WO2009074461A1 - Process for the preparation of styrene and/or a substituted styrene - Google Patents
Process for the preparation of styrene and/or a substituted styrene Download PDFInfo
- Publication number
- WO2009074461A1 WO2009074461A1 PCT/EP2008/066353 EP2008066353W WO2009074461A1 WO 2009074461 A1 WO2009074461 A1 WO 2009074461A1 EP 2008066353 W EP2008066353 W EP 2008066353W WO 2009074461 A1 WO2009074461 A1 WO 2009074461A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phenylethanol
- catalyst
- pore size
- pore
- styrene
- Prior art date
Links
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 150000003440 styrenes Chemical class 0.000 title claims abstract description 9
- 239000011148 porous material Substances 0.000 claims abstract description 89
- 239000003054 catalyst Substances 0.000 claims abstract description 59
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 claims abstract description 51
- XPNGNIFUDRPBFJ-UHFFFAOYSA-N alpha-methylbenzylalcohol Natural products CC1=CC=CC=C1CO XPNGNIFUDRPBFJ-UHFFFAOYSA-N 0.000 claims abstract description 34
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 30
- WAPNOHKVXSQRPX-UHFFFAOYSA-N 1-phenylethanol Chemical compound CC(O)C1=CC=CC=C1 WAPNOHKVXSQRPX-UHFFFAOYSA-N 0.000 claims abstract description 28
- 230000018044 dehydration Effects 0.000 claims abstract description 19
- 238000006297 dehydration reaction Methods 0.000 claims abstract description 19
- 238000009826 distribution Methods 0.000 claims abstract description 19
- 239000002245 particle Substances 0.000 claims abstract description 19
- WAPNOHKVXSQRPX-SPBYTNOZSA-N 1-phenylethanol Chemical class [13CH3][13CH](O)C1=CC=CC=C1 WAPNOHKVXSQRPX-SPBYTNOZSA-N 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 description 13
- 239000007789 gas Substances 0.000 description 11
- 239000012071 phase Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- 229910052809 inorganic oxide Inorganic materials 0.000 description 4
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 238000002459 porosimetry Methods 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- GQNOPVSQPBUJKQ-UHFFFAOYSA-N 1-hydroperoxyethylbenzene Chemical compound OOC(C)C1=CC=CC=C1 GQNOPVSQPBUJKQ-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000006735 epoxidation reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- RNDNSYIPLPAXAZ-UHFFFAOYSA-N 2-Phenyl-1-propanol Chemical compound OCC(C)C1=CC=CC=C1 RNDNSYIPLPAXAZ-UHFFFAOYSA-N 0.000 description 1
- BDCFWIDZNLCTMF-UHFFFAOYSA-N 2-phenylpropan-2-ol Chemical compound CC(C)(O)C1=CC=CC=C1 BDCFWIDZNLCTMF-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910001680 bayerite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229910001679 gibbsite Inorganic materials 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 150000004684 trihydrates Chemical class 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/20—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
- C07C1/24—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/34—Mechanical properties
- B01J35/37—Crush or impact strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/633—Pore volume less than 0.5 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/638—Pore volume more than 1.0 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/651—50-500 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/653—500-1000 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/66—Pore distribution
- B01J35/69—Pore distribution bimodal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/55—Cylinders or rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/02—Boron or aluminium; Oxides or hydroxides thereof
- C07C2521/04—Alumina
Definitions
- the present invention relates to a process for the preparation of styrene and/or a substituted styrene from a feed containing 1-phenylethanol and 2-phenylethanol and/or a substituted 1-phenylethanol and a substituted 2-phenylethanol.
- 1-Phenylethanol is also known as alpha- phenylethanol or methylphenylcarbinol .
- 2-Phenylethanol is also known as beta-phenylethanol .
- a commonly known method for manufacturing styrene is the coproduction of propylene oxide and styrene starting from ethylbenzene .
- such process involves the steps of (i) reacting ethylbenzene with oxygen or air to form ethylbenzene hydroperoxide, (ii) reacting the ethylbenzene hydroperoxide thus obtained with propene in the presence of an epoxidation catalyst to yield propylene oxide and 1-phenylethanol, and (iii) converting the 1-phenylethanol into styrene by dehydration using a suitable dehydration catalyst.
- 2-phenylethanol is formed as a by-product which is also converted into styrene in step (iii) .
- 1-phenylethanol and 2-phenylethanol is well known in the art. It can be carried out both in the gas phase and in the liquid phase.
- the present invention is directed to gas phase dehydration.
- the use of alumina catalysts in such a gas phase dehydration is well known in the art.
- WO-A-99/58480 (in the name of the present applicant) describes a process for the preparation of styrene comprising the gas phase dehydration of 1-phenylethanol at elevated temperature in the presence of a dehydration catalyst consisting of shaped alumina catalyst particles having a surface area in the range of from 80 to 140 m ⁇ /g and a pore volume in the range of from 0.35 to 0.65 ml/g, of which 0.03 to 0.15 ml/g is in pores having a diameter of at least 1,000 nm.
- a dehydration catalyst consisting of shaped alumina catalyst particles having a surface area in the range of from 80 to 140 m ⁇ /g and a pore volume in the range of from 0.35 to 0.65 ml/g, of which 0.03 to 0.15 ml/g is in pores having a diameter of at least 1,000 nm.
- WO-A-00/25918 (in the name of Engelhard Corp.) describes star shaped alumina extrudates with a pore volume in pores of diameter of over 1,000 nm of at least 0.05 ml/g, a side crushing strength of at least 50 N and a bulk crushing strength of at least 1 MPa.
- WO-A-2004/076389 (in the name of the present applicant) describes a process for the preparation of styrene comprising the gas phase dehydration of 1- phenylethanol at elevated temperature in the presence of a dehydration catalyst comprising shaped alumina catalyst particles having a surface area of from 80 to 140 m ⁇ /g. Said process is characterised in that the catalyst pore volume is more than 0.65 ml/g.
- an object of this invention is to provide a process for the preparation of styrene allowing high activity and selectivity in the conversion of 1- phenylethanol and 2-phenylethanol to styrene, also after the catalyst has aged.
- the catalyst to be used should have sufficient mechanical strength.
- the present invention relates to a process for the preparation of styrene and/or a substituted styrene from a feed containing 1- phenylethanol and 2-phenylethanol and/or a substituted 1- phenylethanol and a substituted 2-phenylethanol, comprising a gas phase dehydration of the feed at elevated temperature in the presence of a catalyst comprising particles of alumina having a multimodal pore size distribution.
- the feed for the gas phase dehydration may be a feed containing a substituted 1-phenylethanol and a substituted 2-phenylethanol, thereby producing a substituted styrene.
- substituted styrene is meant a styrene containing one or more substituents bonded to the aromatic ring and/or to the vinyl group.
- substituents typically include alkyl groups, such as C1-C4 alkyl groups, for example methyl and ethyl groups.
- the substituents of the substituted styrene, the substituted 1-phenylethanol and the substituted 2-phenylethanol are all identical.
- An example of a substituted styrene which can be prepared according to the present process is alpha-methyl-styrene to be prepared from a feed containing 1-methyl-l- phenylethanol and 2-methyl-2-phenylethanol .
- alumina refers to an inorganic oxide consisting for at least 90% by weight (wt%), preferably at least 95 wt% and most preferably at least 99 wt%, of AI2O3.
- the remainder up to 100 wt% may consist of minor amounts of other inorganic oxides like SiC>2 and alkali metal oxides.
- Preferably no such other inorganic oxides are present and an inorganic oxide consisting of essentially 100 wt% of alumina is used.
- Suitable aluminas include gamma-alumina, delta-alumina, eta-alumina, theta-alumina, chi-alumina and kappa-alumina.
- Suitable alumina raw materials include alumina monohydrate (boehmite), alumina trihydrate
- the alumina catalyst to be used in the process of the present invention preferably has a surface area in the range of from 60 to 160 m ⁇ /g, more preferably in the range of from 80 to 140 m ⁇ /g. Still more preferably, the surface area of the catalyst is in the range of from 85 to 115 m ⁇ /g. The surface area is determined according to the well known Brunauer-Emmett-Teller (BET) method.
- BET Brunauer-Emmett-Teller
- the total pore volume of the catalyst is of from 0.25 to 1.50 ml/g, more preferably 0.5 to 1.25 ml/g. Still more preferably, the total pore volume is greater than 0.7 ml/g. The total pore volume is determined according to the well known mercury porosimetry method.
- a multimodal pore size distribution means a pore size distribution in which, when incremental pore volume is plotted as a function of pore size, the resulting function exhibits a maximum (or mode) within a first pore size range and a maximum (or mode) within a second pore size range.
- a maximum (or mode) is the most frequently occurring number within a specific range of numbers.
- the pore size maximum (or mode) is the pore size which, within a specific pore size range or within a subrange falling within such range, corresponds to the highest peak in a graph showing the pore size distribution.
- a multimodal pore size distribution means that within said first pore size range there should be at least one peak in a graph showing the pore size distribution, and within said second pore size range there should also be at least one peak in a graph showing the pore size distribution. Examples of multimodal pore size distributions having two peaks are shown in Figures 2 and 3.
- the pore size may be the pore diameter or the pore radius.
- the pore size range comprises a first pore size range and a second pore size range and the pore sizes in the first pore size range are smaller than the pore sizes in the second pore size range.
- a first pore size range is a pore diameter range of from 2 to 100 nm (mesopores) and a second pore size range is a pore diameter range of greater than 100 nm, for example greater than 100 nm to smaller than 10,000 or 1,000 nm (macropores ) .
- the maximum (or mode) in the first pore size range is at a pore diameter of from 5 to 30 nm, more preferably 10 to 20 nm.
- the maximum (or mode) in the second pore size range is at a pore diameter of from 300 to 1,000 nm, more preferably 400 to 700 nm.
- the pore diameters corresponding to the maximums (or modes) in first and second pore size ranges are separated by at least 200 nm, more preferably at least 300 nm, and by at most 1,000 nm, more preferably at most 750 nm.
- the median pore diameter calculated by volume (MPD V ) may be from 5 to 50 nm, preferably 10 to 40 nm and more preferably 15 to 30 nm.
- MPD V herein means the pore diameter above which half of the total pore volume exists.
- the MPD V is greater than the pore diameter mode in a first pore size range and smaller than the pore diameter mode in a second pore size range.
- the pore size distribution is determined according to the well known mercury porosimetry method.
- the catalyst to be used in the present invention has from 10 to 40%, more preferably 20 to 35%, and most preferably 25 to 30%, of the total pore volume in pores having a diameter greater than 100 nm
- the catalyst has from 60 to 90%, more preferably 65 to 80%, and most preferably 70 to 75%, of the total pore volume in pores having a diameter from 2 to 100 nm (mesopores) . Still further, preferably the catalyst has less than 3%, more preferably less than 2% and even more preferably less than 1%, of the total pore volume in pores having a diameter greater than 1,000 nm. Most preferably, the catalyst has essentially no pore volume in pores having a diameter greater than 1,000 nm.
- the diameter of the catalyst particles is not particularly critical to the present invention. Diameters normally used for this kind of catalysts may be employed.
- the term "diameter” as used in this connection refers to the largest distance between two opposite points on the perimeter of the cross-section of a catalyst particle. In case of rod-like particles having a shaped cross-section, this shaped cross-section is the relevant cross-section. It has been found particularly advantageous for the purpose of the present invention to use catalyst particles having a diameter of 1.5 to 10 mm, preferably 2.5 to 7.5 mm. In a preferred embodiment a shaped catalyst is used.
- shaped catalyst refers to a catalyst having a certain spatial shape.
- Suitably shaped catalyst particles can be obtained by a method involving extrusion and calcination, wherein the spatial shape of the particles is obtained by using an extruder having a dieplate with an orifice of the desired shape.
- such shaping process comprises mixing one or more alumina raw materials with water or an acid solution to form an extrudable paste, forcing the paste through said orifices, cutting the extrudate to the desired length, and drying and calcining the formed pieces.
- the catalyst particles may have any shape, including spherical, cylindrical, trilobal (three lobes), quadrilobal (four lobes), star-shaped, ring-shaped, cross-shaped etc.
- a star-shaped catalyst may comprise rod-like catalyst particles having a star-shaped cross- section.
- the star may have any desirable number of corners, but a four-, five- or six-cornered star-shape is preferred.
- Star-shaped objects can be defined as objects having some kind of central part or core, with three or more triangularly shaped extensions on the circumference thereof.
- An example of a star-shaped object is shown in the Figure of WO-A-00/25918. It has been found particularly advantageous to use a hollow quadrilobal shaped catalyst.
- a hollow quadrilobal shaped catalyst may comprise rod-like catalyst particles having a hollow quadrilobal shaped cross-section.
- a hollow quadrilobal shaped cross-section is understood a cross-section having a central part which is at least partially hollow, with four non-triangularly, for example semi-circularly, shaped extensions on the circumference thereof.
- An example of a hollow quadrilobal shaped object is shown in Figure 1.
- a shaped catalyst having an average length/diameter ratio of the catalyst particles in the range of from 0.5 to 3, preferably 1.0 to 2.0.
- the "length” in this connection refers to the length of the rod of rod-like catalyst particles .
- the catalyst particles to be used should also have sufficient mechanical strength.
- One of the advantages of a hollow "quadrilobal" shaped catalyst is that the catalyst particles still have a good mechanical strength despite the inner hole, both in terms of side crushing strength (SCS) and bulk crushing strength (BCS) .
- the catalyst particles may have a SCS of at least 30 N, preferably at least 50 N, and a BCS of at least 0.7 MPa, preferably at least 1.0 MPa.
- SCS side crushing strength
- BCS bulk crushing strength
- Alumina catalysts and/or carriers having a multimodal pore size distribution and a desired specific surface area can be prepared by starting with a high surface area multimodal alumina carrier, and calcining to a suitable temperature to produce the desired specific surface area.
- alumina carrier commercially available from Saint-Gobain NorPro of Stow, Ohio, USA and identified as SA6x76, can be fired to a temperature in the range of from 900 to 1060 0 C to produce a specific surface area in the range of from 80 to 140 m ⁇
- Alumina catalysts and/or carriers having a monomodal pore size distribution and a desired specific surface area can be prepared by starting with a high surface area monomodal alumina carrier, and calcining to a suitable temperature to produce the desired specific surface area.
- alumina carrier commercially available from Saint-Gobain NorPro of Stow, Ohio, USA and identified as SA6x75, can be fired to a temperature in the range of from 900 to 1060 0 C to produce a specific surface area in the range of from 80 to 140 m 2 /g.
- the dehydration of 1-phenylethanol and 2- phenylethanol into styrene according to the present invention is carried out in the gas phase at elevated temperature.
- elevated temperature preferably is any temperature above 150 0 C.
- the preferred dehydration conditions are those normally applied and include a reaction temperature in the range of from 210 to 330 0 C, more preferably 280 to 320 0 C, and a pressure in the range of from 0.1 to 10 bar, more preferably of about 1 bar .
- the surface area is determined according to the BET method and the pore volume and the pore size distribution were determined according to the mercury porosimetry method.
- the conversion of for example 1- phenylethanol is defined as the mole percentage of 1- phenylethanol converted relative to the total number of moles of 1-phenylethanol present in the feed.
- selectivity is defined as the mole percentage of styrene formed relative to the total number of moles of 1-phenylethanol and 2-phenylethanol converted.
- 1-phenylethanol containing feedstock was used a sample of the process stream to the styrene reactor system of a commercial Propylene Oxide/Styrene Monomer plant.
- the feedstock contained 78.9 wt . % of 1-phenylethanol, 4.5 wt . % of 2- phenylethanol, 15.6 wt .
- the dehydration experiment was carried out at test conditions of 1.0 bara pressure and a temperature of 300 0 C.
- the feed rate of the 1-phenylethanol containing feedstock was maintained at 30 grams per hour and the reactor tube was loaded with 20 cm ⁇ of catalyst.
- IPE 1-phenylethanol
- 2PE 2-phenylethanol
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0821577-4A BRPI0821577B1 (en) | 2007-12-10 | 2008-11-27 | PROCESS FOR THE PREPARATION OF STYLENE AND / OR REPLACED STYLENE. |
EP08859714A EP2231559B1 (en) | 2007-12-10 | 2008-11-27 | Process for the preparation of styrene and/or a substituted styrene |
RU2010128650/04A RU2469999C2 (en) | 2007-12-10 | 2008-11-27 | Method of producing styrene and/or substituted styrene |
CN2008801200370A CN101896444B (en) | 2007-12-10 | 2008-11-27 | Process for the preparation of styrene and/or a substituted styrene |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07122779 | 2007-12-10 | ||
EP07122779.7 | 2007-12-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009074461A1 true WO2009074461A1 (en) | 2009-06-18 |
Family
ID=39323826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/066353 WO2009074461A1 (en) | 2007-12-10 | 2008-11-27 | Process for the preparation of styrene and/or a substituted styrene |
Country Status (6)
Country | Link |
---|---|
US (1) | US20090187055A1 (en) |
EP (1) | EP2231559B1 (en) |
CN (1) | CN101896444B (en) |
BR (1) | BRPI0821577B1 (en) |
RU (1) | RU2469999C2 (en) |
WO (1) | WO2009074461A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2750657C1 (en) * | 2020-11-17 | 2021-06-30 | Александр Адольфович Ламберов | Method for producing catalyst for methylphenyl carbinol dehydration |
WO2021156351A1 (en) | 2020-02-07 | 2021-08-12 | Basf Se | Star-shaped ceramic body for use as catalyst |
US11547981B2 (en) | 2018-05-29 | 2023-01-10 | Basf Se | Method for producing transition alumina catalyst monoliths |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017067887A1 (en) * | 2015-10-19 | 2017-04-27 | Shell Internationale Research Maatschappij B.V. | Process for producing styrene |
CN111620759B (en) * | 2020-05-21 | 2022-04-08 | 常州瑞华化工工程技术股份有限公司 | Method for preparing styrene by gas phase dehydration of phenethyl alcohol |
CN112452319A (en) * | 2020-12-11 | 2021-03-09 | 山东齐鲁华信高科有限公司 | Alpha-phenethyl alcohol dehydration catalyst and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999058480A1 (en) * | 1998-05-11 | 1999-11-18 | Shell Internationale Research Maatschappij B.V. | Process for the preparation of styrenes |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4207424A (en) * | 1978-08-09 | 1980-06-10 | Halcon Research & Development Corporation | Catalytic process for dehydration of alcohols |
TW200413302A (en) * | 2002-08-27 | 2004-08-01 | Shell Int Research | Preparation method |
CN1753850A (en) * | 2003-02-25 | 2006-03-29 | 国际壳牌研究有限公司 | Process for the preparation of styrene |
DE10309367A1 (en) * | 2003-03-03 | 2004-09-23 | Sasol Germany Gmbh | Process for the dehydration of alcohols to α-olefins |
-
2008
- 2008-11-27 EP EP08859714A patent/EP2231559B1/en not_active Not-in-force
- 2008-11-27 BR BRPI0821577-4A patent/BRPI0821577B1/en active IP Right Grant
- 2008-11-27 RU RU2010128650/04A patent/RU2469999C2/en active
- 2008-11-27 WO PCT/EP2008/066353 patent/WO2009074461A1/en active Application Filing
- 2008-11-27 CN CN2008801200370A patent/CN101896444B/en active Active
- 2008-12-10 US US12/331,867 patent/US20090187055A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999058480A1 (en) * | 1998-05-11 | 1999-11-18 | Shell Internationale Research Maatschappij B.V. | Process for the preparation of styrenes |
Non-Patent Citations (2)
Title |
---|
G. VIVEKANANDAN AND V. KRISHNASAMY: "CATALYTIC TRANSFORMATIONS OF PHENETHYL ALCOHOLS IN THE VAPOUR PHASE", HUNGARIAN JOURNAL OF INDUSTRIAL CHEMISTRY, vol. 23, 1995, pages 21 - 26, XP009099987 * |
R.G. ROMANOV ET AL: "Catalytic Dehydration of alpha-Phenylethanol on the Surface of Aluminium Oxides", KINETICS AND CATALYSIS, vol. 45, no. 3, 2004, pages 423 - 428, XP009099808 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11547981B2 (en) | 2018-05-29 | 2023-01-10 | Basf Se | Method for producing transition alumina catalyst monoliths |
WO2021156351A1 (en) | 2020-02-07 | 2021-08-12 | Basf Se | Star-shaped ceramic body for use as catalyst |
RU2750657C1 (en) * | 2020-11-17 | 2021-06-30 | Александр Адольфович Ламберов | Method for producing catalyst for methylphenyl carbinol dehydration |
Also Published As
Publication number | Publication date |
---|---|
BRPI0821577A2 (en) | 2015-06-16 |
EP2231559A1 (en) | 2010-09-29 |
BRPI0821577B1 (en) | 2018-02-27 |
US20090187055A1 (en) | 2009-07-23 |
CN101896444B (en) | 2013-09-25 |
RU2010128650A (en) | 2012-01-20 |
RU2469999C2 (en) | 2012-12-20 |
EP2231559B1 (en) | 2012-05-23 |
CN101896444A (en) | 2010-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2231559B1 (en) | Process for the preparation of styrene and/or a substituted styrene | |
US6437207B1 (en) | Process for the preparation of styrenes | |
JP6105810B2 (en) | Process for producing 1,3-butadiene and use of lanthanum in a catalyst for producing 1,3-butadiene | |
US8680356B2 (en) | Catalyst and process for preparing isoolefins | |
US20090062584A1 (en) | Process for the preparation of styrene | |
JP5591325B2 (en) | Production of 3-methylbut-1-ene by dehydration of 3-methylbutan-1-ol | |
CN101903368A (en) | Process for preparing e-caprolactone | |
CA2006092C (en) | Preparation of propylene | |
US7354883B2 (en) | Catalyst and method for the production of 1-olefins from 2-hydroxylkanes | |
US9682896B2 (en) | Production method for olefin, and dehydration catalyst employed in same | |
CN111094217A (en) | Process for the preparation of olefins from alcohols | |
RU2412148C1 (en) | Single-step method of producing isoprene | |
EP4100380B1 (en) | Star-shaped ceramic body for use as catalyst | |
JP7342043B2 (en) | Olefin isomerization catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880120037.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08859714 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008859714 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3995/DELNP/2010 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010128650 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: PI0821577 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100609 |