WO2009093731A1 - Centrifuge, analysis device using the same, and vessel for centrifuge - Google Patents

Centrifuge, analysis device using the same, and vessel for centrifuge Download PDF

Info

Publication number
WO2009093731A1
WO2009093731A1 PCT/JP2009/051154 JP2009051154W WO2009093731A1 WO 2009093731 A1 WO2009093731 A1 WO 2009093731A1 JP 2009051154 W JP2009051154 W JP 2009051154W WO 2009093731 A1 WO2009093731 A1 WO 2009093731A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
centrifuge
container
swing body
flat part
Prior art date
Application number
PCT/JP2009/051154
Other languages
French (fr)
Japanese (ja)
Inventor
Junichi Oka
Yukihiro Sukawa
Original Assignee
Arkray, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray, Inc. filed Critical Arkray, Inc.
Publication of WO2009093731A1 publication Critical patent/WO2009093731A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0407Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles
    • B04B5/0414Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles comprising test tubes
    • B04B5/0421Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles comprising test tubes pivotably mounted
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00495Centrifuges

Definitions

  • the present invention relates to a centrifuge and an analysis apparatus using the same.
  • the present invention also relates to a container for a centrifuge.
  • blood contains various components such as glucose, albumin and calcium in addition to red blood cells and white blood cells.
  • a component plasma
  • a centrifugal device is usually used.
  • FIG. 13 shows an example of a centrifuge built in such an analyzer.
  • the centrifuge device X shown in the figure includes a rotor 91 that is rotated by a motor 92.
  • a container 93 is suspended from the rotor 91.
  • the container 93 is made of, for example, a translucent resin and contains blood 94 that is a liquid to be processed.
  • the container 93 is formed with a shaft portion 93a.
  • the container 93 can be pivoted with respect to the rotor 91 by the shaft portion 93 a being locked to the rotor 91.
  • the container 93 In a state where the rotor 91 is stopped, the container 93 is suspended in the axial direction z. In a state where the rotor 91 is rotated in the circumferential direction ⁇ by the motor 92, the container 93 is pivoted by the centrifugal force, and the posture is directed in the radial direction r. When this rotating state is continued, blood 94 is separated into blood cell components and plasma.
  • Such an analysis device incorporating a relatively small centrifugal device X is compact enough to be installed on a table, for example, and is suitable for use in a relatively small clinic or clinic.
  • the container 93 In order to further improve the measurement accuracy or to measure more items, it is necessary to increase the amount of the liquid to be processed (blood 94).
  • the container 93 In order to rotate the container 93 and the rotor 91 which are large in size at a rotation speed suitable for separation, it is compelled to make the motor 92 have a higher output.
  • increasing the output of the motor 92 has a problem in that it increases the size of the motor 92 itself (and increases the power consumption), and consequently increases the size of the analyzer incorporating the centrifugal device X.
  • an object of the present invention is to provide a technique that can handle a larger amount of the liquid to be processed and can reduce the size of the entire apparatus.
  • the centrifuge provided by the first aspect of the present invention includes a drive source, a rotor rotated by the drive source, and a container that is pivotally suspended with respect to the rotor and holds a liquid to be processed.
  • a swing body provided with a space, wherein the swing body has at least a tip projecting radially outward from the rotor in a rotating state of the rotor, and from the rotor.
  • At least a part of the protruding portion is a flat portion in which the rotation circumferential direction of the rotor is a major axis direction and the rotation axis direction of the rotor is a minor axis direction.
  • Examples of the purpose of use of the centrifuge of the present invention include separation processing and defoaming processing of the liquid to be processed.
  • separation processing due to the difference in specific gravity of a plurality of components in the liquid can be performed, and bubbles generated in the liquid to be treated can be eliminated.
  • the radius of rotation of the liquid to be treated contained in the swing body can be remarkably increased.
  • the major axis direction coincides with the rotational circumferential direction in the rotating state. Therefore, it is possible to reduce the air resistance that is received by the swing body projecting from the rotor. Therefore, the power required for rotation can be reduced while increasing the centrifugal acceleration applied to the liquid to be processed. Accordingly, the centrifugal device can be reduced in size.
  • the flattening portion has a flattening rate that increases toward the tip. According to such a configuration, the air resistance of the swing body can be further reduced. Moreover, it becomes easy to inject the liquid to be processed into the swing body or to collect the liquid to be processed from the swing body.
  • the cross-sectional shape of the flat portion is, for example, a streamline type. A plurality of dimples may be formed on the flat portion.
  • the rotor is provided with a cover that is located closer to the rotational axis than the swing body and that is closer to the swing body than the position of the rotor in the rotational state than in the non-rotation state of the rotor. ing. According to such a configuration, it is possible to prevent the processing target liquid from being excessively evaporated from the swing body by the cover.
  • the swing body includes a container that is detachable from the rotor.
  • the container can be used as a disposable type.
  • the swing body includes a casing suspended so as to be pivotable with respect to the rotor, and a container accommodated in the casing and detachable.
  • a configuration can also reduce the size of the centrifugal device.
  • the analyzer provided by the second aspect of the present invention includes the centrifuge provided by the first aspect of the present invention and a measuring device for analyzing the sample separated by the centrifuge.
  • Such a configuration is preferable for making the analyzer small enough to be installed on a table, for example, while providing a sufficient centrifugal device to the analyzer.
  • the container for a centrifuge provided by the third aspect of the present invention includes a supported part for being pivotably suspended around a pivot axis with respect to the centrifuge and a right angle with respect to the pivot axis. And a bottomed tube portion having a longitudinal direction. At least a part of the bottomed cylindrical part is a flat part, and the flat part has the pivot axis direction as a major axis direction and is perpendicular to both the pivot axis and the longitudinal direction. The direction is the short axis direction.
  • the air resistance of the centrifuge device container can be reduced when the centrifuge device container projects from the rotor, for example, in a rotating state.
  • the flattening portion has a flattening rate that increases toward the tip of the bottomed tubular portion.
  • Such a configuration is advantageous for reducing the air resistance.
  • FIG. 5 is a sectional view taken along line VV in FIG. 4. It is a perspective view which shows the non-rotation state and rotation state of the centrifuge shown in FIG. It is sectional drawing which shows the mode of the cover in a non-rotation state and a rotation state.
  • FIG. 8 is a sectional view taken along line VIII-VIII in FIG. 7.
  • FIG. 1 shows an example of an analyzer according to the present invention.
  • the illustrated analyzer 1 is configured to measure the concentration of a specific component (for example, glucose, albumin, calcium, etc.) contained in blood.
  • the analyzer 1 includes a housing 11, a centrifuge 2A, a slider unit 4, and a test piece table 5.
  • the housing 11 is made of resin, for example, and houses the centrifuge 2A, the slider unit 4, and the test piece table 5.
  • a door 12 that can be opened and closed is provided on the front surface of the housing 11. In the state where the door 12 is closed, the centrifuge 2A and the test piece table 5 are accommodated in the housing 11. In the state where the door 12 is opened, the centrifuge 2A and the test piece table 5 can be pulled out from the housing 11.
  • the test piece table 5 is housed in the right portion of the housing 11 and can be configured to mount a plurality of test pieces.
  • Each test piece is configured for multi-component measurement, for example, and a plurality of reagent pads are provided on a strip-shaped substrate.
  • Each reagent pad is impregnated with a reagent that develops color in response to one of detection target substances such as glucose, albumin, and calcium.
  • detection target substances such as glucose, albumin, and calcium.
  • Each test piece is held in a slit formed in the test piece table 5.
  • the slider unit 4 is housed in the left part of the housing 11 and is a drive device for projecting the centrifugal device 2A to an operable position.
  • the centrifugal unit 2 ⁇ / b> A is assembled to the slider unit 4 and includes a motor 41 and a belt 42. By rotating the belt 42 in a desired direction using the driving force of the motor 41, the centrifugal device 2A can be advanced and retracted in the arrow direction.
  • the centrifugal device 2 includes a motor 21, a rotor 22, a housing 24, and a container 3A.
  • the illustrated centrifugal apparatus 2 is an apparatus for separating blood, which is a specimen, into a blood cell component and plasma, but the present invention is not limited to this.
  • the centrifuge of the present invention can be used for a defoaming process for eliminating bubbles generated in the liquid to be processed.
  • the housing 24 has a substantially circular shape in plan view and houses the motor 21, the rotor 22, and the container 3A.
  • the housing 24 has a lid 24a and a rotation space 24b.
  • the lid 24a can be opened and closed. In the open state, the container 3A is loaded. In the centrifugation step, the lid 24a is closed.
  • the rotation space 24b is a donut-shaped space surrounding the rotor 22, and allows the container 3A to rotate at a high speed in the centrifugation step.
  • the motor 21 is disposed immediately below the rotor 22 and is directly connected to the rotor 22 via a drive shaft.
  • the rotor 22 is made of resin, for example, and has a thick cylindrical shape.
  • the rotor 22 has two locking portions 22a. Each locking portion 22a is formed as a semicircular groove, for example.
  • the rotor 22 is formed with a cover 22b and two spring portions 22c.
  • the cover 22b is located closer to the center of rotation in the radial direction r than the locking portion 22a, and is suspended by two spring portions 22c.
  • the spring portion 22c has, for example, a relatively thin bellows shape, and allows the cover 22b to move in that direction when an external force is applied to the cover 22b in the radial direction r.
  • the container 3A has a storage space for holding blood.
  • the container 3A is made of, for example, a translucent resin, and includes a bottomed cylindrical part 31, two shaft parts 32, and a gripping part 33 as shown in FIGS.
  • the bottomed cylindrical portion 31 extends in the longitudinal direction L and can inject blood from the opening 31a.
  • the cross section of the bottomed cylindrical portion 31 has the pivot axis direction S as the major axis direction and is perpendicular to the direction N (longitudinal direction L and pivot axis direction S).
  • the shape is a flat ellipse with the direction as the minor axis direction.
  • the two shaft portions 32 are columnar shapes that protrude in the opposite directions along the pivot axis direction S from the bottomed tubular portion 31.
  • the two shaft portions 32 are supported portions that are supported by the locking portions 22 a of the rotor 22.
  • the container 3A functions as a swing body that is suspended so as to pivot about the pivot axis direction S with respect to the rotor 22.
  • the two gripping portions 33 are tongue-shaped portions extending in the longitudinal direction L from both sides of the opening 31 a of the bottomed cylindrical portion 31. The two grip portions 33 are used by the user to carry the container 3A.
  • the container 3A having such a configuration is a disposable type that is replaced every time the blood centrifugation step is performed once.
  • the container 3A has, for example, a total length of about 22 mm, an inner diameter of the bottomed cylindrical portion 31 of about 6 mm, and a volume of stored blood of about 340 ⁇ L.
  • Analyzing device 1 has an optical measuring device in addition to the above-described elements.
  • This optical measuring device includes, for example, a plurality of light emitting elements and a plurality of light receiving elements.
  • Each light emitting element is constituted by, for example, a light emitting diode (LED).
  • Each light receiving element is constituted by, for example, a photoelectric conversion element, and receives light reflected from the reagent pad of the above-described test piece.
  • one multi-component measurement test strip having five reagent pads
  • six single-component measurement test strips having one reagent pad
  • the collected blood (for example, 340 ⁇ l) is injected into the container 3A.
  • the container 3 ⁇ / b> A is set on the rotor 22.
  • the longitudinal direction L of the suspended container 3A coincides with the axial direction z.
  • the rotor 22 rotates in the circumferential direction ⁇ .
  • the housing 24 is omitted for convenience of understanding.
  • the rotation speed at this time is, for example, about 8500 rpm.
  • the container 3A As the rotor 22 rotates, a centrifugal force acts on the container 3A, and the container 3A pivots about the shaft portion 32.
  • the container 3A In the steady state of the centrifugal separation process, the container 3A is in a posture in which the longitudinal direction L substantially coincides with the radial direction r. That is, the container 3 ⁇ / b> A rotates in a state where most of the bottomed cylindrical portion 31 protrudes from the rotor 22 in the radial direction r. This protruding portion of the container 3 ⁇ / b> A rotates at high speed in the rotation space 24 b of the housing 24. By this rotation, centrifugal acceleration acts on the blood stored in the container 3A, and the magnitude thereof is approximately 1500 G at the blood level.
  • the centrifugal force generated by the rotation of the rotor 22 acts on the cover 22b.
  • the two spring portions 22c are elastically deformed, and the cover 22b moves outward in the radial direction r. That is, the cover 22b approaches the opening 31a of the container 3A that is pivoted approximately 90 degrees by the centrifugal force.
  • the container 3A is completely sealed by the cover 22b or is covered with a slight gap.
  • the centrifugation step under the above conditions is continued for about 2 minutes, for example.
  • the blood in the container 3A is separated into blood cell components and plasma.
  • the concentration of a specific component is automatically measured.
  • This automatic concentration measurement basically includes spotting of the supernatant (plasma) on the reagent pad, optical detection of the color state of the reagent pad, and calculation of the detection result.
  • the supernatant liquid is spotted by, for example, a pipette device (not shown) built in the housing 11.
  • the rotor 22 in the centrifugation step, a part of the bottomed cylindrical portion 31 that stores blood is in a state of protruding from the rotor 22.
  • the rotor 22 can be made relatively small in comparison with a configuration in which the container 3A is completely accommodated in the rotor 22 even in a rotating state (however, the rotation of blood) The radius is the same). It is possible to reduce the inertia moment of the rotor 22 by reducing the size of the rotor 22 that is a heavy object with respect to the container 3A and keeping it away from the center of rotation. This is suitable for rotating the rotor 22 at a high speed without increasing the output of the motor 21.
  • the rotation radius of blood can be increased by causing the container 3A to protrude from the rotor 22.
  • the portion of the container 3A that protrudes from the rotor 22 (bottomed tubular portion 31) has a major axis direction that coincides with the circumferential direction ⁇ in the rotating state. Therefore, it is possible to reduce the air resistance that is received by the container 3 ⁇ / b> A protruding from the rotor 22. Therefore, the power required for rotation can be reduced while increasing the centrifugal acceleration applied to the blood.
  • the centrifugal acceleration with respect to blood obtained by the motor 21 having the same specifications as in this embodiment is only about 1100 G.
  • the analyzer 1 has a size suitable for being placed on a table while having a sufficient centrifuge capability.
  • the container 3A is a disposable type, and furthermore, it is possible to appropriately use the container 3A having a shape and size suitable for the amount of blood to be separated. Further, the container 3 ⁇ / b> A is not all accommodated in the rotor 22. For this reason, even when using containers having different shapes (for example, containers having different shapes of protruding portions), the rotor 22 does not need to be changed at all.
  • FIG. 9 shows a second embodiment of the centrifuge device container according to the present invention.
  • the illustrated container 3B is different from the container 3A described above in the shape of the bottomed cylindrical portion 31. That is, in the container 3B, the flatness ratio of the bottomed cylindrical portion 31 increases as it goes toward the tip (downward in the longitudinal direction L in FIG. 9). Specifically, while the width in the pivot axis direction S is constant, the direction N dimension becomes thinner toward the tip.
  • the air resistance to the container 3B generated in the rotating state can be further reduced.
  • the opening 31a accommodated in the rotor 22 in the rotating state has a small flatness. Even if the flatness ratio of this portion is small, an increase in air resistance is not caused.
  • a nozzle or the like used for these operations is inserted from the opening 31a. There is an advantage that it is easy to do.
  • FIG. 10 shows a third embodiment of the centrifuge device container according to the present invention.
  • the illustrated container 3 ⁇ / b> C is different from any of the containers 3 ⁇ / b> A and 3 ⁇ / b> B described above in the shape of the bottomed cylindrical portion 31. That is, in the container 3C, the position in the pivot axis direction S of the maximum dimension portion 31b having the maximum dimension in the minor axis direction is deviated from the center.
  • This shape is a shape that approximates a streamlined shape.
  • the maximum dimension portion 31b is configured to be positioned in front of the circumferential direction ⁇ .
  • a cross section defined by a plurality of straight lines for example, a container having a rhombus shape (having a relatively long diagonal line and a relatively short diagonal line) is used. May be.
  • a container having a rhombus shape having a relatively long diagonal line and a relatively short diagonal line
  • FIG. 11 shows a fourth embodiment of the centrifuge container according to the present invention.
  • the illustrated container 3D is different from any of the containers 3A to 3C described above in that the dimple 34 is formed in the bottomed cylindrical portion 31.
  • the dimples 34 have a shallow circular shape, for example, and are arranged two-dimensionally at an equal pitch. According to such a configuration, it is possible to reduce the frictional force between the surface of the container 3D and the air, and it is possible to further reduce the air resistance.
  • FIG. 12 shows a second embodiment of the centrifuge according to the present invention.
  • the illustrated centrifugal device 2B is different from the centrifugal device 2A described above in the configuration of the swing body.
  • the housing 24 is omitted for convenience of understanding.
  • the swing body is constituted by the casing 23 and the container 3E.
  • the casing 23 is suspended so as to be pivotable with respect to the rotor 22.
  • the casing 23 may be detachable from the rotor 22.
  • the casing 23 is formed with an accommodating portion 23a and two shaft portions 23b.
  • the accommodating part 23a is a deep bottom concave part having a circular cross section, and accommodates the container 3E.
  • the two shaft portions 23 b are used to suspend the casing 23 so as to be pivotable with respect to the rotor 22.
  • the casing 23 is a flat part with the pivot axis direction S as the major axis direction.
  • the container 3E has a bottomed cylindrical portion 31 and two gripping portions 33.
  • the bottomed cylindrical portion 31 of the container 3E is cylindrical and has a shape that fits into the accommodating portion 23a.
  • the casing 23 and the container 3E rotate integrally as a swing body. Due to the centrifugal force at this time, the casing 23 and the container 3E pivot as in the case of the container 3A shown in FIG. As a result, a portion near the tip of the casing 23 is projected from the rotor 22. Even in such a configuration, the portion of the casing 23 protruding from the rotor 22 in the rotating state is a flat portion, so that the air resistance can be reduced while increasing the centrifugal acceleration to blood.
  • the present invention is not limited to the embodiment described above.
  • the specific configuration of each part of the centrifuge according to the present invention, the analysis apparatus using the centrifuge, and the centrifuge apparatus container can be varied in design in various ways.
  • the supported portion formed in the centrifuge device container is not limited to the shaft portion 32 in the above-described embodiment.
  • a shaft portion may be provided on the rotor 22 side, and a hook-shaped portion as a supported portion that is locked to the shaft portion may be formed on the container 3A. 12 may be applied to the casing 23 shown in FIG. 12 having a shape with a flattening rate that increases toward the tip shown in FIG. 9, the streamlined shape shown in FIG. 10, or the dimple 34 shown in FIG. Good.
  • the centrifuge according to the present invention is suitable for being incorporated in an analyzer installed on a table, but is not limited thereto.
  • the centrifugal device according to the present invention may be incorporated in a device other than the analysis device, or may be used alone.

Abstract

A centrifuge (2A) includes a motor (21) and a rotor (22) rotated by the motor (21). A vessel (3A) is suspended on the rotor (22) so as to be driven around a predetermined drive axis. The vessel (3A) has a bottomed cylinder (31) and is configured to hold a liquid to be processed. An end of the cylinder with a bottom (31) protrudes outward radially from the rotor (22) during rotation of the rotor (22). A part of the cylinder with a bottom (31) is configured to be a flat portion having a major axis in a circumferential direction (θ) of the rotor (22), and a minor axis in an axial direction (z) of the rotor (22).

Description

遠心装置、これを用いた分析装置、および遠心装置用容器Centrifuge, analyzer using the same, and container for centrifuge
 本発明は、遠心装置およびこれを用いた分析装置に関する。また、本発明は、遠心装置用の容器に関する。 The present invention relates to a centrifuge and an analysis apparatus using the same. The present invention also relates to a container for a centrifuge.
 周知のとおり、血液中には、赤血球や白血球のほか、グルコース、アルブミン、カルシウムなどの種々の成分が含まれている。血球成分以外の成分(血漿)の濃度測定を行う場合には、測定誤差を回避するために、前もって血球成分と血漿とを分離しておくことが望ましい。このためには、通常、遠心装置が用いられる。 As is well known, blood contains various components such as glucose, albumin and calcium in addition to red blood cells and white blood cells. When measuring the concentration of a component (plasma) other than the blood cell component, it is desirable to separate the blood cell component and plasma in advance in order to avoid measurement errors. For this purpose, a centrifugal device is usually used.
 従来より、血液中の成分濃度を自動的に測定すべく、遠心装置を内蔵した種々の分析装置が提案されている(たとえば下記の特許文献1参照)。図13は、そのような分析装置に内蔵される遠心装置の一例を示している。同図に示された遠心装置Xは、モータ92によって回転されるロータ91を備えている。ロータ91には、容器93が吊持されている。容器93は、たとえば半透明の樹脂製であり、処理対象液である血液94を収容する。容器93には、軸部93aが形成されている。この軸部93aがロータ91に係止されることにより、容器93はロータ91に対して枢動可能とされている。 Conventionally, in order to automatically measure the concentration of components in blood, various analyzers incorporating a centrifugal device have been proposed (see, for example, Patent Document 1 below). FIG. 13 shows an example of a centrifuge built in such an analyzer. The centrifuge device X shown in the figure includes a rotor 91 that is rotated by a motor 92. A container 93 is suspended from the rotor 91. The container 93 is made of, for example, a translucent resin and contains blood 94 that is a liquid to be processed. The container 93 is formed with a shaft portion 93a. The container 93 can be pivoted with respect to the rotor 91 by the shaft portion 93 a being locked to the rotor 91.
 ロータ91が停止した状態においては、容器93は、軸方向zに吊持されている。モータ92によってロータ91が周方向θに回転させられた状態においては、遠心力により容器93が枢動し、径方向rを向く姿勢となる。この回転状態を継続させると、血液94が血球成分と血漿とに分離される。このような比較的小型の遠心装置Xを内蔵した分析装置は、たとえば卓上に設置できる程度にコンパクトであり、比較的小規模な医院や診療所などで用いるのに適している。 In a state where the rotor 91 is stopped, the container 93 is suspended in the axial direction z. In a state where the rotor 91 is rotated in the circumferential direction θ by the motor 92, the container 93 is pivoted by the centrifugal force, and the posture is directed in the radial direction r. When this rotating state is continued, blood 94 is separated into blood cell components and plasma. Such an analysis device incorporating a relatively small centrifugal device X is compact enough to be installed on a table, for example, and is suitable for use in a relatively small clinic or clinic.
 上記分析装置において、測定精度をさらに向上させるために、あるいはより多くの項目について測定するためには、処理対象液(血液94)の量を多くする必要がある。このためには、容器93を大型とせざるを得ないが、これに伴い、容器93を内蔵するロータ91が大型となる。これらの大型となった容器93およびロータ91を分離に適した回転数で回転させるには、モータ92をより大出力なものとすることが強いられる。しかしながら、モータ92の大出力化は、モータ92自体の大型化(および消費電力の増大)を招き、ひいては、遠心装置Xを内蔵した分析装置の大型化を招くという点で問題がある。 In the above analyzer, in order to further improve the measurement accuracy or to measure more items, it is necessary to increase the amount of the liquid to be processed (blood 94). For this purpose, the container 93 must be made large, but the rotor 91 containing the container 93 becomes large accordingly. In order to rotate the container 93 and the rotor 91 which are large in size at a rotation speed suitable for separation, it is compelled to make the motor 92 have a higher output. However, increasing the output of the motor 92 has a problem in that it increases the size of the motor 92 itself (and increases the power consumption), and consequently increases the size of the analyzer incorporating the centrifugal device X.
WO 02/016043号WO 02/016043
 本発明は、上記した事情のもとで考え出されたものである。そこで本発明は、より多量の処理対象液を扱うことが可能であり、かつ、装置全体の小型化を図ることが可能な技術を提供することをその課題とする。 The present invention has been conceived under the above circumstances. Therefore, an object of the present invention is to provide a technique that can handle a larger amount of the liquid to be processed and can reduce the size of the entire apparatus.
 本発明の第1の側面によって提供される遠心装置は、駆動源と、上記駆動源により回転させられるロータと、上記ロータに対して枢動可能に吊持され、かつ処理対象液を保持する収容空間が設けられたスイング体と、を備えた遠心装置であって、上記スイング体は、上記ロータの回転状態において、少なくともその先端が上記ロータから回転径方向外方に突出し、かつ、上記ロータから突出する部分の少なくとも一部が、上記ロータの回転周方向を長軸方向とし、上記ロータの回転軸方向を短軸方向とする偏平部とされている。本発明の遠心装置の使用目的としては、たとえば、処理対象液の分離処理や消泡処理が挙げられる。すなわち、処理対象液を遠心することにより、液中の複数成分の比重の違いによる分離処理が可能であり、また、処理対象液に生じた泡を消滅させることが可能である。 The centrifuge provided by the first aspect of the present invention includes a drive source, a rotor rotated by the drive source, and a container that is pivotally suspended with respect to the rotor and holds a liquid to be processed. A swing body provided with a space, wherein the swing body has at least a tip projecting radially outward from the rotor in a rotating state of the rotor, and from the rotor. At least a part of the protruding portion is a flat portion in which the rotation circumferential direction of the rotor is a major axis direction and the rotation axis direction of the rotor is a minor axis direction. Examples of the purpose of use of the centrifuge of the present invention include separation processing and defoaming processing of the liquid to be processed. In other words, by centrifuging the liquid to be treated, separation processing due to the difference in specific gravity of a plurality of components in the liquid can be performed, and bubbles generated in the liquid to be treated can be eliminated.
 上記構成によれば、上記スイング体に収容される処理対象液の回転半径を顕著に大とすることが可能である。しかも、上記偏平部は、回転状態において長軸方向が回転周方向と一致する。これにより、上記スイング体が上記ロータから突出することにより受けることとなる空気抵抗を低減することが可能である。したがって、処理対象液に与える遠心加速度を大としつつ、回転に要する動力を小さくすることができる。したがって、上記遠心装置の小型化を図ることができる。 According to the above configuration, the radius of rotation of the liquid to be treated contained in the swing body can be remarkably increased. Moreover, in the flat portion, the major axis direction coincides with the rotational circumferential direction in the rotating state. Thereby, it is possible to reduce the air resistance that is received by the swing body projecting from the rotor. Therefore, the power required for rotation can be reduced while increasing the centrifugal acceleration applied to the liquid to be processed. Accordingly, the centrifugal device can be reduced in size.
 好ましくは、上記偏平部は、上記先端に向かうほど偏平率が大となる。このような構成によれば、上記スイング体の空気抵抗をさらに小さくすることが可能である。また、上記スイング体への処理対象液の注入、あるいは上記スイング体からの処理対象液の採取が容易となる。上記偏平部の断面形状は、たとえば流線型である。また、上記偏平部に複数のディンプルを形成してもよい。 Preferably, the flattening portion has a flattening rate that increases toward the tip. According to such a configuration, the air resistance of the swing body can be further reduced. Moreover, it becomes easy to inject the liquid to be processed into the swing body or to collect the liquid to be processed from the swing body. The cross-sectional shape of the flat portion is, for example, a streamline type. A plurality of dimples may be formed on the flat portion.
 好ましくは、上記ロータには、上記スイング体よりも回転軸心寄りに位置し、かつ上記ロータの回転状態における位置が上記ロータの非回転状態における位置よりも上記スイング体に接近するカバーが設けられている。このような構成によれば、上記カバーによって上記スイング体から処理対象液が過大に蒸発することを防止することができる。 Preferably, the rotor is provided with a cover that is located closer to the rotational axis than the swing body and that is closer to the swing body than the position of the rotor in the rotational state than in the non-rotation state of the rotor. ing. According to such a configuration, it is possible to prevent the processing target liquid from being excessively evaporated from the swing body by the cover.
 好ましくは、上記スイング体は、上記ロータに対して着脱可能である容器からなる。このような構成によれば、上記容器をディスポーザブルタイプとして使用することができる。 Preferably, the swing body includes a container that is detachable from the rotor. According to such a configuration, the container can be used as a disposable type.
 好ましくは、上記スイング体は、上記ロータに対して枢動可能に吊持されたケーシングと、上記ケーシングに収容され、かつ着脱可能である容器とからなる。このような構成によっても、上記遠心装置の小型化を図ることができる。 Preferably, the swing body includes a casing suspended so as to be pivotable with respect to the rotor, and a container accommodated in the casing and detachable. Such a configuration can also reduce the size of the centrifugal device.
 本発明の第2の側面によって提供される分析装置は、本発明の第1の側面によって提供される遠心装置と、上記遠心装置によって分離された試料を分析する測定装置と、を備えている。 The analyzer provided by the second aspect of the present invention includes the centrifuge provided by the first aspect of the present invention and a measuring device for analyzing the sample separated by the centrifuge.
 このような構成によれば、上記分析装置に充分な遠心装置を付与しつつ、上記分析装置をたとえば卓上に設置される程度の小型とするのに好ましい。 Such a configuration is preferable for making the analyzer small enough to be installed on a table, for example, while providing a sufficient centrifugal device to the analyzer.
 本発明の第3の側面によって提供される遠心装置用容器は、遠心装置に対して枢動軸まわりに枢動可能に吊持されるための被支持部と、上記枢動軸に対して直角である長手方向を有する有底筒部と、を備えている。上記有底筒部の少なくとも一部は偏平部とされており、この偏平部は、上記枢動軸方向を長軸方向とし、上記枢動軸および上記長手方向のいずれに対しても直角である方向を短軸方向とする構成とされている。 The container for a centrifuge provided by the third aspect of the present invention includes a supported part for being pivotably suspended around a pivot axis with respect to the centrifuge and a right angle with respect to the pivot axis. And a bottomed tube portion having a longitudinal direction. At least a part of the bottomed cylindrical part is a flat part, and the flat part has the pivot axis direction as a major axis direction and is perpendicular to both the pivot axis and the longitudinal direction. The direction is the short axis direction.
 このような構成によれば、回転状態において上記遠心装置用容器をたとえばロータから突出させる構成とした場合に、上記遠心装置用容器の空気抵抗を縮小することができる。 According to such a configuration, the air resistance of the centrifuge device container can be reduced when the centrifuge device container projects from the rotor, for example, in a rotating state.
 好ましくは、上記偏平部は、上記有底筒部の先端に向かうほど偏平率が大となる。このような構成によれば、上記空気抵抗の縮小に有利である。 Preferably, the flattening portion has a flattening rate that increases toward the tip of the bottomed tubular portion. Such a configuration is advantageous for reducing the air resistance.
 本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。 Other features and advantages of the present invention will become more apparent from the detailed description given below with reference to the accompanying drawings.
本発明に係る分析装置の一例を示す斜視図である。It is a perspective view which shows an example of the analyzer which concerns on this invention. 本発明に係る遠心装置の第1実施形態を示す斜視図である。It is a perspective view which shows 1st Embodiment of the centrifuge which concerns on this invention. 図2に示す遠心装置の要部を示す斜視図である。It is a perspective view which shows the principal part of the centrifuge shown in FIG. 本発明に係る遠心装置用容器の第1実施形態を示す斜視図である。It is a perspective view which shows 1st Embodiment of the container for centrifuges which concerns on this invention. 図4のV-V線に沿う断面図である。FIG. 5 is a sectional view taken along line VV in FIG. 4. 図2に示す遠心装置の非回転状態および回転状態を示す斜視図である。It is a perspective view which shows the non-rotation state and rotation state of the centrifuge shown in FIG. 非回転状態および回転状態におけるカバーの様子を示す断面図である。It is sectional drawing which shows the mode of the cover in a non-rotation state and a rotation state. 図7のVIII-VIII線に沿う断面図である。FIG. 8 is a sectional view taken along line VIII-VIII in FIG. 7. 本発明に係る遠心装置用容器の第2実施形態を示す斜視図である。It is a perspective view which shows 2nd Embodiment of the container for centrifuges which concerns on this invention. 本発明に係る遠心装置用容器の第3実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the container for centrifuges which concerns on this invention. 本発明に係る遠心装置用容器の第4実施形態を示す斜視図である。It is a perspective view which shows 4th Embodiment of the container for centrifuges which concerns on this invention. 本発明に係る遠心装置の第2実施形態を示す斜視図である。It is a perspective view which shows 2nd Embodiment of the centrifuge which concerns on this invention. 従来の遠心装置の一例を示す断面図である。It is sectional drawing which shows an example of the conventional centrifuge.
  以下、本発明の好ましい実施の形態につき、図面を参照して具体的に説明する。図1は、本発明に係る分析装置の一例を示している。図示された分析装置1は、血液に含まれる特定成分(例えばグルコース、アルブミン、カルシウムなど)の濃度測定を行うように構成されている。分析装置1は、筐体11、遠心装置2A、スライダユニット4、および試験片テーブル5を備えている。 Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 shows an example of an analyzer according to the present invention. The illustrated analyzer 1 is configured to measure the concentration of a specific component (for example, glucose, albumin, calcium, etc.) contained in blood. The analyzer 1 includes a housing 11, a centrifuge 2A, a slider unit 4, and a test piece table 5.
 筐体11は、たとえば樹脂製であり、遠心装置2A、スライダユニット4、および試験片テーブル5を収容している。筐体11の前面には、開閉自在な扉12が設けられている。扉12を閉じた状態では、遠心装置2Aおよび試験片テーブル5は、筐体11の内部に収納される。扉12を開けた状態では、遠心装置2Aおよび試験片テーブル5を筐体11から引き出すことができる。 The housing 11 is made of resin, for example, and houses the centrifuge 2A, the slider unit 4, and the test piece table 5. A door 12 that can be opened and closed is provided on the front surface of the housing 11. In the state where the door 12 is closed, the centrifuge 2A and the test piece table 5 are accommodated in the housing 11. In the state where the door 12 is opened, the centrifuge 2A and the test piece table 5 can be pulled out from the housing 11.
 試験片テーブル5は、筐体11の右側部分に収納されており、複数の試験片を載置する構成とすることができる。各試験片は、たとえば多成分測定用として構成されており、短冊状の基材の上に複数の試薬パッドが設けられている。各試薬パッドには、グルコース、アルブミン、カルシウムなどの検知対象物質の内の1つに反応して呈色する試薬が含浸されている。これとは異なり、1つの基材上にただ1つの試薬パッドが設けられた、単一成分測定用の構成とすることも可能である。各試験片は、試験片テーブル5に形成されたスリットに保持される。 The test piece table 5 is housed in the right portion of the housing 11 and can be configured to mount a plurality of test pieces. Each test piece is configured for multi-component measurement, for example, and a plurality of reagent pads are provided on a strip-shaped substrate. Each reagent pad is impregnated with a reagent that develops color in response to one of detection target substances such as glucose, albumin, and calcium. On the other hand, it is also possible to adopt a configuration for single component measurement in which only one reagent pad is provided on one substrate. Each test piece is held in a slit formed in the test piece table 5.
 スライダユニット4は、筐体11の左側部分に収容されており、遠心装置2Aを操作可能な位置にせり出させるための駆動装置である。図2に示すように、スライダユニット4には、遠心装置2Aが組みつけられており、モータ41およびベルト42を有している。モータ41の駆動力を用いてベルト42を所望の方向に回動させることにより、遠心装置2Aを矢印方向に進退させることが可能である。 The slider unit 4 is housed in the left part of the housing 11 and is a drive device for projecting the centrifugal device 2A to an operable position. As shown in FIG. 2, the centrifugal unit 2 </ b> A is assembled to the slider unit 4 and includes a motor 41 and a belt 42. By rotating the belt 42 in a desired direction using the driving force of the motor 41, the centrifugal device 2A can be advanced and retracted in the arrow direction.
 遠心装置2は、図2および図3に示すように、モータ21、ロータ22、ハウジング24、および容器3Aを備えている。図示した遠心装置2は、検体である血液を血球成分と血漿とに分離するための装置であるが、本発明がこれに限定されるわけではない。たとえば、本発明の遠心装置は、処理対象液に生じた泡を消滅させるための消泡処理に使用することも可能である。ハウジング24は、平面視略円形状であり、モータ21、ロータ22、および容器3Aを収容している。ハウジング24は、蓋24aおよび回転空間24bを有している。蓋24aは、開閉可能であり、開状態においては、容器3Aの装填作業が行われる。遠心分離工程においては、蓋24aは、閉状態とされる。回転空間24bは、ロータ22を囲うドーナツ状空間であり、遠心分離工程において、容器3Aが高速回転することを許容する。 As shown in FIGS. 2 and 3, the centrifugal device 2 includes a motor 21, a rotor 22, a housing 24, and a container 3A. The illustrated centrifugal apparatus 2 is an apparatus for separating blood, which is a specimen, into a blood cell component and plasma, but the present invention is not limited to this. For example, the centrifuge of the present invention can be used for a defoaming process for eliminating bubbles generated in the liquid to be processed. The housing 24 has a substantially circular shape in plan view and houses the motor 21, the rotor 22, and the container 3A. The housing 24 has a lid 24a and a rotation space 24b. The lid 24a can be opened and closed. In the open state, the container 3A is loaded. In the centrifugation step, the lid 24a is closed. The rotation space 24b is a donut-shaped space surrounding the rotor 22, and allows the container 3A to rotate at a high speed in the centrifugation step.
 図3に示すように、モータ21は、ロータ22の直下に配置されており、駆動軸を介してロータ22に直結されている。ロータ22は、たとえば樹脂製であり、厚肉円筒状とされている。ロータ22には、2つの係止部22aが形成されている。各係止部22aは、たとえば半円形溝として形成されている。また、図7、図8に示すようにロータ22には、カバー22bおよび2つのバネ部22cが形成されている。カバー22bは、係止部22aよりも径方向rにおいて回転中心寄りに位置しており、2つのバネ部22cによって懸架されている。バネ部22cは、たとえば比較的薄肉の蛇腹状であり、カバー22bに対して径方向rに外力が作用したときにカバー22bがその方向に移動することを許容する。 As shown in FIG. 3, the motor 21 is disposed immediately below the rotor 22 and is directly connected to the rotor 22 via a drive shaft. The rotor 22 is made of resin, for example, and has a thick cylindrical shape. The rotor 22 has two locking portions 22a. Each locking portion 22a is formed as a semicircular groove, for example. As shown in FIGS. 7 and 8, the rotor 22 is formed with a cover 22b and two spring portions 22c. The cover 22b is located closer to the center of rotation in the radial direction r than the locking portion 22a, and is suspended by two spring portions 22c. The spring portion 22c has, for example, a relatively thin bellows shape, and allows the cover 22b to move in that direction when an external force is applied to the cover 22b in the radial direction r.
 容器3Aは、血液を保持する収容空間を有している。容器3Aは、たとえば半透明な樹脂からなり、図4および図5に示すように、有底筒部31、2つの軸部32、把持部33を有している。有底筒部31は、長手方向Lに延びており、開口31aから血液を注入可能である。図5によく表れているように、有底筒部31の断面は、枢動軸方向Sを長軸方向とし、方向N(長手方向Lおよび枢動軸方向Sのいずれに対しても直角な方向)を短軸方向とする偏平楕円形状とされている。2つの軸部32は、有底筒部31から枢動軸方向Sに沿って互いに反対方向に突出する円柱状である。2つの軸部32は、ロータ22の係止部22aに支持される被支持部である。これにより、容器3Aは、ロータ22に対して枢動軸方向S周りに枢動可能に吊持されるスイング体として機能する。2つの把持部33は、有底筒部31の開口31a両側から長手方向Lに延びる舌状部である。2つの把持部33は、使用者が容器3Aを持ち運びするのに用いられる。 The container 3A has a storage space for holding blood. The container 3A is made of, for example, a translucent resin, and includes a bottomed cylindrical part 31, two shaft parts 32, and a gripping part 33 as shown in FIGS. The bottomed cylindrical portion 31 extends in the longitudinal direction L and can inject blood from the opening 31a. As clearly shown in FIG. 5, the cross section of the bottomed cylindrical portion 31 has the pivot axis direction S as the major axis direction and is perpendicular to the direction N (longitudinal direction L and pivot axis direction S). The shape is a flat ellipse with the direction as the minor axis direction. The two shaft portions 32 are columnar shapes that protrude in the opposite directions along the pivot axis direction S from the bottomed tubular portion 31. The two shaft portions 32 are supported portions that are supported by the locking portions 22 a of the rotor 22. As a result, the container 3A functions as a swing body that is suspended so as to pivot about the pivot axis direction S with respect to the rotor 22. The two gripping portions 33 are tongue-shaped portions extending in the longitudinal direction L from both sides of the opening 31 a of the bottomed cylindrical portion 31. The two grip portions 33 are used by the user to carry the container 3A.
 このような構成とされた容器3Aは、血液の遠心分離工程を1回行うたびに交換されるディスポーザブルタイプである。容器3Aは、たとえば、全長が22mm程度、有底筒部31の内径が6mm程度、収容される血液の容量が340μL程度とされている。 The container 3A having such a configuration is a disposable type that is replaced every time the blood centrifugation step is performed once. The container 3A has, for example, a total length of about 22 mm, an inner diameter of the bottomed cylindrical portion 31 of about 6 mm, and a volume of stored blood of about 340 μL.
 分析装置1は、上述した要素に加えて光学的測定装置を有している。この光学的測定装置は、たとえば複数の発光素子および複数の受光素子を含んでいる。各発光素子は、例えば発光ダイオード(LED)により構成される。各受光素子は、例えば光電変換素子により構成され、上述した試験片の試薬パッドから反射された光を受光する。たとえば、試験片テーブル5に、1つの多成分測定用試験片(5つの試薬パッドを有する)と、6つの単一成分測定用試験片(1つの試薬パッドを有する)を一度に載置可能な構成とした場合、この光学的測定装置は、11個(=5+1×6)の試薬パッドに個別に光を照射できるように、11個の発光素子および11個の受光素子が設けられる。 Analyzing device 1 has an optical measuring device in addition to the above-described elements. This optical measuring device includes, for example, a plurality of light emitting elements and a plurality of light receiving elements. Each light emitting element is constituted by, for example, a light emitting diode (LED). Each light receiving element is constituted by, for example, a photoelectric conversion element, and receives light reflected from the reagent pad of the above-described test piece. For example, one multi-component measurement test strip (having five reagent pads) and six single-component measurement test strips (having one reagent pad) can be placed on the test strip table 5 at a time. When configured, this optical measuring device is provided with 11 light emitting elements and 11 light receiving elements so that 11 (= 5 + 1 × 6) reagent pads can be individually irradiated with light.
 次に、以上の構成を有する分析装置1の使用方法および動作について説明する。 Next, the usage method and operation of the analyzer 1 having the above configuration will be described.
 血液中の血球成分以外の特定成分(グルコース、アルブミン、カルシウムなど)の濃度を測定する場合には、分析装置1において血球成分の遠心分離を行う必要がある。そのためには、先ず、採取した血液(例えば340μl)を容器3A内に注入する。そして、容器3Aをロータ22にセットする。図6に示すように、この状態においては、吊持された容器3Aの長手方向Lは、軸方向zと一致する。モータ21を駆動することにより、ロータ22が周方向θに回転する。なお、図6においては、理解の便宜上ハウジング24を省略している。このときの回転速度は、たとえば8500rpm程度である。ロータ22が回転することにより、容器3Aに遠心力が作用し、容器3Aは、軸部32を中心として枢動する。そして、遠心分離工程の定常状態においては、容器3Aは、長手方向Lが径方向rと略一致する姿勢となる。すなわち、容器3Aは、有底筒部31の大部分をロータ22から径方向rに突出させた状態で回転することとなる。容器3Aのこの突出部分は、ハウジング24の回転空間24b内を高速で回転する。この回転によって、容器3Aに収容された血液には遠心加速度が作用し、その大きさは、血液の液面においておよそ1500Gである。 When measuring the concentration of a specific component (glucose, albumin, calcium, etc.) other than the blood cell component in the blood, it is necessary to centrifuge the blood cell component in the analyzer 1. For this purpose, first, the collected blood (for example, 340 μl) is injected into the container 3A. Then, the container 3 </ b> A is set on the rotor 22. As shown in FIG. 6, in this state, the longitudinal direction L of the suspended container 3A coincides with the axial direction z. By driving the motor 21, the rotor 22 rotates in the circumferential direction θ. In FIG. 6, the housing 24 is omitted for convenience of understanding. The rotation speed at this time is, for example, about 8500 rpm. As the rotor 22 rotates, a centrifugal force acts on the container 3A, and the container 3A pivots about the shaft portion 32. In the steady state of the centrifugal separation process, the container 3A is in a posture in which the longitudinal direction L substantially coincides with the radial direction r. That is, the container 3 </ b> A rotates in a state where most of the bottomed cylindrical portion 31 protrudes from the rotor 22 in the radial direction r. This protruding portion of the container 3 </ b> A rotates at high speed in the rotation space 24 b of the housing 24. By this rotation, centrifugal acceleration acts on the blood stored in the container 3A, and the magnitude thereof is approximately 1500 G at the blood level.
 また、図7および図8に示すように、ロータ22の回転による遠心力は、カバー22bに作用する。これにより、2つのバネ部22cが弾性変形し、カバー22bが径方向r外方に移動する。すなわち、遠心力によっておよそ90度枢動した容器3Aの開口31aにカバー22bが接近することとなる。この結果、容器3Aがカバー22bによって完全に密閉されるか、あるいはわずかな隙間を残して覆われた状態となる。 Also, as shown in FIGS. 7 and 8, the centrifugal force generated by the rotation of the rotor 22 acts on the cover 22b. As a result, the two spring portions 22c are elastically deformed, and the cover 22b moves outward in the radial direction r. That is, the cover 22b approaches the opening 31a of the container 3A that is pivoted approximately 90 degrees by the centrifugal force. As a result, the container 3A is completely sealed by the cover 22b or is covered with a slight gap.
 以上の条件による遠心分離工程を、たとえば2分程度継続する。その結果、容器3A内の血液が血球成分と血漿とに分離される。血液の遠心分離が完了した後は、特定成分の濃度測定が自動的に行われる。この自動濃度測定は、基本的には、上述した試薬パッドへの上澄み液(血漿)の点着、試薬パッドの呈色状態の光学的検知、および検知結果の演算を含んでいる。上澄み液の点着は、たとえば筐体11に内蔵されたピペット装置(図示略)によってなされる。 The centrifugation step under the above conditions is continued for about 2 minutes, for example. As a result, the blood in the container 3A is separated into blood cell components and plasma. After the blood centrifugation is completed, the concentration of a specific component is automatically measured. This automatic concentration measurement basically includes spotting of the supernatant (plasma) on the reagent pad, optical detection of the color state of the reagent pad, and calculation of the detection result. The supernatant liquid is spotted by, for example, a pipette device (not shown) built in the housing 11.
 次に、分析装置1、遠心装置2A、および容器3Aの作用について説明する。 Next, the operation of the analyzer 1, the centrifuge 2A, and the container 3A will be described.
 上述した実施形態によれば、遠心分離工程においては、血液を収容する有底筒部31の一部がロータ22から突出した状態となる。このような構成によれば、たとえば、回転状態においても容器3Aがロータ22内に完全に収容される構成と比較して、ロータ22を相対的に小型とすることができる(ただし、血液の回転半径は同じとする)。容器3Aに対して重量物であるロータ22を小型とし、かつ回転中心から離さずに配置することにより、ロータ22の慣性モーメントを小さくすることが可能である。これは、モータ21を大出力化することなくロータ22を高速回転させるのに適している。 According to the above-described embodiment, in the centrifugation step, a part of the bottomed cylindrical portion 31 that stores blood is in a state of protruding from the rotor 22. According to such a configuration, for example, the rotor 22 can be made relatively small in comparison with a configuration in which the container 3A is completely accommodated in the rotor 22 even in a rotating state (however, the rotation of blood) The radius is the same). It is possible to reduce the inertia moment of the rotor 22 by reducing the size of the rotor 22 that is a heavy object with respect to the container 3A and keeping it away from the center of rotation. This is suitable for rotating the rotor 22 at a high speed without increasing the output of the motor 21.
 また、ロータ22のサイズを一定として考えた場合、容器3Aをロータ22から突出させることにより、血液の回転半径を大とすることが可能である。しかも、容器3Aのうちロータ22から突出する部分(有底筒部31)は、回転状態において長軸方向が周方向θと一致する。これにより、容器3Aがロータ22から突出することにより受けることとなる空気抵抗を低減することが可能である。したがって、血液に与える遠心加速度を大としつつ、回転に要する動力を小さくすることができる。たとえば、図13に示す構成のように容器93をロータ91から突出させない場合には、本実施形態と同じ仕様のモータ21によって得られる血液に対する遠心加速度は、1100G程度にとどまる。 In addition, when the size of the rotor 22 is considered to be constant, the rotation radius of blood can be increased by causing the container 3A to protrude from the rotor 22. In addition, the portion of the container 3A that protrudes from the rotor 22 (bottomed tubular portion 31) has a major axis direction that coincides with the circumferential direction θ in the rotating state. Thereby, it is possible to reduce the air resistance that is received by the container 3 </ b> A protruding from the rotor 22. Therefore, the power required for rotation can be reduced while increasing the centrifugal acceleration applied to the blood. For example, when the container 93 is not protruded from the rotor 91 as in the configuration shown in FIG. 13, the centrifugal acceleration with respect to blood obtained by the motor 21 having the same specifications as in this embodiment is only about 1100 G.
 以上説明したように、本発明によれば、より多くの血液を適切に遠心分離しつつ、遠心装置2Aの小型化を図ることが可能である。これは、分析装置1を十分な遠心装置能を備えつつ、卓上に設置するのに適したサイズとするのに有利である。 As described above, according to the present invention, it is possible to reduce the size of the centrifuge 2A while appropriately centrifuging more blood. This is advantageous in that the analyzer 1 has a size suitable for being placed on a table while having a sufficient centrifuge capability.
 容器3Aをディスポーザブルタイプとすることは、衛生面で好ましく、さらには、分離すべき血液の量に応じて適した形状およびサイズの容器3Aを適宜使い分けることが可能となる。また、容器3Aは、ロータ22にそのすべてが収容されるものではない。このため、形状の異なる容器(たとえば突出部分の形状が異なる容器)を使用する場合でも、ロータ22はなんら変更する必要が無い。 It is preferable from the viewpoint of hygiene that the container 3A is a disposable type, and furthermore, it is possible to appropriately use the container 3A having a shape and size suitable for the amount of blood to be separated. Further, the container 3 </ b> A is not all accommodated in the rotor 22. For this reason, even when using containers having different shapes (for example, containers having different shapes of protruding portions), the rotor 22 does not need to be changed at all.
 回転状態において、開口31aにカバー22bが接近することにより、開口31a付近を流れる風量が低減される。これにより、遠心分離工程において血液中の水分が蒸発してしまうことを抑制することが可能である。これは、分析装置1の測定精度を高めるのに好適である。また、このような蒸発対策が施されているにも関わらず、容器3Aには、そのための構造物を特に付与する必要が無い。これは、ディスポーザブルタイプとして使用される容器3Aのコスト、すなわち分析装置1を用いた測定に要するランニングコストを低減するのに適している。 When the cover 22b approaches the opening 31a in the rotating state, the amount of air flowing around the opening 31a is reduced. Thereby, it is possible to suppress that the water | moisture content in the blood evaporates in a centrifugation process. This is suitable for increasing the measurement accuracy of the analyzer 1. Moreover, although such a countermeasure against evaporation is taken, it is not necessary to provide the container 3A with a structure for that purpose. This is suitable for reducing the cost of the container 3A used as a disposable type, that is, the running cost required for the measurement using the analyzer 1.
 図9~図12は、本発明の他の実施形態を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、同一の符号を付している。 9 to 12 show other embodiments of the present invention. In these drawings, the same or similar elements as those in the above embodiment are given the same reference numerals.
 図9は、本発明に係る遠心装置用容器の第2実施形態を示している。図示された容器3Bは、有底筒部31の形状が上述した容器3Aと異なっている。すなわち、容器3Bにおいては、有底筒部31の偏平率が、その先端に向かうほど(図9において、長手方向Lに沿って下方に向かうほど)大となっている。具体的には、枢動軸方向Sにおける幅が一定であるのに対し、方向N寸法が先端に向かうほど薄くなっている。 FIG. 9 shows a second embodiment of the centrifuge device container according to the present invention. The illustrated container 3B is different from the container 3A described above in the shape of the bottomed cylindrical portion 31. That is, in the container 3B, the flatness ratio of the bottomed cylindrical portion 31 increases as it goes toward the tip (downward in the longitudinal direction L in FIG. 9). Specifically, while the width in the pivot axis direction S is constant, the direction N dimension becomes thinner toward the tip.
 このような構成によれば、回転状態に発生する容器3Bへの空気抵抗をさらに縮小することができる。また、回転状態においてロータ22に収容される開口31aは、偏平率が小である。この部分の偏平率が小であっても、空気抵抗の増大は招来しない。一方、患者から血液を採取した後に、この血液を容器3に注ぎ込むときや、上述したピペット装置によって上澄み液となった血漿を採取するときには、これらの作業に供されるノズルなどを開口31aから挿入しやすいという利点がある。 According to such a configuration, the air resistance to the container 3B generated in the rotating state can be further reduced. Moreover, the opening 31a accommodated in the rotor 22 in the rotating state has a small flatness. Even if the flatness ratio of this portion is small, an increase in air resistance is not caused. On the other hand, when blood is collected from the patient and then poured into the container 3 or when the supernatant plasma is collected by the pipette device described above, a nozzle or the like used for these operations is inserted from the opening 31a. There is an advantage that it is easy to do.
 図10は、本発明に係る遠心装置用容器の第3実施形態を示している。図示された容器3Cは、有底筒部31の形状が上述したいずれの容器3A、3Bとも異なっている。すなわち、容器3Cにおいては、短軸方向における寸法が最大である寸法最大部31bの枢動軸方向Sにおける位置が中心からずれている。この形状は、流線型に近似した形状である。容器3Cがロータ22に装着されて回転するときには、寸法最大部31bが周方向θ前方に位置するように構成される。このような構成によれば、回転状態における容器3Cの空気抵抗をさらに低減することが可能である。このような流線型状の断面を有する容器3Cにかえて、複数の直線により規定される断面、たとえば菱形状(相対的に長い対角線と相対的に短い対角線を有する)の断面とされた容器を使用してもよい。この場合には、回転状態における容器の空気抵抗を低減すべく、相対的に長い対角線が、図10における枢動軸方向Sに平行となる構成とすることが望ましい。 FIG. 10 shows a third embodiment of the centrifuge device container according to the present invention. The illustrated container 3 </ b> C is different from any of the containers 3 </ b> A and 3 </ b> B described above in the shape of the bottomed cylindrical portion 31. That is, in the container 3C, the position in the pivot axis direction S of the maximum dimension portion 31b having the maximum dimension in the minor axis direction is deviated from the center. This shape is a shape that approximates a streamlined shape. When the container 3C is mounted on the rotor 22 and rotates, the maximum dimension portion 31b is configured to be positioned in front of the circumferential direction θ. According to such a configuration, it is possible to further reduce the air resistance of the container 3C in the rotating state. Instead of the container 3C having such a streamlined cross section, a cross section defined by a plurality of straight lines, for example, a container having a rhombus shape (having a relatively long diagonal line and a relatively short diagonal line) is used. May be. In this case, in order to reduce the air resistance of the container in the rotating state, it is desirable that the relatively long diagonal is parallel to the pivot axis direction S in FIG.
 図11は、本発明に係る遠心装置用容器の第4実施形態を示している。図示された容器3Dは、有底筒部31にディンプル34が形成されている点が、上述したいずれの容器3A~3Cとも異なっている。ディンプル34は、たとえば底浅の円形状であり、等ピッチで2次元的に配置されている。このような構成によれば、容器3Dの表面と空気との摩擦力を小さくすることが可能であり、空気抵抗の低減をさらに進めることができる。 FIG. 11 shows a fourth embodiment of the centrifuge container according to the present invention. The illustrated container 3D is different from any of the containers 3A to 3C described above in that the dimple 34 is formed in the bottomed cylindrical portion 31. The dimples 34 have a shallow circular shape, for example, and are arranged two-dimensionally at an equal pitch. According to such a configuration, it is possible to reduce the frictional force between the surface of the container 3D and the air, and it is possible to further reduce the air resistance.
 図12は、本発明に係る遠心装置の第2実施形態を示している。図示された遠心装置2Bは、スイング体の構成が上述した遠心装置2Aと異なっている。なお、本図においては、理解の便宜上ハウジング24を省略している。遠心装置2Bにおいては、スイング体がケーシング23および容器3Eによって構成されている。ケーシング23は、ロータ22に対して枢動可能に吊持されている。ケーシング23は、ロータ22に対して脱着可能であってもよい。ケーシング23には、収容部23aと2つの軸部23bが形成されている。収容部23aは、断面円形状の深底凹部であり、容器3Eを収容する。2つの軸部23bは、ケーシング23をロータ22に対して枢動可能に吊持するのに用いられる。ケーシング23は、枢動軸方向Sを長軸方向とする偏平部となっている。容器3Eは、有底筒部31および2つの把持部33を有している。容器3Eの有底筒部31は、円筒状であり、収容部23aに嵌まり込む形状とされている。 FIG. 12 shows a second embodiment of the centrifuge according to the present invention. The illustrated centrifugal device 2B is different from the centrifugal device 2A described above in the configuration of the swing body. In this figure, the housing 24 is omitted for convenience of understanding. In the centrifugal device 2B, the swing body is constituted by the casing 23 and the container 3E. The casing 23 is suspended so as to be pivotable with respect to the rotor 22. The casing 23 may be detachable from the rotor 22. The casing 23 is formed with an accommodating portion 23a and two shaft portions 23b. The accommodating part 23a is a deep bottom concave part having a circular cross section, and accommodates the container 3E. The two shaft portions 23 b are used to suspend the casing 23 so as to be pivotable with respect to the rotor 22. The casing 23 is a flat part with the pivot axis direction S as the major axis direction. The container 3E has a bottomed cylindrical portion 31 and two gripping portions 33. The bottomed cylindrical portion 31 of the container 3E is cylindrical and has a shape that fits into the accommodating portion 23a.
 ロータ22が回転すると、ケーシング23および容器3Eがスイング体として一体的に回転する。このときの遠心力により、ケーシング23および容器3Eは、図6に示した容器3Aと同様に枢動する。これにより、ケーシング23の先端寄り部分がロータ22から突出した状態となる。このような構成によっても、回転状態においてロータ22から突出するケーシング23の部分が偏平部となっていることにより、血液への遠心加速度を大としつつ、空気抵抗を縮小することができる。 When the rotor 22 rotates, the casing 23 and the container 3E rotate integrally as a swing body. Due to the centrifugal force at this time, the casing 23 and the container 3E pivot as in the case of the container 3A shown in FIG. As a result, a portion near the tip of the casing 23 is projected from the rotor 22. Even in such a configuration, the portion of the casing 23 protruding from the rotor 22 in the rotating state is a flat portion, so that the air resistance can be reduced while increasing the centrifugal acceleration to blood.
 本発明は、上述した実施形態に限定されるものではない。本発明に係る遠心装置、これを用いた分析装置、および遠心装置用容器の各部の具体的な構成は、種々に設計変更自在である。 The present invention is not limited to the embodiment described above. The specific configuration of each part of the centrifuge according to the present invention, the analysis apparatus using the centrifuge, and the centrifuge apparatus container can be varied in design in various ways.
 遠心装置用容器に形成される被支持部は、上述した実施形態における軸部32に限定されない。たとえば、ロータ22側に軸部を設け、容器3Aにこの軸部に係止する被支持部としてのフック状部分を形成してもよい。また、図12に示すケーシング23に対して、図9に示した先端に向かうほど偏平率が大である形状、図10に示した流線型、あるいは、図11に示したディンプル34を適用してもよい。本発明に係る遠心装置は、卓上に設置される分析装置に内蔵されるのに適しているが、これに限定されない。たとえば、本発明に係る遠心装置は、分析装置以外の装置に内蔵されるものであってもよいし、遠心装置単体で使用されるものであってもよい。 The supported portion formed in the centrifuge device container is not limited to the shaft portion 32 in the above-described embodiment. For example, a shaft portion may be provided on the rotor 22 side, and a hook-shaped portion as a supported portion that is locked to the shaft portion may be formed on the container 3A. 12 may be applied to the casing 23 shown in FIG. 12 having a shape with a flattening rate that increases toward the tip shown in FIG. 9, the streamlined shape shown in FIG. 10, or the dimple 34 shown in FIG. Good. The centrifuge according to the present invention is suitable for being incorporated in an analyzer installed on a table, but is not limited thereto. For example, the centrifugal device according to the present invention may be incorporated in a device other than the analysis device, or may be used alone.

Claims (12)

  1.  駆動源と、
     上記駆動源により回転させられるロータと、
     上記ロータに対して枢動可能に吊持され、かつ処理対象液を保持する収容空間が設けられたスイング体と、を備えた遠心装置であって、
     上記スイング体は、上記ロータの回転状態において、少なくともその先端が上記ロータから回転径方向外方に突出し、かつ、上記ロータから突出する部分の少なくとも一部が、上記ロータの回転周方向を長軸方向とし、上記ロータの回転軸方向を短軸方向とする偏平部とされていること特徴とする、遠心装置。
    A driving source;
    A rotor rotated by the drive source;
    A swing body that is pivotably suspended with respect to the rotor and provided with a storage space for holding a liquid to be treated, and a centrifugal device comprising:
    In the rotational state of the rotor, the swing body projects at least at the tip thereof outward in the rotational radial direction from the rotor, and at least a part of the portion projecting from the rotor has a long axis in the rotational circumferential direction of the rotor. The centrifuge is characterized in that it is a flat part with the direction of the rotation axis of the rotor as the minor axis direction.
  2.  上記偏平部は、上記先端に向かうほど偏平率が大となる、請求項1に記載の遠心装置。 The centrifugal device according to claim 1, wherein the flattening portion has a flattening rate that increases toward the tip.
  3.  上記ロータには、上記スイング体よりも回転軸心寄りに位置し、かつ上記ロータの回転状態における位置が上記ロータの非回転状態における位置よりも上記スイング体に接近するカバーが設けられている、請求項1に記載の遠心装置。 The rotor is provided with a cover that is located closer to the rotational axis than the swing body, and in which the position in the rotation state of the rotor is closer to the swing body than the position in the non-rotation state of the rotor. The centrifuge according to claim 1.
  4.  上記スイング体は、上記ロータに対して着脱可能である容器である、請求項1に記載の遠心装置。 The centrifugal apparatus according to claim 1, wherein the swing body is a container that is detachable from the rotor.
  5.  上記スイング体は、上記ロータに対して枢動可能に吊持されたケーシングと、上記ケーシングに収容され、かつ着脱可能である容器とからなる、請求項1に記載の遠心装置。 2. The centrifugal apparatus according to claim 1, wherein the swing body includes a casing that is pivotably supported with respect to the rotor, and a container that is accommodated in the casing and is detachable.
  6.  上記偏平部は、流線型である、請求項1に記載の遠心装置。 The centrifuge according to claim 1, wherein the flat part is a streamlined type.
  7.  上記偏平部には、複数のディンプルが形成されている、請求項1に記載の遠心装置。 The centrifuge according to claim 1, wherein a plurality of dimples are formed in the flat part.
  8.  請求項1に記載の遠心装置と、
     上記遠心装置によって遠心分離された試料を分析する測定装置と、
    を備えていることを特徴とする、分析装置。
    A centrifuge according to claim 1;
    A measuring device for analyzing the sample centrifuged by the centrifuge,
    An analysis device comprising:
  9.  遠心装置に対して枢動軸まわりに枢動可能に吊持されるための被支持部と、
     上記枢動軸に対して直角である長手方向を有する有底筒部と、
    を備える遠心装置用容器であって、
     上記有底筒部の少なくとも一部は偏平部とされており、この偏平部は、上記枢動軸方向を長軸方向とし、上記枢動軸および上記長手方向のいずれに対しても直角である方向を短軸方向とする構成とされている、遠心装置用容器。
    A supported portion to be pivotably suspended about a pivot axis with respect to the centrifuge device;
    A bottomed tube portion having a longitudinal direction perpendicular to the pivot axis;
    A centrifuge container comprising:
    At least a part of the bottomed cylindrical part is a flat part, and the flat part has the pivot axis direction as a major axis direction and is perpendicular to both the pivot axis and the longitudinal direction. A centrifuge container having a configuration in which the direction is a short axis direction.
  10.  上記偏平部は、上記有底筒部の先端に向かうほど偏平率が大となる、請求項9に記載の遠心装置用容器。 The centrifuge device container according to claim 9, wherein the flattened portion has a flattening rate that increases toward the tip of the bottomed cylindrical portion.
  11.  上記偏平部は、流線型である、請求項9に記載の遠心装置用容器。 The said flat part is a container for centrifuges of Claim 9 which is a streamlined type.
  12.  上記偏平部には、複数のディンプルが形成されている、請求項9に記載の遠心装置用容器。 The centrifuge device container according to claim 9, wherein a plurality of dimples are formed in the flat portion.
PCT/JP2009/051154 2008-01-25 2009-01-26 Centrifuge, analysis device using the same, and vessel for centrifuge WO2009093731A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008015195 2008-01-25
JP2008-015195 2008-01-25

Publications (1)

Publication Number Publication Date
WO2009093731A1 true WO2009093731A1 (en) 2009-07-30

Family

ID=40901228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051154 WO2009093731A1 (en) 2008-01-25 2009-01-26 Centrifuge, analysis device using the same, and vessel for centrifuge

Country Status (1)

Country Link
WO (1) WO2009093731A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3229028A1 (en) * 2016-04-08 2017-10-11 i-SENS inc. Circular type cartridge enabling centrifugation and modular automatic analyzer using the same
JP2021102212A (en) * 2017-11-28 2021-07-15 エッペンドルフ・ハイマック・テクノロジーズ株式会社 Swing rotor for centrifugal machine and centrifugal machine
EP4324566A1 (en) * 2022-04-08 2024-02-21 Arthrex, Inc Systems and methods for motor source driven biological sample processing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113158A (en) * 1984-06-28 1986-01-21 Konishiroku Photo Ind Co Ltd Biochemical analyser
JPS6171257U (en) * 1984-10-18 1986-05-15
JPH03505702A (en) * 1989-04-11 1991-12-12 アプライド リサーチ システムズ エーアールエス ホールディング ナームロゼ ベノートスハップ Multi-analyte test vehicle
JPH0619842U (en) * 1992-06-09 1994-03-15 株式会社久保田製作所 Bucket for centrifuge
JPH07222940A (en) * 1994-02-15 1995-08-22 Hitachi Koki Co Ltd Rotor for centrifugal separator
JPH07265741A (en) * 1994-03-31 1995-10-17 Hitachi Koki Co Ltd Centrifugal separator
WO2006046537A1 (en) * 2004-10-28 2006-05-04 Arkray, Inc. Centrifugal separator and analyzer provided with same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113158A (en) * 1984-06-28 1986-01-21 Konishiroku Photo Ind Co Ltd Biochemical analyser
JPS6171257U (en) * 1984-10-18 1986-05-15
JPH03505702A (en) * 1989-04-11 1991-12-12 アプライド リサーチ システムズ エーアールエス ホールディング ナームロゼ ベノートスハップ Multi-analyte test vehicle
JPH0619842U (en) * 1992-06-09 1994-03-15 株式会社久保田製作所 Bucket for centrifuge
JPH07222940A (en) * 1994-02-15 1995-08-22 Hitachi Koki Co Ltd Rotor for centrifugal separator
JPH07265741A (en) * 1994-03-31 1995-10-17 Hitachi Koki Co Ltd Centrifugal separator
WO2006046537A1 (en) * 2004-10-28 2006-05-04 Arkray, Inc. Centrifugal separator and analyzer provided with same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3229028A1 (en) * 2016-04-08 2017-10-11 i-SENS inc. Circular type cartridge enabling centrifugation and modular automatic analyzer using the same
CN107271703A (en) * 2016-04-08 2017-10-20 爱-森新株式会社 The circular cartridge that can centrifuge and utilize its modular automatic analyzer
US10371709B2 (en) 2016-04-08 2019-08-06 I-Sens, Inc. Circular type cartridge enabling centrifugation and modular automatic analyzer using the same
JP2021102212A (en) * 2017-11-28 2021-07-15 エッペンドルフ・ハイマック・テクノロジーズ株式会社 Swing rotor for centrifugal machine and centrifugal machine
JP7155319B2 (en) 2017-11-28 2022-10-18 エッペンドルフ・ハイマック・テクノロジーズ株式会社 Swing rotor for centrifuge and centrifuge
EP4324566A1 (en) * 2022-04-08 2024-02-21 Arthrex, Inc Systems and methods for motor source driven biological sample processing

Similar Documents

Publication Publication Date Title
US8512638B2 (en) Microchip and analyzer using the same
JP4614992B2 (en) Analytical device, analytical apparatus and analytical method using the same
CN106413895B (en) Cylinder with rotatable lid
JP2011502623A (en) Transdermal body fluid sampling and pretreatment apparatus and method
JP4703941B2 (en) Centrifugal separator and analyzer equipped with the same
JP5376429B2 (en) Analytical device, analytical apparatus and analytical method using the same
CN1124482C (en) Photometer and method and cuvette for mix
WO2009093731A1 (en) Centrifuge, analysis device using the same, and vessel for centrifuge
JP6977067B2 (en) Control method for sample analysis substrate, sample analyzer, sample analysis system and sample analyzer
JP2007333716A (en) Separating/weighing chip, and method for using the same
WO2006035801A1 (en) Centrifugal separator and analyzer with the same
JP2007152209A (en) Rotor for centrifuge and centrifugal separator
EP1820573B1 (en) Centrifugal separator and analyzer provided with same
JP2010032446A (en) Analyzing device and analysis method
JP4055802B2 (en) Reaction disk for automatic analyzer
US6811531B2 (en) Horizontal centrifuge rotor
JP2020126062A (en) Sample applicator for point-of-care device
JP2009236504A (en) Analyzer
EP4129488A1 (en) Measurement cell and centrifugal sedimentation-type particle-size distribution measuring device using said measurement cell
JP2007132823A (en) Chemical analyzer
JP2017090353A (en) Analysis device
JP2010151556A (en) Analyzer
JP2009092391A (en) Analysis device, and analysis apparatus and analysis method using the same
CN1727072A (en) Centrifugal separator and analyzer with the separator
JP2009186331A (en) Automatic analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09703278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09703278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP