218, are connected to this Local Area Network 206 either via a wired connection or a wireless connection.
Finally, a gateway transceiver(s) 210 is used to interconnect the Aircraft Interface 209 to an antenna 215 to enable signals to be transmitted from the aircraft- based network for passengers' wireless devices to transceivers located on the ground. Included in these components is a communications router function to forward the communication signals to the proper destinations. Thus, signals that are destined for passengers on the aircraft are routed to these individuals, while signals routed to passengers located, for example, on the ground are routed to the Ground Subsystem. Aircraft antenna patterns that typically minimize nadir (Earth directed) effective radiated power (ERP) may be used in the implementation of the antenna(s) 215 on the aircraft to serve the aircraft-based network for passengers' wireless devices.
Passenger Login For System Access On each aircraft, the passenger access to electronic communications typically is regulated via a passenger's wireless device registration process, where each electronic device must be identified, authenticated, and authorized to receive service. Since the aircraft is a self-contained environment with respect to the wireless communications between the passengers' wireless devices and the airborne wireless network extant in the aircraft, all communications are regulated by the network controller. Thus, when a passenger activates their passenger's wireless device, a communication session is initiated between the passenger's wireless device and the network controller to identify the type of device the passenger is using and, thus, its wireless protocol. A "splash screen" is delivered to the passenger on their wireless device to announce entry into the wireless network portal. Once this is established, the network controller transmits a set of login displays to the passenger's wireless device to enable the passenger to identify themselves and validate their identity (if the passenger's wireless device is not equipped to automatically perform these tasks via a smart client which automatically logs the passenger into the network). As a result of this process, the passenger's wireless device is provided with a unique electronic identification (IP address), and the network can respond to the passenger's wireless
10
284359 device without further administrative overhead. The authentication process may include the use of security processes, such as a password, scan of a passenger immutable characteristic (fingerprint, retina scan, etc.), and the like.
Once the passenger's wireless device is logged in, the passenger can access the free standard electronic services that are available from the network or customized electronic services for the particular passenger as is described below. The screens that are presented to the passengers can be customized to present the branding of the airline on which the passenger is traveling. The Customized Electronic Services Delivery System 300 can be located on the ground as shown in Figure 3 or can optionally be implemented in whole or in part on the individual aircraft 320, 321. For simplicity of description, the Customized Electronic Services Delivery System 300 is shown herein as implemented on the ground and is used to serve a plurality of aircraft 320, 321. The content sources 351-35M on Figures 3 and 5, which are contained in the Customized Electronic Services Delivery System 300, provide a multitude of entertainment and information, which are mapped into a plurality of data streams that are available to the passengers on the aircraft. As shown in Figure 5, these can be categorized into typical category offerings of movies and videos 531 , live television 532, live radio 533, music and audio entertainment 534, e-commerce and shopping 535, video games 536, gambling and other interactive services 537, social networking 538, "Flightgeist" (flight-related travel information) 539, wherein each of these category offerings typically include multiple choices available to the passenger. In addition, content can include passenger generated content 361 , such as photographs of travel destinations, and community generated content 361 , such as a bulletin board where passengers can post comments and descriptions of various topics, such as ratings of restaurants at the destination to which the aircraft is traveling.
Customized Electronic Services Delivery System
Figure 3 illustrates, in block diagram form, the architecture of the Customized Electronic Services Delivery System 300. A plurality of aircraft 320, 321 , each having their respective set of passengers 360, (including passengers 330, 331 , 335, 336, for example) are shown as being connected via radio frequency links 301 , 302 to the Customized Electronic Services Delivery System 300. Included in the Customized
1 1
284359 Electronic Services Delivery System 300 for each aircraft, such as aircraft 321 , is a set of databases 341-34N which store data relating to the passengers 360 in aircraft 321 as well as their travel and entertainment preferences and travel itinerary (see Figures 5, 7, and 8). In addition, the Customized Electronic Services Delivery System 300 has a Processor 31 1 which runs a plurality of programs, such as Destination-Based Services Management System 312 and Passenger-Based Content Management System 313, as are described below, and the administration routines. A plurality of content sources 351-35M optionally can be included in Customized Electronic Services Delivery System 300 or may be accessed via communication links (not shown) to remote sites where the content sources are located and managed either by the airline or third party vendors.
In operation, the communications apparatus (such as that shown in Figure 2) located on an aircraft 321 establish wireless communications with the Customized Electronic Services Delivery System 300, which in turn establishes communication sessions with the active ones of passengers' wireless devices located on the aircraft to offer and provide electronic services. The electronic services are customized for the passenger and may include in-flight entertainment services, such as multi-media presentations, as well as destination-based services which link the passenger's existing travel plans with offers for additional services that are available to the passenger at their nominal destination and their planned travel schedule. The initiation of communication sessions by the passenger's wireless device includes the passenger's wireless device being identified and authenticated by the network on board the aircraft (as described above) in conjunction with the Customized Electronic Services Delivery System 300, so the passenger's wireless device is provided with a unique identification, and the Customized Electronic Services Delivery System 300 can respond to the passenger's wireless device without further administrative overhead. The authentication process may include the use of security processes, such as a password, scan of a passenger immutable characteristic (fingerprint, retina scan, etc.), and the like.
Passenger-Based Content Management System 313 provides the passengers with access to both standard content offerings and various levels of custom content offerings, which offerings can be customized on a per passenger basis. As shown in Figure 6, there are a number of databases that are included in the
12
284359 Customized Electronic Services Delivery System 300 and which communicate with the Processor 31 1 . The database manager 670 includes software not only to manage the databases 610-690, but also to formulate queries to the passengers to offer electronic services based on the passenger's past history of purchases and present authorizations for services.
These databases typically include an Airline/Aircraft database 610 that maintains a listing of the various airlines served by the Customized Electronic Services Delivery System 300 and the services that they offer to their passengers, as well as a listing of the aircraft of each airline that are presently in operation. Typical entries for the Aircraft portion 700 of this airline/aircraft database 610 is shown in Figure 7, where the airline 701 , date of the flight as well as day of the week and present time 702, and the airline assigned flight number 704 are listed. In conjunction with this data are the particulars for the flight that are associated with this flight, such as origin city/airport 705, estimated time of departure 706, and the departure gate 707. The length of this flight 708 is also listed, as are the destination city/airport 709, estimated time of arrival including an indication of the amount of time the flight is ahead or behind schedule 710, and the arrival gate 71 1. The database can be periodically updated to list the GPS coordinates 712 of this aircraft, and typically provides a listing 713 of the multi-media content resident on board the aircraft. Aircraft operational data can also be included, such as altitude 714, vertical speed 715, horizontal speed 716 and a listing of connecting flights 717 that are available at the destination airport. This data enables the Customized Electronic Services Delivery System 300 to formulate service offerings for the passengers on this flight as well as the delivery of content and offers to the passengers during the flight as is described below.
A Passenger database 620 maintains a listing of the passenger attributes, typically maintained for the frequent flyer passengers for the various airlines. A typical passenger-specific entry 800 for the Passenger database 620 as shown in Figure 8, where the passenger name 860, their demographic profile (including credit card information) 850, list of frequent flyer programs 865, and the type of travel 855, are listed. Data indicative of the past activities of this passenger are listed, such as previous behavior (activities on flight) 805, previous purchases 810, likely purchases
13
284359 815 as estimated by statistical prediction programs, movie preferences 820, game preferences 825, and audio preferences 830 are stored. Finally, the present trip for this passenger is characterized, with the destination lodging 840, ground transportation 835, and activity preferences 845 for this type of destination or for this particular destination being noted. The previous behavior database 805 can record information that is specific in terms of the past browsing history of the passenger, including sites visited and the time spent on each site. This enables the system to estimate the passenger's interest in various subjects and products in order to offer electronic services that are pertinent to this passenger. Finally, passenger generated content 870 can be provided, such as photographs of travel destinations.
The Marketing database 630 can make use of this data in the Passenger database 620 as well as data relating to destination services as stored in Destination Services database 640 (as described in more detail below) to generate offerings of additional services to the passenger based on their present travel plans. Additional databases 650 can be maintained to support additional services and feature offerings and a passenger generated content database 690 can provide information, such as photographs of travel destinations, which data is obtained from the passenger specific entry 800 in the Passenger database 620.
Passenger-Based Content Management System The Customized Electronic Services Delivery System 300 can offer a number of electronic services that are customized for the passenger and, for the sake of illustration, two such electronic services are disclosed herein. Destination-Based Services Management System 312 and Passenger-Based Content Management System 313 each provide a set of electronic services and makes use of the aircraft identification, passenger identification and authentication, and communication management capabilities provided by Processor 31 1 in Customized Electronic Services Delivery System 300. These electronic services typically are activated for each aircraft when the aircraft is in flight.
Figure 4 illustrates, in flow diagram form, the typical operation of the Passenger-Based Content Management System 313 segment of the Customized
14
284359 Electronic Services Delivery System 300 for the delivery of content that is customized to the passenger, while Figure 6 illustrates, in block diagram form, a typical configuration of databases used by the Customized Electronic Services Delivery System 300. The Passenger-Based Content Management System 313 maintains a listing in its database of the various content that are available from a plurality of sources, which sources can be resident on the aircraft, on the ground at the Customized Electronic Services Delivery System 300, or remotely located.
These content sources provide a multitude of entertainment and information, which are mapped by the Customized Electronic Services Delivery System 300 into a plurality of data streams that are available to the passengers on the aircraft. As shown in Figure 5, these can be categorized into typical category offerings of movies and videos 531 , live television 532, live radio 533, music and audio entertainment 534, e- commerce and shopping 535, video games 536, and gambling and other interactive services 537, wherein each of these category offerings typically include multiple choices available to the passenger.
At step 401 , the Passenger-Based Content Management System 313 initiates its operation and either launches one of the two processes (402-405 or 412-416) illustrated in Figure 4 or simultaneously runs both of these processes. A first process is the passenger-generated request process (402-405), which is also termed "content request pull", while the second process is the system-generated query (412-416), which is also termed "content request push". For the sake of simplicity of description, the two processes are described as being executed sequentially, with the order of presentation of these two processes being arbitrary.
At step 402, Passenger-Based Content Management System 313 responds to a passenger's wireless device generated content request, where the passenger requests a content delivery service from the set of content services available from Passenger-Based Content Management System 313. In response to the receipt of a content request from the passenger's wireless device at step 403, Passenger-Based Content Management System 313 verifies that the passenger's wireless device is subscribed to the requested content delivery service and the content is presently available. If the passenger is not pre-paid for the requested content delivery service,
15
284359 then the Passenger-Based Content Management System 313 executes a payment routine (not shown) where the passenger can pay for the requested content delivery service.
At step 404, the Passenger-Based Content Management System 313 updates the Passenger Attributes Database entries for this passenger, to record the present content selection for the passenger and thereby to maintain a current history of the passenger preferences. At step 405, the Passenger-Based Content Management System 313 executes the retrieval of the requested content and delivers the content to the passenger via the aircraft-based network described in Figure 2.
At step 406, Passenger-Based Content Management System 313 determines whether additional passenger requests remain to be served and, if so, returns to step 401 where the next one of these requests are served. If not, processing exits at step 407. The Passenger-Based Content Management System 313 can serve all of the passenger requests in steps 402-405 or can alternate between this routine and the routine of steps 412-416.
At step 412, Passenger-Based Content Management System 313 initiates a query to a selected passenger's wireless device, where the Passenger-Based Content Management System 313 offers the selected passenger a content delivery service from the set of content services available from Passenger-Based Content Management System 313. The passenger can view this query and then the passenger, at step 413, can elect to receive a content service from the Passenger-Based Content Management System 313. At step 414, the Passenger-Based Content Management System 313 verifies that the passenger's wireless device is subscribed to the requested content delivery service and the content is presently available. If the passenger is not pre-paid for the requested content delivery service, then the Passenger-Based Content Management System 313 executes a payment routine (not shown) where the passenger can pay for the requested content delivery service.
At step 415, the Passenger-Based Content Management System 313 updates the Passenger Attributes Database entries for this passenger, to record the present content selection for the passenger and thereby to maintain a current history of
16
284359 the passenger preferences. At step 416, the Passenger-Based Content Management System 313 executes the retrieval of the requested content and delivers the content to the passenger via the aircraft-based network described in Figure 2.
At step 406, Passenger-Based Content Management System 313 determines whether additional passenger requests remain to be served and, if so, returns to step 401 where the next one of these requests are served. If not, processing exits at step 407.
Destination-Based Services Management System
Figure 9 illustrates, in flow diagram form, the typical operation of the Destination-Based Services Management System 312 segment of the Customized Electronic Services Delivery System 300. Figures 7 - 8 illustrate typical sets of data used by the Customized Electronic Services Delivery System for the delivery of destination-based services. These differ from the content described above in that the offerings are passenger specific and modified to reflect the travel plans of the passenger; hence, they are termed "destination-based services".
At step 901 , the Destination-Based Services Management System 312 initiates its operation and either launches one of the two processes (902-905 or 912- 916) illustrated in Figure 9 or simultaneously runs both of these processes. A first process is the passenger-generated request process (902-905), which is also termed "services request pull", while the second process is the system generated query (912- 916), which is also termed "services request push". For the sake of simplicity of description, the two processes are described as being executed sequentially.
At step 902, Destination-Based Services Management System 312 responds to a passenger's wireless device generated destination-based services request, where the passenger requests a destination-based service from the set of standard destination-based services available from Destination-Based Services Management System 312. In response to the receipt of a destination-based services request from the passenger's wireless device at step 903, Destination-Based Services Management System 312 verifies that the passenger's wireless device is subscribed to the requested destination-based service and the destination-based service is presently available. If
17
284359 the passenger is not pre-paid for the requested destination-based service, then the Destination-Based Services Management System 312 executes a payment routine (not shown) where the passenger can pay for the requested destination based service.
At step 904, the Destination-Based Services Management System 312 updates the Passenger Attributes Database entries for this passenger, to record the present destination-based service selection for the passenger and thereby to maintain a current history of the passenger preferences. At step 905, the Destination-Based Services Management System 312 executes a reservation for the requested destination-based service and delivers a receipt for the destination-based service to the passenger via the aircraft-based network described in Figure 2.
At step 906, Destination-Based Services Management System 312 determines whether additional passenger requests remain to be served and, if so, returns to step 901 where the next one of these requests are served. If not, processing exits at step 907.
At step 912, Destination-Based Services Management System 312 initiates a query to a selected passenger's wireless device, where the Destination-Based Services Management System 312 offers the selected passenger a destination-based service from the set of destination-based services available from Destination-Based Services Management System 312 (as described in additional detail below). In response to the receipt of a destination-based services query, the passenger at step 913 can elect to order a destination-based service from the Destination-Based Services Management System 312. At step 914, the Destination-Based Services Management System 312 verifies that the passenger is subscribed to the requested destination-based service and the service is presently available. If the passenger is not pre-paid for the requested destination-based service, then the Destination-Based Services Management System 312 executes a payment routine (not shown) where the passenger can pay for the requested destination-based service, using a credit card or charging the service to their hotel room at the destination, or any other means of payment that can be used.
At step 915, the Destination-Based Services Management System 312 updates the Passenger Attributes Database entries for this passenger, to record the
18
284359 present destination-based service selection for the passenger and thereby to maintain a current history of the passenger preferences. At step 916, the Destination-Based Services Management System 312 executes the reservation for the requested destination-based service and delivers a receipt for the destination-based service to the passenger via the aircraft-based network described in Figure 2.
At step 916, Destination-Based Services Management System 312 determines whether additional passenger requests remain to be served and, if so, returns to step 901 where the next one of these requests are served. If not, processing exits at step 907.
Destination-Based Services
As noted above, the Customized Electronic Services Delivery System 300 can offer passenger- and destination-specific offerings for the passenger traveling on a flight. Since the flight destination, the passenger identification (and seat number on the flight), and the passenger preferences are known, the Customized Electronic Services Delivery System 300 can use the data in the marketing database 630 to create travel package offerings for a selected passenger. For example, the Destination-Based Services Management System 312 can cycle through the passengers on a particular flight and determine which passengers are traveling for pleasure (for example). The Destination-Based Services Management System 312 can read the arrival time, destination resort, ground transportation, as well as the number of people in this travel party from the databases. The Destination-Based Services Management System 312 can then offer restaurant reservations for this passenger and their traveling companions, selecting the restaurant based on this passenger's past recorded preferences as well as restaurants at this location that are partner with the airline on which the passenger is traveling or the resort at which the passenger is staying. In addition, resort activities can be offered and reservations made using the Destination- Based Services Management System 312, again since the passenger destination and preferences are known as well as possibly past activities engaged by the passenger.
The destination-based services can also be utilized in the case of bad weather and cancelled flights. The passengers scheduled for a particular flight that is
19
284359 delayed or cancelled can be offered ground transportation, lodging, and restaurant reservations as a package once the flight is cancelled. This would, in part, reduce the turmoil caused by such travel interruptions and gain a significant amount of goodwill toward the airline for anticipating and accommodating the needs of the passengers. This also enables the airline to route delayed passengers to partner hotels and restaurants, thereby providing additional benefits to the airline.
Summary
The Customized Electronic Services Delivery System stores data indicative of a plurality of electronic services that are available to passengers who are located onboard an aircraft, as well as data indicative of preferences of passengers. The electronic services include in-flight entertainment services, as well as destination-based services which link the passenger's existing travel plans with offers for additional services that are available to the passenger at their nominal destination and their planned travel schedule.
20
284359

Claims

CLAIMS What is claimed is:
1. A system for providing customized electronic services to passengers, equipped with wireless electronic devices, who are located onboard an aircraft, comprising: menu means for storing data indicative of electronic services that are available to passengers who are located onboard an aircraft, comprising at least one of said class of electronic services including: multi-media content, destination-based services, and wireless communication services; and link means, responsive to a passenger located onboard said aircraft and equipped with a wireless electronic device selecting a one of said plurality of electronic services, for establishing wireless communications between said passenger electronic device and said selected one electronic service.
2. The system for providing customized electronic services of claim 1 further comprising: login means, responsive to said passenger activating their wireless electronic device, for confirming authorization of said passenger to access said electronic services.
3. The system for providing customized electronic services of claim 1 further comprising: passenger database means for storing data which indicates the identity of a plurality of passengers who are located onboard said aircraft; preference means for storing data indicative of preferences of passengers for said plurality of electronic services; and correlation means for associating at least one passenger preferred electronic service with an identified passenger based on said stored data.
4. The system for providing customized electronic services of claim 3 further comprising:
21
284359 service push means for transmitting data to said identified passenger to offer access via their wireless electronic device to said at least one passenger preferred electronic service.
5. The system for providing customized electronic services of claim 3 further comprising: passenger preference update means responsive to said passenger selecting a one of said plurality of electronic services for updating data stored in said preference means to store data indicative of preferences of said individual passenger for said plurality of electronic services.
6. The system for providing customized electronic services of claim 3 further comprising: wherein said passenger database means further includes data indicative of a destination for said individual passenger; and destination-based service means responsive to said stored data indicative of a destination for said individual passenger for offering said individual passenger a reservation to at least one of destination-based services selected from the class of destination-based services including: ground transportation, lodging, activities, and dining provided at said destination.
7. The system for providing customized electronic services of claim 6 further comprising: reservation means, responsive to said passenger selecting at least one of said destination-based services, for transmitting a receipt for said selected destination- based service to said passenger wireless electronic device.
8. The system for providing customized electronic services of claim 6 further comprising: passenger preference update means responsive to said passenger selecting at least one of said destination-based services, for updating data stored in said
22
284359 preference means to store data indicative of preferences of said individual passenger for said at least one of said destination-based services.
9. The system for providing customized electronic services of claim 1 further comprising: communication services means for managing provision of said wireless communications as a function of at least one of media, bandwidth, and class of service.
10. A method of providing customized electronic services to passengers, equipped with wireless electronic devices, who are located onboard an aircraft, comprising: storing data indicative of electronic services that are available to passengers who are located onboard an aircraft, comprising at least one of said class of electronic services including: multi-media content, destination-based services, and wireless communication services; and establishing, in response to a passenger located onboard said aircraft and equipped with a wireless electronic device selecting a one of said plurality of electronic services, wireless communications between said passenger electronic device and said selected one electronic service.
1 1. The method of providing customized electronic services of claim 10 further comprising: confirming, in response to said passenger activating their wireless electronic device, authorization of said passenger to access said electronic services.
12. The method of providing customized electronic services of claim 10 further comprising: storing passenger data in a passenger database which indicates the identity of a plurality of passengers who are located onboard said aircraft; storing passenger preference data indicative of preferences of passengers for said plurality of electronic services; and
23
284359 associating at least one passenger preferred electronic service with an identified passenger based on said stored data.
13. The method of providing customized electronic services of claim 12 further comprising: transmitting data to said identified passenger to offer access via their wireless electronic device to said at least one passenger preferred electronic service.
14. The method of providing customized electronic services of claim 12 further comprising: updating, in response to said passenger selecting a one of said plurality of electronic services, passenger preference data stored in said passenger preference database to store data indicative of preferences of said individual passenger for said plurality of electronic services.
15. The method of providing customized electronic services of claim 12 further comprising: storing, in said passenger database, data indicative of a destination for said individual passenger; and offering, in response to said stored data indicative of a destination for said individual passenger, said individual passenger a reservation to at least one of said destination-based services selected from the class of destination-based services including: ground transportation, lodging, activities, and dining provided at said destination.
16. The method of providing customized electronic services of claim 15 further comprising: transmitting, in response to said passenger selecting at least one of said destination-based services, a receipt for said selected destination-based service to said passenger wireless electronic device.
24
284359
17. The method of providing customized electronic services of claim 16 further comprising: updating, in response to said passenger selecting at least one of said destination-based services, data stored in said passenger preference database to store data indicative of preferences of said individual passenger for said at least one of said destination-based services.
18. The method of providing customized electronic services of claim 10 further comprising: managing provision of said wireless communications as a function of at least one of media, bandwidth, and class of service.
19. A system for providing customized electronic services to passengers, equipped with wireless electronic devices, who are located onboard an aircraft, comprising: services menu means for storing data indicative of electronic services that are available to passengers who are located onboard an aircraft; passenger preference means for storing data in a passenger preferences database indicative of preferences of said passengers for said electronic services; mapping means for associating a plurality of said passengers who are located onboard an aircraft with said electronic services to create a passenger-specific mapping of electronic services for said plurality of passengers; services offer means for transmitting data to at least one of said passengers indicative of said passenger-specific mapping of electronic services for said at least one passenger; and link means, responsive to a passenger located onboard said aircraft selecting a one of said electronic services, for establishing wireless communications between said passenger electronic device and said selected one electronic service.
20. The system for providing customized electronic services of claim 19 further comprising:
25
284359 passenger preference update means responsive to said passenger selecting said one electronic service for updating data stored in said passenger preference database to store data indicative of preferences of said individual passenger for said plurality of electronic services.
21.The system for providing customized electronic services of claim 19 further comprising: wherein said passenger preference database further includes data indicative of a destination for said individual passenger; and destination-based service means responsive to said stored data indicative of a destination for said individual passenger for offering said individual passenger a reservation to at least one of destination-based services selected from the class of destination-based services including: ground transportation, lodging, activities, and dining provided at said destination.
22. The system for providing customized electronic services of claim 21 further comprising: reservation means, responsive to said passenger selecting at least one of said destination-based services, for transmitting a receipt for said selected destination- based service to said passenger wireless electronic device.
23. The system for providing customized electronic services of claim 21 further comprising: passenger preference update means responsive to said passenger selecting at least one of said destination-based services, for updating data stored in said passenger preference database to store data indicative of preferences of said individual passenger for said at least one of said destination-based services.
24. A method of providing customized electronic services to passengers, equipped with wireless electronic devices, who are located onboard an aircraft, comprising:
26
284359 storing data indicative of electronic services that are available to passengers who are located onboard an aircraft; storing data in a passenger preferences database indicative of preferences of said passengers for said electronic services; associating a plurality of said passengers who are located onboard an aircraft with said electronic services to create a passenger-specific mapping of electronic services for said plurality of passengers; transmitting data to at least one of said passengers indicative of said passenger-specific mapping of electronic services for said at least one passenger; and establishing, in response to a passenger located onboard said aircraft selecting a one of said electronic services, wireless communications between said passenger electronic device and said selected one electronic service.
25. The method of providing customized electronic services of claim 24 further comprising: updating, in response to said passenger selecting said one electronic service, data stored in said passenger preference database to store data indicative of preferences of said individual passenger for said plurality of electronic services.
26. The method of providing customized electronic services of claim 24 further comprising: wherein said passenger preference database further includes data indicative of a destination for said individual passenger; and offering, in response to said stored data indicative of a destination for said individual passenger, said individual passenger a reservation to at least one of destination-based services selected from the class of destination-based services including: ground transportation, lodging, activities, and dining provided at said destination.
27. The method of providing customized electronic services of claim 26 further comprising:
27
284359 transmitting, in response to said passenger selecting at least one of said destination-based services, a receipt for said selected destination-based service to said passenger wireless electronic device.
28. The method of providing customized electronic services of claim 26 further comprising: updating, in response to said passenger selecting at least one of said destination-based services, data stored in said passenger preference database to store data indicative of preferences of said individual passenger for said at least one of said destination-based services.
28
PCT/US2008/083901 2008-01-28 2008-11-18 System for customizing electronic services for delivery to a passenger in an airborne wireless cellular network WO2009097042A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2713393A CA2713393C (en) 2008-01-28 2008-11-18 System for customizing electronic services for delivery to a passenger in an airborne wireless cellular network
EP08871638A EP2250573A1 (en) 2008-01-28 2008-11-18 System for customizing electronic services for delivery to a passenger in an airborne wireless cellular network
CN2008801257684A CN101925890A (en) 2008-01-28 2008-11-18 Transmit the system of the electronic service of customization aloft in the wireless cellular network to the passenger

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US12/021,133 2008-01-28
US12/021,169 2008-01-28
US12/021,125 2008-01-28
US12/021,169 US8068829B2 (en) 2000-10-11 2008-01-28 System for customizing electronic services for delivery to a passenger in an airborne wireless cellular network
US12/021,133 US7702328B2 (en) 2000-10-11 2008-01-28 System for handoff of aircraft-based content delivery to enable passengers to receive the remainder of a selected content from a terrestrial location
US12/021,125 US8078163B2 (en) 2000-10-11 2008-01-28 System for customizing electronic content for delivery to a passenger in an airborne wireless cellular network

Publications (1)

Publication Number Publication Date
WO2009097042A1 true WO2009097042A1 (en) 2009-08-06

Family

ID=40921973

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/US2008/083901 WO2009097042A1 (en) 2008-01-28 2008-11-18 System for customizing electronic services for delivery to a passenger in an airborne wireless cellular network
PCT/US2008/083906 WO2009097044A1 (en) 2008-01-28 2008-11-18 Customizing content for delivery to a passenger in an airborne wireless cellular network
PCT/US2008/083904 WO2009097043A1 (en) 2008-01-28 2008-11-18 System for handoff of aircraft-based content delivery to enable passengers to receive the remainder of a selected content from a terrestrial location

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/US2008/083906 WO2009097044A1 (en) 2008-01-28 2008-11-18 Customizing content for delivery to a passenger in an airborne wireless cellular network
PCT/US2008/083904 WO2009097043A1 (en) 2008-01-28 2008-11-18 System for handoff of aircraft-based content delivery to enable passengers to receive the remainder of a selected content from a terrestrial location

Country Status (5)

Country Link
EP (4) EP2634743A1 (en)
CN (5) CN107070963B (en)
CA (3) CA2713398A1 (en)
HK (1) HK1226219A1 (en)
WO (3) WO2009097042A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2507963A1 (en) * 2009-12-02 2012-10-10 Research In Motion Limited Reliable delivery of content to a push-state aware client device
WO2013127488A1 (en) * 2012-02-28 2013-09-06 Lufthansa Technik Ag Authentication method for a passenger and corresponding software
WO2014049074A1 (en) * 2012-09-28 2014-04-03 Lufthansa Technik Ag Communications system and method for an aircraft
US9318024B1 (en) * 2013-10-04 2016-04-19 Satcom Direct, Inc. MyFlight—An automated service for real-time aircraft position and communication status
US9554275B1 (en) 2014-10-19 2017-01-24 Satcom Direct, Inc. Voice and SMS communication from a mobile device over IP network and satellite or other communication network
US10049508B2 (en) 2014-02-27 2018-08-14 Satcom Direct, Inc. Automated flight operations system
US10102755B1 (en) 2013-10-07 2018-10-16 Satcom Direct, Inc. Method and system for aircraft positioning—automated tracking using onboard global voice and high-speed data
US10145960B2 (en) 2011-02-24 2018-12-04 Ford Global Technologies, Llc System and method for cell phone restriction
US10993147B1 (en) 2015-02-25 2021-04-27 Satcom Direct, Inc. Out-of-band bandwidth RSVP manager
WO2023023382A1 (en) * 2021-08-20 2023-02-23 Viasat, Inc. Providing product listings on an aircraft for products available at a destination

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2727354A1 (en) 2008-06-09 2009-12-17 Guestlogix, Inc. Systems and methods facilitating mobile retail environments
US8744920B2 (en) 2010-10-05 2014-06-03 Guestlogix, Inc. Systems and methods for integration of travel and related services and operations
US9275162B2 (en) 2011-03-22 2016-03-01 Blackberry Limited Pre-caching web content for a mobile device
US9401917B2 (en) 2011-06-03 2016-07-26 Blackberry Limited Pre-caching resources based on a cache manifest
US8934893B2 (en) 2012-07-09 2015-01-13 Gogo Llc Mesh network based automated upload of content to aircraft
US9825910B2 (en) * 2012-08-17 2017-11-21 Gogo Llc System for providing temporary internet access from a restricted local area network environment
US20140100976A1 (en) * 2012-10-05 2014-04-10 Guestlogix, Inc. Systems and methods for implementing a traveler-specific store using mobile devices in a mobile retail environment
US20140279200A1 (en) * 2013-03-15 2014-09-18 Ebay Inc. Destination shopping system
US20150074003A1 (en) * 2013-09-06 2015-03-12 Google Inc. Synchronizing passenger check-in with the local caching of cloud-based media on a vehicle
US9369991B2 (en) * 2013-11-08 2016-06-14 Gogo Llc Hybrid communications for devices on vehicles
US9326217B2 (en) * 2013-11-08 2016-04-26 Gogo Llc Optimizing usage of modems for data delivery to devices on vehicles
CN104717245A (en) * 2013-12-13 2015-06-17 微捷科技股份有限公司 Cloud servo service system capable of integrating and optimizing traffic tool routes
US9655073B2 (en) * 2014-05-30 2017-05-16 Gogo Llc Systems and methods for communicating with non-terrestrial electronic devices
US9325793B1 (en) * 2015-04-30 2016-04-26 Smartsky Networks LLC Smart aviation dynamic cookie
US10313304B2 (en) 2015-11-04 2019-06-04 Panasonic Avionics Corporation System for demand-based regulation of dynamically implemented firewall exceptions
CN105610689A (en) * 2015-12-25 2016-05-25 成都云晖航空科技股份有限公司 Aerial internet social contact system
CN105610690A (en) * 2015-12-25 2016-05-25 成都云晖航空科技股份有限公司 Method for constructing aerial internet social contact platform
CN105391625A (en) * 2015-12-25 2016-03-09 成都云晖航空科技股份有限公司 Safe operation method of aerial Internet social platform
CN107079032A (en) * 2016-01-19 2017-08-18 深圳市全圣时代科技有限公司 Entertainment information control method and system, amusement equipment, control device, server
CN107155205A (en) * 2016-03-03 2017-09-12 深圳多尼卡互联技术有限公司 A kind of wifi hotspot management terminal and its data forwarding method
EP3220599B1 (en) * 2016-03-16 2019-06-19 Panasonic Avionics Corporation System for demand -based regulation of dynamically implemented firewall exceptions
US10362609B2 (en) * 2016-08-10 2019-07-23 Panasonic Avionics Corporation Methods and systems for automatically pairing a personal electronic device on a transportation vehicle
US10891607B2 (en) * 2017-02-03 2021-01-12 Smartsky Networks, Llc Aerospace commerce exchange
CN107862578A (en) * 2017-11-15 2018-03-30 中国航空无线电电子研究所 A kind of passenger airplane form ordering system that entertainment content customization is provided
CN110312199B (en) * 2018-03-20 2021-07-02 中兴通讯股份有限公司 Ground-air interconnection method and device
US10951673B2 (en) 2018-05-15 2021-03-16 Viasat, Inc. Distributed media content transfer and access management
US11455835B2 (en) * 2018-08-30 2022-09-27 Panasonic Intellectual Property Corporation Of America Information processing apparatus and information processing method
CN108900241A (en) * 2018-09-14 2018-11-27 杭州乐航科技有限公司 A kind of any wireless network services access device of aircraft passenger compartment
CN111130628B (en) * 2019-12-27 2021-08-17 中国联合网络通信集团有限公司 Ground-to-air communication method and device
AU2020439965A1 (en) * 2020-03-30 2022-10-20 Viasat, Inc. Systems and methods for delivery of targeted advertisements onboard mobile platforms
JP7435406B2 (en) * 2020-10-28 2024-02-21 トヨタ自動車株式会社 Mobility service system and mobility service provision method
US11743525B2 (en) 2021-06-24 2023-08-29 Gogo Business Aviation Llc Methods and systems for dynamically loading content onto in-vehicle content-delivery systems
EP4381453A1 (en) * 2021-08-20 2024-06-12 Viasat, Inc. Providing destination-specific electronic offerings through an inflight entertainment system onboard an aircraft

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020010633A1 (en) * 1999-04-19 2002-01-24 Brotherston David N. Apparatus and method for providing products and services in a transport vehicle using a network of computers
US6741841B1 (en) * 2000-01-28 2004-05-25 Rockwell Collins Dual receiver for a on-board entertainment system
US6788935B1 (en) * 1992-03-06 2004-09-07 Aircell, Inc. Aircraft-based network for wireless subscriber stations
US6880750B2 (en) * 1998-04-17 2005-04-19 Randolph M. Pentel Remote ordering device
WO2006128946A1 (en) * 2005-05-02 2006-12-07 Ecolane Finland Oy Method and arrangement for arranging practical aspects of a demand responsive transport system

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0188554B2 (en) * 1984-07-13 1995-05-24 Motorola, Inc. Cellular voice and data radiotelephone system
GB2235800B (en) * 1989-05-31 1993-05-12 Plessey Co Plc Improvements relating to entertainment and services systems
US7113780B2 (en) * 1992-03-06 2006-09-26 Aircell, Inc. System for integrating an airborne wireless cellular network with terrestrial wireless cellular networks and the public switched telephone network
US5519761A (en) * 1994-07-08 1996-05-21 Qualcomm Incorporated Airborne radiotelephone communications system
US7020708B2 (en) * 1999-05-14 2006-03-28 Cingular Wireless Ii, Llc Aircraft data services
KR100591369B1 (en) * 1999-08-27 2006-06-19 노키아 코포레이션 Mobile multimedia terminal for DVB-T and large and small cell communication
US6810527B1 (en) * 1999-09-27 2004-10-26 News America, Inc. System and method for distribution and delivery of media context and other data to aircraft passengers
US20020065564A1 (en) 2000-07-13 2002-05-30 Sheriff Amyn A. Digital content management system
US7155508B2 (en) * 2000-09-01 2006-12-26 Yodlee.Com, Inc. Target information generation and ad server
WO2003009188A2 (en) * 2001-07-20 2003-01-30 Lovsin Ian C W System and method for enabling retail sales to international travellers
US20030046118A1 (en) * 2001-08-31 2003-03-06 O'donnell Mary E. Portal architecture for mobile platforms
US20030046338A1 (en) 2001-09-04 2003-03-06 Runkis Walter H. System and method for using programable autonomous network objects to store and deliver content to globally distributed groups of transient users
US20030084108A1 (en) * 2001-10-26 2003-05-01 Majid Syed System and method for providing a push gateway between consumer devices and remote content povider centers
GB0128220D0 (en) * 2001-11-24 2002-01-16 Koninkl Philips Electronics Nv Location based delivery of service data
US20050216938A1 (en) * 2002-05-14 2005-09-29 Thales Avionics, Inc. In-flight entertainment system with wireless communication among components
JP2004054444A (en) * 2002-07-17 2004-02-19 Omron Corp Operation service information mediating system
US20060048196A1 (en) * 2004-08-30 2006-03-02 Yau Frank C Wireless interactive entertainment and information display network systems
WO2007014574A1 (en) * 2005-08-02 2007-02-08 Galini Associates Ltd System and method for controlling multiple services with restricted access
CN100561927C (en) * 2006-01-12 2009-11-18 中兴通讯股份有限公司 A kind of remote dial access service authentication protocol and charging method
CN101119283A (en) * 2006-07-31 2008-02-06 北京华旗资讯数码科技有限公司 System and method for obtaining network information using electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6788935B1 (en) * 1992-03-06 2004-09-07 Aircell, Inc. Aircraft-based network for wireless subscriber stations
US6880750B2 (en) * 1998-04-17 2005-04-19 Randolph M. Pentel Remote ordering device
US20020010633A1 (en) * 1999-04-19 2002-01-24 Brotherston David N. Apparatus and method for providing products and services in a transport vehicle using a network of computers
US6741841B1 (en) * 2000-01-28 2004-05-25 Rockwell Collins Dual receiver for a on-board entertainment system
WO2006128946A1 (en) * 2005-05-02 2006-12-07 Ecolane Finland Oy Method and arrangement for arranging practical aspects of a demand responsive transport system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2507963A1 (en) * 2009-12-02 2012-10-10 Research In Motion Limited Reliable delivery of content to a push-state aware client device
EP2507963A4 (en) * 2009-12-02 2013-10-09 Blackberry Ltd Reliable delivery of content to a push-state aware client device
US9253272B2 (en) 2009-12-02 2016-02-02 Blackberry Limited Reliable delivery of a push-state aware client device
US10145960B2 (en) 2011-02-24 2018-12-04 Ford Global Technologies, Llc System and method for cell phone restriction
WO2013127488A1 (en) * 2012-02-28 2013-09-06 Lufthansa Technik Ag Authentication method for a passenger and corresponding software
US10149155B2 (en) 2012-02-28 2018-12-04 Lufthansa Technik Ag Authentication method for a passenger and corresponding software
WO2014049074A1 (en) * 2012-09-28 2014-04-03 Lufthansa Technik Ag Communications system and method for an aircraft
US9318024B1 (en) * 2013-10-04 2016-04-19 Satcom Direct, Inc. MyFlight—An automated service for real-time aircraft position and communication status
US10102755B1 (en) 2013-10-07 2018-10-16 Satcom Direct, Inc. Method and system for aircraft positioning—automated tracking using onboard global voice and high-speed data
US10049508B2 (en) 2014-02-27 2018-08-14 Satcom Direct, Inc. Automated flight operations system
US11475719B1 (en) 2014-02-27 2022-10-18 Satcom Direct, Inc. Automated flight operations system
US9923863B2 (en) 2014-10-19 2018-03-20 Satcom Direct, Inc. Voice and SMS communication from a mobile device over IP network and satellite or communication network
US9554275B1 (en) 2014-10-19 2017-01-24 Satcom Direct, Inc. Voice and SMS communication from a mobile device over IP network and satellite or other communication network
US10993147B1 (en) 2015-02-25 2021-04-27 Satcom Direct, Inc. Out-of-band bandwidth RSVP manager
WO2023023382A1 (en) * 2021-08-20 2023-02-23 Viasat, Inc. Providing product listings on an aircraft for products available at a destination

Also Published As

Publication number Publication date
CN107070963A (en) 2017-08-18
WO2009097044A1 (en) 2009-08-06
EP2250574A4 (en) 2013-09-25
EP2250573A1 (en) 2010-11-17
CN101971160B (en) 2016-01-06
WO2009097043A1 (en) 2009-08-06
CN101925891B (en) 2014-11-12
CN101925891A (en) 2010-12-22
CN101971160A (en) 2011-02-09
EP2250574A1 (en) 2010-11-17
CN105704216B (en) 2018-12-14
CA2713393C (en) 2016-02-23
CN107070963B (en) 2020-10-27
CN101925890A (en) 2010-12-22
EP2248037B1 (en) 2018-08-22
EP2248037A1 (en) 2010-11-10
CA2713395A1 (en) 2009-08-06
CA2713393A1 (en) 2009-08-06
EP2634743A1 (en) 2013-09-04
HK1226219A1 (en) 2017-09-22
CN105704216A (en) 2016-06-22
EP2248037A4 (en) 2015-07-08
CA2713398A1 (en) 2009-08-06

Similar Documents

Publication Publication Date Title
CA2713393C (en) System for customizing electronic services for delivery to a passenger in an airborne wireless cellular network
US8068829B2 (en) System for customizing electronic services for delivery to a passenger in an airborne wireless cellular network
US8078163B2 (en) System for customizing electronic content for delivery to a passenger in an airborne wireless cellular network
US7702328B2 (en) System for handoff of aircraft-based content delivery to enable passengers to receive the remainder of a selected content from a terrestrial location
US10200111B2 (en) System for managing mobile internet protocol addresses in an airborne wireless cellular network
US9872154B2 (en) System and method for receiving broadcast content on a mobile platform during travel
RU2515223C2 (en) System for call management from rapid response service aircraft in aircraft on-board wireless cellular network
WO2023044058A1 (en) Providing communication sessions based on locally hosted interaction
US20050288975A1 (en) Apparatus and methods for helping a user of a mobile platform communication system
US20240378633A1 (en) Providing communication sessions based on locally hosted interaction

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880125768.4

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08871638

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2713393

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5236/CHENP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008871638

Country of ref document: EP