WO2009084672A1 - 建物の外被構造 - Google Patents

建物の外被構造 Download PDF

Info

Publication number
WO2009084672A1
WO2009084672A1 PCT/JP2008/073831 JP2008073831W WO2009084672A1 WO 2009084672 A1 WO2009084672 A1 WO 2009084672A1 JP 2008073831 W JP2008073831 W JP 2008073831W WO 2009084672 A1 WO2009084672 A1 WO 2009084672A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
film material
building
generation module
membrane material
Prior art date
Application number
PCT/JP2008/073831
Other languages
English (en)
French (fr)
Inventor
Kaoru Nishikawa
Takuya Nakao
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to EP08868125.9A priority Critical patent/EP2233666A4/en
Priority to CN200880123199XA priority patent/CN101910532B/zh
Publication of WO2009084672A1 publication Critical patent/WO2009084672A1/ja
Priority to US12/817,257 priority patent/US8146296B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H15/00Tents or canopies, in general
    • E04H15/20Tents or canopies, in general inflatable, e.g. shaped, strengthened or supported by fluid pressure
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • A01G9/1407Greenhouses of flexible synthetic material
    • A01G9/1415Greenhouses of flexible synthetic material with double or multiple walls
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/243Collecting solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/80Airborne solar heat collector modules, e.g. inflatable structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H15/00Tents or canopies, in general
    • E04H15/20Tents or canopies, in general inflatable, e.g. shaped, strengthened or supported by fluid pressure
    • E04H2015/202Tents or canopies, in general inflatable, e.g. shaped, strengthened or supported by fluid pressure with inflatable panels, without inflatable tubular framework
    • E04H2015/203Tents or canopies, in general inflatable, e.g. shaped, strengthened or supported by fluid pressure with inflatable panels, without inflatable tubular framework supported by a non-inflatable structure or framework
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping

Definitions

  • the present invention relates to a jacket structure in various buildings such as an atrium and a greenhouse having a double membrane structure and a power generation function using sunlight.
  • the roof structure a structure is known in which the roof is configured by stretching a membrane material.
  • the roof structure using such a membrane material has a problem that it is difficult to attach the solar power generation module because the membrane surface has a curved surface shape subjected to a predetermined tension.
  • Patent Document 1 a flexible module is used as the solar power generation module, and the periphery of a thermoplastic resin film capable of covering the entire flexible solar power generation module is welded to the film surface, A solar cell mounting structure has been proposed in which the flexible solar power generation module is housed on the membrane surface.
  • thermoplastic resin film since the peripheral edge of the thermoplastic resin film is welded to the film surface of the thin film material, the film material at the welded portion is hardened or brittle, or the rigidity of the welded portion is further increased to concentrate stress. There is also a problem that it becomes easy to break.
  • the present invention has been made in view of such circumstances, and there is no formation of irregularities on the outer surface of the outer covering such as a roof or a wall, or no external force acts on the photovoltaic power generation module, and high power generation efficiency. It is an object of the present invention to provide a building jacket structure that can form a lightweight jacket capable of photovoltaic power generation.
  • the present invention is a building envelope structure, which is made of a light-transmitting material and is arranged on the outer surface side of the building, and the inner side of the outer membrane material. Provided on the inner surface (the surface on the space side) of the inner membrane material, and an air supply means for supplying gas to the space between the outer membrane material and the inner membrane material.
  • the photovoltaic power generation module is provided.
  • the present invention is a building envelope structure, which is made of a light-transmitting material, and is disposed along an outer membrane material disposed on the outer surface side of the building and the inner side of the outer membrane material.
  • An inner membrane material, an intermediate membrane material stretched between the outer membrane material and the inner membrane material in a state of communication or non-communication between the outer membrane material and the inner membrane material, and the outer membrane An air supply means for supplying a gas to a space between the material and the inner membrane material, and a photovoltaic power generation module provided on the surface of the intermediate membrane material facing the outer membrane material.
  • the inner membrane material is hermetically integrated with the outer membrane material at the periphery.
  • the solar power generation module preferably has flexibility.
  • the photovoltaic power generation module is preferably a power generation module using an amorphous silicon solar cell.
  • the output side of the photovoltaic power generation module is connected to a battery, and at least a part of the electric power stored in the battery is supplied as a drive source of the air supply means. It is characterized by that. Furthermore, a preferred embodiment of the present invention is characterized in that the solar power generation module is disposed with a space between the solar power generation modules so that sunlight can pass therethrough.
  • a building panel having a cushion type double membrane structure (hereinafter referred to as a pneumatic panel) in which air is pressure-filled between an outer membrane material and an inner membrane material is referred to as the outside.
  • a photovoltaic power generation module is incorporated inside the pneumatic panel.
  • the outer membrane material is largely distorted due to a change in external force or internal pressure and the amount of distortion also changes. Therefore, it is preferable to provide a photovoltaic power generation module on the inner surface of the inner membrane material, which is relatively less affected by external force.
  • the solar power generation module can be maintained in a stable state.
  • the outer membrane material is made of a light-transmitting material, sunlight is transmitted through the outer membrane material and irradiated to the photovoltaic power generation module. Thus, power generation can be performed.
  • an outer covering such as a lightweight roof or wall capable of photovoltaic power generation, and further, if the inner membrane material and the intermediate membrane material are also made of a light-transmitting material, sunlight can be generated. Since it can irradiate the inside of a building, it can be suitably used as an atrium which is the original use of a pneumatic panel, a greenhouse for gardening, a roof or a wall of a building such as a pool.
  • the said jacket structure which provides a photovoltaic power generation module in an intermediate film material sunlight is applied to the outer film material and inner film material which respectively comprise the outer surface and inner surface of a jacket, receiving the tension
  • the solar power generation module various solar power generation modules using single crystal silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, single crystal + amorphous hybrid solar cells, and the like are known.
  • the crystalline silicon solar cell since the crystalline silicon solar cell has the disadvantages of low mechanical strength and easy cracking, it is generally used by bonding reinforcing members so as not to hinder handling.
  • amorphous silicon solar cells are advantageous in that they are thin films and are not easily broken because they are flexible.
  • the solar power generation module is provided in the intermediate film material, both the solar power generation module using the crystalline silicon solar cell and the amorphous silicon solar cell are applied. Is possible.
  • the interlayer film material is also flexible and thus undergoes deformation as a whole, in the present invention, it is preferable to use a flexible module as the solar power generation module.
  • a power generation module using an amorphous silicon solar cell is used as the solar power generation module, it has flexibility and a higher voltage than that using a crystalline silicon solar cell. be able to.
  • the internal temperature tends to increase due to sunlight, whereas in general, the output of solar cells tends to decrease as the temperature increases.
  • the output decrease is small even when the temperature rises due to the annealing phenomenon. Therefore, according to the photovoltaic module using the amorphous silicon solar cell, the crystalline silicon solar cell A power generation efficiency that is about 10% higher than that of the battery can be obtained.
  • the output side of the photovoltaic power generation module is connected to a battery, and at least a part of the electric power stored in the battery is supplied as a drive source for the air supply means such as a blower. For this reason, it is possible to configure a jacket structure using a self-supporting pneumatic panel that does not require external power supply. Furthermore, in a preferred embodiment of the present invention, a plurality of photovoltaic power generation modules are arranged at intervals, and sunlight can be transmitted between these modules. be able to.
  • FIGS. 1 to 3 show an embodiment in which the outer casing structure of a building according to the present invention is applied to the roof structure of a building, and FIG. 4 shows a modification thereof.
  • the roof structure of the building C is roughly configured by providing a plurality of photovoltaic power generation modules 7 inside the pneumatic panel 1.
  • the pneumatic panel 1 includes an outer film material 2 and an inner film formed of two transparent plastic film materials such as an ethylene / tetrafluoroethylene copolymer (hereinafter abbreviated as ETFE).
  • ETFE ethylene / tetrafluoroethylene copolymer
  • the membrane material 3 is hermetically integrated at the periphery of each other and held by the outer peripheral frame 4.
  • an internal space 5 is formed between the outer membrane material 2 and the inner membrane material 3.
  • the roof of the building C has a plurality of pneumatic panels 1 in which the outer membrane material 2 is inclined toward the sun on the outer surface side of the building C, and the inner membrane material 3 is directed toward the inside of the building C. It is configured by being supported by the outer peripheral frame 4 in a state of being disposed and being connected and supported by the column beam frame F of the building C.
  • an intermediate film material 6 is interposed between the outer film material 2 and the inner film material 3.
  • the intermediate film material 6 is formed in a shape that is somewhat smaller in deflection than the inner film material 3 by a transparent plastic film material such as ETFE similar to the outer film material 2 and the inner film material 3.
  • the peripheral part is sandwiched and integrated between the peripheral parts of the outer membrane material 2 and the inner membrane material 3.
  • the intermediate film material 6 is formed with an opening 6 a that communicates the space between the upper outer film material 2 and the lower inner film material 3.
  • a plurality of photovoltaic power generation modules 7 are attached to the upper surface of the intermediate film material 6 at a predetermined interval.
  • This solar power generation module 7 is a power generation module using an amorphous silicon solar battery, and is attached to the intermediate film material 6 with the light receiving cell surface as an upper surface.
  • the plurality of solar power generation modules 7 can be arbitrarily arranged, and in the building C of the present embodiment, as shown in FIG. 3, they are arranged in a staggered manner over the entire surface of the roof. Thereby, sunlight can be irradiated to the inside of the building C through the outer membrane material 2, the intermediate membrane material 6 and the inner membrane material 3 between the photovoltaic power generation modules 7.
  • a battery 8 is provided on the lower surface of the outer peripheral frame 4 of the pneumatic panel 1. And the electric wire 9 connected to the output side of each photovoltaic power generation module 7 attached to the intermediate film material 6 is routed inside the pneumatic panel 1 toward the outer frame 4 side, and the assembly line 10 is connected to the input side of the battery 8. Thereby, the electric power generated by the power generation by the solar power generation module 7 is input to the battery 8 and stored.
  • a blower (air supply means) 11 for supplying air (gas) between the inner membrane material 3 and the intermediate membrane material 6 in the pneumatic panel 1 and a battery 8 are stored on the lower surface of the outer peripheral frame 4.
  • a timer 12 that keeps the internal pressure of the pneumatic panel 1 within a certain range by supplying the supplied power to the blower 11 by turning it on and off at a predetermined time interval linked with the rate of decrease of the internal pressure of the pneumatic panel 1. are provided adjacent to each other.
  • the photovoltaic power generation module 7 is provided in the pneumatic panel 1 and is provided on the upper surface of the intermediate film material 6 that is hardly distorted due to a change in external force or internal pressure. Therefore, the form of the solar power generation module 7 can be held in a stable state. Then, as shown in FIG. 1, a part of the sunlight poured onto the roof is transmitted through the outer membrane material 2 having light permeability and irradiated on the surface of the photovoltaic power generation module 7, thereby generating power. It can be carried out.
  • the peripheral part of the intermediate film material 6 is integrated by sandwiching the peripheral part of the outer film material 2 and the inner film material 3, and the intermediate film material 6 is interposed between the outer film material 2 and the inner film material 3. Since the opening 6a to be communicated is formed, by supplying gas from between the intermediate film material 6 and the inner film material 3 to the inside, the entire inner film material 6 is not hindered. It is possible to form the pneumatic panel 1 by pressurizing the solar power generation module 1 and to stabilize the posture of the interlayer film material 6 and to stably hold the photovoltaic power generation module 7. However, gas is separately supplied to the space between the outer member 2 and the intermediate member 6 and the space between the inner member 3 and the intermediate member 6 using the intermediate film material 6 that does not form the opening 6a. The pneumatic panel 1 may be formed by applying pressure.
  • the power generation module using the amorphous silicon solar cell excellent in flexibility is used as the solar power generation module 7, even when the intermediate film material 6 is bent, there is no cracking. In addition, a higher voltage can be obtained as compared with those using a crystalline silicon solar cell. In addition, even when the internal temperature in the pneumatic panel 1 is increased by the irradiation of sunlight, a power generation efficiency that is about 10% higher than that of a solar power generation module using other crystalline silicon solar cells is obtained. be able to.
  • the output obtained by the power generation in the solar power generation module 7 is stored in the battery 8 and used as a drive source of the blower 11 for keeping the internal pressure of the pneumatic panel 1 constant. Therefore, a roof structure using a self-supporting pneumatic panel that does not require external power supply can be configured.
  • FIG. 4 shows a modification of the above embodiment.
  • This roof structure is different from that shown in FIG. 3 in that the photovoltaic power generation module 7 is intensively arranged on the intermediate film material 6 in the pneumatic panel 1 located at the upper part of the inclined roof of the building C.
  • the solar power generation module is not arranged in the pneumatic panel 1 positioned below the above.
  • the solar power generation modules 7 are intensively arranged on the upper part of the inclined roof.
  • the position of the shadow caused by the light being blocked is formed on the wall surface of the building C. For this reason, even when the roof structure is applied to a building C that requires sufficient sunlight irradiation to the floor of an atrium, a horticultural greenhouse, a pool, etc., the solar power generation module 7 blocks sunlight. The effect that it does not become a problem is acquired.
  • the intermediate film material 6 was provided between the outer side film material 2 and the inner side film material 3, and the solar power generation module 7 was attached to the upper surface of this intermediate film material 6, it demonstrated.
  • the present invention is not limited to this.
  • the pneumatic panel 20 is constituted only by the outer membrane material 2 and the inner membrane material 3, and a photovoltaic power generation module is formed on the upper surface of the inner membrane material 3. 7 can also be provided.
  • outer membrane material 2 and the inner membrane material 3 were demonstrated only about the case where airtight integration was carried out in the peripheral part of each other, this invention is not limited to this,
  • the outer membrane material 2 and the inner membrane material 3 may be hermetically sealed, for example, at each peripheral edge via the outer peripheral frame 4 or the like.
  • the present invention is not limited to this, and in particular, the intermediate film material 6 is less affected by distortion caused by changes in external force and internal pressure, like the outer film material 2 and the inner film material 3, It is also possible to install a photovoltaic power generation module using a crystalline silicon solar cell.
  • the present invention can be used as a jacket structure in various buildings such as an atrium or a greenhouse having a power generation function using sunlight.
  • the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2007-335655 filed on Dec. 27, 2007 are cited here as disclosure of the specification of the present invention. Incorporated.

Abstract

 本発明は、屋根等の外被の表面に凹凸が形成されたり、あるいは太陽光発電モジュールに外力が作用したりすることが無く、高い発電効率を維持することが出来るとともに、太陽光発電が可能な軽量な外被を形成することが可能となる建物の外被構造を提供する。  光の透過性を有する材料からなり、建物の外面側に配置される外側膜材と、この外側膜材の内側に沿って配設される内側膜材と、外側膜材と内側膜材との間に張設された中間膜材と、外側膜材と内側膜材の間の空間に気体を供給する給気手段と、中間膜材の内部表面に設けられた太陽光発電モジュール7を備えてなる建物の外被構造。

Description

建物の外被構造
 本発明は、二重膜構造であって、かつ太陽光による発電機能を備えたアトリウムや温室等の各種建物における外被構造に関するものである。
 近年、環境保護や省エネルギーの要請から、建物の外被の一種である屋根に太陽光発電モジュールを設置し、自然エネルギーである太陽光のエネルギーを電力に変換して、当該建物内の電力源として利用するとともに、余剰の電力を売電する技術が実用化している。
 一方、上記屋根構造として、膜材を張設することによって当該屋根を構成する構造が知られている。
 このような膜材を用いた屋根構造にあっては、膜面が所定の張力を受けた曲面形状となるために、上記太陽光発電モジュールを取り付けることが難しいという問題点があった。
 そこで、下記特許文献1においては、上記太陽光発電モジュールとしてフレキシブルなモジュールを用い、当該フレキシブル太陽光発電モジュールの全体を被覆可能な熱可塑性樹脂フィルムの周縁を上記膜面に溶着して、その内部に上記フレキシブル太陽光発電モジュールを収納することによって上記膜面上に取り付けた太陽電池の取付構造が提案されている。
特開平11-46007号公報
 しかしながら、上記従来の膜材を用いた屋根構造における太陽電池の取付構造にあっては、膜材の表面にフレキシブル太陽光発電モジュールを樹脂フィルムで覆った凸が形成されてしまうために、膜材との間に形成される段部に塵や埃等が堆積しやすく、この結果発電効率の低下を招いたり、あるいは積雪期における滑雪の障害になったりするという問題点があった。
 加えて、薄い膜材の膜面に熱可塑性樹脂フィルムの周縁を溶着しているために、当該溶着部における膜材が硬化あるいは脆性化したり、さらに当該溶着部の剛性が高まることにより応力が集中したりして破断し易くなるという問題点もあった。
 本発明は、かかる事情に鑑みてなされたもので、屋根や壁等の外被の外表面に凹凸が形成されたり、あるいは太陽光発電モジュールに外力が作用したりすることが無く、高い発電効率を維持することが出来るとともに、太陽光発電が可能な軽量な外被を形成することが可能となる建物の外被構造を提供することを課題とするものである。
 上記課題を解決するために、本発明は、建物の外被構造であって、光の透過性を有する材料からなり、建物の外面側に配置される外側膜材と、この外側膜材の内側に沿って配設される内側膜材と、上記外側膜材と内側膜材との間の空間に気体を供給する給気手段と、上記内側膜材の内部表面(上記空間側表面)に設けられた太陽光発電モジュールとを備えてなることを特徴とするものである。
 また、本発明は、建物の外被構造であって、光の透過性を有する材料からなり、建物の外面側に配置される外側膜材と、この外側膜材の内側に沿って配設される内側膜材と、上記外側膜材と内側膜材との間に、当該外側膜材と内側膜材との間を連通または非連通の状態で張設された中間膜材と、上記外側膜材と内側膜材との間の空間に気体を供給する給気手段と、上記中間膜材の上記外側膜材と対向する表面に設けられた太陽光発電モジュールとを備えてなることを特徴とするものである。
 本発明において、上記内側膜材は、周縁部が上記外側膜材と気密的に一体化されていることが好ましい。
 本発明において、上記太陽光発電モジュールは、可撓性を有していることが好ましい。
 また、本発明において、上記太陽光発電モジュールは、アモルファス系シリコン太陽電池を用いた発電モジュールであることが好ましい。
 さらに、本発明の好ましい実施形態は、上記太陽光発電モジュールの出力側がバッテリーに接続されるとともに、当該バッテリーで蓄えられた電力の少なくとも一部を、上記給気手段の駆動源として供給するようにしたことを特徴とするものである。
 さらに、本発明の好ましい実施形態は、上記太陽光発電モジュールが、太陽光発電モジュールの間を太陽光が透過可能に間隔をあけて配設されていることを特徴とするものである。
 本発明の好ましい実施形態においては、外側膜材と内側膜材との間に空気が加圧充填されたクッション型の二重膜構造の建築用パネル(以下、ニューマチックパネルと称する。)を外被材として用いるとともに、当該ニューマチックパネルの内部に太陽光発電モジュールを組み込むものである。この際に、上記外側膜材と内側膜材とを備えたニューマチックパネルにおいては、特に外側膜材が外力や内圧の変化等によって大きく歪むとともに当該歪み量も変化するため、上記太陽光発電モジュールを外側膜材に直接設けることが難しいことから、比較的外力の影響が小さい上記内側膜材の内部表面に太陽光発電モジュールを設けることが好ましい。
 また、上記外側膜材と内側膜材との間に中間膜材を張設するとともに、この中間膜材の上記外側膜材と対向する表面に太陽光発電モジュールを設けた前記外被構造においては、上記中間膜材は、内圧変化等による影響を受けないために、安定した状態で上記太陽光発電モジューの形態を保持させることができる。
 そして、本発明の外被構造においては、外側膜材が光の透過性を有する材料によって構成されているために、太陽光が外側膜材を透光して太陽光発電モジュールに照射されることにより、発電を行うことができる。
 このため、太陽光発電が可能な軽量な屋根や壁等の外被を形成することができるとともに、さらに内側膜材や中間膜材も光の透過性を有する材料によって構成すれば、太陽光を建物内に照射させることができるために、ニューマチックパネルの本来の用途であるアトリウム、園芸用等の温室、プール等の建物の屋根や壁等として好適に用いることができる。
 そして、この外被構造においては、太陽光発電モジュールの全体がニューマチックパネルの内部に設けられているために、上記太陽光発電モジュールに外力が作用することが無く、よって長期間にわたって高い発電効率を維持することが可能になる。しかも、膜材の外表面に突出することがないために、塵や埃の堆積を招いて発電効率が低下したり、あるいは積雪期における滑雪の妨げとなったりすることがない。
 また、中間膜材に太陽光発電モジュールを設ける前記外被構造においては、内部に供給された気体によって張力を受けつつ外被の外面および内面をそれぞれ構成する外側膜材および内側膜材に太陽光発電モジュールを設けておらず、当該太陽光発電モジュールを、上記外側膜材および内側膜材の間に介装された中間膜材に設けているために、従来のもののように、上記太陽光発電モジュールの取り付けに起因してニューマチックパネル自体を構成する上記外側膜材や内側膜材に破断を招来するといった虞が全くない。
 さらに、このような外被構造にあっては、中間膜材が、外側膜材と内側膜材との間を連通させた状態で張設されている場合は、膜材と中間膜材との間および中間膜材と内側膜材との間のいずれか一方から内部に気体を供給することにより、当該中間膜材が妨げとなることなく内部の全体を均一に加圧してニューマチックパネルを形成することができる。
 なお、上記太陽光発電モジュールとしては、単結晶シリコン太陽電池、多結晶シリコン太陽電池、アモルファスシリコン太陽電池、単結晶+アモルファスのハイブリッド太陽電池等を用いた各種の太陽光発電モジュールが知られている。ここで、結晶系シリコン太陽電池は、機械的強度が小さく、割れやすいという欠点があるために、一般的には取り扱い上の支障が無いように、補強部材を張り合わせることにより使用されている。
 これに対して、アモルファス系シリコン太陽電池は薄膜であって、かつ可撓性を有するために簡単に割れることが無いという利点がある。
 ちなみに、中間部材を設ける外被構造においては、上記太陽光発電モジュールを中間膜材に設けているために、結晶系シリコン太陽電池を用いた太陽光発電モジュールおよびアモルファス系シリコン太陽電池のいずれも適用することが可能である。
 ただし、上記中間膜材も可撓性を有している結果、全体として変形を受けるために、本発明においては、上記太陽光発電モジュールとして、可撓性を有するものを用いることが好ましい。
 また、特に上記太陽光発電モジュールとして、アモルファス系シリコン太陽電池を用いた発電モジュールを用いれば、可撓性を有するとともに、結晶系シリコン太陽電池を用いたものと比較して、より高い電圧を得ることができる。
 また、上記ニューマチックパネルにおいては、太陽光によって内部の温度が高くなる傾向があるのに対して、一般に太陽電池は温度が上昇すると出力が低下する傾向にある。
 しかしながら、上記アモルファス系シリコン太陽電池にあっては、アニール現象によって、温度が上昇しても出力低下が少ないために、アモルファス系シリコン太陽電池を用いた太陽光発電モジュールによれば、結晶系シリコン太陽電池と比べて10%程度高い発電効率を得ることができる。
 さらに、本発明の好ましい実施形態においては、上記太陽光発電モジュールの出力側をバッテリーに接続し、このバッテリーで蓄えられた電力の少なくとも一部を、送風機等の上記給気手段の駆動源として供給しているために、外部からの給電を必要としない自立型のニューマチックパネルを用いた外被構造を構成することが可能になる。
 さらに、本発明の好ましい実施形態においては、複数の太陽光発電モジュールを間隔をおいて配設し、これらの間を太陽光が透過可能としているために、建物の内部にも所望の採光を得ることができる。
本発明に係る建物の外被構造の一実施形態におけるニューマチックパネルの構造を示す断面図である。 図1の1部断面視した斜視図である。 図1の建物全体を示す斜視図である。 上記一実施形態の変形例を示す建物全体の斜視図である。 本発明の他の実施形態におけるニューマチックパネルの構造を示す断面図である。
符号の説明
 1 ニューマチックパネル
 2 外側膜材
 3 内側膜材
 5 内部空間
 6 中間膜材
 6a 開口部
 7 太陽光発電モジュール
 8 バッテリー
 11 送風機(給気手段)
 C 建物
 図1~図3は、本発明に係る建物の外被構造を建物の屋根構造に適用した一実施形態を示すものであり、図4は、その変形例を示すものである。
 これらの図において、この建物Cの屋根構造は、ニューマチックパネル1の内部に複数の太陽光発電モジュール7を設けることにより概略構成されたものである。
 すなわち、ニューマチックパネル1は、エチレン・テトラフルオロエチレン系共重合体(以下、ETFEと略す。)等の透明なプラスチック系フィルム材料からなる2枚の矩形状に形成された外側膜材2と内側膜材3とが、互いの周縁部において気密的に一体化されて外周フレーム4に保持されたものである。この結果、外側膜材2と内側膜材3との間には、内部空間5が形成されている。そして、この建物Cの屋根は、複数のニューマチックパネル1が、それぞれの外側膜材2を建物Cの外面側において太陽に向けて傾斜させるとともに、内側膜材3を建物Cの内部に向けて配置された状態で外周フレーム4に支持され、該外周フレーム4が建物Cの柱梁架構Fに連結支持されることにより構成されている。
 さらに、このニューマチックパネル1においては、外側膜材2と内側膜材3との間に中間膜材6が介装されている。この中間膜材6は、外側膜材2および内側膜材3と同様のETFE等の透明なプラスチック系フィルム材料によって内側膜材3よりも幾分撓みが小さくなるような形状に形成されたもので、その周縁部は外側膜材2と内側膜材3の周縁部間に挟まれて一体化されている。また、この中間膜材6には、上方の外側膜材2との間の空間と、下方の内側膜材3との間の空間を連通させる開口部6aが形成されている。
 そして、この中間膜材6の上面に、複数(図2においては、そのうちの2枚のみを例示している。)の太陽光発電モジュール7が所定間隔をおいて取り付けられている。この太陽光発電モジュール7は、アモルファス系シリコン太陽電池を用いた発電モジュールであり、その受光セル面を上面にして中間膜材6に取り付けられている。
 なお、上記複数の太陽光発電モジュール7は、任意に配置することができ、本実施形態の建物Cにおいては、図3に示すように、屋根の全面にわたって千鳥状に配置されている。これにより、太陽光発電モジュール7の間には、外側膜材2、中間膜材6および内側膜材3を通して太陽光が建物Cの内部に照射可能になっている。
 他方、このニューマチックパネル1の外周フレーム4の下面には、バッテリー8が設けられている。そして、中間膜材6に取り付けられた各々の太陽光発電モジュール7の出力側に接続された電線9が、このニューマチックパネル1内を外側フレーム4側に向けて引き回されるとともに、集合線10となってバッテリー8の入力側に接続されている。これにより、太陽光発電モジュール7によって発電されることによって発生した電力は、バッテリー8に入力されて蓄えられるようになっている。
 さらに、上記外周フレーム4の下面には、ニューマチックパネル1内の内側膜材3と中間膜材6との間に空気(気体)を供給する送風機(給気手段)11と、バッテリー8に蓄えられている電力を、ニューマチックパネル1の内圧の低下速度と連動した所定の時間間隔でON-OFFして送風機11に供給することにより、ニューマチックパネル1の内圧を一定範囲に保持するタイマー12とが隣接して設けられている。
 以上の構成からなる建物Cの屋根構造によれば、太陽光発電モジュール7をニューマチックパネル1内であって、外力や内圧の変化等による歪みが殆ど生じない中間膜材6の上面に設けているために、安定した状態で当該太陽光発電モジュー7の形態を保持させることができる。そして、図1に示すように、屋根に注ぐ太陽光の一部が、光の透過性を有する外側膜材2を透光して太陽光発電モジュール7の表面に照射されることにより、発電を行うことができる。
 このため、太陽光発電が可能な軽量な屋根を形成することができるとともに、この屋根構造においては、外側膜材2、内側膜材3および中間膜材6が、いずれも光の透過性を有する材料によって構成されているために、太陽光発電モジュール7間を透過した太陽光を、建物内に照射させることができる。
 加えて、この屋根構造においては、太陽光発電モジュール7の全体がニューマチックパネル1の内部に設けられているために、太陽光発電モジュール7に外力が作用することが無く、よって長期間にわたって高い発電効率を維持することができるとともに、外側膜材2や内側膜材3の外表面に突出するものがないために、従来のもののように塵や埃の堆積を招いて発電効率が低下したり、あるいは積雪期における滑雪の妨げとなったりすることがない。
 さらに、中間膜材6の周縁部を、外側膜材2と内側膜材3の周縁部間に挟んで一体化するとともに、中間膜材6に外側膜材2と内側膜材3との間を連通させる開口部6aを形成しているために、中間膜材6と内側膜材3との間から内部に気体を供給することにより、中間膜材6が妨げとなることなく内部の全体を均一に加圧してニューマチックパネル1を形成することができ、しかも中間膜材6の姿勢を安定化させて太陽光発電モジュール7を安定的に保持することができる。
 しかし、開口部6aを形成しない中間膜材6を用いて、外側部材2と中間部材6との間の空間、および内側部材3と中間部材6との間の空間に、個別に気体を供給して加圧しニューマチックパネル1を形成してもよい。
 また、太陽光発電モジュール7として、可撓性に優れるアモルファス系シリコン太陽電池を用いた発電モジュールを用いているために、中間膜材6が撓んだ場合においても、割れを生じることが無く、かつ結晶系シリコン太陽電池を用いたものと比較して、より高い電圧を得ることができる。加えて、太陽光の照射によってニューマチックパネル1内の内部温度が高くなった場合においても、他の結晶系シリコン太陽電池を用いた太陽光発電モジュールと比較して10%程度高い発電効率を得ることができる。
 さらに、この屋根構造にあっては、太陽光発電モジュール7における発電によって得られた出力をバッテリー8に蓄え、ニューマチックパネル1の内圧を一定に保持するための送風機11の駆動源として利用しているために、外部からの給電を必要としない自立型のニューマチックパネルを用いた屋根構造を構成することができる。
 図4は、上記実施形態の変形例を示すものである。
 この屋根構造が、図3に示したものと相違する点は、建物Cの傾斜した屋根の上部に位置するニューマチックパネル1内の中間膜材6に、集中的に太陽光発電モジュール7が配置されるとともに、それよりも下方に位置するニューマチックパネル1内には、上記太陽光発電モジュールが配置されていない点にある。
 上記構成からなる屋根構造によれば、傾斜した屋根の上部に、集中的に太陽光発電モジュール7を配置しているために、図中点線矢印で示すように、これら太陽光発電モジュール7によって太陽光が妨げられることにより生じる影の位置が、建物Cの壁面に形成されることになる。このため、上記屋根構造をアトリウム、園芸用等の温室、プール等の床面まで充分な太陽光の照射が必要な建物Cに適用した場合においても、太陽光発電モジュール7による太陽光の遮断が問題となることがないという効果が得られる。
 なお、上記実施形態においては、いずれも本発明に係る建物の外被構造を、建物の屋根構造に適用した場合についてのみ説明したが、これに限定されるものではなく、壁等の他の外被の構造にも同様に適用することができる。
 また、上記実施形態においては、外側膜材2と内側膜材3との間に中間膜材6を設け、この中間膜材6の上面に太陽光発電モジュール7を取り付けた場合についてのみ説明したが、本発明はこれに限るものではなく、例えば図5に示すように、外側膜材2および内側膜材3のみによってニューマチックパネル20を構成するとともに、内側膜材3の上面に太陽光発電モジュール7を設けることも可能である。
 また、上記実施形態においては、外側膜材2と内側膜材3とが、互いの周縁部において気密的に一体化されている場合についてのみ説明したが、本発明はこれに限るものではなく、外側膜材2と内側膜材3とは、例えば外周フレーム4等を介して、それぞれの周縁部において気密的に封じられていてもよい。
 さらに、上記実施形態においては、中間膜材6上に、最も好適な形態として、薄肉であって可撓性に優れるアモルファス系シリコン太陽電池を用いた太陽光発電モジュール7を設けた場合について説明したが、これに限定されるものではなく、特に中間膜材6は、外側膜材2や内側膜材3のように、外力や内圧の変化に起因する歪みの影響を受けることが少ないために、結晶系シリコン太陽電池を用いた太陽光発電モジュールを設置することも可能である。
 本発明は、太陽光による発電機能を備えたアトリウムや温室等の各種建物における外被構造として利用できる。
 なお、2007年12月27日に出願された日本特許出願2007-335655号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (8)

  1.  光の透過性を有する材料からなり、建物の外面側に配置される外側膜材と、
     この外側膜材の内側に沿って配設される内側膜材と、
     上記外側膜材と内側膜材との間の空間に気体を供給する給気手段と、
     上記内側膜材の内部表面に設けられた太陽光発電モジュールとを備えてなることを特徴とする建物の外被構造。
  2.  光の透過性を有する材料からなり、建物の外面側に配置される外側膜材と、
     この外側膜材の内側に沿って配設される内側膜材と、
     上記外側膜材と内側膜材との間に張設された中間膜材と、
     上記外側膜材と内側膜材との間の空間に気体を供給する給気手段と、
     上記中間膜材の上記外側膜材と対向する表面に設けられた太陽光発電モジュールとを備えてなることを特徴とする建物の外被構造。
  3.  上記中間膜は、開口部を有しており外側膜材と内側膜材との間を連通させた状態で張設されることを特徴とする請求項2に記載の建物の外被構造。
  4.  上記内側膜材は、周縁部が上記外側膜材と気密的に一体化されたことを特徴とする請求項1ないし3のいずれかに記載の建物の外被構造。
  5.  上記太陽光発電モジュールは、可撓性を有することを特徴とする請求項1ないし4のいずれかに記載の建物の外被構造。
  6.  上記太陽光発電モジュールは、アモルファス系シリコン太陽電池を用いた発電モジュールであることを特徴とする請求項1ないし5のいずれかに記載の建物の外被構造。
  7.  上記太陽光発電モジュールの出力側がバッテリーに接続されるとともに、当該バッテリーで蓄えられた電力の少なくとも一部を、上記給気手段の駆動源として供給するようにしたことを特徴とする請求項1ないし6のいずれかに記載の建物の外被構造。
  8.  上記太陽光発電モジュールは、太陽光発電モジュールの間を太陽光が透過可能に間隔をあけて配設されていることを特徴とする請求項1ないし7のいずれかに記載の建物の外被構造。
PCT/JP2008/073831 2007-12-27 2008-12-26 建物の外被構造 WO2009084672A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08868125.9A EP2233666A4 (en) 2007-12-27 2008-12-26 BUILDING ENCLOSURE STRUCTURE
CN200880123199XA CN101910532B (zh) 2007-12-27 2008-12-26 建筑物的外覆结构
US12/817,257 US8146296B2 (en) 2007-12-27 2010-06-17 Enclosure structure for building

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007335655 2007-12-27
JP2007-335655 2007-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/817,257 Continuation US8146296B2 (en) 2007-12-27 2010-06-17 Enclosure structure for building

Publications (1)

Publication Number Publication Date
WO2009084672A1 true WO2009084672A1 (ja) 2009-07-09

Family

ID=40824385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073831 WO2009084672A1 (ja) 2007-12-27 2008-12-26 建物の外被構造

Country Status (5)

Country Link
US (1) US8146296B2 (ja)
EP (1) EP2233666A4 (ja)
JP (1) JP5003670B2 (ja)
CN (1) CN101910532B (ja)
WO (1) WO2009084672A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011073448A3 (de) * 2009-12-18 2012-05-03 Seele Holding Gmbh & Co. Kg Membranbaukomponente mit einem solarpanel
WO2012019120A3 (en) * 2010-08-06 2012-11-01 Wattlots Llc Photovoltaic cell module assembly
CN104763052A (zh) * 2015-03-25 2015-07-08 东南大学 一种可折叠展开的索膜桁架结构

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080283112A1 (en) * 2003-04-02 2008-11-20 Conger Steven J Solar array support methods and systems
US8381464B2 (en) * 2003-04-02 2013-02-26 P4P Holdings Llc Solar array support methods and systems
US8875450B2 (en) 2003-04-02 2014-11-04 P4P Holdings, LLC Solar array system for covering a body of water
US8212140B2 (en) 2003-04-02 2012-07-03 P4P, Llc Solar array support methods and systems
US7285719B2 (en) 2003-04-02 2007-10-23 Solar Suspension Systems, Llc Solar array support methods and systems
US8429861B2 (en) * 2003-04-02 2013-04-30 P4P Holdings Llc Solar array support methods and systems
US8278547B2 (en) * 2003-04-02 2012-10-02 P4P Holdings Llc Solar array support methods and systems
US9564851B2 (en) 2003-04-02 2017-02-07 P4P Holdings, LLC Solar array support methods and systems
US20100314509A1 (en) * 2003-04-02 2010-12-16 Conger Steven J Solar array support methods and systems
USD605585S1 (en) 2003-06-25 2009-12-08 Solar Suspension Systems, Llc Solar array
USD649112S1 (en) 2003-06-25 2011-11-22 P4P Holdings, LLC Solar array
KR100954727B1 (ko) * 2009-10-19 2010-04-23 (주) 스위텍 투광성 패널
USD664916S1 (en) 2011-06-21 2012-08-07 P4P Holdings, LLC Solar array
USD679242S1 (en) 2011-12-06 2013-04-02 P4P Holdings, LLC Solar array
FR3004004B1 (fr) 2013-03-29 2016-08-12 Soitec Silicon On Insulator Procede d'assemblage de cellules photovoltaïques avec transfert multiple
KR101429109B1 (ko) 2013-06-27 2014-08-13 협성대학교산학협력단 건축토목용 이중 막 쿠션장치
KR101429119B1 (ko) * 2014-05-23 2014-08-13 협성대학교산학협력단 건축토목용 이중 막 쿠션장치
CA2979091A1 (en) * 2015-03-10 2016-09-15 Antoine Marcel PAULUS Mobile artificial cloud
KR101715680B1 (ko) * 2016-09-28 2017-03-13 주식회사 에이원스페이스 보강형 골조 및 에어패널을 이용한 건축용 조립식 구조물
KR101715679B1 (ko) * 2016-09-28 2017-03-13 주식회사 에이원스페이스 보강형 골조와 이중 에어쿠션이 적용된 막 구조물
DE102017129059A1 (de) * 2017-12-06 2019-06-06 Vector Foiltec Gmbh Vorrichtung zum Ableiten einer Flüssigkeit sowie Gebäudeumhüllungselemente mit einer solchen Vorrichtung
US11686097B2 (en) * 2019-11-22 2023-06-27 Arizona Board Of Regents On Behalf Of Arizona State University Skylights with integrated photovoltaics and refractive light-steering

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121785A (ja) * 1996-08-30 1998-05-12 Daiwa House Ind Co Ltd ドーム状建物およびその構成材
JPH1146007A (ja) 1997-07-26 1999-02-16 Taiyo Kogyo Kk 太陽電池取付構造

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3375136A (en) * 1965-05-24 1968-03-26 Army Usa Laminated thin film flexible alkaline battery
US3658596A (en) * 1970-09-21 1972-04-25 Lockheed Missiles Space Flexible solar cell modular assembly
US3908631A (en) * 1974-03-12 1975-09-30 Frank E Rom Method and apparatus for converting solar radiation to heat energy
US4057439A (en) * 1976-08-25 1977-11-08 Solarex Corporation Solar panel
US4182307A (en) * 1977-07-21 1980-01-08 Donald Shanfelt Inflatable solar energy collector
US4262457A (en) * 1978-09-12 1981-04-21 Darmstadt Robert M Pneumatic structures
US4258697A (en) * 1979-03-15 1981-03-31 Flagg Rodger H Pneumatic collection, storage and transfer of solar heat
DE3066247D1 (en) * 1979-05-08 1984-03-01 Saint Gobain Vitrage Method of manufacturing solar-cell panels and panels obtained by this method
FR2461901A1 (fr) * 1979-07-19 1981-02-06 Rhone Poulenc Ind Capteur d'energie solaire, chauffe-eau et dispositif de chauffage avec pompe a chaleur comportant ledit capteur
US4321912A (en) * 1980-07-11 1982-03-30 Larsen Raymond B Solar energy collector assembly and frame
US4485804A (en) * 1981-01-30 1984-12-04 T. E. Sharpe Solar heat collector system
US4390010A (en) * 1981-03-12 1983-06-28 Skillman Dale N Solar energy collecting apparatus and roll-formed metal building
US5027564A (en) * 1988-05-09 1991-07-02 Colux Gesellschaft fur Licht - und Leichtbau mbH Building construction with a chamber which can be acted upon by a fluid medium
JPH022849U (ja) * 1988-06-20 1990-01-10
JP2557809B2 (ja) * 1989-12-04 1996-11-27 株式会社フジタ 太陽電池を具備したエアドーム
JPH05221387A (ja) * 1992-02-13 1993-08-31 Sanyo Electric Co Ltd 太陽電池付き飛行船
DE4240616A1 (de) * 1992-12-03 1994-06-09 Westsolar Gmbh Solarzellenanordnung
US5505788A (en) * 1994-06-29 1996-04-09 Dinwoodie; Thomas L. Thermally regulated photovoltaic roofing assembly
US6224016B1 (en) * 1997-12-19 2001-05-01 Sky Station International, Inc. Integrated flexible solar cell material and method of production
US6295663B1 (en) * 1998-06-30 2001-10-02 Stearns Inc. Pressurized solar heated shower
EP1121564A1 (de) * 1998-10-05 2001-08-08 Powerpulse Holding AG Lichtelement mit einer lichtdurchlässigen fläche
DE19950500C2 (de) * 1999-10-20 2001-12-20 Uwe Rudolf Brueckner Doppelwandiges Folienfeld, insbesondere Folienwandsegment
JP2001291888A (ja) * 2000-04-10 2001-10-19 Tdk Corp 太陽光発電体およびその取付方法
GB2387183B (en) * 2002-04-02 2005-07-27 Vector Special Projects Ltd Building component
GB2387395B (en) * 2002-04-12 2005-08-24 Benedict George Morris Liquid retaining cushion roof element
CN2642033Y (zh) * 2003-10-13 2004-09-22 中国农业科学院农业气象研究所 一种适合日光温室使用的采光装置
US7303166B2 (en) * 2003-11-04 2007-12-04 Daniel Geery Highly maneuverable powered airship
DE102005048403A1 (de) * 2005-10-10 2007-04-12 Verena Herzog-Loibl Pneumatisch stabilisierte Hülle für ein Gebäude
US20070234945A1 (en) * 2005-11-28 2007-10-11 Khouri Bruce M Photovoltaic floatation device
DE202007015754U1 (de) * 2007-11-09 2009-03-26 Vector Foiltec Gmbh Folienkissenanordnung
US7849635B2 (en) * 2009-01-23 2010-12-14 Vector Foiltec Building encasement element
JP2011045525A (ja) * 2009-08-27 2011-03-10 Fujifilm Corp 内視鏡
US8438797B2 (en) * 2009-12-25 2013-05-14 Institute Of Nuclear Energy Research, Atomic Energy Council, Executive Yuan Outer frame drainage structure of concentrator type solar cell module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121785A (ja) * 1996-08-30 1998-05-12 Daiwa House Ind Co Ltd ドーム状建物およびその構成材
JPH1146007A (ja) 1997-07-26 1999-02-16 Taiyo Kogyo Kk 太陽電池取付構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2233666A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011073448A3 (de) * 2009-12-18 2012-05-03 Seele Holding Gmbh & Co. Kg Membranbaukomponente mit einem solarpanel
WO2012019120A3 (en) * 2010-08-06 2012-11-01 Wattlots Llc Photovoltaic cell module assembly
CN104763052A (zh) * 2015-03-25 2015-07-08 东南大学 一种可折叠展开的索膜桁架结构

Also Published As

Publication number Publication date
CN101910532A (zh) 2010-12-08
EP2233666A4 (en) 2013-12-18
JP5003670B2 (ja) 2012-08-15
CN101910532B (zh) 2012-12-26
EP2233666A1 (en) 2010-09-29
JP2009177163A (ja) 2009-08-06
US8146296B2 (en) 2012-04-03
US20100251618A1 (en) 2010-10-07

Similar Documents

Publication Publication Date Title
WO2009084672A1 (ja) 建物の外被構造
US20080034684A1 (en) Building component
US11038073B2 (en) Solar power generation unit and system
JP2011109072A (ja) 太陽電池モジュール
US8919961B2 (en) Inflatable, pressure-controlled, portable line-concentrating heliostat
KR20170087170A (ko) 태양광 발전 온실
KR101126430B1 (ko) 발포 알루미늄을 이용한 기능성 판재
KR20130022230A (ko) 태양전지를 구비한 농업용 하우스
WO2003100866A1 (en) Solar cell module
JPH1146007A (ja) 太陽電池取付構造
US11621361B2 (en) Arrangements of flexible photovoltaic modules
US20220190773A1 (en) Solar panel
JP2011238761A (ja) 太陽電池モジュール
KR20100048453A (ko) 비발전용 더미패널 및 이를 이용한 태양전지패널 설치 구조
US11935979B2 (en) Lightweight solar panels with solar cell structural protection
JP2014132615A (ja) 太陽電池モジュール
JP2013076281A (ja) ロールスクリーン装置
KR101968095B1 (ko) 태양광모듈을 활용한 태양광 발전 온실
KR20090003570A (ko) 굴절유리를 이용한 태양전지 모듈
EP3483522A1 (en) Actuator, mechanism comprising the actuator, solar energy harnessing apparatus, arrangement of buildings, and a method for manufacturing the actuator
JP2005175236A (ja) 太陽電池モジュール
JP2013235996A (ja) パイプハウス用太陽電池シート
EP3809589B1 (en) Array of photovoltaic panels incorporating sealing assembly
CN115133857B (zh) 充气膜穹顶建筑光伏储能一体化装置及控制方法
JP2011151278A (ja) 太陽光発電システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880123199.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08868125

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2008868125

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008868125

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE