WO2009093466A1 - 符号化装置、復号装置およびこれらの方法 - Google Patents

符号化装置、復号装置およびこれらの方法 Download PDF

Info

Publication number
WO2009093466A1
WO2009093466A1 PCT/JP2009/000262 JP2009000262W WO2009093466A1 WO 2009093466 A1 WO2009093466 A1 WO 2009093466A1 JP 2009000262 W JP2009000262 W JP 2009000262W WO 2009093466 A1 WO2009093466 A1 WO 2009093466A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
frequency
low
mid
unit
Prior art date
Application number
PCT/JP2009/000262
Other languages
English (en)
French (fr)
Inventor
Tomofumi Yamanashi
Masahiro Oshikiri
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to CN2009801029644A priority Critical patent/CN101925953B/zh
Priority to US12/863,690 priority patent/US8422569B2/en
Priority to EP09704209.7A priority patent/EP2239731B1/en
Priority to JP2009550480A priority patent/JP5448850B2/ja
Publication of WO2009093466A1 publication Critical patent/WO2009093466A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • G10L19/24Variable rate codecs, e.g. for generating different qualities using a scalable representation such as hierarchical encoding or layered encoding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques

Definitions

  • the present invention relates to an encoding device, a decoding device, and these methods used in a communication system that encodes and transmits a signal.
  • variable bit rate transmission methods have been developed to improve the line efficiency by handling audio signals that can be transmitted at low bit rates to moving image data that needs to be transmitted at high bit rates in the same framework. Yes.
  • a typical example of this scalable coding technique is to divide an input signal into a low-frequency component and a high-frequency component (and a mid-frequency component) in the frequency domain, and encode and transmit a signal in each band.
  • a method for realizing on-axis scalability is disclosed (for example, see Patent Document 2, Patent Document 3, and Patent Document 4). JP-A-10-97295 JP 2005-114814 A JP 2006-189836 A JP 2006-119301 A
  • Patent Document 2 Patent Document 3, and Patent Document 4
  • an input signal (for example, a signal having a sampling frequency of 32 kHz) is first subjected to band division processing by QMF (Quadrature Mirror Filter) or the like to reduce the frequency.
  • QMF Quadrature Mirror Filter
  • segments into the signal of a high frequency component and the signal of a high frequency component is disclosed.
  • a configuration is disclosed in which an input signal is divided into three signals including a low-frequency component signal and a high-frequency component signal as well as a mid-frequency component signal.
  • G standardized by ITU-T in the encoding unit of the first layer (lowermost layer). Consider the case of using 729.1 encoding.
  • the 729.1 encoding unit applies a low-pass filter to the input signal of the 16 kHz sampling frequency subjected to the QMF analysis in order to obtain a frequency characteristic up to the 7 kHz band, and encodes the signal limited to the 7 kHz band. To do. However, G. For example, even when the input signal includes frequency components up to the 8 kHz band, the 729.1 encoding unit encodes the components up to the 7 kHz band and does not encode the components in the 7 to 8 kHz band. Therefore, G. It is necessary to encode the component in the 7 to 8 kHz band by an encoding unit different from the 729.1 encoding unit.
  • G Of course, a configuration in which a component of 7 to 8 kHz band (a band of 7 kHz or more and lower than 8 kHz) is obtained from a signal of 16 kHz sampling frequency input to the 729.1 encoding unit is also conceivable.
  • G Performing orthogonal transform processing such as Modified Discrete Cosine Transform (MDCT) on the 0 to 8 kHz band signal input to the 729.1 encoding unit to calculate the frequency component of the 7 to 8 kHz band it can.
  • MDCT Modified Discrete Cosine Transform
  • the G.P In addition to the MDCT calculation performed by the 729.1 encoding unit, it is necessary to newly calculate the MDCT coefficient of the component of 0 to 8 kHz, which greatly increases the calculation amount.
  • An object of the present invention is to divide an input signal into a low-frequency component and a high-frequency component by processing such as QMF, and encode each component with a separate encoding unit.
  • an encoding device, a decoding device, and these methods capable of improving the quality of a decoded signal by reconstructing and encoding a band component lost by applying a low-pass filter internally while suppressing the amount of calculation. It is to be.
  • the technique of the present invention is not a simple filtering process in signal processing but a quality improvement technique peculiar to voice / audio signals.
  • the encoding apparatus includes a band dividing unit that performs a band division process on an input signal to obtain a low-middle band component lower than a first frequency and a high-band component equal to or higher than the first frequency, and the low-middle band Low-frequency encoding means for obtaining a low-frequency component information by suppressing the portion of the second frequency component or higher among the frequency components and encoding the low-frequency component; and the suppressed low-mid region Mid-range correction means for correcting a mid-range component of the second frequency or higher among components to obtain a corrected mid-range component, and encoding the corrected mid-range component and the high-frequency component to obtain mid-high range encoded information And a mid-high range encoding means.
  • the decoding apparatus is such that a low-frequency component obtained by suppressing a portion of the second and higher frequencies among lower-middle components lower than the first frequency obtained by dividing the input signal in the encoding device is encoded.
  • Low-band coding information, and the corrected mid-band component obtained by correcting the low-frequency mid-band component of the suppressed low-mid band component and the second frequency or higher and the band division obtained above Receiving means for receiving high-frequency components encoded with a high frequency component of the first frequency or higher; receiving means for decoding the low-frequency encoded information to obtain a decoded low-frequency spectrum; and
  • the high frequency decoding means which decodes the middle high frequency band encoded information using the decoded low frequency spectrum to obtain a decoded high frequency signal and a decoded middle frequency spectrum is adopted.
  • the encoding method includes a step of performing band division processing on an input signal to obtain a low midband component lower than a first frequency and a highband component equal to or higher than the first frequency, and the low midband component A portion of the second frequency or higher is suppressed to obtain a low frequency component, the low frequency component is encoded to obtain low frequency encoded information, and the second of the suppressed low mid frequency components is
  • the method includes a step of obtaining a corrected mid-range component by correcting a mid-range component having a frequency equal to or higher than a frequency, and a step of obtaining the mid-high range encoded information by encoding the corrected mid-range component and the high-frequency component.
  • the low frequency component obtained by suppressing the portion of the low frequency range lower than the first frequency obtained by dividing the input signal in the encoding device from the first frequency is suppressed.
  • Low-band coding information, and the corrected mid-band component obtained by correcting the low-frequency mid-band component of the suppressed low-mid band component and the second frequency or higher and the band division obtained above Receiving middle and high band encoded information in which a high frequency component of a first frequency or higher is encoded, decoding the low band encoded information to obtain a decoded low band spectrum, and the decoded low band spectrum And decoding the mid-high band encoded information to obtain a decoded high-band signal and a decoded mid-band spectrum.
  • the low-frequency component encoding unit By applying a low-pass filter internally, a missing band component can be restored and encoded while suppressing the amount of computation, and the quality of the decoded signal can be improved.
  • FIG. 1 is a block diagram showing a configuration of a communication system having an encoding device and a decoding device according to Embodiment 1 of the present invention.
  • the block diagram which shows the main structures inside the encoding apparatus shown in FIG.
  • the block diagram which shows the main structures inside the low-pass encoding part shown in FIG.
  • the figure which shows the frequency characteristic of the low-pass filter shown in FIG. The figure which shows the frequency characteristic of the low-pass filter shown in FIG.
  • the block diagram which shows the main structures inside the mid-high range encoding part shown in FIG.
  • the block diagram which shows the main structures inside the band extension encoding part shown in FIG. The figure for demonstrating the detail of the filtering process in the filtering part shown in FIG.
  • the flowchart which shows the procedure of the process which searches the optimal pitch coefficient in the search part shown in FIG. The block diagram which shows the main structures inside the decoding apparatus shown in FIG.
  • the block diagram which shows the main structures inside the low-mid-range decoding part shown in FIG. The block diagram which shows the main structures inside the high frequency decoding part shown in FIG.
  • the block diagram which shows the main structures inside the low-pass decoding part shown in FIG. The block diagram which shows the main structures inside the encoding apparatus which concerns on Embodiment 3 of this invention.
  • FIG. 15 is a block diagram showing the main configuration inside the midband coding section shown in FIG.
  • the block diagram which shows the main structures inside the high-pass encoding part shown in FIG. The block diagram which shows the main structures inside the decoding apparatus which concerns on Embodiment 3 of this invention.
  • the block diagram which shows the main structures inside the mid-range decoding part shown in FIG. The block diagram which shows the main structures inside the high frequency decoding part shown in FIG.
  • FIG. 1 is a block diagram showing a configuration of a communication system having an encoding device and a decoding device according to Embodiment 1 of the present invention.
  • the communication system includes an encoding device 101 and a decoding device 103, and can communicate with each other via a transmission path 102.
  • the encoding apparatus 101 divides an input signal into N samples (N is a natural number), and encodes each frame with N samples as one frame.
  • n indicates that it is the (n + 1) th signal element among the input signals divided by N samples.
  • the signal may be described by omitting the sample “n”.
  • the encoded input information (encoded information) is transmitted to the decoding device 103 via the transmission path 102.
  • the decoding device 103 receives the encoded information transmitted from the encoding device 101 via the transmission path 102, decodes it, and obtains an output signal.
  • FIG. 2 is a block diagram showing a main configuration inside the encoding apparatus 101 shown in FIG.
  • the encoding apparatus 101 includes a band division processing unit 201, a low frequency encoding unit 202, a mid frequency correction unit 203, a mid high frequency encoding unit 204, and a multiplexing unit 205, and each unit performs the following operations. Do.
  • the band division processing unit 201 performs band division processing by QMF or the like on the input signal x whose sampling frequency is SR input , and outputs the low and middle band signal x_lo and the high band signal x_hi whose sampling frequency are both SR input / 2. Generate.
  • SR input is 32 kHz as an example
  • the low band indicates the 0 to 7 kHz band
  • the middle band indicates the 7 to 8 kHz band
  • the high band indicates the 8 to 16 kHz band.
  • the low and middle band signal x_lo indicates a signal in the 0 to 8 kHz band
  • the high band signal x_hi indicates a signal in the 8 to 16 kHz band.
  • the band division processing unit 201 outputs the generated low and middle band signal x_lo to the low band encoding unit 202 and outputs the high band signal x_hi to the middle and high band encoding unit 204.
  • the low band encoding unit 202 suppresses the 7 to 8 kHz portion of the low to mid band signal x_lo in the 0 to 8 kHz band input from the band division processing unit 201, and the 0 to 7 kHz portion is standardized by, for example, ITU-T G. 729.1 and the like are encoded, and the generated low frequency encoding information is output to the multiplexing unit 205. Also, the low frequency encoding unit 202 outputs the frequency component of the mid range (7 to 8 kHz band) calculated in the process of obtaining the low frequency encoding information to the mid range correction unit 203 as the mid range spectrum X_mid.
  • the low frequency encoding unit 202 further decodes the generated low frequency encoding information, and sets the low frequency component of the obtained decoded signal as a decoded low frequency spectrum S_lo (k) (0 ⁇ k ⁇ 7 kHz).
  • the data is output to the area encoding unit 204.
  • the spectrum may be described by omitting the frequency “k”.
  • S_lo (k) (0 ⁇ k ⁇ 7 kHz) may be abbreviated as S_lo. Details of the low frequency encoding unit 202 will be described later.
  • the mid-band correction unit 203 corrects the mid-band spectrum X_mid input from the low-band coding unit 202 in the frequency domain, and outputs the obtained spectrum to the mid-high band coding unit 204 as a corrected mid-band spectrum S_mid. To do. Details of the mid-range correction unit 203 will be described later.
  • the middle and high band encoding unit 204 uses the decoded low band spectrum S_lo input from the low band encoding unit 202 and the corrected middle band spectrum S_mid input from the middle band correction unit 203 and the band division processing unit 201.
  • the high frequency signal x_hi (8 to 16 kHz band) to be encoded is encoded, and the generated middle and high frequency encoded information is output to the multiplexing unit 205. Details of the mid-high band encoding unit 204 will be described later.
  • the multiplexing unit 205 multiplexes the low frequency encoding information input from the low frequency encoding unit 202 and the middle / high frequency encoding information input from the middle / high frequency encoding unit 204, and uses the multiplexed result as encoding information. Output to the transmission line 102.
  • FIG. 3 is a block diagram showing the main configuration inside the low-frequency encoding unit 202 shown in FIG.
  • the low-frequency encoding unit 202 includes a band division processing unit 301, a high-pass filter 302, a CELP (Code (ExcitedcitLinear Prediction) encoding unit 303, an FEC (Forward Error Correction) encoding unit 304, and addition. 305, low-pass filter 306, TDAC (Time-Domain Aliasing Cancellation) encoding unit 307, TDBWE (Time-Domain BandWidth Extension) encoding unit 308, and multiplexing unit 309. Each unit performs the following operations.
  • the band division processing unit 301 performs band division processing by QMF or the like on the low and middle band signal x_lo input from the band division processing unit 201 in the same manner as the band division processing unit 201, and performs the first low-frequency band of 0 to 4 kHz band. And a second low-frequency signal in the 4 to 8 kHz band are generated.
  • the band division processing unit 301 outputs the generated first low-frequency signal to the high-pass filter 302, and outputs the second low-frequency signal to the low-pass filter 306.
  • the high-pass filter 302 suppresses frequency components of 0.05 kHz or less with respect to the first low-frequency signal input from the band division processing unit 301, obtains a signal mainly composed of frequency components higher than 0.05 kHz, and performs filtering.
  • One low frequency signal is output to CELP encoding section 303 and adding section 305.
  • CELP encoding section 303 performs CELP encoding on the filtered first low-pass signal input from high-pass filter 302, and converts the obtained CELP parameters into FEC encoding section 304, TDAC encoding section 307, and The data is output to the multiplexing unit 309.
  • the CELP encoding unit 303 may output part of the CELP parameter or information obtained in the process of obtaining the CELP parameter to the FEC encoding unit 304 and the TDAC encoding unit 307.
  • the CELP encoding unit 303 performs CELP decoding on the obtained CELP parameter, and outputs the obtained CELP decoded signal to the adding unit 305.
  • the FEC encoding unit 304 uses the CELP parameter input from the CELP encoding unit 303 to calculate an FEC parameter used for erasure frame compensation processing of the decoding apparatus 103, and outputs the FEC parameter to the multiplexing unit 309. .
  • the adder 305 calculates a difference between the filtered first low-pass signal input from the high-pass filter 302 and the CELP decoded signal input from the CELP encoder 303, and the obtained difference signal is converted into a TDAC encoder. To 307.
  • the low-pass filter 306 suppresses a frequency component greater than 7 kHz with respect to the second low-frequency signal input from the band division processing unit 301, obtains a signal mainly composed of a frequency component of 7 kHz or less, and performs the second low-frequency signal after filtering.
  • TDAC Time-Domain BandWidth Extension
  • the TDAC encoding unit 307 performs orthogonal transform such as MDCT on the differential signal input from the adding unit 305 and the filtered second low-frequency signal input from the low-pass filter 306, and the obtained 0 to 8 kHz band Of the frequency domain signal (MDCT coefficient), the 7 to 8 kHz band part is output to the mid-band correction unit 203 as the mid-band spectrum X_mid.
  • the TDAC encoding unit 307 performs orthogonal transform on the difference signal input from the adding unit 305, the auditory weight information that is one of CELP parameters input from the CELP encoding unit 303 is used. After weighting the difference signal, orthogonal transformation is performed to calculate a frequency domain signal.
  • the TDAC encoding unit 307 quantizes the frequency domain signal (MDCT coefficient) obtained by orthogonal transform such as MDCT, and outputs the obtained TDAC parameter to the multiplexing unit 309. Also, the TDAC encoding unit 307 performs decoding on the TDAC parameter, and outputs the 0 to 7 kHz band portion of the obtained decoded signal to the middle to high frequency encoding unit 204 as a decoded low frequency spectrum S_lo.
  • MDCT coefficient frequency domain signal obtained by orthogonal transform such as MDCT
  • the TDBWE encoding unit 308 performs band extension encoding on the time axis for the filtered second low-frequency signal input from the low-pass filter 306, and outputs the obtained TDBWE parameter to the multiplexing unit 309.
  • the multiplexing unit 309 multiplexes the FEC parameter, the CELP parameter, the TDAC parameter, and the TDBWE parameter, and outputs them to the multiplexing unit 205 as low-frequency coding information. Note that these parameters may be multiplexed by the multiplexing unit 205 without providing the multiplexing unit 309.
  • the low-frequency coding section 202 performs coding in the TDAC coding section 307 after the difference signal input from the addition section 305 and the filtered signal input from the low-pass filter 306.
  • a portion of the 7 to 8 kHz band of the MDCT coefficients is output to the mid-band correction unit 203 as a mid-band spectrum X_mid, and a decoded signal obtained by decoding the TDAC parameter Of 0.about.7 kHz band is output to the mid-high band encoding unit 204 as a decoded low band spectrum S_lo. This is different from 729.1 encoding.
  • the transfer function H (z) of the low-pass filter 306 in the low-frequency encoding unit 202 is expressed by, for example, the following formula (1).
  • 4 and 5 are diagrams showing the frequency characteristics of the low-pass filter 306 having the transfer function represented by the equation (1). 4 and 5 show frequency characteristics when the low-pass filter 306 is applied to an input signal in the 0 to 4 kHz band. In the present embodiment, the second low-frequency signal input to the low-pass filter 306 is shown. In this case, the frequency characteristic of the low-pass filter 306 shown in FIGS. 4 and 5 is actually applied to 4 to 8 kHz. 4 and 5, the horizontal axis indicates the frequency f (Hz), and the vertical axis indicates the value of LPF (f) representing the frequency characteristics of the low-pass filter 306. In FIG. 4, the frequency characteristic is expressed using a log scale (dB), and in FIG.
  • the frequency characteristic is expressed using a linear scale.
  • the value of LPF (f) is 0 to 1.
  • the low-pass filter 306 having the frequency characteristics shown in FIGS. 4 and 5 filters the second low-frequency signal (4 to 8 kHz) input from the band division processing unit 301, so that the frequency components in the 7 to 8 kHz band can be obtained.
  • a filtered second low-pass signal composed mainly of frequency components in the 4 to 7 kHz band is obtained.
  • the filtered second low-frequency signal is subjected to MDCT in the TDAC encoding unit 307. Therefore, the mid-band spectrum X_mid input from the TDAC encoding unit 307 to the mid-band correction unit 203 is the result of MDCT with respect to the 7-8 kHz band signal suppressed by the low-pass filter 306.
  • the mid-range correction unit 203 uses the frequency characteristic of the low-pass filter 306 shown in FIG. 5 to correct the mid-range spectrum X_mid input from the low-frequency encoding unit 202 on the frequency axis, thereby correcting the mid-range.
  • a spectrum S_mid is calculated.
  • the mid-range correction unit 203 obtains the value of the LPF (f) of the 3 to 4 kHz band of the low-pass filter 306 shown in FIG.
  • the corrected mid-range spectrum S_mid is calculated by dividing by.
  • the 3 to 4 kHz band of the frequency characteristic LPF (f) of the low-pass filter 306 corresponds to the 7 to 8 kHz band of the low-frequency signal before being input to the band division processing unit 301.
  • the mid-band correction unit 203 multiplies the mid-band spectrum X_mid by the reciprocal of the frequency characteristic of the low-pass filter 306 to obtain the 7-8 kHz band of the second low-band signal restored to the state before the processing of the low-pass filter 306. Obtain the corresponding MDCT coefficients.
  • LPF (f) is the frequency characteristic (value on the vertical axis) of the 3 to 4 kHz portion shown in FIG. 5, and takes a range of 0 to 1.0.
  • N lo is the number of samples of frequency components in the 7 to 8 kHz band.
  • f takes a value from 3000 to 4000 Hz, but since this is applied to the 4 to 8 kHz band of the second low frequency signal, it actually means a frequency of 7000 to 8000 Hz.
  • k takes the value of the frequency index of the mid-band spectrum X_mid (k) corresponding to the value of f of 3000 to 4000 Hz.
  • the value of LPF (4000) for the 8000 Hz component of the signal is applied to the mid-band spectrum X_mid (N lo ⁇ 1).
  • W (f) is a correction coefficient, and an abnormal noise that can be generated when the corrected mid-range spectrum is obtained simply by dividing the mid-range spectrum (7 to 8 kHz band) by LPF (f). It fulfills the function of deterring. Specifically, it has been confirmed by experiments that W (f) is appropriately about 0.95 to 0.97. Hereinafter, the effect of suppressing abnormal noise by W (f) will be described.
  • the frequency characteristic of the low-pass filter 306 takes a value of about 0.95 to 1.00 in the 0 to 1500 Hz band.
  • the value of 0 to 1500 Hz of the frequency characteristics of the low pass filter 306 shown in FIG. 5 is applied to the 4000 to 5500 Hz band of the second low frequency signal.
  • the 4000-5500 Hz band component of the second low-frequency signal is approximately 0.95-0.97 times the signal before the processing of the low-pass filter 306 is applied.
  • the 4000-5500 Hz band of the decoded low-frequency spectrum input from the TDAC encoding unit 307 to the mid-high frequency encoding unit 204 is approximately 0.95 times the second low-frequency signal before the processing of the low-pass filter 306 is applied.
  • MDCT coefficients corresponding to the signals of the spectrum in the 7 to 8 kHz band obtained by multiplying the intermediate spectrum X_mid (k) by the reciprocal of the frequency characteristic of the low-pass filter 306 without multiplying by W (f) in the expression (2) MDCT coefficients corresponding to the second low-frequency signal itself before the processing.
  • the mid-range correction unit 203 outputs the corrected mid-range spectrum S_mid (k) calculated according to the equation (2) to the mid-high range encoding unit 204, it is assumed that W (f) is not multiplied in the equation (2). In this case, the spectrum size balance between the 4000 to 5500 Hz band and the 7 to 8 kHz band of the spectrum input to the middle and high band encoding unit 204 is lost, and abnormal noise is generated.
  • the mid-range correction unit 203 divides the mid-range spectrum X_mid (k) by the frequency characteristic of the low-pass filter 306 and further corrects the correction coefficient in consideration of the value of 0 to 3000 Hz of the low-pass filter 306. Multiply by W (f).
  • W (f) the spectrum in the 4000 to 5500 Hz band can be balanced, and further, the spectrum in the 7 to 8 kHz band can be corrected while suppressing deterioration in sound quality caused by calculation errors.
  • the above processing to suppress noise due to distortion (discontinuity, etc.) in energy balance with adjacent bands is not a simple filtering process in signal processing, but a quality specific to voice and audio signals. It is an improvement technology.
  • a value obtained by multiplying the reciprocal of LPF (f) and W (f) may be obtained in advance, and this value may be stored in the interior. By doing so, the amount of computation can be further reduced.
  • FIG. 6 is a block diagram showing a main configuration inside the mid-high band encoding unit 204 shown in FIG.
  • the mid-high frequency encoding unit 204 includes an orthogonal transform processing unit 401, a mid-high frequency spectrum calculation unit 402, and a band extension encoding unit 403, and each unit performs the following operations.
  • modified discrete cosine transform (MDCT) or the like is performed to calculate a high frequency spectrum S_hi that is a frequency component of the high frequency signal x_hi.
  • the orthogonal transform processing unit 401 initializes the buffer buf n using “0” as shown in the following equation (3).
  • the orthogonal transform processing unit 401 performs MDCT on the high frequency signal x_hi according to the following equation (4) to obtain the MDCT coefficient S_hi of the high frequency signal as a high frequency spectrum.
  • k represents the index of each sample in one frame.
  • X_hi ′ is a vector obtained by combining the high frequency signal x_hi and the buffer buf n according to the following equation (5).
  • the orthogonal transform processing unit 401 updates the buffer buf n as shown in the following equation (6).
  • the orthogonal transformation processing unit 401 outputs the high-frequency spectrum S_hi (k) to the mid-high frequency spectrum calculation unit 402.
  • the mid-high range spectrum calculation unit 402 uses the high range spectrum S_hi input from the orthogonal transform processing unit 401 and the corrected mid-range spectrum S_mid input from the mid-range correction unit 203, and uses the mid-high range spectrum according to the following equation (7).
  • S_mid_hi is calculated and output to the band extension encoding unit 403.
  • the number of samples of S_mid_hi having components in the 7 to 16 kHz band is N mid_hi .
  • the middle-high band spectrum S_mid_hi is a spectrum obtained by continuously (combining) the corrected middle-band spectrum S_mid and the high-band spectrum S_hi on the frequency axis as shown in the equation (7).
  • the band extension encoding unit 403 uses the decoded low-frequency spectrum S_lo input from the low-frequency encoding unit 202 and the mid-high frequency spectrum S_mid_hi input from the mid-high frequency spectrum calculation unit 402, Mid- and high-band coding information for generating a spectrum is calculated and output to the multiplexing unit 205.
  • FIG. 7 is a block diagram showing the main configuration inside band extension encoding section 403 shown in FIG.
  • the band extension encoding unit 403 includes a filter state setting unit 501, a filtering unit 502, a search unit 503, a pitch coefficient setting unit 504, a gain encoding unit 505, and a multiplexing unit 506. Perform the action.
  • the filter state setting unit 501 sets the decoded low band spectrum S_lo input from the low band encoding unit 202 as a filter state used by the filtering unit 502. That is, in the filtering unit 502, the decoded low-band spectrum S_lo is set as the internal state (filter state) of the filter in the 0 to 7 kHz band of the spectrum S (k) (0 ⁇ k ⁇ 16 kHz) of the entire frequency band (0 to 16 kHz band). Stored.
  • the filtering unit 502 includes a multi-tap pitch filter (the number of taps is greater than 1), and performs decoding based on the filter state set by the filter state setting unit 501 and the pitch coefficient input from the pitch coefficient setting unit 504.
  • the low band spectrum S_lo is filtered to calculate an estimated value S_mid_hi ′ (7 to 16 kHz band) (hereinafter referred to as “estimated middle and high band spectrum”) of the middle and high band spectrum.
  • the filtering unit 502 outputs the estimated middle and high frequency spectrum S_mid_hi ′ to the search unit 503. Details of the filtering process in the filtering unit 502 will be described later.
  • the search unit 503 calculates the similarity between the mid-high range spectrum S_mid_hi (7 to 16 kHz band) input from the mid-high range spectrum calculation unit 402 and the estimated mid-high range spectrum S_mid_hi ′ input from the filtering unit 502.
  • the similarity is calculated by, for example, correlation calculation.
  • the processes of the filtering unit 502, the search unit 503, and the pitch coefficient setting unit 504 constitute a closed loop. In this closed loop, the search unit 503 calculates the similarity corresponding to each pitch coefficient by variously changing the pitch coefficient T input from the pitch coefficient setting unit 504 to the filtering unit 502.
  • the search unit 503 outputs the optimum pitch coefficient T ′ having the maximum similarity to the multiplexing unit 506.
  • the search unit 503 outputs the estimated middle and high frequency spectrum S_mid_hi ′ corresponding to the pitch coefficient T ′ to the gain encoding unit 505. Details of the search process for the optimum pitch coefficient T ′ in the search unit 503 will be described later.
  • the pitch coefficient setting unit 504 sequentially outputs the pitch coefficient T to the filtering unit 502 while gradually changing the pitch coefficient T within a predetermined search range Tmin to Tmax under the control of the search unit 503.
  • the gain encoding unit 505 calculates gain information for the mid-high range spectrum S_mid_hi (k) (7 to 16 kHz band) input from the mid-high range spectrum calculation unit 402. Specifically, the gain encoding unit 505 divides the 7 to 16 kHz band into J subbands, and obtains the spectrum power for each subband of the mid-high band spectrum S_mid_hi (k). In this case, the spectrum power B (j) of the j-th subband is expressed by the following equation (8).
  • Equation (8) BL (j) represents the minimum frequency of the jth subband, and BH (j) represents the maximum frequency of the jth subband.
  • the gain encoding unit 505 calculates the spectrum power B ′ (j) for each subband of the estimated middle-high band spectrum S_mid_hi ′ corresponding to the optimum pitch coefficient T ′ according to the following equation (9).
  • the gain encoding unit 505 calculates a spectrum power fluctuation amount V (j) for each subband of the estimated middle / higher band spectrum S_mid_hi ′ with respect to the middle / higher band spectrum S_mid_hi according to the following equation (10).
  • the gain encoding unit 505 encodes the variation amount V (j) and outputs an index corresponding to the encoded variation amount V q (j) to the multiplexing unit 506.
  • the multiplexing unit 506 uses the optimum pitch coefficient T ′ input from the search unit 503 and the index of the fluctuation amount V q (j) after encoding input from the gain encoding unit 505 as high-frequency encoding information. Multiplexed and output to the multiplexing unit 205. Note that T ′ and the index of V q (j) may be directly input to the multiplexing unit 205 and multiplexed with the low frequency encoded information by the multiplexing unit 205.
  • FIG. 8 is a diagram for explaining the details of the filtering process in the filtering unit 502 shown in FIG.
  • Filtering section 502 uses the pitch coefficient T input from pitch coefficient setting section 504 to generate a spectrum in the 7 to 16 kHz band.
  • the transfer function of the filtering unit 502 is expressed by the following equation (11).
  • T represents a pitch coefficient given from the pitch coefficient setting unit 504, and ⁇ i represents a filter coefficient stored in advance.
  • values such as ( ⁇ ⁇ 1 , ⁇ 0 , ⁇ 1 ) (0.2, 0.6, 0.2), (0.3, 0.4, 0.3) are also appropriate.
  • M 1.
  • M is an index related to the number of taps.
  • the decoded low band spectrum S_lo is stored as an internal state (filter state) of the filter.
  • the estimated mid-high band spectrum S_mid_hi ′ is stored by the filtering process of the following procedure. That is, a spectrum S (k ⁇ T) having a frequency lower than this k by T is basically substituted for S_mid_hi ′. However, in order to increase the smoothness of the spectrum, actually, a spectrum ⁇ i .multidot. ⁇ Obtained by multiplying a spectrum S (k ⁇ T + i) in the vicinity away from the spectrum S (k ⁇ T) by a predetermined filter coefficient ⁇ i. A spectrum obtained by adding S (k ⁇ T + i) for all i is substituted into S_mid_hi ′ (k). This process is represented by the following formula (12).
  • the above filtering processing is performed by clearing S (k) to zero each time in the 7 to 16 kHz band range every time the pitch coefficient T is given from the pitch coefficient setting unit 504. That is, every time the pitch coefficient T changes, S (k) is calculated and output to the search unit 503.
  • FIG. 9 is a flowchart showing a procedure of processing for searching for the optimum pitch coefficient T ′ in the search unit 503 shown in FIG. 7.
  • search section 503 initializes minimum similarity D min , which is a variable for storing the minimum value of similarity, to “+ ⁇ ” (ST2010).
  • search section 503 calculates similarity D between middle-high band spectrum S_mid_hi and estimated middle-high band spectrum S_mid_hi ′ at a certain pitch coefficient according to the following equation (13) (ST2020).
  • M ′ represents the number of samples when the similarity D is calculated, and may be an arbitrary value that is equal to or less than the sample length N mid_hi of the mid-high range portion.
  • the estimated middle high frequency spectrum S_mid_hi ′ generated by the filtering unit 502 is a spectrum obtained by filtering the decoded low frequency spectrum S_lo. Therefore, the similarity between the mid-high range spectrum S_mid_hi calculated by the search unit 503 and the estimated mid-high range spectrum S_mid_hi ′ can also represent the similarity between the mid-high range spectrum S_mid_hi and the decoded low-frequency spectrum S_lo.
  • search section 503 determines whether or not calculated similarity D is smaller than minimum similarity D min (ST2030).
  • search section 503 substitutes similarity D into minimum similarity Dmin (ST2040).
  • search section 503 determines whether or not the search range has ended. That is, search section 503 determines whether or not similarity D has been calculated for each of all pitch coefficients within the search range according to the above equation (13) in ST2020 (ST2050).
  • search section 503 If the search range has not ended (ST2050: “NO”), search section 503 returns the process to ST2020 again. Then, search section 503 calculates similarity according to equation (13) for a pitch coefficient different from the case where similarity was calculated according to equation (13) in the procedure of ST2020 last time. On the other hand, when the search range is completed (ST2050: “YES”), search section 503 outputs pitch coefficient T corresponding to minimum similarity D min to multiplexing section 506 as optimum pitch coefficient T ′, and optimizes it. The estimated middle and high frequency spectrum S_mid_hi ′ (k) corresponding to pitch coefficient T ′ is output to gain coding section 505 (ST2060).
  • FIG. 10 is a block diagram showing a main configuration inside the decoding apparatus 103 shown in FIG.
  • the decoding apparatus 103 includes a separation unit 601, a low-middle band decoding unit 602, a high-band decoding unit 603, and a band synthesis processing unit 604, and each unit performs the following operations.
  • the separation unit 601 separates the encoded information transmitted from the encoding apparatus 101 via the transmission path 102 into low-frequency encoded information and mid-high frequency encoded information, and the low-frequency encoded information is subjected to low-middle decoding. Output to the unit 602, and output the middle and high band encoded information to the high band decoding unit 603.
  • the low and middle band decoding unit 602 decodes the low band encoded information input from the separation unit 601 and outputs the obtained decoded low band spectrum to the high band decoding unit 603.
  • the low midband decoding unit 602 generates a decoded low midband signal from the decoded lowband spectrum and the decoded midband spectrum input from the highband decoding unit 603 and outputs the decoded low midband signal to the band synthesis processing unit 604.
  • the details of the low-middle band decoding unit 602 will be described later.
  • the high frequency decoding unit 603 generates a decoded high frequency signal from the middle and high frequency encoding information input from the separation unit 601 and the decoded low frequency spectrum input from the low and middle frequency decoding unit 602, and generates a band synthesis processing unit 604. Output to. Also, the high frequency decoding unit 603 outputs the decoded mid frequency spectrum calculated when generating the decoded high frequency signal to the low mid frequency decoding unit 602. Details of the high frequency decoding unit 603 will be described later.
  • the band synthesis processing unit 604 receives the decoded low-middle band signal input from the low-middle band decoding unit 602 and the decoded high-band signal from the high band decoding unit 603.
  • the band synthesis processing unit 604 performs a process reverse to that of the band division processing unit 201, thereby obtaining a decoded low-middle band signal (0 to 8 kHz band) having a sampling frequency of 16 kHz input from the low-middle band decoding unit 602. Then, an output signal having a sampling frequency of 32 kHz (0 to 16 kHz band) is generated and output from the decoded high frequency signal (8 to 16 kHz band) input from the high frequency decoding unit 603.
  • FIG. 11 is a block diagram illustrating a main configuration inside the low-middle band decoding unit 602 illustrated in FIG.
  • the configuration of the low-middle band decoding unit 602 shown in FIG. 11 is a configuration in the case where no frame error occurs, and the components for the frame error compensation process are not shown and description thereof is omitted.
  • the present invention can also be applied when a frame error occurs.
  • the low midband decoding unit 602 includes a separation unit 701, a CELP decoding unit 702, a TDAC decoding unit 703, a TDBWE decoding unit 704, a pre / post echo reduction unit 705, an addition unit 706, an adaptive post processing unit 707, a low pass filter 708, / Post-echo reduction unit 709, high-pass filter 710, and band synthesis processing unit 711 are provided, and each unit performs the following operations.
  • the demultiplexing unit 701 demultiplexes the low frequency encoding information input from the demultiplexing unit 601 into CELP parameters, TDAC parameters, and TDBWE parameters, outputs the CELP parameters to the CELP decoding unit 702, and outputs the TDAC parameters to the TDAC decoding unit 703.
  • the TDBWE parameter is output to the TDBWE decoding unit 704. Note that these parameters may be separated together in the separation unit 601 without providing the separation unit 701.
  • CELP decoding section 702 performs CELP decoding on the CELP parameters input from demultiplexing section 701, and uses the obtained decoded signal as a decoded first low-frequency signal as TDAC decoding section 703, adding section 706, and pre / post The result is output to the echo reduction unit 705.
  • the CELP decoding unit 702 may output, to the TDAC decoding unit 703, other information obtained in the decoding process of generating the decoded first low frequency signal from the CELP parameter in addition to the decoded first low frequency signal.
  • the TDAC decoding unit 703 is a TDAC parameter input from the separation unit 701, a decoded first low frequency signal input from the CELP decoding unit 702, or other information obtained when generating a decoded first low frequency signal, TDBWE decoding Using the decoded TDBWE signal input from unit 704 and the decoded midband spectrum of 7 to 8 kHz band input from highband decoding section 603, a decoded lowband spectrum is calculated and output to highband decoding section 603. Further, the TDAC decoding unit 703 calculates a decoded low-mid band spectrum of 0 to 8 kHz band using the decoded mid-band spectrum input from the high band decoding unit 603.
  • the TDAC decoding unit 703 performs orthogonal transform processing such as MDCT on each of the 0 to 4 kHz band and the 4 to 8 kHz band of the calculated decoded low and middle band spectrum, and the decoded first TDAC signal (0 to 4 kHz band) And the decoded second TDAC signal (4 to 8 kHz band) is calculated.
  • the TDAC decoding unit 703 outputs the calculated decoded first TDAC signal to the pre / post echo reduction unit 705, and outputs the decoded second TDAC signal to the pre / post echo reduction unit 709.
  • the TDBWE decoding unit 704 decodes the TDBWE parameter input from the separation unit 701, and outputs the obtained decoded signal as a decoded TDBWE signal to the TDAC decoding unit 703 and the pre / post-echo reduction unit 709.
  • the pre / post-echo reduction unit 705 performs a process of reducing pre / post-echo on the decoded CELP signal input from the CELP decoding unit 702 and the decoded first TDAC signal input from the TDAC decoding unit 703 to delete the echo.
  • the later signal is output to the adder 706.
  • the addition unit 706 adds the decoded CELP signal input from the CELP decoding unit 702 and the signal after echo cancellation input from the pre / post-echo reduction unit 705, and adds the obtained addition signal to the adaptive post processing unit 707. Output.
  • the adaptive post-processing unit 707 adaptively performs post-processing on the addition signal input from the addition unit 706 and outputs the obtained decoded first low-frequency signal (0 to 4 kHz band) to the low-pass filter 708.
  • the low-pass filter 708 suppresses frequency components larger than 4 kHz with respect to the decoded first low-frequency signal input from the adaptive post processing unit 707, obtains a signal mainly composed of frequency components of 4 kHz or less, and performs post-filter decoding first low-frequency signal.
  • the band signal is output to the band synthesis processing unit 711 as a band signal.
  • the pre / post-echo reduction unit 709 performs processing to reduce pre / post-echo on the decoded second TDAC signal input from the TDAC decoding unit 703 and the decoded TDBWE signal input from the TDBWE decoding unit 704, and performs echo cancellation
  • the later signal is output to the high-pass filter 710 as a decoded second low-frequency signal (4 to 8 kHz band).
  • the high-pass filter 710 suppresses frequency components of 4 kHz or less with respect to the decoded second low-frequency signal input from the pre / post-echo reduction unit 709, obtains a signal mainly composed of frequency components higher than 4 kHz, and performs decoding after filtering. 2 is output to the band synthesis processing unit 711 as a low frequency signal.
  • the band synthesis processing unit 711 receives the filtered decoded first low-frequency signal from the low-pass filter 708, and receives the filtered decoded second low-frequency signal from the high-pass filter 710.
  • the band synthesis processing unit 711 performs a process reverse to that of the band division processing unit 301, so that a filtered decoded first low-frequency signal (0 to 4 kHz band) having a sampling frequency of 8 kHz and a filtered decoded second low-frequency band. From the signal (4 to 8 kHz band), a decoded low and middle band signal having a sampling frequency of 16 kHz (0 to 8 kHz band) is generated and output to the band synthesis processing unit 604.
  • band synthesis processing unit 604 may collectively perform the band synthesis processing without providing the band synthesis processing unit 711.
  • Decoding in the low-middle band decoding unit 602 according to the present embodiment shown in FIG. 11 is performed when the TDAC decoding unit 703 calculates a decoded low-band spectrum of 0 to 7 kHz band from the TDAC parameter.
  • the G.D. is obtained by orthogonally transforming the decoded low-mid spectrum and calculating the TDAC decoded signal. This is different from the decoding in the 729.1 system.
  • FIG. 12 is a block diagram showing the main configuration inside high frequency decoding section 603 shown in FIG.
  • a high frequency decoding unit 603 includes a separation unit 801, a filter state setting unit 802, a filtering unit 803, a gain decoding unit 804, a spectrum adjustment unit 805, and an orthogonal transformation processing unit 806, and each unit performs the following operations. .
  • the separation unit 801 converts the mid-high band encoded information input from the separation unit 601 into an optimum pitch coefficient T ′ that is information related to filtering, an index of the encoded variation amount V q (j) that is information related to gain,
  • the optimal pitch coefficient T ′ is output to the filtering unit 803, and the index of the encoded variation amount V q (j) is output to the gain decoding unit 804. Note that when the separation unit 601 has already separated T ′ and the index of V q (j), the separation unit 801 may not be disposed.
  • the filter state setting unit 802 sets the decoded low band spectrum S_lo (k) (0 to 7 kHz band) input from the low and middle band decoding unit 602 as the filter state used by the filtering unit 803.
  • S (k) the spectrum of the entire frequency band (0 to 16 kHz band) in the filtering unit 803
  • S (k) the spectrum of the entire frequency band (0 to 16 kHz band) in the filtering unit 803
  • S (k) the decoded low band spectrum S_lo (k) is included in the 0 to 7 kHz band of S (k).
  • the configuration and operation of the filter state setting unit 802 are the same as those of the filter state setting unit 501 shown in FIG.
  • the filtering unit 803 includes a multi-tap pitch filter (the number of taps is greater than 1).
  • the filtering unit 803 calculates the decoded low-frequency spectrum S_lo based on the filter state set by the filter state setting unit 802, the pitch coefficient T ′ input from the separation unit 801, and the filter coefficient stored therein in advance. Filtering is performed to calculate an estimated middle / higher band spectrum S_mid_hi ′ of the middle / higher band spectrum S_mid_hi shown in Expression (12) above.
  • the filtering unit 803 also uses the transfer function shown in the above equation (11).
  • the gain decoding unit 804 decodes the index of the encoded variation amount V q (j) input from the separation unit 801, and obtains the variation amount V q (j) that is the quantized value of the variation amount V (j). Ask.
  • the spectrum adjustment unit 805 multiplies the estimated middle / high band spectrum S_mid_hi ′ input from the filtering unit 803 by the variation amount V q (j) for each subband input from the gain decoding unit 804 according to the following equation (14). . Thereby, the spectrum adjustment unit 805 adjusts the spectrum shape in the 7 to 8 kHz band of the estimated middle high frequency spectrum S_mid_hi ′, and generates the decoded middle high frequency spectrum S_mid_hi2 (k).
  • the spectrum adjustment unit 805 uses the decoded low-frequency spectrum S_lo (k) as the low-frequency part (0 to 7 kHz), and uses the decoded middle-high frequency spectrum S_mid_hi2 (k) as the middle-high frequency part (7 to 16 kHz), The decoded spectrum S2 (k) is configured.
  • the spectrum adjustment unit 805 outputs only the spectrum of the middle band (7 to 8 kHz band) of the decoded spectrum S2 (k) to the low middle band decoding unit 602 as the decoded middle band spectrum S_mid2 (k), and the decoded spectrum S2 Only the spectrum of the high frequency band (8 to 16 kHz band) of (k) is output to the orthogonal transform processing unit 806 as the decoded high frequency spectrum S_hi2 (k).
  • the orthogonal transformation processing unit 806 performs orthogonal transformation processing such as modified discrete cosine inverse transformation (IMDCT) on the decoded high-frequency spectrum S_hi2 input from the spectrum adjustment unit 805, and converts the signal in the time domain. Generate and output as a decoded high frequency signal.
  • processing such as appropriate windowing and overlay addition is performed as necessary to avoid discontinuities between frames.
  • the orthogonal transform processing unit 806 has a buffer buf ′ (k) inside, and initializes the buffer buf ′ (k) as shown in the following equation (15).
  • the orthogonal transform processing unit 806 obtains and outputs a decoded high frequency signal y ′′ according to the following equation (16) using the decoded high frequency spectrum S_hi2 input from the spectrum adjusting unit 805.
  • Z (k) is a vector obtained by combining the decoded high frequency spectrum S_hi2 (k) and the buffer buf ′ (k) as shown in the following equation (17).
  • the orthogonal transform processing unit 806 updates the buffer buf ′ (k) according to the following equation (18).
  • the midband correction unit 203 By applying a characteristic opposite to the filter characteristic of the low-pass filter 306 or a characteristic approximate to the reverse characteristic to the frequency component in the middle band suppressed by the processing of the low-pass filter 306 in the conversion unit 202, the low-pass filter 306 is changed. Restore the mid-frequency components to a state equivalent to the unapplied state.
  • the mid-high range encoding unit 204 calculates a band extension parameter for generating a mid-high range frequency component from the low range using the restored mid-frequency component.
  • decoding apparatus 103 calculates a decoded middle and high band spectrum from the decoded low band spectrum obtained by low and middle band decoding section 602 and the band extension parameter transmitted from coding apparatus 101.
  • the low-middle band decoding unit 602 uses the decoded middle-band spectrum input from the high-band decoding unit 603 and the low-band coding information input from the separation unit 601 to perform decoding low-frequency band components having a low-middle frequency component. Calculate mid-range signal.
  • the band synthesis processing unit 604 performs band synthesis processing on the decoded high-frequency signal calculated from the decoded high-frequency spectrum in the high-frequency decoding unit 603 and the decoded low-midband signal, thereby performing the low-frequency encoding unit 202. It is possible to obtain an output signal (decoded signal) including a frequency component in the middle band that is missing by the low-pass filter 306.
  • the encoding device band-divides the input signal into a low-frequency component and a high-frequency component by QMF or the like, and encodes each component with a separate encoding unit.
  • the low-pass filter is applied in the low-frequency encoding process so that the missing band component is restored and encoded. For this reason, it is possible to improve the quality of the decoded signal while suppressing the amount of calculation required for the restoration.
  • the mid-range correction processing has a substantial effect on the encoding performance of the encoding method used in the low-frequency encoding unit (the G.729.1 encoding in this embodiment). Since it is not given, it is possible to guarantee the encoding performance of the low frequency encoding.
  • CELP type G.729.1, etc.
  • speech encoding / decoding is performed in low band encoding section 202 and low midband decoding section 602
  • the low frequency encoding unit 202 and the low mid frequency decoding unit 602 may encode / decode the low frequency signal by a voice / musical sound encoding method other than the CELP type.
  • the mid-range correction unit 203 It may be calculated and used whenever the characteristics of the low-pass filter 306 change.
  • the reciprocal of the low-pass filter 306 characteristics is stored internally as a table, and the amount of calculation is reduced by multiplying the mid-range spectrum by the coefficient in the table. Is possible.
  • QMF is described as an example of the band division method in the band division processing unit 201.
  • the present invention is not limited to this, and a band division method other than QMF is used for the band division processing unit 201. It may be used.
  • the filter characteristic calculation method of the low-pass filter 306 is not particularly limited, but the filter characteristic is calculated using a method similar to the orthogonal transform method used in the TDAC encoding unit 307. Is desirable. Therefore, in the configuration of the present embodiment, it is preferable to calculate the filter characteristics of the low-pass filter 306 using MDCT processing. For example, when the frequency component is calculated by FFT processing in the low-frequency encoding unit 202, it is preferable that the filter characteristics of the low-pass filter 306 are similarly calculated by FFT processing.
  • the band extension encoding unit 403 calculates the middle / higher band coding information
  • the middle band and the higher band are particularly distinguished from the middle / high band spectrum including the corrected middle band spectrum.
  • a configuration in which processing is not performed has been described.
  • the present invention is not limited to this, and the present invention can be similarly applied to the case where the correction result is determined for the middle part of the mid-high spectrum and the encoding process is performed according to the determination result.
  • the mid-high range spectrum calculation unit 402 calculates a spectrum flatness measure (SFM) of the corrected mid-range spectrum, compares the calculated SFM value with a predetermined threshold value, and responds to the determination result.
  • SFM spectrum flatness measure
  • a case where correction processing is performed on the corrected mid-range spectrum will be described as an example.
  • the mid-high range spectrum calculation unit 402 first compares the SFM of the corrected mid-range spectrum with a predetermined threshold.
  • the mid-high range spectrum calculation unit 402 performs the spectrum analysis by the multi-tap filter on the corrected mid-range spectrum. Smoothing (blunting) is performed, a mid-high band spectrum is calculated using the obtained corrected mid-band spectrum, and this is output to the band extension coding unit 403.
  • the band extension encoding unit 403 uses the modified middle / higher band spectrum input from the middle / higher band spectrum calculation unit 402 to calculate the middle / high band coding information by the method described above.
  • the quality of the decoded signal can be improved by performing the smoothing process.
  • the correction processing of the corrected mid-range spectrum in the mid-high range spectrum calculation unit 402 in addition to the above-described smoothing processing, a method of attenuating the corrected mid-range spectrum for each subband, or the correction mid-range spectrum is stored in advance.
  • the method of replacing with the noise spectrum stored in the above, or the method of linearly predicting the corrected mid-range spectrum from the low-frequency spectrum and the high-frequency spectrum can be similarly applied.
  • the decoded lowband spectrum needs to be input from the lowband encoding unit 202 to the mid / highband spectrum calculation unit 402. There is.
  • the SFM of the corrected mid-range spectrum determines whether or not to perform the correction processing as described above on the corrected mid-range spectrum.
  • use the temporal energy fluctuation of the corrected mid-range spectrum can do.
  • the energy of the corrected mid-range spectrum is calculated for each frame, and when the amount of variation from the energy of the past frame is equal to or greater than a predetermined threshold, the correction as described above is performed on the corrected mid-range spectrum. Processing (smoothing processing) is performed. With such a configuration, it is possible to provide a decoded signal having a good quality even in the case where the temporal energy fluctuation of the corrected mid-range spectrum is very large, thereby causing abnormal noise in the decoded signal. it can.
  • the search unit 503 can be realized by calculating the similarity according to the equation (19) instead of the equation (13).
  • W (k) is a coefficient for calculating the similarity.
  • a predetermined value of 1.0 or less is taken, and when the value of k belongs to the high part, it takes a value of 1.0.
  • the above-described configurations of the band extension encoding unit 403, the mid-high frequency spectrum calculation unit 402, and the low frequency encoding unit 202 can be used in combination with each other.
  • a scalable encoding / decoding method in the case where the number of layers, ie, a low-frequency encoding unit (low-middle decoding unit) and a middle-high frequency encoding unit (high-frequency decoding unit) is 2, is taken as an example.
  • the present invention is not limited to this, and can be similarly applied to a scalable encoding / decoding method having three or more layers.
  • the quality of the decoded signal of the layer (L + 1) can be further improved by performing control so that the error spectrum in the mid-band portion is preferentially encoded.
  • the communication system (not shown) according to the second embodiment of the present invention is basically the same as the communication system shown in FIG. 1, and only the communication apparatus shown in FIG. This is different from the decoding apparatus 103 of FIG.
  • the decoding apparatus of the communication system according to the present embodiment will be described with reference numeral “113”.
  • FIG. 13 is a block diagram showing a main configuration inside decoding apparatus 113 according to the present embodiment.
  • the decoding apparatus 113 according to the present embodiment has basically the same configuration as the decoding apparatus 103 shown in FIG. 10, and basically performs the same operation.
  • the decoding device 113 is different from the decoding device 103 in that it further includes an adding unit 904 and a midband decoding unit 903.
  • the low frequency decoding unit 901, the high frequency decoding unit 902, and the band synthesis processing unit 905 of the decoding device 113 are the same as the low and middle frequency decoding unit 602, the high frequency decoding unit 603, and the band synthesis processing unit 604 of the decoding device 103. Only part of the operation is different.
  • the low-band decoding unit 901 does not receive the decoded middle band spectrum from the high-band decoding unit 902, and receives the low-band coding information input from the separation unit 601. Decode to generate a decoded low band spectrum and a decoded low band signal. Also, the low frequency decoding unit 901 outputs the decoded low frequency spectrum to the high frequency decoding unit 902 and outputs the decoded low frequency signal to the adding unit 904. Details of the low frequency decoding unit 901 will be described later.
  • the high frequency decoding unit 902 generates a decoded high frequency signal from the middle and high frequency encoding information input from the separation unit 601 and the decoded low frequency spectrum input from the low frequency decoding unit 901, and sends the decoded high frequency signal to the band synthesis processing unit 905. Output. Also, unlike the high frequency decoding unit 603 illustrated in FIG. 10, the high frequency decoding unit 902 does not output the decoded middle frequency spectrum calculated when generating the decoded high frequency signal to the low frequency decoding unit 901. The data is output to the area decoding unit 903.
  • the midband decoding unit 903 generates a decoded midband signal by performing orthogonal transform processing such as inverse MDCT on the decoded midband spectrum input from the highband decoding unit 902, and outputs the decoded midband signal to the adding unit 904.
  • orthogonal transform processing such as inverse MDCT
  • the inverse MDCT in the midband decoding unit 903 is basically the same as the inverse MDCT in the orthogonal transform processing unit 806 according to Embodiment 1, and only the processing target is different, and thus detailed description thereof is omitted.
  • the adder 904 adds the decoded low frequency signal input from the low frequency decoder 901 and the decoded mid frequency signal input from the mid frequency decoder 903, and uses the obtained addition signal as a decoded low mid frequency band.
  • the data is output to the composition processing unit 905.
  • the band synthesis processing unit 905 receives the decoded low-middle band signal from the addition unit 904 and the decoded high-band signal from the high band decoding unit 902.
  • the band synthesis processing unit 905 performs a process reverse to that of the band division processing unit 201, so that a decoded low and middle band signal (0 to 8 kHz band) having a sampling frequency of 16 kHz and a decoded high band signal (8 to 16 kHz band). Then, an output signal with a sampling frequency of 32 kHz (0 to 16 kHz band) is generated and output.
  • FIG. 14 is a block diagram showing the main configuration inside low-frequency decoding section 901 shown in FIG.
  • the low-frequency decoding unit 901 has basically the same configuration as the low-middle-frequency decoding unit 602 shown in FIG. 11, and basically performs the same operation.
  • the TDAC decoding unit 1003 of the low band decoding unit 901 is different from the TDAC decoding unit 703 of the low mid band decoding unit 602 only in part of the operation.
  • the TDAC decoding unit 1003 does not receive the decoding mid-band spectrum of the 7 to 8 kHz band from the high frequency decoding unit 902, and receives the TDAC parameter input from the separation unit 701.
  • the decoded first low frequency signal input from CELP decoding section 702 or the information calculated when generating the decoded first low frequency signal and the decoded TDBWE signal input from TDBWE decoding section 704 the decoded low frequency spectrum Is calculated and output to the high frequency decoding unit 902.
  • the TDAC decoding unit 1003 separately performs orthogonal transform processing on each of the 0 to 4 kHz band and the 4 to 7 kHz band of the calculated decoded low-frequency spectrum, and performs the decoded first TDAC signal (0 to 4 kHz band) and the decoded second TDAC.
  • the signal (4-7 kHz band) is calculated.
  • the TDAC decoding unit 1003 outputs the decoded first TDAC signal to the pre / post-echo reduction unit 705, and outputs the decoded second TDAC signal to the pre / post-echo reduction unit 709.
  • the band is passed through the pre / post-echo reduction unit 709 and the high-pass filter 710.
  • the signal input to the synthesis processing unit 711 also does not include mid-range components. Accordingly, the signal output from the band synthesis processing unit 711 also does not include a mid-band component, and becomes a decoded low-band signal instead of a decoded low-mid band signal.
  • the decoding in the low frequency decoding unit 901 shown in FIG. 14 is only the point where the calculated decoded low frequency spectrum is output to the high frequency decoding unit 902. Unlike the decoding in the 729.1 system, the decoding in the low and middle band decoding unit 602 shown in FIG. This is less than the difference from the 729.1 decoding method.
  • the input signal is band-divided into a low-frequency component and a high-frequency component by QMF or the like, and each component is encoded by a separate encoding unit, Further, by applying a low-pass filter in the low-frequency encoding process, the missing band components are restored and encoded.
  • the restored band components are decoded by a decoding unit different from the decoding unit that decodes the low frequency components. For this reason, the existing G.P. It is possible to use the lower-frequency component decoding with fewer modifications to the 729.1 decoding method.
  • a communication system (not shown) according to the third embodiment of the present invention is basically the same as the communication system shown in FIG. 1, and only a part of the configuration and operation of the encoding device and decoding device is shown in FIG. 1 is different from the encoding device 101 and the decoding device 103 of the communication system 1.
  • the encoding device and the decoding device of the communication system according to the present embodiment will be denoted by reference numerals “121” and “123”, respectively.
  • FIG. 15 is a block diagram showing a main configuration inside encoding apparatus 121 according to the present embodiment.
  • the encoding apparatus 121 according to the present embodiment has basically the same configuration as the encoding apparatus 101 shown in FIG. 2, and basically performs the same operation.
  • the encoding device 121 is different from the encoding device 101 in that it further includes a midband encoding unit 1103.
  • the low frequency encoding unit 1101, the mid frequency correction unit 1102, the high frequency encoding unit 1104, and the multiplexing unit 1105 of the encoding device 121 are the low frequency encoding unit 202 and the mid frequency correction unit of the encoding device 101, respectively.
  • only a part of the operation is different from the mid-high band encoding unit 204 and the multiplexing unit 205.
  • the low frequency encoding unit 1101 is different from the low frequency encoding unit 202 shown in FIG. 2 only in that the decoded low frequency spectrum S_lo is not output to the high frequency encoding unit 1104.
  • the low-frequency encoding unit 1101 uses, for example, G.I.T standardized by ITU-T using the low to mid-frequency signal x_lo of 0 to 8 kHz band input from the band division processing unit 201. 729.1 or the like is encoded, and the generated low frequency encoding information is output to the multiplexing unit 1105.
  • the low frequency encoding unit 1101 outputs the frequency component of the mid range (7 to 8 kHz band) calculated in the process of obtaining the low frequency encoding information to the mid range correction unit 1102 as the mid range spectrum X_mid. Details of the low frequency encoding unit 1101 will be described later.
  • the mid-band correction unit 1102 corrects the mid-band spectrum X_mid input from the low-band coding unit 1101 in the frequency domain, and outputs the obtained spectrum to the mid-band coding unit 1103 as a corrected mid-band spectrum S_mid. To do. That is, the mid-band correction unit 1102 only outputs the generated corrected mid-band spectrum S_mid to the mid-band coding unit 1103 instead of the high-band coding unit 1104, as compared to the mid-band correction unit 203 illustrated in FIG. Is different. Note that the mid-band spectrum correction process in the mid-band correction unit 1102 is the same as the process in the mid-band correction unit 203 in FIG.
  • the mid-band coding unit 1103 quantizes the corrected mid-band spectrum S_mid input from the mid-band correction unit 1102 and outputs the obtained mid-band coding information to the multiplexing unit 1105. Details of the mid-band coding unit 1103 will be described later.
  • the high frequency encoding unit 1104 quantizes the high frequency signal of the 8 to 16 kHz band input from the band division processing unit 201 and outputs the obtained high frequency encoding information to the multiplexing unit 1105. Details of the high frequency encoding unit 1104 will be described later.
  • Multiplexer 1105 receives low-band encoded information input from low-band encoder 1101, mid-band encoded information input from mid-band encoder 1103, and high-frequency input from high-band encoder 1104.
  • the area encoded information is multiplexed, and the multiplexed result is output to the transmission line 102 as encoded information.
  • FIG. 16 is a block diagram showing the main components inside low-frequency encoding section 1101 shown in FIG.
  • the low-frequency encoding unit 1101 shown in FIG. 16 has basically the same configuration as the low-frequency encoding unit 202 shown in FIG. 3, and basically performs the same operation.
  • the TDAC encoding unit 1201 of the low frequency encoding unit 1101 is different from the TDAC encoding unit 307 of the low frequency encoding unit 202 only in part of the operation.
  • the TDAC encoding unit 1201 is different from the TDAC encoding unit 307 shown in FIG. 3 only in that the decoded low frequency spectrum S_lo is not output to the high frequency encoding unit 1104. Specifically, the TDAC encoding unit 1201 performs orthogonal transform such as MDCT on the difference signal input from the addition unit 305 and the second filtered low-frequency signal input from the low-pass filter 306, respectively. Of the frequency domain signal (MDCT coefficient) in the 0 to 8 kHz band, the 7 to 8 kHz band part is output to the middle band correction unit 1102 as the middle band spectrum X_mid. Further, the TDAC encoding unit 1201 quantizes the frequency domain signal (MDCT coefficient) obtained by orthogonal transform such as MDCT, and outputs the obtained TDAC parameter to the multiplexing unit 309.
  • orthogonal transform such as MDCT
  • FIG. 17 is a block diagram showing a main configuration inside midband coding section 1103 shown in FIG.
  • the mid-band coding unit 1103 includes a shape quantization unit 1301, a gain quantization unit 1302, and a multiplexing unit 1303, and each unit performs the following operations.
  • the shape quantization unit 1301 performs shape quantization for each subband on the corrected mid-band spectrum S_mid ′ (k) input from the mid-band correction unit 1102. Specifically, the shape quantization unit 1301 divides the middle band (7 to 8 kHz band) into L_mid subbands, and builds a built-in shape codebook including SQ_mid shape code vectors for each subband. By searching, an index of the shape code vector that maximizes the result of the following equation (20) is obtained.
  • SC i k ′ represents a shape code vector constituting the shape code book
  • i represents an index of the shape code vector
  • k ′ represents an index of an element of the shape code vector.
  • W (j) represents the bandwidth of the subband whose subband index is j.
  • B (j) represents the index of the first sample of the subband whose subband index is j.
  • the shape quantization unit 1301 outputs the index S_max_mid of the shape code vector that maximizes the result of the above equation (20) to the multiplexing unit 1303 as mid-range shape encoded information. Further, the shape quantization unit 1301 calculates an ideal gain value Gain_i_mid (j) according to the following equation (21), and outputs it to the gain quantization unit 1302.
  • the gain quantization unit 1302 quantizes the ideal gain value Gain_i_mid (j) input from the shape quantization unit 1301 according to the following equation (22).
  • gain quantization section 1302 treats the ideal gain value as an L_mid-dimensional vector and performs vector quantization.
  • GC i j represents a gain code vector constituting the gain code book
  • i represents an index of the gain code vector
  • j represents an index of an element of the gain code vector.
  • the gain quantization unit 1302 outputs G_min_mid to the multiplexing unit 1303 as mid-range gain encoding information.
  • the multiplexing unit 1303 multiplexes the midband shape encoded information input from the shape quantizing unit 1301 and the midband gain encoded information input from the gain quantizing unit 1302 and encodes the multiplexed result to the midband Information is output to the multiplexing unit 1105 as information.
  • FIG. 18 is a block diagram showing the main configuration inside high frequency encoding section 1104 shown in FIG.
  • the high frequency encoding unit 1104 includes an orthogonal transform processing unit 1401, a shape quantization unit 1402, a gain quantization unit 1403, and a multiplexing unit 1404, and each unit performs the following operations.
  • the orthogonal transform processing unit 1401 performs orthogonal transform processing such as MDCT on the high frequency signal (8 to 16 kHz band) input from the band division processing unit 201, and obtains a high frequency spectrum S_hi that is a frequency component of the high frequency signal. Calculate and output to the shape quantization unit 1402. Note that orthogonal transformation processing such as MDCT in the orthogonal transformation processing unit 1401 is the same as orthogonal transformation processing such as MDCT in the orthogonal transformation processing unit 401 according to Embodiment 1, and thus detailed description thereof is omitted.
  • the shape quantization unit 1402 performs shape quantization for each subband on the high frequency spectrum S_hi input from the orthogonal transform processing unit 1401. Specifically, the shape quantization unit 1402 divides the high frequency band (8 to 16 kHz band) into L_hi subbands, and searches the built-in shape codebook composed of SQ_hi shape code vectors for each subband. Then, the index of the shape code vector that maximizes the result of the following equation (23) is obtained.
  • SC i k ′ represents a shape code vector constituting the shape code book
  • i represents an index of the shape code vector
  • k ′ represents an index of an element of the shape code vector.
  • W (j) represents the bandwidth of the subband whose subband index is j.
  • B (j) represents the index of the first sample of the subband whose subband index is j.
  • the shape quantization unit 1402 outputs the index S_max_hi of the shape code vector that maximizes the result of the above equation (23) to the multiplexing unit 1404 as high-frequency shape encoded information.
  • the shape quantization unit 1402 calculates an ideal gain value Gain_i_hi (j) according to the following equation (24), and outputs it to the gain quantization unit 1403.
  • the gain quantization unit 1403 quantizes the ideal gain value Gain_i_hi (j) input from the shape quantization unit 1402 according to the following equation (25).
  • gain quantization section 1403 treats the ideal gain value as an L-dimensional vector and performs vector quantization.
  • GC i j represents a gain code vector constituting the gain code book
  • i represents an index of the gain code vector
  • j represents an index of an element of the gain code vector.
  • the gain quantization unit 1403 uses a codebook different from that of the gain quantization unit 1302.
  • the gain quantization unit 1403 outputs G_min_hi to the multiplexing unit 1404 as high frequency gain encoding information.
  • the multiplexing unit 1404 multiplexes the high frequency shape encoded information input from the shape quantizing unit 1402 and the high frequency gain encoded information input from the gain quantizing unit 1403, and the multiplexed result is a high frequency code. Is output to the multiplexing unit 1105 as multiplex information.
  • FIG. 19 is a block diagram showing a main configuration inside decoding apparatus 123 according to the present embodiment.
  • decoding apparatus 123 according to the present embodiment has basically the same configuration as decoding apparatus 113 shown in FIG. 13, and basically performs the same operation.
  • the separating unit 1501, the low-band decoding unit 1502, the mid-band decoding unit 1503, and the high-band decoding unit 1504 of the decoding device 123 are the separation unit 601, the low-band decoding unit 901, the mid-band decoding unit 903, and the high-band decoding unit 903 of the decoding device 113, respectively. It differs from area decoding section 902 only in part of the operation.
  • Separating section 1501 separates encoded information transmitted from encoding apparatus 121 via transmission path 102 into low-band encoded information, mid-band encoded information, and high-band encoded information, and performs low-band encoding. Information is output to low-band decoding section 1502, mid-band encoded information is output to mid-band decoding section 1503, and high-band coding information is output to high-band decoding section 1504.
  • the low frequency decoding unit 1502 is different from the low frequency decoding unit 901 shown in FIG. 13 only in that the decoded low frequency spectrum is not output to the high frequency decoding unit 1504.
  • the low frequency decoding unit 1502 decodes the low frequency encoding information input from the separation unit 1501, and outputs the generated decoded low frequency signal to the adding unit 904.
  • the configuration and operation of low frequency decoding section 1502 are basically the same as the configuration and operation of low frequency decoding section 901 according to Embodiment 2, and thus detailed description thereof is omitted.
  • the mid-band decoding unit 1503 is different from the mid-band decoding unit 903 illustrated in FIG. 13 in that the decoded mid-band spectrum is not input from the high-band decoding unit 1504.
  • Middle band decoding section 1503 decodes the middle band encoded information input from demultiplexing section 1501 and outputs the obtained decoded middle band signal to addition section 904. Details of the midband decoding unit 1503 will be described later.
  • the high frequency decoding unit 1504 does not receive the decoded low frequency spectrum from the low frequency decoding unit 1502 and does not output the mid frequency decoding spectrum to the mid frequency decoding unit 1503. Is different. Specifically, high frequency decoding section 1504 decodes the high frequency encoded information input from demultiplexing section 1501 and outputs the obtained decoded high frequency signal to band synthesis processing section 905. Details of the high frequency decoding unit 1504 will be described later.
  • FIG. 20 is a block diagram showing the main components inside the mid-band decoding unit 1503 shown in FIG.
  • the mid-band decoding unit 1503 includes a separation unit 1601, a shape inverse quantization unit 1602, a gain inverse quantization unit 1603, and an orthogonal transform processing unit 1604, and each unit performs the following operations.
  • Separating section 1601 separates the mid-band encoded information input from demultiplexing section 1501 into mid-band shape encoded information S_max_mid and mid-band gain encoded information G_min_mid, and shape dequantizes the mid-band encoded information S_max_mid Output to unit 1602, and outputs mid-range gain encoding information G_min_mid to gain dequantization unit 1603.
  • the shape inverse quantization unit 1602 obtains a shape value by inversely quantizing the mid-band shape encoded information input from the separation unit 1601, and outputs the obtained shape value to the gain inverse quantization unit 1603. .
  • the shape inverse quantization unit 1602 incorporates a shape codebook similar to the shape codebook included in the shape quantization unit 1301 of the encoding device 121, and the midband shape encoding input from the separation unit 1601 A shape code vector having the information S_max_mid as an index is searched.
  • the shape inverse quantization unit 1602 outputs the searched code vector to the gain inverse quantization unit 1603 as a shape value.
  • the gain inverse quantization unit 1603 obtains a gain value by inversely quantizing the mid-band gain encoded information input from the separation unit 1601.
  • the gain dequantization unit 1603 calculates a decoded mid-range spectrum from the obtained gain value and the shape value input from the shape dequantization unit 1602.
  • Gain dequantization section 1603 outputs the calculated decoded midband spectrum to orthogonal transform processing section 1604.
  • gain inverse quantization section 1603 incorporates a gain code book similar to the gain code book included in gain quantization section 1302 of encoding apparatus 121, and using this gain code book, the following equation (26) ), The gain value is inversely quantized. Again, the gain inverse quantization unit 1603 treats the gain value as an L_mid-dimensional vector and performs vector inverse quantization. That is, gain inverse quantization section 1603 directly uses gain code vector GC j G_min_mid corresponding to gain encoded information G_min_mid as a gain value.
  • gain inverse quantization section 1603 uses the gain value obtained by inverse quantization of the current frame and the shape value input from shape inverse quantization section 1602, and decodes MDCT coefficient S_mid 2 according to the following equation (27): '(K) is calculated.
  • k is a value from 0 to N mid_hi ⁇ 1, and is calculated from k ′ and j.
  • the gain inverse quantization unit 1603 outputs the calculated decoded MDCT coefficient S_mid2 ′ (k) to the orthogonal transform processing unit 1604 as a decoded midband spectrum.
  • the orthogonal transform processing unit 1604 generates a time-domain signal by performing orthogonal transform processing such as modified discrete cosine inverse transform on the decoded mid-band spectrum input from the gain dequantization unit 1603, and generates a time-domain signal as a decoded mid-band signal. The result is output to the adding unit 904. Note that the orthogonal transformation processing in the orthogonal transformation processing unit 1604 is the same as the orthogonal transformation processing in the orthogonal transformation processing unit 806 (see FIG. 12) according to Embodiment 1, and thus detailed description thereof is omitted.
  • FIG. 21 is a block diagram showing the main configuration inside high frequency decoding section 1504 shown in FIG.
  • the high frequency decoding unit 1504 includes a separation unit 1701, a shape inverse quantization unit 1702, a gain inverse quantization unit 1703, and an orthogonal transform processing unit 1704, and each unit performs the following operations.
  • Separating section 1701 separates the high frequency encoded information input from demultiplexing section 1501 into high frequency shape encoded information S_max_hi and high frequency gain encoded information G_min_hi, and shape inverse quantization of high frequency shape encoded information S_max_hi Output to unit 1702, and outputs high-frequency gain encoding information G_min_hi to gain inverse quantization unit 1703.
  • the shape inverse quantization unit 1702 obtains a shape value by inversely quantizing the high frequency shape encoded information S_max_hi input from the separation unit 1701, and outputs the obtained shape value to the gain inverse quantization unit 1703. To do.
  • the gain dequantization unit 1703 obtains a gain value by dequantizing the high-frequency gain encoding information G_min_hi input from the separation unit 1701.
  • Gain dequantization section 1703 calculates a decoded high-frequency spectrum from the obtained gain value and the shape value input from shape dequantization section 1702 and outputs the result to orthogonal transform processing section 1704.
  • the processing such as inverse quantization in the gain inverse quantization unit 1703 is basically the same as the processing such as inverse quantization in the gain inverse quantization unit 1603 (see FIG. 20), and thus detailed description thereof is omitted. .
  • the orthogonal transform processing unit 1704 performs orthogonal transform processing such as modified discrete cosine inverse transform on the decoded high frequency spectrum input from the gain dequantizing unit 1703 to generate a time domain signal, which is used as a decoded high frequency signal.
  • the data is output to the band synthesis processing unit 905.
  • the orthogonal transformation processing in the orthogonal transformation processing unit 1704 is the same as the orthogonal transformation processing in the orthogonal transformation processing unit 806 (see FIG. 12) according to Embodiment 1, and thus detailed description thereof is omitted.
  • the input signal is band-divided into a low-frequency component and a high-frequency component by QMF or the like, and each component is encoded by a separate encoding unit, Further, by applying a low-pass filter in the low-frequency encoding process, the missing band components are restored and encoded.
  • the low-frequency component, the restored band component, and the high-frequency component are decoded by separate decoding units. For this reason, even when high frequency components are encoded without using low frequency components, low band components are applied in the low frequency encoding process to restore missing band components. And the quality of the decoded signal can be improved.
  • the configuration of multiplexing continuously in two stages is as follows. Instead of providing the preceding multiplexing unit, the subsequent multiplexing unit may multiplex all together.
  • a subsequent separation unit is provided. Instead, they may be separated together in the preceding separation unit.
  • the encoding device, the decoding device, and these methods according to the present invention are not limited to the above embodiments, and can be implemented with various modifications.
  • each embodiment can be implemented in combination as appropriate.
  • the decoding device in each of the above embodiments performs processing using the encoded information transmitted from the encoding device in each of the above embodiments
  • the present invention is not limited to this, and necessary parameters As long as the encoded information includes data and data, the processing is not necessarily performed by the encoded information from the encoding device in each of the above embodiments.
  • the encoding device and the decoding device according to the present invention can be mounted on a communication terminal device and a base station device in a mobile communication system, and thereby have a function and effect similar to the above. And a mobile communication system.
  • the present invention can also be applied to a case where a signal processing program is recorded and written on a machine-readable recording medium such as a memory, a disk, a tape, a CD, or a DVD, and the operation is performed. Actions and effects similar to those of the form can be obtained.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable / processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the encoding device, the decoding device, and these methods according to the present invention when an input signal is band-divided into a low frequency component and a high frequency component by QMF or the like, and each component is encoded by separate encoding units.
  • the quality of the decoded signal can be improved, and can be applied to, for example, a packet communication system and a mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

 入力信号を低域成分と高域成分とに帯域分割し、各成分を別々の符号化部にて符号化する構成において、復号信号の品質を向上することができる符号化装置。符号化装置(101)において、帯域分割処理部(201)は、入力信号に対して帯域分割処理を行って第1周波数より低い低中域成分と、第1周波数以上の高域成分とを得、低域符号化部(202)は、低中域成分のうち第2周波数以上の部分を抑圧して低域成分を得、さらに低域成分を符号化して低域符号化情報を得、中域補正部(203)は、抑圧された低中域成分のうち第2周波数以上の中域成分を補正して補正中域成分を得、中高域符号化部(204)は、補正中域成分と高域成分とを符号化して中高域符号化情報を得、多重化部(205)は、低域符号化情報と中高域符号化情報とを多重化して符号化情報を得る。

Description

符号化装置、復号装置およびこれらの方法
 本発明は、信号を符号化して伝送する通信システムに用いられる符号化装置、復号装置およびこれらの方法に関する。
 近年、通信インフラの発達により、電話回線を通じて単なる音声信号だけではなく大容量の動画像データまで送受信されるようになってきている。この際、低ビットレートでも送信可能な音声信号から、高ビットレートで送る必要がある動画像データまでを同じ枠組みで扱い、回線効率を向上させるために、可変ビットレート伝送方式等が開発されている。
 また、音声信号・楽音信号の符号化において、符号化情報の一部からでも音声信号・楽音信号を復号することが可能であり、パケット損失が発生するような状況においても音質劣化を抑制することができるスケーラブル符号化技術も開発されている(例えば、特許文献1参照)。
 このスケーラブル符号化技術の代表的なものとしては、入力信号を周波数領域において低域成分と高域成分(と中域成分)とに分割し、各帯域の信号を符号化して伝送することにより周波数軸上でのスケーラビリティを実現する方法が開示されている(例えば、特許文献2、特許文献3、および特許文献4参照)
特開平10-97295号公報 特開2005-114814号公報 特開2006-189836号公報 特開2006-119301号公報
 上記特許文献2、特許文献3、および特許文献4では、入力信号(例えば32kHzサンプリング周波数の信号とする)に対してまずQMF(Quadrature Mirror Filter:直交鏡像フィルタ)等による帯域分割処理を施して低域成分の信号、および高域成分の信号に分割する構成が開示されている。または、入力信号を低域成分の信号と高域成分の信号との他に中域成分の信号も含めて3つの信号に分割する構成も開示されている。以下、第1階層(最下層)の符号化部においてITU-Tで規格化されているG.729.1符号化を用いる場合を考慮する。
 G.729.1符号化部では、QMF分析された16kHzサンプリング周波数の入力信号に対して、7kHz帯域までの周波数特性を得るためにローパスフィルタを適用し、7kHz帯域までに制限された信号に対して符号化を行う。しかしながら、G.729.1符号化部は、例えば入力される信号が8kHz帯域までの周波数成分が含む場合でも、7kHz帯域までの成分を符号化し、7~8kHz帯域の成分は符号化しない。したがって、G.729.1符号化部とは別の符号化部にて7~8kHz帯域の成分を符号化する必要がある。
 そこで、7kHz帯域まで制限を行うことによる7~8kHz帯域の成分の欠落を避けるために、G.729.1符号化部内部のローパスフィルタを動作させないようにする方法が考えられる。しかし、このような構成にした場合、7kHz帯域以下の成分に対してもローパスフィルタを適用させないことが影響してしまい、G.729.1符号化部本来の性能が保証されない。
 また、G.729.1符号化部に入力される16kHzサンプリング周波数の信号からは7~8kHz帯域(7kHz以上であり、かつ8kHzより低い帯域)の成分を得る構成も当然考えられる。例えばG.729.1符号化部に入力される0~8kHz帯域の信号に対して修正離散コサイン変換(MDCT:Modified Discrete Cosine Transform)等の直交変換処理を行って7~8kHz帯域の周波数成分を計算することできる。しかし、このような構成にした場合、G.729.1符号化部で行われるMDCTの演算とは別に、新たに0~8kHzの成分のMDCT係数を演算する必要があり、演算量が大きく増加してしまう。
 本発明の目的は、入力信号をQMF等の処理により低域成分と高域成分とに帯域分割し、各成分を別々の符号化部にて符号化する構成において、低域成分の符号化部内部でローパスフィルタを適用することにより欠落した帯域の成分を、演算量を抑えつつ復元して符号化し、復号信号の品質を向上することができる符号化装置、復号装置、およびこれらの方法を提供することである。なお、本発明の技術は、単なる信号処理における逆フィルタリング処理ではなく、音声・オーディオ信号に対して特有の品質改善技術である。
 本発明の符号化装置は、入力信号に対して帯域分割処理を行って第1周波数より低い低中域成分と、前記第1周波数以上の高域成分とを得る帯域分割手段と、前記低中域成分のうち第2周波数以上の部分を抑圧して低域成分を得、前記低域成分を符号化して低域符号化情報を得る低域符号化手段と、前記抑圧された前記低中域成分のうち前記第2周波数以上の中域成分を補正して補正中域成分を得る中域補正手段と、前記補正中域成分と前記高域成分とを符号化して中高域符号化情報を得る中高域符号化手段と、を具備する構成を採る。
 本発明の復号装置は、符号化装置において入力信号が帯域分割されて得られた第1周波数より低い低中域成分のうち第2周波数以上の部分が抑圧されて得られた低域成分が符号化された低域符号化情報と、前記抑圧された前記低中域成分のうち前記第2周波数以上の中域成分が補正されて得られた補正中域成分および前記帯域分割により得られた前記第1周波数以上の高域成分が符号化された中高域符号化情報と、を受信する受信手段と、前記低域符号化情報を復号して復号低域スペクトルを得る低中域復号手段と、前記復号低域スペクトルを用いて前記中高域符号化情報を復号して復号高域信号と復号中域スペクトルとを得る高域復号手段と、を具備する構成を採る。
 本発明の符号化方法は、入力信号に対して帯域分割処理を行って第1周波数より低い低中域成分と、前記第1周波数以上の高域成分とを得るステップと、前記低中域成分のうち第2周波数以上の部分を抑圧して低域成分を得、前記低域成分を符号化して低域符号化情報を得るステップと、前記抑圧された前記低中域成分のうち前記第2周波数以上の中域成分を補正して補正中域成分を得るステップと、前記補正中域成分と前記高域成分とを符号化して中高域符号化情報を得るステップと、を有するようにした。
 本発明の復号方法は、符号化装置において入力信号が帯域分割されて得られた第1周波数より低い低中域成分のうち第2周波数以上の部分が抑圧されて得られた低域成分が符号化された低域符号化情報と、前記抑圧された前記低中域成分のうち前記第2周波数以上の中域成分が補正されて得られた補正中域成分および前記帯域分割により得られた前記第1周波数以上の高域成分が符号化された中高域符号化情報と、を受信するステップと、前記低域符号化情報を復号して復号低域スペクトルを得るステップと、前記復号低域スペクトルを用いて前記中高域符号化情報を復号して復号高域信号と復号中域スペクトルとを得るステップと、を有するようにした。
 本発明によれば、入力信号をQMF等の処理により低域成分と高域成分とに帯域分割し、各成分を別々の符号化部にて符号化する構成において、低域成分の符号化部内部でローパスフィルタを適用することにより欠落した帯域の成分を、演算量を抑えつつ復元して符号化し、復号信号の品質を向上することができる。
本発明の実施の形態1に係る符号化装置および復号装置を有する通信システムの構成を示すブロック図 図1に示した符号化装置の内部の主要な構成を示すブロック図 図2に示した低域符号化部の内部の主要な構成を示すブロック図 図3に示したローパスフィルタの周波数特性を示す図 図3に示したローパスフィルタの周波数特性を示す図 図2に示した中高域符号化部の内部の主要な構成を示すブロック図 図6に示した帯域拡張符号化部の内部の主要な構成を示すブロック図 図7に示したフィルタリング部におけるフィルタリング処理の詳細について説明するための図 図7に示した探索部において最適ピッチ係数を探索する処理の手順を示すフロー図 図1に示した復号装置の内部の主要な構成を示すブロック図 図10に示した低中域復号部の内部の主要な構成を示すブロック図 図10に示した高域復号部の内部の主要な構成を示すブロック図 本発明の実施の形態2に係る復号装置の内部の主要な構成を示すブロック図 図13に示した低域復号部の内部の主要な構成を示すブロック図 本発明の実施の形態3に係る符号化装置の内部の主要な構成を示すブロック図 図15に示した低域符号化部の内部の主要な構成を示すブロック図 図15に示した中域符号化部の内部の主要な構成を示すブロック図 図15に示した高域符号化部の内部の主要な構成を示すブロック図 本発明の実施の形態3に係る復号装置の内部の主要な構成を示すブロック図 図19に示した中域復号部の内部の主要な構成を示すブロック図 図19に示した高域復号部の内部の主要な構成を示すブロック図
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、本発明に係る符号化装置および復号装置として、音声符号化装置および音声復号装置を例にとって説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1に係る符号化装置および復号装置を有する通信システムの構成を示すブロック図である。図1において、通信システムは、符号化装置101と復号装置103とを備え、それぞれ伝送路102を介して通信可能な状態となっている。
 符号化装置101は、入力信号をNサンプルずつ区切り(Nは自然数)、Nサンプルを1フレームとしてフレーム毎に符号化を行う。ここで、符号化の対象となる入力信号をx(n=0、…、N-1)と表すこととする。nは、Nサンプルずつ区切られた入力信号のうち、信号要素のn+1番目であることを示す。以下、サンプル「n」を省略して信号を記す場合がある。例えば、x(n=0、…、N-1)をxと省略して記す場合がある。符号化された入力情報(符号化情報)は伝送路102を介して復号装置103に送信される。
 復号装置103は、伝送路102を介して符号化装置101から送信された符号化情報を受信し、これを復号し出力信号を得る。
 図2は、図1に示した符号化装置101の内部の主要な構成を示すブロック図である。
 図2において、符号化装置101は、帯域分割処理部201、低域符号化部202、中域補正部203、中高域符号化部204、および多重化部205を備え、各部は以下の動作を行う。
 帯域分割処理部201は、サンプリング周波数がSRinputである入力信号xに対してQMF等による帯域分割処理を行い、サンプリング周波数がともにSRinput/2である低中域信号x_loと高域信号x_hiを生成する。ここでは、SRinputが32kHzである場合を例にとり、低域とは0~7kHz帯域を示し、中域とは7~8kHz帯域を示し、高域とは8~16kHz帯域を示すものとする。そして、低中域信号x_loは0~8kHz帯域の信号を指し、高域信号x_hiは8~16kHz帯域の信号を指す。帯域分割処理部201は、生成した低中域信号x_loを低域符号化部202に出力し、高域信号x_hiを中高域符号化部204に出力する。
 低域符号化部202は、帯域分割処理部201から入力される0~8kHz帯域の低中域信号x_loのうち7~8kHzの部分を抑圧し、0~7kHzの部分を例えばITU-Tで規格化されているG.729.1等の符号化を行い、生成された低域符号化情報を多重化部205に出力する。また、低域符号化部202は、低域符号化情報を求める過程で算出した中域(7~8kHz帯域)の周波数成分を中域スペクトルX_midとして中域補正部203に出力する。また、低域符号化部202は、生成した低域符号化情報をさらに復号し、得られる復号信号の低域の周波数成分を復号低域スペクトルS_lo(k)(0≦k<7kHz)として中高域符号化部204に出力する。以下、周波数「k」を省略してスペクトルを記す場合がある。例えば、S_lo(k)(0≦k<7kHz)をS_loと省略して記す場合がある。なお、低域符号化部202の詳細については後述する。
 中域補正部203は、低域符号化部202から入力される中域スペクトルX_midに対して周波数領域において補正を行い、得られたスペクトルを補正中域スペクトルS_midとして中高域符号化部204に出力する。なお、中域補正部203の詳細については後述する。
 中高域符号化部204は、低域符号化部202から入力される復号低域スペクトルS_loを用いて、中域補正部203から入力される補正中域スペクトルS_midと、帯域分割処理部201から入力される高域信号x_hi(8~16kHz帯域)とを符号化し、生成される中高域符号化情報を多重化部205に出力する。なお、中高域符号化部204の詳細については後述する。
 多重化部205は、低域符号化部202から入力される低域符号化情報、および中高域符号化部204から入力される中高域符号化情報を多重化し、多重化結果を符号化情報として伝送路102に出力する。
 図3は、図2に示した低域符号化部202の内部の主要な構成を示すブロック図である。
 図3において、低域符号化部202は、帯域分割処理部301、ハイパスフィルタ302、CELP(Code Excited Linear Prediction)符号化部303、FEC(Forward Error Correction:前方誤り訂正)符号化部304、加算部305、ローパスフィルタ306、TDAC(Time-Domain Aliasing Cancellation:時間領域エイリアス除去)符号化部307、TDBWE(Time-Domain BandWidth Extension:時間領域帯域拡張)符号化部308、および多重化部309を備え、各部は以下の動作を行う。
 帯域分割処理部301は、帯域分割処理部201から入力される低中域信号x_loに対して、帯域分割処理部201と同様にQMF等による帯域分割処理を行い、0~4kHz帯域の第1低域信号と、4~8kHz帯域の第2低域信号を生成する。帯域分割処理部301は、生成した第1低域信号をハイパスフィルタ302に出力し、第2低域信号をローパスフィルタ306に出力する。
 ハイパスフィルタ302は、帯域分割処理部301から入力される第1低域信号に対して0.05kHz以下の周波数成分を抑え、主に0.05kHzより高い周波数成分からなる信号を得てフィルタ後第1低域信号としてCELP符号化部303、および加算部305に出力する。
 CELP符号化部303は、ハイパスフィルタ302から入力されるフィルタ後第1低域信号に対してCELP方式の符号化を行い、得られるCELPパラメータをFEC符号化部304、TDAC符号化部307、および多重化部309に出力する。ここで、CELP符号化部303は、FEC符号化部304、およびTDAC符号化部307にCELPパラメータの一部、またはCELPパラメータを求める過程で得られる情報を出力しても良い。また、CELP符号化部303は、求めたCELPパラメータに対してCELP方式の復号を行い、得られるCELP復号信号を加算部305に出力する。
 FEC符号化部304は、CELP符号化部303から入力されるCELPパラメータを用いて、復号装置103の消失フレーム補償処理に利用されるFECパラメータを算出し、FECパラメータを多重化部309に出力する。
 加算部305には、ハイパスフィルタ302から入力されるフィルタ後第1低域信号と、CELP符号化部303から入力されるCELP復号信号との差分を算出し、得られる差分信号をTDAC符号化部307に出力する。
 ローパスフィルタ306は、帯域分割処理部301から入力される第2低域信号に対して7kHzより大きい周波数成分を抑え、主に7kHz以下の周波数成分からなる信号を得てフィルタ後第2低域信号としてTDAC符号化部307、およびTDBWE(Time-Domain BandWidth Extension)符号化部308に出力する。
 TDAC符号化部307は、加算部305から入力される差分信号、およびローパスフィルタ306から入力されるフィルタ後第2低域信号それぞれに対してMDCT等の直交変換を施し、得られる0~8kHz帯域の周波数領域信号(MDCT係数)のうち、7~8kHz帯域の部分を中域スペクトルX_midとして中域補正部203に出力する。また、TDAC符号化部307は、加算部305から入力される差分信号に対して直交変換を施す際、CELP符号化部303から入力されるCELPパラメータの一つである聴覚重み情報を用いて、差分信号に重み付けをした後に直交変換を施し周波数領域信号を算出する。さらに、TDAC符号化部307は、MDCT等の直交変換により得られた周波数領域信号(MDCT係数)を量子化し、得られるTDACパラメータを多重化部309に出力する。また、TDAC符号化部307は、TDACパラメータに対して復号を行い、得られる復号信号のうち、0~7kHz帯域の部分を復号低域スペクトルS_loとして中高域符号化部204に出力する。
 TDBWE符号化部308は、ローパスフィルタ306から入力されるフィルタ後第2低域信号に対して時間軸上での帯域拡張符号化を行い、得られるTDBWEパラメータを多重化部309に出力する。
 多重化部309は、FECパラメータ、CELPパラメータ、TDACパラメータ、およびTDBWEパラメータを多重化し、低域符号化情報として多重化部205に出力する。なお、多重化部309を設けずに、これらのパラメータを多重化部205で多重化しても良い。
 図3に示した、本実施の形態に係る低域符号化部202における符号化は、TDAC符号化部307において、加算部305から入力される差分信号、およびローパスフィルタ306から入力されるフィルタ後第2低域信号それぞれに対しMDCT等の直交変換を施すだけではなく、MDCT係数の7~8kHz帯域の部分を中域スペクトルX_midとして中域補正部203に出力し、TDACパラメータを復号した復号信号のうち0~7kHz帯域の部分を復号低域スペクトルS_loとして中高域符号化部204に出力する点が、G.729.1方式の符号化と相違する。
 次に、中域補正部203の処理について説明する。
 中域補正部203の処理を説明するために、まず、低域符号化部202内のローパスフィルタ306のフィルタ特性を説明する。
 低域符号化部202内のローパスフィルタ306の伝達関数H(z)は例えば下記の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 図4および図5は、式(1)で表される伝達関数を有するローパスフィルタ306の周波数特性を示す図である。図4および図5においてはローパスフィルタ306を0~4kHz帯域の入力信号に対して適用する場合の周波数特性を示しているが、本実施の形態においてローパスフィルタ306に入力される第2低域信号の有する帯域は4~8kHzであるため、この場合、図4および図5に示すローパスフィルタ306の周波数特性は実際には4~8kHzに対して適用される。図4および図5において、横軸は周波数f(Hz)を示し、縦軸はローパスフィルタ306の周波数特性を表すLPF(f)の値を示す。なお、図4においてはログ(log)スケール(dB)を用いて周波数特性を表し、図5においてはリニアスケールを用いて周波数特性を表しており、この場合LPF(f)の値は0~1の値をとる。図4および図5に示した周波数特性を有するローパスフィルタ306は、帯域分割処理部301から入力される第2低域信号(4~8kHz)をフィルタリングすることにより、7~8kHz帯域の周波数成分が抑圧された、主に4~7kHz帯域の周波数成分からなるフィルタ後第2低域信号を得る。次いで、フィルタ後第2低域信号はTDAC符号化部307においてMDCTされる。従って、TDAC符号化部307から中域補正部203に入力される中域スペクトルX_midは、ローパスフィルタ306によって抑圧された7~8kHz帯域の信号に対してMDCTした結果である。
 中域補正部203は、図5に示すローパスフィルタ306の周波数特性を利用して、低域符号化部202から入力される中域スペクトルX_midに対して周波数軸での補正を行い、補正中域スペクトルS_midを算出する。具体的には、中域補正部203は、下記の式(2)に従って7~8kHz帯域の中域スペクトルX_midを、図5に示したローパスフィルタ306の3~4kHz帯域のLPF(f)の値で除算することにより、補正中域スペクトルS_midを算出する。ここでローパスフィルタ306の周波数特性LPF(f)の3~4kHzの帯域は、帯域分割処理部301に入力される前の低域信号の7~8kHzの帯域に相当する。すなわち、中域補正部203は、中域スペクトルX_midにローパスフィルタ306の周波数特性の逆数を掛けることにより、ローパスフィルタ306の処理前の状態に復元された第2低域信号の7~8kHz帯域に対応するMDCT係数を得る。
Figure JPOXMLDOC01-appb-M000002
 式(2)において、LPF(f)は、図5に示した3~4kHz部分の周波数特性(縦軸の値)であり、0~1.0の範囲をとる。Nloは、7~8kHz帯域の周波数成分のサンプル数である。なお、式(2)において、fは3000~4000Hzまでの値をとるが、これは第2低域信号の4~8kHzの帯域に適用されるため、実際には7000~8000Hzの周波数を意味する。また、式(2)において、kは3000~4000Hzのfの値に対応する中域スペクトルX_mid(k)の周波数インデックスの値をとる。つまり、f=3000の時、第2低域信号の7000Hzの成分に対するLPF(3000)の値は、中域スペクトルX_mid(0)の値に適用され、f=4000の時、すなわち第2低域信号の8000Hzの成分に対するLPF(4000)の値は、中域スペクトルX_mid(Nlo-1)に適用される。
 また、式(2)においてW(f)は補正係数であり、単純に中域スペクトル(7~8kHz帯域)をLPF(f)で除算して補正中域スペクトルを求める場合に発生し得る異音を抑止する機能を果たす。具体的には、W(f)は0.95~0.97程度の値をとるのが適当であることが実験により確かめられている。以下、W(f)による異音の抑止効果について説明する。
 ここで、図5中の0~1500Hz帯域に着目すると、0~1500Hz帯域においてはローパスフィルタ306の周波数特性は0.95~1.00程度の値をとっている。ここで図5に示すローパスフィルタ306の周波数特性のうち0~1500Hzの値が適用されるのは、第2低域信号の4000~5500Hzの帯域である。従って、第2低域信号の4000~5500Hz帯域の成分が、ローパスフィルタ306の処理を適用する前の信号の約0.95~0.97倍となる。すなわち、TDAC符号化部307から中高域符号化部204に入力される復号低域スペクトルの4000~5500Hz帯域は、ローパスフィルタ306の処理を適用する前の第2低域信号の約0.95倍の信号に対応するMDCT係数である。これに対し、式(2)においてW(f)を乗じず、中域スペクトルX_mid(k)にローパスフィルタ306の周波数特性の逆数を掛けることによって得られる7~8kHz帯域のスペクトルは、ローパスフィルタ306の処理前の第2低域信号そのものに対応するMDCT係数である。中域補正部203は、式(2)に従って算出した補正中域スペクトルS_mid(k)を中高域符号化部204に出力するため、仮に、式(2)においてW(f)を乗じない場合には、中高域符号化部204に入力されるスペクトルの4000~5500Hz帯域と7~8kHz帯域とはスペクトルの大きさのバランスが崩れてしまい、異音が発生する。
 また、計算機の演算精度は無限ではないため、LPF(f)が非常に小さな値であれば、LPF(f)の逆数は非常に大きな値になってしまい、丸め誤差等の計算誤差が発生してしまう。
 このような問題を回避するために、中域補正部203は、中域スペクトルX_mid(k)をローパスフィルタ306の周波数特性で除算し、さらにローパスフィルタ306の0~3000Hzの値を考慮した補正係数W(f)を乗じる。これにより、4000~5500Hz帯域のスペクトルとのバランスも取れ、さらに計算誤差に起因する音質劣化を抑制しつつ、7~8kHz帯域のスペクトルを補正することができる。隣接帯域とのエネルギーバランスの歪み(不連続性など)による異音を抑制するための、上記のような処理は、単なる信号処理における逆フィルタリング処理ではなく、音声・オーディオ信号に対して特有の品質改善技術である。
 ここで、中域補正部203は、ローパスフィルタ306の周波数特性を表すLPF(f)(f=0,…,4000)、およびLPF(f)に対応するW(f)を内部に予め記憶する。なお、LPF(f)の逆数とW(f)を乗じた値を予め求めておき、この値を内部に記憶してもよく、このようにすることで更なる演算量の減少が見込まれる。
 図6は、図2に示した中高域符号化部204の内部の主要な構成を示すブロック図である。
 図6において、中高域符号化部204は、直交変換処理部401、中高域スペクトル算出部402、および帯域拡張符号化部403を備え、各部は以下の動作を行う。
 直交変換処理部401は、バッファbuf(n=0、…、N-1)を内部に有し、帯域分割処理部201から入力される8~16kHz帯域の高域信号x_hiに対し、直交変換処理として修正離散コサイン変換(MDCT)等を行って高域信号x_hiの周波数成分である高域スペクトルS_hiを算出する。
 具体的には、まず、直交変換処理部401は、下記の式(3)に示すように「0」を用いてバッファbufを初期化する。
Figure JPOXMLDOC01-appb-M000003
 次いで、直交変換処理部401は、高域信号x_hiに対し、下記の式(4)に従ってMDCTを行い、高域信号のMDCT係数S_hiを高域スペクトルとして求める。
Figure JPOXMLDOC01-appb-M000004
 式(4)において、kは1フレームにおける各サンプルのインデックスを示す。なお、x_hi’は、下記の式(5)に従って高域信号x_hiとバッファbufとを結合させたベクトルである。
Figure JPOXMLDOC01-appb-M000005
 次いで、直交変換処理部401は、下記の式(6)に示すようにバッファbufを更新する。
Figure JPOXMLDOC01-appb-M000006
 そして、直交変換処理部401は、高域スペクトルS_hi(k)を中高域スペクトル算出部402に出力する。
 中高域スペクトル算出部402は、直交変換処理部401から入力される高域スペクトルS_hi、および中域補正部203から入力される補正中域スペクトルS_midを用い、下記の式(7)に従って中高域スペクトルS_mid_hiを算出して帯域拡張符号化部403に出力する。ここで、7~16kHz帯域の成分を有するS_mid_hiのサンプル数をNmid_hiとする。つまり中高域スペクトルS_mid_hiは式(7)に示すように、補正中域スペクトルS_midと高域スペクトルS_hiを周波数軸上で連続(結合)させたスペクトルとなる。
Figure JPOXMLDOC01-appb-M000007
 帯域拡張符号化部403は、低域符号化部202から入力される復号低域スペクトルS_loと、中高域スペクトル算出部402から入力される中高域スペクトルS_mid_hiとを用い、復号低域スペクトルから中高域スペクトルを生成するための中高域符号化情報を算出して多重化部205に出力する。
 図7は、図6に示した帯域拡張符号化部403の内部の主要な構成を示すブロック図である。
 図7において、帯域拡張符号化部403は、フィルタ状態設定部501、フィルタリング部502、探索部503、ピッチ係数設定部504、ゲイン符号化部505、および多重化部506を備え、各部は以下の動作を行う。
 フィルタ状態設定部501は、低域符号化部202から入力される復号低域スペクトルS_loを、フィルタリング部502で用いるフィルタ状態として設定する。すなわち、フィルタリング部502における全周波数帯域(0~16kHz帯域)のスペクトルS(k)(0≦k<16kHz)の0~7kHz帯域に、復号低域スペクトルS_loがフィルタの内部状態(フィルタ状態)として格納される。
 フィルタリング部502は、マルチタップ(タップ数が1より多い)のピッチフィルタを備え、フィルタ状態設定部501により設定されたフィルタ状態と、ピッチ係数設定部504から入力されるピッチ係数に基づいて、復号低域スペクトルS_loをフィルタリングし、中高域スペクトルの推定値S_mid_hi’(7~16kHz帯域)(以下、「推定中高域スペクトル」と称す)を算出する。フィルタリング部502は、推定中高域スペクトルS_mid_hi’を探索部503に出力する。なお、フィルタリング部502におけるフィルタリング処理の詳細については後述する。
 探索部503は、中高域スペクトル算出部402から入力される中高域スペクトルS_mid_hi(7~16kHz帯域)と、フィルタリング部502から入力される推定中高域スペクトルS_mid_hi’との類似度を算出する。この類似度の算出は、例えば相関演算等により行われる。フィルタリング部502、探索部503、およびピッチ係数設定部504の処理は閉ループを構成する。この閉ループにおいて、探索部503は、ピッチ係数設定部504からフィルタリング部502に入力されるピッチ係数Tを種々に変化させることにより、各ピッチ係数に対応する類似度を算出する。探索部503は、そのうち類似度が最大となる最適ピッチ係数T’を多重化部506に出力する。また、探索部503は、このピッチ係数T’に対応する推定中高域スペクトルS_mid_hi’をゲイン符号化部505に出力する。なお、探索部503における最適ピッチ係数T’の探索処理の詳細については後述する。
 ピッチ係数設定部504は、探索部503の制御の下、ピッチ係数Tを予め定められた探索範囲Tmin~Tmaxの中で少しずつ変化させながら、フィルタリング部502に順次出力する。
 ゲイン符号化部505は、中高域スペクトル算出部402から入力される中高域スペクトルS_mid_hi(k)(7~16kHz帯域)についてのゲイン情報を算出する。具体的には、ゲイン符号化部505は、7~16kHz帯域をJ個のサブバンドに分割し、中高域スペクトルS_mid_hi(k)のサブバンド毎のスペクトルパワを求める。この場合、第jサブバンドのスペクトルパワB(j)は下記の式(8)で表される。
Figure JPOXMLDOC01-appb-M000008
 式(8)において、BL(j)は第jサブバンドの最小周波数、BH(j)は第jサブバンドの最大周波数を表す。
 また、ゲイン符号化部505は、同様に、最適ピッチ係数T’に対応する推定中高域スペクトルS_mid_hi’のサブバンド毎のスペクトルパワB’(j)を下記の式(9)に従って算出する。
Figure JPOXMLDOC01-appb-M000009
 次いで、ゲイン符号化部505は、中高域スペクトルS_mid_hiに対する推定中高域スペクトルS_mid_hi’のサブバンド毎のスペクトルパワの変動量V(j)を下記の式(10)に従って算出する。
Figure JPOXMLDOC01-appb-M000010
 そして、ゲイン符号化部505は、変動量V(j)を符号化し、符号化後の変動量V(j)に対応するインデックスを多重化部506に出力する。
 多重化部506は、探索部503から入力される最適ピッチ係数T’と、ゲイン符号化部505から入力される符号化後の変動量V(j)のインデックスとを高域符号化情報として多重化し、多重化部205に出力する。なお、T’とV(j)のインデックスとを直接、多重化部205に入力して、多重化部205にて低域符号化情報と多重化しても良い。
 図8は、図7に示したフィルタリング部502におけるフィルタリング処理の詳細について説明するための図である。
 フィルタリング部502は、ピッチ係数設定部504から入力されるピッチ係数Tを用いて7~16kHz帯域のスペクトルを生成する。フィルタリング部502の伝達関数は下記の式(11)で表される。
Figure JPOXMLDOC01-appb-M000011
 式(11)において、Tはピッチ係数設定部504から与えられるピッチ係数、βは予め内部に記憶されているフィルタ係数を表している。例えば、タップ数が3の場合、フィルタ係数の候補は(β-1、β、β)=(0.1、0.8、0.1)が例として挙げられる。この他に(β-1、β、β)=(0.2、0.6、0.2)、(0.3、0.4、0.3)等の値も適当である。また、式(11)においてM=1とする。Mはタップ数に関する指標である。
 フィルタリング部502における全周波数帯域のスペクトルS(k)の0~7kHz帯域には、復号低域スペクトルS_loがフィルタの内部状態(フィルタ状態)として格納される。
 S(k)の7~16kHz帯域には、以下の手順のフィルタリング処理により、推定中高域スペクトルS_mid_hi’が格納される。すなわち、S_mid_hi’には、基本的に、このkよりTだけ低い周波数のスペクトルS(k-T)が代入される。ただし、スペクトルの円滑性を増すために、実際には、スペクトルS(k-T)からiだけ離れた近傍のスペクトルS(k-T+i)に所定のフィルタ係数βを乗じたスペクトルβ・S(k-T+i)を、全てのiについて加算したスペクトルをS_mid_hi’(k)に代入する。この処理は下記の式(12)で表される。
Figure JPOXMLDOC01-appb-M000012
 上記演算を、周波数の低いk=7kHzから順に、7~16kHz帯域の範囲で変化させて行うことにより、7~16kHz帯域における推定中高域スペクトルS_mid_hi’(k)を算出する。
 以上のフィルタリング処理は、ピッチ係数設定部504からピッチ係数Tが与えられる度に、7~16kHz帯域の範囲において、その都度S(k)をゼロクリアして行われる。すなわち、ピッチ係数Tが変化するたびにS(k)は算出され、探索部503に出力される。
 図9は、図7に示した探索部503において最適ピッチ係数T’を探索する処理の手順を示すフロー図である。
 まず、探索部503は、類似度の最小値を保存するための変数である最小類似度Dminを「+∞」に初期化する(ST2010)。次いで、探索部503は、下記の式(13)に従い、あるピッチ係数における中高域スペクトルS_mid_hiと、推定中高域スペクトルS_mid_hi’との類似度Dを算出する(ST2020)。
Figure JPOXMLDOC01-appb-M000013
 式(13)において、M’は、類似度Dを算出する際のサンプル数を示し、中高域部のサンプル長Nmid_hi以下の任意の値で良い。
 なお、上述したように、フィルタリング部502において生成される推定中高域スペクトルS_mid_hi’は、復号低域スペクトルS_loをフィルタリングして得られるスペクトルである。従って、探索部503において算出される中高域スペクトルS_mid_hiと、推定中高域スペクトルS_mid_hi’との類似度は、中高域スペクトルS_mid_hiと、復号低域スペクトルS_loとの類似度を表すこともできる。
 次いで、探索部503は算出した類似度Dが最小類似度Dminより小さいか否かを判定する(ST2030)。ST2020において算出された類似度Dが最小類似度Dminより小さい場合(ST2030:「YES」)には、探索部503は、類似度Dを最小類似度Dminに代入する(ST2040)。一方、ST2020において算出された類似度Dが最小類似度Dmin以上である場合(ST2030:「NO」)には、探索部503は、探索範囲が終了した否かを判定する。すなわち、探索部503は、探索範囲内のすべてのピッチ係数それぞれに対し、ST2020において上記の式(13)に従って類似度Dを算出したか否かを判定する(ST2050)。探索範囲が終了しなかった場合(ST2050:「NO」)には、探索部503は処理を再びST2020に戻す。そして、探索部503は、前回ST2020の手順において式(13)に従って類似度を算出した場合とは異なるピッチ係数に対して、式(13)に従って類似度を算出する。一方、探索範囲が終了した場合(ST2050:「YES」)には、探索部503は、最小類似度Dminに対応するピッチ係数Tを最適ピッチ係数T’として多重化部506に出力し、最適ピッチ係数T’に対応する推定中高域スペクトルS_mid_hi’(k)をゲイン符号化部505に出力する(ST2060)。
 図10は、図1に示した復号装置103の内部の主要な構成を示すブロック図である。
 復号装置103は、分離部601、低中域復号部602、高域復号部603、および帯域合成処理部604を備え、各部は以下の動作を行う。
 分離部601は、伝送路102を介して符号化装置101から伝送される符号化情報を、低域符号化情報と中高域符号化情報とに分離し、低域符号化情報を低中域復号部602に出力し、中高域符号化情報を高域復号部603に出力する。
 低中域復号部602は、分離部601から入力される低域符号化情報を復号し、得られる復号低域スペクトルを高域復号部603に出力する。また、低中域復号部602は、この復号低域スペクトルと、高域復号部603から入力される復号中域スペクトルとから復号低中域信号を生成して帯域合成処理部604に出力する。なお、低中域復号部602の詳細については後述する。
 高域復号部603は、分離部601から入力される中高域符号化情報と、低中域復号部602から入力される復号低域スペクトルとから復号高域信号を生成して帯域合成処理部604に出力する。また、高域復号部603は、復号高域信号を生成する際に算出される復号中域スペクトルを低中域復号部602に出力する。なお、高域復号部603の詳細については後述する。
 帯域合成処理部604には、低中域復号部602から入力される復号低中域信号が入力され、高域復号部603から復号高域信号が入力される。帯域合成処理部604は、帯域分割処理部201とは逆の処理を行うことにより、低中域復号部602から入力されるサンプリング周波数が16kHzである復号低中域信号(0~8kHz帯域)と、高域復号部603から入力される復号高域信号(8~16kHz帯域)とから、サンプリング周波数が32kHz(0~16kHz帯域)である出力信号を生成して出力する。
 図11は、図10に示した低中域復号部602の内部の主要な構成を示すブロック図である。ここでは、図2の低域符号化部202と対応させて、低中域復号部602においてITU-Tで規格化されているG.729.1等の復号を行う構成を例に挙げて説明する。なお、図11に示す低中域復号部602の構成はフレームエラーが生じなかった場合の構成であり、フレームエラー補償処理のための構成要素は図示せずその説明を省略する。ただし本発明は、フレームエラーが生じる場合にも適用することができる。
 低中域復号部602は、分離部701、CELP復号部702、TDAC復号部703、TDBWE復号部704、プリ/ポストエコー削減部705、加算部706、適応ポスト処理部707、ローパスフィルタ708、プリ/ポストエコー削減部709、ハイパスフィルタ710、および帯域合成処理部711を備え、各部は以下の動作を行う。
 分離部701は、分離部601から入力される低域符号化情報を、CELPパラメータ、TDACパラメータ、TDBWEパラメータに分離し、CELPパラメータをCELP復号部702に出力し、TDACパラメータをTDAC復号部703に出力し、TDBWEパラメータをTDBWE復号部704に出力する。なお、分離部701を設けずに、分離部601においてまとめてこれらのパラメータを分離しても良い。
 CELP復号部702は、分離部701から入力されるCELPパラメータに対してCELP方式の復号を行い、得られる復号信号を復号第1低域信号としてTDAC復号部703、加算部706、およびプリ/ポストエコー削減部705に出力する。または、CELP復号部702は、復号第1低域信号のほかに、CELPパラメータから復号第1低域信号を生成する復号過程で得られる他の情報をTDAC復号部703に出力しても良い。
 TDAC復号部703は、分離部701から入力されるTDACパラメータ、CELP復号部702から入力される復号第1低域信号あるいは復号第1低域信号を生成する際に得られる他の情報、TDBWE復号部704から入力される復号TDBWE信号、および高域復号部603から入力される7~8kHz帯域の復号中域スペクトルを用い、復号低域スペクトルを算出して高域復号部603に出力する。また、TDAC復号部703は、高域復号部603から入力された復号中域スペクトルを利用して0~8kHz帯域の復号低中域スペクトルを算出する。具体的には、復号低中域スペクトルのうち、0~7kHz帯域の値を復号低域スペクトルとし、また7~8kHz帯域の値を復号中域スペクトルとすることで復号低中域スペクトルを算出する。また、TDAC復号部703は、算出した復号低中域スペクトルの0~4kHz帯域と4~8kHz帯域とのそれぞれに対してMDCT等の直交変換処理を施し、復号第1TDAC信号(0~4kHz帯域)と復号第2TDAC信号(4~8kHz帯域)を算出する。TDAC復号部703は、算出した復号第1TDAC信号をプリ/ポストエコー削減部705に出力し、復号第2TDAC信号をプリ/ポストエコー削減部709に出力する。
 TDBWE復号部704は、分離部701から入力されるTDBWEパラメータを復号し、得られる復号信号を復号TDBWE信号としてTDAC復号部703およびプリ/ポストエコー削減部709に出力する。
 プリ/ポストエコー削減部705は、CELP復号部702から入力される復号CELP信号、およびTDAC復号部703から入力される復号第1TDAC信号に対し、プリ/ポストエコーを削減する処理を施してエコー削除後の信号を加算部706に出力する。
 加算部706は、CELP復号部702から入力される復号CELP信号と、プリ/ポストエコー削減部705から入力されるエコー削除後の信号とを加算し、得られる加算信号を適応ポスト処理部707に出力する。
 適応ポスト処理部707は、加算部706から入力される加算信号に対して適応的に後処理を施し、得られる復号第1低域信号(0~4kHz帯域)をローパスフィルタ708に出力する。
 ローパスフィルタ708は、適応ポスト処理部707から入力される復号第1低域信号に対して4kHzより大きい周波数成分を抑え、主に4kHz以下の周波数成分からなる信号を得てフィルタ後復号第1低域信号として帯域合成処理部711に出力する。
 プリ/ポストエコー削減部709は、TDAC復号部703から入力される復号第2TDAC信号、およびTDBWE復号部704から入力される復号TDBWE信号に対してプリ/ポストエコーを削減する処理を施し、エコー削除後の信号を復号第2低域信号(4~8kHz帯域)としてハイパスフィルタ710に出力する。
 ハイパスフィルタ710は、プリ/ポストエコー削減部709から入力される復号第2低域信号に対して4kHz以下の周波数成分を抑え、主に4kHzより高い周波数成分からなる信号を得てフィルタ後復号第2低域信号として帯域合成処理部711に出力する。
 帯域合成処理部711には、ローパスフィルタ708からフィルタ後復号第1低域信号が入力され、ハイパスフィルタ710からフィルタ後復号第2低域信号が入力される。帯域合成処理部711は、帯域分割処理部301とは逆の処理を行うことにより、サンプリング周波数が8kHzであるフィルタ後復号第1低域信号(0~4kHz帯域)とフィルタ後復号第2低域信号(4~8kHz帯域)とから、サンプリング周波数が16kHz(0~8kHz帯域)である復号低中域信号を生成して帯域合成処理部604に出力する。
 なお、帯域合成処理部711を設けずに、帯域合成処理を帯域合成処理部604でまとめて行っても良い。
 図11に示した、本実施の形態に係る低中域復号部602における復号は、TDAC復号部703において、TDACパラメータから0~7kHz帯域の復号低域スペクトルを算出した時点でこれを高域復号部603に出力するという点と、復号低域スペクトルのみを直交変換するのではなく、この復号低域スペクトルと、高域復号部603から入力される7~8kHz帯域の復号中域スペクトルとからなる復号低中域スペクトルを直交変換してTDAC復号信号を算出するという点とがG.729.1方式の復号と相違する。
 図12は、図10に示した高域復号部603の内部の主要な構成を示すブロック図である。
 図12において高域復号部603は、分離部801、フィルタ状態設定部802、フィルタリング部803、ゲイン復号部804、スペクトル調整部805、および直交変換処理部806を備え、各部は以下の動作を行う。
 分離部801は、分離部601から入力される中高域符号化情報を、フィルタリングに関する情報である最適ピッチ係数T’と、ゲインに関する情報である符号化後変動量V(j)のインデックスと、に分離し、最適ピッチ係数T’をフィルタリング部803に出力し、符号化後変動量V(j)のインデックスをゲイン復号部804に出力する。なお、分離部601において、T’とV(j)のインデックスとを分離済みの場合は、分離部801を配置しなくても良い。
 フィルタ状態設定部802は、低中域復号部602から入力される復号低域スペクトルS_lo(k)(0~7kHz帯域)を、フィルタリング部803で用いるフィルタ状態として設定する。ここで、フィルタリング部803における全周波数帯域(0~16kHz帯域)のスペクトルを便宜的にS(k)と呼ぶ場合、S(k)の0~7kHzの帯域に、復号低域スペクトルS_lo(k)がフィルタの内部状態(フィルタ状態)として格納される。なお、フィルタ状態設定部802の構成および動作は、図7に示したフィルタ状態設定部501と同様であるため、詳細な説明は省略する。
 フィルタリング部803は、マルチタップ(タップ数が1より多い)のピッチフィルタを備える。フィルタリング部803は、フィルタ状態設定部802により設定されたフィルタ状態と、分離部801から入力されるピッチ係数T’と、予め内部に格納しているフィルタ係数とに基づき、復号低域スペクトルS_loをフィルタリングし、上記の式(12)に示す、中高域スペクトルS_mid_hiの推定中高域スペクトルS_mid_hi’を算出する。フィルタリング部803でも、上記の式(11)に示した伝達関数が用いられる。
 ゲイン復号部804は、分離部801から入力される、符号化後変動量V(j)のインデックスを復号し、変動量V(j)の量子化値である変動量V(j)を求める。
 スペクトル調整部805は、下記の式(14)に従い、フィルタリング部803から入力される推定中高域スペクトルS_mid_hi’に、ゲイン復号部804から入力されるサブバンド毎の変動量V(j)を乗じる。これにより、スペクトル調整部805は、推定中高域スペクトルS_mid_hi’の7~8kHz帯域におけるスペクトル形状を調整し、復号中高域スペクトルS_mid_hi2(k)を生成する。
Figure JPOXMLDOC01-appb-M000014
 そして、スペクトル調整部805は、低域部(0~7kHz)としては復号低域スペクトルS_lo(k)を用い、中高域部(7~16kHz)としては復号中高域スペクトルS_mid_hi2(k)を用い、復号スペクトルS2(k)を構成する。
 また、スペクトル調整部805は、復号スペクトルS2(k)の中域部(7~8kHz帯域)のスペクトルのみを復号中域スペクトルS_mid2(k)として低中域復号部602に出力し、復号スペクトルS2(k)の高域部(8~16kHz帯域)のスペクトルのみを復号高域スペクトルS_hi2(k)として直交変換処理部806に出力する。
 直交変換処理部806は、スペクトル調整部805から入力される復号高域スペクトルS_hi2に対して修正離散コサイン逆変換(IMDCT:Inverse Modified Discrete Cosine Transform)等の直交変換処理を行って時間領域の信号を生成し、復号高域信号として出力する。ここでは、必要に応じて適切な窓掛けおよび重ね合わせ加算等の処理を行い、フレーム間に生じる不連続を回避する。
 以下、直交変換処理部806における具体的な処理について説明する。
 直交変換処理部806は、バッファbuf’(k)を内部に有しており、下記の式(15)に示すようにバッファbuf’(k)を初期化する。
Figure JPOXMLDOC01-appb-M000015
 また、直交変換処理部806は、スペクトル調整部805から入力される復号高域スペクトルS_hi2を用いて下記の式(16)に従い、復号高域信号y”を求めて出力する。
Figure JPOXMLDOC01-appb-M000016
 式(16)において、Z(k)は、下記の式(17)に示すように、復号高域スペクトルS_hi2(k)とバッファbuf’(k)とを結合させたベクトルである。
Figure JPOXMLDOC01-appb-M000017
 次いで、直交変換処理部806は、下記の式(18)に従ってバッファbuf’(k)を更新する。
Figure JPOXMLDOC01-appb-M000018
 上記のように、本実施の形態に係る符号化装置101において、入力信号が帯域分割処理部201により低中域信号と高域信号に分割された後、中域補正部203は、低域符号化部202内のローパスフィルタ306の処理によって抑圧された中域の周波数成分に対し、ローパスフィルタ306のフィルタ特性と逆の特性、あるいは逆の特性に近似した特性を適用することによりローパスフィルタ306を適用していない状態と同等の状態に中域の周波数成分を復元する。次に、中高域符号化部204において、復元した中域の周波数成分を利用して、低域から中高域の周波数成分を生成するための帯域拡張パラメータを算出する。そして本実施の形態に係る復号装置103は、低中域復号部602で得られる復号低域スペクトルと、符号化装置101から伝送された帯域拡張パラメータとから復号中高域スペクトルを算出する。低中域復号部602は、高域復号部603から入力される復号中域スペクトルと、分離部601から入力される低域符号化情報とを利用して低中域の周波数成分を有する復号低中域信号を算出する。次いで、帯域合成処理部604は、高域復号部603において復号高域スペクトルから算出された復号高域信号と、上記復号低中域信号とを帯域合成処理することにより、低域符号化部202内のローパスフィルタ306によって欠落した中域の周波数成分を含む出力信号(復号信号)を得ることができる。
 このように、本実施の形態によれば、符号化装置は、入力信号をQMF等により低域成分と高域成分とに帯域分割して各成分を別々の符号化部にて符号化し、さらに低域符号化のTDAC符号化で得られたMDCT係数を用い、低域符号化過程でローパスフィルタを適用することにより欠落した帯域の成分を復元して符号化する。このため、この復元に必要な演算量を抑えつつ、復号信号の品質を向上することができる。また、本実施の形態において中域補正処理は、低域符号化部で利用される符号化方法(本実施の形態ではG.729.1方式の符号化)の符号化性能にはほぼ影響を与えないため、低域符号化の符号化性能を保証することができる。
 なお、本実施の形態では、低域符号化部202および低中域復号部602においてCELPタイプ(G.729.1等)の音声符号化/復号を行う場合を例にとって説明したが、本発明はこれに限定されず、低域符号化部202および低中域復号部602はCELPタイプ以外の音声・楽音符号化方式によって低域信号を符号化/復号しても良い。
 また、本実施の形態では、中域補正部203においてローパスフィルタ306の特性を予め算出して記憶する場合を例にとって説明したが、本発明はこれに限定されず、中域補正部203は、ローパスフィルタ306の特性が変化する度に算出して利用しても良い。また、予めローパスフィルタ306の特性を算出して記憶する場合には、ローパスフィルタ306特性の逆数を内部にテーブルとして記憶し、テーブル内の係数を中域スペクトルに乗じることで演算量を削減することが可能である。
 また、本実施の形態では、帯域分割処理部201における帯域分割方法としてQMFを例に挙げて説明したが、本発明はこれに限定されず、帯域分割処理部201にQMF以外の帯域分割方法を用いても良い。
 また、本実施の形態では、ローパスフィルタ306のフィルタ特性の算出方法については特に限定はされないが、TDAC符号化部307内で用いられる直交変換方法と同様の方法を用いてフィルタ特性を算出するのが望ましい。したがって、本実施の形態の構成においては、MDCT処理を用いてローパスフィルタ306のフィルタ特性を算出することが好適である。また例えば低域符号化部202内でFFT処理により周波数成分を算出している場合には、ローパスフィルタ306のフィルタ特性は同様にFFT処理によって算出されることが好適である。
 また、本実施の形態では、帯域拡張符号化部403において、中高域符号化情報を算出する場合に、補正中域スペクトルを含む中高域スペクトルに対して特に中域と高域を区別するような処理を行わない構成について説明した。しかし、本発明はこれに限らず、中高域スペクトル中の中域部分に対して補正結果を判定し、判定結果に応じた符号化処理を行う場合にも同様に適用できる。
 例えば、中高域スペクトル算出部402において、補正中域スペクトルのスペクトルフラットネスメジャー(SFM:Spectral Flatness Measure)を算出し、算出したSFMの値を予め定められた閾値と比較し、この判定結果に応じて補正中域スペクトルに対して修正処理を行う場合を例に挙げて説明する。なお、ここで、SFMは、振幅スペクトルの幾何平均と算術平均との比(=幾何平均/算術平均)で表される。スペクトルのピーク性が強いほどSFMは0.0に近づき、スペクトルの雑音性が強いほどSFMは1.0に近づく。この時、中高域スペクトル算出部402では、まず補正中域スペクトルのSFMと予め定められた閾値とを比較する。SFMが閾値よりも小さい場合には、補正中域スペクトルのばらつきが強いと判定できるが、この場合には、中高域スペクトル算出部402は、補正中域スペクトルに対して、マルチタップフィルタによるスペクトルの平滑化(鈍化)を行い、得られた補正中域スペクトルを用いて中高域スペクトルを算出し、これを帯域拡張符号化部403に出力する。
 帯域拡張符号化部403は、中高域スペクトル算出部402から入力される修正された中高域スペクトルを利用して、前述したような方法により中高域符号化情報を算出する。このような構成によって、中域補正部203によって補正された補正中域スペクトルのスペクトル特性のスペクトル上でのばらつきが強く、復号信号の異音の原因となるような場合において、補正中域スペクトルに対して平滑化処理を行うことで、復号信号の品質を向上させることができる。なお、中高域スペクトル算出部402における補正中域スペクトルの修正処理については、上記に挙げた平滑化処理の他、補正中域スペクトルをサブバンド毎に減衰させる方法、または補正中域スペクトルを予め内部に格納した雑音スペクトルで置換する方法、または補正中域スペクトルを低域スペクトル、高域スペクトルから線形予測する方法なども同様に適用できる。ここで、補正中域スペクトルを、低域スペクトル、及び高域スペクトルから線形予測する場合には、中高域スペクトル算出部402には、低域符号化部202から復号低域スペクトルが入力される必要がある。
 また、補正中域スペクトルに対して上記のような修正処理を行うかどうかの判定に、補正中域スペクトルのSFMを利用する以外に、補正中域スペクトルの時間的なエネルギの変動を利用することができる。この場合、補正中域スペクトルのエネルギをフレーム毎に算出し、過去フレームのエネルギとの変動量が予め定められた閾値以上であった場合には、補正中域スペクトルに対して上記のような修正処理(平滑化処理)を行う。このような構成により、補正中域スペクトルの時間的なエネルギの変動が非常に大きく、それにより復号信号に異音が生じてしまうような場合においても、良好な品質の復号信号を提供することができる。
 また、帯域拡張符号化部403における符号化処理の他の切替方法として、例えば、リファレンスである中高域スペクトル内の中域部分に対しては、探索時の重みを切り替える方法が挙げられる。具体的には、探索部503において、式(13)に代えて、式(19)に従って類似度を算出するようにして実現できる。
Figure JPOXMLDOC01-appb-M000019
 ここで、式(19)中、W(k)は、類似度を算出する際の係数である。kの値が中域部分(7-8kHz)に属する場合には1.0以下の予め定められた値をとり、kの値が高域部分に属する場合は1.0という値をとるようにすることで、中高域スペクトル全体の類似度における補正中域スペクトルの部分の類似度の割合を下げることができ、補正中域スペクトルの精度が悪い場合に対しても、復号信号に異音が生じることを抑制できる。
 また、帯域拡張符号化部403、中高域スペクトル算出部402、低域符号化部202における上記のような構成は、相互に組み合せて用いることも可能である。
 また、本実施の形態では、低域符号化部(低中域復号部)と中高域符号化部(高域復号部)というレイヤ数が2である場合のスケーラブル符号化/復号方法を例にとって説明したが、本発明はこれに限らずレイヤ数が3以上であるスケーラブル符号化/復号方法についても同様に適用できる。なお、レイヤ数が3以上のスケーラブル符号化/復号方法において、最上位のレイヤ以外のレイヤ(例えばレイヤLとする)に対して本発明の中高域符号化部の構成を適用した場合に、レイヤ(L+1)では、中域部分の誤差スペクトルを優先的に符号化するように制御することにより、レイヤ(L+1)の復号信号の品質をより向上させることができる。
 (実施の形態2)
 本発明の実施の形態2に係る通信システム(図示せず)は、図1に示した通信システムと基本的に同様であり、復号装置の構成および動作の一部のみにおいて、図1の通信システムの復号装置103と相違する。以下、本実施の形態に係る通信システムの復号装置について符号「113」を付し、説明を行う。
 図13は、本実施の形態に係る復号装置113の内部の主要な構成を示すブロック図である。なお、本実施の形態に係る復号装置113は、図10に示した復号装置103と基本的に同様な構成を有し、基本的に同様な動作を行う。復号装置113は、加算部904および中域復号部903をさらに有する点において復号装置103と相違する。また、復号装置113の低域復号部901、高域復号部902、および帯域合成処理部905は、復号装置103の低中域復号部602、高域復号部603、および帯域合成処理部604と動作の一部のみにおいて相違する。
 低域復号部901は、図10に示した低中域復号部602とは異なり、高域復号部902から復号中域スペクトルが入力されず、分離部601から入力される低域符号化情報を復号して復号低域スペクトルおよび復号低域信号を生成する。また低域復号部901は、復号低域スペクトルを高域復号部902に出力し、復号低域信号を加算部904に出力する。なお、低域復号部901の詳細については後述する。
 高域復号部902は、分離部601から入力される中高域符号化情報と、低域復号部901から入力される復号低域スペクトルとから復号高域信号を生成して帯域合成処理部905に出力する。また、高域復号部902は、図10に示した高域復号部603とは異なり、復号高域信号を生成する際に算出される復号中域スペクトルを低域復号部901に出力せず中域復号部903に出力する。
 中域復号部903は、高域復号部902から入力される復号中域スペクトルに対し逆MDCT等の直交変換処理を施して復号中域信号を生成し、加算部904に出力する。なお、中域復号部903における逆MDCTは、実施の形態1に係る直交変換処理部806における逆MDCTと基本的に同様であり、処理対象のみ相違するため、詳細な説明を省略する。
 加算部904は、低域復号部901から入力される復号低域信号と、中域復号部903から入力される復号中域信号とを加算し、得られる加算信号を復号低中域信号として帯域合成処理部905に出力する。
 帯域合成処理部905には、加算部904から復号低中域信号が入力され、高域復号部902から復号高域信号が入力される。帯域合成処理部905は、帯域分割処理部201とは逆の処理を行うことにより、サンプリング周波数が16kHzである復号低中域信号(0~8kHz帯域)と復号高域信号(8~16kHz帯域)とから、サンプリング周波数が32kHz(0~16kHz帯域)である出力信号を生成して出力する。
 図14は、図13に示した低域復号部901の内部の主要な構成を示すブロック図である。なお、低域復号部901は、図11に示した低中域復号部602と基本的に同様な構成を有し、基本的に同様な動作を行う。低域復号部901のTDAC復号部1003は、低中域復号部602のTDAC復号部703と一部の動作のみにおいて相違する。
 TDAC復号部1003には、図11に示したTDAC復号部703とは異なり、高域復号部902から7~8kHz帯域の復号中域スペクトルが入力されず、分離部701から入力されるTDACパラメータ、CELP復号部702から入力される復号第1低域信号あるいは復号第1低域信号を生成する際に算出された情報、およびTDBWE復号部704から入力される復号TDBWE信号を用いて復号低域スペクトルを算出して高域復号部902に出力する。また、TDAC復号部1003は、算出した復号低域スペクトルの0~4kHz帯域と4~7kHz帯域それぞれに対して別々に直交変換処理を施して復号第1TDAC信号(0~4kHz帯域)と復号第2TDAC信号(4~7kHz帯域)を算出する。TDAC復号部1003は、復号第1TDAC信号をプリ/ポストエコー削減部705に出力し、復号第2TDAC信号をプリ/ポストエコー削減部709に出力する。
 TDAC復号部1003からプリ/ポストエコー削減部709に入力される復号第2TDAC信号は中域(7~8kHz)の成分を含まないため、プリ/ポストエコー削減部709およびハイパスフィルタ710を介して帯域合成処理部711に入力される信号も中域の成分を含まない。従って、帯域合成処理部711から出力される信号も中域の成分を含まず、復号低中域信号ではなく復号低域信号となる。
 図14に示した低域復号部901における復号は、算出した復号低域スペクトルを高域復号部902に出力する点のみがG.729.1方式の復号と相違し、図11に示した低中域復号部602における復号とG.729.1方式の復号との相違点よりも少ない。
 このように、本実施の形態によれば、符号化側においては、入力信号をQMF等により低域成分と高域成分とに帯域分割して各成分を別々の符号化部にて符号化し、さらに低域符号化過程でローパスフィルタを適用することにより欠落した帯域の成分を復元して符号化する。また、復号側においては、低域成分を復号する復号部とは別の復号部にて上記の復元された帯域の成分の復号を行う。このため、既存のG.729.1方式の復号に対してより少ない修正を行って低域成分の復号に利用することができる。
 (実施の形態3)
 本発明の実施の形態3に係る通信システム(図示せず)は、図1に示した通信システムと基本的に同様であり、符号化装置、復号装置の構成および動作の一部のみにおいて、図1の通信システムの符号化装置101、復号装置103と相違する。以下、本実施の形態に係る通信システムの符号化装置および復号装置についてそれぞれ符号「121」および「123」を付し、説明を行う。
 図15は、本実施の形態に係る符号化装置121の内部の主要な構成を示すブロック図である。なお、本実施の形態に係る符号化装置121は、図2に示した符号化装置101と基本的に同様な構成を有し、基本的に同様な動作を行う。符号化装置121は、中域符号化部1103をさらに有する点において符号化装置101と相違する。また、符号化装置121の低域符号化部1101、中域補正部1102、高域符号化部1104、および多重化部1105は、符号化装置101の低域符号化部202、中域補正部203、中高域符号化部204、および多重化部205と動作の一部のみにおいて相違する。
 低域符号化部1101は、図2に示した低域符号化部202に比べて復号低域スペクトルS_loを高域符号化部1104に出力しない点のみが相違する。具体的には、低域符号化部1101は、帯域分割処理部201から入力される0~8kHz帯域の低中域信号x_loを用いて例えばITU-Tで規格化されているG.729.1等の符号化を行い、生成された低域符号化情報を多重化部1105に出力する。また、低域符号化部1101は、低域符号化情報を求める過程で算出した中域(7~8kHz帯域)の周波数成分を中域スペクトルX_midとして中域補正部1102に出力する。なお、低域符号化部1101の詳細については後述する。
 中域補正部1102は、低域符号化部1101から入力される中域スペクトルX_midに対して周波数領域において補正を行い、得られたスペクトルを補正中域スペクトルS_midとして中域符号化部1103に出力する。すなわち、中域補正部1102は、図2に示した中域補正部203に比べ、生成した補正中域スペクトルS_midを高域符号化部1104ではなく中域符号化部1103に出力する点のみが相違する。なお、中域補正部1102における中域スペクトルの補正処理は、図2の中域補正部203における処理と同様であるため、詳細な説明を省略する。
 中域符号化部1103は、中域補正部1102から入力される補正中域スペクトルS_midに対して量子化を行い、得られる中域符号化情報を多重化部1105に出力する。なお、中域符号化部1103の詳細については後述する。
 高域符号化部1104は、帯域分割処理部201から入力される8~16kHz帯域の高域信号を量子化し、得られる高域符号化情報を多重化部1105に出力する。高域符号化部1104の詳細については後述する。
 多重化部1105は、低域符号化部1101から入力される低域符号化情報、中域符号化部1103から入力される中域符号化情報、および高域符号化部1104から入力される高域符号化情報を多重化し、多重化結果を符号化情報として伝送路102に出力する。
 図16は、図15に示した低域符号化部1101の内部の主要な構成を示すブロック図である。なお、図16に示した低域符号化部1101は、図3に示した低域符号化部202と基本的に同様な構成を有し、基本的に同様な動作を行う。低域符号化部1101のTDAC符号化部1201は、低域符号化部202のTDAC符号化部307と動作の一部のみにおいて相違する。
 TDAC符号化部1201は、図3に示したTDAC符号化部307に比べ、復号低域スペクトルS_loを高域符号化部1104に出力しない点のみが相違する。具体的には、TDAC符号化部1201は、加算部305から入力される差分信号、およびローパスフィルタ306から入力されるフィルタ後第2低域信号それぞれに対してMDCT等の直交変換を施し、得られる0~8kHz帯域の周波数領域信号(MDCT係数)のうち、7~8kHz帯域の部分を中域スペクトルX_midとして中域補正部1102に出力する。さらに、TDAC符号化部1201は、MDCT等の直交変換により得られた周波数領域信号(MDCT係数)を量子化し、得られるTDACパラメータを多重化部309に出力する。
 図17は、図15に示した中域符号化部1103の内部の主要な構成を示すブロック図である。
 図17において、中域符号化部1103は、シェイプ量子化部1301、ゲイン量子化部1302、および多重化部1303を備え、各部は以下の動作を行う。
 シェイプ量子化部1301は、中域補正部1102から入力される補正中域スペクトルS_mid’(k)に対して、サブバンド毎にシェイプ量子化を行う。具体的には、シェイプ量子化部1301は、中域(7~8kHz帯域)をL_mid個のサブバンドに分割し、各サブバンド毎に、SQ_mid個のシェイプコードベクトルからなる内蔵のシェイプコードブックを探索して下記の式(20)の結果が最大となるシェイプコードベクトルのインデックスを求める。
Figure JPOXMLDOC01-appb-M000020
 式(20)において、SC k’はシェイプコードブックを構成するシェイプコードベクトルを示し、iはシェイプコードベクトルのインデックスを示し、k’はシェイプコードベクトルの要素のインデックスを示す。また、W(j)はサブバンドインデックスがjであるサブバンドのバンド幅を示す。また、B(j)はサブバンドインデックスがjであるサブバンドの先頭サンプルのインデックスを示す。
 シェイプ量子化部1301は、上記の式(20)の結果が最大となるシェイプコードベクトルのインデックスS_max_midを中域シェイプ符号化情報として多重化部1303に出力する。またシェイプ量子化部1301は、下記の式(21)に従い、理想ゲイン値Gain_i_mid(j)を算出してゲイン量子化部1302に出力する。
Figure JPOXMLDOC01-appb-M000021
 ゲイン量子化部1302は、下記の式(22)に従い、シェイプ量子化部1301から入力される理想ゲイン値Gain_i_mid(j)を量子化する。ここで、ゲイン量子化部1302は、理想ゲイン値をL_mid次元ベクトルとして扱い、ベクトル量子化を行う。また、式(22)において、GC はゲインコードブックを構成するゲインコードベクトルを示し、iはゲインコードベクトルのインデックスを示し、jはゲインコードベクトルの要素のインデックスを示す。
Figure JPOXMLDOC01-appb-M000022
 ここでは、上記の式(22)を最小にするコードブックのインデックスをG_min_midと記す。
 ゲイン量子化部1302は、G_min_midを中域ゲイン符号化情報として多重化部1303に出力する。
 多重化部1303は、シェイプ量子化部1301から入力される中域シェイプ符号化情報、およびゲイン量子化部1302から入力される中域ゲイン符号化情報を多重化し、多重化結果を中域符号化情報として多重化部1105に出力する。
 図18は、図15に示した高域符号化部1104の内部の主要な構成を示すブロック図である。
 図18において高域符号化部1104は、直交変換処理部1401、シェイプ量子化部1402、ゲイン量子化部1403、および多重化部1404を備え、各部は以下の動作を行う。
 直交変換処理部1401は、帯域分割処理部201から入力される高域信号(8~16kHz帯域)に対してMDCT等の直交変換処理を行い、高域信号の周波数成分である高域スペクトルS_hiを算出してシェイプ量子化部1402に出力する。なお、直交変換処理部1401におけるMDCT等の直交変換処理は、実施の形態1に係る直交変換処理部401におけるMDCT等の直交変換処理と同様であるため、詳細な説明を省略する。
 シェイプ量子化部1402は、直交変換処理部1401から入力される高域スペクトルS_hiに対してサブバンド毎にシェイプ量子化を行う。具体的には、シェイプ量子化部1402は高域(8~16kHz帯域)をL_hi個のサブバンドに分割し、各サブバンド毎に、SQ_hi個のシェイプコードベクトルからなる内蔵のシェイプコードブックを探索して下記の式(23)の結果が最大となるシェイプコードベクトルのインデックスを求める。
Figure JPOXMLDOC01-appb-M000023
 式(23)において、SC k’はシェイプコードブックを構成するシェイプコードベクトルを示し、iはシェイプコードベクトルのインデックスを示し、k’はシェイプコードベクトルの要素のインデックスを示す。また、W(j)はサブバンドインデックスがjであるサブバンドのバンド幅を示す。また、B(j)はサブバンドインデックスがjであるサブバンドの先頭サンプルのインデックスを示す。
 シェイプ量子化部1402は、上記の式(23)の結果が最大となるシェイプコードベクトルのインデックスS_max_hiを高域シェイプ符号化情報として多重化部1404に出力する。また、シェイプ量子化部1402は、下記の式(24)に従い、理想ゲイン値Gain_i_hi(j)を算出してゲイン量子化部1403に出力する。
Figure JPOXMLDOC01-appb-M000024
 ゲイン量子化部1403は、下記の式(25)に従い、シェイプ量子化部1402から入力される理想ゲイン値Gain_i_hi(j)を量子化する。ここで、ゲイン量子化部1403は、理想ゲイン値をL次元ベクトルとして扱い、ベクトル量子化を行う。また式(25)において、GC はゲインコードブックを構成するゲインコードベクトルを示し、iはゲインコードベクトルのインデックスを示し、jはゲインコードベクトルの要素のインデックスを示す。なお、ここでゲイン量子化部1403では、ゲイン量子化部1302とは異なるコードブックを用いるものとする。
Figure JPOXMLDOC01-appb-M000025
 ここでは、上記の式(25)を最小にするコードブックのインデックスをG_min_hiと記す。
 ゲイン量子化部1403は、G_min_hiを高域ゲイン符号化情報として多重化部1404に出力する。
 多重化部1404は、シェイプ量子化部1402から入力される高域シェイプ符号化情報と、ゲイン量子化部1403から入力される高域ゲイン符号化情報とを多重化し、多重化結果を高域符号化情報として多重化部1105に出力する。
 図19は、本実施の形態に係る復号装置123の内部の主要な構成を示すブロック図である。なお、本実施の形態に係る復号装置123は、図13に示した復号装置113と基本的に同様な構成を有し、基本的に同様な動作を行う。復号装置123の分離部1501、低域復号部1502、中域復号部1503、および高域復号部1504は、復号装置113の分離部601、低域復号部901、中域復号部903、および高域復号部902と動作の一部のみにおいて相違する。
 分離部1501は、伝送路102を介して符号化装置121から伝送される符号化情報を、低域符号化情報、中域符号化情報、および高域符号化情報に分離し、低域符号化情報を低域復号部1502に出力し、中域符号化情報を中域復号部1503に出力し、高域符号化情報を高域復号部1504に出力する。
 低域復号部1502は、図13に示した低域復号部901と比べて復号低域スペクトルを高域復号部1504に出力しない点のみが相違する。低域復号部1502は、分離部1501から入力される低域符号化情報を復号し、生成された復号低域信号を加算部904に出力する。なお、低域復号部1502の構成および動作は、実施の形態2に係る低域復号部901の構成および動作と基本的に同様であるため、詳細な説明を省略する。
 中域復号部1503は、図13に示した中域復号部903と比べて高域復号部1504から復号中域スペクトルが入力されない点が相違する。中域復号部1503は、分離部1501から入力される中域符号化情報を復号し、得られる復号中域信号を加算部904に出力する。なお、中域復号部1503の詳細については後述する。
 高域復号部1504は、図13に示した高域復号部902と比べて低域復号部1502から復号低域スペクトルが入力されず、中域復号部1503に中域復号スペクトルを出力しない点が相違する。具体的には高域復号部1504は、分離部1501から入力される高域符号化情報を復号し、得られる復号高域信号を帯域合成処理部905に出力する。なお、高域復号部1504の詳細については後述する。
 図20は、図19に示した中域復号部1503の内部の主要な構成を示すブロック図である。
 図20において中域復号部1503は、分離部1601、シェイプ逆量子化部1602、ゲイン逆量子化部1603、および直交変換処理部1604を備え、各部は以下の動作を行う。
 分離部1601は、分離部1501から入力される中域符号化情報を中域シェイプ符号化情報S_max_midと中域ゲイン符号化情報G_min_midとに分離し、中域シェイプ符号化情報S_max_midをシェイプ逆量子化部1602に出力し、中域ゲイン符号化情報G_min_midをゲイン逆量子化部1603に出力する。
 シェイプ逆量子化部1602は、分離部1601から入力される中域シェイプ符号化情報を逆量子化することによりシェイプの値を求め、求められたシェイプの値をゲイン逆量子化部1603に出力する。具体的には、シェイプ逆量子化部1602は、符号化装置121のシェイプ量子化部1301が備えるシェイプコードブックと同様なシェイプコードブックを内蔵し、分離部1601から入力される中域シェイプ符号化情報S_max_midをインデックスとするシェイプコードベクトルを探索する。シェイプ逆量子化部1602は、探索されたコードベクトルをシェイプの値としてゲイン逆量子化部1603に出力する。ここでは、シェイプの値として探索されたシェイプコードベクトルをShape_q_mid(k’)(k’=B(j),…,B(j+L_mid)-1)と記す。
 ゲイン逆量子化部1603は、分離部1601から入力される中域ゲイン符号化情報を逆量子化することによりゲインの値を求める。またゲイン逆量子化部1603は、求めたゲインの値と、シェイプ逆量子化部1602から入力されるシェイプの値とから復号中域スペクトルを算出する。ゲイン逆量子化部1603は、算出した復号中域スペクトルを直交変換処理部1604に出力する。
 具体的には、ゲイン逆量子化部1603は、符号化装置121のゲイン量子化部1302が備えるゲインコードブックと同様なゲインコードブックを内蔵し、このゲインコードブックを用いて下記の式(26)に従い、ゲインの値を逆量子化する。ここでも、ゲイン逆量子化部1603は、ゲインの値をL_mid次元ベクトルとして扱ってベクトル逆量子化を行う。すなわち、ゲイン逆量子化部1603は、ゲイン符号化情報G_min_midに対応するゲインコードベクトルGC G_min_midを直接ゲイン値とする。
Figure JPOXMLDOC01-appb-M000026
 次いで、ゲイン逆量子化部1603は、現フレームの逆量子化で得られるゲイン値、およびシェイプ逆量子化部1602から入力されるシェイプの値を用い、下記の式(27)に従って復号MDCT係数S_mid2’(k)を算出する。ここで、式(27)において、kは0~Nmid_hi-1の値であり、k’とjから算出される。ゲイン逆量子化部1603は、算出した復号MDCT係数S_mid2’(k)を復号中域スペクトルとして直交変換処理部1604に出力する。
Figure JPOXMLDOC01-appb-M000027
 直交変換処理部1604は、ゲイン逆量子化部1603から入力される復号中域スペクトルに対して修正離散コサイン逆変換等の直交変換処理を行って時間領域の信号を生成し、復号中域信号として加算部904に出力する。なお、直交変換処理部1604における直交変換処理は、実施の形態1に係る直交変換処理部806(図12参照)における直交変換処理と同様であるため、詳細な説明を省略する。
 図21は、図19に示した高域復号部1504の内部の主要な構成を示すブロック図である。
 図21において高域復号部1504は、分離部1701、シェイプ逆量子化部1702、ゲイン逆量子化部1703、および直交変換処理部1704を備え、各部は以下の動作を行う。
 分離部1701は、分離部1501から入力される高域符号化情報を高域シェイプ符号化情報S_max_hiと高域ゲイン符号化情報G_min_hiとに分離し、高域シェイプ符号化情報S_max_hiをシェイプ逆量子化部1702に出力し、高域ゲイン符号化情報G_min_hiをゲイン逆量子化部1703に出力する。
 シェイプ逆量子化部1702は、分離部1701から入力される高域シェイプ符号化情報S_max_hiを逆量子化することによりシェイプの値を求め、求められたシェイプの値をゲイン逆量子化部1703に出力する。
 ゲイン逆量子化部1703は、分離部1701から入力される高域ゲイン符号化情報G_min_hiを逆量子化することによりゲインの値を求める。またゲイン逆量子化部1703は、求めたゲインの値と、シェイプ逆量子化部1702から入力されるシェイプの値とから復号高域スペクトルを算出して直交変換処理部1704に出力する。なお、ゲイン逆量子化部1703における逆量子化等の処理は、ゲイン逆量子化部1603(図20参照)における逆量子化等の処理と基本的に同様であるため、詳細な説明を省略する。
 直交変換処理部1704は、ゲイン逆量子化部1703から入力される復号高域スペクトルに対して修正離散コサイン逆変換等の直交変換処理を行って時間領域の信号を生成し、復号高域信号として帯域合成処理部905に出力する。なお、直交変換処理部1704における直交変換処理は、実施の形態1に係る直交変換処理部806(図12参照)における直交変換処理と同様であるため、詳細な説明を省略する。
 このように、本実施の形態によれば、符号化側においては、入力信号をQMF等により低域成分と高域成分とに帯域分割して各成分を別々の符号化部にて符号化し、さらに低域符号化過程でローパスフィルタを適用することにより欠落した帯域の成分を復元して符号化する。また、復号側においては、低域成分と上記復元した帯域の成分と高域成分とを別々の復号部にて復号する。このため、低域成分を利用して拡張符号化を行わず高域成分を符号化する場合でも、低域符号化過程でローパスフィルタを適用することにより欠落した帯域の成分を復元して符号化することができ、復号信号の品質を向上することができる。
 以上、本発明の各実施の形態について説明した。
 なお、上記各実施の形態において、符号化情報やパラメータ等を多重化する際、二段階で連続して多重化する構成(多重化部309と多重化部205、等のように)については、前段の多重化部を設けずに、後段の多重化部でまとめて多重化しても良い。逆に、多重化された符号化情報やパラメータ等を分離する際、二段階で連続して分離する構成(分離部601と分離部701、等のように)については、後段の分離部を設けずに、前段の分離部でまとめて分離しても良い。
 また、本発明に係る符号化装置、復号装置およびこれらの方法は、上記各実施の形態に限定されず、種々変更して実施することが可能である。例えば、各実施の形態は、適宜組み合わせて実施することが可能である。
 また、上記各実施の形態における復号装置は、上記各実施の形態における符号化装置から伝送された符号化情報を用いて処理を行うとしたが、本発明はこれに限定されず、必要なパラメータやデータを含む符号化情報であれば、必ずしも上記各実施の形態における符号化装置からの符号化情報でなくても処理は可能である。
 本発明に係る符号化装置および復号装置は、移動体通信システムにおける通信端末装置および基地局装置に搭載することが可能であり、これにより上記と同様の作用効果を有する通信端末装置、基地局装置、および移動体通信システムを提供することができる。
 また、上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。
 また、信号処理プログラムを、メモリ、ディスク、テープ、CD、DVD等の機械読み取り可能な記録媒体に記録、書き込みをし、動作を行う場合についても、本発明は適用することができ、本実施の形態と同様の作用および効果を得ることができる。
 また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル/プロセッサを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 2008年1月25日出願の特願2008-015650および2008年5月16日出願の特願2008-129711の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明にかかる符号化装置、復号装置およびこれらの方法は、入力信号をQMF等により低域成分と高域成分とに帯域分割して各成分を別々の符号化部にて符号化する際に、復号信号の品質を向上することができ、例えば、パケット通信システム、移動通信システム等に適用できる。

Claims (10)

  1.  入力信号に対して帯域分割処理を行って第1周波数より低い低中域成分と、前記第1周波数以上の高域成分とを得る帯域分割手段と、
     前記低中域成分のうち第2周波数以上の部分を抑圧して低域成分を得、前記低域成分を符号化して低域符号化情報を得る低域符号化手段と、
     前記抑圧された前記低中域成分のうち前記第2周波数以上の中域成分を補正して補正中域成分を得る中域補正手段と、
     前記補正中域成分と前記高域成分とを符号化して中高域符号化情報を得る中高域符号化手段と、
     を具備する符号化装置。
  2.  前記低域符号化手段は、
     前記低中域成分に対しローパスフィルタリングを行って前記中域成分を抑圧し、前記低域成分を得るローパスフィルタと、
     前記低域成分を符号化して前記低域符号化情報を得、さらに前記符号化の過程において前記中域成分のスペクトルを得る符号化手段と、を具備し、
     前記中域補正手段は、
     前記スペクトルに前記ローパスフィルタの特性の逆数を乗じて前記補正中域成分を得る、
     請求項1記載の符号化装置。
  3.  前記中域補正手段は、
     前記補正中域成分に1より小さい補正係数を乗算する、
     請求項2記載の符号化装置。
  4.  前記符号化手段は、
     さらに前記低域符号化情報を復号して復号低域スペクトルを得、
     前記中高域符号化手段は、
     前記高域成分を直交変換して高域スペクトルを得る直交変換手段と、
     前記高域スペクトルと前記補正中域成分とから中高域スペクトルを構成する中高域スペクトル構成手段と、
     前記復号低域スペクトルと前記中高域スペクトルとを用いて帯域拡張処理を行い、前記復号低域スペクトルから前記中高域スペクトルを推定するためのパラメータを前記中高域符号化情報として得る帯域拡張手段と、
     を具備する請求項2記載の符号化装置。
  5.  前記中高域スペクトル構成手段は、前記補正中域成分を直交変換して中域スペクトルを得、
     前記中域補正手段は、前記補正中域成分のスペクトルフラットネスメジャーが所定の閾値より小さい場合、前記中域スペクトルを平滑化する、
     請求項4に記載の符号化装置。
  6.  前記中高域符号化手段は、
     前記補正中域成分のシェイプとゲインとを量子化して中域符号化情報を得る中域符号化手段と、
     前記高域スペクトルのシェイプとゲインとを量子化して高域符号化情報を得る高域符号化手段と、
     前記中域符号化情報と高域符号化情報とを多重して前記中高域符号化情報を得る多重手段と、
     を具備する請求項2記載の符号化装置。
  7.  符号化装置において入力信号が帯域分割されて得られた第1周波数より低い低中域成分のうち第2周波数以上の部分が抑圧されて得られた低域成分が符号化された低域符号化情報と、前記抑圧された前記低中域成分のうち前記第2周波数以上の中域成分が補正されて得られた補正中域成分および前記帯域分割により得られた前記第1周波数以上の高域成分が符号化された中高域符号化情報と、を受信する受信手段と、
     前記低域符号化情報を復号して復号低域スペクトルを得る低中域復号手段と、
     前記復号低域スペクトルを用いて前記中高域符号化情報を復号して復号高域信号と復号中域スペクトルとを得る高域復号手段と、
     を具備する復号装置。
  8.  前記低中域復号手段は、
     前記低域符号化情報を復号して前記復号低域スペクトルと復号低域信号とを得る低域復号手段と、
     前記復号中域スペクトルを復号して復号中域信号を得る中域復号手段と、
     前記復号低域信号と前記復号中域信号とを加算して復号低中域信号を得る加算手段と、
     を具備する請求項7記載の復号装置。
  9.  入力信号に対して帯域分割処理を行って第1周波数より低い低中域成分と、前記第1周波数以上の高域成分とを得るステップと、
     前記低中域成分のうち第2周波数以上の部分を抑圧して低域成分を得、前記低域成分を符号化して低域符号化情報を得るステップと、
     前記抑圧された前記低中域成分のうち前記第2周波数以上の中域成分を補正して補正中域成分を得るステップと、
     前記補正中域成分と前記高域成分とを符号化して中高域符号化情報を得るステップと、
     を有する符号化方法。
  10.  符号化装置において入力信号が帯域分割されて得られた第1周波数より低い低中域成分のうち第2周波数以上の部分が抑圧されて得られた低域成分が符号化された低域符号化情報と、前記抑圧された前記低中域成分のうち前記第2周波数以上の中域成分が補正されて得られた補正中域成分および前記帯域分割により得られた前記第1周波数以上の高域成分が符号化された中高域符号化情報と、を受信するステップと、
     前記低域符号化情報を復号して復号低域スペクトルを得るステップと、
     前記復号低域スペクトルを用いて前記中高域符号化情報を復号して復号高域信号と復号中域スペクトルとを得るステップと、
     を有する復号方法。
     
PCT/JP2009/000262 2008-01-25 2009-01-23 符号化装置、復号装置およびこれらの方法 WO2009093466A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801029644A CN101925953B (zh) 2008-01-25 2009-01-23 编码装置、解码装置以及其方法
US12/863,690 US8422569B2 (en) 2008-01-25 2009-01-23 Encoding device, decoding device, and method thereof
EP09704209.7A EP2239731B1 (en) 2008-01-25 2009-01-23 Encoding device, decoding device, and method thereof
JP2009550480A JP5448850B2 (ja) 2008-01-25 2009-01-23 符号化装置、復号装置およびこれらの方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008015650 2008-01-25
JP2008-015650 2008-01-25
JP2008-129711 2008-05-16
JP2008129711 2008-05-16

Publications (1)

Publication Number Publication Date
WO2009093466A1 true WO2009093466A1 (ja) 2009-07-30

Family

ID=40900975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000262 WO2009093466A1 (ja) 2008-01-25 2009-01-23 符号化装置、復号装置およびこれらの方法

Country Status (5)

Country Link
US (1) US8422569B2 (ja)
EP (1) EP2239731B1 (ja)
JP (1) JP5448850B2 (ja)
CN (1) CN101925953B (ja)
WO (1) WO2009093466A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530946A (ja) * 2009-06-23 2012-12-06 ヴォイスエイジ・コーポレーション 重み付けされた信号領域またはオリジナルの信号領域で適用される順方向時間領域エイリアシング取り消し
CN103493131A (zh) * 2010-12-29 2014-01-01 三星电子株式会社 用于针对高频带宽扩展进行编码/解码的设备和方法
US8949119B2 (en) 2010-04-13 2015-02-03 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9093066B2 (en) 2010-01-13 2015-07-28 Voiceage Corporation Forward time-domain aliasing cancellation using linear-predictive filtering to cancel time reversed and zero input responses of adjacent frames
US9208795B2 (en) 2009-10-07 2015-12-08 Sony Corporation Frequency band extending device and method, encoding device and method, decoding device and method, and program
US9390717B2 (en) 2011-08-24 2016-07-12 Sony Corporation Encoding device and method, decoding device and method, and program
US9406312B2 (en) 2010-04-13 2016-08-02 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9583112B2 (en) 2010-04-13 2017-02-28 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9767824B2 (en) 2010-10-15 2017-09-19 Sony Corporation Encoding device and method, decoding device and method, and program
US9875746B2 (en) 2013-09-19 2018-01-23 Sony Corporation Encoding device and method, decoding device and method, and program
US10152983B2 (en) 2010-09-15 2018-12-11 Samsung Electronics Co., Ltd. Apparatus and method for encoding/decoding for high frequency bandwidth extension
US10692511B2 (en) 2013-12-27 2020-06-23 Sony Corporation Decoding apparatus and method, and program

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137300A1 (ja) 2009-05-26 2010-12-02 パナソニック株式会社 復号装置及び復号方法
KR101423737B1 (ko) * 2010-01-21 2014-07-24 한국전자통신연구원 오디오 신호의 디코딩 방법 및 장치
JP5730303B2 (ja) 2010-06-21 2015-06-10 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 復号装置、符号化装置およびこれらの方法
US9373332B2 (en) 2010-12-14 2016-06-21 Panasonic Intellectual Property Corporation Of America Coding device, decoding device, and methods thereof
US9070356B2 (en) * 2012-04-04 2015-06-30 Google Technology Holdings LLC Method and apparatus for generating a candidate code-vector to code an informational signal
US9685164B2 (en) * 2014-03-31 2017-06-20 Qualcomm Incorporated Systems and methods of switching coding technologies at a device
JP2016038435A (ja) * 2014-08-06 2016-03-22 ソニー株式会社 符号化装置および方法、復号装置および方法、並びにプログラム
ES2821141T3 (es) 2016-12-16 2021-04-23 Ericsson Telefon Ab L M Método y codificador para manejar coeficientes de representación de envolvente
CN110931028B (zh) * 2018-09-19 2024-04-26 北京搜狗科技发展有限公司 一种语音处理方法、装置和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08263096A (ja) * 1995-03-24 1996-10-11 Nippon Telegr & Teleph Corp <Ntt> 音響信号符号化方法及び復号化方法
JPH1097295A (ja) 1996-09-24 1998-04-14 Nippon Telegr & Teleph Corp <Ntt> 音響信号符号化方法及び復号化方法
JP2002311963A (ja) * 2001-02-09 2002-10-25 Sony Corp 信号再生装置及び方法、信号記録装置及び方法、並びに信号受信装置
JP2005114814A (ja) 2003-10-03 2005-04-28 Nippon Telegr & Teleph Corp <Ntt> 音声符号化・復号化方法、音声符号化・復号化装置、音声符号化・復号化プログラム、及びこれを記録した記録媒体
JP2006119301A (ja) 2004-10-20 2006-05-11 Nippon Telegr & Teleph Corp <Ntt> 音声符号化方法、広帯域音声符号化方法、音声符号化装置、広帯域音声符号化装置、音声符号化プログラム、広帯域音声符号化プログラム及びこれらのプログラムを記録した記録媒体
JP2006189836A (ja) 2004-12-31 2006-07-20 Samsung Electronics Co Ltd 広域音声符号化システム及び広域音声復号化システム、高域音声符号化及び高域音声復号化装置、並びにその方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206884A (en) * 1990-10-25 1993-04-27 Comsat Transform domain quantization technique for adaptive predictive coding
JPH0750589A (ja) * 1993-08-04 1995-02-21 Sanyo Electric Co Ltd サブバンド符号化装置
US7899191B2 (en) * 2004-03-12 2011-03-01 Nokia Corporation Synthesizing a mono audio signal
US7848921B2 (en) * 2004-08-31 2010-12-07 Panasonic Corporation Low-frequency-band component and high-frequency-band audio encoding/decoding apparatus, and communication apparatus thereof
CN101297356B (zh) * 2005-11-04 2011-11-09 诺基亚公司 用于音频压缩的方法和设备
JP5030789B2 (ja) * 2005-11-30 2012-09-19 パナソニック株式会社 サブバンド符号化装置およびサブバンド符号化方法
CN101086845B (zh) * 2006-06-08 2011-06-01 北京天籁传音数字技术有限公司 声音编码装置及方法以及声音解码装置及方法
KR101393298B1 (ko) * 2006-07-08 2014-05-12 삼성전자주식회사 적응적 부호화/복호화 방법 및 장치
CN101067931B (zh) * 2007-05-10 2011-04-20 芯晟(北京)科技有限公司 一种高效可配置的频域参数立体声及多声道编解码方法与系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08263096A (ja) * 1995-03-24 1996-10-11 Nippon Telegr & Teleph Corp <Ntt> 音響信号符号化方法及び復号化方法
JPH1097295A (ja) 1996-09-24 1998-04-14 Nippon Telegr & Teleph Corp <Ntt> 音響信号符号化方法及び復号化方法
JP2002311963A (ja) * 2001-02-09 2002-10-25 Sony Corp 信号再生装置及び方法、信号記録装置及び方法、並びに信号受信装置
JP2005114814A (ja) 2003-10-03 2005-04-28 Nippon Telegr & Teleph Corp <Ntt> 音声符号化・復号化方法、音声符号化・復号化装置、音声符号化・復号化プログラム、及びこれを記録した記録媒体
JP2006119301A (ja) 2004-10-20 2006-05-11 Nippon Telegr & Teleph Corp <Ntt> 音声符号化方法、広帯域音声符号化方法、音声符号化装置、広帯域音声符号化装置、音声符号化プログラム、広帯域音声符号化プログラム及びこれらのプログラムを記録した記録媒体
JP2006189836A (ja) 2004-12-31 2006-07-20 Samsung Electronics Co Ltd 広域音声符号化システム及び広域音声復号化システム、高域音声符号化及び高域音声復号化装置、並びにその方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530946A (ja) * 2009-06-23 2012-12-06 ヴォイスエイジ・コーポレーション 重み付けされた信号領域またはオリジナルの信号領域で適用される順方向時間領域エイリアシング取り消し
US9691410B2 (en) 2009-10-07 2017-06-27 Sony Corporation Frequency band extending device and method, encoding device and method, decoding device and method, and program
US9208795B2 (en) 2009-10-07 2015-12-08 Sony Corporation Frequency band extending device and method, encoding device and method, decoding device and method, and program
US9093066B2 (en) 2010-01-13 2015-07-28 Voiceage Corporation Forward time-domain aliasing cancellation using linear-predictive filtering to cancel time reversed and zero input responses of adjacent frames
US10297270B2 (en) 2010-04-13 2019-05-21 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US8949119B2 (en) 2010-04-13 2015-02-03 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9406312B2 (en) 2010-04-13 2016-08-02 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9583112B2 (en) 2010-04-13 2017-02-28 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9659573B2 (en) 2010-04-13 2017-05-23 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US9679580B2 (en) 2010-04-13 2017-06-13 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US10381018B2 (en) 2010-04-13 2019-08-13 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US10546594B2 (en) 2010-04-13 2020-01-28 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US10224054B2 (en) 2010-04-13 2019-03-05 Sony Corporation Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
US10152983B2 (en) 2010-09-15 2018-12-11 Samsung Electronics Co., Ltd. Apparatus and method for encoding/decoding for high frequency bandwidth extension
US9767824B2 (en) 2010-10-15 2017-09-19 Sony Corporation Encoding device and method, decoding device and method, and program
US10236015B2 (en) 2010-10-15 2019-03-19 Sony Corporation Encoding device and method, decoding device and method, and program
JP2014505902A (ja) * 2010-12-29 2014-03-06 サムスン エレクトロニクス カンパニー リミテッド 高周波数帯域幅拡張のための符号化/復号化装置及びその方法
US10453466B2 (en) 2010-12-29 2019-10-22 Samsung Electronics Co., Ltd. Apparatus and method for encoding/decoding for high frequency bandwidth extension
CN103493131A (zh) * 2010-12-29 2014-01-01 三星电子株式会社 用于针对高频带宽扩展进行编码/解码的设备和方法
US10811022B2 (en) 2010-12-29 2020-10-20 Samsung Electronics Co., Ltd. Apparatus and method for encoding/decoding for high frequency bandwidth extension
US9390717B2 (en) 2011-08-24 2016-07-12 Sony Corporation Encoding device and method, decoding device and method, and program
US9875746B2 (en) 2013-09-19 2018-01-23 Sony Corporation Encoding device and method, decoding device and method, and program
US10692511B2 (en) 2013-12-27 2020-06-23 Sony Corporation Decoding apparatus and method, and program
US11705140B2 (en) 2013-12-27 2023-07-18 Sony Corporation Decoding apparatus and method, and program

Also Published As

Publication number Publication date
EP2239731B1 (en) 2018-10-31
US20100284455A1 (en) 2010-11-11
JP5448850B2 (ja) 2014-03-19
EP2239731A4 (en) 2016-04-06
CN101925953B (zh) 2012-06-20
US8422569B2 (en) 2013-04-16
CN101925953A (zh) 2010-12-22
JPWO2009093466A1 (ja) 2011-05-26
EP2239731A1 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP5448850B2 (ja) 符号化装置、復号装置およびこれらの方法
JP5449133B2 (ja) 符号化装置、復号装置およびこれらの方法
JP5404418B2 (ja) 符号化装置、復号装置および符号化方法
WO2009084221A1 (ja) 符号化装置、復号装置およびこれらの方法
JP5511785B2 (ja) 符号化装置、復号装置およびこれらの方法
JP5339919B2 (ja) 符号化装置、復号装置およびこれらの方法
KR101576318B1 (ko) 스펙트럼 평활화 장치, 부호화 장치, 복호 장치, 통신 단말 장치, 기지국 장치 및 스펙트럼 평활화 방법
JP5730303B2 (ja) 復号装置、符号化装置およびこれらの方法
JP5565914B2 (ja) 符号化装置、復号装置およびこれらの方法
WO2013057895A1 (ja) 符号化装置及び符号化方法
JP5774490B2 (ja) 符号化装置、復号装置およびこれらの方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980102964.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704209

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009550480

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12863690

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009704209

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009704209

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE