WO2009080009A1 - Method for producing components with a wear-resistant coating, component produced in this way and use thereof - Google Patents

Method for producing components with a wear-resistant coating, component produced in this way and use thereof Download PDF

Info

Publication number
WO2009080009A1
WO2009080009A1 PCT/DE2008/002121 DE2008002121W WO2009080009A1 WO 2009080009 A1 WO2009080009 A1 WO 2009080009A1 DE 2008002121 W DE2008002121 W DE 2008002121W WO 2009080009 A1 WO2009080009 A1 WO 2009080009A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic
component
silicon
carbon
diamond
Prior art date
Application number
PCT/DE2008/002121
Other languages
German (de)
French (fr)
Inventor
Mathias Herrmann
Hans-Peter Martin
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO2009080009A1 publication Critical patent/WO2009080009A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6269Curing of mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00405Materials with a gradually increasing or decreasing concentration of ingredients or property from one layer to another
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/383Alpha silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/3834Beta silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/427Diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/363Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • C04B2237/385Carbon or carbon composite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/61Joining two substrates of which at least one is porous by infiltrating the porous substrate with a liquid, such as a molten metal, causing bonding of the two substrates, e.g. joining two porous carbon substrates by infiltrating with molten silicon

Definitions

  • the invention relates to a method for producing components with a wear-resistant coating, a component produced in this way, and the use thereof.
  • SiC ceramics which are provided with diamond layers whose layer thickness is 5 to 20 microns, used.
  • diamond layers tend to flake off under extreme conditions of use and then result in the functionality of such seals no longer being present.
  • Such diamond layers are deposited by a CVD or PVD method under vacuum conditions. It is also known to use a composite material with diamond crystals and a SiC ceramic, which has been infiltrated with silicon, for the production of cutting tools. This is described in EP 0 010 257 Bl and EP 0 056 596 A1.
  • such tools should be formed entirely of diamond crystals, SiC and infiltrated silicon.
  • the procedure is to use a mixture of diamond and a carbonaceous material.
  • the surface of the diamond crystals should additionally have been provided with a coating of carbonaceous material.
  • Such a carbonaceous material should decompose at a temperature below 1400 0 C and then be present free non-diamond-like carbon.
  • an infiltration with silicon is to take place, in which pores are closed and SiC is to be formed reactive.
  • the entire volume of a tool thus produced is then filled with diamond, SiC and silicon.
  • the production is quite complex, cost-intensive and the properties of these tools are determined exclusively by the one material.
  • ⁇ -SiC is formed with the carbon, pores are filled, and a body is sintered, formed of two or three different materials in different regions. In this case, in areas a divergent proportion of diamond or a
  • the production of such components can be achieved by a method having the features of claim 1.
  • a component produced in this way is defined by claim 15.
  • An advantageous use is defined in claim 21. Nannt.
  • Advantageous embodiments and further developments of the invention can be achieved with features described in the subordinate claims.
  • a component base body is provided with a wear protection coating. This is formed with at least one layer, but preferably more than one layer.
  • the component body is one which is made of a SiC ceramic or a carbon fiber reinforced carbon.
  • SiC ceramic precursor for example at least one film which is formed with powdery SiC, for this purpose.
  • the at least one or more layers for the formation of the wear protection coating can be formed with an organic binder, powdery SiC and diamond crystals.
  • the proportion of diamond crystals should be at least 30% by volume in a formed layer of the coating.
  • the surface of the component body is to be coated with these components, which will still be possible to come back for this purpose.
  • a thermal treatment in an inert atmosphere eg argon
  • an inert atmosphere eg argon
  • vacuum conditions at a temperature below 1550 0 C, preferably below 1400 0 C.
  • infiltration with silicon or a silicon alloy whose silicon content is to be high is carried out.
  • the silicon or the silicon alloy must be molten and proceed again in an inert atmosphere or under vacuum conditions.
  • the maximum temperature of 1650 0 C should also be considered.
  • additional ⁇ -SiC is formed with the previously released carbon and silicon, and with silicon and / or one of the alloy constituents which may be present, any remaining pores in the one or more layers are optionally filled.
  • the diamond crystals can thus be bonded with ⁇ -SiC, so that a solid permanent secure bond with the surface of the component body can be achieved without additional measures and process steps. Chipping can be avoided.
  • the layers should be formed so that the proportion of granular diamond crystals contained therein, starting from the coated surface of the component body increases from layer to layer.
  • a porosity of at least 20%, preferably at least 25%, and more preferably at least 30% of the layer (s) should have been maintained.
  • a wear protection coating with two layers the layer applied directly to the surface of the component main body, as an intermediate layer with 10 to 40 vol.% diamond crystals and 60 to 90 vol.% .beta.-SiC and an outer cover layer formed thereon with 30 to 70 vol.% of diamond crystals and 30 to 70 vol. SiC be formed.
  • a silicide or a silicide-forming element may also be employed in the layer (s) at levels of from 0 to 10% by volume.
  • a silicide or a silicide-forming element e.g., Mo
  • the temperature required for the infiltration can be lowered and an increased temperature resistance can be achieved.
  • silicon-forming elements such as Fe, Co or Ni, should be avoided since they are conducive to the conversion of diamant to graphite.
  • Ti, W, Zr, Hf or V can also be used as further elements, which reduce the temperature required for infiltration and can also form hard carbides.
  • the wear protection coating should be formed with a layer thickness of 0.1 to 3 mm.
  • a component body one of RSiC, LPSSiC, SSiC and / or SiSiC, which is formed predominantly of inexpensive ⁇ -SiC, are used.
  • the proportion of ⁇ -SiC should be at least 70% by volume.
  • the coating can be formed by injection molding, dipping pressing, hot casting or electrophoretic deposition.
  • the coating can be achieved with a suspension are in addition to the organic binder, diamond crystals and possibly also powdery SiC and a liquid are contained, in which the still contained binder of the component body, as far as it has not been pyrolyzed before, can not be solved.
  • the suspension can be absorbed by acting capillary forces and a layer can be formed. The thermal treatment described above can then be carried out subsequently.
  • a wear protection coating can also be formed with films on component main bodies.
  • one or more films can be laminated on top of one another under the exertion of compressive force and when heated to the respective surface of a component main body and then the infiltration thermal treatment already described above can be carried out.
  • the films contain organic binder and diamond crystals as components, which is also possible with different proportions in individual films.
  • Sic may also be present, preferably as ⁇ -SiC.
  • films containing SiC These form a SiC ceramic precursor, which should preferably be formed from ⁇ -SiC, which can then be obtained by sintering the SiC particles during in-situ thermal treatment of the component base body. In this / these film (s) no diamond crystals are then included. These and the wear protection Coating film (s) may then be laminated together and then subjected to the thermal treatment. In this case, a plastic deformation can be made in advance, with which the shape of the finished component to be manufactured can be specified.
  • the films may be cut, stamped or drilled prior to lamination to obtain the desired shape of a green body.
  • the diamond crystals used in the invention should have an average particle size in the range 2 to 50 microns.
  • a component body or a SiC ceramic precursor should be used, in the free carbon or even by conversion of an organic binder-free carbon is contained in a proportion of 3 to 15 vol .-%, when the
  • Component body is infiltrated together with the / the layer (s).
  • a component base body can also be densely sintered SiC, which is readily wettable when infiltrated by silicon.
  • component main bodies which are fiber-reinforced it is also possible to use or produce component main bodies which are fiber-reinforced. It can be used in accordance with the known from the prior art for such materials manufacturing process.
  • a component provided with a wear protection coating can be advantageous for mechanical seals be used.
  • the wear protection coating can be obtained with a defined layer thickness and consistency.
  • the wear protection coating can be formed only on surface areas of a component that require the respective functionality.
  • a component base body obtained in this way has a pore volume which has 40% of the volume of the component main body.
  • films are produced with divergent proportions of SiC and diamond crystals.
  • One film is formed with 40% by mass of SiC and 40% by mass of diamond crystals and a second film with 80% by mass of diamond crystals, the remainder being organic binders.
  • the organic bond used was a mixture with 43% by volume polyvinyl butyral, 27% by volume triethylene glycol (commercially available from Sigma-Aldrich, Steinheim, DE under the designation PVB and TEG) and 8VoI.
  • -% Menhaden fish oil also available as MFO from Sigma -Aldrich, Steinheim, DE under MFO
  • the vol .-% data are based on the solid.
  • the films were cut to a format 60 * 60 mm and placed on the component body made of SiC and laminated with a pressing tool at a temperature of about 100 0 C. It had a pressure below 3 MPa. By lamination, the films were bonded to the organic binder. The film with the higher diamond content was on the second film and arranged on a surface of the component body.
  • the thus prepared semi-finished product was placed on annular wicks of porous SiC. Silicon was used in these wicks in advance. Silicon was present with a mass that is a mass of 50% of the semifinished product. Wicks and semi-finished products were then placed in a graphite crucible and placed in an oven. ner heat treatment up to a temperature of 850 ° C at a heating rate of 2 K / min subjected. It was carried out at a pressure of 10 ⁇ 2 mbar and in an argon atmosphere. The organic binder was pyrolyzed. Thereafter, the temperature was increased to 1550 0 C, while maintaining a heating rate of 10 K / min. After a holding time of 30 minutes, a cooling and the component could be removed from the oven.
  • the component produced in this way is characterized by the fact that its essential volume properties correspond to those of SiSiC.
  • the wear protection coating Through the upper layer of the wear protection coating outstanding hardness and improved wear protection can be achieved, which correspond to that of polycrystalline SiC-bonded diamond materials.
  • the anti-wear coating thus formed tion is firmly connected to ' the component body.
  • the film produced according to Example 1 is laminated to a sintered SSiC component body. And subjected to just such a heat treatment. After the infiltration, the temperature was carried out at 1500 0 C and over a period of 45 min annealing. In this case, the remaining silicon in the layer almost completely changed to SiC, so that the residual silicon content was less than 1%.
  • the component produced in this way is also distinguished by the volume properties achievable equivalent to SiC and a hardness of the wear protection coating ⁇ 35 GPa, as well as an increased wear resistance comparable to that of polycrystalline SiC-bonded diamond material.
  • the wear protection coating is permanently and very well bonded to the component body.
  • Diamond crystals having an average particle size of 15 ⁇ m were dispersed in acetone in a stirrer under the influence of ultrasound and admixed with 15% by weight of phenolic resin. The mixture was dried in a rotary evaporator and then sieved with a sieve (mesh size ⁇ 60 ⁇ m.) A prefabricated SiSiC (infiltrated) plate was placed in a die and the dried granules (diamond + phenolic resin) added to the die The component was then removed from the pressing tool and then subjected to a heat treatment as follows. heated from 1 K / min to 120 0 C and held this temperature for 6 h to achieve a cure.
  • pyrolysis was carried out for further heating at a heating rate of 2 K / min up to 600 0 C in an argon atmosphere.
  • the further process steps correspond to the thermal treatment, as used in Examples 1 and 2. It was infiltrated at 1550 0 C and then held for the reaction of the residual silicon, a temperature of 1500 0 C over a period of 1 h.

Abstract

The invention relates to a method for producing components with a wear-resistant coating, to a component produced in this way and the use thereof. The aim of the invention is to provide wear-resistant components that can be cost-effectively and flexibly produced. According to the invention, the surface of a component base body consisting of an SiC ceramic, carbon-fibre reinforced carbon or an SiC ceramic precursor is coated with at least one layer containing an organic binding agent and diamond crystals. The coated component base body is subjected to a thermal treatment in an inert atmosphere or under vacuum conditions to obtain the thermal decomposition of the organic binding agent, thus forming carbon. Simultaneously or subsequently an infiltration using silicon or a silicon alloy is carried out at a temperature that lies above the melting temperature of silicon or the silicon alloy and below 1,650 °C, likewise in an inert atmosphere or under vacuum conditions. During said infiltration the carbon that has been formed and/or a small fraction of the diamond reacts with the silicon to produce ß-SiC and the pores are filled with silicon or the silicon alloy, forming a wear-resistant coating that contains diamond crystals and is bonded to the ß-SiC.

Description

Verfahren zur Herstellung von Bauteilen mit einer Verschleißschutzbeschichtung, ein so hergestelltes Bauteil sowie dessen VerwendungProcess for the production of components with a wear protection coating, a component thus produced and its use
Die Erfindung betrifft ein Verfahren zur Herstellung von Bauteilen mit einer Verschleißschutzbeschichtung, ein so hergestelltes Bauteil sowie dessen Verwendung.The invention relates to a method for producing components with a wear-resistant coating, a component produced in this way, and the use thereof.
So werden für die Herstellung von Gleitringdichtungen, die ohne Schmiermittel oder mit Mangelschmierung betrieben werden sollen, SiC-Keramiken, die mit Diamantschichten versehen sind, deren Schichtdicke bei 5 bis 20 μm liegt, eingesetzt. Diese Schichten neigen aber bei extremen Einsatzbedingungen zum Abplatzen und führen dann dazu, dass die Funktionalität solcher Dichtungen nicht mehr gegeben ist. Solche Diamantschichten werden dabei durch ein CVD- oder PVD- Verfahren unter Vakuumbedingungen abgeschieden. Es ist auch bekannt einen Kompositwerkstoff mit Diamantkristallen und einer SiC-Keramik, der mit Silici- um infiltriert worden ist, für die Herstellung von Schneidwerkzeugen einzusetzen. Dies ist in EP 0 010 257 Bl und EP 0 056 596 Al beschrieben.Thus, for the production of mechanical seals, which are to be operated without lubricant or with deficient lubrication, SiC ceramics, which are provided with diamond layers whose layer thickness is 5 to 20 microns, used. However, these layers tend to flake off under extreme conditions of use and then result in the functionality of such seals no longer being present. Such diamond layers are deposited by a CVD or PVD method under vacuum conditions. It is also known to use a composite material with diamond crystals and a SiC ceramic, which has been infiltrated with silicon, for the production of cutting tools. This is described in EP 0 010 257 Bl and EP 0 056 596 A1.
Gemäß der EP 0 010 257 Bl entnehmbaren technischen Lehre sollen solche Werkzeuge vollständig aus Diamantkristallen, SiC und infiltriertem Silicium gebil- det sein. Bei der Herstellung soll so vorgegangen werden, dass eine Mischung aus Diamant und einem kohlenstoffhaltigen Material eingesetzt werden soll. Die Oberfläche der Diamantkristalle soll zusätzlich mit einem Überzug aus kohlenstoffhaltigem Material verse- hen worden sein. Ein solches kohlenstoffhaltiges Material soll sich bei einer Temperatur unterhalb 1400 0C zersetzen und dann freier nichtdiamantartiger Kohlenstoff vorliegen. Nachfolgend soll dann eine Infiltration mit Silicium erfolgen, bei der Poren ge- schlössen und SiC reaktiv gebildet werden soll. Das gesamte Volumen eines so hergestellten Werkzeugs ist dann mit Diamant, SiC und Silicium ausgefüllt. Die Herstellung ist dabei recht aufwändig, kostenintensiv und die Eigenschaften dieser Werkzeuge werden aus- schließlich durch den einen Werkstoff bestimmt.According to the technical teaching of EP 0 010 257 B1, such tools should be formed entirely of diamond crystals, SiC and infiltrated silicon. During production, the procedure is to use a mixture of diamond and a carbonaceous material. The surface of the diamond crystals should additionally have been provided with a coating of carbonaceous material. Such a carbonaceous material should decompose at a temperature below 1400 0 C and then be present free non-diamond-like carbon. Subsequently, an infiltration with silicon is to take place, in which pores are closed and SiC is to be formed reactive. The entire volume of a tool thus produced is then filled with diamond, SiC and silicon. The production is quite complex, cost-intensive and the properties of these tools are determined exclusively by the one material.
Bei der aus EP 0 056 596 Al bekannten technischen Lösung sollen zwei unterschiedliche Dispersionen, die mit unbeschichteten Diamantkristallen, reinem Kohlen- stoff und Parafin gebildet sind sowie eine Mischung, die mit Kohlenstoff, Parafin und einem Füller (α- oder ß-SiC) eingesetzt werden.In the technical solution known from EP 0 056 596 A1, two different dispersions, which are formed with uncoated diamond crystals, pure carbon and paraffin, and a mixture which is mixed with carbon, paraffin and a filler (α- or β-SiC) are used become.
Diese sollen in eine Form durch Pressen gebracht wer- den. Dann erfolgt bei einer Wärmebehandlung im Vakuum die vollständige Entfernung des Parafins, das dabei verdampft werden soll.These are to be brought into a mold by pressing. Then, in a heat treatment in vacuum, the complete removal of the paraffin, which is to be evaporated.
Bei einer Infiltration mit flüssigem Silicium sollen ß-SiC mit dem Kohlenstoff gebildet, Poren gefüllt und ein Körper gesintert werden, der aus zwei oder drei unterschiedlichen Werkstoffen in unterschiedlichen Bereichen gebildet ist. Dabei kann in Bereichen ein voneinander abweichender Anteil an Diamant oder einIn liquid silicon infiltration, β-SiC is formed with the carbon, pores are filled, and a body is sintered, formed of two or three different materials in different regions. In this case, in areas a divergent proportion of diamond or a
Bereich, der ausschließlich aus α-SiC, als Füller gebildet ist, vorhanden sein.Area, which is formed exclusively of α-SiC, as filler, be present.
Der Aufwand für die Herstellung ist dabei recht hoch, was auch durch den Aufwand für die Entfernung des Parafins hervorgerufen wird. Für eine homogene Ausbildung der einzelnen Werkstoffe ist eine gleichmäßige Verteilung, insbesondere des reinen Kohlenstoffs, und deren Einhaltung im gesamten Prozess erforderlich.The cost of production is quite high, which is also caused by the effort for the removal of the paraffin. Homogeneous distribution of the individual materials requires uniform distribution, in particular of pure carbon, and compliance throughout the process.
Die einmal durch das Pressen vorgegebene Form kann später nicht mehr, zumindest jedoch nur mit sehr hohem Aufwand verändert werden. Jedes einzelne Bauteil muss aufwändig in dieser Form hergestellt werden. Al- Ie enthaltenen Komponenten müssen thermisch behandelt und dabei auch gesintert werden.The once given by the pressing mold can not be changed later, but at least only with great effort. Every single component has to be elaborately manufactured in this form. All contained components must be thermally treated and also sintered.
Es ist daher Aufgabe der Erfindung verschleißbeständige Bauteile zur Verfügung zu stellen, die kosten- günstig und flexibel hergestellt werden können.It is therefore an object of the invention to provide wear-resistant components that can be produced inexpensively and flexibly.
Erfindungsgemäß kann dabei die Herstellung solcher Bauteile mit einem Verfahren, das die Merkmale des Anspruchs 1 aufweist, erreicht werden. Ein so herge- stelltes Bauteil ist mit dem Anspruch 15 definiert. Eine vorteilhafte Verwendung ist im Anspruch 21 ge- nannt. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung können mit in untergeordneten Ansprüchen bezeichneten Merkmalen erreicht werden.According to the invention, the production of such components can be achieved by a method having the features of claim 1. A component produced in this way is defined by claim 15. An advantageous use is defined in claim 21. Nannt. Advantageous embodiments and further developments of the invention can be achieved with features described in the subordinate claims.
Bei der Durchführung des erfindungsgemäßen Verfahrens wird ein Bauteilgrundkörper mit einer Verschleiß- schutzbeschichtung versehen. Diese wird mit mindestens einer Schicht, bevorzugt aber mehr als einer Schicht gebildet. Als Bauteilgrundkörper soll einer, der aus einer SiC-Keramik oder ein aus kohlenstofffaserverstärktem Kohlenstoff gebildeter eingesetzt werden. Es kann aber auch ein SiC-Keramikvorprodukt, beispielsweise mindestens eine Folie, die mit pulver- förmigem SiC gebildet ist, hierfür eingesetzt werden.In carrying out the method according to the invention, a component base body is provided with a wear protection coating. This is formed with at least one layer, but preferably more than one layer. The component body is one which is made of a SiC ceramic or a carbon fiber reinforced carbon. However, it is also possible to use a SiC ceramic precursor, for example at least one film which is formed with powdery SiC, for this purpose.
Die mindestens eine oder auch mehrere Schichten für die Ausbildung der Verschleißschutzbeschichtung kann mit einem organischen Binder, pulverförmigem SiC und Diamantkristallen ausgebildet werden. Der Anteil an Diamantkristallen sollte dabei mindestens 30 Vol.-% in einer ausgebildeten Schicht der Beschichtung betragen. Die Oberfläche des Bauteilgrundkörpers soll mit diesen Komponenten beschichtet werden, wobei auf hierfür geeignete Möglichkeiten noch zurück zu kommen sein wird.The at least one or more layers for the formation of the wear protection coating can be formed with an organic binder, powdery SiC and diamond crystals. The proportion of diamond crystals should be at least 30% by volume in a formed layer of the coating. The surface of the component body is to be coated with these components, which will still be possible to come back for this purpose.
Nach der Beschichtung wird eine thermische Behandlung in einer inerten Atmosphäre (z.B. Argon) oder unter Einhaltung von Vakuumbedingungen bei einer Temperatur unterhalb von 1550 0C, bevorzugt unterhalb 1400 0C durchgeführt. Dabei erfolgt bei Temperaturen ab ca. 250 0C eine Zersetzung des organischen Binders in gasförmige Komponenten, die abgezogen werden können, und in freien Kohlenstoff, der dann homogen verteilt in der Schicht vorliegt. Gleichzeitig oder nachfolgend zu dieser thermischen Behandlung wird eine Infiltration mit Silicium oder einer Siliciumlegierung, deren Siliciumgehalt hoch sein soll, durchgeführt. Dabei muss das Silicium oder die Siliciumlegierung schmelzflüssig vorliegen und wieder in einer inerten Atmosphäre oder bei Vakuumbedingungen vorgegangen werden. Um eine Umwandlung der Diamantkristalle in Graphit zu vermeiden, sollte die maximale Temperatur von 1650 0C dabei auch beachtet werden. In dieser Verfahrensstufe wird mit dem vorab freigesetzten Kohlenstoff und Silicium zusätzliches ß-SiC gebildet und mit Silicium und/oder einem der ggf. vorhandenen Legierungsbestandteile werden ggf. noch vorhandene Poren in der einen oder in mehreren Schicht (en) gefüllt. Die Diamantkristalle können so mit ß-SiC gebunden werden, so dass ein fester dauerhafter sicherer Verbund mit der Oberfläche des Bauteilgrundkörpers ohne zusätzliche Maßnahmen und Verfahrensschritte erreicht werden kann. Abplatzungen können vermieden werden.After the coating, a thermal treatment in an inert atmosphere (eg argon) or in compliance with vacuum conditions at a temperature below 1550 0 C, preferably below 1400 0 C is performed. At temperatures above 250 ° C., decomposition of the organic binder into gaseous components, which can be removed, takes place, and into free carbon, which is then distributed homogeneously in the layer. Simultaneously or subsequently to this thermal treatment, infiltration with silicon or a silicon alloy whose silicon content is to be high is carried out. In this case, the silicon or the silicon alloy must be molten and proceed again in an inert atmosphere or under vacuum conditions. In order to avoid a conversion of the diamond crystals into graphite, the maximum temperature of 1650 0 C should also be considered. In this process step, additional β-SiC is formed with the previously released carbon and silicon, and with silicon and / or one of the alloy constituents which may be present, any remaining pores in the one or more layers are optionally filled. The diamond crystals can thus be bonded with β-SiC, so that a solid permanent secure bond with the surface of the component body can be achieved without additional measures and process steps. Chipping can be avoided.
Dies kann weiter verbessert werden, indem weitere Schichten die Verschleißschutzbeschichtung bilden. Dabei sollten die Schichten so ausgebildet sein, dass der Anteil an darin enthaltenen körnigen Diamantkristallen ausgehend von der beschichteten Oberfläche des Bauteilgrundkörpers von Schicht zu Schicht ansteigt.This can be further improved by further layers forming the wear protection coating. In this case, the layers should be formed so that the proportion of granular diamond crystals contained therein, starting from the coated surface of the component body increases from layer to layer.
Vor der Infiltration sollte eine Porosität von min- destens 20 %, bevorzugt mindestens 25 % und besonders bevorzugt von mindestens 30 % der Schicht (en) eingehalten worden sein.Before infiltration, a porosity of at least 20%, preferably at least 25%, and more preferably at least 30% of the layer (s) should have been maintained.
Wird eine Verschleißschutzbeschichtung mit zwei Schichten gebildet kann die unmittelbar auf der Oberfläche des Bauteilgrundkörpers aufgebrachte Schicht, als eine Zwischenschicht mit 10 bis 40 Vol.-% Dia- mantkristalle und 60 bis 90 Vol.-% ß-SiC sowie eine darauf ausgebildete äußere Deckschicht mit 30 bis 70 Vol.-% Diamantkristallen und 30 bis 70 Vol.-% ß-SiC gebildet sein.If a wear protection coating with two layers is formed, the layer applied directly to the surface of the component main body, as an intermediate layer with 10 to 40 vol.% diamond crystals and 60 to 90 vol.% .beta.-SiC and an outer cover layer formed thereon with 30 to 70 vol.% of diamond crystals and 30 to 70 vol. SiC be formed.
In der/den Schicht (en) kann optional auch ein Silicid oder ein silicidbildendes Element (z.B. Mo) mit Anteilen zwischen 0 bis 10 Vol.% eingesetzt werden. Da- durch kann beispielsweise die für die Infiltration erforderliche Temperatur herab gesetzt und eine erhöhte Temperaturbeständigkeit erreicht werden. SiIi- cidbildende Elemente, wie Fe, Co oder Ni sollten dagegen vermeiden werden, da sie der Umwandlung von Di- amant zu Graphit förderlich sind.Optionally, a silicide or a silicide-forming element (e.g., Mo) may also be employed in the layer (s) at levels of from 0 to 10% by volume. As a result, for example, the temperature required for the infiltration can be lowered and an increased temperature resistance can be achieved. On the other hand, silicon-forming elements, such as Fe, Co or Ni, should be avoided since they are conducive to the conversion of diamant to graphite.
Als weitere Elemente können neben Silicium auch Ti, W, Zr, Hf oder V eingesetzt werden, die die für die Infiltration erforderliche Temperatur herabsetzen und auch harte Carbide bilden können.In addition to silicon, Ti, W, Zr, Hf or V can also be used as further elements, which reduce the temperature required for infiltration and can also form hard carbides.
Die Verschleißschutzbeschichtung sollte mit einer Schichtdicke von 0,1 bis 3 mm ausgebildet werden. Als Bauteilgrundkörper kann einer aus RSiC, LPSSiC, SSiC und/oder SiSiC, der überwiegend aus kostengünstigem α-SiC gebildet ist, eingesetzt werden. Der Anteil an α-SiC sollte mindestens 70 Vol.-% betragen.The wear protection coating should be formed with a layer thickness of 0.1 to 3 mm. As a component body, one of RSiC, LPSSiC, SSiC and / or SiSiC, which is formed predominantly of inexpensive α-SiC, are used. The proportion of α-SiC should be at least 70% by volume.
Die Beschichtung kann durch Spritzguss, Tauchen Pressen, Heißgießen oder elektrophoretische Abscheidung ausgebildet werden.The coating can be formed by injection molding, dipping pressing, hot casting or electrophoretic deposition.
Insbesondere beim Tauchen sollte ein Bauteilgrundkörper aus porösem SiC, in dem bevorzugt weiterer freier Kohlenstoff enthalten ist, eingesetzt werden. Die BeSchichtung kann dabei mit einer Suspension erreicht werden, in der neben dem organischen Binder, Diamantkristalle und ggf. auch pulverförmiges SiC sowie eine Flüssigkeit enthalten sind, in der der noch enthaltene Binder des Bauteilgrundkörpers, soweit dieser vor- ab nicht pyrolisiert worden ist, nicht gelöst werden kann. Die Suspension kann dabei durch wirkende Kapillarkräfte aufgenommen und eine Schicht ausgebildet werden. Die vorab beschriebene thermische Behandlung kann dann im Anschluss durchgeführt werden.In particular, when diving a component body of porous SiC, in which preferably further free carbon is included, should be used. The coating can be achieved with a suspension are in addition to the organic binder, diamond crystals and possibly also powdery SiC and a liquid are contained, in which the still contained binder of the component body, as far as it has not been pyrolyzed before, can not be solved. The suspension can be absorbed by acting capillary forces and a layer can be formed. The thermal treatment described above can then be carried out subsequently.
Als geeignete organische Binder für Diamant und zur Ausbildung der Beschichtung haben sich Phenolharze oder auch Stärke herausgestellt.Suitable organic binders for diamond and to form the coating phenolic resins or starch have been found.
In besonders vorteilhafter Form kann eine Verschleiß- schutzbeschichtung auch mit Folien auf Bauteilgrundkörpern ausgebildet werden. Dabei kann eine oder es können auch mehrere Folien übereinander unter Ausübung von Druckkraft und bei Erwärmung auf die jewei- lige Oberfläche eines Bauteilgrundkörpers auflaminiert und im Anschluss dann die bereits vorab beschriebene thermische Behandlung mit Infiltration durchgeführt werden. Die Folien enthalten dabei als Komponenten organischen Binder und Diamantkristalle, was auch mit unterschiedlichen Anteilen in einzelnen Folien möglich ist. Optional kann auch Sic, bevorzugt als ß-SiC enthalten sein.In a particularly advantageous form, a wear protection coating can also be formed with films on component main bodies. In this case, one or more films can be laminated on top of one another under the exertion of compressive force and when heated to the respective surface of a component main body and then the infiltration thermal treatment already described above can be carried out. The films contain organic binder and diamond crystals as components, which is also possible with different proportions in individual films. Optionally, Sic may also be present, preferably as β-SiC.
In einer weiteren Alternative kann aber auch mit mit SiC enthaltenden Folien gearbeitet werden. Diese bilden ein SiC-Keramikvorprodukt, das bevorzugt aus α- SiC gebildet sein soll, mit dem dann bei der thermischen Behandlung in-situ der Bauteilgrundkörper durch Sinterung der SiC-Partikel erhalten werden kann. In dieser/diesen Folie (n) sind dann keine Diamantkristalle enthalten. Diese und die die Verschleißschutz- beschichtung bildende (n) Folie (n) können dann zusammen laminiert und danach der thermischen Behandlung unterzogen werden. Dabei kann vorab noch eine plastische Verformung vorgenommen werden, mit der die Form des fertig herzustellenden Bauteils vorgegeben werden kann.In a further alternative, however, it is also possible to work with films containing SiC. These form a SiC ceramic precursor, which should preferably be formed from α-SiC, which can then be obtained by sintering the SiC particles during in-situ thermal treatment of the component base body. In this / these film (s) no diamond crystals are then included. These and the wear protection Coating film (s) may then be laminated together and then subjected to the thermal treatment. In this case, a plastic deformation can be made in advance, with which the shape of the finished component to be manufactured can be specified.
Die Folien können vor dem Laminieren geschnitten, gestanzt oder gebohrt werden, um die gewünschte Form eines Grünkörpers zu erhalten.The films may be cut, stamped or drilled prior to lamination to obtain the desired shape of a green body.
Die bei der Erfindung eingesetzten Diamantkristalle sollten eine mittlere Partikelgröße im Bereich 2 bis 50 μm aufweisen.The diamond crystals used in the invention should have an average particle size in the range 2 to 50 microns.
Bei der Erfindung sollten Bauteilgrundkörper oder ein SiC-Keramikvorprodukt eingesetzt werden, in dem freier Kohlenstoff oder auch durch Umwandlung eines organischen Binders frei gesetzter Kohlenstoff mit einem Anteil von 3 bis 15 Vol.-% enthalten ist, wenn derIn the invention, a component body or a SiC ceramic precursor should be used, in the free carbon or even by conversion of an organic binder-free carbon is contained in a proportion of 3 to 15 vol .-%, when the
Bauteilgrundkörper gemeinsam mit der/den Schicht (en) infiltriert wird.Component body is infiltrated together with the / the layer (s).
Ein Bauteilgrundkörper kann aber auch dicht gesinter- tes SiC sein, das bei der Infiltration durch Silicium gut benetzbar ist.However, a component base body can also be densely sintered SiC, which is readily wettable when infiltrated by silicon.
Bei der Erfindung können auch Bauteilgrundkörper eingesetzt oder hergestellt werden, die faserverstärkt sind. Dabei kann gemäß den aus dem Stand der Technik für solche Werkstoffe bekannte Herstellungsverfahren zurück gegriffen werden.In the invention, it is also possible to use or produce component main bodies which are fiber-reinforced. It can be used in accordance with the known from the prior art for such materials manufacturing process.
Wegen der guten Verschleiß- und Gleiteigenschaften kann ein mit einer Verschleißschutzbeschichtung versehenes Bauteil vorteilhaft für Gleitringdichtungen eingesetzt werden.Because of the good wear and sliding properties, a component provided with a wear protection coating can be advantageous for mechanical seals be used.
Bei der Herstellung erfindungsgemäßer Bauteile kann zumindest nahezu eine Dimensionsänderung, die übli- cherweise beim Sintern auftritt, vermieden werden. Durch die Infiltration tritt keine zusätzliche Verformung oder Dimensionsänderung auf. Die Verschleiß- schutzbeschichtung kann mit definierter Schichtdicke und Konsistenz erhalten werden.In the production of components according to the invention, at least almost a dimensional change, which usually occurs during sintering, can be avoided. The infiltration does not cause any additional deformation or dimensional change. The wear protection coating can be obtained with a defined layer thickness and consistency.
Die Verschleißschutzbeschichtung kann dabei lediglich auf Oberflächenbereichen eines Bauteils ausgebildet sein, die die jeweilige Funktionalität erfordern.The wear protection coating can be formed only on surface areas of a component that require the respective functionality.
Nachfolgend soll die Erfindung beispielhaft näher erläutert werden.The invention will be explained in more detail by way of example in the following.
Beispiel 1example 1
Es wird pulverförmiges SiC mit einer mittleren Granulatgröße im Bereich 200 bis 300 μm für eine Herstellung einer SiSiC typischen Zusammensetzung von 60 Masse-% α-SiC (d5o = 60 μm) , 30 Masse-% α-SiC (d5o = 2 μm) und einem effektiven Anteil an Kohlenstoff von 5 Masse-% eingesetzt und mit dem Anteil an organischem Binder von 10 Masse-% werden Platten in einer Größe von 60*60*10 mm durch Pressen hergestellt. Diese Platten werden einer Wärmebehandlung in einer Argo- natmoshäre unterzogen, um die Kohlenstoffrückstände aus dem organischen Binder zu erzeugen. Die Platte ist aus SiC und dem Restkohlenstoff des organischen Binders gebildet. Ein so erhaltener Bauteilgrundkörper weist ein Porenvolumen auf, das 40 % des Volumens des Bauteilgrundkörpers aufweist. Aus pulverförmigem SiC mit einer mittleren Partikelgröße d50 = 20 μm und Diamantkristallen mit einer mittleren Partikelgröße d50 = 15 μm (Körnung zwischen 10 und 20 μm) sowie Zusätzen organischer Binder wer- den durch Foliengießverfahren keramische Folien mit einer Dicke von 100 μm hergestellt. Dabei werden Folien mit voneinander abweichenden Anteilen an SiC und Diamantkristallen hergestellt. Eine Folie ist dabei mit 40 Masse-% SiC und 40 Masse-% Diamantkristallen und eine zweite Folie mit 80 Masse-% Diamantkristallen gebildet, wobei der jeweilige Rest organischer Binder ist. Bei diesem Beispiel wurde als organischer Bindung eine Mischung mit 43 Vol.-% Polyvinylbutyral, 27 Vol.-% Triethylenglycol (die von der Sigma - Aldrich; Steinheim, DE unter der Bezeichnung PVB und TEG kommerziell erhältlich sind) und 8VoI. -% Menhaden Fischöl (ebenfalls als MFO von der Sigma -Aldrich; Steinheim, DE unter MFO erhältlich) eingesetzt, wobei die Vol.-%-Angaben auf den Feststoff bezogen sind.It is powdery SiC having an average granule size in the range 200 to 300 microns for a production of a SiSiC typical composition of 60 wt% α-SiC (d 5 o = 60 microns), 30 mass% α-SiC (d 5 o = 2 microns) and an effective proportion of carbon of 5 mass% and with the proportion of organic binder of 10 mass% plates are produced in a size of 60 * 60 * 10 mm by pressing. These plates are subjected to a heat treatment in an argon atmosphere to produce the carbon residues from the organic binder. The plate is formed of SiC and the residual carbon of the organic binder. A component base body obtained in this way has a pore volume which has 40% of the volume of the component main body. Powdery SiC with an average particle size d 50 = 20 μm and diamond crystals with an average particle size d 50 = 15 μm (grain size between 10 and 20 μm) and organic binder additives are used to produce ceramic films with a thickness of 100 μm by means of film casting. In this case, films are produced with divergent proportions of SiC and diamond crystals. One film is formed with 40% by mass of SiC and 40% by mass of diamond crystals and a second film with 80% by mass of diamond crystals, the remainder being organic binders. In this example, the organic bond used was a mixture with 43% by volume polyvinyl butyral, 27% by volume triethylene glycol (commercially available from Sigma-Aldrich, Steinheim, DE under the designation PVB and TEG) and 8VoI. -% Menhaden fish oil (also available as MFO from Sigma -Aldrich, Steinheim, DE under MFO), the vol .-% data are based on the solid.
Die Folien wurden auf ein Format 60 * 60 mm geschnitten und auf den Bauteilgrundkörper aus SiC aufgelegt und mit einem Presswerkzeug bei einer Temperatur von ca. 100 0C laminiert. Es wirkte ein Druck unterhalb 3 MPa. Durch das Laminieren wurden die Folien mit dem organischen Binder stoffschlüssig verbunden. Die Folie mit dem höheren Diamantanteil war dabei auf der zweiten Folie und diese auf einer Oberfläche des Bauteilgrundkörpers angeordnet.The films were cut to a format 60 * 60 mm and placed on the component body made of SiC and laminated with a pressing tool at a temperature of about 100 0 C. It had a pressure below 3 MPa. By lamination, the films were bonded to the organic binder. The film with the higher diamond content was on the second film and arranged on a surface of the component body.
Das so vorbereitete Halbzeug wurde auf ringförmige Dochte aus porösem SiC aufgelegt. In diese Dochte wurde vorab Silicium eingesetzt. Silicium war mit einer Masse vorhanden, die einer Masse von 50 % des Halbzeugs beträgt. Dochte und Halbzeug wurden dann in einem Graphittiegel eingesetzt und in einem Ofen ei- ner Wärmebehandlung bis zu einer Temperatur von 850 °C bei einer Heizrate von 2 K/min unterzogen. Dabei wurde bei einem Druck von 10 ~2 mbar und in einer Argonatmosphäre gearbeitet. Der organische Binder wurde dabei pyrolisiert. Danach wurde die Temperatur auf 1550 0C erhöht und dabei eine Heizrate von 10 K/min eingehalten. Nach einer Haltezeit von 30 min erfolgte eine Abkühlung und das Bauteil konnte aus dem Ofen entnommen werden.The thus prepared semi-finished product was placed on annular wicks of porous SiC. Silicon was used in these wicks in advance. Silicon was present with a mass that is a mass of 50% of the semifinished product. Wicks and semi-finished products were then placed in a graphite crucible and placed in an oven. ner heat treatment up to a temperature of 850 ° C at a heating rate of 2 K / min subjected. It was carried out at a pressure of 10 ~ 2 mbar and in an argon atmosphere. The organic binder was pyrolyzed. Thereafter, the temperature was increased to 1550 0 C, while maintaining a heating rate of 10 K / min. After a holding time of 30 minutes, a cooling and the component could be removed from the oven.
Bei dieser Wärmebehandlung wurde das Silicium aufgeschmolzen (Schmelztemperatur Si 1410 0C) . Mit gebildeter Schmelze wurde durch Kapillarkraftwirkung eine Infiltration erreicht. Es reagierten Kohlenstoffreste des Bauteilgrundkörpers aus SiC und Kohlenstoffreste der Folien mit dem geschmolzenen Silicium zu SiC. SiC-Partikel bzw. SiC-Partikel und Diamantkristalle werden durch Reaktion mit sekundären SiC-Partikeln verbunden. Das freie Porenvolumen wurde mit elementa- rem Silicium ausgefüllt. Es entstand ein keramischer Verbund, der überwiegend aus bekanntem SiC-Werkstosff SiSiC (siliciuminfiltriertes Silicium) gebildet ist. An einer Oberfläche ist die Verschleißschutzbeschich- tung mit SiC und Diamant mit einer Übergangsschicht mit geringerem Diamantgehalt zwischen der äußerenDuring this heat treatment, the silicon was melted (melting temperature Si 1410 0 C). With formed melt an infiltration was achieved by capillary force action. Carbon residues of the SiC body part and carbon residues of the molten silicon films reacted to SiC. SiC particles or SiC particles and diamond crystals are joined by reaction with secondary SiC particles. The free pore volume was filled with elemental silicon. The result was a ceramic composite, which is formed predominantly from known SiC material SiSiC (silicon-infiltrated silicon). On one surface is the anti-wear coating with SiC and diamond with a lower diamond transition layer between the outside
Schicht mit höherem Diamantgehalt auf der Oberfläche des Bauteilgrundkörpers ausgebildet.Layer with a higher diamond content formed on the surface of the component body.
Das so hergestellte Bauteil zeichnet sich dadurch aus, dass es in seinen wesentlichen Volumeneigenschaften dem von SiSiC entspricht. Insbesondere durch die obere Schicht der Verschleißschutzbeschichtung kann eine herausragende Härte und verbesserter Verschleißschutz erreicht werden, die dem von polykri- stallinen SiC-gebundenen Diamantwerkstoffen entsprechen. Die so ausgebildete Verschleißschutzbeschich- tung ist mit' dem Bauteilgrundkörper fest verbunden.The component produced in this way is characterized by the fact that its essential volume properties correspond to those of SiSiC. In particular, through the upper layer of the wear protection coating outstanding hardness and improved wear protection can be achieved, which correspond to that of polycrystalline SiC-bonded diamond materials. The anti-wear coating thus formed tion is firmly connected to ' the component body.
Beispiel 2Example 2
Die gemäß Beispiel 1 hergestellte Folie wird auf einen gesinterten SSiC Bauteilgrundkörper auflaminiert . Und einer ebensolchen Wärmebehandlung unterzogen. Im Anschluss an die Infiltration wurde die Temperatur auf 1500 0C und über einen Zeitraum von 45 min eine Temperung durchgeführt. Dabei wandelte sich in der Schicht das Restsilicium nahezu vollständig in SiC um, so dass der Restsiliciumanteil kleiner 1 % war.The film produced according to Example 1 is laminated to a sintered SSiC component body. And subjected to just such a heat treatment. After the infiltration, the temperature was carried out at 1500 0 C and over a period of 45 min annealing. In this case, the remaining silicon in the layer almost completely changed to SiC, so that the residual silicon content was less than 1%.
Das so hergestellte Bauteil zeichnet sich ebenfalls durch die äquivalent zu SiC erreichbaren Volumenei- genschaften und eine Härte der Verschleißschutzbe- schichtung ≥ 35 GPa sowie eine erhöhte mit der für polykristallinen SiC-gebundenen Diamantwerkstoff vergleichbare Verschleißbeständigkeit auf. Die Ver- schleißschutzbeschichtung ist dauerhaft und sehr gut haftend mit dem Bauteilgrundkörper verbunden.The component produced in this way is also distinguished by the volume properties achievable equivalent to SiC and a hardness of the wear protection coating ≥ 35 GPa, as well as an increased wear resistance comparable to that of polycrystalline SiC-bonded diamond material. The wear protection coating is permanently and very well bonded to the component body.
Beispiel 3Example 3
Diamantkristalle mit mittlerer Partikelgröße 15 μm wurden in Aceton in einem Rührer unter Einfluss von Ultraschall dispergiert und mit 15 Masse-% Phenolharz versetzt. Die Mischung wurde in einem Rotationsverdampfer getrocknet und dann mit einem Sieb (Machen- weite < 60 μm gesiebt. Eine vorgefertigte Platte aus SiSiC (infiltriert) wurde in ein Presswerkzeug eingelegt und das getrocknete Granulat (Diamant + Phenolharz) in das Werkzeug gegeben. Es wirkte dann ein Pressdruck von 50 MPa. Das Bauteil wurde dann aus dem Presswerkzeug entnommen und dann wie folgt einer Wärmebehandlung unterzogen. Dabei wurde mit einer Heiz- rate von 1 K/min bis auf 120 0C erwärmt und diese Temperatur über 6 h gehalten, um eine Aushärtung zu erreichen. Danach wurde zum weiteren Ausheizen mit einer Heizrate von 2 K/min bis auf 600 0C in einer Argonatmosphäre eine Pyrolyse durchgeführt. Die weiteren Verfahrensschritte entsprechen der thermischen Behandlung, wie sie bei den Beispielen 1 und 2 angewandt wurde. Es wurde bei 1550 0C infiltriert und dann für die Reaktion des Restsiliciums eine Temperatur von 1500 0C über einen Zeitraum von 1 h gehalten. Diamond crystals having an average particle size of 15 μm were dispersed in acetone in a stirrer under the influence of ultrasound and admixed with 15% by weight of phenolic resin. The mixture was dried in a rotary evaporator and then sieved with a sieve (mesh size <60 μm.) A prefabricated SiSiC (infiltrated) plate was placed in a die and the dried granules (diamond + phenolic resin) added to the die The component was then removed from the pressing tool and then subjected to a heat treatment as follows. heated from 1 K / min to 120 0 C and held this temperature for 6 h to achieve a cure. Thereafter, pyrolysis was carried out for further heating at a heating rate of 2 K / min up to 600 0 C in an argon atmosphere. The further process steps correspond to the thermal treatment, as used in Examples 1 and 2. It was infiltrated at 1550 0 C and then held for the reaction of the residual silicon, a temperature of 1500 0 C over a period of 1 h.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung von Bauteilen mit einer Verschleißschutzbeschichtung, bei dem ein Bauteilgrundkörper aus einer SiC-Keramik, koh- lenstofffaserverstärktem Kohlenstoff oder einem SiC-Keramikvorprodukt mit mindestens einer Schicht, die mit einem organischen Binder und Diamantkristallen gebildet ist, an der Oberflä- che beschichtet wird;1. A method for producing components with a wear protection coating, wherein a component base body made of a SiC ceramic, carbon fiber reinforced carbon or a SiC ceramic precursor having at least one layer, which is formed with an organic binder and diamond crystals, on the surface is coated;
der so beschichtete Bauteilgrundkörper in einer inerten Atmosphäre oder unter Einhaltung von Vakuumbedingungen einer thermischen Behandlung un- terzogen und dabei eine thermische Zersetzung des organischen Binders unter Bildung von Kohlenstoff erreicht wird;subjecting the thus-coated component base to thermal treatment in an inert atmosphere or under vacuum conditions, thereby achieving thermal decomposition of the organic binder to form carbon;
gleichzeitig oder nachfolgend wird eine Infilt- ration mit Silicium oder einer Siliciumlegie- rung, bei einer Temperatur oberhalb der Schmelztemperatur von Silicium oder der Siliciumlegie- rung und unterhalb von 1650 °C, ebenfalls in inerter Atmosphäre oder bei Einhaltung von Vaku- umbedingungen durchgeführt, bei der der gebildete Kohlenstoff und/oder ein kleiner Anteil an Diamant mit Silicium zu ß-SiC reagiert und Poren mit Silicium oder der Siliciumlegierung gefüllt werden, so dass eine Diamantkristalle enthalten- de mit dem ß-SiC gebundene Verschleißschutzschicht ausgebildet wird.simultaneously or subsequently, infiltration with silicon or a silicon alloy, at a temperature above the melting temperature of silicon or the silicon alloy and below 1650 ° C., is likewise carried out in an inert atmosphere or under the observation of vacuum conditions the carbon formed and / or a small proportion of diamond reacts with silicon to form β-SiC and pores are filled with silicon or the silicon alloy, so that a wear-resistant layer containing diamond crystals is formed which is bonded to the β-SiC.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die auf der Oberfläche des Bauteilgrundkörpers vor der Infiltration ausgebilde- te (n) Schicht (en) mit einer Porosität von mindestens 20 % ausgebildet wird/werden.2. The method according to claim 1, characterized in that on the surface of the component main body before the infiltration fran- te (n) layer (s) having a porosity of at least 20% is / are formed.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mehrere Schichten auf der Oberfläche des Bauteilgrundkörpers ausgebildet werden, und dabei der Anteil an Diamantkristall ausgehend von der Bauteilgrundköperoberfläche erhöht wird.3. The method according to claim 1 or 2, characterized in that a plurality of layers are formed on the surface of the component main body, and thereby the proportion of diamond crystal is increased starting from the Bauteilgrundköperoberfläche.
4. Verfahren nach einem der vorhergehenden Ansprü- che, dadurch gekennzeichnet, dass die Beschich- tung durch Tauchen, Spritzguss, Laminieren von Folie, Pressen, elektrophoretische Abscheidung oder Heißgießen aufgebracht wird.4. The method according to any one of the preceding claims, characterized in that the coating is applied by dipping, injection molding, lamination of film, pressing, electrophoretic deposition or hot casting.
5. Verfahren nach einem der vorhergehenden Ansprü- che, dadurch gekennzeichnet, dass auf die Oberfläche eines Bauteilgrundkörpers vor der thermischen Behandlung mindestens eine Diamantkristalle enthaltende Schicht gebildet wird.5. The method according to any one of the preceding claims, characterized in that on the surface of a component body prior to the thermal treatment at least one layer containing diamond crystals is formed.
6. Verfahren nach einem der vorhergehenden Ansprü- che, dadurch gekennzeichnet, dass mehrere6. The method according to any one of the preceding claims, characterized in that several
Schichten mit voneinander abweichenden Anteilen an Diamantkristallen ausgebildet werden.Layers are formed with divergent proportions of diamond crystals.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als SiC- Keramikvorprodukt mindestens eine SiC enthaltende von Diamantkristallen freie Folie eingesetzt wird, die mit mindestens einer Diamantkristalle enthaltenden Folie zusammen laminiert und dann der thermischen Behandlung unterzogen wird.7. The method according to any one of the preceding claims, characterized in that as SiC ceramic precursor at least one SiC-containing diamond crystal-free film is used, which is laminated together with at least one diamond crystal film and then subjected to the thermal treatment.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in einer Schicht neben organischem Binder und Diamant- kristallen mindestens ein Silizid, silizidbil- dendes oder carbidbildendes Element enthalten ist.8. The method according to any one of the preceding claims, characterized in that in a layer next to organic binder and diamond at least one silicide, silicide-forming or carbide-forming element is contained.
9. Verfahren nach einem der vorhergehenden Ansprü- che, dadurch gekennzeichnet, dass ein Bauteilgrundkörper aus porösem SiC, in dem freier Kohlenstoff enthalten ist, eingesetzt wird.9. The method according to any one of the preceding claims, characterized in that a component body of porous SiC, in which free carbon is contained, is used.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Bauteilgrundkörper aus porösem SiC in eine organischen Binder und Diamantkristalle enthaltende Suspension eingetaucht wird.10. The method according to claim 9, characterized in that the component base body of porous SiC is immersed in an organic binder and diamond crystals containing suspension.
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass eine Suspension, in der zusätzlich pulverförmiges SiC enthalten ist, ein- gesetzt wird.11. The method according to claim 9 or 10, characterized in that a suspension in which additionally powdery SiC is contained is used.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Bauteilgrundkörper aus R-SiC, LPSSiC, SSiC oder SiSiC eingesetzt wird; wobei der Bauteilgrundkörper überwiegend aus α-SiC gebildet ist.12. The method according to any one of the preceding claims, characterized in that a component body made of R-SiC, LPSSiC, SSiC or SiSiC is used; wherein the component main body is formed predominantly of α-SiC.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als organischer Binder ein Phenolharz oder eine Stärke eingesetzt wird. 13. The method according to any one of the preceding claims, characterized in that a phenolic resin or a starch is used as the organic binder.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Bauteilgrundkörper oder ein SiC-Keramikvorprodukt in dem freier Kohlenstoff mit einem Anteil von 3 bis 15 Masse-% enthalten ist, eingesetzt wird.14. The method according to any one of the preceding claims, characterized in that a component body or a SiC ceramic precursor is contained in the free carbon in a proportion of 3 to 15% by mass is used.
15. Bauteil mit Verschleißschutzbeschichtung hergestellt mit einem Verfahren nach einem der vor- hergehenden Ansprüche, dadurch gekennzeichnet, dass auf einer Oberfläche eines Bauteilgrundkörpers aus SiC oder kohlenstofffaserverstärktem Kohlenstoff mindestens eine Schicht, die mit mindestens 30 Masse-% Diamantkristallen, mindestens 30 Masse-% ß-SiC und 0 bis 10 Masse-% Si- liicum, einem Silizid und/oder einem Carbid mit einer Schichtdicke im Bereich 0,1 bis 3 mm ausgebildet ist. 15. Component with wear protection coating produced by a method according to one of the preceding hergehen claims, characterized in that on a surface of a component body of SiC or carbon fiber reinforced carbon at least one layer having at least 30% by mass of diamond crystals, at least 30% by mass of β-SiC and 0 to 10% by mass of silicum, a Silicide and / or a carbide is formed with a layer thickness in the range 0.1 to 3 mm.
16. Bauteil nach Anspruch 15, dadurch gekennzeichnet, dass die Schicht mit 30 bis 70 Masse-% Diamantkristalle und 70 bis 30 Masse-% ß-SiC gebildet ist.16. Component according to claim 15, characterized in that the layer with 30 to 70 mass% of diamond crystals and 70 to 30 mass% ß-SiC is formed.
17. Bauteil nach Anspruch 15 oder 16, dadurch ge- kennzeichnet, dass mindestens zwei Schichten die17. Component according to claim 15 or 16, character- ized in that at least two layers the
Verschleißschutzbeschichtung bilden, wobei der Anteil an in den Schichten enthaltenen Diamantkristallen in den Schichten ausgehend von der Oberfläche des Bauteilgrundkörpers ansteigt. Form wear protection coating, wherein the proportion of diamond crystals contained in the layers in the layers, starting from the surface of the component main body increases.
18. Bauteil nach Anspruch 17, dadurch gekennzeichnet, dass in einer auf der Oberfläche des Bauteilgrundkörpers ausgebildeten Zwischenschicht ein Anteil an Diamantkristallen zwischen 10 bis 40 Vol.-% und ein Anteil an ß-SiC zwischen 60 und 90 Vol.-% eingehalten ist.18. Component according to claim 17, characterized in that a proportion of diamond crystals between 10 to 40 vol .-% and a proportion of ß-SiC between 60 and 90 vol .-% is maintained in an intermediate layer formed on the surface of the component body.
19. Bauteil nach einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, dass der Bauteilgrundkörper aus R-SiC, LPSSiC, SSiC und/oder SiSiC gebildet ist. 19. Component according to one of claims 15 to 18, characterized in that the component base body of R-SiC, LPSSiC, SSiC and / or SiSiC is formed.
20. Bauteil nach Anspruch 19, dadurch gekennzeichnet, dass der Bauteilgrundkörper aus faserverstärktem SiC gebildet ist. 20. Component according to claim 19, characterized in that the component base body is formed from fiber-reinforced SiC.
21. Verwendung eines Bauteils hergestellt mit einem Verfahren nach einem der Ansprüche 1 bis 14 für Gleitringdichtungen . 21. Use of a component produced by a method according to one of claims 1 to 14 for mechanical seals.
PCT/DE2008/002121 2007-12-21 2008-12-15 Method for producing components with a wear-resistant coating, component produced in this way and use thereof WO2009080009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007063517.8 2007-12-21
DE102007063517A DE102007063517B3 (en) 2007-12-21 2007-12-21 Manufacturing wear-resistant silicon carbide- or carbon component, coats substrate with diamond crystals and binder, fires and infiltrates with silicon at high temperature

Publications (1)

Publication Number Publication Date
WO2009080009A1 true WO2009080009A1 (en) 2009-07-02

Family

ID=40149363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/002121 WO2009080009A1 (en) 2007-12-21 2008-12-15 Method for producing components with a wear-resistant coating, component produced in this way and use thereof

Country Status (2)

Country Link
DE (1) DE102007063517B3 (en)
WO (1) WO2009080009A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8757472B2 (en) 2007-07-17 2014-06-24 David Patrick Egan Method for joining SiC-diamond
CN104264455A (en) * 2014-09-24 2015-01-07 中国人民解放军国防科学技术大学 Low-cost preparation method of fiber surface silicon carbide coating
CN105506716A (en) * 2015-12-25 2016-04-20 苏州宏久航空防热材料科技有限公司 Preparation method for high-bonding wearproof composite coating

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010011173U1 (en) * 2010-08-09 2011-12-22 Eagleburgmann Germany Gmbh & Co. Kg Sliding ring with improved inlet properties
DE102011109573B3 (en) * 2011-08-04 2012-10-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Preparation of composite component used for mechanical sealing and drawing die, involves forming layer containing silicide, carbide, boride, carbonitride, nitride of metal or its alloy, organic binder and diamond crystals on substrate
DE102014201731B4 (en) 2014-01-31 2017-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Component made of ceramic material and method for its preparation
DE102015206241B4 (en) 2015-04-08 2018-10-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. SiC-diamond composite material and process for its production
EP3241815B1 (en) 2016-05-02 2019-11-13 Rolls-Royce High Temperature Composites Inc Reducing surface nodules in melt-infiltrated ceramic matrix composites
EP3241817B1 (en) 2016-05-02 2021-01-27 Rolls-Royce High Temperature Composites Inc Forming a surface layer on a ceramic matrix composite article
US10745325B2 (en) 2017-12-18 2020-08-18 Rolls-Royce High Temperature Composites, Inc. Protective layer for a ceramic matrix composite article
US11198651B2 (en) 2018-12-20 2021-12-14 Rolls-Royce High Temperature Composites, Inc. Surface layer on a ceramic matrix composite
US20210331985A1 (en) * 2020-04-28 2021-10-28 Ii-Vi Delaware, Inc. Ceramic substate with reaction-bonded silicon carbide having diamond particles
CN112408986A (en) * 2020-11-04 2021-02-26 南昌航空大学 Preparation method of SiC/SiC micro composite material with two-dimensional nano interface coating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4242106A (en) * 1979-01-02 1980-12-30 General Electric Company Composite of polycrystalline diamond and/or cubic boron nitride body/silicon carbide substrate
US4353953A (en) * 1978-12-29 1982-10-12 General Electric Company Integral composite of polycrystalline diamond and/or cubic boron nitride body phase and substrate phase
US20050025973A1 (en) * 2003-07-25 2005-02-03 Slutz David E. CVD diamond-coated composite substrate containing a carbide-forming material and ceramic phases and method for making same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6039641A (en) * 1997-04-04 2000-03-21 Sung; Chien-Min Brazed diamond tools by infiltration
US6410086B1 (en) * 1999-11-26 2002-06-25 Cerel (Ceramic Technologies) Ltd. Method for forming high performance surface coatings and compositions of same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4353953A (en) * 1978-12-29 1982-10-12 General Electric Company Integral composite of polycrystalline diamond and/or cubic boron nitride body phase and substrate phase
US4242106A (en) * 1979-01-02 1980-12-30 General Electric Company Composite of polycrystalline diamond and/or cubic boron nitride body/silicon carbide substrate
US20050025973A1 (en) * 2003-07-25 2005-02-03 Slutz David E. CVD diamond-coated composite substrate containing a carbide-forming material and ceramic phases and method for making same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8757472B2 (en) 2007-07-17 2014-06-24 David Patrick Egan Method for joining SiC-diamond
CN104264455A (en) * 2014-09-24 2015-01-07 中国人民解放军国防科学技术大学 Low-cost preparation method of fiber surface silicon carbide coating
CN105506716A (en) * 2015-12-25 2016-04-20 苏州宏久航空防热材料科技有限公司 Preparation method for high-bonding wearproof composite coating

Also Published As

Publication number Publication date
DE102007063517B3 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
DE102007063517B3 (en) Manufacturing wear-resistant silicon carbide- or carbon component, coats substrate with diamond crystals and binder, fires and infiltrates with silicon at high temperature
EP3380324B1 (en) 3-d printing of a ceramic component
EP0976698B1 (en) Method of producing a protective coating containing silicon carbide
EP0034328B1 (en) Process for producing shaped bodies based on silicon carbide
EP3687959A1 (en) Ceramic component
DE19736560C2 (en) Process for producing a porous body, body made of SiC, and use of the porous body
EP1314708B1 (en) Shaped body of fibre-reinforced composite materials with a segmented covering layer, preparation and use of the same
DE2010183A1 (en) Coated diamond
DE19710105A1 (en) Silicon carbide body reinforced with short graphite fibers
DE10014418C2 (en) Process for the production of a fiber-reinforced structural component and brake disk manufactured therefrom
EP1795513A1 (en) Method for the production of silicon carbide ceramic
EP1489331B1 (en) Metal- infiltrated, fiber-reinforced porous carbon friction body
DE102015223240A1 (en) Carbon-metal composite material
EP2308809A2 (en) Material, method for producing a material and use thereof
DE3116786C2 (en) Homogeneous silicon carbide molded body and process for its production
EP3687958A1 (en) Ceramic component
DE102011109573B3 (en) Preparation of composite component used for mechanical sealing and drawing die, involves forming layer containing silicide, carbide, boride, carbonitride, nitride of metal or its alloy, organic binder and diamond crystals on substrate
DE19706925A1 (en) Ceramic-metal composite body production
DE102006007552B4 (en) Process for coating bodies of graphite or carbon fiber reinforced carbon and bodies of graphite or carbon fiber reinforced carbon
DE102015206241B4 (en) SiC-diamond composite material and process for its production
DE10143015C2 (en) Process for the production of a composite material
DE102005045307B4 (en) Processing method for an open porous carbonaceous body
DE102015210831B4 (en) Process for producing a material in which diamond or cBN particles are embedded as hard material in a silicon nitride matrix
AT12389U1 (en) COMPOSITE MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
EP1876159B1 (en) Method for manufacturing a carbide ceramic contact body and carbide ceramic contact body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864700

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 08864700

Country of ref document: EP

Kind code of ref document: A1