WO2009078867A1 - Degreasing all purpose cleaning compositions and methods - Google Patents

Degreasing all purpose cleaning compositions and methods Download PDF

Info

Publication number
WO2009078867A1
WO2009078867A1 PCT/US2007/087884 US2007087884W WO2009078867A1 WO 2009078867 A1 WO2009078867 A1 WO 2009078867A1 US 2007087884 W US2007087884 W US 2007087884W WO 2009078867 A1 WO2009078867 A1 WO 2009078867A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
alkyl
glycol
ether
acid
Prior art date
Application number
PCT/US2007/087884
Other languages
French (fr)
Inventor
Georges Yianakopoulos
Patricia Pagnoul
Original Assignee
Colgate-Palmolive Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES07865793.9T priority Critical patent/ES2473615T3/en
Application filed by Colgate-Palmolive Company filed Critical Colgate-Palmolive Company
Priority to CA2709133A priority patent/CA2709133C/en
Priority to PCT/US2007/087884 priority patent/WO2009078867A1/en
Priority to DK07865793.9T priority patent/DK2245128T3/en
Priority to PL07865793T priority patent/PL2245128T3/en
Priority to AU2007362614A priority patent/AU2007362614B2/en
Priority to EP07865793.9A priority patent/EP2245128B1/en
Priority to NZ585853A priority patent/NZ585853A/en
Priority to US12/809,170 priority patent/US8765655B2/en
Priority to PT78657939T priority patent/PT2245128E/en
Priority to ARP080105498A priority patent/AR069783A1/en
Publication of WO2009078867A1 publication Critical patent/WO2009078867A1/en
Priority to EC2010010257A priority patent/ECSP10010257A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2041Dihydric alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2068Ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/36Organic compounds containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/43Solvents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/75Amino oxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/94Mixtures with anionic, cationic or non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2065Polyhydric alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2082Polycarboxylic acids-salts thereof

Definitions

  • This invention is directed to compositions of surfactant-based products containing one or more sequestering agents for the preparation of liquid cleaning compositions.
  • the cleaning compositions exhibit desirable cleansing properties including increased grease cutting.
  • the cleaning materials are made by diluting liquid or gelled materials to form a use solution.
  • the materials may have some soil removal properties but improving grease removal and hard surface cleaners is a continuing need and requirement. Further, the manufacture of materials that produce useful foam in the presence of large quantities of greasy soil is a continuing challenge for this marketplace.
  • a cleaning composition can be formulated with one or more anionic surfactants, one or more nonionic surfactants, one or more amine oxides, one or more sequestering agents and one or more glycolic solvents, which possesses increased grease-cutting performance.
  • the cleaning agent of this invention includes one or more anionic surfactants, one or more nonionic surfactants, one or more amine oxides, one or more sequestering agents and one or more glycolic solvents, which possess increased grease-cutting performance.
  • Another embodiment of the invention encompasses a grease-cutting cleaning agent including about 0.01 % to about 15% of one or more anionic surfactants, about 0.01 % to about 10% of one or more nonionic surfactant, about 0.01% to about 10% wt. of one or more amine oxides, about 0.01 % to about 10% of one or more sequestering agents, about 0.01% to about 10% of one or more glycol solvents, and optionally containing one or more additional ingredients.
  • Still another embodiment of the invention encompasses a method of cleaning a surface especially removing grease from a surface, including burnt on grease, which includes contacting the surface with a cleaning agent including one or more anionic surfactants, one or more nonionic surfactants, one or more amine oxides, one or more sequestering agents, one or more glycol solvents, which possess increased grease-cutting performance.
  • a cleaning agent including one or more anionic surfactants, one or more nonionic surfactants, one or more amine oxides, one or more sequestering agents, one or more glycol solvents, which possess increased grease-cutting performance.
  • the invention also encompasses a method of making a cleaning composition with superior grease-cutting performance, which includes combining about 0.01% to about 15% of one or more anionic surfactants, about 0.01% to about 10% of one or more nonionic surfactant, about 0.01% to about 10% of one or more amine oxides, about 0.01% to about 10% of one or more sequestering agents, about 0.01% to about 10% of one or more glycol solvents, and optionally containing one or more additional ingredients.
  • the present invention relates to a cleaning composition, which includes: wherein the composition surprisingly exhibits improved grease-cutting performance.
  • the pH is about 7 to about 14, about 8 to about 13 or about 10 to about 12, or 7, about 8, about 9, about 10, about 11, about 12, about 13, or about 14.
  • Suitable water-soluble non-soap, anionic surfactants include those surface- active or detergent compounds that contain an organic hydrophobic group containing generally 8 to 26 carbon atoms and in certain embodiments 10 to 18 carbon atoms in their molecular structure and at least one water-solubilizing group, which in certain embodiments is sulfonate group.
  • the hydrophobic group may include a C8-C22 alkyl, alkyl or acyl group.
  • Such surfactants are employed in the form of water- soluble salts and the salt-forming cation may be sodium, potassium, ammonium, magnesium and mono-, di- or tri-C2-C.3 alkanolammonium.
  • Suitable sulfonated anionic surfactants include higher alkyl mononuclear aromatic sulfonates such as the higher alkyl benzene sulfonates containing 10 to 16 carbon atoms in the higher alkyl group in a straight or branched chain, Cs-Cis alkyl toluene sulfonates and Cg-Ci5 alkyl phenol sulfonates.
  • the sulfonate surfactant is a linear alkyl benzene sulfonate having a high content of 3- (or higher) phenyl isomers and a correspondingly low content (well below 50%) of 2- (or lower) phenyl isomers, that is, wherein the benzene ring is attached in large part at the 3 or higher (for example, 4, 5, 6 or 7) position of the alkyl group and the content of the isomers in which the benzene ring is attached in the 2 or 1 position is correspondingly low.
  • Examples of materials are set forth in U.S. Pat. No. 3,320,174.
  • Suitable anionic surfactants include the olefin sulfonates, including long-chain alkene sulfonates, long-chain hydroxyalkane sulfonates or mixtures of alkene sulfonates and hydroxyalkane sulfonates.
  • olefin sulfonate detergents may be prepared in a known manner by the reaction of sulfur trioxide (SO3) with long-chain olefins containing 8 to 25, or 12 to 21 carbon atoms and having the formula: where R is a higher alkyl group of 6 to 23 carbons and R 1 is an alkyl group of 1 to 17 carbons or hydrogen to form a mixture of sulfones and alkene sulfonic acids which is then treated to convert the sul tones to sulfonates.
  • the olefin sulfonates contain from 14 to 16 carbon atoms in the R alkyl group and are obtained by sulfonating an ⁇ -olefin.
  • sulfosuccinic acid ester salts are esters of aliphatic alcohols such as saturated alkanols of 4 to 12 carbon atoms and are normally diesters of such alkanols.
  • alkali metal salts of the diesters of alcohols of 6 to 10 carbons atoms are utilized and in further embodiments, the diesters will be from octanol, such as 2-ethyl hexanol, and the sulfonic acid salt will be the sodium salt.
  • paraffin sulfonates containing, in various embodiments, 10 to 20 or 13 to 17 carbon atoms.
  • Primary paraffin sulfonates may be made by reacting long-chain alpha olefins and bisulfites and paraffin sulfonates having the sulfonate group distributed along the paraffin chain are shown in U.S. Pat. Nos. 2,503,280; 2,507,088; 3,260,744; 3,372,188; and German Patent 735,096.
  • certain illustrative embodiments utilize a magnesium salt of the G13-O17 paraffin or alkane sulfonates.
  • Another example of a useful anionic surfactant is a sodium salt of C42-C13 pareth sulfate.
  • the proportion of the nonsoap-anionic surfactant will be, in various embodiments, about 0.1 to about 15%, about 0.5 to about 10%, about 1 to about 8%, about 1.1 to about 7%, about 1.2 to about 5%, or about 1.2% by weight of the composition.
  • compositions of the invention also include at least one amine oxide.
  • the amine oxides are semi-polar nonionic surfactants, which include compounds and mixtures of compounds having the formula:
  • Ri is an alkyl, 2-hydroxyalkyl, 3-hydroxyalkyl, or 3-alkoxy-2- hydroxypropyl radical in which the alkyl and alkoxy, respectively, contain from 8 to 18 carbon atoms
  • R2 and R3 are each independently methyl, ethyl, propyl, isopropyl, 2-hydroxyethyl, 2-hydroxypropyl, or 3-hydroxypropyl (R 2 and R3 may be the same or different); and n is 0 to 10.
  • compositions of the present invention comprise an amine oxide of the formula:
  • R 11 C N (CH 2 ) n wherein Rn is an alkyl group having 9 to 19 carbon atoms and a is an integer of 1 to 4 and R9 and R 1 O are each independently methyl or ethyl.
  • Rn is an alkyl group having 9 to 19 carbon atoms and a is an integer of 1 to 4 and R9 and R 1 O are each independently methyl or ethyl.
  • the amine oxide may be, for example, a lauryol amine oxide, a cocoamido propyl amine oxide, a cocoamido propyl dimethyl amine oxide, a lauryl/myristil amidopropyl diethylamine oxide, a lauryl/myristyl amido propyl amine oxide or a mixture of any of the foregoing.
  • the amine oxide is present in an amount of about 0.1 to about 10%, about 0.2 to about 5 %, about 0.25 to about 3 %, about 0.3% or about 1.1 % of the composition.
  • Nonionic Surfactants are present in an amount of about 0.1 to about 10%, about 0.2 to about 5 %, about 0.25 to about 3 %, about 0.3% or about 1.1 % of the composition.
  • compositions of the present invention may include nonionic surfactants in addition to the amine oxides discussed above.
  • the water soluble nonionic surfactants useful for the present invention may include aliphatic ethoxylated nonionic surfactants, for example, those that are commercially well known and include the primary aliphatic alcohol ethoxylates and secondary aliphatic alcohol ethoxylates.
  • the length of the polyethenoxy chain can be adjusted to achieve the desired balance between the hydrophobic and hydrophilic elements.
  • the nonionic surfactant class also may include the condensation products of a higher alcohol (e.g., an alkanol containing about 8 to 16 carbon atoms in a straight or branched chain configuration) condensed with about 4 to about 20 moles of ethylene oxide, for example, lauryl or myristyl alcohol condensed with about 16 moles of ethylene oxide (EO), tridecanol condensed with about 6 to about 15 moles of EO, myristyl alcohol condensed with about 10 moles of EO per mole of myristyl alcohol, the condensation product of EO with a cut of coconut fatty alcohol containing a mixture of fatty alcohols with alkyl chains varying from 10 to about 14 carbon atoms in length and wherein the condensate contains either about 6 moles of EO per mole of total alcohol or about 9 moles of EO per mole of alcohol and tallow alcohol ethoxylates containing about 6 EO to about 11 EO per mole of alcohol.
  • Illustrative examples of the foregoing nomonic surfactants include, but are not limited to, the Neodol ® or Dobanol ® ethoxylates (Shell Co.), which are higher aliphatic, primary alcohol containing 9 to 15 carbon atoms, such as Cg-Cn alkanol condensed with about 4 to about 10 moles of ethylene oxide (Neodol 91-8 ® , Dobanol 91-8 ® , Neodol 91-5 ® ) or about 2.5 moles of ethylene oxide (Neodol 91-2.5 ® or Dobanol 91-2.5 ® , Ci 2 -C 13 alkanol condensed with about 6.5 moles ethylene oxide (Neodol 23-6.5 ® ), Ci 2- CiS alkanol condensed with about 12 moles ethylene oxide (Neodol 25-12 ® ), C14-C15 alkanol condensed with about 13 moles
  • Such ethoxamers have an HLB (hydrophobic lipophilic balance) value of about 8 to about 15 and give good O/W emulsification, whereas ethoxamers with HLB values below 7 contain less than 4 ethyleneoxide groups and tend to be poor emulsifiers and poor detergents.
  • HLB hydrophobic lipophilic balance
  • ethoxamers with HLB values below 7 contain less than 4 ethyleneoxide groups and tend to be poor emulsifiers and poor detergents.
  • the trade names "Neodol” and “Dobanol” can be used interchangeably to refer to the same compounds, with the respective trade names used according to the geographies in which they are available.
  • Additional satisfactory water soluble alcohol ethylene oxide condensates include, but are not limited to, the condensation products of a secondary aliphatic alcohol containing 8 to 18 carbon atoms in a straight or branched chain configuration condensed with 5 to 30 moles of ethylene oxide.
  • Examples of commercially available nonionic detergents of the foregoing type include C11-C15 secondary alkanol condensed with either 9 EO (Tergitol 15-S-9 ® ) or 12 EO (Tergitol 15-S-12 ® ) marketed by Union Carbide (USA).
  • the water soluble nonionic surfactants which can be utilized in this invention, also include aliphatic ethoxylated/propoxylated nonionic surfactants, such as those depicted by the formulas:
  • compositions of the present invention contain about 0.01 % to 10 %, or about 0.5% to 6 % of an nonionic surfactant. Sequestrants/ Sequestering Agents
  • the cleaning compositions of the invention may contain an organic or inorganic sequestrant or mixtures of sequestrants (also referred to as "sequestering agents").
  • the sequestrant is a sequestrant of metallic cations.
  • Organic sequestrants such as citric acid, the alkali metal salts of nitrilotriacetic acid (NTA), EDTA, alkali metal gluconates, polyelectrolytes such as a polyacrylic acid, and the like can be used in the compositions described herein.
  • sequestrants are organic sequestrants such as sodium gluconate due to the compatibility of the sequestrant with the formulation base.
  • the sequestering agents of the invention may also include an effective amount of a water-soluble organic phosphonic acid alkali metal salt, which has sequestering properties.
  • phosphonic acid alkali metal salts include low molecular weight compounds containing at least two anion-forming groups, at least one of which is a phosphonic acid group.
  • Such useful phosphonic acids include mono-, di-, tri- and tetra-phosphonic acids which can also contain groups capable of forming anions under alkaline conditions such as carboxy, hydroxy, thio and the like.
  • phosphonic acid alkali metal salts having the formulae:
  • the phosphonic acid may also include a low molecular weight phosphonopolycarboxylic acid such as one having about 2-4 carboxylic acid moieties and about 1-3 phosphonic acid groups.
  • Such acids include 1-phosphono-l- methylsuccinic acid, phosphonosuccinic acid and 2-phosphonobutane-l,2,4- tricarboxylic acid.
  • organic phosphonic acid sodium salts include 1- hydroxyethylidene-l,l-diphosphonic acid (CH 3 C(PO3Na 4 )2OH) and its sodium salt, available from Monsanto Industrial Chemicals Co., Missouri, USA.
  • Dequest ® 2016, a 58-62% aqueous solution
  • amino [tri(methylenephosphonic acid)] (N[CH 2 PO 3 Na 4 ]S) available from Monsanto as Dequest® 2000, a 50% aqueous solution
  • ethylenediamine [tetra(methylene-phosphonic acid)] available from Monsanto as Dequest® 2041, a 90% solid acid product
  • 2-phosphonobutane- 1,2,4- tricarboxylic acid available from Mobay Chemical Corporation, Inorganic Chemicals Division, Pittsburgh, Pa. as Bayhibit AM, a 45-50% aqueous solution.
  • the above-mentioned phosphonic acids can also be used in the form of water-soluble acid salts, particularly the alkali metal salts, such as sodium or potassium; the ammonium salts or the alkylol amine salts where the alkylol has 2 to 3 carbon atoms, such as mono-, di-, or tri-ethanolamine salts. If desired, mixtures of the individual phosphonic acids or their acid salts can also be used. Further useful phosphonic acids are discussed in U.S. Pat. No. 4,051,058, the disclosure of which is incorporated by reference herein. Of the phosphonic acids useful in the present invention, those that do not contain amino groups are preferred, since they produce substantially less degradation of the active chlorine source than do phosphonic acids including amino groups.
  • Sequestrants of the invention also include materials such as, for example, complex phosphate sequestrants, including sodium tripolyphosphate, sodium hexametaphosphate, and the like, as well as mixtures thereof.
  • Phosphates, the sodium condensed phosphate hardness sequestering agent component functions as a water softener, a cleaner, and a detergent builder.
  • Alkali metal (M) linear and cyclic condensed phosphates commonly have a M 2 OP 2 Os mole ratio of about 1:1 to 2:1 and greater.
  • Typical polyphosphates of this kind are sodium tripolyphosphate, sodium hexametaphosphate, sodium metaphosphate as well as corresponding potassium salts of these phosphates and mixtures thereof.
  • the particle size of the phosphate is not critical, and any finely divided or granular commercially available product can be employed.
  • Sodium tripolyphosphate is a preferred inorganic hardness sequestering agent for reasons of its ease of availability, low cost, and high cleaning power.
  • Sodium tripolyphosphate acts to sequester calcium and/ or magnesium cations, providing water softening properties. It contributes to the removal of soil from hard surfaces and keeps soil in suspension. It has little corrosive action on common surface materials and is low in cost compared to other water conditioners.
  • Sodium tripolyphosphate has relatively low solubility in water (about 14 wt%) and its concentration must be increased using means other than solubility.
  • phosphates being alkaline condensed phosphates (i.e., polyphosphates) such as sodium or potassium pyrophosphate, sodium or potassium tripolyphosphate, sodium or potassium hexametaphosphate, etc.; carbonates such as sodium or potassium carbonate; borates, such as sodium borate; etc. Solvents
  • Typical solvents useful for the present embodiments include aqueous soluble, miscible or immiscible.
  • Solvents can include aliphatic and aromatic hydrocarbons, chlorinated hydrocarbons, alcohols, ether compounds, fluorocarbon compounds, and other similar low molecular weight generally volatile liquid materials.
  • water is not a solvent but when used acts as a diluent or as a dispersing medium for the active materials. These materials can be used in solution or as a miscible mixture or as a dispersion of the solvent in the aqueous liquid.
  • a solvent or cosolvent can be used to enhance certain soil removal properties of this invention.
  • Cosolvents include alcohols and the mono and di-alkyl ethers of alkylene glycols, dialkylene glycols, trialkylene glycols, etc. Alcohols that are useful as cosolvents in this invention include methanol, ethanol, propanol and isopropanol.
  • Representative examples of this class of cosolvent include methyl cellosolves, butyl carbitol, dibutyl carbitol, diglyme, triglyme, etc.
  • Nonaqueous liquid solvents can be used for varying compositions of the present invention. These include the higher glycols, polyglycols, polyoxides and glycol ethers.
  • Suitable substances include glycol solvents (including glycol ethers or glycol acetates) such as, for example, propylene glycol, polyethylene glycol, polypropylene glycol, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, tripropylene glycol methyl ether, propylene glycol methyl ether (PM) 7 dipropylene glycol methyl ether (DPM), propylene glycol methyl ether acetate (PMA), dipropylene glycol methyl ether acetate (CPMA), propylene glycol n-butyl ether, dipropylene glycol monobutyl ether, ethylene glycol n-butyl ether and ethylene glycol n-propyl ether, and combinations thereof.
  • the glycol solvent is propylene glycol n-butyl ether.
  • the glycol solvent is dipropylene glycol monobutyl ether.
  • ethylene oxide/ propylene oxide liquid random copolymer such as Synalox ® solvent series from Dow Chemical (e.g., Synalox ® 50-50B); propylene glycol ethers such as PnB, DPnB and TPnB (propylene glycol mono n-butyl ether, dipropylene glycol and tripropylene glycol mono n-butyl ethers sold by Dow Chemical under the trade name Dowanol.RTM.); and tripropylene glycol mono methyl ether "Dowanol TPM ® " from Dow Chemical.
  • the final ingredient in the inventive cleaning compositions is water.
  • the proportion of water in the compositions generally is in the range of about 35% to 90% or about 50% to 85% by weight of the cleaning composition.
  • Optional Agents ethylene oxide/ propylene oxide, liquid random copolymer such as Synalox ® solvent series from Dow Chemical (e.g., Synalox ® 50-50B); propylene glycol ethers such as Pn
  • compositions may optionally contain one or more additional surfactants such as anionic, amphoteric, zwitterionic, nonionic, cationic, or combinations thereof.
  • additional surfactants such as anionic, amphoteric, zwitterionic, nonionic, cationic, or combinations thereof.
  • the anionic surfactant may be any of the anionic surfactants known or previously used in the art of aqueous surfactant compositions.
  • Suitable anionic surfactants include, but are not limited to, alkyl sulfates, alkyl ether sulfates, alkaryl sulfonates, alkyl succinates, alkyl sulfosuccinates, N-alkoyl sarcosinates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, alkylamino acids, alkyl peptides, alkoyl taurates, carboxylic acids, acyl and alkyl glutamates, alkyl isethionates, and alpha-olefin sulfonates, especially their sodium, potassium, magnesium, ammonium and mono-, di- and triethanolamine salts.
  • the alkyl groups generally contain from 8 to 18 carbon atoms and may be unsaturated.
  • the alkyl ether sulfates, alkyl ether phosphates and alkyl ether carboxylates may contain from 1 to 10 ethylene oxide or propylene oxide units per molecule, and in certain embodiments contain 1 to 3 ethylene oxide units per molecule.
  • anionic surfactants include sodium and ammonium lauryl ether sulfate (with 1, 2, and 3 moles of ethylene oxide), sodium, ammonium, and triethanolamine lauryl sulfate, disodium laureth sulfosuccinate, sodium cocoyl isethionate, sodium C12-14 olefin sulfonate, sodium laureth-6 carboxylate, sodium C12-15 pareth sulfate, sodium methyl cocoyl taurate, sodium dodecylbenzene sulfonate, sodium cocoyl sarcosinate, triethanolamine monolauryl phosphate, and fatty acid soaps.
  • the nonionic surfactant can be any of the nonionic surfactants known or previously used in the art of aqueous surfactant compositions.
  • Suitable nonionic surfactants include but are not limited to aliphatic (C ⁇ -Cis) primary or secondary linear or branched chain acids, alcohols or phenols, alkyl ethoxylates, alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), block alkylene oxide condensate of alkyl phenols, alkylene oxide condensates of alkanols, ethylene oxide/ propylene oxide block copolymers, semi-polar nonionics (e.g., amine oxides and phospine oxides), as well as alkyl amine oxides.
  • nonionics include mono or dialkyl alkanolamides and alkyl polysaccharides, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitol esters, polyoxyethylene acids, and polyoxyethylene alcohols.
  • suitable nonionic surfactants include coco mono or diethanolamide, coco diglucoside, alkyl polyglucoside, cocamidopropyl and lauramine oxide, polysorbate 20, ethoxylated linear alcohols, cetearyl alcohol, lanolin alcohol, stearic acid, glyceryl stearate, PEG- 100 stearate, and oleth 20.
  • Amphoteric and zwitterionic surfactants are those compounds which have the capacity of behaving either as an acid or a base. These surfactants can be any of the surfactants known or previously used in the art of aqueous surfactant compositions. Suitable materials include but are not limited to alkyl betaines, alkyl amidopropyl betaines, alkyl sulphobetaines, alkyl glycinates, alkyl carboxyglycinates, alkyl amphopropionates, alkyl amidopropyl hydroxysultaines, acyl taurates and acyl glutamates wherein the alkyl and acyl groups have 8 to 18 carbon atoms. Examples include cocamidopropyl betaine, sodium cocoamphoacetate, cocamidopropyl hydroxysultaine, and sodium cocamphopropionate.
  • the cationic surfactants can be any of the cationic surfactants known or previously used in the art of aqueous surfactant compositions. Suitable cationic surfactants include but are not limited to alkyl amines, alkyl imidazolines, ethoxylated amines, quaternary compounds, and quaternized esters. In addition, alkyl amine oxides can behave as a cationic surfactant at a low pH. Examples include lauramine oxide, dicetyldimonium chloride, and cetrimonium chloride. [0045] Other surfactants which can be utilized in the present invention are set forth in more detail in WO 99/21530, U.S. Pat. No.
  • amounts of additional optional surfactant can vary widely, in various embodiments, the amount is generally about 1% to about 80%, about 5% to about 65%, about 6% to about 30% or about 8% to 20% weight based upon the total weight of the composition.
  • compositions also optionally include one or more thickeners. Suitable thickeners may be organic or inorganic in nature.
  • the thickener may thicken the composition by either thickening the aqueous portions of the composition / or by thickening the non-aqueous portions of the composition. In certain embodiments, the composition is not an emulsion.
  • Thickeners can be divided into organic and inorganic thickeners.
  • Organic thickeners include (1) cellulosic thickeners and their derivatives, (2) natural gums, (3) acrylates, (4) starches, (5) stearates, and (6) fatty acid alcohols.
  • Inorganic thickeners include (7) clays, and (8) salts.
  • Some non-limiting examples of cellulosic thickeners include carboxymethyl hydroxyethylcellulose, cellulose, hydroxybutyl methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropyl methyl cellulose, methylcellulose, microcrystalline cellulose, sodium cellulose sulfate, and the like.
  • Some non-limiting examples of natural gums include acacia, calcium carrageenan, guar, gelatin, guar gum, hydroxypropyl guar, karaya gum, kelp, locust bean gum, pectin, sodium carrageenan, tragacanth gum, xanthan gum, and the like.
  • Some non-limiting examples of acrylates include potassium aluminum polyacrylate, sodium aery late/ vinyl alcohol copolymer, sodium polymethacrylate, and the like.
  • Some non-limiting examples of starches include oat flour, potato starch, wheat flour, wheat starch, and the like.
  • stearates include methoxy PEG-22/dodecyl glycol copolymer, PEG-2M, PEG-5M, and the like.
  • fatty acid alcohols include caprylic alcohol, cetearyl alcohol, Iauryl alcohol, oleyl alcohol, palm kernel alcohol, and the like.
  • clays include bentonite, magnesium aluminum silicate, magnesium trisilicate, stearalkonium bentonite, tromethamine magnesium aluminum silicate, and the like.
  • salts include calcium chloride, sodium chloride, sodium sulfate, ammonium chloride, and the like.
  • the composition may contain one thickener or a mixture of two or more thickeners. In certain embodiments the thickeners do not adversely react with the other components or compounds of the invention or otherwise render the composition of the invention ineffective. It is understood that a person skilled in the art will know how to select an appropriate thickener and control any adverse reactions through formulating.
  • the amount of thickener present in the composition depends on the desired viscosity of the composition.
  • the composition may have a viscosity from about 100 to about 15,000 centipoise, from about 150 to about 10,000 centipoise, and from about 200 to about 5,000 centipoise as determined using a Brookfield DV- Il+rotational viscometer using spindle # 21 @ 20 rpm @ 70. degree. F.
  • the thickener may be present in the composition in an amount from about 0.001 wt. % to about 5 wt. % of the total composition, from about 0.01 wt. % to about 3 wt. %, and from about 0.05 wt. % to about 2 wt. % of the total composition.
  • Thickeners from said classes of substances are generally available and are obtainable, for example, under the trade names Acusol ® 820 (methacrylic acid (stearyl alcohol-20 EO) ester-acrylic acid copolymer, 30% strength in water, Rohm & Haas), Dapral ® -GT-282-S (alkyl polyglycol ether, Akzo), Deuterol ® polymer-ll (dicarboxylic acid copolymer, Schoner GmbH), Deuteron ® XG (anionic heteropolysaccharide based on beta-D-glucose, D-manose, D-glucuronic acid, Schoner GmbH), Deuteron ® -XN (nonionogenic polysaccharide, Schoner GmbH), Dicrylan ® thickener-O (ethylene oxide adduct, 50% strength in water/ isopropanol, Pfersse Chemie), EMA ® -81 and EMA ® -91 (ethylene-male
  • composition of the invention may, if desired, also contain other components either to provide additional effect or to make the product more attractive to the consumer.
  • colors or dyes in amounts up to about 0.5% by weight
  • bactericides in amounts up to about 1 % by weight
  • preservatives or antioxidizing agents such as formalin, 5-bromo-5- nitro-dioxan-1,3; 5-chloro-2-methyl-4-isothaliazolin-3-one, 2,6-di-tert.butyl-p-cresol, in amounts up to about 2% by weight
  • pH adjusting agents such as sulfuric acid or sodium hydroxide, as needed
  • perfumes or oils in amounts up to about 5% by weight.
  • up to about 4% by weight of an opacifier may be added.
  • compositions of the present invention have a wide number of applications such as home care applications, industrial and institutional applications.
  • home care applications include products such as: home care and industrial and institutional applications, such as laundry detergents; dishwashing detergents (automatic and manual); hard surface cleaners; hand soaps, cleaners and sanitizers; polishes (shoe, furniture, metal, etc.); automotive waxes, polishes, protectants, and cleaners, and the like.
  • compositions are readily made by simple mixing methods from readily available components which, on storage, do not adversely affect the entire composition.
  • Solubilizing agent such as ethanol, hexylene glycol, sodium chloride and/ or sodium xylene or sodium xylene sulfonate may be used to assist in solubilizing the surfactants.
  • the compositions as prepared in certain embodiments are aqueous liquid formulations and since no particular mixing is required to form them, the compositions are easily prepared simply by combining all the ingredients in a suitable vessel or container.
  • the order of mixing the ingredients is not particularly important and generally the various ingredients can be added sequentially or all at once or in the form of aqueous solutions of each or all of the surfactants can be separately prepared and combined with each other. It is not necessary to use elevated temperatures in the formation step and room temperature is sufficient.
  • the viscosity of the composition desirably will be at least 100 centipoise (cps) at room temperature, but may be up to 1,000 centipoise as measured with a Brookfield Viscometer using a number 21 spindle rotating at 20 rpm.
  • the viscosity of the light duty liquid composition may approximate those of commercially acceptable light duty liquid compositions now on the market.
  • the viscosity of the composition itself remains stable on storage for lengthy periods of time, without color changes or settling out of any insoluble materials.
  • the pH of the composition can be adjusted by the addition of a base such as Na 2 O (caustic soda) to the composition.
  • Example illustrates cleaning properties of Formulation 1, a formulation according to the present invention, as compared to a Control.
  • the surfaces of the dishes were covered with about 2.5 g of a product according to the present invention, and the dishes were then rinsed with water, and then allowed to dry overnight. 3 oven replicates were generated for each sample, for statistical treatment.

Abstract

This invention encompasses compositions of surfactant-based products containing anionic and nonionic sufactants, one or more sequestering agents, a glycol solvent for the preparation of liquid cleaning compositions. The surfactant-based product may be any type of cleaning product based on surfactants, which include a sequestering agent. Specifically, the invention relates to a cleaning composition with desirable cleansing properties possessing increased grease cutting.

Description

TITLE OF THE INVENTION Degreasing All Purpose Cleaning Compositions and Methods
FIELD OF THE INVENTION
[0001] This invention is directed to compositions of surfactant-based products containing one or more sequestering agents for the preparation of liquid cleaning compositions. The cleaning compositions exhibit desirable cleansing properties including increased grease cutting.
BACKGROUND OF THE INVENTION
[0002] In formulating cleaning compositions, typically, the cleaning materials are made by diluting liquid or gelled materials to form a use solution. A substantial need exists to manufacture an easily used, excellent soil, e.g., grease, removal properties and controlled foaming. The materials may have some soil removal properties but improving grease removal and hard surface cleaners is a continuing need and requirement. Further, the manufacture of materials that produce useful foam in the presence of large quantities of greasy soil is a continuing challenge for this marketplace.
BRIEF SUMMARY OF THE INVENTION
[0003] It has now been found that a cleaning composition can be formulated with one or more anionic surfactants, one or more nonionic surfactants, one or more amine oxides, one or more sequestering agents and one or more glycolic solvents, which possesses increased grease-cutting performance.
[0004] To achieve the foregoing and other embodiments and in accordance with the purpose of the present invention, as embodied and broadly described herein the cleaning agent of this invention includes one or more anionic surfactants, one or more nonionic surfactants, one or more amine oxides, one or more sequestering agents and one or more glycolic solvents, which possess increased grease-cutting performance.
[0005] Another embodiment of the invention encompasses a grease-cutting cleaning agent including about 0.01 % to about 15% of one or more anionic surfactants, about 0.01 % to about 10% of one or more nonionic surfactant, about 0.01% to about 10% wt. of one or more amine oxides, about 0.01 % to about 10% of one or more sequestering agents, about 0.01% to about 10% of one or more glycol solvents, and optionally containing one or more additional ingredients. [0006] Still another embodiment of the invention encompasses a method of cleaning a surface especially removing grease from a surface, including burnt on grease, which includes contacting the surface with a cleaning agent including one or more anionic surfactants, one or more nonionic surfactants, one or more amine oxides, one or more sequestering agents, one or more glycol solvents, which possess increased grease-cutting performance.
[0007] The invention also encompasses a method of making a cleaning composition with superior grease-cutting performance, which includes combining about 0.01% to about 15% of one or more anionic surfactants, about 0.01% to about 10% of one or more nonionic surfactant, about 0.01% to about 10% of one or more amine oxides, about 0.01% to about 10% of one or more sequestering agents, about 0.01% to about 10% of one or more glycol solvents, and optionally containing one or more additional ingredients.
DETAILED DESCRIPTION OF THE INVENTION
[0008] As used throughout, i-anges are used as shorthand for describing each and every value that is within the range. Any value within the range can be selected as the terminus of the range. In addition, all references cited herein are hereby incorporated by reference in their entireties. In the event of a conflict in a definition in the present disclosure and that of a cited reference, the present disclosure controls. [0009] The present invention relates to a cleaning composition, which includes: wherein the composition surprisingly exhibits improved grease-cutting performance. In various embodiments, the pH is about 7 to about 14, about 8 to about 13 or about 10 to about 12, or 7, about 8, about 9, about 10, about 11, about 12, about 13, or about 14. Anionic Surfactants
[0010] Suitable water-soluble non-soap, anionic surfactants include those surface- active or detergent compounds that contain an organic hydrophobic group containing generally 8 to 26 carbon atoms and in certain embodiments 10 to 18 carbon atoms in their molecular structure and at least one water-solubilizing group, which in certain embodiments is sulfonate group.
[0011] In certain embodiments, the hydrophobic group may include a C8-C22 alkyl, alkyl or acyl group. Such surfactants are employed in the form of water- soluble salts and the salt-forming cation may be sodium, potassium, ammonium, magnesium and mono-, di- or tri-C2-C.3 alkanolammonium.
[0012] Examples of suitable sulfonated anionic surfactants include higher alkyl mononuclear aromatic sulfonates such as the higher alkyl benzene sulfonates containing 10 to 16 carbon atoms in the higher alkyl group in a straight or branched chain, Cs-Cis alkyl toluene sulfonates and Cg-Ci5 alkyl phenol sulfonates. [0013] In certain embodiments, the sulfonate surfactant is a linear alkyl benzene sulfonate having a high content of 3- (or higher) phenyl isomers and a correspondingly low content (well below 50%) of 2- (or lower) phenyl isomers, that is, wherein the benzene ring is attached in large part at the 3 or higher (for example, 4, 5, 6 or 7) position of the alkyl group and the content of the isomers in which the benzene ring is attached in the 2 or 1 position is correspondingly low. Examples of materials are set forth in U.S. Pat. No. 3,320,174.
[0014] Other suitable anionic surfactants include the olefin sulfonates, including long-chain alkene sulfonates, long-chain hydroxyalkane sulfonates or mixtures of alkene sulfonates and hydroxyalkane sulfonates. These olefin sulfonate detergents may be prepared in a known manner by the reaction of sulfur trioxide (SO3) with long-chain olefins containing 8 to 25, or 12 to 21 carbon atoms and having the formula:
Figure imgf000004_0001
where R is a higher alkyl group of 6 to 23 carbons and R1 is an alkyl group of 1 to 17 carbons or hydrogen to form a mixture of sulfones and alkene sulfonic acids which is then treated to convert the sul tones to sulfonates. In certain embodiments, the olefin sulfonates contain from 14 to 16 carbon atoms in the R alkyl group and are obtained by sulfonating an α-olefin.
[0015] Other examples of useful anionic surfactants include, but are not limited to, sodium dioctyl sulfosuccinate [di-(2 ethylhexyl) sodium sulfosuccinate being one] and corresponding dihexyl and dioctyl esters. In certain embodiments, sulfosuccinic acid ester salts are esters of aliphatic alcohols such as saturated alkanols of 4 to 12 carbon atoms and are normally diesters of such alkanols. In other embodiments, alkali metal salts of the diesters of alcohols of 6 to 10 carbons atoms are utilized and in further embodiments, the diesters will be from octanol, such as 2-ethyl hexanol, and the sulfonic acid salt will be the sodium salt.
[0016] Other anionic sulfonate surfactants that can be used in the compositions and methods of the invention are paraffin sulfonates containing, in various embodiments, 10 to 20 or 13 to 17 carbon atoms. Primary paraffin sulfonates may be made by reacting long-chain alpha olefins and bisulfites and paraffin sulfonates having the sulfonate group distributed along the paraffin chain are shown in U.S. Pat. Nos. 2,503,280; 2,507,088; 3,260,744; 3,372,188; and German Patent 735,096. [0017] Of the foregoing non-soap anionic sulfonate surfactants, certain illustrative embodiments utilize a magnesium salt of the G13-O17 paraffin or alkane sulfonates. Another example of a useful anionic surfactant is a sodium salt of C42-C13 pareth sulfate.
[0018] Generally, the proportion of the nonsoap-anionic surfactant will be, in various embodiments, about 0.1 to about 15%, about 0.5 to about 10%, about 1 to about 8%, about 1.1 to about 7%, about 1.2 to about 5%, or about 1.2% by weight of the composition. Amine Oxides
[0019] The compositions of the invention also include at least one amine oxide. The amine oxides are semi-polar nonionic surfactants, which include compounds and mixtures of compounds having the formula:
R2
R1(C2H4O)n N→ O
R3 wherein Ri is an alkyl, 2-hydroxyalkyl, 3-hydroxyalkyl, or 3-alkoxy-2- hydroxypropyl radical in which the alkyl and alkoxy, respectively, contain from 8 to 18 carbon atoms, R2 and R3 are each independently methyl, ethyl, propyl, isopropyl, 2-hydroxyethyl, 2-hydroxypropyl, or 3-hydroxypropyl (R2 and R3 may be the same or different); and n is 0 to 10.
[0020] In certain embodiments, the compositions of the present invention comprise an amine oxide of the formula:
R9
R8 N— *~ O
R-io wherein Rs is a C12-16 alkyl group or amido radical:
O H
R11 C N (CH2)n wherein Rn is an alkyl group having 9 to 19 carbon atoms and a is an integer of 1 to 4 and R9 and R1O are each independently methyl or ethyl. The above ethylene oxide condensates, amides, and amine oxides are more fully described in U.S. Pat. No. 4,316,824, which is hereby incorporated herein by reference. In illustrative embodiments, the amine oxide may be, for example, a lauryol amine oxide, a cocoamido propyl amine oxide, a cocoamido propyl dimethyl amine oxide, a lauryl/myristil amidopropyl diethylamine oxide, a lauryl/myristyl amido propyl amine oxide or a mixture of any of the foregoing.
[0021] In various embodiments, the amine oxide is present in an amount of about 0.1 to about 10%, about 0.2 to about 5 %, about 0.25 to about 3 %, about 0.3% or about 1.1 % of the composition. Nonionic Surfactants
[0022] The compositions of the present invention may include nonionic surfactants in addition to the amine oxides discussed above. The water soluble nonionic surfactants useful for the present invention may include aliphatic ethoxylated nonionic surfactants, for example, those that are commercially well known and include the primary aliphatic alcohol ethoxylates and secondary aliphatic alcohol ethoxylates. The length of the polyethenoxy chain can be adjusted to achieve the desired balance between the hydrophobic and hydrophilic elements. [0023] The nonionic surfactant class also may include the condensation products of a higher alcohol (e.g., an alkanol containing about 8 to 16 carbon atoms in a straight or branched chain configuration) condensed with about 4 to about 20 moles of ethylene oxide, for example, lauryl or myristyl alcohol condensed with about 16 moles of ethylene oxide (EO), tridecanol condensed with about 6 to about 15 moles of EO, myristyl alcohol condensed with about 10 moles of EO per mole of myristyl alcohol, the condensation product of EO with a cut of coconut fatty alcohol containing a mixture of fatty alcohols with alkyl chains varying from 10 to about 14 carbon atoms in length and wherein the condensate contains either about 6 moles of EO per mole of total alcohol or about 9 moles of EO per mole of alcohol and tallow alcohol ethoxylates containing about 6 EO to about 11 EO per mole of alcohol. [0024] Illustrative examples of the foregoing nomonic surfactants include, but are not limited to, the Neodol® or Dobanol® ethoxylates (Shell Co.), which are higher aliphatic, primary alcohol containing 9 to 15 carbon atoms, such as Cg-Cn alkanol condensed with about 4 to about 10 moles of ethylene oxide (Neodol 91-8®, Dobanol 91-8®, Neodol 91-5®) or about 2.5 moles of ethylene oxide (Neodol 91-2.5® or Dobanol 91-2.5®, Ci2-C13 alkanol condensed with about 6.5 moles ethylene oxide (Neodol 23-6.5®), Ci2-CiS alkanol condensed with about 12 moles ethylene oxide (Neodol 25-12®), C14-C15 alkanol condensed with about 13 moles ethylene oxide (Neodol 45-13®), and the like. Such ethoxamers have an HLB (hydrophobic lipophilic balance) value of about 8 to about 15 and give good O/W emulsification, whereas ethoxamers with HLB values below 7 contain less than 4 ethyleneoxide groups and tend to be poor emulsifiers and poor detergents. As used throughout the present disclosure, the trade names "Neodol" and "Dobanol" can be used interchangeably to refer to the same compounds, with the respective trade names used according to the geographies in which they are available. [0025] Additional satisfactory water soluble alcohol ethylene oxide condensates include, but are not limited to, the condensation products of a secondary aliphatic alcohol containing 8 to 18 carbon atoms in a straight or branched chain configuration condensed with 5 to 30 moles of ethylene oxide. Examples of commercially available nonionic detergents of the foregoing type include C11-C15 secondary alkanol condensed with either 9 EO (Tergitol 15-S-9®) or 12 EO (Tergitol 15-S-12®) marketed by Union Carbide (USA). [0026] The water soluble nonionic surfactants, which can be utilized in this invention, also include aliphatic ethoxylated/propoxylated nonionic surfactants, such as those depicted by the formulas:
R O CH2CH2O)x (CH2CH 2CH2OL H
or
CH,
R O CH2CH2O)x (CH2CHOJy H wherein R is a branched chain alkyl group having about 10 to about 16 carbon atoms, or an isotridecyl group and x and y are independently numbered from 0 to 20. In certain embodiments, the ethoxylated/propoxylated nonionic surfactant is Plurafac®300 manufactured by BASF (New Jersey, USA). [0027] In various embodiments, the compositions of the present invention contain about 0.01 % to 10 %, or about 0.5% to 6 % of an nonionic surfactant. Sequestrants/ Sequestering Agents
[0028] The cleaning compositions of the invention may contain an organic or inorganic sequestrant or mixtures of sequestrants (also referred to as "sequestering agents"). In various embodiments, the sequestrant is a sequestrant of metallic cations. Organic sequestrants such as citric acid, the alkali metal salts of nitrilotriacetic acid (NTA), EDTA, alkali metal gluconates, polyelectrolytes such as a polyacrylic acid, and the like can be used in the compositions described herein. In certain embodiments, sequestrants are organic sequestrants such as sodium gluconate due to the compatibility of the sequestrant with the formulation base. [0029] The sequestering agents of the invention may also include an effective amount of a water-soluble organic phosphonic acid alkali metal salt, which has sequestering properties. In certain embodiments, phosphonic acid alkali metal salts include low molecular weight compounds containing at least two anion-forming groups, at least one of which is a phosphonic acid group. Such useful phosphonic acids include mono-, di-, tri- and tetra-phosphonic acids which can also contain groups capable of forming anions under alkaline conditions such as carboxy, hydroxy, thio and the like. Among these are phosphonic acid alkali metal salts having the formulae:
N[CH2PO3Na4I3 or C(PO3Na4)IOH.
[0030] The phosphonic acid may also include a low molecular weight phosphonopolycarboxylic acid such as one having about 2-4 carboxylic acid moieties and about 1-3 phosphonic acid groups. Such acids include 1-phosphono-l- methylsuccinic acid, phosphonosuccinic acid and 2-phosphonobutane-l,2,4- tricarboxylic acid.
[0031] Other useful organic phosphonic acid sodium salts include 1- hydroxyethylidene-l,l-diphosphonic acid (CH3C(PO3Na4)2OH) and its sodium salt, available from Monsanto Industrial Chemicals Co., Missouri, USA. as Dequest® 2016, a 58-62% aqueous solution; amino [tri(methylenephosphonic acid)] (N[CH2PO3Na4]S), available from Monsanto as Dequest® 2000, a 50% aqueous solution; ethylenediamine [tetra(methylene-phosphonic acid)] available from Monsanto as Dequest® 2041, a 90% solid acid product; and 2-phosphonobutane- 1,2,4- tricarboxylic acid available from Mobay Chemical Corporation, Inorganic Chemicals Division, Pittsburgh, Pa. as Bayhibit AM, a 45-50% aqueous solution. It will be appreciated that, the above-mentioned phosphonic acids can also be used in the form of water-soluble acid salts, particularly the alkali metal salts, such as sodium or potassium; the ammonium salts or the alkylol amine salts where the alkylol has 2 to 3 carbon atoms, such as mono-, di-, or tri-ethanolamine salts. If desired, mixtures of the individual phosphonic acids or their acid salts can also be used. Further useful phosphonic acids are discussed in U.S. Pat. No. 4,051,058, the disclosure of which is incorporated by reference herein. Of the phosphonic acids useful in the present invention, those that do not contain amino groups are preferred, since they produce substantially less degradation of the active chlorine source than do phosphonic acids including amino groups.
[0032] Sequestrants of the invention also include materials such as, for example, complex phosphate sequestrants, including sodium tripolyphosphate, sodium hexametaphosphate, and the like, as well as mixtures thereof. Phosphates, the sodium condensed phosphate hardness sequestering agent component functions as a water softener, a cleaner, and a detergent builder. Alkali metal (M) linear and cyclic condensed phosphates commonly have a M2OP2Os mole ratio of about 1:1 to 2:1 and greater. Typical polyphosphates of this kind are sodium tripolyphosphate, sodium hexametaphosphate, sodium metaphosphate as well as corresponding potassium salts of these phosphates and mixtures thereof. The particle size of the phosphate is not critical, and any finely divided or granular commercially available product can be employed.
[0033] Sodium tripolyphosphate is a preferred inorganic hardness sequestering agent for reasons of its ease of availability, low cost, and high cleaning power. Sodium tripolyphosphate acts to sequester calcium and/ or magnesium cations, providing water softening properties. It contributes to the removal of soil from hard surfaces and keeps soil in suspension. It has little corrosive action on common surface materials and is low in cost compared to other water conditioners. Sodium tripolyphosphate has relatively low solubility in water (about 14 wt%) and its concentration must be increased using means other than solubility. Typical examples of such phosphates being alkaline condensed phosphates (i.e., polyphosphates) such as sodium or potassium pyrophosphate, sodium or potassium tripolyphosphate, sodium or potassium hexametaphosphate, etc.; carbonates such as sodium or potassium carbonate; borates, such as sodium borate; etc. Solvents
[0034] Typical solvents useful for the present embodiments include aqueous soluble, miscible or immiscible. Solvents can include aliphatic and aromatic hydrocarbons, chlorinated hydrocarbons, alcohols, ether compounds, fluorocarbon compounds, and other similar low molecular weight generally volatile liquid materials.
[0035] In certain embodiments, water is not a solvent but when used acts as a diluent or as a dispersing medium for the active materials. These materials can be used in solution or as a miscible mixture or as a dispersion of the solvent in the aqueous liquid. A solvent or cosolvent can be used to enhance certain soil removal properties of this invention. Cosolvents include alcohols and the mono and di-alkyl ethers of alkylene glycols, dialkylene glycols, trialkylene glycols, etc. Alcohols that are useful as cosolvents in this invention include methanol, ethanol, propanol and isopropanol. Particularly useful are the mono and dialkyl ethers of ethylene glycol and diethylene glycol, which have acquired trivial names such as polyglymes, cellosolves, and carbitols. Representative examples of this class of cosolvent include methyl cellosolves, butyl carbitol, dibutyl carbitol, diglyme, triglyme, etc. Nonaqueous liquid solvents can be used for varying compositions of the present invention. These include the higher glycols, polyglycols, polyoxides and glycol ethers.
[0036] Suitable substances include glycol solvents (including glycol ethers or glycol acetates) such as, for example, propylene glycol, polyethylene glycol, polypropylene glycol, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, tripropylene glycol methyl ether, propylene glycol methyl ether (PM)7 dipropylene glycol methyl ether (DPM), propylene glycol methyl ether acetate (PMA), dipropylene glycol methyl ether acetate (CPMA), propylene glycol n-butyl ether, dipropylene glycol monobutyl ether, ethylene glycol n-butyl ether and ethylene glycol n-propyl ether, and combinations thereof. In certain embodiments, the glycol solvent is propylene glycol n-butyl ether. In certain embodiments, the glycol solvent is dipropylene glycol monobutyl ether,
[0037] Other useful solvents include ethylene oxide/ propylene oxide, liquid random copolymer such as Synalox® solvent series from Dow Chemical (e.g., Synalox® 50-50B); propylene glycol ethers such as PnB, DPnB and TPnB (propylene glycol mono n-butyl ether, dipropylene glycol and tripropylene glycol mono n-butyl ethers sold by Dow Chemical under the trade name Dowanol.RTM.); and tripropylene glycol mono methyl ether "Dowanol TPM®" from Dow Chemical. [0038] The final ingredient in the inventive cleaning compositions is water. The proportion of water in the compositions generally is in the range of about 35% to 90% or about 50% to 85% by weight of the cleaning composition. Optional Agents
[0039] The compositions may optionally contain one or more additional surfactants such as anionic, amphoteric, zwitterionic, nonionic, cationic, or combinations thereof. [0040] The anionic surfactant may be any of the anionic surfactants known or previously used in the art of aqueous surfactant compositions. Suitable anionic surfactants include, but are not limited to, alkyl sulfates, alkyl ether sulfates, alkaryl sulfonates, alkyl succinates, alkyl sulfosuccinates, N-alkoyl sarcosinates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, alkylamino acids, alkyl peptides, alkoyl taurates, carboxylic acids, acyl and alkyl glutamates, alkyl isethionates, and alpha-olefin sulfonates, especially their sodium, potassium, magnesium, ammonium and mono-, di- and triethanolamine salts. The alkyl groups generally contain from 8 to 18 carbon atoms and may be unsaturated. The alkyl ether sulfates, alkyl ether phosphates and alkyl ether carboxylates may contain from 1 to 10 ethylene oxide or propylene oxide units per molecule, and in certain embodiments contain 1 to 3 ethylene oxide units per molecule. [0041] Examples of suitable anionic surfactants include sodium and ammonium lauryl ether sulfate (with 1, 2, and 3 moles of ethylene oxide), sodium, ammonium, and triethanolamine lauryl sulfate, disodium laureth sulfosuccinate, sodium cocoyl isethionate, sodium C12-14 olefin sulfonate, sodium laureth-6 carboxylate, sodium C12-15 pareth sulfate, sodium methyl cocoyl taurate, sodium dodecylbenzene sulfonate, sodium cocoyl sarcosinate, triethanolamine monolauryl phosphate, and fatty acid soaps.
[0042] The nonionic surfactant can be any of the nonionic surfactants known or previously used in the art of aqueous surfactant compositions. Suitable nonionic surfactants include but are not limited to aliphatic (Cό-Cis) primary or secondary linear or branched chain acids, alcohols or phenols, alkyl ethoxylates, alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), block alkylene oxide condensate of alkyl phenols, alkylene oxide condensates of alkanols, ethylene oxide/ propylene oxide block copolymers, semi-polar nonionics (e.g., amine oxides and phospine oxides), as well as alkyl amine oxides. Other suitable nonionics include mono or dialkyl alkanolamides and alkyl polysaccharides, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitol esters, polyoxyethylene acids, and polyoxyethylene alcohols. Examples of suitable nonionic surfactants include coco mono or diethanolamide, coco diglucoside, alkyl polyglucoside, cocamidopropyl and lauramine oxide, polysorbate 20, ethoxylated linear alcohols, cetearyl alcohol, lanolin alcohol, stearic acid, glyceryl stearate, PEG- 100 stearate, and oleth 20.
[0043] Amphoteric and zwitterionic surfactants are those compounds which have the capacity of behaving either as an acid or a base. These surfactants can be any of the surfactants known or previously used in the art of aqueous surfactant compositions. Suitable materials include but are not limited to alkyl betaines, alkyl amidopropyl betaines, alkyl sulphobetaines, alkyl glycinates, alkyl carboxyglycinates, alkyl amphopropionates, alkyl amidopropyl hydroxysultaines, acyl taurates and acyl glutamates wherein the alkyl and acyl groups have 8 to 18 carbon atoms. Examples include cocamidopropyl betaine, sodium cocoamphoacetate, cocamidopropyl hydroxysultaine, and sodium cocamphopropionate.
[0044] The cationic surfactants can be any of the cationic surfactants known or previously used in the art of aqueous surfactant compositions. Suitable cationic surfactants include but are not limited to alkyl amines, alkyl imidazolines, ethoxylated amines, quaternary compounds, and quaternized esters. In addition, alkyl amine oxides can behave as a cationic surfactant at a low pH. Examples include lauramine oxide, dicetyldimonium chloride, and cetrimonium chloride. [0045] Other surfactants which can be utilized in the present invention are set forth in more detail in WO 99/21530, U.S. Pat. No. 3,929,678; U.S. Pat. No. 4,565,647; U.S. Pat. No. 5,720,964; and U.S. Pat. No. 5,858,948. Other suitable surfactants are described in McCutcheon's Emulsifiers and Detergents (North American and International Editions, by Schwartz, Perry and Berch), which is hereby fully incorporated by reference.
[0046] While amounts of additional optional surfactant can vary widely, in various embodiments, the amount is generally about 1% to about 80%, about 5% to about 65%, about 6% to about 30% or about 8% to 20% weight based upon the total weight of the composition.
[0047] The compositions also optionally include one or more thickeners. Suitable thickeners may be organic or inorganic in nature. The thickener may thicken the composition by either thickening the aqueous portions of the composition/ or by thickening the non-aqueous portions of the composition. In certain embodiments, the composition is not an emulsion.
[0048] Thickeners can be divided into organic and inorganic thickeners. Organic thickeners include (1) cellulosic thickeners and their derivatives, (2) natural gums, (3) acrylates, (4) starches, (5) stearates, and (6) fatty acid alcohols. Inorganic thickeners include (7) clays, and (8) salts. Some non-limiting examples of cellulosic thickeners include carboxymethyl hydroxyethylcellulose, cellulose, hydroxybutyl methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropyl methyl cellulose, methylcellulose, microcrystalline cellulose, sodium cellulose sulfate, and the like. Some non-limiting examples of natural gums include acacia, calcium carrageenan, guar, gelatin, guar gum, hydroxypropyl guar, karaya gum, kelp, locust bean gum, pectin, sodium carrageenan, tragacanth gum, xanthan gum, and the like. Some non-limiting examples of acrylates include potassium aluminum polyacrylate, sodium aery late/ vinyl alcohol copolymer, sodium polymethacrylate, and the like. Some non-limiting examples of starches include oat flour, potato starch, wheat flour, wheat starch, and the like. Some non-limiting examples of stearates include methoxy PEG-22/dodecyl glycol copolymer, PEG-2M, PEG-5M, and the like. Some non-limiting examples of fatty acid alcohols include caprylic alcohol, cetearyl alcohol, Iauryl alcohol, oleyl alcohol, palm kernel alcohol, and the like. Some non- limiting examples of clays include bentonite, magnesium aluminum silicate, magnesium trisilicate, stearalkonium bentonite, tromethamine magnesium aluminum silicate, and the like. Some non-limiting examples of salts include calcium chloride, sodium chloride, sodium sulfate, ammonium chloride, and the like.
[0049] Some non-limiting examples of thickeners that thicken the non-aqueous portions of the composition include waxes such as candelilla wax, camauba wax, beeswax, and the like, oils, vegetable oils and animal oils, and the like. [0050] The composition may contain one thickener or a mixture of two or more thickeners. In certain embodiments the thickeners do not adversely react with the other components or compounds of the invention or otherwise render the composition of the invention ineffective. It is understood that a person skilled in the art will know how to select an appropriate thickener and control any adverse reactions through formulating.
[0051] The amount of thickener present in the composition depends on the desired viscosity of the composition. The composition may have a viscosity from about 100 to about 15,000 centipoise, from about 150 to about 10,000 centipoise, and from about 200 to about 5,000 centipoise as determined using a Brookfield DV- Il+rotational viscometer using spindle # 21 @ 20 rpm @ 70. degree. F. Accordingly, to achieve the desired viscosities, the thickener may be present in the composition in an amount from about 0.001 wt. % to about 5 wt. % of the total composition, from about 0.01 wt. % to about 3 wt. %, and from about 0.05 wt. % to about 2 wt. % of the total composition.
[0052] Thickeners from said classes of substances are generally available and are obtainable, for example, under the trade names Acusol®820 (methacrylic acid (stearyl alcohol-20 EO) ester-acrylic acid copolymer, 30% strength in water, Rohm & Haas), Dapral®-GT-282-S (alkyl polyglycol ether, Akzo), Deuterol®polymer-ll (dicarboxylic acid copolymer, Schoner GmbH), Deuteron® XG (anionic heteropolysaccharide based on beta-D-glucose, D-manose, D-glucuronic acid, Schoner GmbH), Deuteron®-XN (nonionogenic polysaccharide, Schoner GmbH), Dicrylan® thickener-O (ethylene oxide adduct, 50% strength in water/ isopropanol, Pfersse Chemie), EMA®-81 and EMA®-91 (ethylene-maleic anhydride copolymer, Monsanto), thickener-QR-1001 (polyurethane emulsion, 19 21% strength in water/ diglycol ether, Rohm & Haas), Mirox®-AM (anionic acrylic acid-acrylic ester copolymer dispersion, 25% strength in water, Stockhausen), SER-AD-FX-1100 (hydrophobic urethane polymer, Servo Delden), Shellflo®-S (high molecular weight polysaccharide, stabilized with formaldehyde, Shell) and Shellflo®-XA (xanthan biopolymer, stabilized with formaldehyde, Shell).
[0053] In addition to the previously mentioned constituents of the composition, one may also employ normal and conventional adjuvants, provided they do not adversely affect the properties of the detergent. Thus there may be used a cationic antibacterial agent, coloring agents and perfumes; polyethylene glycol, ultraviolet light absorbers such as the Uvinuls, which are products of GAF Corporation; pH modifiers; etc. The proportion of such adjuvant materials, in total will normally not exceed 15% by weight of the composition, and the percentages of illustrative examples of such individual components will be about 5% by weight. Sodium formate or formalin or Quaternium 15 (Dowicil 75) can be included in the formula as a preservative at a concentration of about 0.1 to about 4.0 wt. %. [0054] The composition of the invention may, if desired, also contain other components either to provide additional effect or to make the product more attractive to the consumer. The following are mentioned by way of example: colors or dyes in amounts up to about 0.5% by weight; bactericides in amounts up to about 1 % by weight; preservatives or antioxidizing agents, such as formalin, 5-bromo-5- nitro-dioxan-1,3; 5-chloro-2-methyl-4-isothaliazolin-3-one, 2,6-di-tert.butyl-p-cresol, in amounts up to about 2% by weight; pH adjusting agents, such as sulfuric acid or sodium hydroxide, as needed; perfumes or oils in amounts up to about 5% by weight. Furthermore, if opaque compositions are desired, up to about 4% by weight of an opacifier may be added.
[0055] The compositions of the present invention have a wide number of applications such as home care applications, industrial and institutional applications. [0056] Examples of home care applications include products such as: home care and industrial and institutional applications, such as laundry detergents; dishwashing detergents (automatic and manual); hard surface cleaners; hand soaps, cleaners and sanitizers; polishes (shoe, furniture, metal, etc.); automotive waxes, polishes, protectants, and cleaners, and the like.
[0057] The present cleaning compositions are readily made by simple mixing methods from readily available components which, on storage, do not adversely affect the entire composition. Solubilizing agent such as ethanol, hexylene glycol, sodium chloride and/ or sodium xylene or sodium xylene sulfonate may be used to assist in solubilizing the surfactants. Because the compositions as prepared in certain embodiments are aqueous liquid formulations and since no particular mixing is required to form them, the compositions are easily prepared simply by combining all the ingredients in a suitable vessel or container. The order of mixing the ingredients is not particularly important and generally the various ingredients can be added sequentially or all at once or in the form of aqueous solutions of each or all of the surfactants can be separately prepared and combined with each other. It is not necessary to use elevated temperatures in the formation step and room temperature is sufficient.
[0058] The viscosity of the composition desirably will be at least 100 centipoise (cps) at room temperature, but may be up to 1,000 centipoise as measured with a Brookfield Viscometer using a number 21 spindle rotating at 20 rpm. The viscosity of the light duty liquid composition may approximate those of commercially acceptable light duty liquid compositions now on the market. The viscosity of the composition itself remains stable on storage for lengthy periods of time, without color changes or settling out of any insoluble materials. The pH of the composition can be adjusted by the addition of a base such as Na2O (caustic soda) to the composition.
[0059] The following examples illustrate liquid cleaning compositions of the described invention. Unless otherwise specified, all percentages are by weight. The exemplified compositions are illustrative only and do no limit the scope of the invention. Unless otherwise specified, the proportions in the examples and elsewhere in the specification are by weight. It will be understood by those of skill in the art that numerous and various modifications can be made without departing from the spirit of the present invention. Therefore, it should be clearly understood that the forms of the present invention described herein are illustrative only and are not intended to limit the scope of the invention.
[0060] Various embodiments of the present invention are further illustrated in the following non-limiting Example. EXAMPLE
[0061] The Example illustrates cleaning properties of Formulation 1, a formulation according to the present invention, as compared to a Control.
Formulation 1
Figure imgf000018_0001
Control
Figure imgf000018_0002
[0062] The table below compares the auto-active cleaning results on burnt "Bratensauce" of the formula according to the present invention, when compared to the Control. The higher the score, the more efficient the product. [0063] The test was performed according to the following procedure: 1. 4 stainless steel dishes (diameter = 5cm) were soiled with
"Bratensauce" (Germany soil by Knorr. Ref. 1.4607) and heated in an oven up to 200 degrees C for 15 minutes. 2. The dishes were removed from the oven and allowed to cool down at room Temperature for 1 hour before evaluation.
3. The surfaces of the dishes were covered with about 2.5 g of a product according to the present invention, and the dishes were then rinsed with water, and then allowed to dry overnight. 3 oven replicates were generated for each sample, for statistical treatment.
4. Panelists (a total number of 8) were asked to evaluate the surfaces after rinsing, giving scores from 0 (most soiled) to 10 (unsoiled). Results were statistically treated. Results are shown in Table 1.
Table 1
Figure imgf000019_0001

Claims

CLAIMS What is claimed is:
1. A cleaning composition comprising: (i) an anionic surfactant;
(ii) a nonionic surfactant;
(iii) an amine oxide;
(iv) a sequestering agent; and
(v) a glycol solvent.
2. The composition of claim 1, wherein the anionic surfactant is chosen from alkyl sulfates, alkyl ether sulfates, alkaryl sulfonates, alkyl succinates, alkyl sulfosuccinates, N-alkoyl sarcosinates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, alkylamino acids, alkyl peptides, alkoyl taurates, carboxylic acids, acyl and alkyl glutamates, alkyl isethionates, and alpha-olefin sulfonates, especially their sodium, potassium, magnesium, ammonium and mono-, di- and triethanolamine salts, and combinations thereof.
3. The composition of claim 2, wherein the anionic surfactant is asodium salt of Ci2-Ci3 pareth sulfate.
4. The composition of claim 1, wherein the nonionic surfactant is a C9-C11 alcohol ethoxvlate.
5. The composition of claim 4, wherein the CVCπ alcohol ethoxylate has about 2.5 moles of ethylene oxide.
6. The composition of claim 4, wherein the C9-C11 alcohol ethoxylate has about 8 moles of ethylene oxide.
7. The composition of claim 1, wherein the at least one amine oxide surfactant is chosen from surfactants having the formula: R1(C2H4O)n N-^O
R3 wherein
Ri is an alkyl, 2-hydroxyalkyl, 3-hydroxyalkyl, or 3-alkoxy-2-hydroxypropyl radical in which the alkyl and alkoxy each independently contain from 8 to 18 carbon atoms; and
R2 and R3 are each independently methyl, ethyl, propyl, isopropyl, 2- hydroxyethyl, 2-hydroxypropyl, or 3-hydroxypropyl; and n is 0 to 10.
8. The composition of claim 7, wherein the amine oxide is a lauryl/mvristyl amido propyl amine oxide.
9. The composition of claim 1, wherein the sequestering agent is chosen from phosphonic acids having the formulae:
RiN[CH2PO3Na2]2 or RiC(PO3Na2)OH wherein Ri is -[(lower)alkylene]N[CH2PO3Na2]2 or a third CH2PO3Na2 moiety, and R2 is Ci-C6 alkyl; a low molecular weight phosphonopolycarboxylic acid having about 2 to about 4 carboxylic acid moieties and about 1-3 phosphonic acid groups; 1- phosphono-1-methylsuccinic acid; phosphonosuccinic acid; 2-phosphonobutane- 1,2,4-tricarboxyIic acid; l-hydroxyethylidene-l,l-diphosphonic acid (CH3C(PO3Na2^OH); a amino [tri(methylenephosphonic acid)] ( N[CH2PO3Na2J3); ethylenediamine [tetra(methylene-phosphonic acid)]; and 2-phosphonobutane-l,2,4- tricarboxylic, and salts thereof.
10. The composition of claim 1, wherein the sequestering agent is 1- hydroxyethylene diphosphonic acid or a salt thereof.
11. The composition of claim 1, wherein the glycol solvent is chosen from propylene glycol, polyethylene glycol, polypropylene glycol, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, tripropylene glycol methyl ether, propylene glycol methyl ether (PM), dipropylene glycol methyl ether (DPM), propylene glycol methyl ether acetate (PMA), dipropylene glycol methyl ether acetate (CPMA), propylene glycol n-butyl ether, dipropylene glycol monobutyl ether, ethylene glycol n-butyl ether and ethylene glycol n-propyl ether, and combinations thereof.
12. The composition of claim 1, wherein the glycol solvent is a combination of propylene glycol n-butyl ether and dipropylene glycol monobutyl ether.
13. The composition of claim 1, wherein the anionic surfactant is present in an amount of about 0.01 % to about 15 %.
14. The composition of claim 1, wherein the nonionic surfactant is present in an amount of about 0.01 % to about 10 %.
15. The composition of claim 1, wherein the amine oxide is present in an amount of about 0.01 % to about 10 %.
16. The composition of claim 1, wherein the sequestering agent is present in an amount of about 0.01 % to about 10 %.
17. The composition of claim 1, wherein the glycol solvent is present in an amount of about 0.01 % to about 10 %.
18. The cleaning composition of claim 1, wherein the pH of the cleaning composition is about 7 to about 14.
19. A cleaning composition comprising:
(i) about 0.01 % to 15 % of one or more anionic surfactants;
(ii) about 0.01 % to 10 % of one or more nonionic surfactant;
(iii) about 0.01 % to 10 % of one or more amine oxides;
(iv) about 0.01 % to 10 % of one or more sequestering agents; and
(v) about 0.01 % to 10 % of one or more glycol solvents.
20. A method of making a detergent comprising combining the following: (i) about 0.01 % to about 15 % of one or more anionic surfactants;
(ii) about 0.01 % to about 10 % of one or more nonionic surfactant;
(iii) about 0.01 % to about 10 % of one or more amine oxides;
(iv) about 0.01 % to about 10 % of one or more sequestering agents; and
(v) about 0.01 % to about 10 % of one or more glycol solvents.
21. A method of cleaning a surface comprising contacting the surface with a cleaning composition comprising the following:
(i) about 0.01 % to 15 % of one or more anionic surfactants;
(ii) about 0.01 % to 10 % of one or more nonionic surfactant;
(iii) about 0.01 % to 10 % of one or more amine oxides;
(iv) about 0.01 % to 10 % of one or more sequestering agents; and
(v) about 0.01 % to 10 % of one or more glycol solvents.
PCT/US2007/087884 2007-12-18 2007-12-18 Degreasing all purpose cleaning compositions and methods WO2009078867A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
AU2007362614A AU2007362614B2 (en) 2007-12-18 2007-12-18 Degreasing all purpose cleaning compositions and methods
CA2709133A CA2709133C (en) 2007-12-18 2007-12-18 Degreasing all purpose cleaning compositions and methods
PCT/US2007/087884 WO2009078867A1 (en) 2007-12-18 2007-12-18 Degreasing all purpose cleaning compositions and methods
DK07865793.9T DK2245128T3 (en) 2007-12-18 2007-12-18 Degreasing all-round cleaning compositions and methods
PL07865793T PL2245128T3 (en) 2007-12-18 2007-12-18 Degreasing all purpose cleaning compositions and methods
ES07865793.9T ES2473615T3 (en) 2007-12-18 2007-12-18 Compositions and cleaning methods universal degreasers
EP07865793.9A EP2245128B1 (en) 2007-12-18 2007-12-18 Degreasing all purpose cleaning compositions and methods
PT78657939T PT2245128E (en) 2007-12-18 2007-12-18 Degreasing all purpose cleaning compositions and methods
US12/809,170 US8765655B2 (en) 2007-12-18 2007-12-18 Degreasing all purpose cleaning compositions and methods
NZ585853A NZ585853A (en) 2007-12-18 2007-12-18 Degreasing all purpose cleaning compositions and methods
ARP080105498A AR069783A1 (en) 2007-12-18 2008-12-17 COMPOSITIONS AND CLEANING METHODS FOR ALL PURPOSE ELIMINATORS
EC2010010257A ECSP10010257A (en) 2007-12-18 2010-06-15 COMPOSITIONS AND CLEANING METHODS OF ALL PURPOSE FAT ELIMINATORS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2007/087884 WO2009078867A1 (en) 2007-12-18 2007-12-18 Degreasing all purpose cleaning compositions and methods

Publications (1)

Publication Number Publication Date
WO2009078867A1 true WO2009078867A1 (en) 2009-06-25

Family

ID=39691261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/087884 WO2009078867A1 (en) 2007-12-18 2007-12-18 Degreasing all purpose cleaning compositions and methods

Country Status (12)

Country Link
US (1) US8765655B2 (en)
EP (1) EP2245128B1 (en)
AR (1) AR069783A1 (en)
AU (1) AU2007362614B2 (en)
CA (1) CA2709133C (en)
DK (1) DK2245128T3 (en)
EC (1) ECSP10010257A (en)
ES (1) ES2473615T3 (en)
NZ (1) NZ585853A (en)
PL (1) PL2245128T3 (en)
PT (1) PT2245128E (en)
WO (1) WO2009078867A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8282743B2 (en) 2007-12-18 2012-10-09 Colgate-Palmolive Company Alkaline cleaning compositions
US8765655B2 (en) 2007-12-18 2014-07-01 Colgate-Palmolive Company Degreasing all purpose cleaning compositions and methods
EP3015540A3 (en) * 2014-10-29 2016-08-03 The Procter and Gamble Company Hard surface cleaners comprising ethoxylated alkoxylated nonionic surfactants
EP3263688A1 (en) 2016-06-27 2018-01-03 The Procter & Gamble Company Improved shine in soft water
EP3263687A1 (en) 2016-06-27 2018-01-03 The Procter & Gamble Company Antimicrobial hard surface cleaning composition
US9957467B2 (en) 2014-10-29 2018-05-01 The Procter & Gamble Company Hard surface cleaners comprising ethoxylated alkoxylated nonionic surfactants
WO2022106413A1 (en) * 2020-11-19 2022-05-27 Unilever Ip Holdings B.V. Hard surface cleaning composition
WO2023178580A1 (en) * 2022-03-24 2023-09-28 Ecolab Usa Inc. Laundry emulsifier with surfactant and solvent

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20115276A0 (en) * 2011-03-22 2011-03-22 3S Cosmetics Oy Nail polish remover composition and its use
US8324146B2 (en) 2011-08-30 2012-12-04 Zalk Yehuda Sodium metasilicate based cleaning solutions
US9062277B1 (en) * 2012-04-16 2015-06-23 ZAP! Holdings, LLC Composition and method for treating surfaces
US9248084B2 (en) * 2013-03-15 2016-02-02 Kimberly-Clark Worldwide, Inc. Cleaning composition having improved soil removal
EP3118293B1 (en) 2015-07-13 2020-09-09 The Procter and Gamble Company Cleaning product
PL3118301T3 (en) * 2015-07-13 2019-04-30 Procter & Gamble Cleaning product
EP3118294B1 (en) 2015-07-13 2018-10-17 The Procter and Gamble Company Cleaning product
EP3118298B1 (en) 2015-07-13 2018-10-31 The Procter and Gamble Company Hard surface cleaners comprising a solvent
ES2704084T3 (en) 2015-07-13 2019-03-14 Procter & Gamble Cleaning product
US10767077B2 (en) 2017-01-30 2020-09-08 Otis Elevator Company Load-bearing member surface treatment
EP3418369A1 (en) * 2017-06-22 2018-12-26 The Procter & Gamble Company A method of demonstrating the effectiveness of a cleaning composition
ES2868894T3 (en) * 2017-06-22 2021-10-22 Procter & Gamble Sprayable cleaning composition
EP3418360B1 (en) * 2017-06-22 2019-08-28 The Procter & Gamble Company Sprayable cleaning composition
ES2755327T3 (en) * 2017-06-22 2020-04-22 Procter & Gamble Cleaning product
PL3418358T3 (en) * 2017-06-22 2020-01-31 The Procter & Gamble Company Cleaning product
EP3418357A1 (en) * 2017-06-22 2018-12-26 The Procter & Gamble Company Methods of cleaning dishware comprising a substantially non-stinging sprayable cleaning product
US20190048296A1 (en) * 2017-08-10 2019-02-14 Henkel IP & Holding GmbH Unit dose detergent products with improved pac rigidity
WO2019108990A1 (en) 2017-12-01 2019-06-06 Ecolab Usa Inc. Cleaning compositions and methods for removing baked on grease from fryers and other hot surfaces
EP3847227B1 (en) * 2018-09-05 2022-06-15 Unilever Global Ip Limited A quick and easy cleaning formulation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0756001A1 (en) * 1995-07-24 1997-01-29 The Procter & Gamble Company Detergent compositions comprising specific amylase and a specific surfactant system
GB2318801A (en) * 1996-11-01 1998-05-06 Amway Corp Acidic liquid tub and tile cleaner
EP1167500A1 (en) 2000-06-29 2002-01-02 The Procter & Gamble Company Process of cleaning a hard surface
US20040017504A1 (en) 2000-04-07 2004-01-29 Inmotion Technologies Ltd. Automated stroboscoping of video sequences
US20040171504A1 (en) * 1999-02-08 2004-09-02 The Procter & Gamble Company Diols and polymeric glycols for improved dishwashing detergent compositions
US20040254085A1 (en) 2003-05-19 2004-12-16 Johnsondiversey, Inc. [high caustic contact cleaner]
DE102006003336A1 (en) 2006-01-23 2007-07-26 Henkel Kgaa Sprayable all-purpose cleaner

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE735096C (en) 1940-12-09 1943-05-06 Ig Farbenindustrie Ag Process for the production of sulphonic acids
US2503280A (en) 1947-10-24 1950-04-11 Du Pont Azo catalysts in preparation of sulfonic acids
US2507088A (en) 1948-01-08 1950-05-09 Du Pont Sulfoxidation process
FR1247957A (en) 1958-09-28 1960-12-09 Ajinomoto Kk Process for the continuous separation of racemic amino acids
US3320174A (en) 1964-04-20 1967-05-16 Colgate Palmolive Co Detergent composition
US3372188A (en) 1965-03-12 1968-03-05 Union Oil Co Sulfoxidation process in the presence of sulfur trioxide
US3929678A (en) 1974-08-01 1975-12-30 Procter & Gamble Detergent composition having enhanced particulate soil removal performance
NL7608266A (en) 1975-08-16 1977-02-18 Henkel & Cie Gmbh CONCENTRATES OF MICROBICIDE AGENTS.
US4316824A (en) 1980-06-26 1982-02-23 The Procter & Gamble Company Liquid detergent composition containing alkyl sulfate and alkyl ethoxylated sulfate
US4565647B1 (en) 1982-04-26 1994-04-05 Procter & Gamble Foaming surfactant compositions
USH468H (en) 1985-11-22 1988-05-03 A. E. Staley Manufacturing Company Alkaline hard-surface cleaners containing alkyl glycosides
US5364551A (en) 1993-09-17 1994-11-15 Ecolab Inc. Reduced misting oven cleaner
GB9320556D0 (en) 1993-10-06 1993-11-24 Unilever Plc Hair conditioning composition
US5677271A (en) 1993-11-29 1997-10-14 The Procter & Gamble Company Limescale removal compositions
US5531933A (en) 1993-12-30 1996-07-02 The Procter & Gamble Company Liquid hard surface detergent compositions containing specific polycarboxylate detergent builders
CA2231459A1 (en) 1995-07-18 1997-02-06 Unilever Plc Concentrated aqueous degreasing cleanser
US5858948A (en) 1996-05-03 1999-01-12 Procter & Gamble Company Liquid laundry detergent compositions comprising cotton soil release polymers and protease enzymes
US5929007A (en) 1996-05-24 1999-07-27 Reckitt & Colman Inc. Alkaline aqueous hard surface cleaning compositions
US6090771A (en) 1996-10-24 2000-07-18 Reckitt Benckiser Inc. Low residue aqueous hard surface cleaning and disinfecting compositions
US5968493A (en) 1997-10-28 1999-10-19 Amway Corportion Hair care composition
US5939378A (en) * 1997-12-16 1999-08-17 Colgate Palmolive Company Cleaning compositions containing amine oxide and formic acid
US20020193268A1 (en) * 2000-02-08 2002-12-19 The Procter & Gamble Company Dishwashing detergent compositions containing color-stabilizing phosphonates
US6387871B2 (en) * 2000-04-14 2002-05-14 Alticor Inc. Hard surface cleaner containing an alkyl polyglycoside
US6750187B2 (en) 2000-07-19 2004-06-15 The Proter & Gamble Company Cleaning composition
US6740628B2 (en) 2000-07-19 2004-05-25 The Procter & Gamble Company Cleaning composition
US6683036B2 (en) 2000-07-19 2004-01-27 The Procter & Gamble Company Cleaning composition
US6557732B2 (en) 2000-07-19 2003-05-06 The Procter & Gamble Company Detergent pack
WO2002077144A2 (en) * 2001-03-21 2002-10-03 The Procter & Gamble Company Hand dishwashing composition
WO2002077143A1 (en) * 2001-03-21 2002-10-03 The Procter & Gamble Company Hand dishwashing composition
EP1245668A3 (en) 2001-03-30 2003-09-17 The Procter & Gamble Company Cleaning composition
JP4257201B2 (en) 2001-07-20 2009-04-22 ザ プロクター アンド ギャンブル カンパニー Hard surface detergency composition containing solvent system
US20030082131A1 (en) * 2001-08-21 2003-05-01 Colgate-Palmolive Company Liquid cleaning compositions
GB2385597B (en) 2002-02-21 2004-05-12 Reckitt Benckiser Inc Hard surface cleaning compositions
US6686325B2 (en) 2002-03-15 2004-02-03 Ecolab Inc. Alkaline sensitive metal cleaning composition, method for cleaning an alkaline sensitive metal surface, and washing facility
EP1694805A1 (en) 2003-12-15 2006-08-30 The Procter and Gamble Company Compositions for removing cooked-, baked- and burnt-on soils
US20060105931A1 (en) * 2004-11-15 2006-05-18 Jichun Shi Liquid detergent composition for improved low temperature grease cleaning
US20070086971A1 (en) 2005-10-19 2007-04-19 Patrick Diet Acidic Cleaning Compositions
DOP2006000267A (en) 2005-11-30 2009-06-30 Colgate Palmalive Company COMPOSITIONS AND CLEANING METHODS
EP2231844B1 (en) 2007-12-18 2015-08-05 Colgate-Palmolive Company Alkaline cleaning compositions
DK2245128T3 (en) 2007-12-18 2014-07-14 Colgate Palmolive Co Degreasing all-round cleaning compositions and methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0756001A1 (en) * 1995-07-24 1997-01-29 The Procter & Gamble Company Detergent compositions comprising specific amylase and a specific surfactant system
GB2318801A (en) * 1996-11-01 1998-05-06 Amway Corp Acidic liquid tub and tile cleaner
US20040171504A1 (en) * 1999-02-08 2004-09-02 The Procter & Gamble Company Diols and polymeric glycols for improved dishwashing detergent compositions
US20040017504A1 (en) 2000-04-07 2004-01-29 Inmotion Technologies Ltd. Automated stroboscoping of video sequences
EP1167500A1 (en) 2000-06-29 2002-01-02 The Procter & Gamble Company Process of cleaning a hard surface
US20040254085A1 (en) 2003-05-19 2004-12-16 Johnsondiversey, Inc. [high caustic contact cleaner]
DE102006003336A1 (en) 2006-01-23 2007-07-26 Henkel Kgaa Sprayable all-purpose cleaner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8282743B2 (en) 2007-12-18 2012-10-09 Colgate-Palmolive Company Alkaline cleaning compositions
US8765655B2 (en) 2007-12-18 2014-07-01 Colgate-Palmolive Company Degreasing all purpose cleaning compositions and methods
EP3015540A3 (en) * 2014-10-29 2016-08-03 The Procter and Gamble Company Hard surface cleaners comprising ethoxylated alkoxylated nonionic surfactants
US9957467B2 (en) 2014-10-29 2018-05-01 The Procter & Gamble Company Hard surface cleaners comprising ethoxylated alkoxylated nonionic surfactants
EP3263688A1 (en) 2016-06-27 2018-01-03 The Procter & Gamble Company Improved shine in soft water
EP3263687A1 (en) 2016-06-27 2018-01-03 The Procter & Gamble Company Antimicrobial hard surface cleaning composition
WO2022106413A1 (en) * 2020-11-19 2022-05-27 Unilever Ip Holdings B.V. Hard surface cleaning composition
WO2023178580A1 (en) * 2022-03-24 2023-09-28 Ecolab Usa Inc. Laundry emulsifier with surfactant and solvent

Also Published As

Publication number Publication date
PT2245128E (en) 2014-07-16
EP2245128A1 (en) 2010-11-03
ES2473615T3 (en) 2014-07-07
DK2245128T3 (en) 2014-07-14
AU2007362614A1 (en) 2009-06-25
CA2709133A1 (en) 2009-06-25
PL2245128T3 (en) 2014-10-31
CA2709133C (en) 2014-01-28
US20110105377A1 (en) 2011-05-05
AR069783A1 (en) 2010-02-17
EP2245128B1 (en) 2014-05-21
ECSP10010257A (en) 2010-07-30
US8765655B2 (en) 2014-07-01
AU2007362614B2 (en) 2011-11-03
NZ585853A (en) 2012-09-28

Similar Documents

Publication Publication Date Title
AU2007362614B2 (en) Degreasing all purpose cleaning compositions and methods
US6251844B1 (en) Hydroxy aliphatic acidic microemulsion liquid cleaning compositions
AU2007362615B2 (en) Alkaline cleaning compositions
EP1456331B1 (en) Liquid dish cleaning compositions containing hydrogen peroxide
EP2297287B1 (en) Liquid cleaning compositions and manufacture
MX2010012029A (en) Liquid cleaning compositions and methods.
US20090312226A1 (en) Light Duty Liquid Cleaning Compositions And Methods Of Manufacture And Use Thereof
US6262003B1 (en) Light duty liquid cleaning compositions comprise an alpha hydroxy fatty acid
AU7836200A (en) Acidic light duty liquid cleaning compositions
US5688754A (en) Light duty liquid cleaning compositions
US20020198130A1 (en) Antibacterial liquid dish cleaning compositions
EP1492862A1 (en) Color stable liquid dish cleaning compositions containing a peroxide source
US20020187177A1 (en) Liquid dish cleaning compositions containing hydrogen peroxide
US10975332B2 (en) Home care compositions
EP1468066B1 (en) Light duty liquid cleaning compositions having preservative system
WO2020139337A1 (en) Home care compositions
CA2826961A1 (en) Alkaline cleaning compositions
EP3189126A1 (en) Liquid detergent composition with pearly luster

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07865793

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 585853

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/006374

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2709133

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12809170

Country of ref document: US

Ref document number: 201011514

Country of ref document: CR

Ref document number: CR2010-011514

Country of ref document: CR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007362614

Country of ref document: AU

Date of ref document: 20071218

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007865793

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10087261

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: PI 2010002632

Country of ref document: MY