WO2009094561A1 - Induced internalization of surface receptors - Google Patents
Induced internalization of surface receptors Download PDFInfo
- Publication number
- WO2009094561A1 WO2009094561A1 PCT/US2009/031865 US2009031865W WO2009094561A1 WO 2009094561 A1 WO2009094561 A1 WO 2009094561A1 US 2009031865 W US2009031865 W US 2009031865W WO 2009094561 A1 WO2009094561 A1 WO 2009094561A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- receptor
- hetero
- ligand
- binding agent
- bifunctional ligand
- Prior art date
Links
- 108020003175 receptors Proteins 0.000 claims abstract description 485
- 102000005962 receptors Human genes 0.000 claims abstract description 483
- 239000003446 ligand Substances 0.000 claims abstract description 345
- 239000011230 binding agent Substances 0.000 claims abstract description 159
- 238000000034 method Methods 0.000 claims abstract description 142
- 230000027455 binding Effects 0.000 claims abstract description 87
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 56
- 201000010099 disease Diseases 0.000 claims abstract description 54
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 29
- 230000001588 bifunctional effect Effects 0.000 claims abstract description 26
- 230000001939 inductive effect Effects 0.000 claims abstract description 18
- 229920000855 Fucoidan Polymers 0.000 claims description 70
- 206010028980 Neoplasm Diseases 0.000 claims description 64
- 229920001282 polysaccharide Polymers 0.000 claims description 53
- 239000005017 polysaccharide Substances 0.000 claims description 53
- 150000004676 glycans Chemical class 0.000 claims description 52
- 102000014452 scavenger receptors Human genes 0.000 claims description 49
- 108010078070 scavenger receptors Proteins 0.000 claims description 49
- 108091034117 Oligonucleotide Proteins 0.000 claims description 35
- 239000002773 nucleotide Substances 0.000 claims description 35
- 125000003729 nucleotide group Chemical group 0.000 claims description 35
- 102000009524 Vascular Endothelial Growth Factor A Human genes 0.000 claims description 34
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 claims description 34
- 201000011510 cancer Diseases 0.000 claims description 32
- 230000002401 inhibitory effect Effects 0.000 claims description 31
- 230000033115 angiogenesis Effects 0.000 claims description 28
- 208000031886 HIV Infections Diseases 0.000 claims description 26
- 102000019034 Chemokines Human genes 0.000 claims description 24
- 108010012236 Chemokines Proteins 0.000 claims description 24
- 208000037357 HIV infectious disease Diseases 0.000 claims description 23
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 claims description 23
- 108010022164 acetyl-LDL Proteins 0.000 claims description 17
- 102100035875 C-C chemokine receptor type 5 Human genes 0.000 claims description 16
- 101710149870 C-C chemokine receptor type 5 Proteins 0.000 claims description 16
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 claims description 15
- 101000922348 Homo sapiens C-X-C chemokine receptor type 4 Proteins 0.000 claims description 15
- 108010007622 LDL Lipoproteins Proteins 0.000 claims description 15
- 102000007330 LDL Lipoproteins Human genes 0.000 claims description 15
- 150000003384 small molecules Chemical class 0.000 claims description 14
- 102000004127 Cytokines Human genes 0.000 claims description 13
- 108090000695 Cytokines Proteins 0.000 claims description 13
- 102000002812 Heat-Shock Proteins Human genes 0.000 claims description 12
- 108010004889 Heat-Shock Proteins Proteins 0.000 claims description 12
- 208000036142 Viral infection Diseases 0.000 claims description 12
- 239000003102 growth factor Substances 0.000 claims description 12
- 230000009385 viral infection Effects 0.000 claims description 12
- 108010033576 Transferrin Receptors Proteins 0.000 claims description 10
- 108090000189 Neuropeptides Proteins 0.000 claims description 9
- 229940088597 hormone Drugs 0.000 claims description 9
- 239000005556 hormone Substances 0.000 claims description 9
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 claims description 9
- 102000007238 Transferrin Receptors Human genes 0.000 claims description 8
- 102000004274 CCR5 Receptors Human genes 0.000 claims description 7
- 108010017088 CCR5 Receptors Proteins 0.000 claims description 7
- 102000000853 LDL receptors Human genes 0.000 claims description 7
- 108010001831 LDL receptors Proteins 0.000 claims description 7
- 102000003797 Neuropeptides Human genes 0.000 claims description 7
- 239000003937 drug carrier Substances 0.000 claims description 6
- 108091028664 Ribonucleotide Proteins 0.000 claims description 4
- 239000002336 ribonucleotide Substances 0.000 claims description 4
- 125000002652 ribonucleotide group Chemical group 0.000 claims description 3
- 108091023037 Aptamer Proteins 0.000 claims description 2
- 108010061299 CXCR4 Receptors Proteins 0.000 claims 5
- 102000012000 CXCR4 Receptors Human genes 0.000 claims 5
- 102100026144 Transferrin receptor protein 1 Human genes 0.000 claims 2
- HQSJCEYJAGVPJG-BIHLCPNHSA-L disodium;[(2r,3s,5r)-5-(2-amino-6-oxo-3h-purin-9-yl)-3-hydroxyoxolan-2-yl]methyl phosphate;hydrate Chemical compound O.[Na+].[Na+].C1=2NC(N)=NC(=O)C=2N=CN1[C@H]1C[C@H](O)[C@@H](COP([O-])([O-])=O)O1 HQSJCEYJAGVPJG-BIHLCPNHSA-L 0.000 claims 2
- 210000004027 cell Anatomy 0.000 description 272
- 102000004207 Neuropilin-1 Human genes 0.000 description 170
- 108090000772 Neuropilin-1 Proteins 0.000 description 170
- 108090000765 processed proteins & peptides Proteins 0.000 description 89
- 102100037081 Scavenger receptor class F member 1 Human genes 0.000 description 85
- 241000725303 Human immunodeficiency virus Species 0.000 description 71
- 125000005647 linker group Chemical group 0.000 description 62
- 102000004196 processed proteins & peptides Human genes 0.000 description 60
- 241000282414 Homo sapiens Species 0.000 description 53
- 108090000623 proteins and genes Proteins 0.000 description 51
- 239000000203 mixture Substances 0.000 description 47
- 239000003795 chemical substances by application Substances 0.000 description 44
- 229920001184 polypeptide Polymers 0.000 description 44
- 150000007523 nucleic acids Chemical class 0.000 description 40
- 102000004169 proteins and genes Human genes 0.000 description 35
- 235000018102 proteins Nutrition 0.000 description 34
- 230000000694 effects Effects 0.000 description 32
- 238000011282 treatment Methods 0.000 description 32
- 102000013008 Semaphorin-3A Human genes 0.000 description 31
- 108010090319 Semaphorin-3A Proteins 0.000 description 31
- 229920000669 heparin Polymers 0.000 description 31
- 229960002897 heparin Drugs 0.000 description 31
- 102000002689 Toll-like receptor Human genes 0.000 description 30
- 108020000411 Toll-like receptor Proteins 0.000 description 30
- 210000002889 endothelial cell Anatomy 0.000 description 30
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 29
- -1 ChoSulA Polymers 0.000 description 27
- 241000699670 Mus sp. Species 0.000 description 27
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 24
- 235000001014 amino acid Nutrition 0.000 description 24
- 150000001875 compounds Chemical class 0.000 description 24
- 102000039446 nucleic acids Human genes 0.000 description 24
- 108020004707 nucleic acids Proteins 0.000 description 24
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 23
- 229940024606 amino acid Drugs 0.000 description 23
- 150000001413 amino acids Chemical class 0.000 description 23
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 22
- 230000014509 gene expression Effects 0.000 description 22
- 108060003951 Immunoglobulin Proteins 0.000 description 21
- 108091028043 Nucleic acid sequence Proteins 0.000 description 21
- 102000018358 immunoglobulin Human genes 0.000 description 21
- 230000009467 reduction Effects 0.000 description 21
- 230000002829 reductive effect Effects 0.000 description 21
- 108020004414 DNA Proteins 0.000 description 20
- 238000000684 flow cytometry Methods 0.000 description 20
- 239000000427 antigen Substances 0.000 description 19
- 108091007433 antigens Proteins 0.000 description 19
- 102000036639 antigens Human genes 0.000 description 19
- 239000012634 fragment Substances 0.000 description 19
- 230000001225 therapeutic effect Effects 0.000 description 19
- 239000000499 gel Substances 0.000 description 18
- 210000001519 tissue Anatomy 0.000 description 18
- 239000003981 vehicle Substances 0.000 description 18
- 241000699666 Mus <mouse, genus> Species 0.000 description 17
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 description 17
- 241000700605 Viruses Species 0.000 description 17
- 229960000633 dextran sulfate Drugs 0.000 description 17
- 230000009870 specific binding Effects 0.000 description 17
- 230000010076 replication Effects 0.000 description 16
- 235000002639 sodium chloride Nutrition 0.000 description 16
- 108010053099 Vascular Endothelial Growth Factor Receptor-2 Proteins 0.000 description 15
- 239000012091 fetal bovine serum Substances 0.000 description 15
- 238000012360 testing method Methods 0.000 description 15
- 238000012384 transportation and delivery Methods 0.000 description 15
- 102000000844 Cell Surface Receptors Human genes 0.000 description 14
- 108010001857 Cell Surface Receptors Proteins 0.000 description 14
- 238000002965 ELISA Methods 0.000 description 14
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 14
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 14
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- 102000004213 Neuropilin-2 Human genes 0.000 description 13
- 108090000770 Neuropilin-2 Proteins 0.000 description 13
- 238000009472 formulation Methods 0.000 description 13
- 239000011780 sodium chloride Substances 0.000 description 13
- 208000024891 symptom Diseases 0.000 description 13
- 241001465754 Metazoa Species 0.000 description 12
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 12
- 230000037396 body weight Effects 0.000 description 12
- 238000000338 in vitro Methods 0.000 description 12
- 238000001727 in vivo Methods 0.000 description 12
- 239000013598 vector Substances 0.000 description 12
- 238000001262 western blot Methods 0.000 description 12
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 11
- 102000009410 Chemokine receptor Human genes 0.000 description 11
- 108050000299 Chemokine receptor Proteins 0.000 description 11
- 238000003556 assay Methods 0.000 description 11
- 229960002685 biotin Drugs 0.000 description 11
- 235000020958 biotin Nutrition 0.000 description 11
- 239000011616 biotin Substances 0.000 description 11
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 11
- 229940027941 immunoglobulin g Drugs 0.000 description 11
- 239000002953 phosphate buffered saline Substances 0.000 description 11
- 108091033319 polynucleotide Proteins 0.000 description 11
- 102000040430 polynucleotide Human genes 0.000 description 11
- 238000013518 transcription Methods 0.000 description 11
- 230000035897 transcription Effects 0.000 description 11
- 238000005406 washing Methods 0.000 description 11
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 10
- 102000001301 EGF receptor Human genes 0.000 description 10
- 108060006698 EGF receptor Proteins 0.000 description 10
- 101000808011 Homo sapiens Vascular endothelial growth factor A Proteins 0.000 description 10
- 238000004624 confocal microscopy Methods 0.000 description 10
- 102000058223 human VEGFA Human genes 0.000 description 10
- 238000011534 incubation Methods 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 239000002157 polynucleotide Substances 0.000 description 10
- 230000035755 proliferation Effects 0.000 description 10
- 238000010186 staining Methods 0.000 description 10
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 9
- 108091008605 VEGF receptors Proteins 0.000 description 9
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 9
- 239000000872 buffer Substances 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 210000002966 serum Anatomy 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 238000007920 subcutaneous administration Methods 0.000 description 9
- BJHCYTJNPVGSBZ-YXSASFKJSA-N 1-[4-[6-amino-5-[(Z)-methoxyiminomethyl]pyrimidin-4-yl]oxy-2-chlorophenyl]-3-ethylurea Chemical compound CCNC(=O)Nc1ccc(Oc2ncnc(N)c2\C=N/OC)cc1Cl BJHCYTJNPVGSBZ-YXSASFKJSA-N 0.000 description 8
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 8
- 102000003745 Hepatocyte Growth Factor Human genes 0.000 description 8
- 108090000100 Hepatocyte Growth Factor Proteins 0.000 description 8
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 8
- 241001529936 Murinae Species 0.000 description 8
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 8
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 8
- 102000013275 Somatomedins Human genes 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 239000013543 active substance Substances 0.000 description 8
- 239000002671 adjuvant Substances 0.000 description 8
- 102000003675 cytokine receptors Human genes 0.000 description 8
- 108010057085 cytokine receptors Proteins 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 108020004999 messenger RNA Proteins 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 230000011664 signaling Effects 0.000 description 8
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 7
- 229920002307 Dextran Polymers 0.000 description 7
- 210000001744 T-lymphocyte Anatomy 0.000 description 7
- 210000004369 blood Anatomy 0.000 description 7
- 239000008280 blood Substances 0.000 description 7
- 229940098773 bovine serum albumin Drugs 0.000 description 7
- 238000004422 calculation algorithm Methods 0.000 description 7
- 238000013270 controlled release Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 229960002086 dextran Drugs 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 208000015181 infectious disease Diseases 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 230000000069 prophylactic effect Effects 0.000 description 7
- 238000012216 screening Methods 0.000 description 7
- 230000000638 stimulation Effects 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical group CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 201000009030 Carcinoma Diseases 0.000 description 6
- 102000003951 Erythropoietin Human genes 0.000 description 6
- 108090000394 Erythropoietin Proteins 0.000 description 6
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 6
- 102100037362 Fibronectin Human genes 0.000 description 6
- 108010067306 Fibronectins Proteins 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 108010050904 Interferons Proteins 0.000 description 6
- 102000014150 Interferons Human genes 0.000 description 6
- 102000015696 Interleukins Human genes 0.000 description 6
- 108010063738 Interleukins Proteins 0.000 description 6
- 108010025020 Nerve Growth Factor Proteins 0.000 description 6
- 102000028517 Neuropeptide receptor Human genes 0.000 description 6
- 108070000018 Neuropeptide receptor Proteins 0.000 description 6
- 102100027467 Pro-opiomelanocortin Human genes 0.000 description 6
- 241000700159 Rattus Species 0.000 description 6
- 102000036693 Thrombopoietin Human genes 0.000 description 6
- 108010041111 Thrombopoietin Proteins 0.000 description 6
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical class IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 description 6
- 102000009484 Vascular Endothelial Growth Factor Receptors Human genes 0.000 description 6
- 208000009956 adenocarcinoma Diseases 0.000 description 6
- 125000003275 alpha amino acid group Chemical group 0.000 description 6
- 230000000890 antigenic effect Effects 0.000 description 6
- 239000002246 antineoplastic agent Substances 0.000 description 6
- 230000004071 biological effect Effects 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 238000010367 cloning Methods 0.000 description 6
- 239000002299 complementary DNA Substances 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 229940127089 cytotoxic agent Drugs 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 229940105423 erythropoietin Drugs 0.000 description 6
- 239000013604 expression vector Substances 0.000 description 6
- 201000006585 gastric adenocarcinoma Diseases 0.000 description 6
- 230000012010 growth Effects 0.000 description 6
- 108010044426 integrins Proteins 0.000 description 6
- 102000006495 integrins Human genes 0.000 description 6
- 238000001990 intravenous administration Methods 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 201000001441 melanoma Diseases 0.000 description 6
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 210000001243 pseudopodia Anatomy 0.000 description 6
- 239000002516 radical scavenger Substances 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 206010041823 squamous cell carcinoma Diseases 0.000 description 6
- 241000283707 Capra Species 0.000 description 5
- 108010043648 Discoidin Domain Receptors Proteins 0.000 description 5
- 102000002706 Discoidin Domain Receptors Human genes 0.000 description 5
- 102000015779 HDL Lipoproteins Human genes 0.000 description 5
- 108010010234 HDL Lipoproteins Proteins 0.000 description 5
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 5
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 5
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 5
- 102000004889 Interleukin-6 Human genes 0.000 description 5
- 108090001005 Interleukin-6 Proteins 0.000 description 5
- 241000283973 Oryctolagus cuniculus Species 0.000 description 5
- 206010035226 Plasma cell myeloma Diseases 0.000 description 5
- 102000037602 Platelet Endothelial Cell Adhesion Molecule-1 Human genes 0.000 description 5
- 108010069381 Platelet Endothelial Cell Adhesion Molecule-1 Proteins 0.000 description 5
- 108020004511 Recombinant DNA Proteins 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 210000004408 hybridoma Anatomy 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 229940100601 interleukin-6 Drugs 0.000 description 5
- 238000007912 intraperitoneal administration Methods 0.000 description 5
- 208000032839 leukemia Diseases 0.000 description 5
- 231100000252 nontoxic Toxicity 0.000 description 5
- 230000003000 nontoxic effect Effects 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000008685 targeting Effects 0.000 description 5
- 238000001890 transfection Methods 0.000 description 5
- 229940124676 vascular endothelial growth factor receptor Drugs 0.000 description 5
- 239000013603 viral vector Substances 0.000 description 5
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 4
- PRDFBSVERLRRMY-UHFFFAOYSA-N 2'-(4-ethoxyphenyl)-5-(4-methylpiperazin-1-yl)-2,5'-bibenzimidazole Chemical compound C1=CC(OCC)=CC=C1C1=NC2=CC=C(C=3NC4=CC(=CC=C4N=3)N3CCN(C)CC3)C=C2N1 PRDFBSVERLRRMY-UHFFFAOYSA-N 0.000 description 4
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 4
- 108010005853 Anti-Mullerian Hormone Proteins 0.000 description 4
- 208000023275 Autoimmune disease Diseases 0.000 description 4
- 101800001982 Cholecystokinin Proteins 0.000 description 4
- 102100025841 Cholecystokinin Human genes 0.000 description 4
- 206010009944 Colon cancer Diseases 0.000 description 4
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 4
- 108010092674 Enkephalins Proteins 0.000 description 4
- 108091008815 Eph receptors Proteins 0.000 description 4
- 108091008794 FGF receptors Proteins 0.000 description 4
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 4
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 4
- 102000044168 Fibroblast Growth Factor Receptor Human genes 0.000 description 4
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 4
- 201000008808 Fibrosarcoma Diseases 0.000 description 4
- 102400001370 Galanin Human genes 0.000 description 4
- 101800002068 Galanin Proteins 0.000 description 4
- 101800001586 Ghrelin Proteins 0.000 description 4
- 102400000442 Ghrelin-28 Human genes 0.000 description 4
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 4
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 4
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 4
- 102000009465 Growth Factor Receptors Human genes 0.000 description 4
- 108010009202 Growth Factor Receptors Proteins 0.000 description 4
- 239000000095 Growth Hormone-Releasing Hormone Substances 0.000 description 4
- 102100039939 Growth/differentiation factor 8 Human genes 0.000 description 4
- 229920002971 Heparan sulfate Polymers 0.000 description 4
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 4
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 4
- 108091008555 LTK receptors Proteins 0.000 description 4
- URLZCHNOLZSCCA-VABKMULXSA-N Leu-enkephalin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)CNC(=O)CNC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 URLZCHNOLZSCCA-VABKMULXSA-N 0.000 description 4
- 101000577064 Lymnaea stagnalis Molluscan insulin-related peptide 1 Proteins 0.000 description 4
- 229930195725 Mannitol Natural products 0.000 description 4
- YJPIGAIKUZMOQA-UHFFFAOYSA-N Melatonin Natural products COC1=CC=C2N(C(C)=O)C=C(CCN)C2=C1 YJPIGAIKUZMOQA-UHFFFAOYSA-N 0.000 description 4
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 4
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 4
- 108010056852 Myostatin Proteins 0.000 description 4
- 101000737895 Mytilus edulis Contraction-inhibiting peptide 1 Proteins 0.000 description 4
- 102000015336 Nerve Growth Factor Human genes 0.000 description 4
- 108091008606 PDGF receptors Proteins 0.000 description 4
- 102000011653 Platelet-Derived Growth Factor Receptors Human genes 0.000 description 4
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 4
- 206010039491 Sarcoma Diseases 0.000 description 4
- 101710142969 Somatoliberin Proteins 0.000 description 4
- 102100022831 Somatoliberin Human genes 0.000 description 4
- 108010056088 Somatostatin Proteins 0.000 description 4
- 102000005157 Somatostatin Human genes 0.000 description 4
- 102000005450 TIE receptors Human genes 0.000 description 4
- 108010006830 TIE receptors Proteins 0.000 description 4
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 4
- 102000008790 VE-cadherin Human genes 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- UCTWMZQNUQWSLP-UHFFFAOYSA-N adrenaline Chemical compound CNCC(O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-UHFFFAOYSA-N 0.000 description 4
- 239000000868 anti-mullerian hormone Substances 0.000 description 4
- 239000003443 antiviral agent Substances 0.000 description 4
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 108010018828 cadherin 5 Proteins 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229940107137 cholecystokinin Drugs 0.000 description 4
- 208000009060 clear cell adenocarcinoma Diseases 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 210000000805 cytoplasm Anatomy 0.000 description 4
- 238000010494 dissociation reaction Methods 0.000 description 4
- 230000005593 dissociations Effects 0.000 description 4
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 4
- 231100000673 dose–response relationship Toxicity 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 229940126864 fibroblast growth factor Drugs 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 108020001507 fusion proteins Proteins 0.000 description 4
- 102000037865 fusion proteins Human genes 0.000 description 4
- BGHSOEHUOOAYMY-JTZMCQEISA-N ghrelin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)CN)C1=CC=CC=C1 BGHSOEHUOOAYMY-JTZMCQEISA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 4
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 229940079322 interferon Drugs 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 210000002540 macrophage Anatomy 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 239000000594 mannitol Substances 0.000 description 4
- 235000010355 mannitol Nutrition 0.000 description 4
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 4
- DRLFMBDRBRZALE-UHFFFAOYSA-N melatonin Chemical compound COC1=CC=C2NC=C(CCNC(C)=O)C2=C1 DRLFMBDRBRZALE-UHFFFAOYSA-N 0.000 description 4
- 238000010369 molecular cloning Methods 0.000 description 4
- SLZIZIJTGAYEKK-CIJSCKBQSA-N molport-023-220-247 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)CN)[C@@H](C)O)C1=CNC=N1 SLZIZIJTGAYEKK-CIJSCKBQSA-N 0.000 description 4
- 229940053128 nerve growth factor Drugs 0.000 description 4
- 229960002748 norepinephrine Drugs 0.000 description 4
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 4
- 108010071584 oxidized low density lipoprotein Proteins 0.000 description 4
- 230000008823 permeabilization Effects 0.000 description 4
- 239000008177 pharmaceutical agent Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- 230000002035 prolonged effect Effects 0.000 description 4
- 238000000159 protein binding assay Methods 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 206010039073 rheumatoid arthritis Diseases 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 4
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 4
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 4
- 229960000553 somatostatin Drugs 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 229940124597 therapeutic agent Drugs 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 150000003573 thiols Chemical class 0.000 description 4
- 239000005495 thyroid hormone Substances 0.000 description 4
- 229940036555 thyroid hormone Drugs 0.000 description 4
- 230000036962 time dependent Effects 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 230000004614 tumor growth Effects 0.000 description 4
- 241001430294 unidentified retrovirus Species 0.000 description 4
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 4
- WHNFPRLDDSXQCL-UAZQEYIDSA-N α-msh Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(N)=O)NC(=O)[C@H](CO)NC(C)=O)C1=CC=C(O)C=C1 WHNFPRLDDSXQCL-UAZQEYIDSA-N 0.000 description 4
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 102000000905 Cadherin Human genes 0.000 description 3
- 108050007957 Cadherin Proteins 0.000 description 3
- 229920001287 Chondroitin sulfate Polymers 0.000 description 3
- 108091033380 Coding strand Proteins 0.000 description 3
- 239000004971 Cross linker Substances 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- 102400001368 Epidermal growth factor Human genes 0.000 description 3
- 101800003838 Epidermal growth factor Proteins 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 3
- 102000004858 Growth differentiation factor-9 Human genes 0.000 description 3
- 108090001086 Growth differentiation factor-9 Proteins 0.000 description 3
- 101000663183 Homo sapiens Scavenger receptor class F member 1 Proteins 0.000 description 3
- 108010065805 Interleukin-12 Proteins 0.000 description 3
- 102000013462 Interleukin-12 Human genes 0.000 description 3
- 108010038501 Interleukin-6 Receptors Proteins 0.000 description 3
- 102000010781 Interleukin-6 Receptors Human genes 0.000 description 3
- 241000713666 Lentivirus Species 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 101800001751 Melanocyte-stimulating hormone alpha Proteins 0.000 description 3
- 206010027476 Metastases Diseases 0.000 description 3
- 241000699660 Mus musculus Species 0.000 description 3
- 239000000020 Nitrocellulose Substances 0.000 description 3
- 229930040373 Paraformaldehyde Natural products 0.000 description 3
- 102000057297 Pepsin A Human genes 0.000 description 3
- 108090000284 Pepsin A Proteins 0.000 description 3
- 108091000080 Phosphotransferase Proteins 0.000 description 3
- 208000007452 Plasmacytoma Diseases 0.000 description 3
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000012980 RPMI-1640 medium Substances 0.000 description 3
- 108091008552 RYK receptors Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 108010090804 Streptavidin Proteins 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 3
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 3
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 3
- 108010003205 Vasoactive Intestinal Peptide Proteins 0.000 description 3
- 102400000015 Vasoactive intestinal peptide Human genes 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000011225 antiretroviral therapy Methods 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 239000013592 cell lysate Substances 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000002512 chemotherapy Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000009795 derivation Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 230000003511 endothelial effect Effects 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 229940116977 epidermal growth factor Drugs 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 230000005714 functional activity Effects 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 108091008039 hormone receptors Proteins 0.000 description 3
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 3
- 230000003053 immunization Effects 0.000 description 3
- 238000003018 immunoassay Methods 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- 230000008595 infiltration Effects 0.000 description 3
- 238000001764 infiltration Methods 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 210000003712 lysosome Anatomy 0.000 description 3
- 230000001868 lysosomic effect Effects 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 230000009401 metastasis Effects 0.000 description 3
- 239000003094 microcapsule Substances 0.000 description 3
- 201000000050 myeloid neoplasm Diseases 0.000 description 3
- 229920001220 nitrocellulos Polymers 0.000 description 3
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 3
- 229920002866 paraformaldehyde Polymers 0.000 description 3
- 230000001575 pathological effect Effects 0.000 description 3
- 229940111202 pepsin Drugs 0.000 description 3
- 238000010647 peptide synthesis reaction Methods 0.000 description 3
- 102000020233 phosphotransferase Human genes 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- XOJVVFBFDXDTEG-UHFFFAOYSA-N pristane Chemical compound CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 210000004989 spleen cell Anatomy 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 238000013268 sustained release Methods 0.000 description 3
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 3
- 125000003396 thiol group Chemical group [H]S* 0.000 description 3
- 238000011830 transgenic mouse model Methods 0.000 description 3
- 230000005747 tumor angiogenesis Effects 0.000 description 3
- 210000003606 umbilical vein Anatomy 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000003442 weekly effect Effects 0.000 description 3
- DNXHEGUUPJUMQT-UHFFFAOYSA-N (+)-estrone Natural products OC1=CC=C2C3CCC(C)(C(CC4)=O)C4C3CCC2=C1 DNXHEGUUPJUMQT-UHFFFAOYSA-N 0.000 description 2
- PROQIPRRNZUXQM-UHFFFAOYSA-N (16alpha,17betaOH)-Estra-1,3,5(10)-triene-3,16,17-triol Natural products OC1=CC=C2C3CCC(C)(C(C(O)C4)O)C4C3CCC2=C1 PROQIPRRNZUXQM-UHFFFAOYSA-N 0.000 description 2
- QDZOEBFLNHCSSF-PFFBOGFISA-N (2S)-2-[[(2R)-2-[[(2S)-1-[(2S)-6-amino-2-[[(2S)-1-[(2R)-2-amino-5-carbamimidamidopentanoyl]pyrrolidine-2-carbonyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-N-[(2R)-1-[[(2S)-1-[[(2R)-1-[[(2S)-1-[[(2S)-1-amino-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]pentanediamide Chemical compound C([C@@H](C(=O)N[C@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(N)=O)NC(=O)[C@@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](N)CCCNC(N)=N)C1=CC=CC=C1 QDZOEBFLNHCSSF-PFFBOGFISA-N 0.000 description 2
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 2
- 229930182837 (R)-adrenaline Natural products 0.000 description 2
- RFLVMTUMFYRZCB-UHFFFAOYSA-N 1-methylguanine Chemical compound O=C1N(C)C(N)=NC2=C1N=CN2 RFLVMTUMFYRZCB-UHFFFAOYSA-N 0.000 description 2
- NVKAWKQGWWIWPM-ABEVXSGRSA-N 17-β-hydroxy-5-α-Androstan-3-one Chemical compound C1C(=O)CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@H]21 NVKAWKQGWWIWPM-ABEVXSGRSA-N 0.000 description 2
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 2
- LTFMZDNNPPEQNG-KVQBGUIXSA-N 2'-deoxyguanosine 5'-monophosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@H]1C[C@H](O)[C@@H](COP(O)(O)=O)O1 LTFMZDNNPPEQNG-KVQBGUIXSA-N 0.000 description 2
- FZWGECJQACGGTI-UHFFFAOYSA-N 2-amino-7-methyl-1,7-dihydro-6H-purin-6-one Chemical compound NC1=NC(O)=C2N(C)C=NC2=N1 FZWGECJQACGGTI-UHFFFAOYSA-N 0.000 description 2
- JMTMSDXUXJISAY-UHFFFAOYSA-N 2H-benzotriazol-4-ol Chemical compound OC1=CC=CC2=C1N=NN2 JMTMSDXUXJISAY-UHFFFAOYSA-N 0.000 description 2
- FZTIWOBQQYPTCJ-UHFFFAOYSA-N 4-[4-(4-carboxyphenyl)phenyl]benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1C1=CC=C(C=2C=CC(=CC=2)C(O)=O)C=C1 FZTIWOBQQYPTCJ-UHFFFAOYSA-N 0.000 description 2
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 2
- OIVLITBTBDPEFK-UHFFFAOYSA-N 5,6-dihydrouracil Chemical compound O=C1CCNC(=O)N1 OIVLITBTBDPEFK-UHFFFAOYSA-N 0.000 description 2
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 2
- ZLAQATDNGLKIEV-UHFFFAOYSA-N 5-methyl-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CC1=CNC(=S)NC1=O ZLAQATDNGLKIEV-UHFFFAOYSA-N 0.000 description 2
- GOZMBJCYMQQACI-UHFFFAOYSA-N 6,7-dimethyl-3-[[methyl-[2-[methyl-[[1-[3-(trifluoromethyl)phenyl]indol-3-yl]methyl]amino]ethyl]amino]methyl]chromen-4-one;dihydrochloride Chemical compound Cl.Cl.C=1OC2=CC(C)=C(C)C=C2C(=O)C=1CN(C)CCN(C)CC(C1=CC=CC=C11)=CN1C1=CC=CC(C(F)(F)F)=C1 GOZMBJCYMQQACI-UHFFFAOYSA-N 0.000 description 2
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 2
- JMHFFDIMOUKDCZ-NTXHZHDSSA-N 61214-51-5 Chemical compound C([C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CCSC)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)CNC(=O)CNC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)[C@@H](C)O)C1=CC=CC=C1 JMHFFDIMOUKDCZ-NTXHZHDSSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 2
- 206010000830 Acute leukaemia Diseases 0.000 description 2
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 2
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 2
- ZKHQWZAMYRWXGA-KQYNXXCUSA-N Adenosine triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-N 0.000 description 2
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 2
- 102100031786 Adiponectin Human genes 0.000 description 2
- 108010076365 Adiponectin Proteins 0.000 description 2
- 108060003345 Adrenergic Receptor Proteins 0.000 description 2
- 102000017910 Adrenergic receptor Human genes 0.000 description 2
- 239000000275 Adrenocorticotropic Hormone Substances 0.000 description 2
- 102000054930 Agouti-Related Human genes 0.000 description 2
- 108700021677 Agouti-Related Proteins 0.000 description 2
- PQSUYGKTWSAVDQ-ZVIOFETBSA-N Aldosterone Chemical compound C([C@@]1([C@@H](C(=O)CO)CC[C@H]1[C@@H]1CC2)C=O)[C@H](O)[C@@H]1[C@]1(C)C2=CC(=O)CC1 PQSUYGKTWSAVDQ-ZVIOFETBSA-N 0.000 description 2
- PQSUYGKTWSAVDQ-UHFFFAOYSA-N Aldosterone Natural products C1CC2C3CCC(C(=O)CO)C3(C=O)CC(O)C2C2(C)C1=CC(=O)CC2 PQSUYGKTWSAVDQ-UHFFFAOYSA-N 0.000 description 2
- 239000012103 Alexa Fluor 488 Substances 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- 108090001067 Angiotensinogen Proteins 0.000 description 2
- 102000004881 Angiotensinogen Human genes 0.000 description 2
- 102000015427 Angiotensins Human genes 0.000 description 2
- 108010064733 Angiotensins Proteins 0.000 description 2
- 102400000059 Arg-vasopressin Human genes 0.000 description 2
- 101800001144 Arg-vasopressin Proteins 0.000 description 2
- 206010003571 Astrocytoma Diseases 0.000 description 2
- 101800001288 Atrial natriuretic factor Proteins 0.000 description 2
- 102100022718 Atypical chemokine receptor 2 Human genes 0.000 description 2
- 102100022716 Atypical chemokine receptor 3 Human genes 0.000 description 2
- 108090001008 Avidin Proteins 0.000 description 2
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 2
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 2
- 206010004146 Basal cell carcinoma Diseases 0.000 description 2
- 101800005049 Beta-endorphin Proteins 0.000 description 2
- 206010004593 Bile duct cancer Diseases 0.000 description 2
- 206010005003 Bladder cancer Diseases 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 102100031151 C-C chemokine receptor type 2 Human genes 0.000 description 2
- 101710149815 C-C chemokine receptor type 2 Proteins 0.000 description 2
- 102100024167 C-C chemokine receptor type 3 Human genes 0.000 description 2
- 101710149862 C-C chemokine receptor type 3 Proteins 0.000 description 2
- 102100037853 C-C chemokine receptor type 4 Human genes 0.000 description 2
- 101710149863 C-C chemokine receptor type 4 Proteins 0.000 description 2
- 102100036301 C-C chemokine receptor type 7 Human genes 0.000 description 2
- 102100036305 C-C chemokine receptor type 8 Human genes 0.000 description 2
- 102100025074 C-C chemokine receptor-like 2 Human genes 0.000 description 2
- 102100023702 C-C motif chemokine 13 Human genes 0.000 description 2
- 102100023705 C-C motif chemokine 14 Human genes 0.000 description 2
- 102100023703 C-C motif chemokine 15 Human genes 0.000 description 2
- 102100023700 C-C motif chemokine 16 Human genes 0.000 description 2
- 102100023701 C-C motif chemokine 18 Human genes 0.000 description 2
- 102100036842 C-C motif chemokine 19 Human genes 0.000 description 2
- 102100036848 C-C motif chemokine 20 Human genes 0.000 description 2
- 102100036846 C-C motif chemokine 21 Human genes 0.000 description 2
- 102100036850 C-C motif chemokine 23 Human genes 0.000 description 2
- 102100036849 C-C motif chemokine 24 Human genes 0.000 description 2
- 102100021933 C-C motif chemokine 25 Human genes 0.000 description 2
- 102100021935 C-C motif chemokine 26 Human genes 0.000 description 2
- 102100021936 C-C motif chemokine 27 Human genes 0.000 description 2
- 102100021942 C-C motif chemokine 28 Human genes 0.000 description 2
- 102100032367 C-C motif chemokine 5 Human genes 0.000 description 2
- 102100032366 C-C motif chemokine 7 Human genes 0.000 description 2
- 102100034871 C-C motif chemokine 8 Human genes 0.000 description 2
- 102100028989 C-X-C chemokine receptor type 2 Human genes 0.000 description 2
- 102100028990 C-X-C chemokine receptor type 3 Human genes 0.000 description 2
- 102100031658 C-X-C chemokine receptor type 5 Human genes 0.000 description 2
- 102100025618 C-X-C chemokine receptor type 6 Human genes 0.000 description 2
- 102100025277 C-X-C motif chemokine 13 Human genes 0.000 description 2
- 102100025250 C-X-C motif chemokine 14 Human genes 0.000 description 2
- 102100039396 C-X-C motif chemokine 16 Human genes 0.000 description 2
- 102100039398 C-X-C motif chemokine 2 Human genes 0.000 description 2
- 102100036189 C-X-C motif chemokine 3 Human genes 0.000 description 2
- 102100036150 C-X-C motif chemokine 5 Human genes 0.000 description 2
- 102100036153 C-X-C motif chemokine 6 Human genes 0.000 description 2
- 102100036170 C-X-C motif chemokine 9 Human genes 0.000 description 2
- 108091008927 CC chemokine receptors Proteins 0.000 description 2
- 101150049756 CCL6 gene Proteins 0.000 description 2
- 101150011672 CCL9 gene Proteins 0.000 description 2
- 102000005674 CCR Receptors Human genes 0.000 description 2
- PCDQPRRSZKQHHS-XVFCMESISA-N CTP Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 PCDQPRRSZKQHHS-XVFCMESISA-N 0.000 description 2
- 108090000835 CX3C Chemokine Receptor 1 Proteins 0.000 description 2
- 102100039196 CX3C chemokine receptor 1 Human genes 0.000 description 2
- 108091008925 CX3C chemokine receptors Proteins 0.000 description 2
- 108091008928 CXC chemokine receptors Proteins 0.000 description 2
- 102000054900 CXCR Receptors Human genes 0.000 description 2
- 102000055006 Calcitonin Human genes 0.000 description 2
- 108060001064 Calcitonin Proteins 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 208000009458 Carcinoma in Situ Diseases 0.000 description 2
- 208000005024 Castleman disease Diseases 0.000 description 2
- 101150075117 Ccl12 gene Proteins 0.000 description 2
- 206010008263 Cervical dysplasia Diseases 0.000 description 2
- 206010008342 Cervix carcinoma Diseases 0.000 description 2
- 102000004859 Cholecystokinin Receptors Human genes 0.000 description 2
- 108090001085 Cholecystokinin Receptors Proteins 0.000 description 2
- 208000005243 Chondrosarcoma Diseases 0.000 description 2
- 208000006332 Choriocarcinoma Diseases 0.000 description 2
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 2
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 2
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 102000010970 Connexin Human genes 0.000 description 2
- 108050001175 Connexin Proteins 0.000 description 2
- 101800000414 Corticotropin Proteins 0.000 description 2
- 108010022152 Corticotropin-Releasing Hormone Proteins 0.000 description 2
- 239000000055 Corticotropin-Releasing Hormone Substances 0.000 description 2
- 102000012289 Corticotropin-Releasing Hormone Human genes 0.000 description 2
- 102100035298 Cytokine SCM-1 beta Human genes 0.000 description 2
- 241000701022 Cytomegalovirus Species 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- XUIIKFGFIJCVMT-GFCCVEGCSA-N D-thyroxine Chemical compound IC1=CC(C[C@@H](N)C(O)=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-GFCCVEGCSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 230000004544 DNA amplification Effects 0.000 description 2
- 101100481404 Danio rerio tie1 gene Proteins 0.000 description 2
- 101100481408 Danio rerio tie2 gene Proteins 0.000 description 2
- FMGSKLZLMKYGDP-UHFFFAOYSA-N Dehydroepiandrosterone Natural products C1C(O)CCC2(C)C3CCC(C)(C(CC4)=O)C4C3CC=C21 FMGSKLZLMKYGDP-UHFFFAOYSA-N 0.000 description 2
- 108010065372 Dynorphins Proteins 0.000 description 2
- 208000007033 Dysgerminoma Diseases 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 101150029707 ERBB2 gene Proteins 0.000 description 2
- 206010014733 Endometrial cancer Diseases 0.000 description 2
- 206010014759 Endometrial neoplasm Diseases 0.000 description 2
- 102000010180 Endothelin receptor Human genes 0.000 description 2
- 108050001739 Endothelin receptor Proteins 0.000 description 2
- 206010014967 Ependymoma Diseases 0.000 description 2
- 208000031637 Erythroblastic Acute Leukemia Diseases 0.000 description 2
- 208000036566 Erythroleukaemia Diseases 0.000 description 2
- DNXHEGUUPJUMQT-CBZIJGRNSA-N Estrone Chemical compound OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 DNXHEGUUPJUMQT-CBZIJGRNSA-N 0.000 description 2
- 208000006168 Ewing Sarcoma Diseases 0.000 description 2
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 2
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 2
- 241000713800 Feline immunodeficiency virus Species 0.000 description 2
- 108010012088 Fibrinogen Receptors Proteins 0.000 description 2
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 2
- 102100023600 Fibroblast growth factor receptor 2 Human genes 0.000 description 2
- 101710182389 Fibroblast growth factor receptor 2 Proteins 0.000 description 2
- 102100027842 Fibroblast growth factor receptor 3 Human genes 0.000 description 2
- 101710182396 Fibroblast growth factor receptor 3 Proteins 0.000 description 2
- 102000012673 Follicle Stimulating Hormone Human genes 0.000 description 2
- 108010079345 Follicle Stimulating Hormone Proteins 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 102100020997 Fractalkine Human genes 0.000 description 2
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 2
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 2
- 108010081952 Galanin-Like Peptide Proteins 0.000 description 2
- 102100031689 Galanin-like peptide Human genes 0.000 description 2
- 102400000921 Gastrin Human genes 0.000 description 2
- 108010052343 Gastrins Proteins 0.000 description 2
- 208000032612 Glial tumor Diseases 0.000 description 2
- 206010018338 Glioma Diseases 0.000 description 2
- 102000051325 Glucagon Human genes 0.000 description 2
- 108060003199 Glucagon Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 239000000579 Gonadotropin-Releasing Hormone Substances 0.000 description 2
- 108010051696 Growth Hormone Proteins 0.000 description 2
- XKMLYUALXHKNFT-UUOKFMHZSA-N Guanosine-5'-triphosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XKMLYUALXHKNFT-UUOKFMHZSA-N 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 108091008603 HGF receptors Proteins 0.000 description 2
- 102000027430 HGF receptors Human genes 0.000 description 2
- 102100035108 High affinity nerve growth factor receptor Human genes 0.000 description 2
- 208000017604 Hodgkin disease Diseases 0.000 description 2
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000678892 Homo sapiens Atypical chemokine receptor 2 Proteins 0.000 description 2
- 101000678890 Homo sapiens Atypical chemokine receptor 3 Proteins 0.000 description 2
- 101000716068 Homo sapiens C-C chemokine receptor type 6 Proteins 0.000 description 2
- 101000716065 Homo sapiens C-C chemokine receptor type 7 Proteins 0.000 description 2
- 101000716063 Homo sapiens C-C chemokine receptor type 8 Proteins 0.000 description 2
- 101000716070 Homo sapiens C-C chemokine receptor type 9 Proteins 0.000 description 2
- 101000978379 Homo sapiens C-C motif chemokine 13 Proteins 0.000 description 2
- 101000978381 Homo sapiens C-C motif chemokine 14 Proteins 0.000 description 2
- 101000978376 Homo sapiens C-C motif chemokine 15 Proteins 0.000 description 2
- 101000978375 Homo sapiens C-C motif chemokine 16 Proteins 0.000 description 2
- 101000978371 Homo sapiens C-C motif chemokine 18 Proteins 0.000 description 2
- 101000713106 Homo sapiens C-C motif chemokine 19 Proteins 0.000 description 2
- 101000713099 Homo sapiens C-C motif chemokine 20 Proteins 0.000 description 2
- 101000713085 Homo sapiens C-C motif chemokine 21 Proteins 0.000 description 2
- 101000713081 Homo sapiens C-C motif chemokine 23 Proteins 0.000 description 2
- 101000713078 Homo sapiens C-C motif chemokine 24 Proteins 0.000 description 2
- 101000897486 Homo sapiens C-C motif chemokine 25 Proteins 0.000 description 2
- 101000897493 Homo sapiens C-C motif chemokine 26 Proteins 0.000 description 2
- 101000897494 Homo sapiens C-C motif chemokine 27 Proteins 0.000 description 2
- 101000897477 Homo sapiens C-C motif chemokine 28 Proteins 0.000 description 2
- 101000797762 Homo sapiens C-C motif chemokine 5 Proteins 0.000 description 2
- 101000797758 Homo sapiens C-C motif chemokine 7 Proteins 0.000 description 2
- 101000946794 Homo sapiens C-C motif chemokine 8 Proteins 0.000 description 2
- 101000916050 Homo sapiens C-X-C chemokine receptor type 3 Proteins 0.000 description 2
- 101000922405 Homo sapiens C-X-C chemokine receptor type 5 Proteins 0.000 description 2
- 101000856683 Homo sapiens C-X-C chemokine receptor type 6 Proteins 0.000 description 2
- 101000858064 Homo sapiens C-X-C motif chemokine 13 Proteins 0.000 description 2
- 101000858068 Homo sapiens C-X-C motif chemokine 14 Proteins 0.000 description 2
- 101000889133 Homo sapiens C-X-C motif chemokine 16 Proteins 0.000 description 2
- 101000889128 Homo sapiens C-X-C motif chemokine 2 Proteins 0.000 description 2
- 101000947193 Homo sapiens C-X-C motif chemokine 3 Proteins 0.000 description 2
- 101000947186 Homo sapiens C-X-C motif chemokine 5 Proteins 0.000 description 2
- 101000947177 Homo sapiens C-X-C motif chemokine 6 Proteins 0.000 description 2
- 101000947172 Homo sapiens C-X-C motif chemokine 9 Proteins 0.000 description 2
- 101000804771 Homo sapiens Cytokine SCM-1 beta Proteins 0.000 description 2
- 101000854520 Homo sapiens Fractalkine Proteins 0.000 description 2
- 101000596894 Homo sapiens High affinity nerve growth factor receptor Proteins 0.000 description 2
- 101001015004 Homo sapiens Integrin beta-3 Proteins 0.000 description 2
- 101001055222 Homo sapiens Interleukin-8 Proteins 0.000 description 2
- 101000947178 Homo sapiens Platelet basic protein Proteins 0.000 description 2
- 101000582950 Homo sapiens Platelet factor 4 Proteins 0.000 description 2
- 101000617130 Homo sapiens Stromal cell-derived factor 1 Proteins 0.000 description 2
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 108010004250 Inhibins Proteins 0.000 description 2
- 102000002746 Inhibins Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 2
- 102000003746 Insulin Receptor Human genes 0.000 description 2
- 108010001127 Insulin Receptor Proteins 0.000 description 2
- 102100032999 Integrin beta-3 Human genes 0.000 description 2
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 2
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 2
- 102000001617 Interferon Receptors Human genes 0.000 description 2
- 108010054267 Interferon Receptors Proteins 0.000 description 2
- 102000003814 Interleukin-10 Human genes 0.000 description 2
- 108090000174 Interleukin-10 Proteins 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- 102000000588 Interleukin-2 Human genes 0.000 description 2
- 102100030703 Interleukin-22 Human genes 0.000 description 2
- 102000000646 Interleukin-3 Human genes 0.000 description 2
- 108010002386 Interleukin-3 Proteins 0.000 description 2
- 102000004388 Interleukin-4 Human genes 0.000 description 2
- 108090000978 Interleukin-4 Proteins 0.000 description 2
- 108010002616 Interleukin-5 Proteins 0.000 description 2
- 102100039897 Interleukin-5 Human genes 0.000 description 2
- 108010002586 Interleukin-7 Proteins 0.000 description 2
- 102100021592 Interleukin-7 Human genes 0.000 description 2
- 102000004890 Interleukin-8 Human genes 0.000 description 2
- 108090001007 Interleukin-8 Proteins 0.000 description 2
- 102100026236 Interleukin-8 Human genes 0.000 description 2
- 108010018951 Interleukin-8B Receptors Proteins 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- 208000003456 Juvenile Arthritis Diseases 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- XNSAINXGIQZQOO-UHFFFAOYSA-N L-pyroglutamyl-L-histidyl-L-proline amide Natural products NC(=O)C1CCCN1C(=O)C(NC(=O)C1NC(=O)CC1)CC1=CN=CN1 XNSAINXGIQZQOO-UHFFFAOYSA-N 0.000 description 2
- 102100025640 Lactase-like protein Human genes 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 208000018142 Leiomyosarcoma Diseases 0.000 description 2
- 108010092277 Leptin Proteins 0.000 description 2
- 102000016267 Leptin Human genes 0.000 description 2
- 206010024305 Leukaemia monocytic Diseases 0.000 description 2
- 108010073521 Luteinizing Hormone Proteins 0.000 description 2
- 102000009151 Luteinizing Hormone Human genes 0.000 description 2
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 208000007054 Medullary Carcinoma Diseases 0.000 description 2
- 208000037196 Medullary thyroid carcinoma Diseases 0.000 description 2
- 208000000172 Medulloblastoma Diseases 0.000 description 2
- 239000000637 Melanocyte-Stimulating Hormone Substances 0.000 description 2
- 108010007013 Melanocyte-Stimulating Hormones Proteins 0.000 description 2
- 101710151321 Melanostatin Proteins 0.000 description 2
- 206010027406 Mesothelioma Diseases 0.000 description 2
- 102100030173 Muellerian-inhibiting factor Human genes 0.000 description 2
- 208000034578 Multiple myelomas Diseases 0.000 description 2
- 101100222387 Mus musculus Cxcl15 gene Proteins 0.000 description 2
- 101100481410 Mus musculus Tek gene Proteins 0.000 description 2
- 101100481406 Mus musculus Tie1 gene Proteins 0.000 description 2
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 2
- 108091008604 NGF receptors Proteins 0.000 description 2
- 101150111783 NTRK1 gene Proteins 0.000 description 2
- 101150117329 NTRK3 gene Proteins 0.000 description 2
- 206010029113 Neovascularisation Diseases 0.000 description 2
- 108010032605 Nerve Growth Factor Receptors Proteins 0.000 description 2
- 102000007339 Nerve Growth Factor Receptors Human genes 0.000 description 2
- 102000007072 Nerve Growth Factors Human genes 0.000 description 2
- 206010029260 Neuroblastoma Diseases 0.000 description 2
- 102100038813 Neuromedin-U Human genes 0.000 description 2
- 102400000064 Neuropeptide Y Human genes 0.000 description 2
- 102400001103 Neurotensin Human genes 0.000 description 2
- 101800001814 Neurotensin Proteins 0.000 description 2
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 2
- 101150056950 Ntrk2 gene Proteins 0.000 description 2
- 102000003940 Occludin Human genes 0.000 description 2
- 108090000304 Occludin Proteins 0.000 description 2
- 102000012547 Olfactory receptors Human genes 0.000 description 2
- 108050002069 Olfactory receptors Proteins 0.000 description 2
- 201000010133 Oligodendroglioma Diseases 0.000 description 2
- 206010033128 Ovarian cancer Diseases 0.000 description 2
- 102400000050 Oxytocin Human genes 0.000 description 2
- 101800000989 Oxytocin Proteins 0.000 description 2
- XNOPRXBHLZRZKH-UHFFFAOYSA-N Oxytocin Natural products N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CC(C)C)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 XNOPRXBHLZRZKH-UHFFFAOYSA-N 0.000 description 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 2
- 206010033701 Papillary thyroid cancer Diseases 0.000 description 2
- 102000003982 Parathyroid hormone Human genes 0.000 description 2
- 108090000445 Parathyroid hormone Proteins 0.000 description 2
- 108091093037 Peptide nucleic acid Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 208000007641 Pinealoma Diseases 0.000 description 2
- 102000004576 Placental Lactogen Human genes 0.000 description 2
- 108010003044 Placental Lactogen Proteins 0.000 description 2
- 239000000381 Placental Lactogen Substances 0.000 description 2
- 208000033014 Plasma cell tumor Diseases 0.000 description 2
- 102100036154 Platelet basic protein Human genes 0.000 description 2
- 102100030304 Platelet factor 4 Human genes 0.000 description 2
- 241000276498 Pollachius virens Species 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 2
- 102100024622 Proenkephalin-B Human genes 0.000 description 2
- 108010057464 Prolactin Proteins 0.000 description 2
- 102000003946 Prolactin Human genes 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 2
- 201000004681 Psoriasis Diseases 0.000 description 2
- 108091008680 RAR-related orphan receptors Proteins 0.000 description 2
- 108091008551 RET receptors Proteins 0.000 description 2
- 108091008554 ROR receptors Proteins 0.000 description 2
- 108091008556 ROS receptors Proteins 0.000 description 2
- 102000003743 Relaxin Human genes 0.000 description 2
- 108090000103 Relaxin Proteins 0.000 description 2
- 208000006265 Renal cell carcinoma Diseases 0.000 description 2
- 201000000582 Retinoblastoma Diseases 0.000 description 2
- 101100221606 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) COS7 gene Proteins 0.000 description 2
- 108010086019 Secretin Proteins 0.000 description 2
- 102100037505 Secretin Human genes 0.000 description 2
- 201000010208 Seminoma Diseases 0.000 description 2
- 208000000097 Sertoli-Leydig cell tumor Diseases 0.000 description 2
- 108010071390 Serum Albumin Proteins 0.000 description 2
- 102000007562 Serum Albumin Human genes 0.000 description 2
- 241000713311 Simian immunodeficiency virus Species 0.000 description 2
- 208000000453 Skin Neoplasms Diseases 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- 102100038803 Somatotropin Human genes 0.000 description 2
- 101000857870 Squalus acanthias Gonadoliberin Proteins 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 208000005718 Stomach Neoplasms Diseases 0.000 description 2
- 102100021669 Stromal cell-derived factor 1 Human genes 0.000 description 2
- 102400000096 Substance P Human genes 0.000 description 2
- 101800003906 Substance P Proteins 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 108091008874 T cell receptors Proteins 0.000 description 2
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 2
- 206010043276 Teratoma Diseases 0.000 description 2
- 208000024313 Testicular Neoplasms Diseases 0.000 description 2
- 102000011923 Thyrotropin Human genes 0.000 description 2
- 108010061174 Thyrotropin Proteins 0.000 description 2
- 239000000627 Thyrotropin-Releasing Hormone Substances 0.000 description 2
- 101800004623 Thyrotropin-releasing hormone Proteins 0.000 description 2
- 102400000336 Thyrotropin-releasing hormone Human genes 0.000 description 2
- 102000004338 Transferrin Human genes 0.000 description 2
- 108090000901 Transferrin Proteins 0.000 description 2
- 108010009583 Transforming Growth Factors Proteins 0.000 description 2
- 102000009618 Transforming Growth Factors Human genes 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 2
- 102100037236 Tyrosine-protein kinase receptor UFO Human genes 0.000 description 2
- PGAVKCOVUIYSFO-XVFCMESISA-N UTP Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O[C@H]1N1C(=O)NC(=O)C=C1 PGAVKCOVUIYSFO-XVFCMESISA-N 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 2
- 108010053100 Vascular Endothelial Growth Factor Receptor-3 Proteins 0.000 description 2
- 102100033179 Vascular endothelial growth factor receptor 3 Human genes 0.000 description 2
- 108010004977 Vasopressins Proteins 0.000 description 2
- 102000002852 Vasopressins Human genes 0.000 description 2
- 208000014070 Vestibular schwannoma Diseases 0.000 description 2
- 108020000999 Viral RNA Proteins 0.000 description 2
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 2
- 208000008383 Wilms tumor Diseases 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 208000004064 acoustic neuroma Diseases 0.000 description 2
- 208000017733 acquired polycythemia vera Diseases 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 208000021841 acute erythroid leukemia Diseases 0.000 description 2
- 229960002478 aldosterone Drugs 0.000 description 2
- 150000001350 alkyl halides Chemical class 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229940025084 amphetamine Drugs 0.000 description 2
- AEMFNILZOJDQLW-QAGGRKNESA-N androst-4-ene-3,17-dione Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 AEMFNILZOJDQLW-QAGGRKNESA-N 0.000 description 2
- 229960003473 androstanolone Drugs 0.000 description 2
- 229960005471 androstenedione Drugs 0.000 description 2
- AEMFNILZOJDQLW-UHFFFAOYSA-N androstenedione Natural products O=C1CCC2(C)C3CCC(C)(C(CC4)=O)C4C3CCC2=C1 AEMFNILZOJDQLW-UHFFFAOYSA-N 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 210000000628 antibody-producing cell Anatomy 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- 230000001746 atrial effect Effects 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 201000007180 bile duct carcinoma Diseases 0.000 description 2
- 230000031018 biological processes and functions Effects 0.000 description 2
- 201000001531 bladder carcinoma Diseases 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 201000009480 botryoid rhabdomyosarcoma Diseases 0.000 description 2
- 208000003362 bronchogenic carcinoma Diseases 0.000 description 2
- 229960004015 calcitonin Drugs 0.000 description 2
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 2
- 229960005084 calcitriol Drugs 0.000 description 2
- 235000020964 calcitriol Nutrition 0.000 description 2
- 239000011612 calcitriol Substances 0.000 description 2
- GMRQFYUYWCNGIN-NKMMMXOESA-N calcitriol Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@@H](CCCC(C)(C)O)C)=C\C=C1\C[C@@H](O)C[C@H](O)C1=C GMRQFYUYWCNGIN-NKMMMXOESA-N 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 150000001720 carbohydrates Chemical group 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 230000036755 cellular response Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 208000025997 central nervous system neoplasm Diseases 0.000 description 2
- 201000010881 cervical cancer Diseases 0.000 description 2
- 208000019065 cervical carcinoma Diseases 0.000 description 2
- 210000003679 cervix uteri Anatomy 0.000 description 2
- AOXOCDRNSPFDPE-UKEONUMOSA-N chembl413654 Chemical compound C([C@H](C(=O)NCC(=O)N[C@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](C)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@@H](N)CCC(O)=O)C1=CC=C(O)C=C1 AOXOCDRNSPFDPE-UKEONUMOSA-N 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000002038 chemiluminescence detection Methods 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 229940059329 chondroitin sulfate Drugs 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 208000024207 chronic leukemia Diseases 0.000 description 2
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 2
- 238000012411 cloning technique Methods 0.000 description 2
- 208000029742 colonic neoplasm Diseases 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 2
- 229960000258 corticotropin Drugs 0.000 description 2
- 229940041967 corticotropin-releasing hormone Drugs 0.000 description 2
- KLVRDXBAMSPYKH-RKYZNNDCSA-N corticotropin-releasing hormone (human) Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(N)=O)[C@@H](C)CC)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H]1N(CCC1)C(=O)[C@H]1N(CCC1)C(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CO)[C@@H](C)CC)C(C)C)C(C)C)C1=CNC=N1 KLVRDXBAMSPYKH-RKYZNNDCSA-N 0.000 description 2
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 2
- RGWHQCVHVJXOKC-SHYZEUOFSA-N dCTP Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO[P@](O)(=O)O[P@](O)(=O)OP(O)(O)=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-N 0.000 description 2
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 2
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- FMGSKLZLMKYGDP-USOAJAOKSA-N dehydroepiandrosterone Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC=C21 FMGSKLZLMKYGDP-USOAJAOKSA-N 0.000 description 2
- LTFMZDNNPPEQNG-UHFFFAOYSA-N deoxyguanylic acid Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1CC(O)C(COP(O)(O)=O)O1 LTFMZDNNPPEQNG-UHFFFAOYSA-N 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 229960003638 dopamine Drugs 0.000 description 2
- 229960001484 edetic acid Drugs 0.000 description 2
- 150000002066 eicosanoids Chemical class 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 201000009409 embryonal rhabdomyosarcoma Diseases 0.000 description 2
- 230000012202 endocytosis Effects 0.000 description 2
- 201000003914 endometrial carcinoma Diseases 0.000 description 2
- 208000027858 endometrioid tumor Diseases 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 229960005139 epinephrine Drugs 0.000 description 2
- KAQKFAOMNZTLHT-VVUHWYTRSA-N epoprostenol Chemical compound O1C(=CCCCC(O)=O)C[C@@H]2[C@@H](/C=C/[C@@H](O)CCCCC)[C@H](O)C[C@@H]21 KAQKFAOMNZTLHT-VVUHWYTRSA-N 0.000 description 2
- 229960001123 epoprostenol Drugs 0.000 description 2
- 229960005309 estradiol Drugs 0.000 description 2
- 229930182833 estradiol Natural products 0.000 description 2
- 229960001348 estriol Drugs 0.000 description 2
- PROQIPRRNZUXQM-ZXXIGWHRSA-N estriol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H]([C@H](O)C4)O)[C@@H]4[C@@H]3CCC2=C1 PROQIPRRNZUXQM-ZXXIGWHRSA-N 0.000 description 2
- 229960003399 estrone Drugs 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 210000002744 extracellular matrix Anatomy 0.000 description 2
- 238000004992 fast atom bombardment mass spectroscopy Methods 0.000 description 2
- 201000010972 female reproductive endometrioid cancer Diseases 0.000 description 2
- 229940028334 follicle stimulating hormone Drugs 0.000 description 2
- 206010017758 gastric cancer Diseases 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 2
- 229960004666 glucagon Drugs 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- XLXSAKCOAKORKW-AQJXLSMYSA-N gonadorelin Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)NCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 XLXSAKCOAKORKW-AQJXLSMYSA-N 0.000 description 2
- 229940035638 gonadotropin-releasing hormone Drugs 0.000 description 2
- 239000000122 growth hormone Substances 0.000 description 2
- 201000009277 hairy cell leukemia Diseases 0.000 description 2
- 208000025750 heavy chain disease Diseases 0.000 description 2
- 201000002222 hemangioblastoma Diseases 0.000 description 2
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 2
- 229940084986 human chorionic gonadotropin Drugs 0.000 description 2
- 229960000890 hydrocortisone Drugs 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 238000003119 immunoblot Methods 0.000 description 2
- 238000010166 immunofluorescence Methods 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- 229940072221 immunoglobulins Drugs 0.000 description 2
- 238000012744 immunostaining Methods 0.000 description 2
- 230000003308 immunostimulating effect Effects 0.000 description 2
- 201000004933 in situ carcinoma Diseases 0.000 description 2
- 239000000893 inhibin Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 230000008611 intercellular interaction Effects 0.000 description 2
- 229940047124 interferons Drugs 0.000 description 2
- 108010093036 interleukin receptors Proteins 0.000 description 2
- 102000002467 interleukin receptors Human genes 0.000 description 2
- 229940047122 interleukins Drugs 0.000 description 2
- 230000000968 intestinal effect Effects 0.000 description 2
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 229940039781 leptin Drugs 0.000 description 2
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 2
- 150000002617 leukotrienes Chemical class 0.000 description 2
- 206010024627 liposarcoma Diseases 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- 229940040129 luteinizing hormone Drugs 0.000 description 2
- 230000002132 lysosomal effect Effects 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 2
- 201000000289 malignant teratoma Diseases 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229960003987 melatonin Drugs 0.000 description 2
- 206010061289 metastatic neoplasm Diseases 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 201000006894 monocytic leukemia Diseases 0.000 description 2
- 208000010492 mucinous cystadenocarcinoma Diseases 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 208000009091 myxoma Diseases 0.000 description 2
- 208000001611 myxosarcoma Diseases 0.000 description 2
- 208000025189 neoplasm of testis Diseases 0.000 description 2
- 108010021512 neuromedin U Proteins 0.000 description 2
- PCJGZPGTCUMMOT-ISULXFBGSA-N neurotensin Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 PCJGZPGTCUMMOT-ISULXFBGSA-N 0.000 description 2
- URPYMXQQVHTUDU-OFGSCBOVSA-N nucleopeptide y Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 URPYMXQQVHTUDU-OFGSCBOVSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 201000008968 osteosarcoma Diseases 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 2
- XNOPRXBHLZRZKH-DSZYJQQASA-N oxytocin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@H](N)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 XNOPRXBHLZRZKH-DSZYJQQASA-N 0.000 description 2
- 229960001723 oxytocin Drugs 0.000 description 2
- 201000002528 pancreatic cancer Diseases 0.000 description 2
- 208000008443 pancreatic carcinoma Diseases 0.000 description 2
- 208000004019 papillary adenocarcinoma Diseases 0.000 description 2
- 201000010198 papillary carcinoma Diseases 0.000 description 2
- 239000000199 parathyroid hormone Substances 0.000 description 2
- 229960001319 parathyroid hormone Drugs 0.000 description 2
- 239000000813 peptide hormone Substances 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- 208000028591 pheochromocytoma Diseases 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 208000024724 pineal body neoplasm Diseases 0.000 description 2
- 201000004123 pineal gland cancer Diseases 0.000 description 2
- 208000010626 plasma cell neoplasm Diseases 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 239000013600 plasmid vector Substances 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 208000037244 polycythemia vera Diseases 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 208000017805 post-transplant lymphoproliferative disease Diseases 0.000 description 2
- 229960002847 prasterone Drugs 0.000 description 2
- 238000011533 pre-incubation Methods 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 230000001566 pro-viral effect Effects 0.000 description 2
- 229960003387 progesterone Drugs 0.000 description 2
- 239000000186 progesterone Substances 0.000 description 2
- 229940097325 prolactin Drugs 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000011321 prophylaxis Methods 0.000 description 2
- 150000003180 prostaglandins Chemical class 0.000 description 2
- XNSAINXGIQZQOO-SRVKXCTJSA-N protirelin Chemical compound NC(=O)[C@@H]1CCCN1C(=O)[C@@H](NC(=O)[C@H]1NC(=O)CC1)CC1=CN=CN1 XNSAINXGIQZQOO-SRVKXCTJSA-N 0.000 description 2
- XKMLYUALXHKNFT-UHFFFAOYSA-N rGTP Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O XKMLYUALXHKNFT-UHFFFAOYSA-N 0.000 description 2
- 230000033300 receptor internalization Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 2
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 description 2
- 201000008407 sebaceous adenocarcinoma Diseases 0.000 description 2
- 229960002101 secretin Drugs 0.000 description 2
- OWMZNFCDEHGFEP-NFBCVYDUSA-N secretin human Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(N)=O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)C1=CC=CC=C1 OWMZNFCDEHGFEP-NFBCVYDUSA-N 0.000 description 2
- 229940076279 serotonin Drugs 0.000 description 2
- 208000004548 serous cystadenocarcinoma Diseases 0.000 description 2
- 201000000849 skin cancer Diseases 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229940035044 sorbitan monolaurate Drugs 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 201000011549 stomach cancer Diseases 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 201000010965 sweat gland carcinoma Diseases 0.000 description 2
- 206010042863 synovial sarcoma Diseases 0.000 description 2
- 201000003120 testicular cancer Diseases 0.000 description 2
- 229960003604 testosterone Drugs 0.000 description 2
- RZWIIPASKMUIAC-VQTJNVASSA-N thromboxane Chemical compound CCCCCCCC[C@H]1OCCC[C@@H]1CCCCCCC RZWIIPASKMUIAC-VQTJNVASSA-N 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 208000013818 thyroid gland medullary carcinoma Diseases 0.000 description 2
- 208000030045 thyroid gland papillary carcinoma Diseases 0.000 description 2
- 229940034199 thyrotropin-releasing hormone Drugs 0.000 description 2
- 229940034208 thyroxine Drugs 0.000 description 2
- XUIIKFGFIJCVMT-UHFFFAOYSA-N thyroxine-binding globulin Natural products IC1=CC(CC([NH3+])C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-UHFFFAOYSA-N 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000012581 transferrin Substances 0.000 description 2
- 229940035722 triiodothyronine Drugs 0.000 description 2
- 210000005239 tubule Anatomy 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 102000003390 tumor necrosis factor Human genes 0.000 description 2
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 2
- 241001529453 unidentified herpesvirus Species 0.000 description 2
- PGAVKCOVUIYSFO-UHFFFAOYSA-N uridine-triphosphate Natural products OC1C(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)OC1N1C(=O)NC(=O)C=C1 PGAVKCOVUIYSFO-UHFFFAOYSA-N 0.000 description 2
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 2
- 210000004291 uterus Anatomy 0.000 description 2
- 210000001215 vagina Anatomy 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 229960003726 vasopressin Drugs 0.000 description 2
- 230000007502 viral entry Effects 0.000 description 2
- QYSXJUFSXHHAJI-YRZJJWOYSA-N vitamin D3 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-YRZJJWOYSA-N 0.000 description 2
- 229940021056 vitamin d3 Drugs 0.000 description 2
- 210000003905 vulva Anatomy 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- CADQNXRGRFJSQY-UOWFLXDJSA-N (2r,3r,4r)-2-fluoro-2,3,4,5-tetrahydroxypentanal Chemical compound OC[C@@H](O)[C@@H](O)[C@@](O)(F)C=O CADQNXRGRFJSQY-UOWFLXDJSA-N 0.000 description 1
- QRXMUCSWCMTJGU-UHFFFAOYSA-L (5-bromo-4-chloro-1h-indol-3-yl) phosphate Chemical compound C1=C(Br)C(Cl)=C2C(OP([O-])(=O)[O-])=CNC2=C1 QRXMUCSWCMTJGU-UHFFFAOYSA-L 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- ICLYJLBTOGPLMC-KVVVOXFISA-N (z)-octadec-9-enoate;tris(2-hydroxyethyl)azanium Chemical compound OCCN(CCO)CCO.CCCCCCCC\C=C/CCCCCCCC(O)=O ICLYJLBTOGPLMC-KVVVOXFISA-N 0.000 description 1
- DHBXNPKRAUYBTH-UHFFFAOYSA-N 1,1-ethanedithiol Chemical compound CC(S)S DHBXNPKRAUYBTH-UHFFFAOYSA-N 0.000 description 1
- QCNHIJXDZKTWSA-UHFFFAOYSA-N 1,2,3,4-Tetramethoxybenzene Chemical compound COC1=CC=C(OC)C(OC)=C1OC QCNHIJXDZKTWSA-UHFFFAOYSA-N 0.000 description 1
- PJXVQPWEQYWHRL-UHFFFAOYSA-N 1-acetyl-4-aminopyrimidin-2-one Chemical compound CC(=O)N1C=CC(N)=NC1=O PJXVQPWEQYWHRL-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 1
- WJNGQIYEQLPJMN-IOSLPCCCSA-N 1-methylinosine Chemical compound C1=NC=2C(=O)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WJNGQIYEQLPJMN-IOSLPCCCSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 1
- HLYBTPMYFWWNJN-UHFFFAOYSA-N 2-(2,4-dioxo-1h-pyrimidin-5-yl)-2-hydroxyacetic acid Chemical compound OC(=O)C(O)C1=CNC(=O)NC1=O HLYBTPMYFWWNJN-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- SGAKLDIYNFXTCK-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)methylamino]acetic acid Chemical compound OC(=O)CNCC1=CNC(=O)NC1=O SGAKLDIYNFXTCK-UHFFFAOYSA-N 0.000 description 1
- YSAJFXWTVFGPAX-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetic acid Chemical compound OC(=O)COC1=CNC(=O)NC1=O YSAJFXWTVFGPAX-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- OVHIHHMXCMXAHT-FPKZOZHISA-N 2-amino-9-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-3h-purin-6-one;7h-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1.C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 OVHIHHMXCMXAHT-FPKZOZHISA-N 0.000 description 1
- XMSMHKMPBNTBOD-UHFFFAOYSA-N 2-dimethylamino-6-hydroxypurine Chemical compound N1C(N(C)C)=NC(=O)C2=C1N=CN2 XMSMHKMPBNTBOD-UHFFFAOYSA-N 0.000 description 1
- YEDUAINPPJYDJZ-UHFFFAOYSA-N 2-hydroxybenzothiazole Chemical compound C1=CC=C2SC(O)=NC2=C1 YEDUAINPPJYDJZ-UHFFFAOYSA-N 0.000 description 1
- SMADWRYCYBUIKH-UHFFFAOYSA-N 2-methyl-7h-purin-6-amine Chemical compound CC1=NC(N)=C2NC=NC2=N1 SMADWRYCYBUIKH-UHFFFAOYSA-N 0.000 description 1
- KOLPWZCZXAMXKS-UHFFFAOYSA-N 3-methylcytosine Chemical compound CN1C(N)=CC=NC1=O KOLPWZCZXAMXKS-UHFFFAOYSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- MQJSSLBGAQJNER-UHFFFAOYSA-N 5-(methylaminomethyl)-1h-pyrimidine-2,4-dione Chemical compound CNCC1=CNC(=O)NC1=O MQJSSLBGAQJNER-UHFFFAOYSA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- VKLFQTYNHLDMDP-PNHWDRBUSA-N 5-carboxymethylaminomethyl-2-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=S)NC(=O)C(CNCC(O)=O)=C1 VKLFQTYNHLDMDP-PNHWDRBUSA-N 0.000 description 1
- ZFTBZKVVGZNMJR-UHFFFAOYSA-N 5-chlorouracil Chemical compound ClC1=CNC(=O)NC1=O ZFTBZKVVGZNMJR-UHFFFAOYSA-N 0.000 description 1
- KSNXJLQDQOIRIP-UHFFFAOYSA-N 5-iodouracil Chemical compound IC1=CNC(=O)NC1=O KSNXJLQDQOIRIP-UHFFFAOYSA-N 0.000 description 1
- KELXHQACBIUYSE-UHFFFAOYSA-N 5-methoxy-1h-pyrimidine-2,4-dione Chemical compound COC1=CNC(=O)NC1=O KELXHQACBIUYSE-UHFFFAOYSA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- DCPSTSVLRXOYGS-UHFFFAOYSA-N 6-amino-1h-pyrimidine-2-thione Chemical compound NC1=CC=NC(S)=N1 DCPSTSVLRXOYGS-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 206010002383 Angina Pectoris Diseases 0.000 description 1
- 108010032595 Antibody Binding Sites Proteins 0.000 description 1
- 108010083590 Apoproteins Proteins 0.000 description 1
- 102000006410 Apoproteins Human genes 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101001027553 Bos taurus Fibronectin Proteins 0.000 description 1
- 241000701822 Bovine papillomavirus Species 0.000 description 1
- 241000208199 Buxus sempervirens Species 0.000 description 1
- 102100039435 C-X-C motif chemokine 17 Human genes 0.000 description 1
- 102000053028 CD36 Antigens Human genes 0.000 description 1
- 108010045374 CD36 Antigens Proteins 0.000 description 1
- QCMYYKRYFNMIEC-UHFFFAOYSA-N COP(O)=O Chemical class COP(O)=O QCMYYKRYFNMIEC-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 241000251730 Chondrichthyes Species 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 102000004405 Collectins Human genes 0.000 description 1
- 108090000909 Collectins Proteins 0.000 description 1
- 241000759568 Corixa Species 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- PCDQPRRSZKQHHS-UHFFFAOYSA-N Cytidine 5'-triphosphate Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 PCDQPRRSZKQHHS-UHFFFAOYSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- 206010012689 Diabetic retinopathy Diseases 0.000 description 1
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 102100035970 Growth/differentiation factor 9 Human genes 0.000 description 1
- OHJKXVLJWUPWQG-PNRHKHKDSA-N Heparinsodiumsalt Chemical compound O[C@@H]1[C@@H](NS(O)(=O)=O)[C@@H](O)O[C@H](COS(O)(=O)=O)[C@H]1O[C@H]1[C@H](OS(O)(=O)=O)[C@@H](O)[C@H](O)[C@H](C(O)=O)O1 OHJKXVLJWUPWQG-PNRHKHKDSA-N 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101000889048 Homo sapiens C-X-C motif chemokine 17 Proteins 0.000 description 1
- 101001075110 Homo sapiens Growth/differentiation factor 9 Proteins 0.000 description 1
- 101001002470 Homo sapiens Interferon lambda-1 Proteins 0.000 description 1
- 101001003142 Homo sapiens Interleukin-12 receptor subunit beta-1 Proteins 0.000 description 1
- 101001044895 Homo sapiens Interleukin-20 receptor subunit beta Proteins 0.000 description 1
- 101000853000 Homo sapiens Interleukin-26 Proteins 0.000 description 1
- 101000998139 Homo sapiens Interleukin-32 Proteins 0.000 description 1
- 101001051093 Homo sapiens Low-density lipoprotein receptor Proteins 0.000 description 1
- 101001128431 Homo sapiens Myeloid-derived growth factor Proteins 0.000 description 1
- 101000851007 Homo sapiens Vascular endothelial growth factor receptor 2 Proteins 0.000 description 1
- 241000598436 Human T-cell lymphotropic virus Species 0.000 description 1
- 241000701085 Human alphaherpesvirus 3 Species 0.000 description 1
- 241001479210 Human astrovirus Species 0.000 description 1
- 241000046923 Human bocavirus Species 0.000 description 1
- 241001207270 Human enterovirus Species 0.000 description 1
- 241000713673 Human foamy virus Species 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 241000620571 Human mastadenovirus A Species 0.000 description 1
- 241001545456 Human mastadenovirus B Species 0.000 description 1
- 241000620147 Human mastadenovirus C Species 0.000 description 1
- 241000886679 Human mastadenovirus D Species 0.000 description 1
- 241000886703 Human mastadenovirus E Species 0.000 description 1
- 241000886705 Human mastadenovirus F Species 0.000 description 1
- 241000342334 Human metapneumovirus Species 0.000 description 1
- 241000711920 Human orthopneumovirus Species 0.000 description 1
- 241000701806 Human papillomavirus Species 0.000 description 1
- 241000484121 Human parvovirus Species 0.000 description 1
- 101100321817 Human parvovirus B19 (strain HV) 7.5K gene Proteins 0.000 description 1
- 241000829111 Human polyomavirus 1 Species 0.000 description 1
- 241000430519 Human rhinovirus sp. Species 0.000 description 1
- 241000714192 Human spumaretrovirus Species 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- RKUNBYITZUJHSG-UHFFFAOYSA-N Hyosciamin-hydrochlorid Natural products CN1C(C2)CCC1CC2OC(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-UHFFFAOYSA-N 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 1
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 1
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 1
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 1
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 1
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 108010047852 Integrin alphaVbeta3 Proteins 0.000 description 1
- 102100037971 Interferon lambda receptor 1 Human genes 0.000 description 1
- 101710145151 Interferon lambda receptor 1 Proteins 0.000 description 1
- 102100030236 Interleukin-10 receptor subunit alpha Human genes 0.000 description 1
- 101710146672 Interleukin-10 receptor subunit alpha Proteins 0.000 description 1
- 102100020788 Interleukin-10 receptor subunit beta Human genes 0.000 description 1
- 101710199214 Interleukin-10 receptor subunit beta Proteins 0.000 description 1
- 102100020790 Interleukin-12 receptor subunit beta-1 Human genes 0.000 description 1
- 102100020792 Interleukin-12 receptor subunit beta-2 Human genes 0.000 description 1
- 101710103840 Interleukin-12 receptor subunit beta-2 Proteins 0.000 description 1
- 108090000176 Interleukin-13 Proteins 0.000 description 1
- 102100020791 Interleukin-13 receptor subunit alpha-1 Human genes 0.000 description 1
- 101710112663 Interleukin-13 receptor subunit alpha-1 Proteins 0.000 description 1
- 102000003812 Interleukin-15 Human genes 0.000 description 1
- 108090000172 Interleukin-15 Proteins 0.000 description 1
- 102100020789 Interleukin-15 receptor subunit alpha Human genes 0.000 description 1
- 101710107699 Interleukin-15 receptor subunit alpha Proteins 0.000 description 1
- 102400000531 Interleukin-16 Human genes 0.000 description 1
- 101800003050 Interleukin-16 Proteins 0.000 description 1
- 102100035018 Interleukin-17 receptor A Human genes 0.000 description 1
- 101710186083 Interleukin-17 receptor A Proteins 0.000 description 1
- 102100035012 Interleukin-17 receptor C Human genes 0.000 description 1
- 101710186068 Interleukin-17 receptor C Proteins 0.000 description 1
- 102100035015 Interleukin-17 receptor D Human genes 0.000 description 1
- 101710186062 Interleukin-17 receptor D Proteins 0.000 description 1
- 102100039340 Interleukin-18 receptor 1 Human genes 0.000 description 1
- 101710184759 Interleukin-18 receptor 1 Proteins 0.000 description 1
- 102100026879 Interleukin-2 receptor subunit beta Human genes 0.000 description 1
- 101710154942 Interleukin-2 receptor subunit beta Proteins 0.000 description 1
- 102100022706 Interleukin-20 receptor subunit alpha Human genes 0.000 description 1
- 101710174006 Interleukin-20 receptor subunit alpha Proteins 0.000 description 1
- 102100022705 Interleukin-20 receptor subunit beta Human genes 0.000 description 1
- 102100022723 Interleukin-22 receptor subunit alpha-1 Human genes 0.000 description 1
- 101710191557 Interleukin-22 receptor subunit alpha-1 Proteins 0.000 description 1
- 102100022703 Interleukin-22 receptor subunit alpha-2 Human genes 0.000 description 1
- 108010065637 Interleukin-23 Proteins 0.000 description 1
- 108010066979 Interleukin-27 Proteins 0.000 description 1
- 102100040066 Interleukin-27 receptor subunit alpha Human genes 0.000 description 1
- 101710089672 Interleukin-27 receptor subunit alpha Proteins 0.000 description 1
- 108010038452 Interleukin-3 Receptors Proteins 0.000 description 1
- 102000010790 Interleukin-3 Receptors Human genes 0.000 description 1
- 102100033493 Interleukin-3 receptor subunit alpha Human genes 0.000 description 1
- 101710123866 Interleukin-3 receptor subunit alpha Proteins 0.000 description 1
- 102100021594 Interleukin-31 receptor subunit alpha Human genes 0.000 description 1
- 101710131691 Interleukin-31 receptor subunit alpha Proteins 0.000 description 1
- 102100039881 Interleukin-5 receptor subunit alpha Human genes 0.000 description 1
- 101710098691 Interleukin-5 receptor subunit alpha Proteins 0.000 description 1
- 102100037792 Interleukin-6 receptor subunit alpha Human genes 0.000 description 1
- 108010002335 Interleukin-9 Proteins 0.000 description 1
- 102100026244 Interleukin-9 receptor Human genes 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 description 1
- CKLJMWTZIZZHCS-UWTATZPHSA-N L-Aspartic acid Natural products OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 239000004395 L-leucine Substances 0.000 description 1
- 235000019454 L-leucine Nutrition 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102100035133 Lysosome-associated membrane glycoprotein 1 Human genes 0.000 description 1
- 101710116782 Lysosome-associated membrane glycoprotein 1 Proteins 0.000 description 1
- 108010009474 Macrophage Inflammatory Proteins Proteins 0.000 description 1
- 102000009571 Macrophage Inflammatory Proteins Human genes 0.000 description 1
- 102400000740 Melanocyte-stimulating hormone alpha Human genes 0.000 description 1
- 101710200814 Melanotropin alpha Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- SGSSKEDGVONRGC-UHFFFAOYSA-N N(2)-methylguanine Chemical compound O=C1NC(NC)=NC2=C1N=CN2 SGSSKEDGVONRGC-UHFFFAOYSA-N 0.000 description 1
- 108050000637 N-cadherin Proteins 0.000 description 1
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 1
- 206010052437 Nasal discomfort Diseases 0.000 description 1
- 206010028851 Necrosis Diseases 0.000 description 1
- 206010029719 Nonspecific reaction Diseases 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 208000001388 Opportunistic Infections Diseases 0.000 description 1
- 102000016979 Other receptors Human genes 0.000 description 1
- 229920005689 PLLA-PGA Polymers 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 241000282520 Papio Species 0.000 description 1
- 208000002606 Paramyxoviridae Infections Diseases 0.000 description 1
- 241000873939 Parechovirus A Species 0.000 description 1
- 208000037273 Pathologic Processes Diseases 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 208000020410 Psoriasis-related juvenile idiopathic arthritis Diseases 0.000 description 1
- 108091034057 RNA (poly(A)) Proteins 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 108091005487 SCARB1 Proteins 0.000 description 1
- 239000012722 SDS sample buffer Substances 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 102100037118 Scavenger receptor class B member 1 Human genes 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 108091027568 Single-stranded nucleotide Proteins 0.000 description 1
- 102100024471 Stabilin-1 Human genes 0.000 description 1
- 101710164042 Stabilin-1 Proteins 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 102100033504 Thyroglobulin Human genes 0.000 description 1
- 108010034949 Thyroglobulin Proteins 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 108010053096 Vascular Endothelial Growth Factor Receptor-1 Proteins 0.000 description 1
- 102000016549 Vascular Endothelial Growth Factor Receptor-2 Human genes 0.000 description 1
- 102100033178 Vascular endothelial growth factor receptor 1 Human genes 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 229960001456 adenosine triphosphate Drugs 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 239000002259 anti human immunodeficiency virus agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229940124411 anti-hiv antiviral agent Drugs 0.000 description 1
- 230000003302 anti-idiotype Effects 0.000 description 1
- 230000000798 anti-retroviral effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 102000025171 antigen binding proteins Human genes 0.000 description 1
- 108091000831 antigen binding proteins Proteins 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229960005261 aspartic acid Drugs 0.000 description 1
- 239000012911 assay medium Substances 0.000 description 1
- 230000003305 autocrine Effects 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000003855 balanced salt solution Substances 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 239000012148 binding buffer Substances 0.000 description 1
- 239000000227 bioadhesive Substances 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 229960002713 calcium chloride Drugs 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 230000023549 cell-cell signaling Effects 0.000 description 1
- XMLNCADGRIEXPK-KUMOIWDRSA-M chembl2146143 Chemical compound [Br-].O([C@H]1C[C@H]2CC[C@@H](C1)[N+]2(C)C)C(=O)C(CO)C1=CC=CC=C1 XMLNCADGRIEXPK-KUMOIWDRSA-M 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 230000003399 chemotactic effect Effects 0.000 description 1
- 229940045110 chitosan Drugs 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- KXKPYJOVDUMHGS-OSRGNVMNSA-N chondroitin sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](OS(O)(=O)=O)[C@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](C(O)=O)O1 KXKPYJOVDUMHGS-OSRGNVMNSA-N 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 208000019069 chronic childhood arthritis Diseases 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 230000008045 co-localization Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 229960005188 collagen Drugs 0.000 description 1
- 238000009096 combination chemotherapy Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000009137 competitive binding Effects 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000000139 costimulatory effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 238000012303 cytoplasmic staining Methods 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000000586 desensitisation Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- ANCLJVISBRWUTR-UHFFFAOYSA-N diaminophosphinic acid Chemical compound NP(N)(O)=O ANCLJVISBRWUTR-UHFFFAOYSA-N 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- RJBIAAZJODIFHR-UHFFFAOYSA-N dihydroxy-imino-sulfanyl-$l^{5}-phosphane Chemical compound NP(O)(O)=S RJBIAAZJODIFHR-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- MKRTXPORKIRPDG-UHFFFAOYSA-N diphenylphosphoryl azide Chemical compound C=1C=CC=CC=1P(=O)(N=[N+]=[N-])C1=CC=CC=C1 MKRTXPORKIRPDG-UHFFFAOYSA-N 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 210000004996 female reproductive system Anatomy 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 229940014259 gelatin Drugs 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 150000002337 glycosamines Chemical group 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 201000005787 hematologic cancer Diseases 0.000 description 1
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 1
- 150000002402 hexoses Chemical class 0.000 description 1
- 230000003118 histopathologic effect Effects 0.000 description 1
- 239000013029 homogenous suspension Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 102000051416 human SCARF1 Human genes 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000002433 hydrophilic molecules Chemical class 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 230000002390 hyperplastic effect Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 230000000951 immunodiffusion Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 108091008042 inhibitory receptors Proteins 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 108010045077 integrin alphaVbeta5 Proteins 0.000 description 1
- 102000004114 interleukin 20 Human genes 0.000 description 1
- 108090000681 interleukin 20 Proteins 0.000 description 1
- 108010074108 interleukin-21 Proteins 0.000 description 1
- 108040002099 interleukin-21 receptor activity proteins Proteins 0.000 description 1
- 102000008640 interleukin-21 receptor activity proteins Human genes 0.000 description 1
- 108010074109 interleukin-22 Proteins 0.000 description 1
- 108010027445 interleukin-22 receptor Proteins 0.000 description 1
- 102000003898 interleukin-24 Human genes 0.000 description 1
- 108090000237 interleukin-24 Proteins 0.000 description 1
- 108040006852 interleukin-4 receptor activity proteins Proteins 0.000 description 1
- 108040006858 interleukin-6 receptor activity proteins Proteins 0.000 description 1
- 108010038415 interleukin-8 receptors Proteins 0.000 description 1
- 102000010681 interleukin-8 receptors Human genes 0.000 description 1
- 108040006862 interleukin-9 receptor activity proteins Proteins 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000007154 intracellular accumulation Effects 0.000 description 1
- 238000000185 intracerebroventricular administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- QRWOVIRDHQJFDB-UHFFFAOYSA-N isobutyl cyanoacrylate Chemical compound CC(C)COC(=O)C(=C)C#N QRWOVIRDHQJFDB-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 201000004990 juvenile ankylosing spondylitis Diseases 0.000 description 1
- 201000002215 juvenile rheumatoid arthritis Diseases 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 229960003136 leucine Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 229960005015 local anesthetics Drugs 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 208000002780 macular degeneration Diseases 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 210000005171 mammalian brain Anatomy 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 108010082117 matrigel Proteins 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 208000037819 metastatic cancer Diseases 0.000 description 1
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 1
- IZAGSTRIDUNNOY-UHFFFAOYSA-N methyl 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetate Chemical compound COC(=O)COC1=CNC(=O)NC1=O IZAGSTRIDUNNOY-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 239000012514 monoclonal antibody product Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229940035032 monophosphoryl lipid a Drugs 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- XJVXMWNLQRTRGH-UHFFFAOYSA-N n-(3-methylbut-3-enyl)-2-methylsulfanyl-7h-purin-6-amine Chemical compound CSC1=NC(NCCC(C)=C)=C2NC=NC2=N1 XJVXMWNLQRTRGH-UHFFFAOYSA-N 0.000 description 1
- 239000002088 nanocapsule Substances 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- JPXMTWWFLBLUCD-UHFFFAOYSA-N nitro blue tetrazolium(2+) Chemical compound COC1=CC(C=2C=C(OC)C(=CC=2)[N+]=2N(N=C(N=2)C=2C=CC=CC=2)C=2C=CC(=CC=2)[N+]([O-])=O)=CC=C1[N+]1=NC(C=2C=CC=CC=2)=NN1C1=CC=C([N+]([O-])=O)C=C1 JPXMTWWFLBLUCD-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 230000003076 paracrine Effects 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000009054 pathological process Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 102000013415 peroxidase activity proteins Human genes 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 150000008298 phosphoramidates Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical group 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 108010040003 polyglutamine Proteins 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 229940069363 porcine heparin sodium Drugs 0.000 description 1
- 235000020004 porter Nutrition 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000007542 postnatal development Effects 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 229960002816 potassium chloride Drugs 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000009237 prenatal development Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000007425 progressive decline Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 210000004777 protein coat Anatomy 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 238000011867 re-evaluation Methods 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000013390 scatchard method Methods 0.000 description 1
- 108091005484 scavenger receptor class B Proteins 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000009919 sequestration Effects 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 229960004249 sodium acetate Drugs 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 229960002668 sodium chloride Drugs 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- TXBNDGDMWKVRQW-UHFFFAOYSA-M sodium;2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]azaniumyl]acetate;dodecyl sulfate Chemical compound [Na+].OCC(CO)(CO)NCC(O)=O.CCCCCCCCCCCCOS([O-])(=O)=O TXBNDGDMWKVRQW-UHFFFAOYSA-M 0.000 description 1
- NASFKTWZWDYFER-UHFFFAOYSA-N sodium;hydrate Chemical compound O.[Na] NASFKTWZWDYFER-UHFFFAOYSA-N 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229960000814 tetanus toxoid Drugs 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- HNKJADCVZUBCPG-UHFFFAOYSA-N thioanisole Chemical compound CSC1=CC=CC=C1 HNKJADCVZUBCPG-UHFFFAOYSA-N 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 229960002175 thyroglobulin Drugs 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 102000027257 transmembrane receptors Human genes 0.000 description 1
- 108091008578 transmembrane receptors Proteins 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229940117013 triethanolamine oleate Drugs 0.000 description 1
- LZTRCELOJRDYMQ-UHFFFAOYSA-N triphenylmethanol Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(O)C1=CC=CC=C1 LZTRCELOJRDYMQ-UHFFFAOYSA-N 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 238000005866 tritylation reaction Methods 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241000007181 unidentified human coronavirus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 208000023577 vascular insufficiency disease Diseases 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000007501 viral attachment Effects 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 230000017613 viral reproduction Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 235000005282 vitamin D3 Nutrition 0.000 description 1
- 239000011647 vitamin D3 Substances 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 230000036642 wellbeing Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K19/00—Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H11/00—Compounds containing saccharide radicals esterified by inorganic acids; Metal salts thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/115—Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
Definitions
- the present disclosure relates to hetero-bifunctional ligands that bind to and induce the internalization of specific target receptors, and methods for treating and/or inhibiting diseases associated with the target receptors using these hetero- bifunctional ligands.
- Cell-surface proteins known as receptors are present on the surface of most if not all of the cells that make up an organism. Cell surface receptors enable chemical communication between the different cells that make up the organism. Typically, cell-cell signaling occurs through the binding of ligands, such as small molecules and proteins, to the various receptors present on the surface of a cell. The binding of ligand to a cell surface receptor can initiate cellular responses (in some examples ligand dissociation initiates a cellular response), which can lead to physiological changes in the cell, for example changes in gene expression patterns and/or chemotactic behavior. A number of diseases, including cancer, metabolic disorders and viral infections are known to be involved with the expression of cell-surface receptors in their development and/or progression.
- cell-surface receptors can serve as sites of attachment and entry for viruses, such as human immunodeficiency virus (HIV).
- HIV human immunodeficiency virus
- angiogenesis is believed to be mediated by the secretion of growth factors and their binding by cognate receptors on capillary-forming cells.
- agents have been sought that bind the extracellular portion of cell surface receptors and inhibit the binding of the receptor's cognate ligand or agents that bind the intracellular portion of the receptor and prevent signal propagation inside the cell.
- the epidermal growth factor receptor has been the target for development of agents that bind the extracellular or intracellular portion of the cell surface receptor.
- EGFR is frequently overexpressed in a wide range of human tumors. Such overexpression often correlates with poor prognosis and worse clinical outcome.
- Two classes of anti-EGFR agents have entered clinical practice: monoclonal antibodies and small molecules targeting the receptor tyrosine kinase domain of EGFR.
- the monoclonal antibodies to EGFR inhibit the binding of EGF to the extracellular domain of EGFR, effectively stopping the signal at the surface of the cell.
- Small molecules that target the receptor tyrosine kinase domain pass into the interior of the cell where they bind to the EGFR kinase domain and inhibit the catalytic activity of the kinase.
- chemokine receptors CCR5 and CXCR4 were identified as HIV-I co-receptors in 1996. Since then, a range of agents that bind these receptors and potently block HIV-I infection have been described, including monoclonal antibodies, peptides and modified chemokines. These anti-HIV agents bind to the chemokine receptors and inhibit the ability of HIV to bind to the chemokine receptors and use them as an entry point into cells.
- hetero-bifunctional ligand for use in inducing internalization of a target receptor.
- the disclosed hetero-bifunctional ligand includes a target receptor-binding agent that specifically binds a target receptor, wherein the target receptor binding agent is linked to an internalizing receptor- binding agent that specifically binds to an internalizing receptor.
- the target receptor-binding agent and the internalizing receptor-binding agent are not identical. Binding of such a hetero-bifunctional ligand to an internalizing receptor and the target receptor on the surface of a cell induces the internalization of both the internalizing receptor and the target receptor.
- the hetero-bifunctional ligand includes, as target receptor-binding agent, an antibody (for example a monoclonal and/or humanized antibody), a small molecule or a ligand that specifically binds the target receptor.
- the target receptor- binding agent is a target receptor ligand, for example a cytokine, a chemokine, a growth factor, a hormone, a neuropeptide or a portion thereof that specifically binds the target receptor.
- the target receptor-binding agent of the hetero-bifunctional ligand is a ligand or antibody for a CCR5 receptor.
- the target receptor-binding agent of the hetero-bifunctional ligand is vascular endothelial growth factor-A (VEGF-A).
- VEGF-A vascular endothelial growth factor-A
- internalizing receptors include scavenger receptors, low-density lipoprotein (LDL) receptors, heat shock protein receptors and transferrin receptors.
- LDL low-density lipoprotein
- the internalizing receptor-binding agent of a disclosed hetero-bifunctional ligand includes a scavenger receptor ligand, an LDL receptor ligand, a transferrin receptors ligand or a heat-shock protein receptor ligand.
- the target receptor-binding agent of the hetero- bifunctional ligand is VEGF-A and the internalizing receptor-binding agent is Acetylated-LDL.
- a target receptor-binding agent is an oligonucleotide.
- an internalizing receptor-binding agent is an oligonucleotide.
- Methods of inducing internalization of a target receptor on a cell are disclosed. Examples of these methods include contacting the cell with an effective amount of a hetero-bifunctional ligand. Disclosed methods can be used to treat a disease or condition associated with a target receptor, such as cancer or a viral infection. Such methods include administering a therapeutically effective amount of a hetero-bifunctional ligand to a subject, thereby treating the disease or condition.
- the method is a method of treating or inhibiting an HIV infection by administering to a subject a therapeutically effective amount of a hetero- bifunctional ligand that includes a ligand or antibody for a cytokine receptor such as a CCR5 receptor ligand linked to an internalizing receptor ligand that specifically binds to and induces internalization of both the internalizing receptor and cytokine receptor.
- a hetero- bifunctional ligand that includes a ligand or antibody for a cytokine receptor such as a CCR5 receptor ligand linked to an internalizing receptor ligand that specifically binds to and induces internalization of both the internalizing receptor and cytokine receptor.
- the CCR5 receptor ligand and the internalizing receptor ligand are not identical and they target different receptors.
- FIGS. 1A-1G are graphs and digital images and histograms demonstrating the effect of polysaccharides on neuropilin 1 (NRPl)
- FIG. IA is a set of graphs showing the effects of polysaccharides on NRPl binding to heparin. NRPl (20 nM) was passed over a heparin-coated sensor chip without, with 0.1 ⁇ g/ml or 1 ⁇ g/ml polysaccharide.
- FIG. IB is a set of digital images of immunoblots showing the binding of NRPl to dextran sulfate.
- FIG. 1C is a graph showing the modulation of cell-surface NRPl by polysaccharides.
- Human umbilical vein endothelial cells (HUVEC) were incubated with the polysaccharides (0-64 ⁇ g/ml, 37°C, 1 hour). After cell washing (IM NaCl), NRPl was detected by flow cytometry.
- FIG. ID is a set of histograms from a flow cytometry analysis of the effects of DS 500 on levels of cell-surface molecules NRPl, neuropilin 2 (NRP2), vascular endothelial growth factor receptor 2 (VEGFR- 2), vascular endothelial growth factor receptor 1 (VEGFR-I), CD31, VE-Cadherin, gpl30 and CXCR4.
- NRPl neuropilin 2
- VEGFR- 2 vascular endothelial growth factor receptor 2
- VGFR-I vascular endothelial growth factor receptor 1
- CD31 CD31
- VE-Cadherin gpl30
- CXCR4 vascular endothelial growth factor receptor 1
- FIG. IF is a digital image of HUVEC treated (37°C, 1 hour) with or without DS500 (8 ⁇ g/ml), stained for NRPl and DAPI, fixed and observed through an Olympus 1X51 phase-contrast microscope equipped with a 10 x/0.25 PhC objective lens and a 10 x eyepiece (Olympus Optical, Melville, NY) and photographed with a RETIGATM 1300 digital camera (QIMAGING®, Burnaby, BC, Canada).
- FIG. IG is a set of histograms from a flow cytometry analysis of NRPl detected on HUVEC incubated with DS500 (0-8 ⁇ g/ml, 37°C, 1 hour) in the presence of 1% or 95% human serum.
- FIGS. 2A-2C are a set of digital images of immunostaining and immnoblots and a bar graph demonstrating that DS500 induces NRPl internalization and that NRPl co-localizes with Lampl.
- FIG. 2A is a set of digital images showing that DS500 induces NRPl internalization.
- HUVEC grown on fibronectin-coated glass slides were incubated with DS500 (8 ⁇ g/ml, 37°C, 0-60 minutes). After fixation and permeabilization, cells were stained with anti-NRPl monoclonal antibody (mAb) and examined through an LSM510 confocal microscope equipped with a PLAN- NEOFLU AR® 40 x 1/1.3 objective lens (Carl Zeiss).
- FIG. 2B is a set of digital images showing that NRPl co-localizes with Lampl. HUVEC were incubated with DS500 (8 ⁇ g/ml, 37°C, 1 hour). After fixation and permeabilization, cells were stained for NRPl, Lampl and DAPI and examined by confocal microscopy.
- DS500 8 ⁇ g/ml, 37°C, 1 hour
- FIGS. 3A-3C is a set of histograms and graphs demonstrating that stimulation of cells co-expressing scavenger receptors and NRPl with DS500 reduces the surface levels of NRPl.
- FIG. 3A-3C is a set of histograms and graphs demonstrating that stimulation of cells co-expressing scavenger receptors and NRPl with DS500 reduces the surface levels of NRPl.
- FIG. 3A is a set of histograms from a flow cytometry analysis of cell-surface NRPl in HUVEC, RS4, HS-5 and COS7-NRP1 cells.
- FIG. 3B is a graph showing that the reduction of cell surface NRPl is detected on HUVEC, but not RS4, HS-5 and COS7-NRP1 cells after stimulation with DS500 (0, 0.5, 2, 8 ⁇ g/ml, 37°C, 1 hour). Results reflect the relative mean fluorescence intensities with and without stimulation.
- FIG. 3B is a graph showing that the reduction of cell surface NRPl is detected on HUVEC, but not RS4, HS-5 and COS7-NRP1 cells after stimulation with DS500 (0, 0.5, 2, 8 ⁇ g/ml, 37°C, 1 hour). Results reflect the relative mean fluorescence intensities with and without stimulation.
- 3C is a graph showing uptake of acLDL (DiO-Ac-LDL) (0, 0.25, 1, 4 ⁇ g/ml, 37°C, 1 hour) by HUVEC, but not RS4, HS-5 and COS7-NRP1 cells detected by flow cytometry. Open circles indicate cell uptake of DiO-Ac-LDL (4 ⁇ g/ml) in the presence of competitor Ac-LDL (100 ⁇ g/ml). Results reflect mean fluorescence intensities after background subtraction.
- acLDL DiO-Ac-LDL
- FIGS. 4A-4E is a set of digital images and graphs.
- FIG. 4A is a set of digital images showing that the scavenger receptor expressed by endothelial cells -1 (SREC-I) internalized by Ac-LDL localizes with Ac-LDL.
- FIG. 4B is a graph showing that DS500 and Fucoidan reduce cell-surface levels of SREC-I.
- FIG. 4C is a graph showing the temperature, concentration and time-dependent reduction of cell-surface SREC-I by DS500. HUVEC were incubated with DS500. SREC-I was detected by flow cytometry.
- FIG. 4D is a set of digital images showing that DS500 induces SREC-I internalization.
- FIG. 4E is a set of digital images showing that SREC-I co- localizes with Lampl.
- SREC-I, Lampl and DAPI were examined by confocal microscopy in HUVEC incubated with DS500 (8 ⁇ g/ml, 37°C, 1 hour), fixed and permeabilized.
- FIGS. 5A-5D is a set of digital images, graphs and histograms.
- FIG. 1A is a set of digital images showing co-localization of SREC-I and NRPl in the cytoplasm after Fucoidan or DS500 stimulation. HUVEC were incubated (37°C, 1 hour) with medium alone, heparin, ChoSulA, Fucoidan or DS 500 (8 ⁇ g/m
- FIG. 5B is a set of graphs showing that DS 500 specifically and dose-dependently promotes binding of NRPl to SREC-I.
- NRPl/Fc or control Fc protein B7-1/Fc was added to control IgGl-coated wells (filled circles) or SREC-I/Fc-coated wells (open circle) with or without DS500.
- Bound NRPl or control/Fc was measured by enzyme-linked immunosorbent assay (ELISA). The results reflect the means ⁇ SD of 3 trials.
- FIG. 5C is a bar graph showing the effect of polysaccharides on the binding of NRPl to SREC-I.
- FIG. 5D is a set of histograms from a flow cytometry analysis showing that transduction of 293 cells with SREC-I confers DiO-Ac-LDL uptake capability and reduces cell-surface levels of NRPl, but not levels of gpl30 or CXCR4. 293 cells were transfected with cDNA for SREC-I or control. Uptake of DiO-Ac-LDL and cell surface levels of endogenous gpl30, CXCR4 or NRPl were detected by flow cytometry. Shaded graphs reflect control staining.
- FIGS. 6A-6E is a set of digital images and graphs.
- FIG. 6A is a graph showing that DS500 and Fucoidan block Sema3A binding to HUVEC. Cells were incubated with DS500 (closed circle) (0-8 ⁇ g/ml), heparin (triangle), ChoSulA
- FIG. 6B is a set of digital images showing that DS 500 and Fucoidan inhibit Sema3A-induced lamellipodia retraction in HUVEC. After pre-incubation with or without DS 500 or Fucoidan, HUVEC were allowed to attach onto fibronectin-coated slides and then incubated with or without Sema3A/Fc. Magnification, 10Ox.
- FIG. 6B is a set of digital images showing that DS 500 and Fucoidan inhibit Sema3A-induced lamellipodia retraction in HUVEC. After pre-incubation with or without DS 500 or Fucoidan, HUVEC were allowed to attach onto fibronectin-coated slides and then incubated with or without Sema3A/Fc. Magnification, 10Ox.
- FIG. 6C is a bar graph showing that DS500 and Fucoidan inhibit Sema3A-induced lamellipodia retraction in HUVEC. After pre-incubation with or without DS 500 or Fucoidan, HUVEC were allowed to attach onto fibronectin-coated slides and then incubated with or without Sema3A/Fc. Average retraction scores ( ⁇ SD of 4 fields), p ⁇ .01.
- FIG. 6D is a graph showing that DS500 and Fucoidan block VEGFi 65 binding to HUVEC. Bound VEGFi 65 was detected by flow cytometry. Experimental conditions as described in FIG. 6A.
- FIG. 6E is a bar graph showing that DS500 and Fucoidan inhibit VEGFi 65 -induced proliferation of HUVEC. Cells were cultured (3 days) with ChoSulA, DS500 or
- Fucoidan in the presence of VEGFi 65 25 ng/ml
- proliferation was measured by 3 H- thymidine uptake. Results are expressed as mean cpm/culture ( ⁇ SD of triplicate cultures).
- FIGS. 7A-7F are bar graphs and digital images.
- FIGS. 7A and 7B are two bar graphs showing that Fucoidan inhibits angiogenesis in vivo.
- FIG. 7A and FIG. 7B show the effects of Fucoidan on VEGF-induced angiogenesis in MATRIGELTM plugs. Mice bearing MATRIGELTM plugs containing VEGF (0 or 150 ng/ml) plus heparin (0 or 500 ng/ml) were injected daily intraperitonially (i.p.) for 6 days with Fucoidan or control non- sulfated dextran (1 mg/mouse/day).
- FIG. 7A the 2 groups consisted of 5 C57BL/6J 7-week old female mice.
- FIG. 7B the 4 groups consisted of 6 BALB/cAnCr 6-weeks old female mice.
- FIG. 7C and 7D are two bar graphs showing the effects of Fucoidan on tumor growth in mice.
- FIG. 7C shows tumor size (expressed in mm 2 ) and FIG. 7D shows tumor weight (expressed in grams) in the 2 groups of 15 female BALB/cAnCr 6-weeks old mice inoculated subcutaneously (s.c.) with 10 7 MOPC315 tumor cells and subsequently treated daily for 7 days with Fucoidan or control non- sulfated dextran.
- FIG. 7E is a set of digital images showing CD31/platelet endothelial cell adhesion molecule- 1 (PECAM) immunostaining of tumor tissues from mice treated with Fucoidan or control non- sulfated dextran. Original magnification 2Ox.
- FIG. 7F is a bar graph showing quantification of vascular infiltration in tumor tissues using IPLab Software. The results are expressed as the mean ( ⁇ SD) surface areas occupied by CD31 + cells within a unit area ( ⁇ m 2 /10 6 ⁇ m 2 ).
- FIG. 8 is a set of line graphs showing the effects of polyribonucleotides and oligodeoxynucleotides on cell surface expression of NRPl.
- HUVEC were pre- incubated (37°C, 1 hour) with polyribonucleotides and oligodeoxynucleotides (1-16 ⁇ g/ml) at the indicated concentrations.
- FIG. 9 is a set of histograms from a flow cytometry analysis of the effects of poly(G) on levels of cell surface molecules NRPl, NRP2, VEGFR-2, gpl30, CD31 and SREC-I. HUVEC were incubated (37°C, 1 hour) with (+) or without (-) poly(G). Shaded graphs reflect control staining.
- FIG. 10 is a digital image of HUVEC treated (37°C, 1 hour) with or without biotin-G18 (16 ⁇ g/ml), stained for NRPl, biotin-G18 and Hoechst 33342, fixed and observed by an LSM510 confocal microscope equipped with a PLAN- NEOFLU AR® 40x1/1/3 objective lens (Carl Zeiss). Images reflect the merging of fluorescent NRPl, biotin-G18 and Hoechst 33342 images. Scale bar 20 ⁇ m.
- FIG. 10 is a digital image of HUVEC treated (37°C, 1 hour) with or without biotin-G18 (16 ⁇ g/ml), stained for NRPl, biotin-G18 and Hoechst 33342, fixed and observed by an LSM510 confocal microscope equipped with a PLAN- NEOFLU AR® 40x1/1/3 objective lens (Carl Zeiss). Images reflect the merging of fluorescent NRPl, biotin-G18 and Hoechs
- FIG. 11 is a digital image of HUVEC incubated (37°C, 1 hour) with sG18 (16 ⁇ g/ml), stained for SREC-I, NRPl and Hoechst 33342, fixed and observed by a confocal microscope equipped with a PLAN-NEOFLUAR® 40x1/1/3 objective lens (Carl Zeiss). Images reflect the merging of fluorescent SREC-I, NRP-I and Hoechst 33342 slice images. Scale bar 20 ⁇ m.
- FIG. 12A-12C is a set of bar graphs showing the binding of biotin-labeled oligos to immobilized NRPl (FIG. 12A) and immobilized SREC-I (FIG. 12B). The bridging of NRPl to SREC-I in the presence of biotin-oligos is shown in (FIG. 12C). NRPl was added to SREC- 1/Fc-coated wells with or without biotin-oligos (0.25, 1, 4 or 16 ⁇ g/ml). Binding was detected by absorbance at OD450. The results reflect the means ( ⁇ SD) of 3 trials.
- FIG. 13 is a set of histograms from a flow cytometry analysis showing the effects of oligo(G) on Sema3A and VEGFl 65 binding to cells.
- HUVEC were incubated (37°C, 1 hour) with or without phosphorothioate oligo(G) (sG18) at 4 or 16 ⁇ g/ml. After washing, bound Sema3A/Fc or biotin- VEGFl 65 was detected by flow cytometry.
- FIG. 14 is a schematic drawing showing the internalization of the receptors NRPl and SREC-I induced by selected sulfated polysaccharides and poly(G)/oligo(G) nucleotides. Once internalized, NRPl is no longer present on the cell surface and cannot bind/mediate signaling from the cognate ligands Sema3A or VEGF165.
- Angiogenesis A biological process leading to the generation of new blood vessels through sprouting or growth from pre-existing blood vessels or from circulating endothelial precursors. The process involves the migration and proliferation of endothelial cells from preexisting vessels. Angiogenesis occurs during pre-natal development, post-natal development and in the adult. In the adult, angiogenesis occurs during the normal cycle of the female reproductive system, wound healing and during pathological processes such as cancer (for a review see Battegay, J. Molec. Med. 73(7): 333-346, 1995).
- Aptamer Small nucleic acid and peptide molecules that bind a specific target molecule, such as a target biomolecule, for example a target receptor or internalizing receptor.
- Animal A living multicellular vertebrate organism, a category which includes, for example, mammals and birds.
- a "mammal” includes both human and non-human mammals.
- the term “subject” includes both human and veterinary subjects.
- Adjuvant A vehicle used to enhance antigenicity; such as a suspension of minerals (alum, aluminum hydroxide, aluminum phosphate) on which antigen is adsorbed; or water-in-oil emulsion in which antigen solution is emulsified in oil (MF-59, Freund's incomplete adjuvant), sometimes with the inclusion of killed mycobacteria (Freund's complete adjuvant) to further enhance antigenicity (inhibits degradation of antigen and/or causes influx of macrophages).
- Adjuvants also include immunostimulatory molecules, such as cytokines, costimulatory molecules and for example, immunostimulatory DNA or RNA molecules, such as CpG oligonucleotides.
- Antibody A polypeptide ligand comprising at least a light chain or heavy chain immunoglobulin variable region, which specifically recognizes and binds an epitope of an antigen, such as target receptor or a fragment thereof.
- an antigen such as target receptor or a fragment thereof.
- a scFv protein is a fusion protein in which a light chain variable region of an immunoglobulin and a heavy chain variable region of an immunoglobulin are bound by a linker, while in dsFvs, the chains have been mutated to introduce a disulfide bond to stabilize the association of the chains.
- the term also includes genetically engineered forms such as chimeric antibodies (such as humanized murine antibodies), heteroconjugate antibodies (such as bispecific antibodies). See also, Pierce Catalog and Handbook, 1994-1995 (Pierce Chemical Co., Rockford, IL); Kuby, J., Immunology, 3 rd Ed., W.H. Freeman & Co., New York, 1997.
- a naturally occurring immunoglobulin has heavy (H) chains and light (L) chains interconnected by disulfide bonds.
- References to "V H “ or “VH” refer to the variable region of an immunoglobulin heavy chain, including that of an Fv, scFv, dsFv or Fab.
- References to "V L “ or “VL” refer to the variable region of an immunoglobulin light chain, including that of an Fv, scFv, dsFv or Fab.
- Light and heavy chain variable regions contain a "framework" region interrupted by three hypervariable regions, also called “complementarity-determining regions” or "CDRs.”
- CDRs complementarity-determining regions
- the extent of the framework region and CDRs have been defined (see, Kabat et al., (1991) Sequences of Proteins of Immunological Interest, 5 th Edition, U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Bethesda, MD (NIH Publication No. 91-3242) which is hereby incorporated by reference).
- the Kabat database is now maintained online.
- the sequences of the framework regions of different light or heavy chains are relatively conserved within a species.
- the framework region of an antibody that is the combined framework regions of the constituent light and heavy chains, serves to position and align the CDRs in three- dimensional space, for example to hold the CDRs in an appropriate orientation for antigen binding.
- the CDRs are primarily responsible for binding to an epitope of an antigen.
- the CDRs of each chain are typically referred to as CDRl, CDR2 and CDR3, numbered sequentially starting from the N-terminus and are also typically identified by the chain in which the particular CDR is located.
- a V H CDR3 is located in the variable domain of the heavy chain of the antibody in which it is found
- a V L CDRl is the CDRl from the variable domain of the light chain of the antibody in which it is found.
- a “monoclonal antibody” is an antibody produced by a single clone of B-lymphocytes or by a cell into which the light and heavy chain genes of a single antibody have been transfected or transduced.
- Monoclonal antibodies are produced by methods known to those of skill in the art, for instance by making hybrid antibody-forming cells from a fusion of myeloma cells with immune spleen cells. These fused cells and their progeny are termed "hybridomas.”
- Monoclonal antibodies include humanized monoclonal antibodies.
- a “humanized” immunoglobulin is an immunoglobulin including a human framework region and one or more CDRs from a non-human (such as a mouse, rat or synthetic) immunoglobulin.
- the non-human immunoglobulin providing the CDRs is termed a "donor,” and the human immunoglobulin providing the framework is termed an "acceptor.”
- all the CDRs are from the donor immunoglobulin in a humanized immunoglobulin. Constant regions need not be present, but if they are, they must be substantially identical to human immunoglobulin constant regions, for example at least about 85-90%, such as about 95% or more identical. Hence, all parts of a humanized immunoglobulin, except possibly the CDRs, are substantially identical to corresponding parts of natural human immunoglobulin sequences.
- a "humanized antibody” is an antibody comprising a humanized light chain and a humanized heavy chain immunoglobulin.
- a humanized antibody binds to the same antigen as the donor antibody that provides the CDRs.
- the acceptor framework of a humanized immunoglobulin or antibody may have a limited number of substitutions by amino acids taken from the donor framework.
- Humanized or other monoclonal antibodies can have additional conservative amino acid substitutions which have substantially no effect on antigen binding or other immunoglobulin functions.
- Humanized immunoglobulins can be constructed by means of genetic engineering (for example see U.S. Patent No. 5,585,089).
- an antibody is a ligand for a receptor, such as a ligand for a target receptor, for example a target receptor antibody.
- a target receptor antibody is linked to a specific binding agent for an internalizing receptor, for example to create a hetero-bifunctional ligand that can bind to both an internalizing receptor and a target receptor.
- Binding affinity Affinity of a specific binding agent for its target, such as an antibody for an antigen, for example an antibody for a target receptor.
- affinity is calculated by a modification of the Scatchard method described by Frankel et al., MoI. Immunol., 16:101-106, 1979.
- binding affinity is measured by a specific binding agent receptor dissociation rate.
- a high binding affinity is measured by a competition radioimmunoassay.
- a high binding affinity is at least about 1 x 10 " M. In other embodiments, a high binding affinity is at least about 1.5 x 10 ⁇ 8 , at least about 2.0 x 10 ⁇ 8 , at least about 2.5 x 10 ⁇ 8 , at least about 3.0 x 10 ⁇ 8 , at least about 3.5 x 10 "8 , at least about 4.0 x 10 "8 , at least about 4.5 x 10 "8 or at least about 5.0 x 10 "8 M.
- Cancer A disease characterized by the abnormal growth and differentiation of cells.
- “Metastatic disease” refers to cancer cells that have left the original tumor site and migrate to other parts of the body for example via the bloodstream or lymph system.
- leukemias include leukemias, including acute leukemias (such as acute lymphocytic leukemia, acute myelocytic leukemia, acute myelogenous leukemia and myeloblastic, promyelocytic, myelomonocytic, monocytic and erythroleukemia), chronic leukemias (such as chronic myelocytic (granulocytic) leukemia, chronic myelogenous leukemia and chronic lymphocytic leukemia), polycythemia vera, lymphoma, Hodgkin's disease, non-Hodgkin's lymphoma (indolent and high grade forms), multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, myelodys
- solid tumors such as sarcomas and carcinomas
- solid tumors include fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma and other sarcomas, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon cancer (such as colon carcinoma), gastric cancer, (for example, gastric adenocarcinoma, such as intestinal type gastric adenocarcinoma and diffuse type gastric adenocarcinoma ), lymphoid malignancy, pancreatic cancer, breast cancer (such as adenocarcinoma), lung cancers, gynecological cancers (such as, cancers of the uterus (for example endometrial carcinoma), cervix (for example cervical carcinoma, pre-tumor cervical dysplasia), ovaries (for example ovarian carcinoma
- Contacting Placement in direct physical association including both in solid or liquid form. Contacting can occur in vivo, for example by administering an agent to a subject, in vitro. "Administration" is the introduction of a composition, such as a composition containing a hetero-bifunctional ligand, into a subject by a chosen route. For example, if the chosen route is intravenous, the composition is administered by introducing the composition into a vein of the subject.
- administering includes topical, parenteral, oral, intravenous, intramuscular, sub-cutaneous, inhalational, nasal or intra-articular administration, among others.
- Chemokines Proteins classified according to shared structural characteristics such as small size (approximately 8-10 kilodaltons (kD) in size) and the presence of four cysteine residues in conserved locations that are key to forming their 3 -dimensional shape. These proteins exert their biological effects by interacting with G protein- linked transmembrane receptors called chemokine receptors that are selectively found on the surfaces of their target cells. Chemokines bind to chemokine receptors and thus are chemokine receptor ligands.
- chemokines include the CCL chemokines such as CCLl, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCLlO, CCLI l, CCL12, CCL13, CCL14, CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL23, CCL24, CCL25, CCL26, CCL27 and CCL28; CXCL chemokines such as CXCLl, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CXCLlO, CXCLI l, CXCL12, CXCL13, CXCL14, CXCL15, CXCL16 and CXCL17; XCL chemokines such as XCLl and XCL2; and CX3CL chemokines such as CX3CL1.
- a chemokine or portion thereof sufficient to bind to a chemokine receptor is part of a hetero-bifunctional ligand.
- Chemotherapeutic agents Any chemical agent with therapeutic usefulness in the treatment of diseases characterized by abnormal cell growth. Such diseases include tumors, neoplasms and cancer as well as diseases characterized by hyperplastic growth such as psoriasis.
- a chemotherapeutic agent is an agent of use in treating a tumor.
- a chemotherapeutic agent is a hetero-bifunctional ligand.
- chemotherapeutic agent of use for example, see Slapak and Kufe, Principles of Cancer Therapy, Chapter 86 in Harrison's Principles of Internal Medicine, 14th edition; Perry et al., Chemotherapy, Ch. 17 in Abeloff, Clinical Oncology 2 nd ed., ⁇ 2000 Churchill Livingstone, Inc; Baltzer, L., Berkery, R. (eds): Oncology Pocket Guide to Chemotherapy, 2nd ed. St. Louis, Mosby-Year Book, 1995; Fischer, D. S., Knobf, M.F., Durivage, HJ. (eds): The Cancer Chemotherapy Handbook, 4th ed. St.
- Covalent bond An interatomic bond between two atoms, characterized by the sharing of one or more pairs of electrons by the atoms.
- covalently bound or “covalently linked” refer to making two separate molecules into one contiguous molecule, for example a binding agent specific for a target receptor can be covalently linked (such as directly or indirectly through a linker) to an internalizing receptor-binding agent.
- Cytokine The term "cytokine” is used as a generic name for a diverse group of soluble proteins and peptides that act as humoral regulators at nano- to picomolar concentrations and which, either under normal or pathological conditions, modulate the functional activities of individual cells and tissues. These proteins also mediate interactions between cells directly and regulate processes taking place in the extracellular environment. Cytokines include both naturally occurring peptides and variants that retain full or partial biological activity. Cytokines bind to cytokine receptors and thus are cytokine receptor ligands.
- cytokines examples include interleukins, such as IL- l ⁇ , IL- l ⁇ , IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10 and IL-12; interferons, such as IFN- ⁇ , IFN- ⁇ and IFN- ⁇ ; tumor necrosis factors, such as TNF- ⁇ and TNF- ⁇ macrophage; inflammatory proteins, such as MIP-I ⁇ and MIP-I ⁇ ; and transforming growth factors, such as TGF- ⁇ .
- a cytokine or portion thereof sufficient to bind to a cytokine receptor is part of a hetero-bifunctional ligand.
- Epitope An antigenic determinant. These are particular chemical groups or contiguous or non-contiguous peptide sequences on a molecule that are antigenic, that is, that elicit a specific immune response. An antibody binds a particular antigenic epitope based on the three dimensional structure of the antibody and the matching (or cognate) epitope.
- Expression Translation of a nucleic acid into a protein. Proteins may be expressed and remain intracellular, become a component of the cell surface membrane or be secreted into the extracellular matrix or medium.
- Expression Control Sequences Nucleic acid sequences that regulate the expression of a heterologous nucleic acid sequence to which it is operatively linked. Expression control sequences are operatively linked to a nucleic acid sequence when the expression control sequences control and regulate the transcription and, as appropriate, translation of the nucleic acid sequence.
- expression control sequences can include appropriate promoters, enhancers, transcription terminators, a start codon (ATG) in front of a protein-encoding gene, splicing signal for introns, maintenance of the correct reading frame of that gene to permit proper translation of mRNA and stop codons.
- control sequences is intended to include, at a minimum, components whose presence can influence expression and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences. Expression control sequences can include a promoter.
- a promoter is a minimal sequence sufficient to direct transcription. Also included are those promoter elements which are sufficient to render promoter- dependent gene expression controllable for cell-type specific, tissue- specific or inducible by external signals or agents; such elements may be located in the 5' or 3' regions of the gene. Both constitutive and inducible promoters are included (see for example, Bitter et ah, Methods in Enzymology 153:516-544, 1987). For example, when cloning in bacterial systems, inducible promoters such as pL of bacteriophage lambda, plac, ptrp, ptac (ptrp-lac hybrid promoter) and the like may be used.
- promoters derived from the genome of mammalian cells such as metallothionein promoter or from mammalian viruses (such as the retrovirus long terminal repeat; the adenovirus late promoter; the vaccinia virus 7.5K promoter) can be used. Promoters produced by recombinant DNA or synthetic techniques may also be used to provide for transcription of the nucleic acid sequences.
- a polynucleotide can be inserted into an expression vector that contains a promoter sequence which facilitates the efficient transcription of the inserted genetic sequence of the host.
- the expression vector typically contains an origin of replication, a promoter, as well as specific nucleic acid sequences that allow phenotypic selection of the transformed cells.
- Growth factor Proteins capable of stimulating cellular proliferation and cellular differentiation. Examples of growth factors include transforming growth factor beta (TGF- ⁇ ), granulocyte-colony stimulating factor (G-CSF), granulocyte- macrophage colony stimulating factor (GM-CSF), nerve growth factor (NGF), neurotrophins, platelet-derived growth factor (PDGF), erythropoietin (EPO), thrombopoietin (TPO), myostatin (GDF-8), growth differentiation factor-9 (GDF-9), basic fibroblast growth factor (bFGF or FGF2), epidermal growth factor (EGF), hepatocyte growth factor (HGF) and the like.
- TGF- ⁇ transforming growth factor beta
- G-CSF granulocyte-colony stimulating factor
- GM-CSF granulocyte- macrophage colon
- a growth factor or portion thereof sufficient to bind to a growth factor receptor is part of a hetero- bifunctional ligand.
- Heterologous With reference to a molecule, such as a receptor-binding agent (for example an internalizing or target receptor-binding agent) or a linker, “heterologous” refers to molecules that are not normally associated with each other, for example as a single molecule. Thus, a “heterologous" linker is a linker attached to another molecule that the linker is usually not found in association with in nature, such as in a wild- type molecule.
- a receptor binding agent such as an internalizing or target receptor-binding agent
- a polysaccharide such as a sulfated polysaccharide, for example sulfated dextran or Fucoidan
- a hetrologous linker would not be the same polysaccharide (such as the same sulfated polysaccharide).
- an internalizing receptor-binding agent is attached to a heterologous linker and a heterologous target receptor-binding agent to which it is not naturally attached.
- a target receptor-binding agent is attached to a heterologous linker and a heterologous internalizing receptor- binding agent to which it is not naturally attached.
- Hetero-bifunctional ligand A molecule that contains at least a first and second non- identical moieties (for example heterologous molecules), wherein each of the moieties is capable of specifically binding a different receptor, for example an internalizing receptor and a target receptor. Hence, each moiety has specificity for a different receptor so that the first moiety specifically binds a first receptor but not the second receptor and the second moiety binds the second receptor but not the first receptor.
- a hetero-bifunctional ligand includes a linker heterologous to the internalizing receptor-binding agent and the target receptor- binding agent.
- a hetero-bifunctional ligand includes a target receptor-binding agent heterologous to the internalizing receptor-binding agent and the linker. In some examples, a hetero-bifunctional ligand includes an internalizing receptor-binding agent heterologous to the target receptor-binding agent and the linker.
- Hormone A classification of small molecules that carries a signal from one cell (or group of cells) to another.
- hormones include amine- tryptophans, such as melatonin (n-acetyl-5-methoxytryptamine) and serotonin; amine-tyrosines, such as thyroxine (thyroid hormone), triiodothyronine (thyroid hormone), epinephrine (adrenaline), norepinephrine (noradrenaline) and dopamine; peptide hormones, such as antimullerian hormone (mullerian inhibiting factor), adiponectin, adrenocorticotropic hormone (ortico tropin), angiotensinogen and angiotensin, antidiuretic hormone (vasopressin, arginine vasopressin), atrial- natriuretic peptide atriopeptin), calcitonin, cholecystokinin
- Host cells Cells in which a vector can be propagated and its DNA expressed.
- the cell may be prokaryotic or eukaryotic.
- the term also includes any progeny of the subject host cell. It is understood that all progeny may not be identical to the parental cell since there may be mutations that occur during replication. However, such progeny are included when the term "host cell" is used.
- Inhibiting or treating a disease Inhibiting the full development of a disease or condition, for example, in a subject who is at risk for a disease such as cancer or a viral infection (for example, an HIV infection).
- Treatment refers to a therapeutic intervention that ameliorates a sign or symptom of a disease or pathological condition after it has begun to develop.
- the term “ameliorating,” with reference to a disease or pathological condition, refers to any observable beneficial effect of the treatment.
- the beneficial effect can be evidenced, for example, by a delayed onset of clinical symptoms of the disease in a susceptible subject, a reduction in severity of some or all clinical symptoms of the disease, a slower progression of the disease, an improvement in the overall health or well-being of the subject or by other parameters well known in the art that are specific to the particular disease.
- a "prophylactic" treatment is a treatment administered to a subject who does not exhibit signs of a disease or exhibits only early signs for the purpose of decreasing the risk of developing pathology.
- Internalizing receptor A cell surface receptor that is internalized into a cell upon binding of a specific ligand to the receptor.
- internalizing receptors include without limitation scavenger receptors, LDL receptors, heat shock protein receptors and transferrin receptors among others.
- Internalizing receptor ligand A ligand capable of specifically binding to and inducing the internalization of a specific internalizing receptor.
- internalizing receptor ligands include ligands for scavenger receptors such as acetylated-LDL, oxidized-LDL, sulfated polysaccharides, maleylated proteins, polyguanylic acid, high density lipoprotein (HDL) oligonucleotides; among others, ligands for LDL receptors, such as LDL, ligands for heat shock protein receptors, such as heat shock proteins; and ligands for transferrin receptors, such as transferrin and the like.
- an internalizing receptor ligand is an antibody.
- Internalization of a receptor: The act of a receptor moving from the outer cell surface of a cell to the interior of the cell, such as into the cytoplasm, the nucleus or a cytoplasmic organelle or vesicle. In some examples, internalization of the receptor is induced by the binding of a hetero-bifunctional ligand.
- LDL Receptor A receptor that mediates the endocytosis (internalization) of cholesterol-rich LDL. It is a cell-surface receptor that recognizes the apoprotein BlOO which is embedded in the phospholipid outer layer of LDL particles.
- An exemplary human (LDL) receptor nucleic acid sequence can be found on GENB ANK® at accession number NM_000527 incorporated herein by reference as available January 24, 2008.
- Exemplary human LDL receptor amino acid sequences can be found on GENB ANK® at accession numbers AAA56833, AAP72971, AAF24515, AAM56036, AAB22609, AH004493, AAB30338 and AAB30152 incorporated herein by reference as available January 24, 2008.
- Ligand Any molecule which specifically binds a receptor, such as an internalizing receptor or a target receptor and includes, inter alia, antibodies that specifically bind an internalizing receptor or a target receptor.
- the ligand is a protein or a small molecule (for example a molecule with a molecular weight less than 10 kiloDaltons, (kD) that specifically binds the receptor of interest).
- Linker A compound or moiety that acts as a molecular bridge to operably link two different molecules, wherein one portion of the linker is operably linked to a first molecule and wherein another portion of the linker is operably linked to a second molecule.
- a linker is a polypeptide.
- the two different molecules can be linked to the linker in a step-wise manner. There are no particular size or content limitations for the linker so long as it can fulfill its purpose as a molecular bridge.
- Linkers are known to those skilled in the art to include, but are not limited to, chemical chains, chemical compounds, carbohydrate chains, peptides, haptens and the like.
- the linkers can include, but are not limited to, homobifunctional linkers and hetero-bifunctional linkers.
- Hetero-bifunctional linkers well known to those skilled in the art, contain one end having a first reactive functionality to specifically link a first molecule and an opposite end having a second reactive functionality to specifically link to a second molecule.
- the linker can vary in length and composition for optimizing such properties as flexibility, stability and resistance to certain chemical and/or temperature parameters.
- a linker is the combination of streptavidin or avidin and biotin.
- Nucleic acid A polymer composed of nucleotide units (ribonucleotides, deoxyribonucleotides, related naturally occurring structural variants and synthetic non-naturally occurring analogs thereof or combinations thereof) linked via phosphodiester bonds, related naturally occurring structural variants and synthetic non-naturally occurring analogs thereof.
- nucleotide polymers in which the nucleotides and the linkages between them include non- naturally occurring synthetic analogs, such as, for example and without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2-O-methyl ribonucleotides, peptide-nucleic acids (PNAs) and the like.
- oligonucleotide typically refers to short polynucleotides, generally no greater than about 50 nucleotides. It will be understood that when a nucleotide sequence is represented by a DNA sequence (i.e., A, T, G, C), this also includes an RNA sequence (i.e., A, U, G, C) in which "U” replaces "T. "
- nucleotide sequences the left-hand end of a single-stranded nucleotide sequence is the 5'-end; the left-hand direction of a double-stranded nucleotide sequence is referred to as the 5'-direction.
- the direction of 5' to 3' addition of nucleotides to nascent RNA transcripts is referred to as the transcription direction.
- the DNA strand having the same sequence as an mRNA is referred to as the "coding strand;" sequences on the DNA strand having the same sequence as an mRNA transcribed from that DNA and which are located 5' to the 5'-end of the RNA transcript are referred to as "upstream sequences;” sequences on the DNA strand having the same sequence as the RNA and which are 3' to the 3' end of the coding RNA transcript are referred to as "downstream sequences.”
- cDNA refers to a DNA that is complementary or identical to an mRNA, in either single stranded or double stranded form.
- Encoding refers to the inherent property of specific sequences of nucleotides in a polynucleotide, such as a gene, a cDNA or an mRNA, to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (i.e., rRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom.
- a gene encodes a protein if transcription and translation of mRNA produced by that gene produces the protein in a cell or other biological system.
- Both the coding strand, the nucleotide sequence of which is identical to the mRNA sequence and is usually provided in sequence listings and non-coding strand, used as the template for transcription, of a gene or cDNA can be referred to as encoding the protein or other product of that gene or cDNA.
- a "nucleotide sequence encoding an amino acid sequence" includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence. Nucleotide sequences that encode proteins and RNA may include introns.
- Recombinant nucleic acid refers to a nucleic acid having nucleotide sequences that are not naturally joined together. This includes nucleic acid vectors comprising an amplified or assembled nucleic acid which can be used to transform a suitable host cell. A host cell that comprises the recombinant nucleic acid is referred to as a "recombinant host cell.” The gene is then expressed in the recombinant host cell to produce, for example a "recombinant polypeptide.”
- a recombinant nucleic acid may serve a non-coding function (for example a promoter, origin of replication, ribosome-binding site, etc.) as well.
- a first sequence is an "antisense" with respect to a second sequence if a polynucleotide whose sequence is the first sequence specifically hybridizes with a polynucleotide whose sequence is the second sequence.
- Terms used to describe sequence relationships between two or more nucleotide sequences or amino acid sequences include “reference sequence,” “selected from,” “comparison window,” “identical,” “percentage of sequence identity,” “substantially identical,” “complementary,” and “substantially complementary.” For sequence comparison of nucleic acid sequences, typically one sequence acts as a reference sequence, to which test sequences are compared.
- sequence comparison algorithm When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary and sequence algorithm program parameters are designated. Default program parameters are used. Methods of alignment of sequences for comparison are well known in the art. Optimal alignment of sequences for comparison can be conducted, for example, by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482, 1981, by the homology alignment algorithm of Needleman & Wunsch, J. MoI. Biol. 48:443, 1970, by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad.
- PILEUP uses a simplification of the progressive alignment method of Feng & Doolittle, J. MoI. Evol. 35:351-360, 1987. The method used is similar to the method described by Higgins & Sharp, CABIOS 5:151-153, 1989.
- a reference sequence is compared to other test sequences to determine the percent sequence identity relationship using the following parameters: default gap weight (3.00), default gap length weight (0.10) and weighted end gaps.
- PILEUP can be obtained from the GCG sequence analysis software package, for example, version 7.0 (Devereaux et al, Nuc. Acids Res. 12:387-395, 1984.
- BLAST Altschul et al, J. MoI. Biol. 215:403-410, 1990 and Altschul et al, Nucleic Acids Res. 25:3389-3402, 1977.
- Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (www.ncbi.nlm.nih.gov/).
- the BLASTP program uses as defaults a word length (W) of 3 and expectation (E) of 10 and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915, 1989).
- Nucleotide The fundamental unit of nucleic acid molecules.
- a nucleotide includes a nitrogen-containing base attached to a pentose monosaccharide with one, two or three phosphate groups attached by ester linkages to the saccharide moiety.
- the major nucleotides of DNA are deoxyadenosine 5 '-triphosphate (dATP or A), deoxyguanosine 5 '-triphosphate (dGTP or G), deoxycytidine 5 '-triphosphate (dCTP or C) and deoxythymidine 5 '-triphosphate (dTTP or T).
- the major nucleotides of RNA are adenosine 5'-triphosphate (ATP or A), guanosine 5'- triphosphate (GTP or G), cytidine 5'-triphosphate (CTP or C) and uridine 5'- triphosphate (UTP or U).
- Nucleotides include those nucleotides containing modified bases, modified sugar moieties and modified phosphate backbones, for example as described in U.S. Patent No. 5,866,336 to Nazarenko et al.
- modified base moieties which can be used to modify nucleotides at any position on its structure include, but are not limited to: 5- fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2- thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D- galactosylqueosine, inosine, N ⁇ 6-sopentenyladenine, 1-methylguanine, 1- methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3- methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5- methylaminomethyluracil, methoxyarninomethyl-2-thiouracil, beta-D- mannosy
- modified sugar moieties which may be used to modify nucleotides at any position on its structure, include, but are not limited to arabinose, 2-fluoroarabinose, xylose and hexose or a modified component of the phosphate backbone, such as phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate or an alkyl phosphotriester or analog thereof.
- Neuropeptide Peptides released by neurons in the mammalian brain that specifically bind a neuropeptide receptor.
- Examples of neuropeptides include ⁇ - melanocyte- stimulating hormone ( ⁇ -MSH), galanin-like peptide, acocaine-and- amphetamine-regulated transcript (CART), neuropeptide Y, agouti-related peptide (AGRP), ⁇ -endorphin, dynorphin, enkephalin, galanin, ghrelin, growth-hormone releasing hormone, neurotensin, neuromedin U, somatostatin, galanin, enkephalin cholecystokinin, vasoactive intestinal polypeptide (VIP) and substance P among others.
- a neuropeptide or portion thereof sufficient to bind to a neuropeptide receptor is part of a hetero-bifunctional ligand.
- Oligonucleotide A linear polynucleotide sequence of up to about 100 nucleotide bases in length.
- Operably linked A first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence.
- a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence.
- operably linked DNA sequences are contiguous and, where necessary to join two protein-coding regions, in the same reading frame.
- a molecule is "operably linked" to another molecule when the two molecules are connected by a linker, for example a linker connecting to specific binding agent to form a hetero-bifunctional ligand, such as those disclosed herein.
- Pharmaceutical agent A chemical compound or composition capable of inducing a desired therapeutic or prophylactic effect when properly administered to a subject or a cell.
- a pharmaceutical agent is a hetero- bifunctional ligand that includes an internalizing receptor-binding agent linked to a target receptor-binding agent, wherein the internalizing receptor binding agent and target receptor binding agent are different agents.
- parenteral formulations usually comprise injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle.
- pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle.
- physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like
- solid compositions such as powder, pill, tablet or capsule forms
- conventional non-toxic solid carriers can include, for example, pharmaceutical grades of mannitol, lactose, starch or magnesium stearate.
- compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.
- non-toxic auxiliary substances such as wetting or emulsifying agents, preservatives and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.
- Peptide A chain of amino acids of between 3 and 30 amino acids in length. In one embodiment, a peptide is from about 10 to about 25 amino acids in length. In yet another embodiment, a peptide is from about 11 to about 20 amino acids in length. In yet another embodiment, a peptide is about 12 amino acids in length.
- a receptor peptide such as a target receptor peptide or a scavenger receptor peptide is a series of contiguous amino acid residues from a receptor peptide protein, such as a fragment of receptor peptide from about 10 to about 25 amino acids in length, such as about 11 to about 20 amino acid in length, such as about 12 consecutive amino acids of an receptor peptide protein.
- an immunogenic composition for use in producing an antibody that specifically binds a receptor such as a target receptor or an internalizing receptor, includes a receptor peptide.
- Polypeptide Any chain of amino acids, regardless of length or post- translational modification (for example glycosylation or phosphorylation).
- the polypeptide is receptor polypeptide.
- a “residue” refers to an amino acid or amino acid mimetic incorporated in a polypeptide by an amide bond or amide bond mimetic.
- a polypeptide has an amino terminal (N-terminal) end and a carboxy terminal end.
- Scavenger receptors A group of receptors that recognize and internalize into a cell a large array of macromolecules having a negative charge as well as modified lipoproteins such as acylated low density lipoprotein (Ac-LDL). These scavenger receptors are expressed on various cell types, such as macrophages and endothelial cells and include CD36 (also known as scavenger receptor class B type I or SR-BI), lectin oxidized LDL receptor- 1 (LOX-I), collectin placenta 1 (CL-Pl), FEEL-l/Stabilin-1/ CLEVER-I and scavenger receptor expressed by endothelial cells I (SREC-I) and II (SREC-II).
- CD36 also known as scavenger receptor class B type I or SR-BI
- LOX-I lectin oxidized LDL receptor- 1
- CL-Pl collectin placenta 1
- Scavenger receptors can bind a vast array of structurally diverse ligands including LDL, high density lipoprotein (HDL), apoptotic cells, bacteria, components of the extracellular matrix, some oligonucleotides and some sulfated polysaccharides (for a review of scavenger receptors see Adachi and Tsujimoto, Progress in Lipid Research 45:379-404, 2006).
- LDL high density lipoprotein
- Scavenger receptors can be used to internalize biologically active agents such as chemotherapeutics and antibiotics by constructing ligands that include a scavenger receptor-binding moiety linked to a drug or other biologically active agent (see, for example, Mukhopadhyay et al, Biochem J. 284: 237-241, 1992; Majumdar and Basu Antimicrob Agents Chemother. 35(1): 135-140, 1991; and Brasseur et al, Photochem Photobiol. 69(3):345-52, 1999).
- Scavenger receptor-binding agent An agent that specifically binds to a scavenger receptor.
- a scavenger receptor-binding agent is an antibody, such as a monoclonal antibody, that specifically binds to a scavenger receptor.
- a scavenger receptor-binding agent is a ligand, such as a small molecule ligand, for the scavenger receptor.
- a scavenger receptor-binding agent is a component of a hetero-bifunctional ligand, such as a hetero-bifunctional ligand disclosed herein.
- Specific binding agent An agent that binds substantially only to a defined target.
- a receptor specific binding agent is an agent that binds substantially a specific receptor or fragment thereof.
- the specific binding agent is a monoclonal or polyclonal antibody that specifically binds a specific receptor or antigenic fragment thereof.
- the specific binding agent is a small molecule that specifically binds the specific receptor and for example does not bind any other receptor.
- a specific binding agent is a target receptor specific binding agent the specifically binds a target receptor.
- a specific binding agent is an internalizing receptor specific binding agent the specifically binds an internalizing receptor.
- the term "specifically binds or specific binding” refers, with respect to a specific target receptor, to the preferential association of an antibody or other ligand, in whole or part, with a cell or tissue bearing that specific receptor and not to cells or tissues lacking a detectable amount of that specific receptor. It is recognized that a certain degree of non-specific interaction may occur between a molecule and a non- target cell or tissue. Specific binding may be distinguished as mediated through specific recognition of the specific receptor. Specific binding typically results in greater than 2-fold, such as greater than 5-fold, greater than 10-fold or greater than 100-fold increase in amount of bound antibody or other ligand (per unit time) to a cell or tissue bearing the specific target receptor as compared to a cell or tissue lacking the specific target receptor respectively.
- Target receptor A pre- selected cell surface receptor that is specifically bound by a target ligand. Internalization of target receptors can be accomplished using a hetero-bifunctional ligand, such as a hetero-bifunctional ligand disclosed herein.
- target receptors include neuropilin-1, neuropilin-2, a vascular endothelial growth factor (VEGF) receptor, such as vascular endothelial growth factor receptor (VEGFR) -1, VEGFR-2, VEGFR-3, an interleukin (IL) receptor, such as IL-3 receptor, IL-8 receptor, IL-6 receptor, gpl30, an interferon (IFN) receptor.
- VEGF vascular endothelial growth factor
- VEGFR-2 vascular endothelial growth factor receptor
- VEGFR-3 interleukin
- IL interleukin
- IFN interferon
- a target receptors are a receptor tyrosine kinase (RTK) receptors, such as a RTK class I receptor, for example an epidermal growth factor (EGF) receptor family receptor, for example as HER2/neu, Her 3 or Her 4; a RTK class II receptor, such as an insulin receptor family receptor, for example Insulin-like growth factor (IGF)-I receptor; a RTK class IE receptor, such as a platelet-derived growth factor (PDGF) receptor family receptor, for example such as a platelet-derived growth factor receptor (PDGFR); a RTK class IV receptor, such as a fibroblast growth factor (FGF) receptor family member, for example fibroblast growth factor receptor (FGFR)I, FGFR2 or FGFR3; a RTK class VI receptor, such as a hepatocyte growth factor (HGF) receptor family member; a RTK class VII receptor, such as a TRK receptor family member, for example TrkA, TrkB or TrkC; a RTK
- target receptors include chemokine receptors, such as a CXC chemokine receptor family member, for example CXCRl, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6 or CXCR7; a CC chemokine receptor family member, for example CCRl, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, CCRlO or CCRIl; a XC chemokine receptor, for example XCRl; or a CX3C chemokine receptor, for example CX3CR1 or the like.
- CXC chemokine receptor family member for example CXCRl, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6 or CXCR7
- a CC chemokine receptor family member for example CCRl, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, CCRlO or CCRIl
- Cell-cell interaction receptors can also be target receptors and for example include VE-cadherin, N- cadherin, intercellular adhesion molecule 1 (ICAM-I), connexin, occludin, CD 148 or the like; an integrin family receptor, such as integrin alpha5betal, alphalbetal, alpha2betal, alphavbeta3 or alphavbeta5, CD61 (fibrinogen receptor).
- ICM-I intercellular adhesion molecule 1
- Target receptor-binding agent An agent that is selected to specifically binds to a target receptor.
- a target receptor-binding agent is an antibody, such as a monoclonal antibody, that specifically binds to a target receptor.
- a target receptor-binding agent is a ligand, such as a small molecule ligand, for the target receptor.
- a target receptor- binding agent is a component of a hetero-bifunctional ligand, such as a hetero- bifunctional ligand disclosed herein.
- Targeting moiety A portion of a chimeric molecule intended to provide the molecule with the ability to bind specifically to a pre-selected target receptor.
- a "ligand” is an example of a targeting molecule specific for a target receptor that serves as a “targeting moiety.”
- Therapeutically effective amount A quantity of a specific substance sufficient to achieve a desired effect in a subject being treated. For instance, this can be the amount necessary to inhibit or suppress growth of a tumor or the amount necessary to inhibit a viral infection, such as an HIV infection. In one embodiment, a therapeutically effective amount is the amount necessary to eliminate a tumor. When administered to a subject, a dosage will generally be used that will achieve target tissue concentrations shown to achieve a desired in vitro effect.
- a transformed cell is a cell into which has been introduced a nucleic acid molecule by molecular biology techniques.
- transformation encompasses all techniques by which a nucleic acid molecule might be introduced into such a cell, including transfection with viral vectors, transformation with plasmid vectors and introduction of DNA by electroporation, lipofection and particle gun acceleration.
- Vascular endothelial growth factor A A growth factor involved in angiogenesis.
- Exemplary human VEGFA nucleic acid sequences can be found on GENB ANK® at accession numbers NM_001025370, NM_001025367, NM_005429, BCOl 1177, NM_001033756 and NMJ)01025368 incorporated herein by reference as available January 24, 2008.
- Exemplary human VEGFA amino acid sequences can be found on GENB ANK® at accession numbers AAHl 1177 and AAH65522 incorporated herein by reference as available January 24, 2008.
- Vector A nucleic acid molecule as introduced into a host cell, thereby producing a transformed host cell.
- Recombinant DNA vectors are vectors having recombinant DNA.
- a vector can include nucleic acid sequences that permit it to replicate in a host cell, such as an origin of replication.
- a vector can also include one or more selectable marker genes and other genetic elements known in the art.
- Viral vectors are recombinant DNA vectors having at least some nucleic acid sequences derived from one or more viruses.
- Virus Microscopic infectious organism that reproduces inside living cells.
- a virus consists essentially of a core of a single nucleic acid surrounded by a protein coat and has the ability to replicate only inside a living cell.
- "Viral replication" is the production of additional virus by the occurrence of at least one viral life cycle.
- a virus may subvert the host cells' normal functions, causing the cell to behave in a manner determined by the virus. For example, a viral infection may result in a cell producing a cytokine or responding to a cytokine, when the uninfected cell does not normally do so.
- Viral infection refers to the infection of a subject, a cell or even a cell within a subject with a virus.
- RNA viruses wherein the viral genome is RNA.
- the genomic RNA is reverse transcribed into a DNA intermediate which is integrated very efficiently into the chromosomal DNA of infected cells.
- the integrated DNA intermediate is referred to as a provirus.
- the term "lenti virus” is used in its conventional sense to describe a genus of viruses containing reverse transcriptase.
- the lentiviruses include the "immunodeficiency viruses” which include human immunodeficiency virus (HIV) type 1 and type 2 (HIV-I and HIV-II), simian immunodeficiency virus (SIV) and feline immunodeficiency virus (FIV).
- HIV-I is a retrovirus that causes immunosuppression in humans (HIV disease) and leads to a disease complex known as the acquired immunodeficiency syndrome (AIDS).
- HIV disease refers to a well-recognized constellation of signs and symptoms (including the development of opportunistic infections) in persons who are infected by an HIV virus, as determined by antibody or western blot studies. Laboratory findings associated with this disease are a progressive decline in T cells.
- receptors can attenuate ligand-induced signaling.
- the receptor After a ligand binds to its receptor on the cell membrane, the receptor is internalized. This sequestration of the receptor away from the cell surface often results in ligand desensitization and protection from prolonged or excessive signaling.
- shared- type receptors for example when the same cell surface molecule is a receptor for distinct ligands, internalization of the receptor induced by one ligand can serve to block receptor-binding by the second ligand.
- selectively induced internalization of a surface receptor can be used to dampen the biological effects that are dependent upon the cell surface residence of a particular target receptor, for example using a hetero-bifunctional ligand disclosed herein.
- inhibitors of receptor signaling such as blocking antibodies, inhibitory receptor ligands or inhibitory small molecules, are only effective in inhibiting a receptor if they can displace the natural ligand for a receptor, for example by having higher affinity for the receptor than the natural ligand.
- the hetero-bifunctional ligands disclosed herein are effective because they are able to promote target receptor internalization and remove a target receptor from possible interaction with its natural ligand.
- hetero-bifunctional ligands are that are not necessary that they compete with the binding affinity of the natural ligand. Furthermore, because the disclosed hetero-bifunctional ligand binds to two distinct receptors on the surface of a cell (a target receptor and an internalizing receptor) their cell targeting specificity is enhanced. For example, a specific cell type can be targeted by a specific target and internalizing receptor pair.
- a hetero- bifunctional ligand is constructed that contains a target receptor-binding agent specific for the target receptor NRPl and an internalizing receptor-binding agent, such as a ligand specific for the endothelial cell specific scavenger receptor, SREC-I.
- a hetero-bifunctional ligand can be used to selectively target NRPl on endothelial cells, to the exclusion of other NRPl -expressing cell types that do not express SREC-I, for example to inhibit endothelial cell mediated angiogenesis.
- a hetero-bifunctional ligand can be constructed to specifically target any target receptor on virtually any cell-type.
- hetero-bifunctional ligands for use in inducing internalization of a target receptor.
- the disclosed hetero-bifunctional ligands include a target receptor-binding agent that specifically binds the target receptor, linked to an internalizing receptor-binding agent that specifically binds to an internalizing receptor.
- the target receptor-binding agent and internalizing receptor- binding agent are not identical and in some cases do not bind the same receptor.
- a linker can be used to link the target receptor-binding agent to the internalizing receptor-binding agent so long as the linker is of sufficient length to allow the internalizing receptor-binding agent and target receptor-binding agent to bind to the target receptor and the internalizing receptor, respectively, on the surface of a cell.
- the binding of the hetero-bifunctional ligand to the internalizing receptor induces internalization of the internalizing receptor and through the linker the internalization of the target receptor bound by the hetero-bifunctional ligand.
- the target receptor can be a portion of the multi-subunit receptor sufficient to produce internalization and result in a loss of signal propagation through the remaining portion of the receptor on the surface of the cell.
- the disclosed hetero-bifunctional ligands are capable of effectively hiding the target receptor from external stimulation, which inhibits signaling through the target receptor.
- the disclosed hetero-bifunctional ligands can be used to target any cell- surface target receptor, such as a target receptor of interest, using an appropriate hetero-bifunctional ligand that includes a target receptor-binding agent that is specific for the target receptor of interest.
- a target receptor-binding agent is a ligand for a receptor tyrosine kinase (RTK) receptor, such as a RTK class I receptor.
- RTK receptor tyrosine kinase
- the target receptor-binding agent can be agent that specifically binds an epidermal growth factor (EGF) receptor family receptor, such as HER2/neu, Her 3 or Her 4; a RTK class II receptor, such as an insulin receptor family receptor, for example Insulin-like growth factor (IGF)-I receptor; a RTK class El receptor, such as a platelet-derived growth factor (PDGF) receptor family receptor, for example a platelet-derived growth factor receptor (PDGFR); a RTK class IV receptor, such as a fibroblast growth factor (FGF) receptor family member, for example fibroblast growth factor receptor (FGFR) 1 , FGFR2 or FGFR3 ; a RTK class VI receptor, such as a hepatocyte growth factor (HGF) receptor family member;
- the target receptor can be chemokine receptor, such as a CXC chemokine receptor family member, for example CXCRl, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6 or CXCR7; a CC chemokine receptor family member, for example CCRl, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, CCRlO or CCRI l; a XC chemokine receptor, for example XCRl; or a CX3C chemokine receptor, for example CX3CR1.
- a chemokine specific for that receptor can be used to construct a hetero-bifunctional ligand.
- the target receptor-binding agent is a chemokine or a portion thereof that specifically binds the chemokine receptor.
- chemokines of use include chemokines that bind to CCR family receptors, such as the CCL chemokines, for example CCLl, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCLlO, CCLI l, CCL12, CCL13, CCL14, CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21,
- CXCL chemokines that bind to CXCR family receptors, such as CXCL chemokines, for example CXCLl, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CXCLlO, CXCLI l, CXCL12, CXCL13, CXCL14, CXCL15 and CXCL16; chemokines that bind to XCR family receptors, such as the XCL chemokines, for example XCLl and XCL2; and chemokines that bind to CX3CR family receptors, such as the CX3CL chemokines, for example CX3CL1.
- CXCL chemokines for example CXCLl, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CXCLlO, CXCLI l, CXCL12, CXCL13,
- the target receptor can be an interleukin receptor, such as IL-IRl (see, for example, GENB ANK® accession No. M27492), IL- 1R2 (see, for example, GENB ANK® accession No. X59770), IL-IRl (see, for example, GENB ANK® accession No. M27492), IL-1R2 (see, for example, GENB ANK® accession No. X59770), IL- 2RA see, for example, GENB ANK® accession No. (see, for example, GENB ANK® accession No. XO 1057), IL-2RB (see, for example, GENB ANK® accession No.
- IL-IRl see, for example, GENB ANK® accession No. M27492
- IL-1R2 see, for example, GENB ANK® accession No. X59770
- IL- 2RA see, for example, GENB ANK® accession No
- IL-3RA see, for example, GENB ANK® accession No. M74782
- IL-4R see, for example, GENBANK® accession No. X52425
- IL-5RA see, for example, GENBANK® accession No. M96652
- IL-6R see, for example, GENBANK® accession No. X12830
- IL-7R see, for example, GENBANK® accession No. M29696
- IL-8RA see, for example, GENBANK® accession No. Ul 1870
- IL-8RB see, for example, GENBANK® accession No. Ul 1869
- IL-9R see, for example, GENBANK® accession No.
- IL-10RA see, for example, GENBANK® accession No. U00672
- IL-10RB see, for example, GENBANK® accession No. U08988
- IL-IlRA see, for example, GENBANK® accession No. Z38102
- IL-IlRB see, for example, GENBANK® accession No. Z38102
- IL-12RB1 see, for example, GENBANK® accession No. U03187
- IL-12RB2 see, for example, GENBANK® accession No. U64198
- IL-13RA1 see, for example, GENBANK® accession No. U62858
- IL- 13RA2 see, for example, GENBANK® accession No.
- IL-15RA see, for example, GENBANK® accession No. U31628
- IL-15RB see, for example, GENBANK® accession No. U58917
- IL- 17RB see, for example, GENBANK® accession No. AF212365
- IL-17RC see, for example, GENBANK® accession No. BC006411
- IL-17RD see, for example, GENBANK® accession No. AF494208
- IL- 17RE see, for example, GENBANK® accession No. AF458069
- IL- 18BP see, for example, GENBANK® accession No.
- IL-18R1 see, for example, GENBANK® accession No. U43672
- IL-20RA see, for example, GENBANK® accession No. AF184971
- IL-20RB see, for example, GENBANK® accession No. BC033292
- IL-21R see, for example, GENBANK® accession No. AF254067
- IL-22RA1 see, for example, GENBANK® accession No. AF286095
- IL-22RA2 see, for example, GENBANK® accession No. AY044429
- IL-27RA see, for example, GENBANK® accession No.
- IL-28RA see, for example, GENBANK® accession No. AY129153
- IL-31RA see, for example, GENBANK® accession No. AY499339
- an interleukin that specifically binds that receptor can be used to construct a hetero-bifunctional ligand.
- the target receptor-binding agent is an interleukin or a portion thereof that specifically binds the interleukin receptor.
- interleukins include IL- l ⁇ (see, for example, GENB ANK® accession No. M28983), IL- l ⁇ (see, for example, GENB ANK® accession No. M15330), IL-2 (see, for example, GENBANK® accession No. U25676), IL-3 (see, for example, GENBANK® accession No. M14743), IL-4 (see, for example, GENBANK® accession No. M23442), IL-5 (see, for example, GENBANK® accession No. X04688), IL-6 (see, for example, GENBANK® accession No.
- IL-7 see, for example, GENBANK® accession No. J04156
- IL-8 see, for example, GENBANK® accession No. Y00787
- IL-9 see, for example, GENBANK® accession No. S63356
- IL-10 see, for example, GENBANK® accession No. M57627
- IL-I l see, for example, GENBANK® accession No. X583770
- IL-12 see, for example, GENBANK® accession No. X58377 or
- IL-13 see, for example, GENBANK® accession No. U31120
- IL- 14, IL-15 see, for example, GENBANK® accession No. U144070
- IL-16 see, for example, GENBANK® accession No. U82972
- IL- 17 see, for example, GENBANK® accession No. U32659, AF184969, AF152099, AY078238 or AF384857
- IL-18 see, for example, GENBANK® accession No. U90434
- IL- 19 see, for example, GENBANK® accession No.
- IL-20 see, for example, GENBANK® accession No. AF224266
- IL-21 see, for example, GENBANK® accession No. AF254069
- IL-22 see, for example, GENBANK® accession No. AF279437
- IL-23 see, for example, GENBANK® accession No. U16261
- IL-25 see, for example, GENBANK® accession No. AF305200
- IL-26 see, for example, GENBANK® accession No. AJ251549
- IL-27 see, for example, GENBANK® accession No.
- IL-28 see, for example, GENBANK® accession Nos. AY129148 or AY129149
- IL-29 see, for example, GENBANK® accession No. AY129150
- IL-30 see, for example, GENBANK® accession No. AY499343
- IL-32 see, for example, GENBANK® accession No. M59807 all of which are incorporated herein by reference as available January 24, 2008.
- the target receptor is an interferon receptor
- an interferon that specifically binds that receptor can be used to construct a hetero-bifunctional ligand.
- the target receptor-binding agent is an interferon or a portion thereof that specifically binds the interferon receptor.
- interferons useful in producing a disclosed hetero-bifunctional ligand include IFN- ⁇ , IFN- ⁇ and IFN- ⁇ .
- the target receptor is a growth factor receptor
- a growth factor that specifically binds that receptor can be used to construct a hetero-bifunctional ligand.
- the target receptor-binding agent is a growth factor or a portion thereof that specifically binds the growth factor receptor.
- growth factors of use include transforming growth factor beta (TGF- ⁇ , see, for example, GENBANK® Accession No. AAA36735), granulocyte-colony stimulating factor (G-CSF, see, for example, GENBANK® Accession Nos. CAA27291, CAA27290 or CAAO 1319), granulocyte-macrophage colony stimulating factor (GM- CSF, see, for example, GENBANK® Accession No.
- AAA52578 nerve growth factor (NGF, see, for example, GENBANK® Accession Nos. AAI26151, AAI26149, AAH32517 or CAA37703), neurotrophins, platelet-derived growth factor (PDGF), erythropoietin (EPO, see, for example, GENBANK® Accession Nos. AAF23134, AAF23132, AAF17572 or AAF23133), thrombopoietin (TPO, see, for example, GENBANK® Accession No. AAB33390), myostatin (GDF-8, see, for example, GENBANK® Accession No.
- growth differentiation factor-9 see, for example, GENBANK® Accession Nos. AAH96229, AAH96228, AAH96231 or AAH96230
- basic fibroblast growth factor bFGF, see, for example, GENBANK® Accession Nos.AAB21432 or FGF2, (see, for example, GENBANK® Accession No. NP_001997)
- epidermal growth factor EGF, see, for example, GENBANK® Accession No. AAS83395
- HGF hepatocyte growth factor
- VEGF vascular endothelial growth factor
- the target receptor is a hormone receptor
- a hormone that specifically binds that receptor can be used to construct a hetero-bifunctional ligand.
- the target receptor-binding agent is a hormone or portion thereof that specifically binds the hormone receptor.
- hormones of use include amine-tryptophans, such as melatonin (n-acetyl-5-methoxytryptamine) and serotonin; amine-tyrosines, such as thyroxine (thyroid hormone), triiodothyronine (thyroid hormone), epinephrine (adrenaline), norepinephrine (noradrenaline) and dopamine; peptide hormones, such as antimullerian hormone (mullerian inhibiting factor), adiponectin, adrenocorticotropic hormone (orticotropin), angiotensinogen, angiotensin antidiuretic hormone (vasopressin, arginine vasopressin), atrial- natriuretic peptide atriopeptin), calcitonin, cholecystokinin, corticotropin-releasing hormone, erythropoietin, follicle-stimulating
- the target receptor is a neuropeptide receptor
- a neuropeptide or portion thereof that specifically binds that receptor can be used to construct a hetero- bifunctional ligand.
- the target receptor-binding agent is a neuropeptide or portion thereof that specifically binds the neuropeptide receptor.
- neuropeptides of use include ⁇ -melanocyte-stimulating hormone ( ⁇ - MSH), galanin-like peptide, acocaine-and-amphetamine-regulated transcript (CART), neuropeptide Y, agouti-related peptide (AGRP), ⁇ -endorphin, dynorphin, enkephalin, galanin, ghrelin, growth-hormone releasing hormone, neurotensin, neuromedin U, somatostatin, galanin, enkephalin cholecystokinin, VIP and substance P among others.
- ⁇ - MSH ⁇ -melanocyte-stimulating hormone
- CART acocaine-and-amphetamine-regulated transcript
- neuropeptide Y neuropeptide Y
- ⁇ -endorphin dynorphin
- enkephalin galanin
- ghrelin ghrelin
- a disclosed hetero-bifunctional ligand has a target receptor-binding agent that specifically binds a cell-cell interaction receptor, such as VE-cadherin, N-cadherin, intercellular adhesion molecule 1 (ICAM-I), connexin, occludin, CD 148 or the like, an integrin family receptor, such as integrin alpha5betal, integrin alphalbetal, integrin alpha2betal, integrin alphavbeta3 or integrin alphavbeta5, CD61 (fibrinogen receptor), a neuropeptide receptor, an endothelin receptor, a G-protein coupled receptor, an adrenergic receptor, an olfactory receptor, a low affinity nerve growth factor receptor, a N-methyl-D-aspartic acid (NMDA) receptor, a toll-like receptor (TLR), such as TLR 1, TLR 2, TLR 3, TLR 4, TLR 5, TLR 6, TLR 7,
- TLR
- the target receptor-binding agent comprises an antibody that specifically binds the target receptor, for example a monoclonal or polyclonal antibody.
- the antibody is a humanized antibody. Exemplary procedures for producing antibodies, such as a polyclonal, monoclonal, and/or humanized antibodies are set forth below and are known in the art.
- the target receptor-binding agent includes a small molecule that specifically binds the target receptor, for example a small molecule ligand that binds the target receptor.
- the hetero-bifunctional ligand includes a target receptor ligand, such as a cytokine, a chemokine, a growth factor, a hormone, a neuropeptide or a portion thereof that specifically binds the target receptor.
- a hetero-bifunctional ligand includes a target receptor-binding agent heterologous to the internalizing receptor-binding agent and the linker.
- the target receptor-binding agent is an oligonucleotide, such as polyguanosine, phosphorothioate oligodeoxyguanosine, oligodeoxyguanosine oligo 2'-deoxyguanosine 5 '-monophosphate among others.
- the oligonucleotide is between about 6 nucleotides and about 100 nucleotide in length, such as about 6, 7, 8, 9, 10 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100 nucleotides in length, for example between about 6 to about 15, about 10 to about 20, about 15
- the disclosed hetero-bifunctional ligands also include an internalizing receptor-binding agent that specifically binds to an internalizing receptor.
- Internalizing receptors are cell surface receptors that are induced to internalize upon binding of specific ligands. Examples of internalizing receptors include without limitation scavenger receptors, LDL receptors, heat shock protein receptors and transferrin receptors, among others.
- the disclosed hetero-bifunctional ligands include an internalizing receptor ligand or portion thereof specific for the internalizing receptor and capable of inducing the internalization of the internalizing receptor, such as ligands for scavenger receptors, for example acetylated-LDL, oxidized-LDL, sulfated polysaccharides, maleylated proteins, polyguanylic acids, HDL oligonucleotides, such as polyguanosine (poly(G)), or derivatives thereof; ligands for LDL receptors, for example LDL; ligands for a heat shock protein receptors for example heat shock proteins or portions thereof specific for a heat shock protein receptors s; ligands for transferrin receptors, such as transferrin or portions thereof specific for a transferrin receptors and the like.
- ligands for scavenger receptors for example acetylated-LDL, oxidized-LDL, sulfated polysaccharides, male
- a hetero-bifunctional ligand includes an internalizing receptor-binding agent heterologous to the target receptor-binding agent and the linker.
- the internalizing receptor-binding agent is an oligonucleotide, such as polyguanosine, phosphorothioate oligodeoxyguanosine, oligodeoxyguanosine oligo 2'-deoxyguanosine 5 '-monophosphate among others.
- the oligonucleotide is between about 6 nucleotides and about 100 nucleotide in length, such as about 6, 7, 8, 9, 10 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100 nucleotides in length, for example between about 6 to about 15, about 10 to about 20, about 15
- the disclosed hetero-bifunctional ligands may be synthesized by techniques known in the art.
- the hetero-bifunctional ligands are formed from target receptor and internalization receptor-binding agents, which both can be modified or activated, for example chemically activated, so that it can be covalently bound to a linker, such that the target receptor-binding agent and the internalizing receptor-binding agent are joined by the linker.
- Molecules such as ligands for different receptors (for example a ligand for a target receptor and an internalizing receptor) can be linked together using any number of means known to those of skill in the art.
- a ligand specific for a target receptor is covalently bound to a ligand specific for an internalizing receptor.
- the linker can be any molecule used to join a molecule to another molecule. Depending on such factors as the molecules to be linked and the conditions in which the method of detection is performed, the linker can vary in length and composition for optimizing such properties as flexibility, stability and resistance to certain chemical and/or temperature parameters.
- a linker that is part of a hetero-bifunctional ligand should be of sufficient length that the hetero- bifunctional ligand is capable of binding to both a target receptor and an internalizing receptor.
- a linker is a heterologous linker, such that the linker heterologous to the target receptor binding and the internalizing receptor-binding agent.
- Suitable linkers are well known to those of skill in the art and include, but are not limited to, straight or branched-chain carbon linkers, heterocyclic carbon linkers or peptide linkers.
- Peptide linkers are short sequences of amino acids, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or ever greater than 15 amino acids in length.
- a linker is peptide such as poly-lysine, poly-glutamine or even combinations thereof.
- each of the constituents will contain the necessary reactive groups.
- linking groups are amino with carboxyl to form amide linkages or carboxy with hydroxyl to form ester linkages or amino with alkyl halides to form alkylamino linkages or thiols with thiols to form disulfides or thiols with maleimides or alkylhalides to form thioethers.
- hydroxyl, carboxyl, amino and other functionalities, where not present may be introduced by known methods.
- a wide variety of linking groups may be employed.
- the linking group can be designed to be either hydrophilic or hydrophobic in order to enhance the desired binding characteristics of the ligand and the receptor.
- the covalent linkages should be stable relative to the solution conditions under which the ligand and linking group are subjected.
- the linkers may be joined to the constituent amino acids through their side groups (such as through a disulfide linkage to cysteine) or to the alpha carbon amino and carboxyl groups of the terminal amino acids.
- the linker and both receptor-binding agents can be encoded as a single fusion polypeptide such that the target receptor-binding agent and the internalizing receptor-binding agent are joined by peptide bonds.
- polypeptides typically contain a variety of functional groups; for example, carboxylic acid (COOH), free amine (-NH 2 ) or sulfhydryl (-SH) groups, which are available for reaction with a suitable functional group on a polypeptide.
- the polypeptide is derivatized to expose or attach additional reactive functional groups.
- the derivatization may involve attachment of any of a number of linker molecules such as those available from Pierce Chemical Company, Rockford, IL.
- a linker is the combination of streptavidin or avidin and biotin.
- aspects of this disclosure relate to a method for inducing the internalization of a target receptor.
- Such methods include contacting a cell that expresses the target receptor on its surface with an effective amount of a hetero-bifunctional ligand that includes a specific binding agent capable of binding to the target receptor.
- a target receptor specific binding agent and internalizing receptor-binding agent for inclusion in a hetero-bifunctional ligand it is possible to induce the internalization of any target receptor.
- a target receptor-binding agent is a ligand for a growth factor receptor, such as a neuropilin-1, neuropilin-2 or a vascular endothelial growth factor (VEGF) receptor, such as vascular endothelial growth factor receptor (VEGFR) -1, VEGFR-2, VEGFR-3.
- a hetero-bifunctional ligand is constructed to induce the internalization of VEGFR-2 and/or NPR-I.
- Such a hetero-bifunctional ligand includes a target receptor-binding agent that is VEGF-A (the ligand for the receptor VEGFR-2 and co-receptor Neuropilin-1) and Acetylated- LDL (a scavenger ligand that induces the internalization of scavenger receptors), which are chemically linked, for example with crosslinkers available commercially from Pierce (Bioconjugate Toolkit Reagents) to tag VEGF-A and Acetylated-LDL with two different hetero-bifunctional linkers (A and B). After derivation of VEGF- A-(linker A) and Acetylated-LDL-(linker B), these two linker molecules are linked together.
- VEGF-A the ligand for the receptor VEGFR-2 and co-receptor Neuropilin-1
- Acetylated- LDL a scavenger ligand that induces the internalization of scavenger receptors
- a hetero-bifunctional ligand composed of (VEGF-A)-(linker A)-(linker B)-(Acetylated-LDL).
- a hetero-bifunctional ligand is of use in inhibiting angiogenesis and/or in the treatment of cancer.
- a hetero-bifunctional ligand includes a linker heterologous to one or both of the internalizing receptor-binding agent and the target receptor-binding agent.
- the internalizing receptor-binding agent is a polysaccharide, such as sulfated dextran or Fucoidan and the target receptor-binding agent is not a polysaccharide.
- the target receptor-binding agent is a polysaccharide, such as sulfated dextran or Fucoidan and the target internalizing receptor binding agent is not a polysaccharide.
- a receptor polypeptide for example a target receptor or internalizing receptor polypeptide
- a fragment or conservative variant thereof can be used to produce antibodies which are immunoreactive or bind to an epitope of the receptor polypeptide.
- Polyclonal or monoclonal antibodies including humanized monoclonal antibodies
- fragments of monoclonal antibodies such as Fab, F(ab')2 and Fv fragments, as well as any other agent capable of specifically binding to an peptide derived from a target or internalizing receptor may be produced.
- antibodies raised against a target or internalizing receptor polypeptide would specifically bind the target or internalizing receptor polypeptide of interest (or a cell expressing such a peptide in its surface).
- an antibody specifically binds the target or internalizing receptor polypeptide of interest is made by any one of a number of standard immunoassay methods; for instance, the Western blotting technique (Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).
- a substantially pure target or internalizing receptor polypeptide suitable for use as an immunogen is isolated by purification or recombinant expression. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms per milliliter. Monoclonal or polyclonal antibody to the protein can then be prepared as described by Harlow and Lane (Antibodies, A Laboratory Manual, Cold Spring Harbor Press. 1988).
- antibodies may be raised against a synthetic target or internalizing receptor polypeptide synthesized on a commercially available peptide synthesizer based upon the predicted amino acid or known sequence of the target or internalizing receptor polypeptide (Harlow and Lane, Antibodies, A Laboratory Manual, Cold Spring Harbor Press. 1988).
- polyclonal antibodies The preparation of polyclonal antibodies is well-known to those skilled in the art. See, for example, Green et al., "Production of Polyclonal Antisera, " in Immunochemical Protocols /rages 1-5, Manson, ed., Humana Press 1992; Coligan et al., "Production of Polyclonal Antisera in Rabbits, Rats, Mice and Hamsters, " in: Current Protocols in Immunology, section 2.4.1, 1992.
- Polyclonal antiserum containing antibodies to heterogeneous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than larger molecules and may require the use of carriers and adjuvants. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis et al. (J. Clin. Endocrinol. Metab. 33:988-91, 1971).
- Booster injections can be given at regular intervals and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony et al. (In: Handbook of Experimental Immunology, Wier, D. (ed). Chapter 19. Blackwell. 1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12 ⁇ M). Affinity of the antisera for the antigen is measured by analysis of competitive binding curves, as described, for example, by Fisher (Manual of Clinical Immunology, Chapter 42. 1980).
- monoclonal antibodies likewise is conventional. See, for example, Kohler & Milstein, Nature 256:495, 1975; Coligan et al, sections 2.5.1-2.6.7; and Harlow et al, in: Antibodies: a Laboratory Manual, page 726, Cold Spring Harbor Pub., 1988.
- Monoclonal antibody to epitopes of the target or internalizing receptor polypeptide identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler and Milstein ⁇ Nature 256:495, 1975) or derivative methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks.
- the mouse is then sacrificed and the antibody-producing cells of the spleen isolated.
- the spleen cells are fused by means of polyethylene glycol or other means with selected mouse myeloma cells and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media).
- HAT media aminopterin
- the successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued.
- Antibody- producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall (Enzymol. 70:419, 1980) and derivative methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use.
- Monoclonal antibodies can be isolated and purified from hybridoma cultures by a variety of well-established techniques. Such isolation techniques include affinity chromatography with Protein-A Sepharose, size-exclusion chromatography and ion-exchange chromatography. See, for example, Coligan et al., sections 2.7.1- 2.7.12 and sections 2.9.1-2.9.3; Barnes et al., "Purification of Immunoglobulin G (IgG),” in: Methods in Molecular Biology, Vol. 10, pages 79-104, Humana Press, 1992. Methods of in vitro and in vivo multiplication of monoclonal antibodies are well known to those skilled in the art.
- Multiplication in vitro may be carried out in suitable culture media such as Dulbecco's Modified Eagle Medium or RPMI 1640 medium, optionally supplemented by a mammalian serum such as fetal calf serum or trace elements and growth- sustaining supplements such as normal mouse peritoneal exudate cells, spleen cells, thymocytes or bone marrow macrophages.
- suitable culture media such as Dulbecco's Modified Eagle Medium or RPMI 1640 medium
- a mammalian serum such as fetal calf serum or trace elements
- growth- sustaining supplements such as normal mouse peritoneal exudate cells, spleen cells, thymocytes or bone marrow macrophages.
- Production in vitro provides relatively pure antibody preparations and allows scale-up to yield large amounts of the desired antibodies.
- Large-scale hybridoma cultivation can be carried out by homogenous suspension culture in an airlift reactor, in a continuous stirrer reactor or in immobilized or
- Multiplication in vivo may be carried out by injecting cell clones into mammals histocompatible with the parent cells, for example, syngeneic mice, to cause growth of antibody-producing tumors.
- the animals are primed with a hydrocarbon, especially oils such as pristane (tetramethylpentadecane) prior to injection. After one to three weeks, the desired monoclonal antibody is recovered from the body fluid of the animal.
- Specific antibodies can also be derived from subhuman primate antibody.
- General techniques for raising therapeutically useful antibodies in baboons can be found, for example, in WO 91/11465, 1991 and Losman et ah, Int. J. Cancer 46:310, 1990.
- an antibody that specifically binds a target receptor or an internalizing receptor can be derived from a humanized monoclonal antibody.
- Humanized monoclonal antibodies are produced by transferring mouse complementarity determining regions from heavy and light variable chains of the mouse immunoglobulin into a human variable domain and then substituting human residues in the framework regions of the murine counterparts.
- the use of antibody components derived from humanized monoclonal antibodies obviates potential problems associated with the immunogenicity of murine constant regions.
- Antibodies can be derived from human antibody fragments isolated from a combinatorial immunoglobulin library. See, for example, Barbas et al, in: Methods: a Companion to Methods in Enzymology, Vol. 2, page 119, 1991; Winter et al, Ann. Rev. Immunol. 12:433, 1994.
- Cloning and expression vectors that are useful for producing a human immunoglobulin phage library can be obtained, for example, from STRATAGENE® Cloning Systems (La Jolla, CA).
- antibodies can be derived from a human monoclonal antibody.
- Such antibodies are obtained from transgenic mice that have been "engineered” to produce specific human antibodies in response to antigenic challenge.
- elements of the human heavy and light chain loci are introduced into strains of mice derived from embryonic stem cell lines that contain targeted disruptions of the endogenous heavy and light chain loci.
- the transgenic mice can synthesize human antibodies specific for human antigens and the mice can be used to produce human antibody-secreting hybridomas. Methods for obtaining human antibodies from transgenic mice are described by Green et al, Nature Genet. 7:13, 1994; Lonberg et al, Nature 368:856, 1994; and Taylor et al. Jnt. Immunol. 6:579, 1994.
- Antibodies include intact molecules as well as fragments thereof, such as Fab, F(ab') 2 and Fv which are capable of binding the epitopic determinant. Methods of making these fragments are known in the art. (See for example, Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York, 1988).
- An epitope is any antigenic determinant on an antigen to which the paratope of an antibody binds.
- Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three-dimensional structural characteristics, as well as specific charge characteristics.
- Antibody fragments can be prepared by proteolytic hydrolysis of the antibody or by expression in E. coli of DNA encoding the fragment.
- Antibody fragments can be obtained by pepsin or papain digestion of whole antibodies by conventional methods.
- antibody fragments can be produced by enzymatic cleavage of antibodies with pepsin to provide a 5 S fragment denoted F(ab') 2 .
- This fragment can be further cleaved using a thiol reducing agent and optionally a blocking group for the sulfhydryl groups resulting from cleavage of disulfide linkages, to produce 3.5S Fab' monovalent fragments.
- an enzymatic cleavage using pepsin produces two monovalent Fab' fragments and an Fc fragment directly (see U.S. Patent No. 4,036,945 and U.S. Patent No.
- cleaving antibodies such as separation of heavy chains to form monovalent light-heavy chain fragments, further cleavage of fragments or other enzymatic, chemical or genetic techniques may also be used, so long as the fragments bind to the antigen that is recognized by the intact antibody.
- Fv fragments comprise an association of V H and V L chains. This association may be noncovalent (Inbar et al, Proc. Nat 'I Acad. ScL U.S.A. 69:2659, 1972).
- the variable chains can be linked by an intermolecular disulfide bond or cross-linked by chemicals such as glutaraldehyde. See, for example, Sandhu, supra.
- the Fv fragments comprise V H and V L chains connected by a peptide linker.
- These single-chain antigen binding proteins (sFv) are prepared by constructing a structural gene comprising DNA sequences encoding the V H and V L domains connected by an oligonucleotide.
- the structural gene is inserted into an expression vector, which is subsequently introduced into a host cell such as E. coli.
- the recombinant host cells synthesize a single polypeptide chain with a linker peptide bridging the two V domains.
- Methods for producing sFvs are known in the art (see Whitlow et al. , Methods: a Companion to Methods in Enzymology, Vol. 2, page 97, 1991; Bird et al. , Science 242:423, 1988; U.S. Patent No. 4,946,778; Pack et al, Bio/Technology 11:1271, 1993; and Sandhu, supra).
- CDR peptides (“minimal recognition units") can be obtained by constructing genes encoding the CDR of an antibody of interest. Such genes are prepared, for example, by using the polymerase chain reaction to synthesize the variable region from RNA of antibody-producing cells (Larrick et al. , Methods: a Companion to Methods in Enzytnology, Vol. 2, page 106, 1991).
- Antibodies can be prepared using an intact polypeptide or fragments containing small peptides of interest as the immunizing antigen.
- the polypeptide or a peptide used to immunize an animal can be derived from substantially purified polypeptide produced in host cells, in vitro translated cDNA or chemical synthesis, which can be conjugated to a carrier protein, if desired.
- carrier protein if desired.
- Such commonly used carriers which are chemically coupled to the peptide include keyhole limpet hemocyanin (KLH), thyroglobulin, bovine serum albumin (BSA) and tetanus toxoid.
- KLH keyhole limpet hemocyanin
- BSA bovine serum albumin
- the coupled peptide is then used to immunize the animal (for example, a mouse, a rat or a rabbit).
- Polyclonal or monoclonal antibodies can be further purified, for example, by binding to and elution from a matrix to which the polypeptide or a peptide to which the antibodies were raised is bound.
- a matrix to which the polypeptide or a peptide to which the antibodies were raised is bound.
- Those of skill in the art will know of various techniques common in the immunology arts for purification and/or concentration of polyclonal antibodies, as well as monoclonal antibodies (See for example, Coligan et al., Unit 9, Current Protocols in Immunology, Wiley Interscience, 1991).
- an anti-idiotypic monoclonal antibody made to a first monoclonal antibody will have a binding domain in the hypervariable region that is the "image" of the epitope bound by the first monoclonal antibody.
- a given antibody preparation such as one produced in a mouse specifically binds the target or internalizing receptor polypeptide of interest by Western blotting
- total cellular protein containing the target or internalizing receptor polypeptide is extracted from murine myeloma cells and electrophoresed on a SDS-polyacrylamide gel.
- the proteins are then transferred to a membrane (for example, nitrocellulose) and the test antibody preparation is incubated with the membrane.
- the presence of specifically bound antibodies is detected by the use of an anti-mouse antibody conjugated to an enzyme such as alkaline phosphatase; application of the substrate 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium results in the production of a dense blue compound by immuno-localized alkaline phosphatase.
- Antibodies which specifically bind a target or internalizing receptor polypeptide of interest will, by this technique, be shown to bind to the target or internalizing receptor polypeptide band (which will be localized at a given position on the gel determined by its molecular weight).
- Non-specific binding of the antibody to other proteins may occur and may be detectable as a weak signal on the Western blot.
- the non-specific nature of this binding will be recognized by one skilled in the art by the weak signal and/or unrelated portion obtained on the Western blot relative to the strong primary signal arising from the specific antibody- target or internalizing receptor polypeptide binding.
- the hetero-bifunctional ligands disclosed herein can be prepared by cloning techniques, for example when one or both of the target receptor-binding agent and the internalizing receptor-binding agent are peptides.
- the target receptor-binding agent, the linker and the internalizing receptor-binding agent are produced as single fusion protein. Examples of appropriate cloning and sequencing techniques and instructions sufficient to direct persons of skill through many cloning exercises are found in Sambrook et al, Molecular Cloning: A Laboratory Manual (2nd Ed.), VoIs. 1-3, Cold Spring Harbor Laboratory (1989), Berger and Kimmel (eds.), Guide to Molecular Cloning Techniques, Academic Press, Inc., San Diego CA (1987) or Ausubel et al.
- the disclosed hetero-bifunctional ligands are produced recombinantly, for example from cells transformed or transfected with polynucleotides encoding the hetero-bifunctional ligand or portion thereof.
- the hetero-bifunctional ligand is produced as a single amino acid chain that includes the target receptor-binding agent, a polypeptide linker and the internalizing receptor-binding agent.
- the hetero-bifunctional ligand is produced from more than one polypeptide chain (for example a polypeptide that is a target receptor-binding agent and a different polypeptide that is the internalizing receptor-binding agent), which are linked together which a linker.
- the receptor-binding agent is a polypeptide, which includes a polypeptide linker, for example a polypeptide linker at the N or C terminus of the receptor- binding agent.
- nucleic acids encoding the disclosed hetero-bifunctional ligands or portions thereof into vectors for the expression of polypeptides are well known in the art (see for example, Sambrook et ah, Molecular Cloning, a Laboratory Manual, 2d edition, Cold Spring Harbor Press, Cold Spring Harbor, N. Y., 1989 and Ausubel et ah, Current Protocols in Molecular Biology, Greene Publishing Associates and John Wiley & Sons, New York, N. Y., 1994).
- the nucleic acid constructs encoding the hetero-bifunctional ligands or portions thereof of this disclosure can be inserted into plasmids.
- the nucleic acid constructs typically are expression vectors that contain a promoter sequence which facilitates the efficient transcription of the inserted genetic sequence of the host.
- the expression vector typically contains an origin of replication, a promoter, as well as specific nucleic acid sequences that allow phenotypic selection of the transformed cells.
- polynucleotide sequences encoding hetero-bifunctional ligands or portions thereof of this disclosure can be operably linked to any promoter and/or enhancer that is capable of driving expression of the nucleic acid following introduction into a host cell.
- a promoter is an array of nucleic acid control sequences that directs transcription of a nucleic acid. Both constitutive and inducible promoters are included (see, for example, Bitter et al, Methods in Enzymology 153:516-544, 1987).
- DNA sequences encoding a hetero-bifunctional ligand or portion thereof can be expressed in vitro by DNA transfer into a suitable host cell.
- the cell may be prokaryotic or eukaryotic.
- Hosts can include microbial, yeast, insect and mammalian organisms.
- the term also includes any progeny of the subject host cell. Methods of stable transfer, meaning that the foreign DNA is continuously maintained in the host, are known in the art.
- Transformation of a host cell with recombinant DNA can be carried out by conventional techniques that are well known to those of ordinary skill in the art.
- the host is prokaryotic, such as E. coli
- competent cells which are capable of DNA uptake can be prepared from cells harvested after exponential growth phase and subsequently treated by the CaCl 2 method using procedures well known in the art.
- MgCl 2 or RbCl can be used. Transformation can also be performed after forming a protoplast of the host cell if desired or by electroporation.
- Eukaryotic cells can also be co-transformed with polynucleotide sequences encoding hetero-bifunctional ligand or portions thereof and a second foreign DNA molecule encoding a selectable phenotype, such as the herpes simplex thymidine kinase gene.
- Another method is to use a eukaryotic viral vector, such as simian virus 40 (SV40) or bovine papilloma virus, to transiently infect or transform eukaryotic cells and express the protein (see for example, Eukaryotic Viral Vectors, Cold Spring Harbor Laboratory, Gluzman ed., 1982). Peptides can then be purified for host cells using methods known in the art.
- a eukaryotic viral vector such as simian virus 40 (SV40) or bovine papilloma virus
- Peptides derived from target or internalizing receptors may be produced, for example by chemically synthesis by any of a number of manual or automated methods of synthesis known in the art.
- peptides that form all or part of a hetero-bifunctional ligand can be produced synthetically.
- SPPS solid phase peptide synthesis
- mmole millimole
- Fmoc 9- fluorenylmethyloxycarbonyl
- coupling with dicyclohexylcarbodiimide/hydroxybenzotriazole or 2-(lH-benzo-triazol-l-yl)- 1,1,3,3 -tetramethyluronium hexafluorophosphate/ hydroxybenzotriazole (HBTU/HOBT) and using p-hydroxymethylphenoxymethylpolystyrene (HMP) or Sasrin resin for carboxyl-terminus acids or Rink amide resin for carboxyl-terminus amides.
- HMP p-hydroxymethylphenoxymethylpolystyrene
- Sasrin resin for carboxyl-terminus acids
- Rink amide resin for carboxyl-terminus amides.
- Fmoc-derivatized amino acids are prepared from the appropriate precursor amino acids by tritylation and triphenylmethanol in trifluoroacetic acid, followed by Fmoc derivitization as described by Atherton et al. Solid Phase Peptide Synthesis, IRL Press: Oxford, 1989. Sasrin resin-bound peptides are cleaved using a solution of 1% TFA in dichloromethane to yield the protected peptide.
- protected peptide precursors are cyclized between the amino- and carboxyl-termini by reaction of the amino-terminal free amine and carboxyl-terminal free acid using diphenylphosphorylazide in nascent peptides wherein the amino acid sidechains are protected.
- HMP or Rink amide resin-bound products are routinely cleaved and protected sidechain-containing cyclized peptides deprotected using a solution comprised of trifluoroacetic acid (TFA), optionally also comprising water, thioanisole and ethanedithiol, in ratios of 100 : 5 : 5 : 2.5, for 0.5 - 3 hours at room temperature.
- TFA trifluoroacetic acid
- Crude peptides are purified by preparative high pressure liquid chromatography (HPLC), for example using a Waters Delta-Pak Cl 8 column and gradient elution with 0.1% TFA in water modified with acetonitrile. After column elution, acetonitrile is evaporated from the eluted fractions, which are then lyophilized.
- HPLC high pressure liquid chromatography
- FABMS fast atom bombardment mass spectroscopy
- ESMS electrospray mass spectroscopy
- Peptides produced by such methods also can be used to produce antibodies that bind the peptide and hence the protein from which the peptide was derived, for example a target or internalizing receptor.
- the hetero-bifunctional ligands disclosed herein may be included in pharmaceutical compositions (including therapeutic and prophylactic formulations), which are typically combined together with one or more pharmaceutically acceptable vehicles or carriers and, optionally, other therapeutic ingredients.
- the hetero- bifunctional ligands disclosed herein may be advantageously combined and/or used in combination with other therapeutic agents, different from the subject hetero- bifunctional ligands depending on the specific condition or disease associated with the target receptor-binding agent included as a component if the hetero-bifunctional ligand. For example, in situation where the target receptor-binding agent targets a receptor associated with cancer, it may be advantageous to use the hetero- bifunctional ligand with a chemotherapeutic agent. In many instances, co- administration of another agent in conjunction with the disclosed hetero-bifunctional ligands will enhance the efficacy of such agents.
- compositions including a disclosed hetero-bifunctional ligand can be administered to subjects by a variety of routes, including by intramuscular, subcutaneous, intravenous, intra-arterial, intra- articular, intraperitoneal, intrathecal, intracerebro ventricular, parenteral routes, mucosal administration modes, including by oral, rectal, intranasal, intrapulmonary or transdermal delivery or by topical delivery to other surfaces.
- the hetero-bifunctional ligand can be used ex vivo by direct exposure to cells, tissues or organs originating from a subject and which are then administered to a subject, which can be in conjunction with administration of a hetero-bifunctional ligand to the subject.
- the hetero-bifunctional ligand can be combined with various pharmaceutically acceptable additives, as well as a base or vehicle for dispersion of the compound.
- Desired additives include, but are not limited to, pH control agents, such as arginine, sodium hydroxide, glycine, hydrochloric acid, citric acid and the like.
- local anesthetics for example, benzyl alcohol
- isotonizing agents for example, sodium chloride, mannitol, sorbitol
- adsorption inhibitors for example, Tween 80
- solubility enhancing agents for example, cyclodextrins and derivatives thereof
- stabilizers for example, serum albumin
- reducing agents for example, glutathione
- Adjuvants such as aluminum hydroxide (for example, Amphogel, Wyeth Laboratories, Madison, NJ), Freund's adjuvant, MPLTM (3-O-deacylated monophosphoryl lipid A; Corixa, Hamilton, IN) and IL-12 (Genetics Institute, Cambridge, MA), among many other suitable adjuvants well known in the art, can be included in the compositions.
- MPLTM 3-O-deacylated monophosphoryl lipid A; Corixa, Hamilton, IN
- IL-12 Geneetics Institute, Cambridge, MA
- the tonicity of the solution is adjusted to a value of about 0.3 to about 3.0, such as about 0.5 to about 2.0 or about 0.8 to about 1.7.
- the hetero-bifunctional ligand can be dispersed in a base or vehicle, which can include a hydrophilic compound having a capacity to disperse the compound and any desired additives.
- the base can be selected from a wide range of suitable compounds, including but not limited to, copolymers of polycarboxylic acids or salts thereof, carboxylic anhydrides (for example, maleic anhydride) with other monomers (for example, methyl (meth)acrylate, acrylic acid and the like), hydrophilic vinyl polymers, such as polyvinyl acetate, polyvinyl alcohol, polyvinylpyrrolidone, cellulose derivatives, such as hydroxymethylcellulose, hydroxypropylcellulose and the like and natural polymers, such as chitosan, collagen, sodium alginate, gelatin, hyaluronic acid and nontoxic metal salts thereof.
- copolymers of polycarboxylic acids or salts thereof include but not limited to, copolymers of polycarboxylic acids or salts thereof, carboxylic anhydrides (for example, maleic anhydride) with other monomers (for example, methyl (meth)acrylate, acrylic acid and the like), hydrophilic vinyl polymers, such as
- a biodegradable polymer is selected as a base or vehicle, for example, polylactic acid, poly(lactic acid-glycolic acid) copolymer, polyhydroxybutyric acid, poly (hydroxybutyric acid-glycolic acid) copolymer and mixtures thereof.
- synthetic fatty acid esters such as polyglycerin fatty acid esters, sucrose fatty acid esters and the like can be employed as vehicles.
- Hydrophilic polymers and other vehicles can be used alone or in combination and enhanced structural integrity can be imparted to the vehicle by partial crystallization, ionic bonding, cross-linking and the like.
- the vehicle can be provided in a variety of forms, including fluid or viscous solutions, gels, pastes, powders and microspheres.
- the hetero-bifunctional ligand can be combined with the base or vehicle according to a variety of methods and release of the compound can be by diffusion, disintegration of the vehicle or associated formation of water channels.
- the compound is dispersed in microcapsules (microspheres) or nanocapsules (nanospheres) prepared from a suitable polymer, for example, isobutyl 2- cyanoacrylate (see, for example, Michael et al., J. Pharmacy Pharmacol. 43:1-5, 1991) and dispersed in a biocompatible dispersing medium, which yields sustained delivery and biological activity over a protracted time.
- the hetero-bifunctional ligands of the disclosure can alternatively contain as pharmaceutically acceptable vehicles substances as required to approximate physiological conditions, such as pH adjusting and buffering agents, tonicity adjusting agents, wetting agents and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate and triethanolamine oleate.
- pharmaceutically acceptable vehicles can be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate and the like.
- compositions for administering the hetero-bifunctional ligand can also be formulated as a solution, microemulsion or other ordered structure suitable for high concentration of active ingredients.
- the vehicle can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol and the like) and suitable mixtures thereof.
- polyol for example, glycerol, propylene glycol, liquid polyethylene glycol and the like
- suitable mixtures thereof suitable mixtures thereof.
- Proper fluidity for solutions can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of a desired particle size in the case of dispersible formulations and by the use of surfactants.
- isotonic agents for example, sugars, polyalcohols, such as mannitol and sorbitol or sodium chloride in the composition.
- Prolonged absorption of the compound can be brought about by including in the composition an agent which delays absorption, for example, monostearate salts and gelatin.
- the hetero-bifunctional ligand can be administered in a time-release formulation, for example in a composition which includes a slow release polymer.
- a composition which includes a slow release polymer can be prepared with vehicles that will protect against rapid release, for example a controlled release vehicle such as a polymer, microencapsulated delivery system or bioadhesive gel. Prolonged delivery in various compositions of the disclosure can be brought about by including in the composition agents that delay absorption, for example, aluminum monostearate hydrogels and gelatin.
- controlled release binders suitable for use in accordance with the disclosure include any biocompatible controlled release material which is inert to the active agent and which is capable of incorporating the hetero-bifunctional ligand and/or other biologically active agent.
- Useful controlled-release binders are materials that are metabolized slowly under physiological conditions following their delivery (for example, at a mucosal surface or in the presence of bodily fluids).
- Appropriate binders include, but are not limited to, biocompatible polymers and copolymers well known in the art for use in sustained release formulations.
- biocompatible compounds are non-toxic and inert to surrounding tissues and do not trigger significant adverse side effects, such as nasal irritation, immune response, inflammation or the like. They are metabolized into metabolic products that are also biocompatible and easily eliminated from the body.
- Exemplary polymeric materials for use in the present disclosure include, but are not limited to, polymeric matrices derived from copolymeric and homopolymeric polyesters having hydrolyzable ester linkages. A number of these are known in the art to be biodegradable and to lead to degradation products having no or low toxicity.
- Exemplary polymers include polyglycolic acids and polylactic acids, poly(DL-lactic acid-co-glycolic acid), poly(D-lactic acid-co-glycolic acid) and poly(L-lactic acid-co- glycolic acid).
- biodegradable or bioerodable polymers include, but are not limited to, such polymers as poly(epsilon-caprolactone), poly(epsilon-aprolactone- CO-lactic acid), poly(epsilon.-aprolactone-CO-glycolic acid), poly(beta-hydroxy butyric acid), poly(alkyl-2-cyanoacrilate), hydrogels, such as poly(hydroxyethyl methacrylate), polyamides, poly( amino acids) (for example, L-leucine, glutamic acid, L-aspartic acid and the like), poly(ester urea), poly(2-hydroxyethyl DL-aspartamide), polyacetal polymers, polyorthoesters, polycarbonate, polymaleamides, polysaccharides and copolymers thereof.
- polymers such as polymers as poly(epsilon-caprolactone), poly(epsilon-aprolactone- CO-lactic acid), poly(
- compositions of the disclosure typically are sterile and stable under conditions of manufacture, storage and use.
- Sterile solutions can be prepared by incorporating the compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated herein, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the compound and/or other biologically active agent into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated herein.
- methods of preparation include vacuum drying and freeze-drying which yields a powder of the compound plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- the prevention of the action of microorganisms can be accomplished by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal and the like.
- the compound can be delivered to a subject in a manner consistent with conventional methodologies associated with management of the disorder for which treatment or prevention is sought.
- a prophylactically or therapeutically effective amount of the compound and/or other biologically active agent is administered to a subject in need of such treatment for a time and under conditions sufficient to prevent, inhibit, and/or ameliorate a selected disease or condition or one or more symptom(s) thereof.
- Typical subjects intended for treatment with the hetero-bifunctional ligand and methods of the present disclosure include humans, as well as non-human primates and other animals.
- accepted screening methods are employed to determine risk factors associated with a targeted or suspected disease of condition (for example, a disease associated with a particular target receptor, such that the induced internalization of the target receptor would provide a benefit to the subject) or to determine the status of an existing disease or condition in a subject.
- screening methods include, for example, diagnostic methods, such as various ELISA and other immunoassay methods, which are available and well known in the art to detect and/or characterize disease-associated markers.
- the administration of the hetero-bifunctional ligand of the disclosure can be for either prophylactic or therapeutic purpose.
- the hetero-bifunctional ligand is provided in advance of any symptom.
- the prophylactic administration of the compound serves to prevent or ameliorate any subsequent disease process.
- the compound is provided at (or shortly after) the onset of a symptom of disease or infection.
- the hetero-bifunctional ligand can be administered to the subject in a single bolus delivery, via continuous delivery (for example, continuous transdermal, mucosal or intravenous delivery) over an extended time period or in a repeated administration protocol (for example, by an hourly, daily or weekly, repeated administration protocol).
- the therapeutically effective dosage of the compound can be provided as repeated doses within a prolonged prophylaxis or treatment regimen that will yield clinically significant results to alleviate one or more symptoms or detectable conditions associated with a targeted disease or condition as set forth herein. Determination of effective dosages in this context is typically based on animal model studies followed up by human clinical trials and is guided by administration protocols that significantly reduce the occurrence or severity of targeted disease symptoms or conditions in the subject.
- Suitable models in this regard include, for example, murine, rat, porcine, feline, non-human primate and other accepted animal model subjects known in the art.
- effective dosages can be determined using in vitro models (for example, immunologic and histopathologic assays). Using such models, only ordinary calculations and adjustments are required to determine an appropriate concentration and dose to administer a therapeutically effective amount of the hetero-bifunctional ligand (for example, amounts that are effective to alleviate one or more symptoms of a targeted disease or condition).
- an effective amount or effective dose of the hetero- bifunctional ligand may simply inhibit or enhance one or more selected biological activities correlated with a disease or condition.
- the actual dosage of a hetero-bifunctional ligand will vary according to factors such as the disease indication and particular status of the subject (for example, the subject's age, size, fitness, extent of symptoms, susceptibility factors and the like), time and route of administration, other drugs or treatments being administered concurrently, as well as the specific pharmacology of the hetero-bifunctional ligand for eliciting the desired activity or biological response in the subject. Dosage regimens can be adjusted to provide an optimum prophylactic or therapeutic response. A therapeutically effective amount is also one in which any toxic or detrimental side effects of the compound and/or other biologically active agent is outweighed in clinical terms by therapeutically beneficial effects.
- a non-limiting range for a therapeutically effective amount of a hetero-bifunctional ligand and/or other biologically active agent within the methods and formulations of the disclosure is about 0.01 mg/kg body weight to about 10 mg/kg body weight, such as about 0.05 mg/kg to about 5 mg/kg body weight or about 0.2 mg/kg to about 2 mg/kg body weight.
- Dosage can be varied by the attending clinician to maintain a desired concentration at a target site. Higher or lower concentrations can be selected based on the mode of delivery, for example, trans-epidermal, rectal, oral, pulmonary, intranasal delivery, intravenous or subcutaneous delivery.
- slow-release particles with a release rate of 5 nanomolar under standard conditions
- kits, packages and multi-container units containing the herein described pharmaceutical compositions such as pharmaceutical compositions containing one or more of the hetero-bifunctional ligands, active ingredients, and/or means for administering the same for use in the prevention and treatment of diseases and other conditions in subjects.
- these kits include a container or formulation that contains one or more of the hetero-bifunctional ligands described herein. In one example, this component is formulated in a pharmaceutical preparation for delivery to a subject.
- the hetero-bifunctional ligand is optionally contained in a bulk dispensing container or unit or multi-unit dosage form.
- Packaging materials optionally include a label or instruction indicating for what treatment purposes and/or in what manner the pharmaceutical agent packaged therewith can be used.
- the disclosed hetero-bifunctional ligands can be used to internalize a receptor whose function contributes to a disease or condition. It can be determined if the internalization of a specific receptor (and subsequent loss of signaling capability) would be beneficial for a certain disease or condition.
- cancer cells can express cell-surface receptors by which they receive proliferation signals, such as through autocrine or paracrine pathways.
- hetro-bifunctional ligands can be produced that target the internalizing receptor and a receptor that receives signals to induce proliferation of the cancer cell.
- Such a hetero-bifunctional ligand can be used to treat cancer by inhibiting the proliferation of the cancer cells.
- hetero-bifunctional ligands can be used to treat or inhibit tumor growth and/or metastasis.
- VEGFRs are known to be involved in angiogenesis during tumor growth, thus a hetero-bifunctional ligand that is capable of inducing the internalization of VEGFR could be used to inhibit angiogenesis, for example to treat or inhibit tumor growth and/or metastasis.
- a target receptor that is a known site of viral binding and or entry can be internalized into the interior of the cell, so that the receptor is no longer available for the virus to use as either a viral binding site or entry site.
- a hetero-bifunctional ligand can be produced that includes a ligand for a cytokine receptor (such as CXCR4 and CCR5) used by HIV to assist in the entry of HIV into the cell, thus the disclosed hetero-bifunctional ligand can be used to internalize the cytokine receptor and inhibit the entry of HIV into the cell.
- a target receptor known to contribute to an autoimmune disorder can be internalized into the interior of the cell, so that the receptor is no longer available for ligand binding that contributes to the autoimmune disorder.
- TNF Tissue Necrosis Factor
- autoimmune disorders such as rheumatoid arthritis, juvenile rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis and plaque psoriasis.
- a hetero-bifunctional ligand that includes a ligand for a TNF receptor can be used to internalize the TNF receptor and treat the autoimmune disorder.
- interleukin 6 IL-6
- IL-6 is known to play a pathogenic role in rheumatoid arthritis, post transplant lymphoproliferative disease, Castleman's disease and atrial myxomas.
- a hetero-bifunctional ligand that includes a ligand for the IL-6 receptor can be used to internalize the IL-6 receptor and treat rheumatoid arthritis, post transplant lymphoproliferative disease, Castleman's disease or atrial myxoma.
- a hetero- bifunctional ligand can be produced that promotes angiogenesis when administrered to a subject, for example by internalizing Notch 4, thereby rendering that receptor unavailable to bind Delta-like-4, a natural inhibitor of angiogenesis.
- Such a hetero- bifunctional ligand can be used for the promotion of angiogenesis for example for the treatment of angina, peripheral vascular insufficiency and coronary artery disease.
- aspects of this disclosure concern a method for treating a disease or condition associated with increased activation and/or functional abnormalities of a target receptor.
- Such methods include administering to a subject a therapeutic amount of a pharmaceutical composition that includes a hetero-bifunctional ligand, such as a hetero-bifunctional ligand disclosed herein.
- the hetero-bifunctional ligand present in the pharmaceutical composition binds to a target receptor whose function contributes to the disease or condition and induces the internalization of the target receptor, thereby treating the disease or condition.
- the disease or condition treatable with a disclosed hetero-bifunctional ligand is a viral infection in a subject.
- viruses that can be treated by selectively internalizing a receptor which the virus binds to gain entry into a cell include human adenovirus A, human adenovirus B, human adenovirus C, human adenovirus D, human adenovirus E, human adenovirus F, human astrovirus, human BK polyomavirus, human bocavirus, human coronavirus, human enterovirus, human foamy virus, human herpesvirus, Varicella zoster virus, Epstein-Barr virus, human herpesvirus, human immunodeficiency virus, human metapneumovirus, human papillomavirus, human parainfluenza virus, human parechovirus, human parvovirus, human respiratory syncytial virus, human rhinovirus, human spumaretro virus, human T-lympho tropic virus, cytomegalovirus (CMV) and lenti virus, such as an HIV virus, such as HIV-I or HIV-2.
- CMV cytomegalovirus
- a method of inhibiting or treating a viral infection in a subject includes administering to the subject a pharmaceutical composition that includes a hetero-bifunctional ligand that has a target receptor-binding agent that specifically binds to a receptor used as a site of viral attachment and/or entry into the cell, in which the hetero-bifunctional ligand present in the pharmaceutical composition binds to the target receptor and induces the internalization of the receptor, thereby treating or inhibiting the viral infection.
- the disease or condition treatable with a disclosed hetero-bifunctional ligand is dependant on the grown of new blood vessels, for example, macular degeneration, diabetic retinopathy and rheumatoid arthritis and cancer, such as a primary or metastatic cancer.
- cancers rely on neovascularization to grow locally and produce metastasis. Thus a reduction in angiogenesis is beneficial to treat cancer.
- leukemias examples include acute leukemias (such as acute lymphocytic leukemia, acute myelocytic leukemia, acute myelogenous leukemia and myeloblastic, promyelocytic, myelomonocytic, monocytic and erythroleukemia), chronic leukemias (such as chronic myelocytic (granulocytic) leukemia, chronic myelogenous leukemia and chronic lymphocytic leukemia), polycythemia vera, lymphoma, Hodgkin's disease, non-Hodgkin's lymphoma (indolent and high grade forms), multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, myelodysplastic syndrome, hairy cell leukemia and myelodysplasia, solid tumors, such as sarcomas and carcinomas, include fibros, fibroblasts, fibroblasts, fibroblasts, fibroblasts
- the method is a method of inhibiting angiogenesis.
- Such a method includes administering to a subject a pharmaceutical composition that includes a disclosed hetero-bifunctional ligand, wherein the hetero-bifunctional ligand present in the pharmaceutical composition binds to the receptor for which VEGF-A is a ligand and induces the internalization of the receptor for which VEGF- A is a ligand, thereby inhibiting angiogenesis.
- the method is a method of treating or inhibiting cancer.
- VEGF-A (the ligand for the receptor VEGFR-2 and co-receptor Neuropilin-1) is linked to Acetylated-LDL (a scavenger ligand which induces the internalization of scavenger receptors).
- VEGF-A (the ligand for the receptor VEGFR-2 and co-receptor Neuropilin-1) is linked to Acetylated-LDL (a scavenger ligand which induces the internalization of scavenger receptors).
- VEGF-A (the ligand for the receptor VEGFR-2 and co-receptor Neuropilin-1) is linked to Acetylated-LDL (a scavenger ligand which induces the internalization of scavenger receptors).
- VEGF-A (the ligand for the receptor VEGFR-2 and co-receptor Neuropilin-1) is linked to Acetylated-LDL (a scavenger ligand which induces
- VEGFR-2 and co-receptor Neuropilin-1 is linked to an oligonucleotide (a scavenger ligand which induces the internalization of scavenger receptors), such as poly G or a derivative thereof.
- oligonucleotide a scavenger ligand which induces the internalization of scavenger receptors
- HIV infection can be reduced or inhibited by contacting a cell with an effective amount of an agent including bifunctional ligands that induce the internalization of a receptor used by HIV to bind a cell or gain entry into a cell.
- the agent specifically induces the internalization of the receptor used by HIV to bind a cell or gain entry into a cell and thereby reduces or inhibits HIV infection. This inhibition translates to a reduction of HIV replication and spread in infected individuals.
- the method is a method of treating or inhibiting HIV infection in a subject.
- Such a method includes administering a pharmaceutical composition that includes a hetero-bifunctional ligand that has a target receptor-binding agent that specifically binds to a target receptor used as a site of HIV attachment and/or entry into the cell, for example a cytokine receptor, such as CCR5 or CXCR4, in which the hetero-bifunctional ligand present in the pharmaceutical composition binds to the target receptor used as a site of HIV attachment and/or entry into the cell and induces the internalization of the receptor, thereby treating or inhibiting the HIV infection. HIV infection does not need to be completely eliminated for the composition to be effective.
- a composition can decrease HIV infection by a desired amount, for example by at least 10%, at least 20%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 98% or even at least 100% (elimination of detectable HIV infected cells), as compared to HIV infection in the absence of the composition.
- the cell is also contacted with an effective amount of an additional agent, such as anti-viral agent.
- the cell can be in vivo or in vitro.
- HIV replication can be reduced or inhibited by similar methods.
- methods can include contacting a cell with an effective amount of an agent including receptor used by HIV to bind a cell or gain entry into a cell and thereby reduces or inhibits HIV replication.
- a composition can decrease HIV replication by a desired amount, for example by at least 10%, at least 20%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 98% or even at least 100% (elimination of detectable HIV), as compared to HIV replication in the absence of the composition.
- the cell is also contacted with an effective amount of an additional agent, such as anti-viral agent.
- the cell can be treated in vivo, in vitro or ex vivo.
- Example 1 Materials and Methods This example describes exemplary reagents and methods used in the examples that follow.
- Porcine heparin sodium salt, chondroitin sulfate A, B, shark cartilage chondroitin 6-sulfate (chondroitin sulfate C), dextran, dextran sulfate Mx 8,000, Mx 500,000, Fucoidan Mx 66,410 and bovine fibronectin were obtained from Sigma (St. Louis, MO).
- Bovine kidney heparin sulfate was obtained from CALBIOCHEM® (San Diego, CA).
- Recombinant human VEGF 165 chimeric rat NRPl/Fc, human Sema3A/Fc, SREC-I/Fc, gpl30/Fc and B7-1/Fc were obtained from R&D SYSTEMS® (Minneapolis, MN).
- Ac-LDL and l.l'-dioctadecyl- Ac-LDL were obtained from Biomedical Technologies (Stoughton, MA).
- Alexa-fluor 488 Ac-LDL was obtained from INVITROGENTM (Carlsbad, CA).
- HUVEC were used between the second and the fifth passage.
- the cell line RS4;11 The cell line RS4;11
- RS4, ATCC, Manassas, VA was maintained in RPMI 1640 with 10% FBS; the cell line HS-5, COS7 and HEK-293 (ATCC) were maintained in Dulbecco's Modified Eagle's Medium (DMEM) with 10% FBS.
- DMEM Dulbecco's Modified Eagle's Medium
- the murine plasmacytoma MOPC-315 cell line was propagated in RPMI 1640 with 10% FBS and 55 ⁇ M 2- mercaptoethanol.
- NRPl/Fc protein (20 nM) was diluted in HEPES (4-(2-hydroxyethyl)-l-piperazineethanesulfonic acid) buffer saline containing 0.005% Surfactant P20 (HBS-P, Biacore) injected over the heparin-coated or control flow cell surface at a flow rate 50 ⁇ l/min at 25°C. Association and dissociation phases were evaluated for 2 minutes. The sensor chip was regenerated with pulse of 2 M NaCl for 30 seconds. The data was analyzed using BIAevaluation software (Biacore). Immunocomplexes were visualized using a chemiluminescence detection system (GE Healthcare, Buckinghamshire, UK).
- NRPl/Fc or gpl30/Fc were incubated with heparin-gel, dextran sulfate-gel or maltose-gel (EY Laboratories, San Mateo, CA) at 25°C for 1 hour. After washing with phosphate-buffered saline (PBS) (x3), gels were suspended in tricine SDS sample buffer (INVITROGENTM) and incubated at 100 0 C for 5 minutes.
- PBS phosphate-buffered saline
- Extracts were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS- PAGE), transferred onto nitrocellulose membrane (INVITROGENTM), blocked (5% skim milk in PBS 0.1% Tween20) and immunostained using biotin-conjugated anti- human IgGl Ab (ZYMED®, South San Francisco, CA), followed by incubation with a horse radish peroxidase (HRP) conjugated streptavidin (ZYMED®).
- SDS- PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis
- IgGl Ab ZYMED®, South San Francisco, CA
- HRP horse radish peroxidase conjugated streptavidin
- HUVEC were detached with 5 mM ethylene-diamine-tetra-acetic acid (EDTA) in PBS, washed with 1% fetal bovine serum (FBS) buffer (MEDIUM 199, 1% FBS, 10 mM HEPES) and incubated with polysaccharides.
- EDTA ethylene-diamine-tetra-acetic acid
- Endothelial cells growing onto glass chamber slides (Nalge Nunc International, Rochester, NY) coated with 5 ⁇ g/ml fibronectin were incubated in 1% FBS buffer with DS500 (8 ⁇ g/ml) and protease inhibitor cocktail III
- Human NRPl in pCMV6-XL4 was from OriGene Technologies (Rockville, MD).
- Human SREC-I in pCMV-SPORT6 was from Open Biosystems (Hunstsville, AL). Plasmid vectors were transfected into HEK-293 or CHO-Kl cells with the use of LIPOFECTAMINETM 2000 (INVITROGENTM). Cells were harvested 2 days after transfection for analysis.
- HUVEC were incubated in 1% FBS buffer with or without polysaccharides.
- Cells were washed with IM NaCl twice, with 1% FBS buffer once, then incubated with Sema3A/Fc (2 ⁇ g/ml) or biotinylated VEGFi 65 (100 ng/ml) (R&D SYSTEMS®) in 1% FBS buffer with 2 ⁇ g/ml heparin at 0 0 C for 1 hour.
- Sema3A/Fc or biotinylated VEGFi 6S bound to cells was detected with FITC- conjugated F(ab') 2 goat anti-human IgG Fc (Jackson ImmunoResearch Laboratories, West Grove, PA) or Avidin-FITC (R&D SYSTEMS®). Data were collected using a FACSCALIBUR® cytofluorometer.
- HUVEC were incubated in 1% FBS buffer with or without DS500 (2 ⁇ g/ml) or Fucoidan (8 ⁇ g/ml) at 37°C for 1 hour. After washing (x3) with assay medium (1% FBS buffer with 2 ⁇ g/ml heparin), HUVEC (16,000 cells/chamber) were added to the four-chamber glass slides pre-coated with 5 ⁇ g/ml fibronectin. After 1 hour stimulation with Sema3A (2 ⁇ g/ml, 1 hour), cell were fixed with 4% wt/vol paraformaldehyde; an average retraction score was obtained, as described (Narazaki and Tosato, Blood 107:3892-3901, 2006).
- HUVEC 2,000 cells/well were cultured 3 days in 96-well tissue culture plates (Corning) in MEDIUM199 with 10% FBS and 25 ⁇ g/ml heparin, with or without 25 ng/ml of VEGF 165 . Proliferation was measured by 3 H thymidine uptake (0.6 ⁇ Ci/well, New England Nuclear) during the last 16 hours of culture.
- the MATRIGELTM assay was performed essentially as described. Mice (female C57BL/6J and BALB /cAnNCr 6-7 weeks old; The Jackson Laboratory, Bar Harbor, Maine ) were injected subcutaneously (s.c.) with 0.5 ml MATRIGELTM (BD Biosciences, Bedford, MA) containing VEGFi 65 (0 or 150 ng/ml) plus heparin (0 or 500 ng/ml). The tumor angiogenesis assay was carried out in female BALB/cAnNCr mice (6-weeks old). Mice were injected s.c.
- mice were injected intraperitoneally (i.p.) with polysaccharides (dextran, DS500 or Fucoidan 1 mg in 0.2 ml saline). Treatment was repeated daily for 6 (MATRIGELTM assay) or 7 (tumor assay) days; plugs and tumors were removed 24 hours later. Tumor size (product of maximum perpendicular caliper measurements) and weight were measured.
- Tissues were fixed (cold 4% paraformaldehyde in PBS), soaked in 15 and 30% sucrose, embedded in OCT and processed for histology. Sections were stained with H&E and immunostained for CD31 with purified rat anti- mouse CD31/PECAM monoclonal antibody (BD Pharmingen) followed by Alexa- fluor 488-conjugated goat anti-rat IgG (MOLECULAR PROBES®) with DAPI. Angiogenesis was evaluated by digital measurement (IPLab software, Bio Vision Technologies, Inc. Exton, PA) of CD31 -positive cells within MATRIGELTM plugs and tumor tissues. The results are expressed as the mean surface area occupied by CD31 -positive cells/unit area ( ⁇ m 2 /10 6 ⁇ m 2 ).
- Results are expressed as means ⁇ SD or SEM. Student's ?-test was applied to evaluate group differences; ap-value of ⁇ 0.05 was considered significant.
- Heparan sulfate (HS), chondroitin sulfate A (ChoSul A), ChoSul B, ChoSul C and non-sulfated dextran (all at 1 ⁇ g/ml) minimally affected the binding of NRPl to heparin.
- HS Heparan sulfate
- ChoSul A ChoSul A
- ChoSul B ChoSul C
- non-sulfated dextran all at 1 ⁇ g/ml
- NRPl/Fc could be affinity purified abundantly from heparin-gel and DS-gel, but only a little from control maltose- gel. gpl30/Fc was not able to be eluted from these gels (see FIG. IB). These results demonstrate that DS directly binds to NRPl.
- Example 3 Effects of DS500 and Fucoidan on Cell-surface NRPl This example describes exemplary methods for determining that DS500 and
- Fucoidan bind NRPl on a cell surface.
- DS500 and Fucoidan were tested for their ability to bind to cell-surface NRPl and modulate its function.
- Primary human umbilical vein endothelial cells (HUVEC) were incubated with each of the polysaccharides tested in FIG. IA at 37°C for 1 hour and after washing with IM NaCl (which effectively removes NRPl from heparin as assessed by Biacore), levels of cell-surface NRPl were measured by flow cytometry.
- IM NaCl which effectively removes NRPl from heparin as assessed by Biacore
- DS500 reduced cell-surface NRP2 and to a lower extent VEGFR-I and VEGFR-2, but minimally reduced cell-surface CD31, VE- cadherin, gpl30 or CXCR4 (FIG. ID), indicating that DS500 does not indiscriminately alter detection of cell-surface molecules. Similar results were derived with Fucoidan. As shown in FIG. IE, the conditions for reduction of cell- surface NRPl and NRP2 by DS500 were examined.
- fluorescence microscopy it was confirmed visually that cell-surface NRPl and NRP2 is reduced on HUVEC after 1 hour incubation with DS500 (8 ⁇ g/ml) at 37°C compared to control cells incubated in medium only (see, for example, FIG. IF).
- DS500 reduces cell-surface NRPl on endothelial cells in the presence of high serum concentrations.
- This example describes exemplary procedures for determining that DS500 and Fucoidan promote the internalization of cell-surface NRPl.
- NRPl was traced in endothelial cells after 10-60 minutes incubation with DS500 (8 ⁇ g/ml) at 37°C. At time 0, NRPl is minimally detectable in HUVEC that have been fixed and permeabilized. After 10 minutes, NRPl staining is visible at low levels and becomes progressively more intense. After 60 minutes, NRPl is clearly identified by a vesicular-like staining (FIG. 2A) and co-localizes with Lampl (lysosome associated membrane protein-1) (FIG. 2B). Similar results were obtained with Fucoidan.
- This example describes exemplary methods used to determine that DS500 and Fucoidan promote the internalization of cell-surface SREC-I.
- NRPl is detected on the human leukemia RS4 and the human stromal HS-5 cell lines and on COS7 cells transduced with human NRPl (COS7-NRP1) (FIG. 3A).
- DS500 dose-dependently reduced cell-surface NRPl on HUVEC, but failed to do so on RS4, HS-5 or COS7-NRP1 cells (FIG. 3B), indicating that NRPl internalization by DS500 requires additional components, which are present in HUVEC but not in the other cell types tested.
- HUVEC displayed a dose-dependent uptake of DiO-Ac-LDL
- RS4, HS-5 and COS7-NRP1 displayed only minimal uptake.
- Unlabeled Ac-LDL blocked uptake of DiO-Ac-LDL in HUVEC, indicating the Ac-LDL specificity of DiO-Ac-LDL uptake in these cells.
- SREC-I scavenger receptor expressed by endothelial cells-I
- HUVEC hematoma virus
- SREC-I can mediate the uptake of Ac-LDL in HUVEC.
- Ac-LDL promotes the intracellular accumulation of SREC-I (FIG. 4A, upper panels) and that internalized SREC-I and Ac-LDL co-localize at least in part within HUVEC (FIG. 4A, lower panels).
- SREC-I displayed a vesicular-like cytoplasmic staining pattern, indicative of SREC-I internalization (FIG. 4D). Similar results were derived by incubation with Fucoidan. The internalized SREC-I co-localized in part with Lampl, indicative of lysosomal localization (FIG. 4E).
- Sulfated Polysaccharides Bridge the Extracellular Domains of NRPl and SREC-I and Induce the Coordinate Internalization of NRPl and SREC-I
- This example describes exemplary procedures for determining that sulfated polysaccharides induce the internalization of NRPl through concomitant interaction with NRPl and SREC-I.
- DS500 can bridge SREC-I and NRPl by using an ELISA-based assay in which SREC-I/Fc or control IgGl is immobilized onto the well and NRPl/Fc is then added with DS500 at varying concentrations. As shown in FIG. 5B, it was found that DS500 dose-dependently promotes the binding of NRPl to SREC-I (open circles), but not to IgGl (closed circles); maximal NRPl binding to SREC-I occurred at the DS500 concentration of 500 ng/ml (FIG. 6B upper panel). Using DS500 at 500 ng/ml, the binding of NRPl to immobilized SREC-I was dependent on NRP-I concentration (FIG.
- SREC-I was expressed in human 293 cells, which do not express endogenous scavenger receptors, but express gpl30, CXCR4 and NRPl.
- control 293 cells did not uptake DiO-Ac-LDL, but 293-SREC-I cells could uptake DiO-Ac-LDL, indicative of SREC-I function (upper left).
- An analysis of cell-surface gpl30, CXCR4 and NRPl showed that levels of gpl30 (upper right) and CXCR4 (lower left) were similar in control and SREC-I-transfected 293 cells.
- VEGF 165 function This example describes exemplary procedures for determining that DS500 or
- Fucoidan block Sema3A and VEGFi 6S from binding to their cognate receptors.
- NRP2 VEGFR-I and VEGFR-2 induced by DS500 and Fucoidan
- FIG. 6A pretreatment with DS500 followed by cell washing dose- and time-dependently inhibited the binding of Sema3A to HUVEC.
- pretreatment with heparin, ChoSul A and dextran did not affect binding of Sema3A to HUVEC (FIG. 6A filled triangle, square and diamond).
- Fucoidan also inhibited the binding of Sema3A to HUVEC (FIG. 6A open circle).
- Sema3A Endothelial cells spread lamellipodia when placed onto a fibronectin-coated glass surface and Sema3A is known to induce retraction of these lamellipodia. It was found that Sema3A induces minimal retraction of lamellipodia in HUVEC that were pretreated with DS500 or Fucoidan, indicative that these polysaccharides can block this function of Sema3A (FIG. 6B). The degree of retraction in 3 independent trials (performed as described in Narazaki and Tosato, Blood 107:3892-3901, 2006) demonstrated that DS500 and Fucoidan reduce significantly Sema3A-induced lamellipodia retraction in HUVEC (FIG. 6C).
- This example describes methods for determining the in vivo effects of Fucoidan and DS 500.
- the effects of Fucoidan and DS500 on VEGF-induced angiogenesis in vivo was tested using MATRIGELTM plugs containing VEGF (0 or 150 ng/ml) plus heparin (0 or 0.5 ⁇ g/ml) s.c. transplanted in mice (C57BL/6J).
- the groups of mice (5 mice/group) were treated with Fucoidan, DS500 or control non-sulfated dextran (1 mg/mouse i.p/day).
- DS500 treatment induced death in 8/10 animals; Fucoidan and dextran were well tolerated.
- MOPC 315 (BALB/c-derived), which expresses VEGF, was inoculated s.c. (10 7 cells/mouse) into BALB/cAnNCr mice. Under these conditions, MOPC315 cells give rise to rapidly growing and highly vascularized tumors at the injection site. Groups of mice were treated (15 mice/group) with either Fucoidan or control non-sulfated dextran (1 mg/mouse i.p./day).
- Short poly (G) sequences have been shown to confer binding to scavenger receptors when linked to other DNA molecules (Prasad et al., Antimicrob Agents Chemother 43, 2689-2696, 1999). Based on the fact that poly(G) or oligo(G) have a polyanionic structure like sulfated polysaccharides and may thus serve as ligands for certain scavenger receptors, was examined whether poly(G) or oligo(G) might display the NRPl internalization-promoting property of other polyanionic scavenger receptor ligands, such as the sulfated polysaccharide DS500 or fucoidan.
- a panel of synthetic polyribonucleotides and oligonucleotides was tested for their ability to promote internalization of NRPl and the scavenger receptor SREC-I in endothelial cells.
- the oligonucleotides were custom synthesized and purified to a high degree of homogeneity by high performance liquid chromatography (HPLC) at Sigma Genosys (SIGMA ALDRICH®). The compounds tested are listed in Table 1.
- HUVEC were incubated at 37°C for 1 hour with or without the polyribonucleotide polyadenosine (poly(A)), polyguanosine (poly(G)), polycytidine (poly(C)); or with the oligodeoxynucleotide oligodeoxyadenosine 18mer (A18), oligodeoxythymidine 18mer (T18), oligodeoxyguanosine 18mer (G18), phosphorothioate oligodeoxyguanosine 18mer (sG18), oligodeoxycytidine 18mer (C18) and T- deoxyguanosine 5 '-monophosphate sodium salt hydrate (dGMT).
- polyribonucleotide polyadenosine polyadenosine
- poly(G) polyguanosine
- polycytidine polycytidine
- dGMT T- deoxyguanosine 5 '-monophosphate
- poly(G) effects on NRPl surface levels was tested by determining its effects on cell surface levels of other molecules expressed by HUVEC. Unlike the reduction of NRPl, which was consistently observed, cell surface levels of NRP2, VEGFR2, gpl30 and CD31 were not reduced in HUVEC incubated at 37°C for 1 hour with poly(G) (64 ⁇ g/ml) (FIG. 9). Similar to the reduction in cell surface levels of NRPl, cell surface levels of SREC-I were markedly reduced under the same conditions that led to NRPl reduction (FIG. 9). G18 and sG18 displayed similar effects to those of poly(G). These results indicate that poly(G), G18 and sG18 reduce cell surface levels of NRPl and SREC-I in HUVEC, but not the levels of other surface molecules expressed by these cells.
- NRPl identified by anti-NRPl antibody
- SREC-I identified by anti-SREC-I antibody
- an ELISA-based binding assay was used.
- recombinant SREC-I/Fc (l ⁇ g/ml, 50ml/well) was immobilized onto microtiter wells. After washing to remove unbound SREC-I, 2 ⁇ g/ml recombinant NRPl/Fc was added to SREC-I-coated wells in the presence of biotin-labeled A18, T18, G18 or C18 (0.25, 1, 4 or 16 ⁇ g/ml).
- NRPl/Fc The binding of His-tagged NRPl/Fc to the plate was measured by absorbance after addition of a mouse anti-His monoclonal antibody (INVITROGENTM I/5OOO) followed by a secondary HRP conjugated anti-mouse IgG antibody (GE Healthcare 1/5000). Since NRPl/Fc includes a His-tag whereas SREC-I/Fc does not, the anti-His monoclonal antibody selectively detected bound NRPl. As shown in FIG. 12C, dose-dependent binding of NRPl was found only when Biotin-labeled G18 (0.25, 1, 4 orl ⁇ ⁇ g/ml) was added to the wells.
- oligo(G) can promote the internalization of NRPl by bridging NRPl to the scavenger SREC-I receptor on endothelial cells. This should disrupt the binding of the NRPl ligands Sema3A and VEGF165 to endothelial cells due to receptor internalization.
- HUVEC were incubated at 37°C for 1 hour with or without phosphorothioate G18 (sG18) (4 or 16 ⁇ g/ml). Subsequently, the cells were washed and binding of Sema3A/Fc and biotin-labeled VEGF165 tested after incubation at 4°C for 1 hour.
- VEGF-A the ligand for the receptor VEGFR-2 and co-receptor Neuropilin- 1
- Acetylated-LDL a scavenger ligand which induces the internalization of scavenger receptors
- crosslinkers available commercially from Pierce (Bioconjugate Toolkit Reagents) to tag VEGF-A and Acetylated-LDL with two different hetero-bifunctional linkers (A and B).
- VEGF- A-(linker A) and Acetylated-LDL-(linker B) are linked together.
- the final product is a hetero-bifunctional ligand composed of (VEGF- A)-(linker A)-(linker B)-(Acetylated-LDL).
- the efficacy of this hetero- bifunctional ligand in inhibiting angiogenesis is tested using the procedures set forth in Examples 1-9.
- This example describes exemplary methods for constructing a hetero- bifunctional ligand for the target receptor CCR5.
- An antibody or a ligand for the cell surface receptor CCR5 is chemically linked to a internalizing receptor ligand, such as Acetylated-LDL, with crosslinkers available commercially from Pierce (Bioconjugate Toolkit Reagents). After derivation of the antibody or a ligand for the cell surface receptor CCR5 and an internalizing receptor ligand, such as Acetylated-LD are linked together. As a result, the final product is a hetero-bifunctional ligand composed of (antibody or a ligand for the cell surface receptor CCR5)-(linker)-(internalizing receptor ligand, such as Acetylated-LDL). Such a hetero-bifunctional ligand can be used to induce the internalization of CCR5 and thereby inhibit or treat an HIV infection. The efficacy of such a hetero-bifunctional ligand can be assessed using the procedures described in Examples 12 and 13.
- This example describes exemplary methods for inhibiting HIV infection or replication using a hetero-bifunctional ligand.
- a hetero-bifunctional ligand for example the hetero-bifunctional ligand described in Example 11
- a hetero-bifunctional ligand that binds to and induces the internalization of a receptor used by HIV to gain entry into a cell, HIV infection, replication or a combination thereof
- the cell can be in vivo or in vitro.
- This example describes exemplary methods for treating or inhibiting an HIV infection in a subject, such as a human subject by administration of one or more hetero-bifunctional ligands that induce the internalization of a receptor used by HIV to bind a cell or gain entry into a cell.
- a subject such as a human subject by administration of one or more hetero-bifunctional ligands that induce the internalization of a receptor used by HIV to bind a cell or gain entry into a cell.
- HIV such as HIV type 1 (HIV-I) or HIV type 2 (HIV-II)
- HIV-II HIV type 1
- a hetero-bifunctional such as the hetero-bifunctional ligand described in Example 10
- the method can include screening subjects to determine if they have HIV, such as HIV-I or HIV-II. Subjects having HIV are selected.
- subjects having increased levels of HIV antibodies in their blood, as detected with an enzyme-linked immunosorbent assay, Western blot, immunofluorescence assay or nucleic acid testing, including viral RNA or proviral DNA amplification methods are selected.
- a clinical trial would include half of the subjects following the established protocol for treatment of HIV (such as a highly active antiretroviral therapy). The other half would follow the established protocol for treatment of HIV (such as treatment with highly active antiretroviral compounds) in combination with administration of the agents including a hetero-bifunctional ligand that induces the internalization of a receptor used by HIV to bind a cell or gain entry into a cell.
- a clinical trial would include half of the subjects following the established protocol for treatment of HIV (such as a highly active antiretroviral therapy). The other half would receive an agent including a hetero-bifunctional ligand that induces the internalization of a receptor used by HIV to bind a cell or gain entry into a cell.
- the subject is first screened to determine if they have HIV.
- methods that can be used to screen for HIV include a combination of measuring a subject's CD4+ T cell count and the level of HIV in serum blood levels.
- HIV testing consists of initial screening with an enzyme- linked immunosorbent assay (ELISA) to detect antibodies to HIV, such as to HIV-I.
- ELISA enzyme- linked immunosorbent assay
- Specimens with a nonreactive result from the initial ELISA are considered HIV- negative unless new exposure to an infected partner or partner of unknown HIV status has occurred.
- Specimens with a reactive ELISA result are retested in duplicate. If the result of either duplicate test is reactive, the specimen is reported as repeatedly reactive and undergoes confirmatory testing with a more specific supplemental test (for example, Western blot or an immunofluorescence assay (IFA)).
- IFA immunofluorescence assay
- Specimens that are repeatedly ELISA-reactive occasionally provide an indeterminate Western blot result, which may be either an incomplete antibody response to HIV in an infected person or nonspecific reactions in an uninfected person.
- IFA can be used to confirm infection in these ambiguous cases.
- a second specimen will be collected more than a month later and retested for subjects with indeterminate Western blot results.
- nucleic acid testing for example, viral RNA or proviral DNA amplification method
- nucleic acid testing can also help diagnosis in certain situations.
- the detection of HIV in a subject's blood is indicative that the subject has HIV and is a candidate for receiving the therapeutic compositions disclosed herein. Moreover, detection of a CD4+ T cell count below 350 per microliter, such as 200 cells per microliter, is also indicative that the subject is likely to have HIV. Pre-screening is not required prior to administration of the therapeutic compositions disclosed herein (such as those that include a hetero-bifunctional ligand that induces the internalization of a receptor used by HIV to bind a cell or gain entry into a cell.).
- the subject is treated prior to diagnosis of HIV with the administration of a therapeutic agent that includes one or more of the disclosed a hetero-bifunctional ligands that induce the internalization of a receptor used by HIV to bind a cell or gain entry into a cell.
- the subject is treated with an established protocol for treatment of HIV (such as a highly active antiretroviral therapy) prior to treatment with the administration of a therapeutic agent that includes one or more of the disclosed a hetero-bifunctional ligands that induce the internalization of a receptor used by HIV to bind a cell or gain entry into a cell.
- an established protocol for treatment of HIV such as a highly active antiretroviral therapy
- a therapeutic agent that includes one or more of the disclosed a hetero-bifunctional ligands that induce the internalization of a receptor used by HIV to bind a cell or gain entry into a cell.
- pre-treatment is not always required and can be determined by a skilled clinician.
- Administration of therapeutic compositions are not always required and can be determined by
- a therapeutic effective dose of the agent including a hetero-bifunctional ligand that induces the internalization of a receptor used by HIV to bind a cell or gain entry into a cell is administered to the subject (such as an adult human or a newborn infant either at risk for contracting HIV or known to be infected with HIV).
- a therapeutic effective dose of an agent including one or more of the hetero-bifunctional ligands that induce the internalization of a receptor used by HIV to bind a cell or gain entry into a cell can also be administered to the subject simultaneously or prior to or following administration of the disclosed agents.
- Administration can be achieved by any method known in the art, such as oral administration, inhalation, intravenous, intramuscular, intraperitoneal or subcutaneous.
- the amount of the composition administered to prevent, reduce, inhibit, and/or treat HIV or a condition associated with it depends on the subject being treated, the severity of the disorder and the manner of administration of the therapeutic composition.
- a therapeutically effective amount of an agent is the amount sufficient to prevent, reduce, and/or inhibit, and/or treat the condition (for example, HIV) in a subject without causing a substantial cytotoxic effect in the subject.
- An effective amount can be readily determined by one skilled in the art, for example using routine trials establishing dose response curves.
- particular exemplary dosages are provided above.
- the therapeutic compositions can be administered in a single dose delivery, via continuous delivery over an extended time period, in a repeated administration protocol (for example, by a daily, weekly or monthly repeated administration protocol).
- therapeutic agents that include one or more hetero-bifunctional ligands that induce the internalization of a receptor used by HIV to bind a cell or gain entry into a cell are administered intravenously to a human.
- these compositions may be formulated with an inert diluent or with a pharmaceutically acceptable carrier.
- Therapeutic compositions can be taken long term (for example over a period of months or years).
- HIV-I or HIV-II can be monitored for reductions in HIV levels, increases in a subjects CD4+ T cell count or reductions in one or more clinical symptoms associated with HIV.
- subjects are analyzed one or more times, starting 7 days following treatment.
- Subjects can be monitored using any method known in the art. For example, biological samples from the subject, including blood, can be obtained and alterations in HIV or CD4+ T cell levels evaluated.
- a partial response is a reduction, such as at least a 10%, at least 20%, at least 30%, at least 40%, at least 50% or at least 70% in HIV infection, HIV replication or combination thereof.
- a partial response may also be an increase in CD4+ T cell count such as at least 350 T cells per microliter.
- This example describes methods that can be used to test agents for their ability to induce the internalization of specific target receptors. Although particular methods are provided, one skilled in the art would be able to practice other methods, such as the use of different animals, different modes of administration and so forth to test the disclosed hetero-bifunctional ligands.
- the ability of a hetero-bifunctional ligand, such as those disclosed herein, to induce the internalization of a target receptor can be assessed using in vitro cellular models, for example, using a cell that expresses both a target receptor and an internalizing receptor.
- the cell expressing the particular combination of target receptor and internalization receptor is contacted with a hetero-bifunctional ligand that includes a binding agent specific for the particular binding agent and a binding agent specific for the internalizing receptor and the ability of the hetero-bifunctional ligand to induce internalization of one or both of the target receptor and the internalizing receptor is assessed, for example using the procedures outlined in Examples 1-8.
- This example describes methods that can be used to treat a subject having a particular disease or condition that can be treated by internalization of a particular target receptor, for example using a hetero-bifunctional ligand, such as the hetero- bifunctional ligands disclosed herein, by administration of one or more of the hetero- bifunctional ligands disclosed herein.
- the disclosed methods can be used to decrease the surface expression of a particular surface receptor, for example a surface receptor involved in angiogenesis or viral entry into a cell, for example entry of HIV into a cell, for example to decrease or inhibit the deleterious effects of growth factor action, such as the effects of VEGF (by reducing the surface expression of VEGF receptor), for example to treat or reduce the symptoms of cancer.
- Such a therapy can be used alone or in combination with other therapies (such as administration of an anti- viral agent in the case of a viral infection or the administration of a chemotherapeutic agent in the case of cancer).
- the method includes screening a subject having or thought to have a particular disease or condition treatable by the internalization of a particular receptor to identify those subjects that can benefit from administration of the hetero-bifunctional ligands disclosed herein.
- Subjects of an unknown disease status or condition can be examined to determine if they have disease or condition treatable by internalization of a particular target receptor.
- Subjects found to (or known to) have a disease or condition contributed to by the activity of a surface expression of a particular target receptor and thereby treatable by internalization of the target receptor are selected to receive one or more of the hetero-bifunctional ligands disclosed herein.
- the subject can be administered a therapeutic amount of one or more of the hetero-bifunctional ligands disclosed herein.
- the hetero-bifunctional ligands can be administered at doses of 1 ⁇ g/kg body weight to about 1 mg/kg body weight per dose, such as 1 ⁇ g/kg body weight - 100 ⁇ g/kg body weight per dose, 100 ⁇ g/kg body weight - 500 ⁇ g/kg body weight per dose or 500 ⁇ g/kg body weight - 1000 ⁇ g/kg body weight per dose.
- the particular dose can be determined by a skilled clinician.
- the agent can be administered in several doses, for example continuously, daily, weekly or monthly.
- the mode of administration can be any used in the art.
- the amount of agent administered to the subject can be determined by a clinician and may depend on the particular subject treated. Specific exemplary amounts are provided herein (but the disclosure is not limited to such doses).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Cell Biology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Gastroenterology & Hepatology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Toxicology (AREA)
- Immunology (AREA)
- Virology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Tropical Medicine & Parasitology (AREA)
- AIDS & HIV (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Disclosed is a hetero-bifunctional ligand for use in inducing internalization of a target receptor. The hetero-bifunctional ligand includes a target receptor- binding agent that specifically binds the target receptor linked to an internalizing receptor-binding agent that specifically binds to an internalizing receptor, where the two binding agents are non-identical. Also disclosed is a method of inducing the internalization of a target receptor on a cell. The method includes contacting a cell with a hetero-bifunctional ligand, where binding of the hetero-bifunctional ligand induces internalization of a target receptor of the cell. Also disclosed a method of treating a disease or condition associated with a target receptor using the disclosed hetero-bifunctional ligand and pharmaceutical compositions including a hetero- bifunctional ligand.
Description
INDUCED INTERNALIZATION OF SURFACE RECEPTORS
CROSS REFERENCE TO RELATED APPLICATION This application claims the benefit of U.S. Provisional Application No.
61/023,397, filed January 24, 2008, which is incorporated by reference herein in its entirety.
FIELD OF THE DISCLOSURE The present disclosure relates to hetero-bifunctional ligands that bind to and induce the internalization of specific target receptors, and methods for treating and/or inhibiting diseases associated with the target receptors using these hetero- bifunctional ligands.
BACKGROUND
Cell-surface proteins known as receptors are present on the surface of most if not all of the cells that make up an organism. Cell surface receptors enable chemical communication between the different cells that make up the organism. Typically, cell-cell signaling occurs through the binding of ligands, such as small molecules and proteins, to the various receptors present on the surface of a cell. The binding of ligand to a cell surface receptor can initiate cellular responses (in some examples ligand dissociation initiates a cellular response), which can lead to physiological changes in the cell, for example changes in gene expression patterns and/or chemotactic behavior. A number of diseases, including cancer, metabolic disorders and viral infections are known to be involved with the expression of cell-surface receptors in their development and/or progression. In the case of viral infection, cell-surface receptors can serve as sites of attachment and entry for viruses, such as human immunodeficiency virus (HIV). In cancer, particularly metastatic progression of cancer, angiogenesis is believed to be mediated by the secretion of growth factors
and their binding by cognate receptors on capillary-forming cells. The recognition that cellular surface receptors and their signaling can play a role in human disease has prompted significant research efforts toward the development of pharmaceutical agents that block the signals from cell-surface receptors. For example, agents have been sought that bind the extracellular portion of cell surface receptors and inhibit the binding of the receptor's cognate ligand or agents that bind the intracellular portion of the receptor and prevent signal propagation inside the cell.
The epidermal growth factor receptor (EGFR) has been the target for development of agents that bind the extracellular or intracellular portion of the cell surface receptor. EGFR is frequently overexpressed in a wide range of human tumors. Such overexpression often correlates with poor prognosis and worse clinical outcome. Two classes of anti-EGFR agents have entered clinical practice: monoclonal antibodies and small molecules targeting the receptor tyrosine kinase domain of EGFR. The monoclonal antibodies to EGFR inhibit the binding of EGF to the extracellular domain of EGFR, effectively stopping the signal at the surface of the cell. Small molecules that target the receptor tyrosine kinase domain pass into the interior of the cell where they bind to the EGFR kinase domain and inhibit the catalytic activity of the kinase.
A strategy similar to the EGFR blocking antibodies is being used in the fight against HIV infection. The chemokine receptors CCR5 and CXCR4 were identified as HIV-I co-receptors in 1996. Since then, a range of agents that bind these receptors and potently block HIV-I infection have been described, including monoclonal antibodies, peptides and modified chemokines. These anti-HIV agents bind to the chemokine receptors and inhibit the ability of HIV to bind to the chemokine receptors and use them as an entry point into cells.
While the therapeutic approaches described above show great promise for specific applications, the need still exists for new therapeutic strategies that work at the level of cell surface receptors, such as to down-regulate the receptor on the surface of a cell of interest.
- ? -
SUMMARY OF THE DISCLOSURE
Disclosed herein is a hetero-bifunctional ligand for use in inducing internalization of a target receptor. The disclosed hetero-bifunctional ligand includes a target receptor-binding agent that specifically binds a target receptor, wherein the target receptor binding agent is linked to an internalizing receptor- binding agent that specifically binds to an internalizing receptor. The target receptor-binding agent and the internalizing receptor-binding agent are not identical. Binding of such a hetero-bifunctional ligand to an internalizing receptor and the target receptor on the surface of a cell induces the internalization of both the internalizing receptor and the target receptor. In some disclosed examples, the hetero-bifunctional ligand includes, as target receptor-binding agent, an antibody (for example a monoclonal and/or humanized antibody), a small molecule or a ligand that specifically binds the target receptor. In some embodiments, the target receptor- binding agent is a target receptor ligand, for example a cytokine, a chemokine, a growth factor, a hormone, a neuropeptide or a portion thereof that specifically binds the target receptor. In a specific example, the target receptor-binding agent of the hetero-bifunctional ligand is a ligand or antibody for a CCR5 receptor. In another specific example, the target receptor-binding agent of the hetero-bifunctional ligand is vascular endothelial growth factor-A (VEGF-A). Examples of internalizing receptors include scavenger receptors, low-density lipoprotein (LDL) receptors, heat shock protein receptors and transferrin receptors. Thus, in some embodiments the internalizing receptor-binding agent of a disclosed hetero-bifunctional ligand includes a scavenger receptor ligand, an LDL receptor ligand, a transferrin receptors ligand or a heat-shock protein receptor ligand. In a specific non-limiting example, the target receptor-binding agent of the hetero- bifunctional ligand is VEGF-A and the internalizing receptor-binding agent is Acetylated-LDL. In some examples, a target receptor-binding agent is an oligonucleotide. In some examples, an internalizing receptor-binding agent is an oligonucleotide.
Pharmaceutical compositions are disclosed that include a therapeutically effective amount of the hetero-bifunctional ligand.
Methods of inducing internalization of a target receptor on a cell are disclosed. Examples of these methods include contacting the cell with an effective amount of a hetero-bifunctional ligand. Disclosed methods can be used to treat a disease or condition associated with a target receptor, such as cancer or a viral infection. Such methods include administering a therapeutically effective amount of a hetero-bifunctional ligand to a subject, thereby treating the disease or condition. In specific examples, the method is a method of treating or inhibiting an HIV infection by administering to a subject a therapeutically effective amount of a hetero- bifunctional ligand that includes a ligand or antibody for a cytokine receptor such as a CCR5 receptor ligand linked to an internalizing receptor ligand that specifically binds to and induces internalization of both the internalizing receptor and cytokine receptor. The CCR5 receptor ligand and the internalizing receptor ligand are not identical and they target different receptors.
The foregoing and other objects, features and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1A-1G are graphs and digital images and histograms demonstrating the effect of polysaccharides on neuropilin 1 (NRPl) FIG. IA is a set of graphs showing the effects of polysaccharides on NRPl binding to heparin. NRPl (20 nM) was passed over a heparin-coated sensor chip without, with 0.1 μg/ml or 1 μg/ml polysaccharide. FIG. IB is a set of digital images of immunoblots showing the binding of NRPl to dextran sulfate. NRPl/Fc (1 μg/ml) or gpl30/Fc (1 μg/ml) was incubated with heparin-gel, DS-gel, maltose-gel and the precipitates were detected by anti-Fc antibody. NRPl/Fc or gpl30/Fc (100 ng) was loaded as a control. FIG. 1C is a graph showing the modulation of cell-surface NRPl by polysaccharides.
Human umbilical vein endothelial cells (HUVEC) were incubated with the polysaccharides (0-64 μg/ml, 37°C, 1 hour). After cell washing (IM NaCl), NRPl was detected by flow cytometry. Results reflect the relative mean fluorescence intensities with and without polysaccharide. FIG. ID is a set of histograms from a flow cytometry analysis of the effects of DS 500 on levels of cell-surface molecules NRPl, neuropilin 2 (NRP2), vascular endothelial growth factor receptor 2 (VEGFR- 2), vascular endothelial growth factor receptor 1 (VEGFR-I), CD31, VE-Cadherin, gpl30 and CXCR4. HUVEC were incubated (37°C, 1 hour) with or without DS500 (8 μg/ml). Shaded graphs reflect control staining. FIG. IE is a graph of the temperature, concentration and time-dependent reduction of cell surface NRPl and NRP2 by DS500. HUVEC were incubated with DS500. NRPl and NRP2 were detected by flow cytometry. FIG. IF is a digital image of HUVEC treated (37°C, 1 hour) with or without DS500 (8 μg/ml), stained for NRPl and DAPI, fixed and observed through an Olympus 1X51 phase-contrast microscope equipped with a 10 x/0.25 PhC objective lens and a 10 x eyepiece (Olympus Optical, Melville, NY) and photographed with a RETIGA™ 1300 digital camera (QIMAGING®, Burnaby, BC, Canada). Original magnification, x 100. Images reflect the merging of fluorescent slice of NRPl and DAPI images. Scale bar, 20 μm. FIG. IG is a set of histograms from a flow cytometry analysis of NRPl detected on HUVEC incubated with DS500 (0-8 μ g/ml, 37°C, 1 hour) in the presence of 1% or 95% human serum.
FIGS. 2A-2C are a set of digital images of immunostaining and immnoblots and a bar graph demonstrating that DS500 induces NRPl internalization and that NRPl co-localizes with Lampl. FIG. 2A is a set of digital images showing that DS500 induces NRPl internalization. HUVEC grown on fibronectin-coated glass slides were incubated with DS500 (8 μg/ml, 37°C, 0-60 minutes). After fixation and permeabilization, cells were stained with anti-NRPl monoclonal antibody (mAb) and examined through an LSM510 confocal microscope equipped with a PLAN- NEOFLU AR® 40 x 1/1.3 objective lens (Carl Zeiss). Images reflect the merging of fluorescent slice images of NRPl, 4',6-diamidino-2-phenylindole (DAPI) and differential interference contrast image. Images were imported into ADOBE®
PHOTOSHOP® 6.0 (ADOBE® Systems, San Jose CA) for processing. Scale bar = 20 μm. FIG. 2B is a set of digital images showing that NRPl co-localizes with Lampl. HUVEC were incubated with DS500 (8 μg/ml, 37°C, 1 hour). After fixation and permeabilization, cells were stained for NRPl, Lampl and DAPI and examined by confocal microscopy. FIG. 2C is a set of immunoblots and a bar graph showing that DS 500 reduces protein levels of NRPl. Cell lysates of HUVEC treated with DS500 (2 μg/ml, 37°C, 0-90 minutes) were blotted with anti-NRPl Ab (upper panel) and reblotted with anti-Actin antibody (Ab) (lower panel). Relative ratios of NRPl/Actin band intensities are shown in the lower bar graph. FIGS. 3A-3C is a set of histograms and graphs demonstrating that stimulation of cells co-expressing scavenger receptors and NRPl with DS500 reduces the surface levels of NRPl. FIG. 3A is a set of histograms from a flow cytometry analysis of cell-surface NRPl in HUVEC, RS4, HS-5 and COS7-NRP1 cells. FIG. 3B is a graph showing that the reduction of cell surface NRPl is detected on HUVEC, but not RS4, HS-5 and COS7-NRP1 cells after stimulation with DS500 (0, 0.5, 2, 8 μg/ml, 37°C, 1 hour). Results reflect the relative mean fluorescence intensities with and without stimulation. FIG. 3C is a graph showing uptake of acLDL (DiO-Ac-LDL) (0, 0.25, 1, 4 μg/ml, 37°C, 1 hour) by HUVEC, but not RS4, HS-5 and COS7-NRP1 cells detected by flow cytometry. Open circles indicate cell uptake of DiO-Ac-LDL (4μg/ml) in the presence of competitor Ac-LDL (100 μg/ml). Results reflect mean fluorescence intensities after background subtraction.
FIGS. 4A-4E is a set of digital images and graphs. FIG. 4A is a set of digital images showing that the scavenger receptor expressed by endothelial cells -1 (SREC-I) internalized by Ac-LDL localizes with Ac-LDL. SREC-I and DAPI were examined by confocal microscopy in HUVEC incubated with Alexa594-conjugated Ac-LDL (4 μg/ml, 37°C, 1 hour), fixed and permeabilized. Scale bar = 20 μm. Images were acquired and processed as described for FIG. 3A. FIG. 4B is a graph showing that DS500 and Fucoidan reduce cell-surface levels of SREC-I. HUVEC were incubated with polysaccharides (0-64 μg/ml, 37°C, 1 hour) and washed (IM
NaCl). SREC-I was detected by flow cytometry. Results reflect relative mean fluorescence intensities with or without stimulation. FIG. 4C is a graph showing the temperature, concentration and time-dependent reduction of cell-surface SREC-I by DS500. HUVEC were incubated with DS500. SREC-I was detected by flow cytometry. FIG. 4D is a set of digital images showing that DS500 induces SREC-I internalization. SREC-I and DAPI were examined by confocal microscopy in HUVEC incubated with DS500 (8 μg/ml, 37°C, 1 hour), fixed and permeabilized. Scale bar = 20 μm. FIG. 4E is a set of digital images showing that SREC-I co- localizes with Lampl. SREC-I, Lampl and DAPI were examined by confocal microscopy in HUVEC incubated with DS500 (8 μg/ml, 37°C, 1 hour), fixed and permeabilized.
FIGS. 5A-5D is a set of digital images, graphs and histograms. FIG. 5A is a set of digital images showing co-localization of SREC-I and NRPl in the cytoplasm after Fucoidan or DS500 stimulation. HUVEC were incubated (37°C, 1 hour) with medium alone, heparin, ChoSulA, Fucoidan or DS 500 (8 μg/ml). After fixation and permeabilization, cells were stained for SREC-I, NRPl and DAPI and examined by confocal microscopy. Scale bar = 20 μm. Images were acquired and processed as described for FIG. 2A. FIG. 5B is a set of graphs showing that DS 500 specifically and dose-dependently promotes binding of NRPl to SREC-I. NRPl/Fc or control Fc protein (B7-1/Fc) was added to control IgGl-coated wells (filled circles) or SREC-I/Fc-coated wells (open circle) with or without DS500. Bound NRPl or control/Fc was measured by enzyme-linked immunosorbent assay (ELISA). The results reflect the means ±SD of 3 trials. FIG. 5C is a bar graph showing the effect of polysaccharides on the binding of NRPl to SREC-I. NRPl/Fc (2 μg/ml) was added to SREC-I/Fc coated wells in the presence of the indicated polysaccharide (500 ng/ml). Bound NRPl/Fc was measured by ELISA. The results reflect the means ±SD of 3 trials. FIG. 5D is a set of histograms from a flow cytometry analysis showing that transduction of 293 cells with SREC-I confers DiO-Ac-LDL uptake capability and reduces cell-surface levels of NRPl, but not levels of gpl30 or CXCR4. 293 cells were transfected with cDNA for SREC-I or control. Uptake of
DiO-Ac-LDL and cell surface levels of endogenous gpl30, CXCR4 or NRPl were detected by flow cytometry. Shaded graphs reflect control staining.
FIGS. 6A-6E is a set of digital images and graphs. FIG. 6A is a graph showing that DS500 and Fucoidan block Sema3A binding to HUVEC. Cells were incubated with DS500 (closed circle) (0-8 μg/ml), heparin (triangle), ChoSulA
(square), dextran (diamond) or Fucoidan (open circle) (8 μg/ml), washed (IM NaCl) and incubated with Sema3A/Fc. Bound Sema3A/Fc was detected by flow cytometry. FIG. 6B is a set of digital images showing that DS 500 and Fucoidan inhibit Sema3A-induced lamellipodia retraction in HUVEC. After pre-incubation with or without DS 500 or Fucoidan, HUVEC were allowed to attach onto fibronectin-coated slides and then incubated with or without Sema3A/Fc. Magnification, 10Ox. FIG. 6C is a bar graph showing that DS500 and Fucoidan inhibit Sema3A-induced lamellipodia retraction in HUVEC. After pre-incubation with or without DS 500 or Fucoidan, HUVEC were allowed to attach onto fibronectin-coated slides and then incubated with or without Sema3A/Fc. Average retraction scores (±SD of 4 fields), p < .01. FIG. 6D is a graph showing that DS500 and Fucoidan block VEGFi65 binding to HUVEC. Bound VEGFi65 was detected by flow cytometry. Experimental conditions as described in FIG. 6A. FIG. 6E is a bar graph showing that DS500 and Fucoidan inhibit VEGFi65-induced proliferation of HUVEC. Cells were cultured (3 days) with ChoSulA, DS500 or
Fucoidan in the presence of VEGFi65 (25 ng/ml); proliferation was measured by 3H- thymidine uptake. Results are expressed as mean cpm/culture (±SD of triplicate cultures).
FIGS. 7A-7F are bar graphs and digital images. FIGS. 7A and 7B are two bar graphs showing that Fucoidan inhibits angiogenesis in vivo. FIG. 7A and FIG. 7B show the effects of Fucoidan on VEGF-induced angiogenesis in MATRIGEL™ plugs. Mice bearing MATRIGEL™ plugs containing VEGF (0 or 150 ng/ml) plus heparin (0 or 500 ng/ml) were injected daily intraperitonially (i.p.) for 6 days with Fucoidan or control non- sulfated dextran (1 mg/mouse/day). After the plugs were fixed and immunostained for CD31/PECAM, endothelial cell density was evaluated
microscopically (Nikon Eclipse E600 equipped with a DIC M 20x/0.75 Nikon lens). Images were imported into IPLab software and the area occupied by CD31+ cells quantified. The results are expressed as mean (±SD) surface areas (μm2) occupied by CD31+ cells within a unit area (106 μm2). In FIG. 7A the 2 groups consisted of 5 C57BL/6J 7-week old female mice. In FIG. 7B the 4 groups consisted of 6 BALB/cAnCr 6-weeks old female mice. FIG. 7C and 7D are two bar graphs showing the effects of Fucoidan on tumor growth in mice. Mean (±SEM). FIG. 7C shows tumor size (expressed in mm2) and FIG. 7D shows tumor weight (expressed in grams) in the 2 groups of 15 female BALB/cAnCr 6-weeks old mice inoculated subcutaneously (s.c.) with 107 MOPC315 tumor cells and subsequently treated daily for 7 days with Fucoidan or control non- sulfated dextran. FIG. 7E is a set of digital images showing CD31/platelet endothelial cell adhesion molecule- 1 (PECAM) immunostaining of tumor tissues from mice treated with Fucoidan or control non- sulfated dextran. Original magnification 2Ox. FIG. 7F is a bar graph showing quantification of vascular infiltration in tumor tissues using IPLab Software. The results are expressed as the mean (±SD) surface areas occupied by CD31+ cells within a unit area (μm2/106 μm2).
FIG. 8 is a set of line graphs showing the effects of polyribonucleotides and oligodeoxynucleotides on cell surface expression of NRPl. HUVEC were pre- incubated (37°C, 1 hour) with polyribonucleotides and oligodeoxynucleotides (1-16 μg/ml) at the indicated concentrations.
FIG. 9 is a set of histograms from a flow cytometry analysis of the effects of poly(G) on levels of cell surface molecules NRPl, NRP2, VEGFR-2, gpl30, CD31 and SREC-I. HUVEC were incubated (37°C, 1 hour) with (+) or without (-) poly(G). Shaded graphs reflect control staining.
FIG. 10 is a digital image of HUVEC treated (37°C, 1 hour) with or without biotin-G18 (16μg/ml), stained for NRPl, biotin-G18 and Hoechst 33342, fixed and observed by an LSM510 confocal microscope equipped with a PLAN- NEOFLU AR® 40x1/1/3 objective lens (Carl Zeiss). Images reflect the merging of fluorescent NRPl, biotin-G18 and Hoechst 33342 images. Scale bar 20 μm.
FIG. 11 is a digital image of HUVEC incubated (37°C, 1 hour) with sG18 (16μg/ml), stained for SREC-I, NRPl and Hoechst 33342, fixed and observed by a confocal microscope equipped with a PLAN-NEOFLUAR® 40x1/1/3 objective lens (Carl Zeiss). Images reflect the merging of fluorescent SREC-I, NRP-I and Hoechst 33342 slice images. Scale bar 20 μm.
FIG. 12A-12C is a set of bar graphs showing the binding of biotin-labeled oligos to immobilized NRPl (FIG. 12A) and immobilized SREC-I (FIG. 12B). The bridging of NRPl to SREC-I in the presence of biotin-oligos is shown in (FIG. 12C). NRPl was added to SREC- 1/Fc-coated wells with or without biotin-oligos (0.25, 1, 4 or 16 μg/ml). Binding was detected by absorbance at OD450. The results reflect the means (±SD) of 3 trials.
FIG. 13 is a set of histograms from a flow cytometry analysis showing the effects of oligo(G) on Sema3A and VEGFl 65 binding to cells. HUVEC were incubated (37°C, 1 hour) with or without phosphorothioate oligo(G) (sG18) at 4 or 16 μg/ml. After washing, bound Sema3A/Fc or biotin- VEGFl 65 was detected by flow cytometry.
FIG. 14 is a schematic drawing showing the internalization of the receptors NRPl and SREC-I induced by selected sulfated polysaccharides and poly(G)/oligo(G) nucleotides. Once internalized, NRPl is no longer present on the cell surface and cannot bind/mediate signaling from the cognate ligands Sema3A or VEGF165.
DETAILED DESCRIPTION
/. Terms Unless otherwise noted, technical terms are used according to conventional usage. Definitions of common terms in molecular biology may be found in Benjamin Lewin, Genes VII, published by Oxford University Press, 2000 (ISBN 019879276X); Kendrew et al. (eds.), The Encyclopedia of Molecular Biology, published by Blackwell Publishers, 1994 (ISBN 0632021829); and Robert A. Meyers (ed.), Molecular Biology and Biotechnology: a Comprehensive Desk
Reference, published by Wiley, John & Sons, Inc., 1995 (ISBN 0471186341).
As used herein, the singular terms "a," "an," and "the" include plural referents unless context clearly indicates otherwise. Similarly, the word "or" is intended to include "and" unless the context clearly indicates otherwise. Also, as used herein, the term "comprises" means "includes." Hence "comprising A or B" means including A, B or A and B. Although many methods and materials similar or equivalent to those described herein can be used, particular suitable methods and materials are described below. In case of conflict, the present specification, including explanations of terms, will control. In addition, the materials, methods and examples are illustrative only and not intended to be limiting.
To facilitate review of the various embodiments of this disclosure, the following explanations of specific terms are provided:
Angiogenesis: A biological process leading to the generation of new blood vessels through sprouting or growth from pre-existing blood vessels or from circulating endothelial precursors. The process involves the migration and proliferation of endothelial cells from preexisting vessels. Angiogenesis occurs during pre-natal development, post-natal development and in the adult. In the adult, angiogenesis occurs during the normal cycle of the female reproductive system, wound healing and during pathological processes such as cancer (for a review see Battegay, J. Molec. Med. 73(7): 333-346, 1995).
Aptamer: Small nucleic acid and peptide molecules that bind a specific target molecule, such as a target biomolecule, for example a target receptor or internalizing receptor. Animal: A living multicellular vertebrate organism, a category which includes, for example, mammals and birds. A "mammal" includes both human and non-human mammals. Similarly, the term "subject" includes both human and veterinary subjects.
Adjuvant: A vehicle used to enhance antigenicity; such as a suspension of minerals (alum, aluminum hydroxide, aluminum phosphate) on which antigen is
adsorbed; or water-in-oil emulsion in which antigen solution is emulsified in oil (MF-59, Freund's incomplete adjuvant), sometimes with the inclusion of killed mycobacteria (Freund's complete adjuvant) to further enhance antigenicity (inhibits degradation of antigen and/or causes influx of macrophages). Adjuvants also include immunostimulatory molecules, such as cytokines, costimulatory molecules and for example, immunostimulatory DNA or RNA molecules, such as CpG oligonucleotides.
Antibody: A polypeptide ligand comprising at least a light chain or heavy chain immunoglobulin variable region, which specifically recognizes and binds an epitope of an antigen, such as target receptor or a fragment thereof. This includes intact immunoglobulins and the variants and portions of them well known in the art, such as Fab' fragments, F(ab)'2 fragments, single chain Fv proteins ("scFv") and disulfide stabilized Fv proteins ("dsFv"). A scFv protein is a fusion protein in which a light chain variable region of an immunoglobulin and a heavy chain variable region of an immunoglobulin are bound by a linker, while in dsFvs, the chains have been mutated to introduce a disulfide bond to stabilize the association of the chains. The term also includes genetically engineered forms such as chimeric antibodies (such as humanized murine antibodies), heteroconjugate antibodies (such as bispecific antibodies). See also, Pierce Catalog and Handbook, 1994-1995 (Pierce Chemical Co., Rockford, IL); Kuby, J., Immunology, 3rd Ed., W.H. Freeman & Co., New York, 1997.
Typically, a naturally occurring immunoglobulin has heavy (H) chains and light (L) chains interconnected by disulfide bonds. References to "VH" or "VH" refer to the variable region of an immunoglobulin heavy chain, including that of an Fv, scFv, dsFv or Fab. References to "VL" or "VL" refer to the variable region of an immunoglobulin light chain, including that of an Fv, scFv, dsFv or Fab.
There are two types of light chain, lambda (λ) and kappa (K). There are five main heavy chain classes (or isotypes) which determine the functional activity of an antibody molecule: IgM, IgD, IgG, IgA and IgE.
Each heavy and light chain contains a constant region and a variable region, (the regions are also known as "domains"). In combination, the heavy and the light chain variable regions specifically bind the antigen. Light and heavy chain variable regions contain a "framework" region interrupted by three hypervariable regions, also called "complementarity-determining regions" or "CDRs." The extent of the framework region and CDRs have been defined (see, Kabat et al., (1991) Sequences of Proteins of Immunological Interest, 5th Edition, U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Bethesda, MD (NIH Publication No. 91-3242) which is hereby incorporated by reference). The Kabat database is now maintained online. The sequences of the framework regions of different light or heavy chains are relatively conserved within a species. The framework region of an antibody, that is the combined framework regions of the constituent light and heavy chains, serves to position and align the CDRs in three- dimensional space, for example to hold the CDRs in an appropriate orientation for antigen binding.
The CDRs are primarily responsible for binding to an epitope of an antigen. The CDRs of each chain are typically referred to as CDRl, CDR2 and CDR3, numbered sequentially starting from the N-terminus and are also typically identified by the chain in which the particular CDR is located. Thus, a VH CDR3 is located in the variable domain of the heavy chain of the antibody in which it is found, whereas a VL CDRl is the CDRl from the variable domain of the light chain of the antibody in which it is found.
A "monoclonal antibody" is an antibody produced by a single clone of B-lymphocytes or by a cell into which the light and heavy chain genes of a single antibody have been transfected or transduced. Monoclonal antibodies are produced by methods known to those of skill in the art, for instance by making hybrid antibody-forming cells from a fusion of myeloma cells with immune spleen cells. These fused cells and their progeny are termed "hybridomas." Monoclonal antibodies include humanized monoclonal antibodies. A "humanized" immunoglobulin, is an immunoglobulin including a human
framework region and one or more CDRs from a non-human (such as a mouse, rat or synthetic) immunoglobulin. The non-human immunoglobulin providing the CDRs is termed a "donor," and the human immunoglobulin providing the framework is termed an "acceptor." In one embodiment, all the CDRs are from the donor immunoglobulin in a humanized immunoglobulin. Constant regions need not be present, but if they are, they must be substantially identical to human immunoglobulin constant regions, for example at least about 85-90%, such as about 95% or more identical. Hence, all parts of a humanized immunoglobulin, except possibly the CDRs, are substantially identical to corresponding parts of natural human immunoglobulin sequences. A "humanized antibody" is an antibody comprising a humanized light chain and a humanized heavy chain immunoglobulin. A humanized antibody binds to the same antigen as the donor antibody that provides the CDRs. The acceptor framework of a humanized immunoglobulin or antibody may have a limited number of substitutions by amino acids taken from the donor framework. Humanized or other monoclonal antibodies can have additional conservative amino acid substitutions which have substantially no effect on antigen binding or other immunoglobulin functions. Humanized immunoglobulins can be constructed by means of genetic engineering (for example see U.S. Patent No. 5,585,089). In some embodiments, an antibody is a ligand for a receptor, such as a ligand for a target receptor, for example a target receptor antibody. In some embodiments, a target receptor antibody is linked to a specific binding agent for an internalizing receptor, for example to create a hetero-bifunctional ligand that can bind to both an internalizing receptor and a target receptor. Binding affinity: Affinity of a specific binding agent for its target, such as an antibody for an antigen, for example an antibody for a target receptor. In one embodiment, affinity is calculated by a modification of the Scatchard method described by Frankel et al., MoI. Immunol., 16:101-106, 1979. In another embodiment, binding affinity is measured by a specific binding agent receptor dissociation rate. In yet another embodiment, a high binding affinity is measured by
a competition radioimmunoassay. In several examples, a high binding affinity is at least about 1 x 10" M. In other embodiments, a high binding affinity is at least about 1.5 x 10~8, at least about 2.0 x 10~8, at least about 2.5 x 10~8, at least about 3.0 x 10~8, at least about 3.5 x 10"8, at least about 4.0 x 10"8, at least about 4.5 x 10"8 or at least about 5.0 x 10"8 M.
Cancer: A disease characterized by the abnormal growth and differentiation of cells. "Metastatic disease" refers to cancer cells that have left the original tumor site and migrate to other parts of the body for example via the bloodstream or lymph system. Examples of hematological tumors include leukemias, including acute leukemias (such as acute lymphocytic leukemia, acute myelocytic leukemia, acute myelogenous leukemia and myeloblastic, promyelocytic, myelomonocytic, monocytic and erythroleukemia), chronic leukemias (such as chronic myelocytic (granulocytic) leukemia, chronic myelogenous leukemia and chronic lymphocytic leukemia), polycythemia vera, lymphoma, Hodgkin's disease, non-Hodgkin's lymphoma (indolent and high grade forms), multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, myelodysplastic syndrome, hairy cell leukemia and myelodysplasia.
Examples of solid tumors, such as sarcomas and carcinomas, include fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma and other sarcomas, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon cancer (such as colon carcinoma), gastric cancer, (for example, gastric adenocarcinoma, such as intestinal type gastric adenocarcinoma and diffuse type gastric adenocarcinoma ), lymphoid malignancy, pancreatic cancer, breast cancer (such as adenocarcinoma), lung cancers, gynecological cancers (such as, cancers of the uterus (for example endometrial carcinoma), cervix (for example cervical carcinoma, pre-tumor cervical dysplasia), ovaries (for example ovarian carcinoma, serous cystadenocarcinoma, mucinous cystadenocarcinoma, endometrioid tumors, celioblastoma, clear cell carcinoma, unclassified carcinoma, granulosa-thecal cell tumors, Sertoli-Leydig cell tumors, dysgerminoma, malignant
teratoma), vulva (for example squamous cell carcinoma, intraepithelial carcinoma, adenocarcinoma, fibrosarcoma, melanoma), vagina (for example clear cell carcinoma, squamous cell carcinoma, botryoid sarcoma), embryonal rhabdomyosarcoma and fallopian tubules (for example carcinoma)), prostate cancer, hepatocellular carcinoma, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, medullary thyroid carcinoma, papillary thyroid carcinoma, pheochromocytomas sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, Wilms' tumor, cervical cancer, testicular tumor, seminoma, bladder carcinoma and CNS tumors (such as a glioma, astrocytoma, medulloblastoma, craniopharyogioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, menangioma, melanoma, neuroblastoma and retinoblastoma) and skin cancer (such as melanoma and non-melonoma). Contacting: Placement in direct physical association including both in solid or liquid form. Contacting can occur in vivo, for example by administering an agent to a subject, in vitro. "Administration" is the introduction of a composition, such as a composition containing a hetero-bifunctional ligand, into a subject by a chosen route. For example, if the chosen route is intravenous, the composition is administered by introducing the composition into a vein of the subject.
"Administrating" to a subject includes topical, parenteral, oral, intravenous, intramuscular, sub-cutaneous, inhalational, nasal or intra-articular administration, among others.
Chemokines: Proteins classified according to shared structural characteristics such as small size (approximately 8-10 kilodaltons (kD) in size) and the presence of four cysteine residues in conserved locations that are key to forming their 3 -dimensional shape. These proteins exert their biological effects by interacting with G protein- linked transmembrane receptors called chemokine receptors that are selectively found on the surfaces of their target cells. Chemokines bind to chemokine receptors and thus are chemokine receptor ligands.
Examples of chemokines include the CCL chemokines such as CCLl, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCLlO, CCLI l, CCL12, CCL13, CCL14, CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL23, CCL24, CCL25, CCL26, CCL27 and CCL28; CXCL chemokines such as CXCLl, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CXCLlO, CXCLI l, CXCL12, CXCL13, CXCL14, CXCL15, CXCL16 and CXCL17; XCL chemokines such as XCLl and XCL2; and CX3CL chemokines such as CX3CL1. In some examples, a chemokine or portion thereof sufficient to bind to a chemokine receptor is part of a hetero-bifunctional ligand. Chemotherapeutic agents: Any chemical agent with therapeutic usefulness in the treatment of diseases characterized by abnormal cell growth. Such diseases include tumors, neoplasms and cancer as well as diseases characterized by hyperplastic growth such as psoriasis. In one embodiment, a chemotherapeutic agent is an agent of use in treating a tumor. In one embodiment, a chemotherapeutic agent is a hetero-bifunctional ligand. One of skill in the art can readily identify a chemotherapeutic agent of use (for example, see Slapak and Kufe, Principles of Cancer Therapy, Chapter 86 in Harrison's Principles of Internal Medicine, 14th edition; Perry et al., Chemotherapy, Ch. 17 in Abeloff, Clinical Oncology 2nd ed., © 2000 Churchill Livingstone, Inc; Baltzer, L., Berkery, R. (eds): Oncology Pocket Guide to Chemotherapy, 2nd ed. St. Louis, Mosby-Year Book, 1995; Fischer, D. S., Knobf, M.F., Durivage, HJ. (eds): The Cancer Chemotherapy Handbook, 4th ed. St. Louis, Mosby-Year Book, 1993). Combination chemotherapy is the administration of more than one agent to treat cancer, for example the administration of a hetero- bifunctional ligand and alkylating agent. Covalent bond: An interatomic bond between two atoms, characterized by the sharing of one or more pairs of electrons by the atoms. The terms "covalently bound" or "covalently linked" refer to making two separate molecules into one contiguous molecule, for example a binding agent specific for a target receptor can be covalently linked (such as directly or indirectly through a linker) to an internalizing receptor-binding agent.
Cytokine: The term "cytokine" is used as a generic name for a diverse group of soluble proteins and peptides that act as humoral regulators at nano- to picomolar concentrations and which, either under normal or pathological conditions, modulate the functional activities of individual cells and tissues. These proteins also mediate interactions between cells directly and regulate processes taking place in the extracellular environment. Cytokines include both naturally occurring peptides and variants that retain full or partial biological activity. Cytokines bind to cytokine receptors and thus are cytokine receptor ligands.
Examples of cytokines include interleukins, such as IL- lα, IL- lβ, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10 and IL-12; interferons, such as IFN- α, IFN- β and IFN- γ; tumor necrosis factors, such as TNF- α and TNF- β macrophage; inflammatory proteins, such as MIP-I α and MIP-I β; and transforming growth factors, such as TGF- β. In some examples, a cytokine or portion thereof sufficient to bind to a cytokine receptor is part of a hetero-bifunctional ligand. Epitope: An antigenic determinant. These are particular chemical groups or contiguous or non-contiguous peptide sequences on a molecule that are antigenic, that is, that elicit a specific immune response. An antibody binds a particular antigenic epitope based on the three dimensional structure of the antibody and the matching (or cognate) epitope. Expression: Translation of a nucleic acid into a protein. Proteins may be expressed and remain intracellular, become a component of the cell surface membrane or be secreted into the extracellular matrix or medium.
Expression Control Sequences: Nucleic acid sequences that regulate the expression of a heterologous nucleic acid sequence to which it is operatively linked. Expression control sequences are operatively linked to a nucleic acid sequence when the expression control sequences control and regulate the transcription and, as appropriate, translation of the nucleic acid sequence. Thus expression control sequences can include appropriate promoters, enhancers, transcription terminators, a start codon (ATG) in front of a protein-encoding gene, splicing signal for introns, maintenance of the correct reading frame of that gene to permit proper translation of
mRNA and stop codons. The term "control sequences" is intended to include, at a minimum, components whose presence can influence expression and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences. Expression control sequences can include a promoter.
A promoter is a minimal sequence sufficient to direct transcription. Also included are those promoter elements which are sufficient to render promoter- dependent gene expression controllable for cell-type specific, tissue- specific or inducible by external signals or agents; such elements may be located in the 5' or 3' regions of the gene. Both constitutive and inducible promoters are included (see for example, Bitter et ah, Methods in Enzymology 153:516-544, 1987). For example, when cloning in bacterial systems, inducible promoters such as pL of bacteriophage lambda, plac, ptrp, ptac (ptrp-lac hybrid promoter) and the like may be used. In one embodiment, when cloning in mammalian cell systems, promoters derived from the genome of mammalian cells (such as metallothionein promoter) or from mammalian viruses (such as the retrovirus long terminal repeat; the adenovirus late promoter; the vaccinia virus 7.5K promoter) can be used. Promoters produced by recombinant DNA or synthetic techniques may also be used to provide for transcription of the nucleic acid sequences. A polynucleotide can be inserted into an expression vector that contains a promoter sequence which facilitates the efficient transcription of the inserted genetic sequence of the host. The expression vector typically contains an origin of replication, a promoter, as well as specific nucleic acid sequences that allow phenotypic selection of the transformed cells. Growth factor: Proteins capable of stimulating cellular proliferation and cellular differentiation. Examples of growth factors include transforming growth factor beta (TGF- β), granulocyte-colony stimulating factor (G-CSF), granulocyte- macrophage colony stimulating factor (GM-CSF), nerve growth factor (NGF), neurotrophins, platelet-derived growth factor (PDGF), erythropoietin (EPO), thrombopoietin (TPO), myostatin (GDF-8), growth differentiation factor-9 (GDF-9),
basic fibroblast growth factor (bFGF or FGF2), epidermal growth factor (EGF), hepatocyte growth factor (HGF) and the like. In some examples, a growth factor or portion thereof sufficient to bind to a growth factor receptor is part of a hetero- bifunctional ligand. Heterologous: With reference to a molecule, such as a receptor-binding agent (for example an internalizing or target receptor-binding agent) or a linker, "heterologous" refers to molecules that are not normally associated with each other, for example as a single molecule. Thus, a "heterologous" linker is a linker attached to another molecule that the linker is usually not found in association with in nature, such as in a wild- type molecule. For example, if a receptor binding agent (such as an internalizing or target receptor-binding agent) is a polysaccharide (such as a sulfated polysaccharide, for example sulfated dextran or Fucoidan) a hetrologous linker would not be the same polysaccharide (such as the same sulfated polysaccharide). In another example, an internalizing receptor-binding agent is attached to a heterologous linker and a heterologous target receptor-binding agent to which it is not naturally attached. In another example, a target receptor-binding agent is attached to a heterologous linker and a heterologous internalizing receptor- binding agent to which it is not naturally attached.
Hetero-bifunctional ligand: A molecule that contains at least a first and second non- identical moieties (for example heterologous molecules), wherein each of the moieties is capable of specifically binding a different receptor, for example an internalizing receptor and a target receptor. Hence, each moiety has specificity for a different receptor so that the first moiety specifically binds a first receptor but not the second receptor and the second moiety binds the second receptor but not the first receptor. In some examples, a hetero-bifunctional ligand includes a linker heterologous to the internalizing receptor-binding agent and the target receptor- binding agent. In some examples, a hetero-bifunctional ligand includes a target receptor-binding agent heterologous to the internalizing receptor-binding agent and the linker. In some examples, a hetero-bifunctional ligand includes an internalizing receptor-binding agent heterologous to the target receptor-binding agent and the
linker.
Hormone: A classification of small molecules that carries a signal from one cell (or group of cells) to another. Examples of hormones include amine- tryptophans, such as melatonin (n-acetyl-5-methoxytryptamine) and serotonin; amine-tyrosines, such as thyroxine (thyroid hormone), triiodothyronine (thyroid hormone), epinephrine (adrenaline), norepinephrine (noradrenaline) and dopamine; peptide hormones, such as antimullerian hormone (mullerian inhibiting factor), adiponectin, adrenocorticotropic hormone (ortico tropin), angiotensinogen and angiotensin, antidiuretic hormone (vasopressin, arginine vasopressin), atrial- natriuretic peptide atriopeptin), calcitonin, cholecystokinin, corticotropin-releasing hormone, erythropoietin, follicle-stimulating hormone, gastrin, ghrelin, glucagon, gonadotropin-releasing hormone, growth hormone-releasing hormone, human chorionic gonadotropin, human placental lactogen, growth hormone, inhibin, insulin, insulin-like growth factor (somatomedin), leptin, luteinizing hormone, melanocyte stimulating hormone, oxytocin, parathyroid hormone, prolactin, relaxin, secretin, somatostatin, thrombopoietin, thyroid-stimulating hormone and thyrotropin- releasing hormone; steroids, such as Cortisol, aldosterone, testosterone, dehydroepiandrosterone, androstenedione, dihydrotestosterone, estradiol, estrone, estriol, progesterone and calcitriol (vitamin d3); and eicosanoids, such as prostaglandins, leukotrienes, prostacyclin and thromboxane, among others. In some examples, a hetero-bifunctional ligand includes a hormone or portion thereof sufficient to bind a hormone receptor.
Host cells: Cells in which a vector can be propagated and its DNA expressed. The cell may be prokaryotic or eukaryotic. The term also includes any progeny of the subject host cell. It is understood that all progeny may not be identical to the parental cell since there may be mutations that occur during replication. However, such progeny are included when the term "host cell" is used.
Inhibiting or treating a disease: Inhibiting the full development of a disease or condition, for example, in a subject who is at risk for a disease such as cancer or a viral infection (for example, an HIV infection). "Treatment" refers to a
therapeutic intervention that ameliorates a sign or symptom of a disease or pathological condition after it has begun to develop. The term "ameliorating," with reference to a disease or pathological condition, refers to any observable beneficial effect of the treatment. The beneficial effect can be evidenced, for example, by a delayed onset of clinical symptoms of the disease in a susceptible subject, a reduction in severity of some or all clinical symptoms of the disease, a slower progression of the disease, an improvement in the overall health or well-being of the subject or by other parameters well known in the art that are specific to the particular disease. A "prophylactic" treatment is a treatment administered to a subject who does not exhibit signs of a disease or exhibits only early signs for the purpose of decreasing the risk of developing pathology.
Internalizing receptor: A cell surface receptor that is internalized into a cell upon binding of a specific ligand to the receptor. Examples of internalizing receptors include without limitation scavenger receptors, LDL receptors, heat shock protein receptors and transferrin receptors among others.
Internalizing receptor ligand: A ligand capable of specifically binding to and inducing the internalization of a specific internalizing receptor. Examples of internalizing receptor ligands include ligands for scavenger receptors such as acetylated-LDL, oxidized-LDL, sulfated polysaccharides, maleylated proteins, polyguanylic acid, high density lipoprotein (HDL) oligonucleotides; among others, ligands for LDL receptors, such as LDL, ligands for heat shock protein receptors, such as heat shock proteins; and ligands for transferrin receptors, such as transferrin and the like. In some embodiments, an internalizing receptor ligand is an antibody. Internalization (of a receptor): The act of a receptor moving from the outer cell surface of a cell to the interior of the cell, such as into the cytoplasm, the nucleus or a cytoplasmic organelle or vesicle. In some examples, internalization of the receptor is induced by the binding of a hetero-bifunctional ligand.
Low Density Lipoprotein (LDL) Receptor: A receptor that mediates the endocytosis (internalization) of cholesterol-rich LDL. It is a cell-surface receptor that recognizes the apoprotein BlOO which is embedded in the phospholipid outer
layer of LDL particles. An exemplary human (LDL) receptor nucleic acid sequence can be found on GENB ANK® at accession number NM_000527 incorporated herein by reference as available January 24, 2008. Exemplary human LDL receptor amino acid sequences can be found on GENB ANK® at accession numbers AAA56833, AAP72971, AAF24515, AAM56036, AAB22609, AH004493, AAB30338 and AAB30152 incorporated herein by reference as available January 24, 2008.
Ligand: Any molecule which specifically binds a receptor, such as an internalizing receptor or a target receptor and includes, inter alia, antibodies that specifically bind an internalizing receptor or a target receptor. In alternative embodiments, the ligand is a protein or a small molecule (for example a molecule with a molecular weight less than 10 kiloDaltons, (kD) that specifically binds the receptor of interest).
Linker: A compound or moiety that acts as a molecular bridge to operably link two different molecules, wherein one portion of the linker is operably linked to a first molecule and wherein another portion of the linker is operably linked to a second molecule. In some examples a linker is a polypeptide. The two different molecules can be linked to the linker in a step-wise manner. There are no particular size or content limitations for the linker so long as it can fulfill its purpose as a molecular bridge. Linkers are known to those skilled in the art to include, but are not limited to, chemical chains, chemical compounds, carbohydrate chains, peptides, haptens and the like. The linkers can include, but are not limited to, homobifunctional linkers and hetero-bifunctional linkers. Hetero-bifunctional linkers, well known to those skilled in the art, contain one end having a first reactive functionality to specifically link a first molecule and an opposite end having a second reactive functionality to specifically link to a second molecule. Depending on such factors as the molecules to be linked and the conditions in which the method of detection is performed, the linker can vary in length and composition for optimizing such properties as flexibility, stability and resistance to certain chemical and/or temperature parameters. In particular examples, a linker is the combination of streptavidin or avidin and biotin.
Nucleic acid: A polymer composed of nucleotide units (ribonucleotides, deoxyribonucleotides, related naturally occurring structural variants and synthetic non-naturally occurring analogs thereof or combinations thereof) linked via phosphodiester bonds, related naturally occurring structural variants and synthetic non-naturally occurring analogs thereof. Thus, the term includes nucleotide polymers in which the nucleotides and the linkages between them include non- naturally occurring synthetic analogs, such as, for example and without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2-O-methyl ribonucleotides, peptide-nucleic acids (PNAs) and the like. Such polynucleotides can be synthesized, for example, using an automated DNA synthesizer. The term "oligonucleotide" typically refers to short polynucleotides, generally no greater than about 50 nucleotides. It will be understood that when a nucleotide sequence is represented by a DNA sequence (i.e., A, T, G, C), this also includes an RNA sequence (i.e., A, U, G, C) in which "U" replaces "T. "
Conventional notation is used herein to describe nucleotide sequences: the left-hand end of a single-stranded nucleotide sequence is the 5'-end; the left-hand direction of a double-stranded nucleotide sequence is referred to as the 5'-direction. The direction of 5' to 3' addition of nucleotides to nascent RNA transcripts is referred to as the transcription direction. The DNA strand having the same sequence as an mRNA is referred to as the "coding strand;" sequences on the DNA strand having the same sequence as an mRNA transcribed from that DNA and which are located 5' to the 5'-end of the RNA transcript are referred to as "upstream sequences;" sequences on the DNA strand having the same sequence as the RNA and which are 3' to the 3' end of the coding RNA transcript are referred to as "downstream sequences."
"cDNA" refers to a DNA that is complementary or identical to an mRNA, in either single stranded or double stranded form.
"Encoding" refers to the inherent property of specific sequences of nucleotides in a polynucleotide, such as a gene, a cDNA or an mRNA, to serve as
templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (i.e., rRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom. Thus, a gene encodes a protein if transcription and translation of mRNA produced by that gene produces the protein in a cell or other biological system. Both the coding strand, the nucleotide sequence of which is identical to the mRNA sequence and is usually provided in sequence listings and non-coding strand, used as the template for transcription, of a gene or cDNA can be referred to as encoding the protein or other product of that gene or cDNA. Unless otherwise specified, a "nucleotide sequence encoding an amino acid sequence" includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence. Nucleotide sequences that encode proteins and RNA may include introns.
"Recombinant nucleic acid" refers to a nucleic acid having nucleotide sequences that are not naturally joined together. This includes nucleic acid vectors comprising an amplified or assembled nucleic acid which can be used to transform a suitable host cell. A host cell that comprises the recombinant nucleic acid is referred to as a "recombinant host cell." The gene is then expressed in the recombinant host cell to produce, for example a "recombinant polypeptide." A recombinant nucleic acid may serve a non-coding function (for example a promoter, origin of replication, ribosome-binding site, etc.) as well.
A first sequence is an "antisense" with respect to a second sequence if a polynucleotide whose sequence is the first sequence specifically hybridizes with a polynucleotide whose sequence is the second sequence. Terms used to describe sequence relationships between two or more nucleotide sequences or amino acid sequences include "reference sequence," "selected from," "comparison window," "identical," "percentage of sequence identity," "substantially identical," "complementary," and "substantially complementary."
For sequence comparison of nucleic acid sequences, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary and sequence algorithm program parameters are designated. Default program parameters are used. Methods of alignment of sequences for comparison are well known in the art. Optimal alignment of sequences for comparison can be conducted, for example, by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482, 1981, by the homology alignment algorithm of Needleman & Wunsch, J. MoI. Biol. 48:443, 1970, by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. ScL USA 85:2444, 1988, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI) or by manual alignment and visual inspection (see, for example, Current Protocols in Molecular Biology (Ausubel et al, eds 1995 supplement)).
One example of a useful algorithm is PILEUP. PILEUP uses a simplification of the progressive alignment method of Feng & Doolittle, J. MoI. Evol. 35:351-360, 1987. The method used is similar to the method described by Higgins & Sharp, CABIOS 5:151-153, 1989. Using PILEUP, a reference sequence is compared to other test sequences to determine the percent sequence identity relationship using the following parameters: default gap weight (3.00), default gap length weight (0.10) and weighted end gaps. PILEUP can be obtained from the GCG sequence analysis software package, for example, version 7.0 (Devereaux et al, Nuc. Acids Res. 12:387-395, 1984. Another example of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and the BLAST 2.0 algorithm, which are described in Altschul et al, J. MoI. Biol. 215:403-410, 1990 and Altschul et al, Nucleic Acids Res. 25:3389-3402, 1977. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (www.ncbi.nlm.nih.gov/). The BLASTN program (for
nucleotide sequences) uses as defaults a word length (W) of 11, alignments (B) of 50, expectation (E) of 10, M=5, N=-4 and a comparison of both strands. The BLASTP program uses as defaults a word length (W) of 3 and expectation (E) of 10 and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915, 1989).
Nucleotide: The fundamental unit of nucleic acid molecules. A nucleotide includes a nitrogen-containing base attached to a pentose monosaccharide with one, two or three phosphate groups attached by ester linkages to the saccharide moiety.
The major nucleotides of DNA are deoxyadenosine 5 '-triphosphate (dATP or A), deoxyguanosine 5 '-triphosphate (dGTP or G), deoxycytidine 5 '-triphosphate (dCTP or C) and deoxythymidine 5 '-triphosphate (dTTP or T). The major nucleotides of RNA are adenosine 5'-triphosphate (ATP or A), guanosine 5'- triphosphate (GTP or G), cytidine 5'-triphosphate (CTP or C) and uridine 5'- triphosphate (UTP or U). Nucleotides include those nucleotides containing modified bases, modified sugar moieties and modified phosphate backbones, for example as described in U.S. Patent No. 5,866,336 to Nazarenko et al.
Examples of modified base moieties which can be used to modify nucleotides at any position on its structure include, but are not limited to: 5- fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2- thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D- galactosylqueosine, inosine, N~6-sopentenyladenine, 1-methylguanine, 1- methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3- methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5- methylaminomethyluracil, methoxyarninomethyl-2-thiouracil, beta-D- mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio- N6-isopentenyladenine, uracil-5-oxyacetic acid, pseudouracil, queosine, 2- thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil- 5-oxyacetic acid methylester, uracil-S-oxyacetic acid, 5-methyl-2-thiouracil, 3-(3-
amino-3-N-2-carboxypropyl) uracil and 2,6-diaminopurine 2'-deoxyguanosine amongst others.
Examples of modified sugar moieties, which may be used to modify nucleotides at any position on its structure, include, but are not limited to arabinose, 2-fluoroarabinose, xylose and hexose or a modified component of the phosphate backbone, such as phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate or an alkyl phosphotriester or analog thereof.
Neuropeptide: Peptides released by neurons in the mammalian brain that specifically bind a neuropeptide receptor. Examples of neuropeptides include α- melanocyte- stimulating hormone (α-MSH), galanin-like peptide, acocaine-and- amphetamine-regulated transcript (CART), neuropeptide Y, agouti-related peptide (AGRP), β-endorphin, dynorphin, enkephalin, galanin, ghrelin, growth-hormone releasing hormone, neurotensin, neuromedin U, somatostatin, galanin, enkephalin cholecystokinin, vasoactive intestinal polypeptide (VIP) and substance P among others. In some examples, a neuropeptide or portion thereof sufficient to bind to a neuropeptide receptor is part of a hetero-bifunctional ligand.
Oligonucleotide: A linear polynucleotide sequence of up to about 100 nucleotide bases in length. Operably linked: A first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences are contiguous and, where necessary to join two protein-coding regions, in the same reading frame. In other examples, a molecule is "operably linked" to another molecule when the two molecules are connected by a linker, for example a linker connecting to specific binding agent to form a hetero-bifunctional ligand, such as those disclosed herein.
Pharmaceutical agent: A chemical compound or composition capable of inducing a desired therapeutic or prophylactic effect when properly administered to a subject or a cell. In some embodiments, a pharmaceutical agent is a hetero- bifunctional ligand that includes an internalizing receptor-binding agent linked to a target receptor-binding agent, wherein the internalizing receptor binding agent and target receptor binding agent are different agents.
Pharmaceutically acceptable carriers: The pharmaceutically acceptable carriers of use are conventional. Remington's Pharmaceutical Sciences, by E. W. Martin, Mack Publishing Co., Easton, PA, 15th Edition, 1975, describes compositions and formulations suitable for pharmaceutical delivery of the fusion proteins herein disclosed.
In general, the nature of the carrier will depend on the particular mode of administration being employed. For instance, parenteral formulations usually comprise injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle. For solid compositions (such as powder, pill, tablet or capsule forms), conventional non-toxic solid carriers can include, for example, pharmaceutical grades of mannitol, lactose, starch or magnesium stearate. In addition to biologically neutral carriers, pharmaceutical compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.
Peptide: A chain of amino acids of between 3 and 30 amino acids in length. In one embodiment, a peptide is from about 10 to about 25 amino acids in length. In yet another embodiment, a peptide is from about 11 to about 20 amino acids in length. In yet another embodiment, a peptide is about 12 amino acids in length.
A receptor peptide such as a target receptor peptide or a scavenger receptor peptide is a series of contiguous amino acid residues from a receptor peptide protein, such as a fragment of receptor peptide from about 10 to about 25 amino acids in length, such as about 11 to about 20 amino acid in length, such as about 12
consecutive amino acids of an receptor peptide protein. In some examples, an immunogenic composition for use in producing an antibody that specifically binds a receptor, such as a target receptor or an internalizing receptor, includes a receptor peptide. Polypeptide: Any chain of amino acids, regardless of length or post- translational modification (for example glycosylation or phosphorylation). In one embodiment, the polypeptide is receptor polypeptide. A "residue" refers to an amino acid or amino acid mimetic incorporated in a polypeptide by an amide bond or amide bond mimetic. A polypeptide has an amino terminal (N-terminal) end and a carboxy terminal end.
Scavenger receptors: A group of receptors that recognize and internalize into a cell a large array of macromolecules having a negative charge as well as modified lipoproteins such as acylated low density lipoprotein (Ac-LDL). These scavenger receptors are expressed on various cell types, such as macrophages and endothelial cells and include CD36 (also known as scavenger receptor class B type I or SR-BI), lectin oxidized LDL receptor- 1 (LOX-I), collectin placenta 1 (CL-Pl), FEEL-l/Stabilin-1/ CLEVER-I and scavenger receptor expressed by endothelial cells I (SREC-I) and II (SREC-II). Scavenger receptors can bind a vast array of structurally diverse ligands including LDL, high density lipoprotein (HDL), apoptotic cells, bacteria, components of the extracellular matrix, some oligonucleotides and some sulfated polysaccharides (for a review of scavenger receptors see Adachi and Tsujimoto, Progress in Lipid Research 45:379-404, 2006).
Binding of some ligands to the extracellular domain of scavenger receptors induces the endocytosis (internalization) of the receptor and the ligand bound to the receptor. Scavenger receptors can be used to internalize biologically active agents such as chemotherapeutics and antibiotics by constructing ligands that include a scavenger receptor-binding moiety linked to a drug or other biologically active agent (see, for example, Mukhopadhyay et al, Biochem J. 284: 237-241, 1992; Majumdar and Basu Antimicrob Agents Chemother. 35(1): 135-140, 1991; and Brasseur et al, Photochem Photobiol. 69(3):345-52, 1999).
Scavenger receptor-binding agent: An agent that specifically binds to a scavenger receptor. In one example, a scavenger receptor-binding agent is an antibody, such as a monoclonal antibody, that specifically binds to a scavenger receptor. In other embodiments, a scavenger receptor-binding agent is a ligand, such as a small molecule ligand, for the scavenger receptor. In some embodiments, a scavenger receptor-binding agent is a component of a hetero-bifunctional ligand, such as a hetero-bifunctional ligand disclosed herein.
Specific binding agent: An agent that binds substantially only to a defined target. Thus, a receptor specific binding agent is an agent that binds substantially a specific receptor or fragment thereof. In some examples, the specific binding agent is a monoclonal or polyclonal antibody that specifically binds a specific receptor or antigenic fragment thereof. In other examples, the specific binding agent is a small molecule that specifically binds the specific receptor and for example does not bind any other receptor. In some embodiments, a specific binding agent is a target receptor specific binding agent the specifically binds a target receptor. In some embodiments, a specific binding agent is an internalizing receptor specific binding agent the specifically binds an internalizing receptor.
The term "specifically binds or specific binding" refers, with respect to a specific target receptor, to the preferential association of an antibody or other ligand, in whole or part, with a cell or tissue bearing that specific receptor and not to cells or tissues lacking a detectable amount of that specific receptor. It is recognized that a certain degree of non-specific interaction may occur between a molecule and a non- target cell or tissue. Specific binding may be distinguished as mediated through specific recognition of the specific receptor. Specific binding typically results in greater than 2-fold, such as greater than 5-fold, greater than 10-fold or greater than 100-fold increase in amount of bound antibody or other ligand (per unit time) to a cell or tissue bearing the specific target receptor as compared to a cell or tissue lacking the specific target receptor respectively.
Target receptor: A pre- selected cell surface receptor that is specifically bound by a target ligand. Internalization of target receptors can be accomplished using a hetero-bifunctional ligand, such as a hetero-bifunctional ligand disclosed herein. Examples of target receptors include neuropilin-1, neuropilin-2, a vascular endothelial growth factor (VEGF) receptor, such as vascular endothelial growth factor receptor (VEGFR) -1, VEGFR-2, VEGFR-3, an interleukin (IL) receptor, such as IL-3 receptor, IL-8 receptor, IL-6 receptor, gpl30, an interferon (IFN) receptor. Other examples of a target receptors are a receptor tyrosine kinase (RTK) receptors, such as a RTK class I receptor, for example an epidermal growth factor (EGF) receptor family receptor, for example as HER2/neu, Her 3 or Her 4; a RTK class II receptor, such as an insulin receptor family receptor, for example Insulin-like growth factor (IGF)-I receptor; a RTK class IE receptor, such as a platelet-derived growth factor (PDGF) receptor family receptor, for example such as a platelet-derived growth factor receptor (PDGFR); a RTK class IV receptor, such as a fibroblast growth factor (FGF) receptor family member, for example fibroblast growth factor receptor (FGFR)I, FGFR2 or FGFR3; a RTK class VI receptor, such as a hepatocyte growth factor (HGF) receptor family member; a RTK class VII receptor, such as a TRK receptor family member, for example TrkA, TrkB or TrkC; a RTK class VIII receptor, such as an EPH receptor family member, for example Eph; a RTK class IX receptor, such as an AXL receptor family member; a RTK class X receptor, such as a LTK receptor family member; a RTK class XI receptor, such as a TIE receptor family member, for example Tie-1 or Tie-2; a RTK class XII receptor, such as a RAR-related orphan receptor (ROR) receptor family member; a RTK class XIII receptor, such as a discoidin domain receptor (DDR) receptor family member; a RTK class XIV receptor, such as rearranged during transfection (RET) receptor family member, for example RET; a RTK class XV receptor, such as a KLG receptor family member; a RTK class XVI receptor, such as a RYK receptor family member; and a RTK class XVII receptor, such as a muscle specific kinase (MuSK) receptor family member. Further examples of target receptors include chemokine receptors, such as a CXC chemokine receptor family member, for example CXCRl,
CXCR2, CXCR3, CXCR4, CXCR5, CXCR6 or CXCR7; a CC chemokine receptor family member, for example CCRl, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, CCRlO or CCRIl; a XC chemokine receptor, for example XCRl; or a CX3C chemokine receptor, for example CX3CR1 or the like. Cell-cell interaction receptors can also be target receptors and for example include VE-cadherin, N- cadherin, intercellular adhesion molecule 1 (ICAM-I), connexin, occludin, CD 148 or the like; an integrin family receptor, such as integrin alpha5betal, alphalbetal, alpha2betal, alphavbeta3 or alphavbeta5, CD61 (fibrinogen receptor). Other examples include neuropeptide receptors, such as an endothelin receptor, a G-protein coupled receptor, an adrenergic receptor, an olfactory receptor, a low affinity nerve growth factor receptor, a N-methyl-D-aspartic acid (NMDA) receptor as well as toll- like receptors (TLR), such as TLR 1, TLR 2, TLR 3, TLR 4, TLR 5, TLR 6, TLR 7, TLR 8, TLR 9, TLR 10, TLR 11, TLR 12 or TLR 13 or T cell receptor among others. Target receptor-binding agent: An agent that is selected to specifically binds to a target receptor. In one example, a target receptor-binding agent is an antibody, such as a monoclonal antibody, that specifically binds to a target receptor. In other embodiments, a target receptor-binding agent is a ligand, such as a small molecule ligand, for the target receptor. In some embodiments, a target receptor- binding agent is a component of a hetero-bifunctional ligand, such as a hetero- bifunctional ligand disclosed herein.
Targeting moiety: A portion of a chimeric molecule intended to provide the molecule with the ability to bind specifically to a pre-selected target receptor. A "ligand" is an example of a targeting molecule specific for a target receptor that serves as a "targeting moiety."
Therapeutically effective amount: A quantity of a specific substance sufficient to achieve a desired effect in a subject being treated. For instance, this can be the amount necessary to inhibit or suppress growth of a tumor or the amount necessary to inhibit a viral infection, such as an HIV infection. In one embodiment, a therapeutically effective amount is the amount necessary to eliminate a tumor.
When administered to a subject, a dosage will generally be used that will achieve target tissue concentrations shown to achieve a desired in vitro effect.
Transformed: A transformed cell is a cell into which has been introduced a nucleic acid molecule by molecular biology techniques. As used herein, the term transformation encompasses all techniques by which a nucleic acid molecule might be introduced into such a cell, including transfection with viral vectors, transformation with plasmid vectors and introduction of DNA by electroporation, lipofection and particle gun acceleration.
Vascular endothelial growth factor A (VEGFA): A growth factor involved in angiogenesis. Exemplary human VEGFA nucleic acid sequences can be found on GENB ANK® at accession numbers NM_001025370, NM_001025367, NM_005429, BCOl 1177, NM_001033756 and NMJ)01025368 incorporated herein by reference as available January 24, 2008. Exemplary human VEGFA amino acid sequences can be found on GENB ANK® at accession numbers AAHl 1177 and AAH65522 incorporated herein by reference as available January 24, 2008.
Vector: A nucleic acid molecule as introduced into a host cell, thereby producing a transformed host cell. Recombinant DNA vectors are vectors having recombinant DNA. A vector can include nucleic acid sequences that permit it to replicate in a host cell, such as an origin of replication. A vector can also include one or more selectable marker genes and other genetic elements known in the art. Viral vectors are recombinant DNA vectors having at least some nucleic acid sequences derived from one or more viruses.
Virus: Microscopic infectious organism that reproduces inside living cells. A virus consists essentially of a core of a single nucleic acid surrounded by a protein coat and has the ability to replicate only inside a living cell. "Viral replication" is the production of additional virus by the occurrence of at least one viral life cycle. A virus may subvert the host cells' normal functions, causing the cell to behave in a manner determined by the virus. For example, a viral infection may result in a cell producing a cytokine or responding to a cytokine, when the uninfected cell does not normally do so. Viral infection refers to the infection of a subject, a cell or even a
cell within a subject with a virus.
"Retroviruses" are RNA viruses wherein the viral genome is RNA. When a host cell is infected with a retrovirus, the genomic RNA is reverse transcribed into a DNA intermediate which is integrated very efficiently into the chromosomal DNA of infected cells. The integrated DNA intermediate is referred to as a provirus. The term "lenti virus" is used in its conventional sense to describe a genus of viruses containing reverse transcriptase. The lentiviruses include the "immunodeficiency viruses" which include human immunodeficiency virus (HIV) type 1 and type 2 (HIV-I and HIV-II), simian immunodeficiency virus (SIV) and feline immunodeficiency virus (FIV).
HIV-I is a retrovirus that causes immunosuppression in humans (HIV disease) and leads to a disease complex known as the acquired immunodeficiency syndrome (AIDS). "HIV disease" refers to a well-recognized constellation of signs and symptoms (including the development of opportunistic infections) in persons who are infected by an HIV virus, as determined by antibody or western blot studies. Laboratory findings associated with this disease are a progressive decline in T cells.
//. Description of Several Embodiments
Internalization of receptors can attenuate ligand-induced signaling. In some examples, after a ligand binds to its receptor on the cell membrane, the receptor is internalized. This sequestration of the receptor away from the cell surface often results in ligand desensitization and protection from prolonged or excessive signaling. In the case of shared- type receptors, for example when the same cell surface molecule is a receptor for distinct ligands, internalization of the receptor induced by one ligand can serve to block receptor-binding by the second ligand.
As disclosed herein, selectively induced internalization of a surface receptor can be used to dampen the biological effects that are dependent upon the cell surface residence of a particular target receptor, for example using a hetero-bifunctional ligand disclosed herein. Typically, inhibitors of receptor signaling, such as blocking antibodies, inhibitory receptor ligands or inhibitory small molecules, are only
effective in inhibiting a receptor if they can displace the natural ligand for a receptor, for example by having higher affinity for the receptor than the natural ligand. In contrast, the hetero-bifunctional ligands disclosed herein are effective because they are able to promote target receptor internalization and remove a target receptor from possible interaction with its natural ligand. Thus, one advantageous aspect of this new class of inhibitors (hetero-bifunctional ligands) is that is not necessary that they compete with the binding affinity of the natural ligand. Furthermore, because the disclosed hetero-bifunctional ligand binds to two distinct receptors on the surface of a cell (a target receptor and an internalizing receptor) their cell targeting specificity is enhanced. For example, a specific cell type can be targeted by a specific target and internalizing receptor pair. For example, if the desired target receptor is NRPl on the surface of endothelial cells, for example to inhibit angiogenesis, a hetero- bifunctional ligand is constructed that contains a target receptor-binding agent specific for the target receptor NRPl and an internalizing receptor-binding agent, such as a ligand specific for the endothelial cell specific scavenger receptor, SREC-I. Such a hetero-bifunctional ligand can be used to selectively target NRPl on endothelial cells, to the exclusion of other NRPl -expressing cell types that do not express SREC-I, for example to inhibit endothelial cell mediated angiogenesis. Using an appropriately paired target receptor-binding agent and internalizing receptor-binding agent, a hetero-bifunctional ligand can be constructed to specifically target any target receptor on virtually any cell-type.
Hetero-bifunctional Ligands
Disclosed herein are hetero-bifunctional ligands for use in inducing internalization of a target receptor. The disclosed hetero-bifunctional ligands include a target receptor-binding agent that specifically binds the target receptor, linked to an internalizing receptor-binding agent that specifically binds to an internalizing receptor. The target receptor-binding agent and internalizing receptor- binding agent are not identical and in some cases do not bind the same receptor. A linker can be used to link the target receptor-binding agent to the internalizing
receptor-binding agent so long as the linker is of sufficient length to allow the internalizing receptor-binding agent and target receptor-binding agent to bind to the target receptor and the internalizing receptor, respectively, on the surface of a cell. The binding of the hetero-bifunctional ligand to the internalizing receptor induces internalization of the internalizing receptor and through the linker the internalization of the target receptor bound by the hetero-bifunctional ligand. In the case of a multi- subunit receptor, the target receptor can be a portion of the multi-subunit receptor sufficient to produce internalization and result in a loss of signal propagation through the remaining portion of the receptor on the surface of the cell. Thus, the disclosed hetero-bifunctional ligands are capable of effectively hiding the target receptor from external stimulation, which inhibits signaling through the target receptor. The disclosed hetero-bifunctional ligands can be used to target any cell- surface target receptor, such as a target receptor of interest, using an appropriate hetero-bifunctional ligand that includes a target receptor-binding agent that is specific for the target receptor of interest.
In some embodiments, a target receptor-binding agent is a ligand for a receptor tyrosine kinase (RTK) receptor, such as a RTK class I receptor. For example the target receptor-binding agent can be agent that specifically binds an epidermal growth factor (EGF) receptor family receptor, such as HER2/neu, Her 3 or Her 4; a RTK class II receptor, such as an insulin receptor family receptor, for example Insulin-like growth factor (IGF)-I receptor; a RTK class El receptor, such as a platelet-derived growth factor (PDGF) receptor family receptor, for example a platelet-derived growth factor receptor (PDGFR); a RTK class IV receptor, such as a fibroblast growth factor (FGF) receptor family member, for example fibroblast growth factor receptor (FGFR) 1 , FGFR2 or FGFR3 ; a RTK class VI receptor, such as a hepatocyte growth factor (HGF) receptor family member; a RTK class VII receptor, such as a TRK receptor family member, for example TrkA, TrkB or TrkC; a RTK class VIII receptor, such as an EPH receptor family member, for example Eph; a RTK class IX receptor, such as an AXL receptor family member; a RTK class X receptor, such as a LTK receptor family member; a RTK class XI receptor, such as
a TIE receptor family member, for example Tie-1 or Tie-2; a RTK class XE receptor, such as a RAR-related orphan receptor (ROR) receptor family member; a RTK class Xiπ receptor, such as a discoidin domain receptor (DDR) receptor family member; a RTK class XIV receptor, such as rearranged during transfection (RET) receptor family member, for example RET; a RTK class XV receptor, such as a KLG receptor family member; a RTK class XVI receptor, such as a RYK receptor family member; a RTK class XVII receptor, such as a muscle specific kinase (MuSK) receptor family member or the like.
The target receptor can be chemokine receptor, such as a CXC chemokine receptor family member, for example CXCRl, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6 or CXCR7; a CC chemokine receptor family member, for example CCRl, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, CCRlO or CCRI l; a XC chemokine receptor, for example XCRl; or a CX3C chemokine receptor, for example CX3CR1. In some embodiments, a chemokine specific for that receptor can be used to construct a hetero-bifunctional ligand. Thus, in some embodiments, the target receptor-binding agent is a chemokine or a portion thereof that specifically binds the chemokine receptor. Examples of chemokines of use include chemokines that bind to CCR family receptors, such as the CCL chemokines, for example CCLl, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCLlO, CCLI l, CCL12, CCL13, CCL14, CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21,
CCL22, CCL23, CCL24, CCL25, CCL26, CCL27 and CCL28; chemokines that bind to CXCR family receptors, such as CXCL chemokines, for example CXCLl, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CXCLlO, CXCLI l, CXCL12, CXCL13, CXCL14, CXCL15 and CXCL16; chemokines that bind to XCR family receptors, such as the XCL chemokines, for example XCLl and XCL2; and chemokines that bind to CX3CR family receptors, such as the CX3CL chemokines, for example CX3CL1.
The target receptor can be an interleukin receptor, such as IL-IRl (see, for example, GENB ANK® accession No. M27492), IL- 1R2 (see, for example, GENB ANK® accession No. X59770), IL-IRl (see, for example, GENB ANK®
accession No. M27492), IL-1R2 (see, for example, GENB ANK® accession No. X59770), IL- 2RA see, for example, GENB ANK® accession No. (see, for example, GENB ANK® accession No. XO 1057), IL-2RB (see, for example, GENB ANK® accession No. M26062), IL-3RA (see, for example, GENB ANK® accession No. M74782), IL-4R (see, for example, GENBANK® accession No. X52425), IL-5RA (see, for example, GENBANK® accession No. M96652), IL-6R (see, for example, GENBANK® accession No. X12830), IL-7R (see, for example, GENBANK® accession No. M29696), IL-8RA (see, for example, GENBANK® accession No. Ul 1870), IL-8RB (see, for example, GENBANK® accession No. Ul 1869), IL-9R (see, for example, GENBANK® accession No. M84747), IL-10RA (see, for example, GENBANK® accession No. U00672), IL-10RB (see, for example, GENBANK® accession No. U08988), IL-IlRA (see, for example, GENBANK® accession No. Z38102), IL-IlRB, IL-12RB1 (see, for example, GENBANK® accession No. U03187), IL-12RB2, (see, for example, GENBANK® accession No. U64198), IL-13RA1 (see, for example, GENBANK® accession No. U62858), IL- 13RA2 (see, for example, GENBANK® accession No. X95302), IL-15RA (see, for example, GENBANK® accession No. U31628), IL-15RB, IL-17RA (see, for example, GENBANK® accession No. U58917), IL- 17RB (see, for example, GENBANK® accession No. AF212365), IL-17RC (see, for example, GENBANK® accession No. BC006411), IL-17RD (see, for example, GENBANK® accession No. AF494208) IL- 17RE (see, for example, GENBANK® accession No. AF458069), IL- 18BP (see, for example, GENBANK® accession No. AF110798), IL-18R1 (see, for example, GENBANK® accession No. U43672), IL-20RA (see, for example, GENBANK® accession No. AF184971), IL-20RB (see, for example, GENBANK® accession No. BC033292), IL-21R (see, for example, GENBANK® accession No. AF254067), IL-22RA1 (see, for example, GENBANK® accession No. AF286095), IL-22RA2 (see, for example, GENBANK® accession No. AY044429), IL-27RA (see, for example, GENBANK® accession No. AF053004), IL-28RA (see, for example, GENBANK® accession No. AY129153), IL-31RA (see, for example, GENBANK® accession No. AY499339), all of which are incorporated herein by
reference as available January 24, 2008.
An interleukin that specifically binds that receptor can be used to construct a hetero-bifunctional ligand. Thus, in some embodiments, the target receptor-binding agent is an interleukin or a portion thereof that specifically binds the interleukin receptor. Examples of interleukins include IL- lα (see, for example, GENB ANK® accession No. M28983), IL- lβ (see, for example, GENB ANK® accession No. M15330), IL-2 (see, for example, GENBANK® accession No. U25676), IL-3 (see, for example, GENBANK® accession No. M14743), IL-4 (see, for example, GENBANK® accession No. M23442), IL-5 (see, for example, GENBANK® accession No. X04688), IL-6 (see, for example, GENBANK® accession No.
M18403), IL-7 (see, for example, GENBANK® accession No. J04156) , IL-8 (see, for example, GENBANK® accession No. Y00787), IL-9 (see, for example, GENBANK® accession No. S63356), IL-10 (see, for example, GENBANK® accession No. M57627), IL-I l (see, for example, GENBANK® accession No. X583770), IL-12 (see, for example, GENBANK® accession No. X58377 or
M65290) , IL-13 (see, for example, GENBANK® accession No. U31120), IL- 14, IL-15 (see, for example, GENBANK® accession No. U144070), IL-16 (see, for example, GENBANK® accession No. U82972), IL- 17 (see, for example, GENBANK® accession No. U32659, AF184969, AF152099, AY078238 or AF384857), IL-18 (see, for example, GENBANK® accession No. U90434), IL- 19 (see, for example, GENBANK® accession No. AFl 92498), IL-20 (see, for example, GENBANK® accession No. AF224266), IL-21 (see, for example, GENBANK® accession No. AF254069), IL-22 (see, for example, GENBANK® accession No. AF279437), IL-23, IL-24 (see, for example, GENBANK® accession No. U16261), IL-25 (see, for example, GENBANK® accession No. AF305200), IL-26 (see, for example, GENBANK® accession No. AJ251549), IL-27 (see, for example, GENBANK® accession No. AY099296), IL-28 (see, for example, GENBANK® accession Nos. AY129148 or AY129149), IL-29 (see, for example, GENBANK® accession No. AY129150), IL-30, IL-31 (see, for example, GENBANK® accession No. AY499343) or IL-32 (see, for example, GENBANK® accession No. M59807)
all of which are incorporated herein by reference as available January 24, 2008.
If the target receptor is an interferon receptor, an interferon that specifically binds that receptor can be used to construct a hetero-bifunctional ligand. Thus, in some embodiments, the target receptor-binding agent is an interferon or a portion thereof that specifically binds the interferon receptor. Examples of interferons useful in producing a disclosed hetero-bifunctional ligand include IFN- α, IFN- β and IFN- γ.
If the target receptor is a growth factor receptor, a growth factor that specifically binds that receptor can be used to construct a hetero-bifunctional ligand. Thus, in some embodiments, the target receptor-binding agent is a growth factor or a portion thereof that specifically binds the growth factor receptor. Examples of growth factors of use include transforming growth factor beta (TGF-β, see, for example, GENBANK® Accession No. AAA36735), granulocyte-colony stimulating factor (G-CSF, see, for example, GENBANK® Accession Nos. CAA27291, CAA27290 or CAAO 1319), granulocyte-macrophage colony stimulating factor (GM- CSF, see, for example, GENBANK® Accession No. AAA52578), nerve growth factor (NGF, see, for example, GENBANK® Accession Nos. AAI26151, AAI26149, AAH32517 or CAA37703), neurotrophins, platelet-derived growth factor (PDGF), erythropoietin (EPO, see, for example, GENBANK® Accession Nos. AAF23134, AAF23132, AAF17572 or AAF23133), thrombopoietin (TPO, see, for example, GENBANK® Accession No. AAB33390), myostatin (GDF-8, see, for example, GENBANK® Accession No. AAB86694), growth differentiation factor-9 (GDF9, see, for example, GENBANK® Accession Nos. AAH96229, AAH96228, AAH96231 or AAH96230), basic fibroblast growth factor (bFGF, see, for example, GENBANK® Accession Nos.AAB21432 or FGF2, (see, for example, GENBANK® Accession No. NP_001997), epidermal growth factor (EGF, see, for example, GENBANK® Accession No. AAS83395), hepatocyte growth factor (HGF, see, for example, GENBANK® Accession Nos. AAA64297, AAA64239 or AAA52649), vascular endothelial growth factor (VEGF, see, for example, GENBANK® Accession Nos. AAA35789, CAM28207, CAC19515, CAC19513,
AAP86646, ABB58912, AAK95847, CAA44447, CAC19516 or CAC19512), such as VEGF-A and the like incorporated herein by reference as available January 24, 2008.
If the target receptor is a hormone receptor, a hormone that specifically binds that receptor can be used to construct a hetero-bifunctional ligand. Thus, in some embodiments, the target receptor-binding agent is a hormone or portion thereof that specifically binds the hormone receptor. Examples of hormones of use include amine-tryptophans, such as melatonin (n-acetyl-5-methoxytryptamine) and serotonin; amine-tyrosines, such as thyroxine (thyroid hormone), triiodothyronine (thyroid hormone), epinephrine (adrenaline), norepinephrine (noradrenaline) and dopamine; peptide hormones, such as antimullerian hormone (mullerian inhibiting factor), adiponectin, adrenocorticotropic hormone (orticotropin), angiotensinogen, angiotensin antidiuretic hormone (vasopressin, arginine vasopressin), atrial- natriuretic peptide atriopeptin), calcitonin, cholecystokinin, corticotropin-releasing hormone, erythropoietin, follicle-stimulating hormone, gastrin, ghrelin, glucagon, gonadotropin-releasing hormone, growth hormone-releasing hormone, human chorionic gonadotropin, human placental lactogen, growth hormone, inhibin, insulin, insulin-like growth factor (somatomedin), leptin, luteinizing hormone, melanocyte stimulating hormone, oxytocin, parathyroid hormone, prolactin, relaxin, secretin, somatostatin, thrombopoietin, thyroid-stimulating hormone and thyrotropin- releasing hormone; steroids, such as Cortisol, aldosterone, testosterone, dehydroepiandrosterone, androstenedione, dihydrotestosterone, estradiol, estrone, estriol, progesterone and calcitriol (vitamin D3); and eicosanoids, such as prostaglandins, leukotrienes, prostacyclin and thromboxane, among others. If the target receptor is a neuropeptide receptor, a neuropeptide or portion thereof that specifically binds that receptor can be used to construct a hetero- bifunctional ligand. Thus, in some embodiments, the target receptor-binding agent is a neuropeptide or portion thereof that specifically binds the neuropeptide receptor. Examples of neuropeptides of use include α-melanocyte-stimulating hormone (α- MSH), galanin-like peptide, acocaine-and-amphetamine-regulated transcript
(CART), neuropeptide Y, agouti-related peptide (AGRP), β-endorphin, dynorphin, enkephalin, galanin, ghrelin, growth-hormone releasing hormone, neurotensin, neuromedin U, somatostatin, galanin, enkephalin cholecystokinin, VIP and substance P among others. In some embodiments, a disclosed hetero-bifunctional ligand has a target receptor-binding agent that specifically binds a cell-cell interaction receptor, such as VE-cadherin, N-cadherin, intercellular adhesion molecule 1 (ICAM-I), connexin, occludin, CD 148 or the like, an integrin family receptor, such as integrin alpha5betal, integrin alphalbetal, integrin alpha2betal, integrin alphavbeta3 or integrin alphavbeta5, CD61 (fibrinogen receptor), a neuropeptide receptor, an endothelin receptor, a G-protein coupled receptor, an adrenergic receptor, an olfactory receptor, a low affinity nerve growth factor receptor, a N-methyl-D-aspartic acid (NMDA) receptor, a toll-like receptor (TLR), such as TLR 1, TLR 2, TLR 3, TLR 4, TLR 5, TLR 6, TLR 7, TLR 8, TLR 9, TLR 10, TLR 11, TLR 12 or TLR 13 or T cell receptor among others.
Other examples of receptor ligands that can be used to prepare a hetero- bifunctional ligand include tumor necrosis factors, such as TNF- α and TNF- β macrophage inflammatory proteins, such as MIP-I α and MIP-I β and transforming growth factors, such as TGF- β. In some embodiments, the target receptor-binding agent comprises an antibody that specifically binds the target receptor, for example a monoclonal or polyclonal antibody. In some embodiments, the antibody is a humanized antibody. Exemplary procedures for producing antibodies, such as a polyclonal, monoclonal, and/or humanized antibodies are set forth below and are known in the art. In some embodiments, the target receptor-binding agent includes a small molecule that specifically binds the target receptor, for example a small molecule ligand that binds the target receptor. In some embodiments, the hetero-bifunctional ligand includes a target receptor ligand, such as a cytokine, a chemokine, a growth factor, a hormone, a neuropeptide or a portion thereof that specifically binds the target receptor. In some embodiments, a hetero-bifunctional ligand includes a target receptor-binding
agent heterologous to the internalizing receptor-binding agent and the linker.
In some examples, the target receptor-binding agent is an oligonucleotide, such as polyguanosine, phosphorothioate oligodeoxyguanosine, oligodeoxyguanosine oligo 2'-deoxyguanosine 5 '-monophosphate among others. In some embodiments, the oligonucleotide is between about 6 nucleotides and about 100 nucleotide in length, such as about 6, 7, 8, 9, 10 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100 nucleotides in length, for example between about 6 to about 15, about 10 to about 20, about 15 to about 25, about 20 to about 30, about 25 to about 35, about 30 to about 40, about 35 to about 45, about 40 to about 50, about 45 to about 55, about 50 to about 60, about 55 to about 65, about 60 to about 70, about 65 to about 75, about 70 to about 80, about 75 to about 85, about 80 to about 90, about 85 to about 95 or about 90 to 100 nucleotides in length.
The disclosed hetero-bifunctional ligands also include an internalizing receptor-binding agent that specifically binds to an internalizing receptor. Internalizing receptors are cell surface receptors that are induced to internalize upon binding of specific ligands. Examples of internalizing receptors include without limitation scavenger receptors, LDL receptors, heat shock protein receptors and transferrin receptors, among others. Thus, the disclosed hetero-bifunctional ligands include an internalizing receptor ligand or portion thereof specific for the internalizing receptor and capable of inducing the internalization of the internalizing receptor, such as ligands for scavenger receptors, for example acetylated-LDL, oxidized-LDL, sulfated polysaccharides, maleylated proteins, polyguanylic acids, HDL oligonucleotides, such as polyguanosine (poly(G)), or derivatives thereof; ligands for LDL receptors, for example LDL; ligands for a heat shock protein receptors for example heat shock proteins or portions thereof specific for a heat shock protein receptors s; ligands for transferrin receptors, such as transferrin or
portions thereof specific for a transferrin receptors and the like. In some embodiments, a hetero-bifunctional ligand includes an internalizing receptor-binding agent heterologous to the target receptor-binding agent and the linker. In some examples, the internalizing receptor-binding agent is an oligonucleotide, such as polyguanosine, phosphorothioate oligodeoxyguanosine, oligodeoxyguanosine oligo 2'-deoxyguanosine 5 '-monophosphate among others. In some embodiments, the oligonucleotide is between about 6 nucleotides and about 100 nucleotide in length, such as about 6, 7, 8, 9, 10 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100 nucleotides in length, for example between about 6 to about 15, about 10 to about 20, about 15 to about 25, about 20 to about 30, about 25 to about 35, about 30 to about 40, about 35 to about 45, about 40 to about 50, about 45 to about 55, about 50 to about 60, about 55 to about 65, about 60 to about 70, about 65 to about 75, about 70 to about 80, about 75 to about 85, about 80 to about 90, about 85 to about 95 or about 90 to 100 nucleotides in length.
The disclosed hetero-bifunctional ligands may be synthesized by techniques known in the art. The hetero-bifunctional ligands are formed from target receptor and internalization receptor-binding agents, which both can be modified or activated, for example chemically activated, so that it can be covalently bound to a linker, such that the target receptor-binding agent and the internalizing receptor-binding agent are joined by the linker.
Molecules, such as ligands for different receptors (for example a ligand for a target receptor and an internalizing receptor) can be linked together using any number of means known to those of skill in the art. In one example, a ligand specific for a target receptor is covalently bound to a ligand specific for an internalizing receptor. The linker can be any molecule used to join a molecule to another molecule. Depending on such factors as the molecules to be linked and the conditions in which the method of detection is performed, the linker can vary in
length and composition for optimizing such properties as flexibility, stability and resistance to certain chemical and/or temperature parameters. A linker that is part of a hetero-bifunctional ligand should be of sufficient length that the hetero- bifunctional ligand is capable of binding to both a target receptor and an internalizing receptor. In some embodiments, a linker is a heterologous linker, such that the linker heterologous to the target receptor binding and the internalizing receptor-binding agent.
Suitable linkers are well known to those of skill in the art and include, but are not limited to, straight or branched-chain carbon linkers, heterocyclic carbon linkers or peptide linkers. Peptide linkers are short sequences of amino acids, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or ever greater than 15 amino acids in length. In some examples, a linker is peptide such as poly-lysine, poly-glutamine or even combinations thereof. One skilled in the art will recognize, for a hetero-bifunctional ligand formed from two or more constituents, each of the constituents will contain the necessary reactive groups. Representative combinations of such groups are amino with carboxyl to form amide linkages or carboxy with hydroxyl to form ester linkages or amino with alkyl halides to form alkylamino linkages or thiols with thiols to form disulfides or thiols with maleimides or alkylhalides to form thioethers. Obviously, hydroxyl, carboxyl, amino and other functionalities, where not present may be introduced by known methods. Likewise, as those skilled in the art will recognize, a wide variety of linking groups may be employed. In some cases, the linking group can be designed to be either hydrophilic or hydrophobic in order to enhance the desired binding characteristics of the ligand and the receptor. The covalent linkages should be stable relative to the solution conditions under which the ligand and linking group are subjected.
Where the receptor-binding agents are polypeptides, the linkers may be joined to the constituent amino acids through their side groups (such as through a disulfide linkage to cysteine) or to the alpha carbon amino and carboxyl groups of the terminal amino acids. Alternatively, where the receptor-binding agents are polypeptides, the linker and both receptor-binding agents can be encoded as a single
fusion polypeptide such that the target receptor-binding agent and the internalizing receptor-binding agent are joined by peptide bonds.
The procedure for attaching a molecule to a polypeptide varies according to the chemical structure of the molecule. Polypeptides typically contain a variety of functional groups; for example, carboxylic acid (COOH), free amine (-NH2) or sulfhydryl (-SH) groups, which are available for reaction with a suitable functional group on a polypeptide. Alternatively, the polypeptide is derivatized to expose or attach additional reactive functional groups. The derivatization may involve attachment of any of a number of linker molecules such as those available from Pierce Chemical Company, Rockford, IL. In particular examples, a linker is the combination of streptavidin or avidin and biotin.
Aspects of this disclosure relate to a method for inducing the internalization of a target receptor. Such methods include contacting a cell that expresses the target receptor on its surface with an effective amount of a hetero-bifunctional ligand that includes a specific binding agent capable of binding to the target receptor. By appropriate selection of a target receptor specific binding agent and internalizing receptor-binding agent for inclusion in a hetero-bifunctional ligand, it is possible to induce the internalization of any target receptor.
In some embodiments, a target receptor-binding agent is a ligand for a growth factor receptor, such as a neuropilin-1, neuropilin-2 or a vascular endothelial growth factor (VEGF) receptor, such as vascular endothelial growth factor receptor (VEGFR) -1, VEGFR-2, VEGFR-3. In specific embodiments, a hetero-bifunctional ligand is constructed to induce the internalization of VEGFR-2 and/or NPR-I. Such a hetero-bifunctional ligand includes a target receptor-binding agent that is VEGF-A (the ligand for the receptor VEGFR-2 and co-receptor Neuropilin-1) and Acetylated- LDL (a scavenger ligand that induces the internalization of scavenger receptors), which are chemically linked, for example with crosslinkers available commercially from Pierce (Bioconjugate Toolkit Reagents) to tag VEGF-A and Acetylated-LDL with two different hetero-bifunctional linkers (A and B). After derivation of VEGF- A-(linker A) and Acetylated-LDL-(linker B), these two linker molecules are linked
together. As a result, the final product is a hetero-bifunctional ligand composed of (VEGF-A)-(linker A)-(linker B)-(Acetylated-LDL). Such a hetero-bifunctional ligand is of use in inhibiting angiogenesis and/or in the treatment of cancer. In some embodiments, a hetero-bifunctional ligand includes a linker heterologous to one or both of the internalizing receptor-binding agent and the target receptor-binding agent. In some examples, the internalizing receptor-binding agent is a polysaccharide, such as sulfated dextran or Fucoidan and the target receptor-binding agent is not a polysaccharide. In some examples, the target receptor-binding agent is a polysaccharide, such as sulfated dextran or Fucoidan and the target internalizing receptor binding agent is not a polysaccharide.
Receptor Antibodies
A receptor polypeptide (for example a target receptor or internalizing receptor polypeptide) or a fragment or conservative variant thereof can be used to produce antibodies which are immunoreactive or bind to an epitope of the receptor polypeptide. Polyclonal or monoclonal antibodies (including humanized monoclonal antibodies) and fragments of monoclonal antibodies such as Fab, F(ab')2 and Fv fragments, as well as any other agent capable of specifically binding to an peptide derived from a target or internalizing receptor may be produced. Optimally, antibodies raised against a target or internalizing receptor polypeptide would specifically bind the target or internalizing receptor polypeptide of interest (or a cell expressing such a peptide in its surface). That is, such antibodies would recognize and bind the protein and would not substantially recognize or bind to other proteins found in human or other cells. The determination that an antibody specifically binds the target or internalizing receptor polypeptide of interest is made by any one of a number of standard immunoassay methods; for instance, the Western blotting technique (Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).
A substantially pure target or internalizing receptor polypeptide suitable for use as an immunogen is isolated by purification or recombinant expression.
Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms per milliliter. Monoclonal or polyclonal antibody to the protein can then be prepared as described by Harlow and Lane (Antibodies, A Laboratory Manual, Cold Spring Harbor Press. 1988).
Alternatively, antibodies may be raised against a synthetic target or internalizing receptor polypeptide synthesized on a commercially available peptide synthesizer based upon the predicted amino acid or known sequence of the target or internalizing receptor polypeptide (Harlow and Lane, Antibodies, A Laboratory Manual, Cold Spring Harbor Press. 1988).
The preparation of polyclonal antibodies is well-known to those skilled in the art. See, for example, Green et al., "Production of Polyclonal Antisera, " in Immunochemical Protocols /rages 1-5, Manson, ed., Humana Press 1992; Coligan et al., "Production of Polyclonal Antisera in Rabbits, Rats, Mice and Hamsters, " in: Current Protocols in Immunology, section 2.4.1, 1992.
Polyclonal antiserum containing antibodies to heterogeneous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than larger molecules and may require the use of carriers and adjuvants. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis et al. (J. Clin. Endocrinol. Metab. 33:988-91, 1971).
Booster injections can be given at regular intervals and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony et al. (In: Handbook of Experimental
Immunology, Wier, D. (ed). Chapter 19. Blackwell. 1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12 μM). Affinity of the antisera for the antigen is measured by analysis of competitive binding curves, as described, for example, by Fisher (Manual of Clinical Immunology, Chapter 42. 1980).
The preparation of monoclonal antibodies likewise is conventional. See, for example, Kohler & Milstein, Nature 256:495, 1975; Coligan et al, sections 2.5.1-2.6.7; and Harlow et al, in: Antibodies: a Laboratory Manual, page 726, Cold Spring Harbor Pub., 1988. Monoclonal antibody to epitopes of the target or internalizing receptor polypeptide identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler and Milstein {Nature 256:495, 1975) or derivative methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed and the antibody-producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol or other means with selected mouse myeloma cells and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody- producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall (Enzymol. 70:419, 1980) and derivative methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use.
Monoclonal antibodies can be isolated and purified from hybridoma cultures by a variety of well-established techniques. Such isolation techniques include affinity chromatography with Protein-A Sepharose, size-exclusion chromatography and ion-exchange chromatography. See, for example, Coligan et al., sections 2.7.1- 2.7.12 and sections 2.9.1-2.9.3; Barnes et al., "Purification of Immunoglobulin G (IgG)," in: Methods in Molecular Biology, Vol. 10, pages 79-104, Humana Press, 1992.
Methods of in vitro and in vivo multiplication of monoclonal antibodies are well known to those skilled in the art. Multiplication in vitro may be carried out in suitable culture media such as Dulbecco's Modified Eagle Medium or RPMI 1640 medium, optionally supplemented by a mammalian serum such as fetal calf serum or trace elements and growth- sustaining supplements such as normal mouse peritoneal exudate cells, spleen cells, thymocytes or bone marrow macrophages. Production in vitro provides relatively pure antibody preparations and allows scale-up to yield large amounts of the desired antibodies. Large-scale hybridoma cultivation can be carried out by homogenous suspension culture in an airlift reactor, in a continuous stirrer reactor or in immobilized or entrapped cell culture. Multiplication in vivo may be carried out by injecting cell clones into mammals histocompatible with the parent cells, for example, syngeneic mice, to cause growth of antibody-producing tumors. Optionally, the animals are primed with a hydrocarbon, especially oils such as pristane (tetramethylpentadecane) prior to injection. After one to three weeks, the desired monoclonal antibody is recovered from the body fluid of the animal.
Specific antibodies can also be derived from subhuman primate antibody. General techniques for raising therapeutically useful antibodies in baboons can be found, for example, in WO 91/11465, 1991 and Losman et ah, Int. J. Cancer 46:310, 1990. Alternatively, an antibody that specifically binds a target receptor or an internalizing receptor can be derived from a humanized monoclonal antibody. Humanized monoclonal antibodies are produced by transferring mouse complementarity determining regions from heavy and light variable chains of the mouse immunoglobulin into a human variable domain and then substituting human residues in the framework regions of the murine counterparts. The use of antibody components derived from humanized monoclonal antibodies obviates potential problems associated with the immunogenicity of murine constant regions. General techniques for cloning murine immunoglobulin variable domains are described, for example, by Orlandi et al, Proc. Natl Acad. ScL U.S.A. 86:3833, 1989. Techniques for producing humanized monoclonal antibodies are described, for example, by
Jones et al, Nature 321:522, 1986; Riechmann et al, Nature 332:323, 1988; Verhoeyen et al. , Science 239:1534, 1988; Carter et al, Proc. Nat'l Acad. ScL U.S.A. 89:4285, 1992; Sandhu, Crit. Rev. Biotech. 12:437, 1992; and Singer et al, J. Immunol. 150:2844, 1993. Antibodies can be derived from human antibody fragments isolated from a combinatorial immunoglobulin library. See, for example, Barbas et al, in: Methods: a Companion to Methods in Enzymology, Vol. 2, page 119, 1991; Winter et al, Ann. Rev. Immunol. 12:433, 1994. Cloning and expression vectors that are useful for producing a human immunoglobulin phage library can be obtained, for example, from STRATAGENE® Cloning Systems (La Jolla, CA).
In addition, antibodies can be derived from a human monoclonal antibody. Such antibodies are obtained from transgenic mice that have been "engineered" to produce specific human antibodies in response to antigenic challenge. In this technique, elements of the human heavy and light chain loci are introduced into strains of mice derived from embryonic stem cell lines that contain targeted disruptions of the endogenous heavy and light chain loci. The transgenic mice can synthesize human antibodies specific for human antigens and the mice can be used to produce human antibody-secreting hybridomas. Methods for obtaining human antibodies from transgenic mice are described by Green et al, Nature Genet. 7:13, 1994; Lonberg et al, Nature 368:856, 1994; and Taylor et al. Jnt. Immunol. 6:579, 1994.
Antibodies include intact molecules as well as fragments thereof, such as Fab, F(ab')2 and Fv which are capable of binding the epitopic determinant. Methods of making these fragments are known in the art. (See for example, Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York, 1988). An epitope is any antigenic determinant on an antigen to which the paratope of an antibody binds. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three-dimensional structural characteristics, as well as specific charge characteristics.
Antibody fragments can be prepared by proteolytic hydrolysis of the antibody or by expression in E. coli of DNA encoding the fragment. Antibody fragments can be obtained by pepsin or papain digestion of whole antibodies by conventional methods. For example, antibody fragments can be produced by enzymatic cleavage of antibodies with pepsin to provide a 5 S fragment denoted F(ab')2. This fragment can be further cleaved using a thiol reducing agent and optionally a blocking group for the sulfhydryl groups resulting from cleavage of disulfide linkages, to produce 3.5S Fab' monovalent fragments. Alternatively, an enzymatic cleavage using pepsin produces two monovalent Fab' fragments and an Fc fragment directly (see U.S. Patent No. 4,036,945 and U.S. Patent No. 4,331,647 and references contained therein; Nisonhoff et al, Arch. Biochem. Biophys.89:230, 1960; Porter, Biochem. J. 73: 119, 1959; Edelman et al, Methods in Enzymology, Vol. 1, page 422, Academic Press, 1967; and Coligan et al at sections 2.8.1-2.8.10 and 2.10.1-2.10.4).
Other methods of cleaving antibodies, such as separation of heavy chains to form monovalent light-heavy chain fragments, further cleavage of fragments or other enzymatic, chemical or genetic techniques may also be used, so long as the fragments bind to the antigen that is recognized by the intact antibody.
For example, Fv fragments comprise an association of VH and VL chains. This association may be noncovalent (Inbar et al, Proc. Nat 'I Acad. ScL U.S.A. 69:2659, 1972). Alternatively, the variable chains can be linked by an intermolecular disulfide bond or cross-linked by chemicals such as glutaraldehyde. See, for example, Sandhu, supra. Preferably, the Fv fragments comprise VH and VL chains connected by a peptide linker. These single-chain antigen binding proteins (sFv) are prepared by constructing a structural gene comprising DNA sequences encoding the VH and VL domains connected by an oligonucleotide. The structural gene is inserted into an expression vector, which is subsequently introduced into a host cell such as E. coli. The recombinant host cells synthesize a single polypeptide chain with a linker peptide bridging the two V domains. Methods for producing sFvs are known in the art (see Whitlow et al. , Methods: a Companion to Methods in Enzymology, Vol. 2, page 97, 1991; Bird et al. , Science 242:423, 1988; U.S. Patent
No. 4,946,778; Pack et al, Bio/Technology 11:1271, 1993; and Sandhu, supra).
Another form of an antibody fragment is a peptide coding for a single complementarity-determining region (CDR). CDR peptides ("minimal recognition units") can be obtained by constructing genes encoding the CDR of an antibody of interest. Such genes are prepared, for example, by using the polymerase chain reaction to synthesize the variable region from RNA of antibody-producing cells (Larrick et al. , Methods: a Companion to Methods in Enzytnology, Vol. 2, page 106, 1991).
Antibodies can be prepared using an intact polypeptide or fragments containing small peptides of interest as the immunizing antigen. The polypeptide or a peptide used to immunize an animal can be derived from substantially purified polypeptide produced in host cells, in vitro translated cDNA or chemical synthesis, which can be conjugated to a carrier protein, if desired. Such commonly used carriers which are chemically coupled to the peptide include keyhole limpet hemocyanin (KLH), thyroglobulin, bovine serum albumin (BSA) and tetanus toxoid. The coupled peptide is then used to immunize the animal (for example, a mouse, a rat or a rabbit).
Polyclonal or monoclonal antibodies can be further purified, for example, by binding to and elution from a matrix to which the polypeptide or a peptide to which the antibodies were raised is bound. Those of skill in the art will know of various techniques common in the immunology arts for purification and/or concentration of polyclonal antibodies, as well as monoclonal antibodies (See for example, Coligan et al., Unit 9, Current Protocols in Immunology, Wiley Interscience, 1991).
It is also possible to use the anti-idiotype technology to produce monoclonal antibodies, which mimic an epitope. For example, an anti-idiotypic monoclonal antibody made to a first monoclonal antibody will have a binding domain in the hypervariable region that is the "image" of the epitope bound by the first monoclonal antibody.
To determine that a given antibody preparation (such as one produced in a mouse) specifically binds the target or internalizing receptor polypeptide of interest
by Western blotting, total cellular protein containing the target or internalizing receptor polypeptide is extracted from murine myeloma cells and electrophoresed on a SDS-polyacrylamide gel. The proteins are then transferred to a membrane (for example, nitrocellulose) and the test antibody preparation is incubated with the membrane. After washing the membrane to remove non-specifically bound antibodies, the presence of specifically bound antibodies is detected by the use of an anti-mouse antibody conjugated to an enzyme such as alkaline phosphatase; application of the substrate 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium results in the production of a dense blue compound by immuno-localized alkaline phosphatase. Antibodies which specifically bind a target or internalizing receptor polypeptide of interest will, by this technique, be shown to bind to the target or internalizing receptor polypeptide band (which will be localized at a given position on the gel determined by its molecular weight). Non-specific binding of the antibody to other proteins (such as serum albumin) may occur and may be detectable as a weak signal on the Western blot. The non-specific nature of this binding will be recognized by one skilled in the art by the weak signal and/or unrelated portion obtained on the Western blot relative to the strong primary signal arising from the specific antibody- target or internalizing receptor polypeptide binding.
Methods for Recombinant Production of Hetero-bifunctional Ligands
The hetero-bifunctional ligands disclosed herein, can be prepared by cloning techniques, for example when one or both of the target receptor-binding agent and the internalizing receptor-binding agent are peptides. In some examples, the target receptor-binding agent, the linker and the internalizing receptor-binding agent are produced as single fusion protein. Examples of appropriate cloning and sequencing techniques and instructions sufficient to direct persons of skill through many cloning exercises are found in Sambrook et al, Molecular Cloning: A Laboratory Manual (2nd Ed.), VoIs. 1-3, Cold Spring Harbor Laboratory (1989), Berger and Kimmel (eds.), Guide to Molecular Cloning Techniques, Academic Press, Inc., San Diego CA (1987) or Ausubel et al. (eds.), Current Protocols in Molecular Biology, Greene
Publishing and Wiley-Interscience, NY (1987). Product information from manufacturers of biological reagents and experimental equipment also provide useful information. Such manufacturers include the SIGMA chemical company (Saint Louis, MO), R&D systems (Minneapolis, MN), Pharmacia LKB Biotechnology (Piscataway, NJ), CLONTECH® laboratories, Inc. (Palo Alto, CA), Chem Genes Corp., Aldrich Chemical Company (Milwaukee, WI), Glen Research, Inc., GIBCO BRL Life Technologies, Inc. (Gaithersburg, MD), Fluka Chemica- Biochemika Analytika (Fluka Chemie AG, Buchs, Switzerland), INVITROGEN™ (San Diego, CA) and Applied Biosystems (Foster City, CA), as well as many other commercial sources known to one of skill.
In some embodiments, the disclosed hetero-bifunctional ligands are produced recombinantly, for example from cells transformed or transfected with polynucleotides encoding the hetero-bifunctional ligand or portion thereof. In some examples, the hetero-bifunctional ligand is produced as a single amino acid chain that includes the target receptor-binding agent, a polypeptide linker and the internalizing receptor-binding agent. In some examples the hetero-bifunctional ligand is produced from more than one polypeptide chain (for example a polypeptide that is a target receptor-binding agent and a different polypeptide that is the internalizing receptor-binding agent), which are linked together which a linker. In some examples, only one of the receptor-binding agents is a polypeptide. In some examples, the receptor-binding agent is a polypeptide, which includes a polypeptide linker, for example a polypeptide linker at the N or C terminus of the receptor- binding agent.
Methods for the manipulation and insertion of the nucleic acids encoding the disclosed hetero-bifunctional ligands or portions thereof into vectors for the expression of polypeptides are well known in the art (see for example, Sambrook et ah, Molecular Cloning, a Laboratory Manual, 2d edition, Cold Spring Harbor Press, Cold Spring Harbor, N. Y., 1989 and Ausubel et ah, Current Protocols in Molecular Biology, Greene Publishing Associates and John Wiley & Sons, New York, N. Y., 1994).
The nucleic acid constructs encoding the hetero-bifunctional ligands or portions thereof of this disclosure can be inserted into plasmids. However, other vectors (for example, viral vectors, phage, cosmids, etc.) can be utilized to replicate the nucleic acids. In the context of this disclosure, the nucleic acid constructs typically are expression vectors that contain a promoter sequence which facilitates the efficient transcription of the inserted genetic sequence of the host. The expression vector typically contains an origin of replication, a promoter, as well as specific nucleic acid sequences that allow phenotypic selection of the transformed cells. More generally, polynucleotide sequences encoding hetero-bifunctional ligands or portions thereof of this disclosure can be operably linked to any promoter and/or enhancer that is capable of driving expression of the nucleic acid following introduction into a host cell. A promoter is an array of nucleic acid control sequences that directs transcription of a nucleic acid. Both constitutive and inducible promoters are included (see, for example, Bitter et al, Methods in Enzymology 153:516-544, 1987).
DNA sequences encoding a hetero-bifunctional ligand or portion thereof can be expressed in vitro by DNA transfer into a suitable host cell. The cell may be prokaryotic or eukaryotic. Hosts can include microbial, yeast, insect and mammalian organisms. The term also includes any progeny of the subject host cell. Methods of stable transfer, meaning that the foreign DNA is continuously maintained in the host, are known in the art.
Transformation of a host cell with recombinant DNA can be carried out by conventional techniques that are well known to those of ordinary skill in the art. Where the host is prokaryotic, such as E. coli, competent cells which are capable of DNA uptake can be prepared from cells harvested after exponential growth phase and subsequently treated by the CaCl2 method using procedures well known in the art. Alternatively, MgCl2 or RbCl can be used. Transformation can also be performed after forming a protoplast of the host cell if desired or by electroporation.
When the host is a eukaryote, such methods of transfection of DNA as calcium phosphate coprecipitates, conventional mechanical procedures such as microinjection, electroporation, insertion of a plasmid encased in liposomes or virus vectors can be used. Eukaryotic cells can also be co-transformed with polynucleotide sequences encoding hetero-bifunctional ligand or portions thereof and a second foreign DNA molecule encoding a selectable phenotype, such as the herpes simplex thymidine kinase gene. Another method is to use a eukaryotic viral vector, such as simian virus 40 (SV40) or bovine papilloma virus, to transiently infect or transform eukaryotic cells and express the protein (see for example, Eukaryotic Viral Vectors, Cold Spring Harbor Laboratory, Gluzman ed., 1982). Peptides can then be purified for host cells using methods known in the art.
Peptide Synthesis and Purification
Peptides derived from target or internalizing receptors may be produced, for example by chemically synthesis by any of a number of manual or automated methods of synthesis known in the art. In addition, peptides that form all or part of a hetero-bifunctional ligand can be produced synthetically. For example, solid phase peptide synthesis (SPPS) is carried out on a 0.25 millimole (mmole) scale using an Applied Biosystems Model 43 IA Peptide Synthesizer and using 9- fluorenylmethyloxycarbonyl (Fmoc) amino-terminus protection, coupling with dicyclohexylcarbodiimide/hydroxybenzotriazole or 2-(lH-benzo-triazol-l-yl)- 1,1,3,3 -tetramethyluronium hexafluorophosphate/ hydroxybenzotriazole (HBTU/HOBT) and using p-hydroxymethylphenoxymethylpolystyrene (HMP) or Sasrin resin for carboxyl-terminus acids or Rink amide resin for carboxyl-terminus amides.
Fmoc-derivatized amino acids are prepared from the appropriate precursor amino acids by tritylation and triphenylmethanol in trifluoroacetic acid, followed by Fmoc derivitization as described by Atherton et al. Solid Phase Peptide Synthesis, IRL Press: Oxford, 1989.
Sasrin resin-bound peptides are cleaved using a solution of 1% TFA in dichloromethane to yield the protected peptide. Where appropriate, protected peptide precursors are cyclized between the amino- and carboxyl-termini by reaction of the amino-terminal free amine and carboxyl-terminal free acid using diphenylphosphorylazide in nascent peptides wherein the amino acid sidechains are protected.
HMP or Rink amide resin-bound products are routinely cleaved and protected sidechain-containing cyclized peptides deprotected using a solution comprised of trifluoroacetic acid (TFA), optionally also comprising water, thioanisole and ethanedithiol, in ratios of 100 : 5 : 5 : 2.5, for 0.5 - 3 hours at room temperature.
Crude peptides are purified by preparative high pressure liquid chromatography (HPLC), for example using a Waters Delta-Pak Cl 8 column and gradient elution with 0.1% TFA in water modified with acetonitrile. After column elution, acetonitrile is evaporated from the eluted fractions, which are then lyophilized. The identity of each product so produced and purified may be confirmed by fast atom bombardment mass spectroscopy (FABMS) or electrospray mass spectroscopy (ESMS).
Peptides produced by such methods also can be used to produce antibodies that bind the peptide and hence the protein from which the peptide was derived, for example a target or internalizing receptor.
Pharmaceutical Compositions
The hetero-bifunctional ligands disclosed herein may be included in pharmaceutical compositions (including therapeutic and prophylactic formulations), which are typically combined together with one or more pharmaceutically acceptable vehicles or carriers and, optionally, other therapeutic ingredients. The hetero- bifunctional ligands disclosed herein may be advantageously combined and/or used in combination with other therapeutic agents, different from the subject hetero- bifunctional ligands depending on the specific condition or disease associated with
the target receptor-binding agent included as a component if the hetero-bifunctional ligand. For example, in situation where the target receptor-binding agent targets a receptor associated with cancer, it may be advantageous to use the hetero- bifunctional ligand with a chemotherapeutic agent. In many instances, co- administration of another agent in conjunction with the disclosed hetero-bifunctional ligands will enhance the efficacy of such agents.
Pharmaceutical compositions including a disclosed hetero-bifunctional ligand can be administered to subjects by a variety of routes, including by intramuscular, subcutaneous, intravenous, intra-arterial, intra- articular, intraperitoneal, intrathecal, intracerebro ventricular, parenteral routes, mucosal administration modes, including by oral, rectal, intranasal, intrapulmonary or transdermal delivery or by topical delivery to other surfaces. In other alternative embodiments, the hetero-bifunctional ligand can be used ex vivo by direct exposure to cells, tissues or organs originating from a subject and which are then administered to a subject, which can be in conjunction with administration of a hetero-bifunctional ligand to the subject.
To formulate the pharmaceutical compositions, the hetero-bifunctional ligand can be combined with various pharmaceutically acceptable additives, as well as a base or vehicle for dispersion of the compound. Desired additives include, but are not limited to, pH control agents, such as arginine, sodium hydroxide, glycine, hydrochloric acid, citric acid and the like. In addition, local anesthetics (for example, benzyl alcohol), isotonizing agents (for example, sodium chloride, mannitol, sorbitol), adsorption inhibitors (for example, Tween 80), solubility enhancing agents (for example, cyclodextrins and derivatives thereof), stabilizers (for example, serum albumin) and reducing agents (for example, glutathione) can be included. Adjuvants, such as aluminum hydroxide (for example, Amphogel, Wyeth Laboratories, Madison, NJ), Freund's adjuvant, MPL™ (3-O-deacylated monophosphoryl lipid A; Corixa, Hamilton, IN) and IL-12 (Genetics Institute, Cambridge, MA), among many other suitable adjuvants well known in the art, can be included in the compositions. When the composition is a liquid, the tonicity of the formulation, as measured with reference to the tonicity of 0.9% (w/v) physiological saline solution taken as unity, is typically
adjusted to a value at which no substantial, irreversible tissue damage will be induced at the site of administration. Generally, the tonicity of the solution is adjusted to a value of about 0.3 to about 3.0, such as about 0.5 to about 2.0 or about 0.8 to about 1.7. The hetero-bifunctional ligand can be dispersed in a base or vehicle, which can include a hydrophilic compound having a capacity to disperse the compound and any desired additives. The base can be selected from a wide range of suitable compounds, including but not limited to, copolymers of polycarboxylic acids or salts thereof, carboxylic anhydrides (for example, maleic anhydride) with other monomers (for example, methyl (meth)acrylate, acrylic acid and the like), hydrophilic vinyl polymers, such as polyvinyl acetate, polyvinyl alcohol, polyvinylpyrrolidone, cellulose derivatives, such as hydroxymethylcellulose, hydroxypropylcellulose and the like and natural polymers, such as chitosan, collagen, sodium alginate, gelatin, hyaluronic acid and nontoxic metal salts thereof. Often, a biodegradable polymer is selected as a base or vehicle, for example, polylactic acid, poly(lactic acid-glycolic acid) copolymer, polyhydroxybutyric acid, poly (hydroxybutyric acid-glycolic acid) copolymer and mixtures thereof. Alternatively or additionally, synthetic fatty acid esters such as polyglycerin fatty acid esters, sucrose fatty acid esters and the like can be employed as vehicles. Hydrophilic polymers and other vehicles can be used alone or in combination and enhanced structural integrity can be imparted to the vehicle by partial crystallization, ionic bonding, cross-linking and the like. The vehicle can be provided in a variety of forms, including fluid or viscous solutions, gels, pastes, powders and microspheres.
The hetero-bifunctional ligand can be combined with the base or vehicle according to a variety of methods and release of the compound can be by diffusion, disintegration of the vehicle or associated formation of water channels. In some circumstances, the compound is dispersed in microcapsules (microspheres) or nanocapsules (nanospheres) prepared from a suitable polymer, for example, isobutyl 2- cyanoacrylate (see, for example, Michael et al., J. Pharmacy Pharmacol. 43:1-5, 1991) and dispersed in a biocompatible dispersing medium, which yields sustained
delivery and biological activity over a protracted time.
The hetero-bifunctional ligands of the disclosure can alternatively contain as pharmaceutically acceptable vehicles substances as required to approximate physiological conditions, such as pH adjusting and buffering agents, tonicity adjusting agents, wetting agents and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate and triethanolamine oleate. For solid compositions, conventional nontoxic pharmaceutically acceptable vehicles can be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate and the like.
Pharmaceutical compositions for administering the hetero-bifunctional ligand can also be formulated as a solution, microemulsion or other ordered structure suitable for high concentration of active ingredients. The vehicle can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol and the like) and suitable mixtures thereof. Proper fluidity for solutions can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of a desired particle size in the case of dispersible formulations and by the use of surfactants. In many cases, it will be desirable to include isotonic agents, for example, sugars, polyalcohols, such as mannitol and sorbitol or sodium chloride in the composition. Prolonged absorption of the compound can be brought about by including in the composition an agent which delays absorption, for example, monostearate salts and gelatin.
In certain embodiments, the hetero-bifunctional ligand can be administered in a time-release formulation, for example in a composition which includes a slow release polymer. These compositions can be prepared with vehicles that will protect against rapid release, for example a controlled release vehicle such as a polymer, microencapsulated delivery system or bioadhesive gel. Prolonged delivery in various compositions of the disclosure can be brought about by including in the composition agents that delay absorption, for example, aluminum monostearate hydrogels and gelatin. When controlled release formulations are desired, controlled release binders
suitable for use in accordance with the disclosure include any biocompatible controlled release material which is inert to the active agent and which is capable of incorporating the hetero-bifunctional ligand and/or other biologically active agent. Numerous such materials are known in the art. Useful controlled-release binders are materials that are metabolized slowly under physiological conditions following their delivery (for example, at a mucosal surface or in the presence of bodily fluids). Appropriate binders include, but are not limited to, biocompatible polymers and copolymers well known in the art for use in sustained release formulations. Such biocompatible compounds are non-toxic and inert to surrounding tissues and do not trigger significant adverse side effects, such as nasal irritation, immune response, inflammation or the like. They are metabolized into metabolic products that are also biocompatible and easily eliminated from the body.
Exemplary polymeric materials for use in the present disclosure include, but are not limited to, polymeric matrices derived from copolymeric and homopolymeric polyesters having hydrolyzable ester linkages. A number of these are known in the art to be biodegradable and to lead to degradation products having no or low toxicity. Exemplary polymers include polyglycolic acids and polylactic acids, poly(DL-lactic acid-co-glycolic acid), poly(D-lactic acid-co-glycolic acid) and poly(L-lactic acid-co- glycolic acid). Other useful biodegradable or bioerodable polymers include, but are not limited to, such polymers as poly(epsilon-caprolactone), poly(epsilon-aprolactone- CO-lactic acid), poly(epsilon.-aprolactone-CO-glycolic acid), poly(beta-hydroxy butyric acid), poly(alkyl-2-cyanoacrilate), hydrogels, such as poly(hydroxyethyl methacrylate), polyamides, poly( amino acids) (for example, L-leucine, glutamic acid, L-aspartic acid and the like), poly(ester urea), poly(2-hydroxyethyl DL-aspartamide), polyacetal polymers, polyorthoesters, polycarbonate, polymaleamides, polysaccharides and copolymers thereof. Many methods for preparing such formulations are well known to those skilled in the art (see, for example, Sustained and Controlled Release Drug Delivery Systems, J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978). Other useful formulations include controlled-release microcapsules (U.S. Patent Nos. 4,652,441 and 4,917,893), lactic acid-glycolic acid copolymers useful in making
microcapsules and other formulations (U.S. Patent Nos. 4,677,191 and 4,728,721) and sustained-release compositions for water-soluble peptides (U.S. Patent No. 4,675,189).
The pharmaceutical compositions of the disclosure typically are sterile and stable under conditions of manufacture, storage and use. Sterile solutions can be prepared by incorporating the compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated herein, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the compound and/or other biologically active agent into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated herein. In the case of sterile powders, methods of preparation include vacuum drying and freeze-drying which yields a powder of the compound plus any additional desired ingredient from a previously sterile-filtered solution thereof. The prevention of the action of microorganisms can be accomplished by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal and the like.
In accordance with the various treatment methods of the disclosure, the compound can be delivered to a subject in a manner consistent with conventional methodologies associated with management of the disorder for which treatment or prevention is sought. In accordance with the disclosure herein, a prophylactically or therapeutically effective amount of the compound and/or other biologically active agent is administered to a subject in need of such treatment for a time and under conditions sufficient to prevent, inhibit, and/or ameliorate a selected disease or condition or one or more symptom(s) thereof.
Typical subjects intended for treatment with the hetero-bifunctional ligand and methods of the present disclosure include humans, as well as non-human primates and other animals. To identify subjects for prophylaxis or treatment according to the methods of the disclosure, accepted screening methods are employed to determine risk factors associated with a targeted or suspected disease of condition (for example, a disease associated with a particular target receptor, such that the induced internalization of the target receptor would provide a benefit to the subject) or to
determine the status of an existing disease or condition in a subject. These screening methods include, for example, diagnostic methods, such as various ELISA and other immunoassay methods, which are available and well known in the art to detect and/or characterize disease-associated markers. These and other routine methods allow the clinician to select patients in need of therapy using the methods and pharmaceutical compositions of the disclosure.
The administration of the hetero-bifunctional ligand of the disclosure can be for either prophylactic or therapeutic purpose. When provided prophylactically, the hetero-bifunctional ligand is provided in advance of any symptom. The prophylactic administration of the compound serves to prevent or ameliorate any subsequent disease process. When provided therapeutically, the compound is provided at (or shortly after) the onset of a symptom of disease or infection.
For prophylactic and therapeutic purposes, the hetero-bifunctional ligand can be administered to the subject in a single bolus delivery, via continuous delivery (for example, continuous transdermal, mucosal or intravenous delivery) over an extended time period or in a repeated administration protocol (for example, by an hourly, daily or weekly, repeated administration protocol). The therapeutically effective dosage of the compound can be provided as repeated doses within a prolonged prophylaxis or treatment regimen that will yield clinically significant results to alleviate one or more symptoms or detectable conditions associated with a targeted disease or condition as set forth herein. Determination of effective dosages in this context is typically based on animal model studies followed up by human clinical trials and is guided by administration protocols that significantly reduce the occurrence or severity of targeted disease symptoms or conditions in the subject. Suitable models in this regard include, for example, murine, rat, porcine, feline, non-human primate and other accepted animal model subjects known in the art. Alternatively, effective dosages can be determined using in vitro models (for example, immunologic and histopathologic assays). Using such models, only ordinary calculations and adjustments are required to determine an appropriate concentration and dose to administer a therapeutically effective amount of the hetero-bifunctional ligand (for example, amounts that are
effective to alleviate one or more symptoms of a targeted disease or condition). In alternative embodiments, an effective amount or effective dose of the hetero- bifunctional ligand may simply inhibit or enhance one or more selected biological activities correlated with a disease or condition. The actual dosage of a hetero-bifunctional ligand will vary according to factors such as the disease indication and particular status of the subject (for example, the subject's age, size, fitness, extent of symptoms, susceptibility factors and the like), time and route of administration, other drugs or treatments being administered concurrently, as well as the specific pharmacology of the hetero-bifunctional ligand for eliciting the desired activity or biological response in the subject. Dosage regimens can be adjusted to provide an optimum prophylactic or therapeutic response. A therapeutically effective amount is also one in which any toxic or detrimental side effects of the compound and/or other biologically active agent is outweighed in clinical terms by therapeutically beneficial effects. A non-limiting range for a therapeutically effective amount of a hetero-bifunctional ligand and/or other biologically active agent within the methods and formulations of the disclosure is about 0.01 mg/kg body weight to about 10 mg/kg body weight, such as about 0.05 mg/kg to about 5 mg/kg body weight or about 0.2 mg/kg to about 2 mg/kg body weight. Dosage can be varied by the attending clinician to maintain a desired concentration at a target site. Higher or lower concentrations can be selected based on the mode of delivery, for example, trans-epidermal, rectal, oral, pulmonary, intranasal delivery, intravenous or subcutaneous delivery. To achieve the same serum concentration level, for example, slow-release particles with a release rate of 5 nanomolar (under standard conditions) would be administered at about twice the dosage of particles with a release rate of 10 nanomolar.
Also disclosed are kits, packages and multi-container units containing the herein described pharmaceutical compositions, such as pharmaceutical compositions containing one or more of the hetero-bifunctional ligands, active ingredients, and/or means for administering the same for use in the prevention and treatment of diseases
and other conditions in subjects. In one embodiment, these kits include a container or formulation that contains one or more of the hetero-bifunctional ligands described herein. In one example, this component is formulated in a pharmaceutical preparation for delivery to a subject. The hetero-bifunctional ligand is optionally contained in a bulk dispensing container or unit or multi-unit dosage form.
Packaging materials optionally include a label or instruction indicating for what treatment purposes and/or in what manner the pharmaceutical agent packaged therewith can be used.
Methods of Treatment
The disclosed hetero-bifunctional ligands can be used to internalize a receptor whose function contributes to a disease or condition. It can be determined if the internalization of a specific receptor (and subsequent loss of signaling capability) would be beneficial for a certain disease or condition. For example, cancer cells can express cell-surface receptors by which they receive proliferation signals, such as through autocrine or paracrine pathways. For cancer cells that express an internalization receptor, hetro-bifunctional ligands can be produced that target the internalizing receptor and a receptor that receives signals to induce proliferation of the cancer cell. Such a hetero-bifunctional ligand can be used to treat cancer by inhibiting the proliferation of the cancer cells. By inhibiting the proliferation of the cancer cells, hetero-bifunctional ligands can be used to treat or inhibit tumor growth and/or metastasis. In one example, VEGFRs are known to be involved in angiogenesis during tumor growth, thus a hetero-bifunctional ligand that is capable of inducing the internalization of VEGFR could be used to inhibit angiogenesis, for example to treat or inhibit tumor growth and/or metastasis. In another example, a target receptor that is a known site of viral binding and or entry can be internalized into the interior of the cell, so that the receptor is no longer available for the virus to use as either a viral binding site or entry site. In a specific example, a hetero-bifunctional ligand can be produced that includes a ligand for a cytokine receptor (such as CXCR4 and CCR5) used by HIV to assist in the entry of
HIV into the cell, thus the disclosed hetero-bifunctional ligand can be used to internalize the cytokine receptor and inhibit the entry of HIV into the cell. In another example, a target receptor known to contribute to an autoimmune disorder can be internalized into the interior of the cell, so that the receptor is no longer available for ligand binding that contributes to the autoimmune disorder. Tissue Necrosis Factor (TNF) is known to be associated with autoimmune disorders, such as rheumatoid arthritis, juvenile rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis and plaque psoriasis. Thus, a hetero-bifunctional ligand that includes a ligand for a TNF receptor (such as TNF) can be used to internalize the TNF receptor and treat the autoimmune disorder. In another example, interleukin 6 (IL-6) is known to play a pathogenic role in rheumatoid arthritis, post transplant lymphoproliferative disease, Castleman's disease and atrial myxomas. Thus, a hetero-bifunctional ligand that includes a ligand for the IL-6 receptor (such as IL-6) can be used to internalize the IL-6 receptor and treat rheumatoid arthritis, post transplant lymphoproliferative disease, Castleman's disease or atrial myxoma. In another example, a hetero- bifunctional ligand can be produced that promotes angiogenesis when administrered to a subject, for example by internalizing Notch 4, thereby rendering that receptor unavailable to bind Delta-like-4, a natural inhibitor of angiogenesis. Such a hetero- bifunctional ligand can be used for the promotion of angiogenesis for example for the treatment of angina, peripheral vascular insufficiency and coronary artery disease.
Aspects of this disclosure concern a method for treating a disease or condition associated with increased activation and/or functional abnormalities of a target receptor. Such methods include administering to a subject a therapeutic amount of a pharmaceutical composition that includes a hetero-bifunctional ligand, such as a hetero-bifunctional ligand disclosed herein. The hetero-bifunctional ligand present in the pharmaceutical composition binds to a target receptor whose function contributes to the disease or condition and induces the internalization of the target receptor, thereby treating the disease or condition.
In some embodiments, the disease or condition treatable with a disclosed hetero-bifunctional ligand is a viral infection in a subject. Examples of viruses that can be treated by selectively internalizing a receptor which the virus binds to gain entry into a cell include human adenovirus A, human adenovirus B, human adenovirus C, human adenovirus D, human adenovirus E, human adenovirus F, human astrovirus, human BK polyomavirus, human bocavirus, human coronavirus, human enterovirus, human foamy virus, human herpesvirus, Varicella zoster virus, Epstein-Barr virus, human herpesvirus, human immunodeficiency virus, human metapneumovirus, human papillomavirus, human parainfluenza virus, human parechovirus, human parvovirus, human respiratory syncytial virus, human rhinovirus, human spumaretro virus, human T-lympho tropic virus, cytomegalovirus (CMV) and lenti virus, such as an HIV virus, such as HIV-I or HIV-2. A method of inhibiting or treating a viral infection in a subject includes administering to the subject a pharmaceutical composition that includes a hetero-bifunctional ligand that has a target receptor-binding agent that specifically binds to a receptor used as a site of viral attachment and/or entry into the cell, in which the hetero-bifunctional ligand present in the pharmaceutical composition binds to the target receptor and induces the internalization of the receptor, thereby treating or inhibiting the viral infection.
Method for Inhibiting Angiogenesis
In some embodiments, the disease or condition treatable with a disclosed hetero-bifunctional ligand is dependant on the grown of new blood vessels, for example, macular degeneration, diabetic retinopathy and rheumatoid arthritis and cancer, such as a primary or metastatic cancer. Cancers rely on neovascularization to grow locally and produce metastasis. Thus a reduction in angiogenesis is beneficial to treat cancer. Examples of types of cancer that can be treated using the disclosed hetero-bifunctional ligands are leukemias, including acute leukemias (such as acute lymphocytic leukemia, acute myelocytic leukemia, acute myelogenous leukemia and myeloblastic, promyelocytic, myelomonocytic, monocytic and erythroleukemia), chronic leukemias (such as chronic myelocytic (granulocytic)
leukemia, chronic myelogenous leukemia and chronic lymphocytic leukemia), polycythemia vera, lymphoma, Hodgkin's disease, non-Hodgkin's lymphoma (indolent and high grade forms), multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, myelodysplastic syndrome, hairy cell leukemia and myelodysplasia, solid tumors, such as sarcomas and carcinomas, include fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma and other sarcomas, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon cancer (such as colon carcinoma), gastric cancer, (for example, gastric adenocarcinoma, such as intestinal type gastric adenocarcinoma and diffuse type gastric adenocarcinoma ), lymphoid malignancy, pancreatic cancer, breast cancer (such as adenocarcinoma), lung cancers, gynecological cancers (such as cancers of the uterus (for example endometrial carcinoma), cervix (for example cervical carcinoma, pre-tumor cervical dysplasia), ovaries (for example, ovarian carcinoma, serous cystadenocarcinoma, mucinous cystadenocarcinoma, endometrioid tumors, celioblastoma, clear cell carcinoma, unclassified carcinoma, granulosa-thecal cell tumors, Sertoli-Leydig cell tumors, dysgerminoma, malignant teratoma), vulva (for example squamous cell carcinoma, intraepithelial carcinoma, adenocarcinoma, fibrosarcoma, melanoma), vagina (for example clear cell carcinoma, squamous cell carcinoma, botryoid sarcoma), embryonal rhabdomyosarcoma and fallopian tubules (for example carcinoma), prostate cancer, hepatocellular carcinoma, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, medullary thyroid carcinoma, papillary thyroid carcinoma, pheochromocytomas sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, Wilms' tumor, cervical cancer, testicular tumor, seminoma, bladder carcinoma and CNS tumors (such as a glioma, astrocytoma, medulloblastoma, craniopharyogioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, menangioma, melanoma, neuroblastoma and retinoblastoma) and skin cancer (such as melanoma and non-melonoma).
In specific embodiments, the method is a method of inhibiting angiogenesis. Such a method includes administering to a subject a pharmaceutical composition that includes a disclosed hetero-bifunctional ligand, wherein the hetero-bifunctional ligand present in the pharmaceutical composition binds to the receptor for which VEGF-A is a ligand and induces the internalization of the receptor for which VEGF- A is a ligand, thereby inhibiting angiogenesis. In some embodiments, the method is a method of treating or inhibiting cancer. In specific embodiment VEGF-A (the ligand for the receptor VEGFR-2 and co-receptor Neuropilin-1) is linked to Acetylated-LDL (a scavenger ligand which induces the internalization of scavenger receptors). In another specific embodiment VEGF-A (the ligand for the receptor
VEGFR-2 and co-receptor Neuropilin-1) is linked to an oligonucleotide (a scavenger ligand which induces the internalization of scavenger receptors), such as poly G or a derivative thereof.
Method of Inhibiting HIV Binding or Infection
Methods are provided herein for inhibiting HIV binding to a cell, HIV infection or a combination thereof via administering an agent including at least one hetero-bifunctional ligand that induces the internalization of a receptor used by HIV to bind a cell or gain entry into a cell, such as a hetero-bifunctional ligand that binds to and induces the internalization of CCR5 or CXCR4. In one example, HIV infection can be reduced or inhibited by contacting a cell with an effective amount of an agent including bifunctional ligands that induce the internalization of a receptor used by HIV to bind a cell or gain entry into a cell. The agent specifically induces the internalization of the receptor used by HIV to bind a cell or gain entry into a cell and thereby reduces or inhibits HIV infection. This inhibition translates to a reduction of HIV replication and spread in infected individuals. In specific embodiments, the method is a method of treating or inhibiting HIV infection in a subject. Such a method includes administering a pharmaceutical composition that includes a hetero-bifunctional ligand that has a target receptor-binding agent that specifically binds to a target receptor used as a site of HIV attachment and/or entry
into the cell, for example a cytokine receptor, such as CCR5 or CXCR4, in which the hetero-bifunctional ligand present in the pharmaceutical composition binds to the target receptor used as a site of HIV attachment and/or entry into the cell and induces the internalization of the receptor, thereby treating or inhibiting the HIV infection. HIV infection does not need to be completely eliminated for the composition to be effective. For example, a composition can decrease HIV infection by a desired amount, for example by at least 10%, at least 20%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 98% or even at least 100% (elimination of detectable HIV infected cells), as compared to HIV infection in the absence of the composition. In another example, the cell is also contacted with an effective amount of an additional agent, such as anti-viral agent. The cell can be in vivo or in vitro.
In additional examples, HIV replication can be reduced or inhibited by similar methods. For example, methods can include contacting a cell with an effective amount of an agent including receptor used by HIV to bind a cell or gain entry into a cell and thereby reduces or inhibits HIV replication.
The HIV replication does not need to be completely eliminated for the composition to be effective. For example, a composition can decrease HIV replication by a desired amount, for example by at least 10%, at least 20%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 98% or even at least 100% (elimination of detectable HIV), as compared to HIV replication in the absence of the composition. In example, the cell is also contacted with an effective amount of an additional agent, such as anti-viral agent. The cell can be treated in vivo, in vitro or ex vivo.
EXAMPLES
Example 1 Materials and Methods This example describes exemplary reagents and methods used in the examples that follow.
Reagents and Cytokines
Porcine heparin sodium salt, chondroitin sulfate A, B, shark cartilage chondroitin 6-sulfate (chondroitin sulfate C), dextran, dextran sulfate Mx 8,000, Mx 500,000, Fucoidan Mx 66,410 and bovine fibronectin were obtained from Sigma (St. Louis, MO). Bovine kidney heparin sulfate was obtained from CALBIOCHEM® (San Diego, CA). Recombinant human VEGF165, chimeric rat NRPl/Fc, human Sema3A/Fc, SREC-I/Fc, gpl30/Fc and B7-1/Fc were obtained from R&D SYSTEMS® (Minneapolis, MN). Ac-LDL and l.l'-dioctadecyl- Ac-LDL (DiO- Ac- LDL) were obtained from Biomedical Technologies (Stoughton, MA). Alexa-fluor 488 Ac-LDL was obtained from INVITROGEN™ (Carlsbad, CA).
Cells and Culture Conditions Primary human umbilical vein endothelial cells (HUVEC) were prepared and maintained as previously described (Salvucci et al, Blood 99:2703-2711, 2002).
HUVEC were used between the second and the fifth passage. The cell line RS4;11
(RS4, ATCC, Manassas, VA) was maintained in RPMI 1640 with 10% FBS; the cell line HS-5, COS7 and HEK-293 (ATCC) were maintained in Dulbecco's Modified Eagle's Medium (DMEM) with 10% FBS. The murine plasmacytoma MOPC-315 cell line was propagated in RPMI 1640 with 10% FBS and 55μM 2- mercaptoethanol.
NRPl -heparin binding assay
Heparin was biotinylated as described previously (De La Luz Sierra et al. Blood 103:2452-2459, 2004). Biotinylated heparin (1.8 U/ml in PBS) was injected onto the flow cell of the Sensor Chip SA (Biacore, Piscataway, NJ). 500 resonance units (RUs) of biotinylated heparin were immobilized. NRPl -heparin binding was analyzed by using the BIAcore 3000 system (Biacore). NRPl/Fc protein (20 nM) was diluted in HEPES (4-(2-hydroxyethyl)-l-piperazineethanesulfonic acid) buffer saline containing 0.005% Surfactant P20 (HBS-P, Biacore) injected over the heparin-coated or control flow cell surface at a flow rate 50 μl/min at 25°C. Association and dissociation phases were evaluated for 2 minutes. The sensor chip was regenerated with pulse of 2 M NaCl for 30 seconds. The data was analyzed using BIAevaluation software (Biacore). Immunocomplexes were visualized using a chemiluminescence detection system (GE Healthcare, Buckinghamshire, UK).
Affinity purification with immobilized polysaccharide gels
NRPl/Fc or gpl30/Fc were incubated with heparin-gel, dextran sulfate-gel or maltose-gel (EY Laboratories, San Mateo, CA) at 25°C for 1 hour. After washing with phosphate-buffered saline (PBS) (x3), gels were suspended in tricine SDS sample buffer (INVITROGEN™) and incubated at 1000C for 5 minutes. Extracts were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS- PAGE), transferred onto nitrocellulose membrane (INVITROGEN™), blocked (5% skim milk in PBS 0.1% Tween20) and immunostained using biotin-conjugated anti- human IgGl Ab (ZYMED®, South San Francisco, CA), followed by incubation with a horse radish peroxidase (HRP) conjugated streptavidin (ZYMED®).
Flow cytometric analysis
HUVEC were detached with 5 mM ethylene-diamine-tetra-acetic acid (EDTA) in PBS, washed with 1% fetal bovine serum (FBS) buffer (MEDIUM 199, 1% FBS, 10 mM HEPES) and incubated with polysaccharides. After rinsing (x2) with IM NaCl with 0.2% bovine serum albumin (BSA) followed by binding buffer
(x2), cells were stained with PE-anti-BDCA-4 (NRPl) mAb (AD5-17F6; Miltenyi Biotec, Auburn, CA), PE-anti- VEGFR-I mAb (49560; R&D Systems), PE-anti- VEGFR-2 mAb (89106; R&D SYSTEMS®), FITC-anti-CD31 mAb (WM59; BD Biosciences, San Jose, CA), PE-anti- VE-cadherin mAb (123413; R&D SYSTEMS®), PE-anti-CXCR4 mAb (2B 11 ; BD Biosciences) or anti-NRP2 mAb (C-9; Santa Cruz Biotechnology, Santa Cruz, CA), anti-gpl30 mAb (AM64; BD Biosciences) or anti-SREC-I Ab (AF2409; R&D Systems) followed by Alexa 488- conjugated anti-mouse Ab or Alexa 488-conjugated anti-goat Ab (INVITROGEN™). Data were collected using a FACScalibur® cytofluorometer (BD, Franklin Lakes, NJ).
Laser confocal microscopy
Endothelial cells growing onto glass chamber slides (Nalge Nunc International, Rochester, NY) coated with 5 μg/ml fibronectin were incubated in 1% FBS buffer with DS500 (8 μg/ml) and protease inhibitor cocktail III
(CALBIOCHEM®) at 37°C for the indicated times. The medium was replaced with 4% wt/vol paraformaldehyde for fixation, cells were washed with PBS and permeabilized with 0.1% Triton XlOO in PBS. Cells were stained with mouse anti- human NRPl mAb, rabbit anti-human Lampl Ab (PA1-654A; AFFEvJITY BIOREAGENTS™, Golden, CO) or goat anti-human SREC-I Ab in PBS with 3% BSA and 3% FBS at 4°C for 16 hours. After washing, slides were incubated with Alexa 488-conjugated anti-mouse IgG Ab, Alexa 594-conjugated anti-rabbit IgG Ab or Alexa 488 or 594-conjugated anti-goat IgG Ab (INVITROGEN™), washed and mounted with VECTASHIELD® with DAPI (Vector Laboratories, Burlingame, CA). Images were obtained using the LSM 510 Zeiss confocal microscope (Carl Zeiss Microimaging, Thornwood, NY).
Western blot analysis
After incubation of endothelial cells in 1% FBS buffer with 2 μg/ml of DS500, cell pellets were suspended in lysis buffer (0.5% NP40, 150 mM NaCl, 10 mM TrisHCl pH 7.4) with protease inhibitor cocktail EI. Cell lysates were separated by SDS-PAGE, transferred onto nitrocellulose membranes and immunostained using rabbit anti-NRPl Ab (SANTA CRUZ BIOTECHNOLOGY®), followed by incubation with an HRP-conjugated anti-rabbit IgG Ab (GE Healthcare). Immunocomplexes were visualized using a chemiluminescence detection system (GE Healthcare, Buckinghamshire, UK). The membrane was re-blotted with goat anti-actin Ab (SANTA CRUZ BIOTECHNOLOGY®). Band intensities were measured.
Forced expression of SREC-I and NRPl
Human NRPl in pCMV6-XL4 was from OriGene Technologies (Rockville, MD). Human SREC-I in pCMV-SPORT6 was from Open Biosystems (Hunstsville, AL). Plasmid vectors were transfected into HEK-293 or CHO-Kl cells with the use of LIPOFECTAMINE™ 2000 (INVITROGEN™). Cells were harvested 2 days after transfection for analysis.
ELISA-based binding assays
Flat-bottom microtiter plates (96 well; EVIMULON™ 4HBX, Thermo Labsystems, Franklin, MA) were coated with control human IgGl (CALBIOCHEM®) or SREC-I/Fc chimeric protein (2 μg/ml). After blocking with PBS 0.1% Tween20 5% BSA, NRPl/Fc or control B7-1/Fc in PBS 0.1% Tween20 1% BSA were added with or without polysaccharide. Bound NRPl/Fc or B7-1/Fc was detected by anti-His mAb (INVITROGEN™), followed by HRP-conjugated anti-mouse IgG Ab (GE Healthcare). Reactions were visualized with tetramethoxybenzene peroxidase substrate (KPL, Gaithersburg, MD) followed by addition of 1 M H2SO4 and read at 450nm.
Cell binding assays
HUVEC were incubated in 1% FBS buffer with or without polysaccharides. Cells were washed with IM NaCl twice, with 1% FBS buffer once, then incubated with Sema3A/Fc (2 μg/ml) or biotinylated VEGFi65 (100 ng/ml) (R&D SYSTEMS®) in 1% FBS buffer with 2 μg/ml heparin at 00C for 1 hour.
Sema3A/Fc or biotinylated VEGFi6S bound to cells was detected with FITC- conjugated F(ab')2 goat anti-human IgG Fc (Jackson ImmunoResearch Laboratories, West Grove, PA) or Avidin-FITC (R&D SYSTEMS®). Data were collected using a FACSCALIBUR® cytofluorometer.
Endothelial cell retraction assay
HUVEC were incubated in 1% FBS buffer with or without DS500 (2 μg/ml) or Fucoidan (8 μg/ml) at 37°C for 1 hour. After washing (x3) with assay medium (1% FBS buffer with 2 μg/ml heparin), HUVEC (16,000 cells/chamber) were added to the four-chamber glass slides pre-coated with 5 μg/ml fibronectin. After 1 hour stimulation with Sema3A (2 μg/ml, 1 hour), cell were fixed with 4% wt/vol paraformaldehyde; an average retraction score was obtained, as described (Narazaki and Tosato, Blood 107:3892-3901, 2006).
Endothelial cell proliferation assay
HUVEC (2,000 cells/well) were cultured 3 days in 96-well tissue culture plates (Corning) in MEDIUM199 with 10% FBS and 25 μg/ml heparin, with or without 25 ng/ml of VEGF165. Proliferation was measured by 3H thymidine uptake (0.6 μCi/well, New England Nuclear) during the last 16 hours of culture.
In vivo Matrigel™ and tumor angiogenesis assays
All animal experiments were approved by the NCI-Bethesda Animal Care and Use Committee. The MATRIGEL™ assay was performed essentially as described. Mice (female C57BL/6J and BALB /cAnNCr 6-7 weeks old; The Jackson Laboratory, Bar Harbor, Maine ) were injected subcutaneously (s.c.) with
0.5 ml MATRIGEL™ (BD Biosciences, Bedford, MA) containing VEGFi65 (0 or 150 ng/ml) plus heparin (0 or 500 ng/ml). The tumor angiogenesis assay was carried out in female BALB/cAnNCr mice (6-weeks old). Mice were injected s.c. with 107 MOPC 315 mouse (BALB/c) plasma-cell tumor line (Eisen et al, Biochemistry 7:4126-4134, 1968). After injection of MATRIGEL™ or MOPC315 tumor cells, mice were injected intraperitoneally (i.p.) with polysaccharides (dextran, DS500 or Fucoidan 1 mg in 0.2 ml saline). Treatment was repeated daily for 6 (MATRIGEL™ assay) or 7 (tumor assay) days; plugs and tumors were removed 24 hours later. Tumor size (product of maximum perpendicular caliper measurements) and weight were measured. Tissues were fixed (cold 4% paraformaldehyde in PBS), soaked in 15 and 30% sucrose, embedded in OCT and processed for histology. Sections were stained with H&E and immunostained for CD31 with purified rat anti- mouse CD31/PECAM monoclonal antibody (BD Pharmingen) followed by Alexa- fluor 488-conjugated goat anti-rat IgG (MOLECULAR PROBES®) with DAPI. Angiogenesis was evaluated by digital measurement (IPLab software, Bio Vision Technologies, Inc. Exton, PA) of CD31 -positive cells within MATRIGEL™ plugs and tumor tissues. The results are expressed as the mean surface area occupied by CD31 -positive cells/unit area (μm2/106 μm2).
Statistical analysis
Results are expressed as means ±SD or SEM. Student's ?-test was applied to evaluate group differences; ap-value of < 0.05 was considered significant.
Example 2 Analysis of NRPl Binding to Polysaccharides
Trials were carried out to determine whether other polysaccharides besides heparin can bind to NRPl. Using surface plasmon resonance (Biacore system), it was confirmed that recombinant NRPl extracellular domain dose-dependently binds to a heparin-coated sensor chip. Based on the results of 3 trials, the Kd for the NRPl-heparin interaction was calculated at 0.69±0.13 nM (association rate constant
(ka) 5.7±l.lxlO6 I/Ms and dissociation rate constant (kd) 3.9±0.19xl0~3 1/s). Using this system, the effects of various polysaccharides on the binding of NRPl to immobilized heparin were examined (see FIG. IA). Heparin itself at 1 μg/ml and to a lower extent at 0.1 μg/ml reduced the binding of NRPl to heparin. Within a panel of 8 polysaccharides, dextran sulfate (DS) with Mr. 500k Da (DS500), Fucoidan (1 and 0.1 μg/ml) and DS with Mr. 8k Da (DS8) (1 μg/ml) prevented the binding of NRPl to heparin. Heparan sulfate (HS), chondroitin sulfate A (ChoSul A), ChoSul B, ChoSul C and non-sulfated dextran (all at 1 μg/ml) minimally affected the binding of NRPl to heparin. These results demonstrate that DS500 and Fucoidan inhibit NRPl binding to heparin, suggesting that these polysaccharides can bind to NRPl. Binding of recombinant NRPl/Fc to immobilized DS (average Mr. 5k Da) was also assessed. Heparin- and maltose-gel were used as controls for DS-gel and gpl30/Fc was used as a control for NRPl/Fc. NRPl/Fc could be affinity purified abundantly from heparin-gel and DS-gel, but only a little from control maltose- gel. gpl30/Fc was not able to be eluted from these gels (see FIG. IB). These results demonstrate that DS directly binds to NRPl.
Example 3 Effects of DS500 and Fucoidan on Cell-surface NRPl This example describes exemplary methods for determining that DS500 and
Fucoidan bind NRPl on a cell surface.
DS500 and Fucoidan were tested for their ability to bind to cell-surface NRPl and modulate its function. Primary human umbilical vein endothelial cells (HUVEC) were incubated with each of the polysaccharides tested in FIG. IA at 37°C for 1 hour and after washing with IM NaCl (which effectively removes NRPl from heparin as assessed by Biacore), levels of cell-surface NRPl were measured by flow cytometry. As shown in FIG. 1C, DS500 and to a lower degree Fucoidan reduced NRPl levels on HUVEC, but all other polysaccharides, including heparin, did not. By the same method, DS500 reduced cell-surface NRP2 and to a lower
extent VEGFR-I and VEGFR-2, but minimally reduced cell-surface CD31, VE- cadherin, gpl30 or CXCR4 (FIG. ID), indicating that DS500 does not indiscriminately alter detection of cell-surface molecules. Similar results were derived with Fucoidan. As shown in FIG. IE, the conditions for reduction of cell- surface NRPl and NRP2 by DS500 were examined. At 37°C, but not at 00C, DS500 dose-dependently reduced cell-surface NRPl and NRP2, with maximal inhibition at 2 μg/ml and ED50 of 1.0±0.13 μg/ml (2.0±0.26 nM) (average of three trials). This reduction occurred progressively over 90 minutes. Thus, DS500 reduced cell- surface NRPl on endothelial cells in a temperature, concentration and time- dependent manner. By using fluorescence microscopy, it was confirmed visually that cell-surface NRPl and NRP2 is reduced on HUVEC after 1 hour incubation with DS500 (8 μg/ml) at 37°C compared to control cells incubated in medium only (see, for example, FIG. IF). The effect of human serum on the reduction of cell- surface NRPl by DS500 was also examined. As shown in FIG. IG, DS500 dose- dependently reduced cell-surface NRPl on HUVEC in the presence of 95% human serum and the reduction was similar to that achieved in the presence of 1% human serum. Thus, DS500 reduces cell-surface NRPl on endothelial cells in the presence of high serum concentrations.
Example 4
DS500 and Fucoidan Promote the Internalization of Cell-surface NRPl
This example describes exemplary procedures for determining that DS500 and Fucoidan promote the internalization of cell-surface NRPl.
To determine whether DS500 and Fucoidan promote the internalization of NRPl, using confocal microscopy, NRPl was traced in endothelial cells after 10-60 minutes incubation with DS500 (8 μg/ml) at 37°C. At time 0, NRPl is minimally detectable in HUVEC that have been fixed and permeabilized. After 10 minutes, NRPl staining is visible at low levels and becomes progressively more intense. After 60 minutes, NRPl is clearly identified by a vesicular-like staining (FIG. 2A) and co-localizes with Lampl (lysosome associated membrane protein-1) (FIG. 2B).
Similar results were obtained with Fucoidan. These observations demonstrated that DS500 promotes NRPl internalization and trafficking to the lysosomal compartment. Western-blot analysis of endothelial cell lysates showed that the intensity of the NRPl-related band decreases after incubation with DS500 longer than 30 minutes (FIG. 2C), indicating that NRPl is degraded in the lysosomes.
Together, these results demonstrate that DS500 promotes NRPl internalization from the cell-surface to the cytoplasm where it reaches the lysosome and is degraded.
Example 5 DS500 and Fucoidan Promote the Internalization of Cell-surface SREC-I
This example describes exemplary methods used to determine that DS500 and Fucoidan promote the internalization of cell-surface SREC-I.
To determine the mechanisms underlying NRPl internalization induced by DS500 it was tested whether binding of DS500 to cell-surface NRPl is sufficient for internalization. Besides HUVEC, NRPl is detected on the human leukemia RS4 and the human stromal HS-5 cell lines and on COS7 cells transduced with human NRPl (COS7-NRP1) (FIG. 3A). DS500 dose-dependently reduced cell-surface NRPl on HUVEC, but failed to do so on RS4, HS-5 or COS7-NRP1 cells (FIG. 3B), indicating that NRPl internalization by DS500 requires additional components, which are present in HUVEC but not in the other cell types tested. One of the parameters found that distinguishes HUVEC from RS4, HS-5 and COS7-NRP1 is expression of scavenger receptors, which mediate the uptake of LDL modified by acetylation or oxidation. Some of the scavenger receptors are known to interact with sulfated polysaccharides. As shown in FIG. 3C, HUVEC displayed a dose- dependent uptake of DiO-Ac-LDL, whereas RS4, HS-5 and COS7-NRP1 displayed only minimal uptake. Unlabeled Ac-LDL blocked uptake of DiO-Ac-LDL in HUVEC, indicating the Ac-LDL specificity of DiO-Ac-LDL uptake in these cells.
Several scavenger receptors have been identified in endothelial cells. Focusing on SREC-I (scavenger receptor expressed by endothelial cells-I), as it is highly expressed on HUVEC, it was determined that SREC-I can mediate the uptake
of Ac-LDL in HUVEC. By confocal microscopy, it was found that Ac-LDL promotes the intracellular accumulation of SREC-I (FIG. 4A, upper panels) and that internalized SREC-I and Ac-LDL co-localize at least in part within HUVEC (FIG. 4A, lower panels). This result demonstrate that SREC-I can mediate the uptake of Ac-LDL in HUVEC and that SREC-I itself is internalized after binding to its ligand. Certain sulfated polysaccharides can bind to selected scavenger receptors and block Ac-LDL uptake. Thus, it was determined whether DS500, Fucoidan and other sulfated polysaccharides could serve as ligands for SREC-I. Using FACS analysis for detection of cell surface SREC-I, it was determined that DS 500 and to a lower degree Fucoidan reduced cell-surface SREC-I in HUVEC when incubated for 1 hour at 370C, whereas heparin, HS, ChoSul A, ChoSul B, ChoSul C and non-sulfated dextran did not (FIG. 4B). VEGF165 reduced cell surface NRPl but not SREC-I in HUVEC. This reduction of cell-surface SREC-I induced by DS500 in HUVEC was temperature, dose and time dependent (FIG. 4C). It was then determined that, like Ac-LDL, DS500 can promote the internalization of SREC-I in endothelial cells. After HUVEC were incubated with DS500 for 1 hour at 37°C, SREC-I displayed a vesicular-like cytoplasmic staining pattern, indicative of SREC-I internalization (FIG. 4D). Similar results were derived by incubation with Fucoidan. The internalized SREC-I co-localized in part with Lampl, indicative of lysosomal localization (FIG. 4E).
Example 6
Sulfated Polysaccharides Bridge the Extracellular Domains of NRPl and SREC-I and Induce the Coordinate Internalization of NRPl and SREC-I This example describes exemplary procedures for determining that sulfated polysaccharides induce the internalization of NRPl through concomitant interaction with NRPl and SREC-I.
Since DS500 and Fucoidan selectively promote NRPl and SREC-I internalization in HUVEC (FIGs. 1 and 4) under remarkably similar conditions (concentration, temperature and length of incubation), it was tested whether the two
polysaccharide-induced effects were linked. After incubation with polysaccharides (37°C, 1 hour) and permeabilization, it was found that DS500 and Fucoidan, but not heparin or ChoSul A, promoted the internalization of SREC-I and NRPl; importantly, it was found that internalized NRPl and SREC-I co-localize in structures (FIG. 5A, right panels, yellow) that were identified as lysosomes (FIGS. 2B and 4E). It was directly tested whether DS500 can bridge SREC-I and NRPl by using an ELISA-based assay in which SREC-I/Fc or control IgGl is immobilized onto the well and NRPl/Fc is then added with DS500 at varying concentrations. As shown in FIG. 5B, it was found that DS500 dose-dependently promotes the binding of NRPl to SREC-I (open circles), but not to IgGl (closed circles); maximal NRPl binding to SREC-I occurred at the DS500 concentration of 500 ng/ml (FIG. 6B upper panel). Using DS500 at 500 ng/ml, the binding of NRPl to immobilized SREC-I was dependent on NRP-I concentration (FIG. 5B lower panel left); control B7-1/Fc minimally bound to SREC-I or IgGl (FIG. 5B lower panel right). Among the polysaccharides tested, DS500 and to a lower degree Fucoidan promoted NRPl binding to SREC-I, whereas the other polysaccharides were minimally effective (FIG. 5C). Together, these results indicate that DS500 and Fucoidan can bridge NRPl to SREC-I and induce their coordinate internalization from the endothelial cell-surface to the cytoplasm where NRPl and SREC-I co-localize. To further define the role of SREC-I in NRPl internalization, SREC-I was expressed in human 293 cells, which do not express endogenous scavenger receptors, but express gpl30, CXCR4 and NRPl. As shown in FIG. 5D, control 293 cells did not uptake DiO-Ac-LDL, but 293-SREC-I cells could uptake DiO-Ac-LDL, indicative of SREC-I function (upper left). An analysis of cell-surface gpl30, CXCR4 and NRPl showed that levels of gpl30 (upper right) and CXCR4 (lower left) were similar in control and SREC-I-transfected 293 cells. By contrast, cell- surface NRPl was significantly reduced in 293-SREC-I cells compared with control 293 cells (FIG. 5D lower right). DS500 induced only minimal further reduction of cell-surface NRPl levels in 293-SREC-I cells, suggesting that forced expression of SREC-I alone reduces cell-surface NRPl in this experimental system.
Example 7
Treatment of endothelial cells with DS500 or Fucoidan blocks Sema3A and
VEGF165 function This example describes exemplary procedures for determining that DS500 or
Fucoidan block Sema3A and VEGFi6S from binding to their cognate receptors.
To examine the potential functional significance of the reduction of NRPl, NRP2, VEGFR-I and VEGFR-2 induced by DS500 and Fucoidan (FIGS. IC-E). As shown in FIG. 6A, pretreatment with DS500 followed by cell washing dose- and time-dependently inhibited the binding of Sema3A to HUVEC. Conversely, pretreatment with heparin, ChoSul A and dextran (all at 8 μg/ml for 90 minutes) did not affect binding of Sema3A to HUVEC (FIG. 6A filled triangle, square and diamond). Fucoidan also inhibited the binding of Sema3A to HUVEC (FIG. 6A open circle). Endothelial cells spread lamellipodia when placed onto a fibronectin-coated glass surface and Sema3A is known to induce retraction of these lamellipodia. It was found that Sema3A induces minimal retraction of lamellipodia in HUVEC that were pretreated with DS500 or Fucoidan, indicative that these polysaccharides can block this function of Sema3A (FIG. 6B). The degree of retraction in 3 independent trials (performed as described in Narazaki and Tosato, Blood 107:3892-3901, 2006) demonstrated that DS500 and Fucoidan reduce significantly Sema3A-induced lamellipodia retraction in HUVEC (FIG. 6C). It was also found that pretreatment with DS 500 dose- and time-dependently blocked the binding of VEGFi6S to HUVEC, whereas pretreatment with heparin, ChoSul A and dextran did not affect VEGFi65 binding to these cells (FIG. 6D). Fucoidan also inhibited VEGFi6S binding to HUVEC (FIG. 6D). The effect of polysaccharides on VEGFi65-induced proliferation of endothelial cells was also tested. As shown in FIG. 6E, DS500 and to a lower degree Fucoidan inhibited HUVEC proliferation in response to VEGFi6S, whereas ChoSul A was minimally effective.
Example 8 Fucoidan Inhibits Angiogenesis In vivo
This example describes methods for determining the in vivo effects of Fucoidan and DS 500. The effects of Fucoidan and DS500 on VEGF-induced angiogenesis in vivo was tested using MATRIGEL™ plugs containing VEGF (0 or 150 ng/ml) plus heparin (0 or 0.5 μg/ml) s.c. transplanted in mice (C57BL/6J). The groups of mice (5 mice/group) were treated with Fucoidan, DS500 or control non-sulfated dextran (1 mg/mouse i.p/day). DS500 treatment induced death in 8/10 animals; Fucoidan and dextran were well tolerated. The endothelial cell density (CD31/PECAM staining, measured digitally with IP-lab software) was significantly (P=0.003) reduced in VEGF- supplemented plugs from mice treated with Fucoidan compared to the controls (FIG. 7A). Plugs without VEGF supplementation displayed minimal cell infiltration with or without systemic treatment. Using BALB/cAnNCr mice (6 mice/group), it was confirmed that MATRIGEL ™ plugs from the Fucoidan- treated group contained a significantly (P<0.001) reduced endothelial cell infiltration compared to the control-treated group (FIG. 7B), providing evidence that Fucoidan inhibits VEGF-induced neovascularization.
To evaluate the effects of Fucoidan on tumor angiogenesis, a model was selected in which the plasma-cell tumor line MOPC 315 (BALB/c-derived), which expresses VEGF, was inoculated s.c. (107 cells/mouse) into BALB/cAnNCr mice. Under these conditions, MOPC315 cells give rise to rapidly growing and highly vascularized tumors at the injection site. Groups of mice were treated (15 mice/group) with either Fucoidan or control non-sulfated dextran (1 mg/mouse i.p./day). The size (1.139±0.1 mm2; mean±SEM) and weight (0.31±0.03 g) of tumors from the Fucoidan-treated mice were significantly (P=0.032 and P=0.047, respectively) reduced compared to the size (0.86±0.07 mm ) and weight (0.23±0.02 g) of control tumors (FIG. 7C and D). Control tumor tissues were highly vascular as assessed by CD31 staining whereas tumor tissues from Fucoidan-treated mice were remarkably low in CD31 staining, even at the growing margins (representative
images in FIG. 7E). Quantitative analysis revealed that tumor tissues from control mice contained a significantly (P=0.007) greater CD31-positive area compared to Fucoidan treated mice (FIG. 7F). Thus, these results indicate that Fucoidan reduces angiogenesis in distinct in vivo model systems.
Example 9
Effects of Oligonucleotides on Cell-surface NRPl This example describes exemplary methods for determining that oligonucleotides bind NRPl on a cell surface. In addition to binding Ac-LDL, oxidized LDL and polysaccharides, scavenger receptors have previously been shown to bind DNA (see, for example Jeannin et al., Curr Opin Immunol 20, 530-537, 2008; Kimura et al.,, J Biochem 116, 991-994, 1994; Meylan et al., Nature 442, 39-44, 2006). Short poly (G) sequences have been shown to confer binding to scavenger receptors when linked to other DNA molecules (Prasad et al., Antimicrob Agents Chemother 43, 2689-2696, 1999). Based on the fact that poly(G) or oligo(G) have a polyanionic structure like sulfated polysaccharides and may thus serve as ligands for certain scavenger receptors, was examined whether poly(G) or oligo(G) might display the NRPl internalization-promoting property of other polyanionic scavenger receptor ligands, such as the sulfated polysaccharide DS500 or fucoidan.
A panel of synthetic polyribonucleotides and oligonucleotides was tested for their ability to promote internalization of NRPl and the scavenger receptor SREC-I in endothelial cells. The oligonucleotides were custom synthesized and purified to a high degree of homogeneity by high performance liquid chromatography (HPLC) at Sigma Genosys (SIGMA ALDRICH®). The compounds tested are listed in Table 1.
Table 1: Oligonucleotides Tested
HUVEC were incubated at 37°C for 1 hour with or without the polyribonucleotide polyadenosine (poly(A)), polyguanosine (poly(G)), polycytidine (poly(C)); or with the oligodeoxynucleotide oligodeoxyadenosine 18mer (A18), oligodeoxythymidine 18mer (T18), oligodeoxyguanosine 18mer (G18), phosphorothioate oligodeoxyguanosine 18mer (sG18), oligodeoxycytidine 18mer (C18) and T- deoxyguanosine 5 '-monophosphate sodium salt hydrate (dGMT). After washing, the levels of cell surface NRP-I were measured by flow cytometry. Poly (G), G18 and sG18 dose-dependently reduced cell-surface levels of NRPl in HUVEC, whereas all other compounds did not (FIG. 8). Interestingly, comparative analysis of effects showed that poly(G), G18 and sG18 were more potent than DS500 or fucoidan at reducing cell surface levels of NRPl on HUVEC.
The specificity of poly(G) effects on NRPl surface levels was tested by determining its effects on cell surface levels of other molecules expressed by HUVEC. Unlike the reduction of NRPl, which was consistently observed, cell surface levels of NRP2, VEGFR2, gpl30 and CD31 were not reduced in HUVEC incubated at 37°C for 1 hour with poly(G) (64μg/ml) (FIG. 9). Similar to the reduction in cell surface levels of NRPl, cell surface levels of SREC-I were markedly reduced under the same conditions that led to NRPl reduction (FIG. 9). G18 and sG18 displayed similar effects to those of poly(G). These results indicate that poly(G), G18 and sG18 reduce cell surface levels of NRPl and SREC-I in HUVEC, but not the levels of other surface molecules expressed by these cells.
It was evaluated whether the reduction of cell surface NRPl was attributable to its internalization from the cell surface to the intracellular compartment. HUVEC were incubated at 37°C for 1 hour with 16 μg/ml biotin-labeled G18; after washing, the cells were stained for NRPl using anti-NRPl monoclonal antibody followed with anti-mouse Alexa-488; biotin-G18 was identified with streptavidin-Alexa-546.
By confocal microscopy, NRPl and biotin-G18 was detected inside HUVEC displaying a dot like pattern. In addition, it was found that NRPl and biotin-G18 colocalize at least in part in these dot-like structures (FIG.10). These results provide evidence for coordinate internalization of NRPl and biotin-G18 in HUVEC. It was previously established that DS500 and fucoidan can promote the internalization of NRPl by bridging NRPl to the scavenger SREC-I receptor and others have previously demonstrated that polyribonucleotides such as poly(G) can bind to certain scavenger receptors on other cells. It was tested whether phosphorothioate G18 (sG18) can similarly bridge NRPl to SREC-I and promote their internalization. To this end, HUVEC were incubated at 37°C for 1 hour with sG18 (16μg/ml) and then examined by confocal microscopy. NRPl, identified by anti-NRPl antibody and SREC-I, identified by anti-SREC-I antibody, were visualized inside the HUVEC and were found to co-localize at least in part (FIG. 11). This result suggested that G18 can promote the coordinate internalization of NRPl and SREC-I.
To test whether this effect might be attributable to G18 bridging the two molecules, an ELISA-based binding assay was used. In this assay, recombinant SREC-I/Fc (lμg/ml, 50ml/well) was immobilized onto microtiter wells. After washing to remove unbound SREC-I, 2μg/ml recombinant NRPl/Fc was added to SREC-I-coated wells in the presence of biotin-labeled A18, T18, G18 or C18 (0.25, 1, 4 or 16μg/ml). The binding of His-tagged NRPl/Fc to the plate was measured by absorbance after addition of a mouse anti-His monoclonal antibody (INVITROGEN™ I/5OOO) followed by a secondary HRP conjugated anti-mouse IgG antibody (GE Healthcare 1/5000). Since NRPl/Fc includes a His-tag whereas SREC-I/Fc does not, the anti-His monoclonal antibody selectively detected bound NRPl. As shown in FIG. 12C, dose-dependent binding of NRPl was found only when Biotin-labeled G18 (0.25, 1, 4 orlό μg/ml) was added to the wells. Little or no NRPl binding to SREC-I when either no oligonucleotide was added or one of the other biotin-labeled A18, T18 or C18 were added at the same concentrations (0.25, 1, 4 or 16 μg/ml). In control binding trials, it was confirmed that biotin-labeled G18,
but not A18, T18 or C18 dose-dependently bound to NRPl immobilized onto the plate (FIG. 12A) and to SREC-I immobilized to the plate (FIG. 12B). Additionally, biotin-labeled Gl 8 did not bind to albumin or to control human IgGl immobilized on to the plate. The results shown in FIGS. 8-12 indicate that oligo(G) can promote the internalization of NRPl by bridging NRPl to the scavenger SREC-I receptor on endothelial cells. This should disrupt the binding of the NRPl ligands Sema3A and VEGF165 to endothelial cells due to receptor internalization. To verify this hypothesis, HUVEC were incubated at 37°C for 1 hour with or without phosphorothioate G18 (sG18) (4 or 16μg/ml). Subsequently, the cells were washed and binding of Sema3A/Fc and biotin-labeled VEGF165 tested after incubation at 4°C for 1 hour. Bound Sema3A/Fc was detected by flow cytometry after staining with FrrC-conjugated goat anti-human IgG-Fc; bound VEGF165 was detected by flow cytometry after staining with avidin-FITC. As shown in FIG. 13, sG18-treated HUVEC displayed a dose-dependent reduction of Sema3A (FIG. 13 left) and
VEGF165 binding (FIG. 13 right). These results demonstrate that sG18 can interfere with the binding of VEGF165 and Sema3A to endothelial cells. Since sG18 induces the internalization of NRPl and ligand binding to cognate receptors is required for functional activity, these results predict that sG18 impairs Sema3A and VEGF165 activity in endothelial cells.
All together, the results presented provide evidence for a model in which the sulfated polysaccharide fucoidan (and other sulfated polysaccharides) and poly(G)/oligo(G) can bridge the cell surface receptor molecules NRPl and scavenger receptor SREC-I (FIG. 14). In so doing, selected sulfated polysaccharides and poly(G)/oligo(G) promote the coordinate internalization and subsequent degradation of these receptors. Once internalized, NRPl is no longer available for binding the cognate ligands VEGFl 65 and Sema3A and signaling from this binding is impaired. As a consequence, Sema3A and VEGFl 65 are biologically inactive.
Example 10
Production of Hetero-bifunctional Ligands for Inducing Internalization of VEGFR-2 and co-receptor Neuropilin-1 This example describes exemplary methods for constructing a hetero- bifunctional ligand for the target receptor VEGFR-2 and co-receptor Neuropilin-1. VEGF-A (the ligand for the receptor VEGFR-2 and co-receptor Neuropilin- 1) and Acetylated-LDL (a scavenger ligand which induces the internalization of scavenger receptors) are chemically linked with crosslinkers available commercially from Pierce (Bioconjugate Toolkit Reagents) to tag VEGF-A and Acetylated-LDL with two different hetero-bifunctional linkers (A and B). After derivation of VEGF- A-(linker A) and Acetylated-LDL-(linker B), these two molecules are linked together. As a result, the final product is a hetero-bifunctional ligand composed of (VEGF- A)-(linker A)-(linker B)-(Acetylated-LDL). The efficacy of this hetero- bifunctional ligand in inhibiting angiogenesis is tested using the procedures set forth in Examples 1-9.
Example 11
Production of Hetero-bifunctional Ligands for Inducing Internalization of CCR5
This example describes exemplary methods for constructing a hetero- bifunctional ligand for the target receptor CCR5.
An antibody or a ligand for the cell surface receptor CCR5 is chemically linked to a internalizing receptor ligand, such as Acetylated-LDL, with crosslinkers available commercially from Pierce (Bioconjugate Toolkit Reagents). After derivation of the antibody or a ligand for the cell surface receptor CCR5 and an internalizing receptor ligand, such as Acetylated-LD are linked together. As a result, the final product is a hetero-bifunctional ligand composed of (antibody or a ligand for the cell surface receptor CCR5)-(linker)-(internalizing receptor ligand, such as Acetylated-LDL). Such a hetero-bifunctional ligand can be used to induce the
internalization of CCR5 and thereby inhibit or treat an HIV infection. The efficacy of such a hetero-bifunctional ligand can be assessed using the procedures described in Examples 12 and 13.
Example 12
Method of Inhibiting HIV Attachment, Infection or Replication
This example describes exemplary methods for inhibiting HIV infection or replication using a hetero-bifunctional ligand.
Using a hetero-bifunctional ligand (for example the hetero-bifunctional ligand described in Example 11), that binds to and induces the internalization of a receptor used by HIV to gain entry into a cell, HIV infection, replication or a combination thereof can be reduced or inhibited by contacting a cell with an effective amount of the hetero-bifunctional ligand. The cell can be in vivo or in vitro.
Example 13
Treatment of HIV in a Subject
This example describes exemplary methods for treating or inhibiting an HIV infection in a subject, such as a human subject by administration of one or more hetero-bifunctional ligands that induce the internalization of a receptor used by HIV to bind a cell or gain entry into a cell. Although particular methods, dosages and modes of administrations are provided, one skilled in the art will appreciate that variations can be made without substantially affecting the treatment.
HIV, such as HIV type 1 (HIV-I) or HIV type 2 (HIV-II), can be treated by administering a therapeutically effective amount of a hetero-bifunctional (such as the hetero-bifunctional ligand described in Example 10) that induces the internalization of a receptor used by HIV to bind a cell or gain entry into a cell, for example by effectively hiding this receptor from the virus, thereby reducing or inhibiting HIV infection, replication or a combination thereof.
Briefly, the method can include screening subjects to determine if they have HIV, such as HIV-I or HIV-II. Subjects having HIV are selected. In one example, subjects having increased levels of HIV antibodies in their blood, as detected with an enzyme-linked immunosorbent assay, Western blot, immunofluorescence assay or nucleic acid testing, including viral RNA or proviral DNA amplification methods are selected. In one example, a clinical trial would include half of the subjects following the established protocol for treatment of HIV (such as a highly active antiretroviral therapy). The other half would follow the established protocol for treatment of HIV (such as treatment with highly active antiretroviral compounds) in combination with administration of the agents including a hetero-bifunctional ligand that induces the internalization of a receptor used by HIV to bind a cell or gain entry into a cell. In another example, a clinical trial would include half of the subjects following the established protocol for treatment of HIV (such as a highly active antiretroviral therapy). The other half would receive an agent including a hetero-bifunctional ligand that induces the internalization of a receptor used by HIV to bind a cell or gain entry into a cell.
Screening subjects
In particular examples, the subject is first screened to determine if they have HIV. Examples of methods that can be used to screen for HIV include a combination of measuring a subject's CD4+ T cell count and the level of HIV in serum blood levels.
In some examples, HIV testing consists of initial screening with an enzyme- linked immunosorbent assay (ELISA) to detect antibodies to HIV, such as to HIV-I. Specimens with a nonreactive result from the initial ELISA are considered HIV- negative unless new exposure to an infected partner or partner of unknown HIV status has occurred. Specimens with a reactive ELISA result are retested in duplicate. If the result of either duplicate test is reactive, the specimen is reported as repeatedly reactive and undergoes confirmatory testing with a more specific supplemental test (for example, Western blot or an immunofluorescence assay
(IFA)). Specimens that are repeatedly reactive by ELISA and positive by IFA or reactive by Western blot are considered HIV-positive and indicative of HIV infection. Specimens that are repeatedly ELISA-reactive occasionally provide an indeterminate Western blot result, which may be either an incomplete antibody response to HIV in an infected person or nonspecific reactions in an uninfected person. IFA can be used to confirm infection in these ambiguous cases. In some instances, a second specimen will be collected more than a month later and retested for subjects with indeterminate Western blot results. In additional examples, nucleic acid testing (for example, viral RNA or proviral DNA amplification method) can also help diagnosis in certain situations.
The detection of HIV in a subject's blood is indicative that the subject has HIV and is a candidate for receiving the therapeutic compositions disclosed herein. Moreover, detection of a CD4+ T cell count below 350 per microliter, such as 200 cells per microliter, is also indicative that the subject is likely to have HIV. Pre-screening is not required prior to administration of the therapeutic compositions disclosed herein (such as those that include a hetero-bifunctional ligand that induces the internalization of a receptor used by HIV to bind a cell or gain entry into a cell.).
Pre-treatment of subjects
In particular examples, the subject is treated prior to diagnosis of HIV with the administration of a therapeutic agent that includes one or more of the disclosed a hetero-bifunctional ligands that induce the internalization of a receptor used by HIV to bind a cell or gain entry into a cell. In some examples, the subject is treated with an established protocol for treatment of HIV (such as a highly active antiretroviral therapy) prior to treatment with the administration of a therapeutic agent that includes one or more of the disclosed a hetero-bifunctional ligands that induce the internalization of a receptor used by HIV to bind a cell or gain entry into a cell. However, such pre-treatment is not always required and can be determined by a skilled clinician.
Administration of therapeutic compositions
Following subject selection, a therapeutic effective dose of the agent including a hetero-bifunctional ligand that induces the internalization of a receptor used by HIV to bind a cell or gain entry into a cell is administered to the subject (such as an adult human or a newborn infant either at risk for contracting HIV or known to be infected with HIV). For example, a therapeutic effective dose of an agent including one or more of the hetero-bifunctional ligands that induce the internalization of a receptor used by HIV to bind a cell or gain entry into a cell. Additional agents, such as anti-viral agents, can also be administered to the subject simultaneously or prior to or following administration of the disclosed agents. Administration can be achieved by any method known in the art, such as oral administration, inhalation, intravenous, intramuscular, intraperitoneal or subcutaneous. The amount of the composition administered to prevent, reduce, inhibit, and/or treat HIV or a condition associated with it depends on the subject being treated, the severity of the disorder and the manner of administration of the therapeutic composition. Ideally, a therapeutically effective amount of an agent is the amount sufficient to prevent, reduce, and/or inhibit, and/or treat the condition (for example, HIV) in a subject without causing a substantial cytotoxic effect in the subject. An effective amount can be readily determined by one skilled in the art, for example using routine trials establishing dose response curves. In addition, particular exemplary dosages are provided above. The therapeutic compositions can be administered in a single dose delivery, via continuous delivery over an extended time period, in a repeated administration protocol (for example, by a daily, weekly or monthly repeated administration protocol). In one example, therapeutic agents that include one or more hetero-bifunctional ligands that induce the internalization of a receptor used by HIV to bind a cell or gain entry into a cell are administered intravenously to a human. As such, these compositions may be formulated with an inert diluent or with a pharmaceutically acceptable carrier.
Therapeutic compositions can be taken long term (for example over a period of months or years).
Assessment Following the administration of one or more therapies, subjects having HIV
(for example, HIV-I or HIV-II) can be monitored for reductions in HIV levels, increases in a subjects CD4+ T cell count or reductions in one or more clinical symptoms associated with HIV. In particular examples, subjects are analyzed one or more times, starting 7 days following treatment. Subjects can be monitored using any method known in the art. For example, biological samples from the subject, including blood, can be obtained and alterations in HIV or CD4+ T cell levels evaluated.
Additional treatments In particular examples, if subjects are stable or have a minor, mixed or partial response to treatment, they can be re-treated after re-evaluation with the same schedule and preparation of agents that they previously received for the desired amount of time, including the duration of a subject's lifetime. A partial response is a reduction, such as at least a 10%, at least 20%, at least 30%, at least 40%, at least 50% or at least 70% in HIV infection, HIV replication or combination thereof. A partial response may also be an increase in CD4+ T cell count such as at least 350 T cells per microliter.
Example 14 In vitro Testing of Hetero-bifunctional Ligands
This example describes methods that can be used to test agents for their ability to induce the internalization of specific target receptors. Although particular methods are provided, one skilled in the art would be able to practice other methods, such as the use of different animals, different modes of administration and so forth to test the disclosed hetero-bifunctional ligands.
The ability of a hetero-bifunctional ligand, such as those disclosed herein, to induce the internalization of a target receptor can be assessed using in vitro cellular models, for example, using a cell that expresses both a target receptor and an internalizing receptor. The cell expressing the particular combination of target receptor and internalization receptor is contacted with a hetero-bifunctional ligand that includes a binding agent specific for the particular binding agent and a binding agent specific for the internalizing receptor and the ability of the hetero-bifunctional ligand to induce internalization of one or both of the target receptor and the internalizing receptor is assessed, for example using the procedures outlined in Examples 1-8.
Example 15 Treatment of Subjects
This example describes methods that can be used to treat a subject having a particular disease or condition that can be treated by internalization of a particular target receptor, for example using a hetero-bifunctional ligand, such as the hetero- bifunctional ligands disclosed herein, by administration of one or more of the hetero- bifunctional ligands disclosed herein. For example, the disclosed methods can be used to decrease the surface expression of a particular surface receptor, for example a surface receptor involved in angiogenesis or viral entry into a cell, for example entry of HIV into a cell, for example to decrease or inhibit the deleterious effects of growth factor action, such as the effects of VEGF (by reducing the surface expression of VEGF receptor), for example to treat or reduce the symptoms of cancer. Such a therapy can be used alone or in combination with other therapies (such as administration of an anti- viral agent in the case of a viral infection or the administration of a chemotherapeutic agent in the case of cancer).
In particular examples, the method includes screening a subject having or thought to have a particular disease or condition treatable by the internalization of a particular receptor to identify those subjects that can benefit from administration of the hetero-bifunctional ligands disclosed herein. Subjects of an unknown disease
status or condition can be examined to determine if they have disease or condition treatable by internalization of a particular target receptor. Subjects found to (or known to) have a disease or condition contributed to by the activity of a surface expression of a particular target receptor and thereby treatable by internalization of the target receptor are selected to receive one or more of the hetero-bifunctional ligands disclosed herein.
The subject can be administered a therapeutic amount of one or more of the hetero-bifunctional ligands disclosed herein. The hetero-bifunctional ligands can be administered at doses of 1 μg/kg body weight to about 1 mg/kg body weight per dose, such as 1 μg/kg body weight - 100 μg/kg body weight per dose, 100 μg/kg body weight - 500 μg/kg body weight per dose or 500 μg/kg body weight - 1000 μg/kg body weight per dose. However, the particular dose can be determined by a skilled clinician. The agent can be administered in several doses, for example continuously, daily, weekly or monthly. The mode of administration can be any used in the art. The amount of agent administered to the subject can be determined by a clinician and may depend on the particular subject treated. Specific exemplary amounts are provided herein (but the disclosure is not limited to such doses).
While this disclosure has been described with an emphasis upon particular embodiments, it will be obvious to those of ordinary skill in the art that variations of the particular embodiments may be used and it is intended that the disclosure may be practiced otherwise than as specifically described herein. Features, characteristics, compounds, chemical moieties or examples described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example of the invention. Accordingly, this disclosure includes all modifications encompassed within the spirit and scope of the disclosure as defined by the following claims.
Claims
1. A hetero-bifunctional ligand for use in inducing internalization of a target receptor, comprising: a target receptor-binding agent that specifically binds the target receptor; a heterologous internalizing receptor-binding agent that specifically binds to an internalizing receptor, wherein binding of the hetero-bifunctional ligand to the internalizing receptor on a cell induces internalization of the internalizing receptor and wherein the target receptor-binding agent and the internalizing receptor-binding agent are not identical; and a linker linking the target receptor-binding agent to the internalizing receptor- binding agent, wherein the linker has a length sufficient to allow the hetero- bifunctional ligand to bind to the target receptor and the internalizing receptor on the cell.
2. The hetero-bifunctional ligand of claim 1, wherein the internalizing receptor-binding agent and the target receptor-binding agent do not specifically bind the same receptor.
3. The hetero-bifunctional ligand of claim 1 or 2, wherein the linker is a heterologous linker.
4. The hetero-bifunctional ligand of any one of claims 1-3, wherein the target receptor-binding agent comprises an antibody that specifically binds the target receptor.
5. The hetero-bifunctional ligand of claim 4, wherein the antibody is a monoclonal antibody that specifically binds the target receptor.
6. The hetero-bifunctional ligand of any one of claims 1-5, wherein the target receptor-binding agent comprises a small molecule that specifically binds the target receptor.
7. The hetero-bifunctional ligand of any one of claims 1-6, wherein the target receptor-binding agent is a target receptor ligand.
8. The hetero-bifunctional ligand of claim 7, wherein the target receptor ligand is a cytokine, a chemokine, a growth factor, a hormone, an aptamer, a neuropeptide, an oligonucleotide or a portion thereof that specifically binds the target receptor.
9. The hetero-bifunctional ligand of any one of claims 1-8, wherein the internalizing receptor comprises a scavenger receptor, low density lipoprotein (LDL) receptor, a heat shock protein receptor or a transferrin receptor.
10. The hetero-bifunctional ligand of any one of claims 1-9, wherein the internalizing receptor-binding agent comprises a scavenger receptor ligand, an LDL receptor ligand, a transferrin receptor ligand or a heat-shock protein receptor ligand.
11. The hetero-bifunctional ligand of claim 1 , wherein the target receptor- binding agent is a ligand or antibody for a CCR5 receptor.
12. The hetero-bifunctional ligand of claim 1, wherein the target receptor- binding agent is vascular endothelial growth factor- A (VEGF-A).
13. The hetero-bifunctional ligand of claim 1, wherein the internalizing receptor-binding agent is Acetylated-LDL.
14. The hetero-bifunctional ligand of claim 1, wherein the internalizing receptor-binding agent is a sulfated polysaccharide.
15. The hetero-bifunctional ligand of claim 14, wherein the sulfated polysaccharide is Fucoidan or sulfated dextran.
16. The hetero-bifunctional ligand of claim 15, wherein the sulfated dextran has a molecular weight average of 500 kilodaltons.
17. The hetero-bifunctional ligand of claim 1, wherein the internalizing receptor-binding agent comprises an oligonucleotide.
18. The hetero-bifunctional ligand of claim 17, wherein the oligonucleotide is comprised of ribonucleotides, deoxynucleo tides, derivatives thereof or combinations thereof.
19. The hetero-bifunctional ligand of claim 17 or 18, wherein the oligonucleotide is between about 6 nucleotides in length and about 100 nucleotides in length.
20. The hetero-bifunctional ligand of claim 19, wherein the oligonucleotide is about 18 nucleotides in length.
21. The hetero-bifunctional ligand of any one of claims 17-20, wherein the oligonucleotide is polyguanosine (poly(G)) or a derivative thereof.
22. The hetero-bifunctional ligand of claim 20, wherein the derivative of polyguanosine comprises oligodeoxyguanosine, phosphorothioate oligodeoxyguanosine or 2'-deoxyguanosine 5 '-monophosphate sodium salt hydrate.
23. A method of inducing internalization of a target receptor on a cell, comprising: contacting the cell with an effective amount of a hetero-bifunctional ligand of any one of claims 1-22.
24. A pharmaceutical composition, comprising a therapeutically effective amount of the hetero-bifunctional ligand of any one of claims 1-22 and a pharmaceutically acceptable carrier.
25. A method of treating a disease or condition associated with involvement of a target receptor, comprising: administering a therapeutically effective amount of the pharmaceutical composition of claim 24 to a subject wherein the hetero-bifunctional ligand present in the pharmaceutical composition binds to a target receptor associated with the disease or condition and induces the internalization of the target receptor associated with the disease or condition, thereby treating the disease or condition.
26. The method of claim 25, wherein the disease or condition is cancer.
27. The method of claim 25, wherein the disease or condition is a viral infection.
28. A hetero-bifunctional ligand for use in treating or inhibiting HIV infection, comprising: a target receptor-binding agent that specifically binds to a target receptor used by HIV to bind or gain entry into a cell; an internalizing receptor-binding that specifically binds to and induces internalization of a internalizing receptor, wherein the target receptor-binding agent and the internalizing receptor-binding agent are not identical; and a linker linking the target receptor-binding agent to the internalizing receptor- binding agent, wherein the linker has a length sufficient to allow the hetero- bifunctional ligand to bind to the target receptor and the internalizing receptor.
29. The hetero-bifunctional ligand of claim 28, where in the target receptor is CCR5 or CXCR4 and the target receptor-binding agent is a ligand or antibody that specifically binds CCR5 or CXCR4.
30. The hetero-bifunctional ligand of claim 29, wherein the CCR5 receptor-binding agent comprises an antibody that specifically binds the CCR5 receptor.
31. The hetero-bifunctional ligand of claim 29, wherein the CXCR4 receptor-binding agent comprises an antibody that specifically binds the CXCR4 receptor.
32. The hetero-bifunctional ligand of any one of claims 28-31, wherein the CCR5 or CXCR4 receptor-binding agent comprises a chemokine.
33. The hetero-bifunctional ligand of any one of claims 28-32, wherein the internalizing receptor ligand comprises wherein the internalizing receptor- binding agent comprises a scavenger receptor ligand, an LDL receptor ligand, a transferrin receptors or a heat-shock protein receptor ligand.
34. A pharmaceutical composition comprising a therapeutically effective amount of the hetero-bifunctional ligand of any one of claims 28-33 and a pharmaceutically acceptable carrier.
35. A method of treating or inhibiting an HIV infection, comprising administering a therapeutically effective amount of the pharmaceutical composition of claim 34 to a subject having or suspected of having an HIV infection, wherein the hetero-bifunctional ligand present in the pharmaceutical composition binds to the CCR5 or the CXCR4 receptor and induces the internalization of the CCR5 or the CXCR4 receptor, thereby treating or inhibiting the HIV infection.
36. A hetero-bifunctional ligand for use in inhibiting angiogenesis, comprising:
VEGF-A; a scavenger receptor binding agent comprising acetylated-LDL or an oligonucleotide, wherein binding of acetylated-LDL or the oligonucleotide to a scavenger receptor induces internalization of the scavenger receptor; and a linker linking VEGF-A to acetylated-LDL or the oligonucleotide, wherein the linker has a length sufficient to allow the hetero-bifunctional ligand to bind to a receptor for which VEGF-A is a ligand and the scavenger receptor.
37. The hetero-bifunctional ligand of claim 36, wherein the scavenger receptor binding agent comprises acetylated-LDL.
38. The hetero-bifunctional ligand of claim 36, wherein the scavenger receptor binding agent comprises an oligonucleotide.
39. The hetero-bifunctional ligand of claim 38, wherein the oligonucleotide is comprised of ribonucleotides, deoxynucleo tides, derivatives thereof or combinations thereof.
40. The hetero-bifunctional ligand of claim 38 or 39, wherein the oligonucleotide is between about 6 nucleotides in length and about 100 nucleotides in length.
41. The hetero-bifunctional ligand of claim 40, wherein the oligonucleotide is about 18 nucleotides in length.
42. The hetero-bifunctional ligand of any one of claims 36-41, wherein the oligonucleotide is polyguanosine (poly(G)) or a derivative thereof.
43. The hetero-bifunctional ligand of claim 42, wherein the derivative of polyguanosine comprises oligodeoxyguanosine, phosphorothioate oligodeoxyguanosine or 2'-deoxyguanosine 5 '-monophosphate sodium salt hydrate.
44. A pharmaceutical composition comprising a therapeutically effective amount of the hetero-bifunctional ligand of any one of claims 36-43 and a pharmaceutically acceptable carrier.
45. A method of inhibiting angiogenesis, comprising administering a therapeutically effective amount of the pharmaceutical composition of claim 44 to a subject, wherein the hetero-bifunctional ligand present in the pharmaceutical composition binds to the VEGF-A receptor and induces the internalization of the receptor, thereby inhibiting angiogenesis.
46. The method of claim 45, wherein the subject has cancer and the method is a method of treating or inhibiting cancer.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/864,492 US8420620B2 (en) | 2008-01-24 | 2009-01-23 | Induced internalization of surface receptors |
EP09704018A EP2238162A1 (en) | 2008-01-24 | 2009-01-23 | Induced internalization of surface receptors |
US13/862,929 US20130243769A1 (en) | 2008-01-24 | 2013-04-15 | Induced internalization of surface receptors |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2339708P | 2008-01-24 | 2008-01-24 | |
US61/023,397 | 2008-01-24 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/862,929 Division US20130243769A1 (en) | 2008-01-24 | 2013-04-15 | Induced internalization of surface receptors |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009094561A1 true WO2009094561A1 (en) | 2009-07-30 |
WO2009094561A8 WO2009094561A8 (en) | 2010-08-26 |
Family
ID=40436381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/031865 WO2009094561A1 (en) | 2008-01-24 | 2009-01-23 | Induced internalization of surface receptors |
Country Status (3)
Country | Link |
---|---|
US (2) | US8420620B2 (en) |
EP (1) | EP2238162A1 (en) |
WO (1) | WO2009094561A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013138400A1 (en) * | 2012-03-14 | 2013-09-19 | Regeneron Pharmaceuticals, Inc. | Multispecific antigen-binding molecules and uses thereof |
KR20140065448A (en) * | 2011-09-16 | 2014-05-29 | 렉소겐 게엠베하 | Nucleic acid transcription method |
US9611323B2 (en) | 2010-11-30 | 2017-04-04 | Genentech, Inc. | Low affinity blood brain barrier receptor antibodies and uses therefor |
CN111228297A (en) * | 2020-01-21 | 2020-06-05 | 山东大学 | Application of fucoidan sulfate in promoting autophagy decomposition of ox-LDL (low-density lipoprotein) by foam cells |
US11129903B2 (en) | 2015-07-06 | 2021-09-28 | Regeneron Pharmaceuticals, Inc. | Multispecific antigen-binding molecules and uses thereof |
US11208458B2 (en) | 2017-06-07 | 2021-12-28 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for internalizing enzymes |
US11352446B2 (en) | 2016-04-28 | 2022-06-07 | Regeneron Pharmaceuticals, Inc. | Methods of making multispecific antigen-binding molecules |
US12037411B2 (en) | 2018-04-30 | 2024-07-16 | Regeneron Pharmaceuticals, Inc. | Antibodies, and bispecific antigen-binding molecules that bind HER2 and/or APLP2, conjugates, and uses thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4269566A3 (en) | 2016-02-19 | 2024-01-10 | Procella Therapeutics AB | Genetic markers for engraftment of human cardiac ventricular progenitor cells |
US10508263B2 (en) | 2016-11-29 | 2019-12-17 | Procella Therapeutics Ab | Methods for isolating human cardiac ventricular progenitor cells |
EP3663393A1 (en) * | 2017-08-23 | 2020-06-10 | Procella Therapeutics AB | Use of neuropilin-1 (nrp1) as a cell surface marker for isolating human cardiac ventricular progenitor cells |
WO2022147298A1 (en) * | 2020-12-31 | 2022-07-07 | Seattle Children's Hospital D/B/A Seattle Children's Research Institute | Vascular-endothelial cadherin activating antibodies and uses thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070141070A1 (en) * | 2005-12-05 | 2007-06-21 | Trinity Biosystems, Inc. | Methods and compositions for needleless delivery of antibodies |
WO2007072504A1 (en) * | 2005-12-19 | 2007-06-28 | Dabur Pharma Limited | Dna vaccine for cancer therapy |
US20070166788A1 (en) * | 2005-11-10 | 2007-07-19 | Pei Jin | Methods for production of receptor and ligand isoforms |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2372813A1 (en) * | 1992-02-06 | 1993-08-19 | L.L. Houston | Biosynthetic binding protein for cancer marker |
WO2005019429A2 (en) * | 2003-08-22 | 2005-03-03 | Potentia Pharmaceuticals, Inc. | Compositions and methods for enhancing phagocytosis or phagocyte activity |
-
2009
- 2009-01-23 EP EP09704018A patent/EP2238162A1/en not_active Withdrawn
- 2009-01-23 US US12/864,492 patent/US8420620B2/en active Active
- 2009-01-23 WO PCT/US2009/031865 patent/WO2009094561A1/en active Application Filing
-
2013
- 2013-04-15 US US13/862,929 patent/US20130243769A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070166788A1 (en) * | 2005-11-10 | 2007-07-19 | Pei Jin | Methods for production of receptor and ligand isoforms |
US20070141070A1 (en) * | 2005-12-05 | 2007-06-21 | Trinity Biosystems, Inc. | Methods and compositions for needleless delivery of antibodies |
WO2007072504A1 (en) * | 2005-12-19 | 2007-06-28 | Dabur Pharma Limited | Dna vaccine for cancer therapy |
Non-Patent Citations (2)
Title |
---|
GRUARIN PAOLA ET AL: "CD36 folding revealed by conformational epitope expression is essential for cytoadherence of Plasmodium falciparum-infected red blood cells", PARASITE IMMUNOLOGY (OXFORD), vol. 22, no. 7, July 2000 (2000-07-01), pages 349 - 360, XP002520636, ISSN: 0141-9838 * |
See also references of EP2238162A1 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10941215B2 (en) | 2010-11-30 | 2021-03-09 | Genentech, Inc. | Low affinity blood brain barrier receptor antibodies and uses thereof |
US9611323B2 (en) | 2010-11-30 | 2017-04-04 | Genentech, Inc. | Low affinity blood brain barrier receptor antibodies and uses therefor |
KR102087062B1 (en) | 2011-09-16 | 2020-03-11 | 렉소겐 게엠베하 | Nucleic acid transcription method |
KR20140065448A (en) * | 2011-09-16 | 2014-05-29 | 렉소겐 게엠베하 | Nucleic acid transcription method |
JP2019089806A (en) * | 2012-03-14 | 2019-06-13 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | Multispecific antigen-binding molecules and uses thereof |
KR20210096308A (en) * | 2012-03-14 | 2021-08-04 | 리제너론 파마슈티칼스 인코포레이티드 | Multispecific antigen-binding molecules and uses thereof |
EP3421488A3 (en) * | 2012-03-14 | 2019-04-17 | Regeneron Pharmaceuticals, Inc. | Multispecific antigen-binding molecules and uses thereof |
JP7308041B2 (en) | 2012-03-14 | 2023-07-13 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | Multispecific antigen-binding molecules and uses thereof |
KR20200075896A (en) * | 2012-03-14 | 2020-06-26 | 리제너론 파마슈티칼스 인코포레이티드 | Multispecific antigen-binding molecules and uses thereof |
EA036225B1 (en) * | 2012-03-14 | 2020-10-15 | Ридженерон Фармасьютикалз, Инк. | Multispecific antigen-binding molecules and uses thereof |
JP2015511962A (en) * | 2012-03-14 | 2015-04-23 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | Multispecific antigen binding molecules and uses thereof |
US11578135B2 (en) | 2012-03-14 | 2023-02-14 | Regeneron Pharmaceuticals, Inc. | Multispecific antigen-binding molecules binding to a target and an internalizing effector protein that is CD63 and uses thereof |
KR102283200B1 (en) * | 2012-03-14 | 2021-07-29 | 리제너론 파마슈티칼스 인코포레이티드 | Multispecific antigen-binding molecules and uses thereof |
WO2013138400A1 (en) * | 2012-03-14 | 2013-09-19 | Regeneron Pharmaceuticals, Inc. | Multispecific antigen-binding molecules and uses thereof |
KR102494534B1 (en) * | 2012-03-14 | 2023-02-06 | 리제너론 파마슈티칼스 인코포레이티드 | Multispecific antigen-binding molecules and uses thereof |
JP2022058726A (en) * | 2012-03-14 | 2022-04-12 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | Multispecific antigen binding molecules and uses thereof |
US11191844B2 (en) | 2015-07-06 | 2021-12-07 | Regeneran Pharmaceuticals, Inc. | Multispecific antigen-binding molecules and uses thereof |
US11129903B2 (en) | 2015-07-06 | 2021-09-28 | Regeneron Pharmaceuticals, Inc. | Multispecific antigen-binding molecules and uses thereof |
US11352446B2 (en) | 2016-04-28 | 2022-06-07 | Regeneron Pharmaceuticals, Inc. | Methods of making multispecific antigen-binding molecules |
US11208458B2 (en) | 2017-06-07 | 2021-12-28 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for internalizing enzymes |
US12037411B2 (en) | 2018-04-30 | 2024-07-16 | Regeneron Pharmaceuticals, Inc. | Antibodies, and bispecific antigen-binding molecules that bind HER2 and/or APLP2, conjugates, and uses thereof |
CN111228297B (en) * | 2020-01-21 | 2021-03-19 | 山东大学 | Application of fucoidan sulfate in promoting autophagy decomposition of ox-LDL (low-density lipoprotein) by foam cells |
CN111228297A (en) * | 2020-01-21 | 2020-06-05 | 山东大学 | Application of fucoidan sulfate in promoting autophagy decomposition of ox-LDL (low-density lipoprotein) by foam cells |
Also Published As
Publication number | Publication date |
---|---|
US8420620B2 (en) | 2013-04-16 |
WO2009094561A8 (en) | 2010-08-26 |
EP2238162A1 (en) | 2010-10-13 |
US20130243769A1 (en) | 2013-09-19 |
US20100297124A1 (en) | 2010-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8420620B2 (en) | Induced internalization of surface receptors | |
KR102715540B1 (en) | Antibodies that bind to VISTA at acidic pH | |
KR20220032568A (en) | FLT3L-FC fusion protein and methods of use | |
JP6141639B2 (en) | antibody | |
JP2023542417A (en) | Screening for KRAS mutation-specific T cell receptors and antitumor applications | |
CN107427566B (en) | DNA antibody constructs and methods of use thereof | |
US20030017979A1 (en) | Antibody and chemokine constructs and their use in the treatment of infections and immunological diseases | |
CN107001485A (en) | Protein heterodimer and application thereof | |
BR112020012075A2 (en) | gpcr heteromer inhibitors and uses thereof | |
CN109890407A (en) | DNA antibody construct and its application method | |
KR20080035653A (en) | Methods for reducing viral load in hiv-1-infected patients | |
KR20210088741A (en) | Dna antibody constructs and method of using same | |
CN107683289A (en) | The bonding agents of IL13RA α 2 and its purposes in treatment of cancer | |
TW200823235A (en) | Prophylactic and therapeutic agent for cancers | |
AU2019386021B2 (en) | Anti-il-23p19 antibody and uses thereof | |
KR20190063458A (en) | The chimeric antigen receptor (CARS) specific to MUC1 and its use | |
KR20090074787A (en) | Ccr2 antagonists for treatment of fibrosis | |
JP2014513519A (en) | Anti-CCR4 antibody and use thereof | |
EP2480579A2 (en) | Methods of treating inflammation | |
JP2020501506A (en) | Anti-NKp46 antibody and therapeutic use thereof | |
RU2252786C2 (en) | Antibody and chemokine constructs and uses thereof in immunological disorders | |
TW202313094A (en) | Methods of using flt3l-fc fusion proteins | |
US9186390B2 (en) | Methods and uses of TIE2 binding and/or activating agents | |
US20230034677A1 (en) | Novel immunotherapies targeting pd-1 with anti-pd-1/il-15 immunocytokines | |
KR20220064983A (en) | NKG2D fusion protein and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09704018 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12864492 Country of ref document: US Ref document number: 2009704018 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |