WO2009065691A2 - Verfahren zur berechnung des wirkungsgrades eines energiespeichers und verwendung des wirkungsgrades - Google Patents

Verfahren zur berechnung des wirkungsgrades eines energiespeichers und verwendung des wirkungsgrades Download PDF

Info

Publication number
WO2009065691A2
WO2009065691A2 PCT/EP2008/064237 EP2008064237W WO2009065691A2 WO 2009065691 A2 WO2009065691 A2 WO 2009065691A2 EP 2008064237 W EP2008064237 W EP 2008064237W WO 2009065691 A2 WO2009065691 A2 WO 2009065691A2
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
efficiency
hybrid vehicle
electric machine
parallel hybrid
Prior art date
Application number
PCT/EP2008/064237
Other languages
English (en)
French (fr)
Other versions
WO2009065691A3 (de
Inventor
Mesut Er
Stefan Wallner
Notker Amann
Original Assignee
Zf Friedrichshafen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Friedrichshafen Ag filed Critical Zf Friedrichshafen Ag
Priority to US12/743,784 priority Critical patent/US20110035084A1/en
Priority to CN200880116972XA priority patent/CN101878141A/zh
Priority to EP08851285A priority patent/EP2210451A2/de
Priority to JP2010534433A priority patent/JP2011505287A/ja
Publication of WO2009065691A2 publication Critical patent/WO2009065691A2/de
Publication of WO2009065691A3 publication Critical patent/WO2009065691A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Definitions

  • the present invention relates to a method for calculating the efficiency of the energy storage connected to the electric machine of a parallel hybrid vehicle in a parallel hybrid vehicle according to the preamble of claim 1. Furthermore, the invention relates to the use of the calculated efficiency.
  • hybrid vehicles comprising a hybrid transmission are known. They comprise, in addition to the internal combustion engine, at least one electric motor or one electrical machine.
  • a generator is driven by the internal combustion engine, with the generator supplying electric power to the electric motor driving the wheels.
  • parallel hybrid vehicles are known in which an addition of the torques of the internal combustion engine and at least one connectable to the internal combustion engine electric machine.
  • the electric machines can be connected to the belt drive or to the crankshaft of the internal combustion engine. The torques generated by the internal combustion engine and / or the at least one electric machine are transmitted to the driven axle via a downstream transmission.
  • a drive train with an electrically adjustable hybrid transmission and an electrohydraulic control system a plurality of electric power units and a plurality of torque-transmitting mechanisms is known.
  • the torque-transmitting mechanisms can be selectively engaged by the electro-hydraulic control system to four forward gears, a neutral state, a low and high speed electrical operation, a to provide electrically variable low and high speed operating modes and a hill hold mode.
  • From US 7,174,980 B2 is a method for controlling the performance of a hybrid drive of a vehicle, wherein the hybrid drive as a prime mover comprises an internal combustion engine and at least one electric machine, and the output shafts of the prime movers are operatively connected to a drive train of the vehicle. It is provided that a drag torque characteristic of the hybrid drive is adjusted by selective control of the at least one electric machine
  • the present invention has for its object to provide a method for calculating the efficiency of the connected to the electric machine of a parallel hybrid vehicle energy storage in a parallel hybrid vehicle comprising an internal combustion engine and at least one electric machine, by its implementation, the efficiency can be accurately calculated with little computational effort. Furthermore, advantageous uses of the invention calculated efficiency should be specified.
  • the current energy storage-specific measured variables current, voltage and / or temperature are used continuously to calculate the efficiency of the energy store.
  • a required current can be used, whereby a short-term prognosis for a specific power requirement is made possible.
  • energy storage parameters determined "offline”, such as the at least one internal resistance, the double-layer time constant and the charging time constant, are used to calculate the efficiency of the energy storage device Energy storage transposed voltage in relation set.
  • the current temperature measured value is used to track the internal resistance value, which can take place, for example, via a characteristic curve preferably stored in the energy storage module.
  • the calculated efficiency of the energy storage device at the interface between the energy storage module and the functional module of the hybrid sub-train is transmitted to the functional module of the hybrid sub-train, thereby ensuring that energy storage-specific data is only required in the energy storage module, so that the functional module of the hybrid powertrain is independent of the currently used energy storage.
  • the efficiency of the energy storage in the calculation of the overall efficiency in the hybrid powertrain.
  • the module efficiency is calculated and transmitted to the parent function module of the hybrid sub-train, wherein in the functional module of the hybrid sub-train from the chain of efficiencies of the individual modules the overall driveline efficiency for a required power path is calculated.
  • the functional module of the hybrid sub-train from the chain of efficiencies of the individual modules the overall driveline efficiency for a required power path is calculated.
  • the battery efficiency is used to calculate the resulting overall efficiency, whether this is after passing through the entire system Efficiency chain from the energy point of view worth or not.
  • operating areas with unfavorably calculated overall efficiency in hybrid operation are marked as "areas to be avoided", which should be avoided as far as possible during operation.
  • the inventive concept of the continuous calculation of the efficiency of the energy storage is accurately recorded with a reasonable computational effort. Furthermore, the independence of the functional module or of the functional model of the hybrid drivetrain from a specific energy store is ensured by the calculation of the efficiency in the energy storage module and transmission of the efficiency at the interface to the parent function module of the hybrid sub-train, so that the energy storage with little effort can be exchanged. Furthermore, the described consideration of the efficiency of the energy storage in strategic functions leads to an optimal use of energy storage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

Im Rahmen des Verfahrens zur Berechnung des Wirkungsgrades des an die Elektromaschine eines parallelen Hybridfahrzeugs angeschlossenen Energiespeichers bei einem parallelen Hybridfahrzeug, umfassend einen Verbrennungsmotor und zumindest eine Elektromaschine, wird im Energiespeichermodul eine kontinuierliche „Online'-Berechnung bzw. Echtzeit-Berechnung des Wirkungsgrades des Energiespeichers anhand eines Energiespeichermodels unter Verwendung bekannter energiespeicherspezifischer Parameter und energiespeicherspezifischer Messgrößen durchgeführt.

Description

Verfahren zur Berechnung des Wirkungsgrades eines Enerqiespeichers und Verwendung des Wirkungsgrades
Die vorliegende Erfindung bezieht sich auf ein Verfahren zur Berechnung des Wirkungsgrades des an die Elektromaschine eines parallelen Hybridfahrzeugs angeschlossenen Energiespeichers bei einem parallelen Hybridfahrzeug gemäß dem Oberbegriff des Patentanspruchs 1. Des weiteren bezieht sich die Erfindung auf die Verwendung des berechneten Wirkungsgrades.
Aus dem Stand der Technik sind Hybridfahrzeuge umfassend ein Hybridgetriebe bekannt. Sie umfassen zusätzlich zu dem Verbrennungsmotor zumindest einen Elektromotor bzw. eine elektrische Maschine. Bei seriellen Hybridfahrzeugen wird ein Generator vom Verbrennungsmotor angetrieben, wobei der Generator den die Räder antreibenden Elektromotor mit elektrischer Energie versorgt. Des weiteren sind parallele Hybridfahrzeuge bekannt, bei denen eine Addition der Drehmomente des Verbrennungsmotors und zumindest einer mit dem Verbrennungsmotor verbindbaren elektrischen Maschine erfolgt. Hierbei sind die elektrischen Maschinen mit dem Riementrieb oder mit der Kurbelwelle des Verbrennungsmotors verbindbar. Die vom Verbrennungsmotor und/oder der zumindest einen elektrischen Maschine erzeugten Drehmomente werden über ein nachgeschaltetes Getriebe an die angetriebene Achse übertragen.
Beispielsweise ist im Rahmen der DE102006019679 A1 ein Antriebsstrang mit einem elektrisch verstellbaren Hybridgetriebe und einem elektrohyd- raulischen Steuersystem, mehreren elektrischen Leistungseinheiten und mehreren Drehmomentübertragungsmechanismen bekannt. Hierbei können die Drehmomentübertragungsmechanismen durch das elektrohydraulische Steuersystem selektiv eingerückt werden, um vier Vorwärtsgänge, einen neutralen Zustand, eine elektrische Betriebsart mit niedriger und hoher Drehzahl, eine elektrisch verstellbare Betriebsart mit niedriger und hoher Drehzahl und eine Berghalte-Betriebsart bereitzustellen.
Aus de US 7,174,980 B2 ist ein Verfahren zur Steuerung des Betriebsverhaltens eines Hybridantriebes eines Fahrzeuges, wobei der Hybridantrieb als Antriebsmaschine eine Verbrennungskraftmaschine und wenigstens eine elektrische Maschine umfasst, und die Abtriebswellen der Antriebsmaschinen mit einem Antriebsstrang des Fahrzeuges wirkverbindbar sind. Hierbei ist vorgesehen, dass durch gezielte Ansteuerung der wenigstens einen elektrischen Maschine eine Schleppmoment-Kennlinie des Hybridantriebes eingestellt wird
Aus dem Stand der Technik ist bekannt, dass Energiespeicher Verlustleistungen aufweisen, die sich im LadeVEntladevorgang quadratisch auswirken. In der Regel werden diese Verluste nicht berücksichtigt.
Des weiteren ist bekannt, dass der Wirkungsgrad eines Energiespeichers durch Umgebungsbedingungen und den Betriebszustand des Energiespeichers beeinflusst wird, wobei ohne Berücksichtigung des Wirkungsgrades eines Energiespeichers dessen optimale Nutzung nicht gewährleistet ist.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Berechnung des Wirkungsgrades des an die Elektromaschine eines parallelen Hybridfahrzeugs angeschlossenen Energiespeichers bei einem parallelen Hybridfahrzeug, umfassend einen Verbrennungsmotor und zumindest eine Elektromaschine anzugeben, durch dessen Durchführung der Wirkungsgrad mit geringem Rechenaufwand genau berechnet werden kann. Des weiteren sollen vorteilhafte Verwendungen des erfindungsgemäß berechneten Wirkungsgrades angegeben werden.
Diese Aufgabe wird für ein Verfahren durch die Merkmale des Patentanspruchs 1 gelöst. Eine vorteilhafte Verwendung des berechneten Wirkungsgra- des ist Gegenstand des Anspruchs 6. Weitere erfindungsgemäße Ausgestaltungen und Vorteile gehen aus den Unteransprüchen hervor.
Demnach wird ein Verfahren vorgeschlagen, im Rahmen dessen im E- nergiespeichermodul eine kontinuierliche „Online"-Berechnung bzw. Echtzeit- Berechnung des Wirkungsgrades des Energiespeichers anhand eines Energiespeichermodels unter Verwendung bekannter energiespeicherspezifischer Parameter und energiespeicherspezifischer Messgrößen durchgeführt wird.
Gemäß der Erfindung werden zur Berechnung des Wirkungsgrades des Energiespeichers laufend die aktuellen energiespeicherspezifische Messgrößen Strom, Spannung und/oder Temperatur verwendet. Gemäß einer Variante der Erfindung kann anstelle des aktuellen Stromes ein geforderter Strom verwendet werden, wodurch eine Kurzzeit-Prognose für eine bestimmte Leistungsanforderung ermöglicht wird..
Des weiteren werden zur Berechnung des Wirkungsgrades des Energiespeichers „offline" ermittelte Energiespeicher-Parameter, wie der zumindest eine Innenwiderstand, die Doppelschicht-Zeitkonstante und die Lade- Zeitkonstante herangezogen. Ferner wird die an den Widerständen abfallende Spannung als Verlustleistung aufsummiert und mit der gesamten vom Energiespeicher umgesetzten Spannung in Relation gesetzt.
Für den Fall, dass nur ein Innenwiderstand angenommen wird ergibt sich der Wirkungsgrad Eta des Energiespeichers wie folgt:
Eta = Wirkleistung / Energiespeicherleistung
= (Ladeleistung-Verlustleistung am Energiespeicherinnenwider- stand) / Ladeleistung = 1 -abs((aktueller Energiespeicher- strom*Energiespeicherinnenwiderstand) /aktuelle Energiespeicherspannung), wobei abs den Betrag bezeichnet.
Vorzugsweise wird, um die Temperaturabhängigkeit des Innenwiderstands zu berücksichtigen, der aktuelle Temperaturmesswert verwendet, um den Innenwiderstandswert nachzuführen, was beispielsweise über eine vorzugsweise im Energiespeichermodul abgelegte Kennlinie erfolgen kann.
Gemäß einer vorteilhaften Weiterbildung der Erfindung wird der berechnete Wirkungsgrad des Energiespeichers an der Schnittstelle zwischen Energiespeichermodul und Funktionsmodul des Hybrid-Anthebsstrangs (Hybridmodul) an das Funktionsmodul des Hybrid-Anthebsstrangs übermittelt, wodurch sichergestellt ist, dass energiespeicher-spezifische Daten nur im Energiespeichermodul benötigt werden, so dass das Funktionsmodul des Hybrid- Antriebsstrangs unabhängig vom aktuell verwendeten Energiespeicher ist.
Gemäß der Erfindung wird vorgeschlagen, den Wirkungsgrad des Energiespeichers bei der Berechnung des Gesamtwirkungsgrades im Hybrid- Antriebsstrang zu verwenden. Hierbei wird in jedem Modul des Hybrid- Antriebsstrangs (z.B. Elektromaschinenmodul, Energiespeichermodul, Getriebemodul, Verbrennungsmotormodul etc.) der Modulwirkungsgrad berechnet und an das übergeordnete Funktionsmodul des Hybrid-Anthebsstrangs übermittelt, wobei im Funktionsmodul des Hybrid-Anthebsstrangs aus der Kette der Wirkungsgrade der einzelnen Module der Gesamtwirkungsgrad des Antriebsstrangs für einen benötigten Leistungspfad berechnet wird. Auf diese Weise kann im Funktionsmodul des Hybrid-Antriebsstrangs errechnet werden, ob z.B. sich eine Lastpunktverschiebung des Verbrennungsmotors aus energetischer Sicht lohnt oder nicht. Wenn beispielsweise der Verbrennungsmotor im Rahmen einer Lastpunktverschiebung in einen besseren Wirkungsgrad-Punkt gebracht werden soll, wobei die überschüssige elektrische Leistung in den Energiespeicher gespeichert werden soll, wird mittels des Batterie-Wirkungsgrades anhand des sich ergebenden Gesamtwirkungsgrades errechnet, ob sich dies nach Durchlaufen der gesamten Wirkungsgrad kette aus energetischer Sicht lohnt oder nicht.
Gemäß der Erfindung kann vorgesehen sein, dass Betriebsbereiche mit ungünstigen berechneten Gesamtwirkungsgrad im Hybridbetrieb als „zu vermeidende Bereiche" markiert werden, die während des Betriebes möglichst vermieden werden sollen.
Durch die erfindungsgemäße Konzeption der kontinuierlichen Berechnung wird der Wirkungsgrad des Energiespeichers mit einem vertretbaren Rechenaufwand genau erfasst. Ferner wird durch die Berechnung des Wirkungsgrades im Energiespeichermodul und Übermittlung des Wirkungsgrades an der Schnittstelle zum übergeordneten Funktionsmodul des Hybrid-Anthebsstrangs die Unabhängigkeit des Funktionsmoduls bzw. des Funktionsmodells des Hyb- rid-Antriebsstrangs von einem spezifischen Energiespeicher gewährleistet, so dass der Energiespeicher mit wenig Aufwand ausgetauscht werden kann. Des weiteren führt die beschriebene Berücksichtigung des Wirkungsgrades des Energiespeichers in strategischen Funktionen zu einer optimalen Nutzung des Energiespeichers.

Claims

Patentansprüche
1. Verfahren zur Berechnung des Wirkungsgrades des an die Elektro- maschine eines parallelen Hybridfahrzeugs angeschlossenen Energiespeichers bei einem parallelen Hybridfahrzeug, umfassend einen Verbrennungsmotor und zumindest eine Elektromaschine, dadurch gekennzeichnet, dass im Energiespeichermodul eine kontinuierliche „Online"-Berechnung bzw. Echtzeit- Berechnung des Wirkungsgrades des Energiespeichers anhand eines Energiespeichermodels unter Verwendung bekannter energiespeicherspezifischer Parameter und energiespeicherspezifischer Messgrößen durchgeführt wird.
2. Verfahren zur Berechnung des Wirkungsgrades des an die Elektromaschine eines parallelen Hybridfahrzeugs angeschlossenen Energiespeichers bei einem parallelen Hybridfahrzeug, nach Anspruch 1 , dadurch gekennzeichnet, dass zur Berechnung des Wirkungsgrades des Energiespeichers laufend die aktuellen energiespeicherspezifische Messgrößen Strom, Spannung und/oder Temperatur und als Energiespeicher-Parameter der zumindest eine Innenwiderstand, die Doppelschicht-Zeitkonstante und/oder die Lade-Zeitkonstante verwendet werden, wobei die an den Widerständen abfallende Spannung als Verlustleistung aufsummiert und mit der gesamten vom Energiespeicher umgesetzten Spannung in Relation gesetzt wird.
3. Verfahren zur Berechnung des Wirkungsgrades des an die Elektromaschine eines parallelen Hybridfahrzeugs angeschlossenen Energiespeichers bei einem parallelen Hybridfahrzeug, nach Anspruch 1 oder 2, dadurch g e - kennzeichnet, dass sich für den Fall, dass ein Innenwiderstand vorhanden ist der Wirkungsgrad Eta des Energiespeichers wie folgt ergibt:
Eta = Wirkleistung / Energiespeicherleistung
= (Ladeleistung-Verlustleistung am Innenwiderstand) / Ladeleistung = 1-abs((aktueller Energiespeicher- strom*Energiespeicherinnenwiderstand) /aktuelle Energiespeicherspannung) .
4. Verfahren zur Berechnung des Wirkungsgrades des an die Elektro- maschine eines parallelen Hybridfahrzeugs angeschlossenen Energiespeichers bei einem parallelen Hybridfahrzeug, nach Anspruch 2 oder 3, dadurch g e - kennzeichnet, dass um die Temperaturabhängigkeit des Innenwiderstands zu berücksichtigen, der aktuelle Temperaturmesswert verwendet wird, um den Innenwiderstandswert nachzuführen.
5. Verfahren zur Berechnung des Wirkungsgrades des an die Elektro- maschine eines parallelen Hybridfahrzeugs angeschlossenen Energiespeichers bei einem parallelen Hybridfahrzeug, nach Anspruch 4, dadurch gekennzeichnet, dass die Nachführung des Innenwiderstandswertes in Abhängigkeit von der Temperatur über eine Kennlinie erfolgt.
6. Verwendung des gemäß den Ansprüchen 1 bis 5 berechneten Wirkungsgrades des an die Elektromaschine eines parallelen Hybridfahrzeugs angeschlossenen Energiespeichers bei einem parallelen Hybridfahrzeug, umfassend einen Verbrennungsmotor und zumindest eine Elektromaschine, dadurch gekennzeichnet, dass der Wirkungsgrad des Energiespeichers bei der Berechnung des Gesamtwirkungsgrades im Hybrid- Antriebsstrang verwendet wird.
7. Verwendung des gemäß den Ansprüchen 1 bis 5 berechneten Wirkungsgrades des an die Elektromaschine eines parallelen Hybridfahrzeugs angeschlossenen Energiespeichers nach Anspruch 6, dadurch gekennzeichnet, dass in jedem Modul des Hybrid-Anthebsstrangs der Modulwirkungsgrad berechnet und an das Funktionsmodul des Hybrid-Antriebsstrangs übermittelt wird, wobei im Funktionsmodul des Hybrid-Antriebsstrangs aus der Kette der Wirkungsgrade der einzelnen Module der Gesamtwirkungsgrad des Hybrid-Antriebsstrangs für einen benötigten Leistungspfad berechnet wird und wobei anhand des Gesamtwirkungsgrades errechnet wird, ob sich eine Lastpunktverschiebung des Verbrennungsmotors aus energetischer Sicht lohnt oder nicht.
8. Verwendung des gemäß den Ansprüchen 1 bis 5 berechneten Wirkungsgrades des an die Elektromaschine eines parallelen Hybridfahrzeugs angeschlossenen Energiespeichers nach Anspruch 6 oder 7, dadurch g e - k e n n z e i c h n e t , dass anhand der Berechnung des Gesamtwirkungsgrades Betriebsbereiche mit ungünstigen Gesamtwirkungsgrad im Hybridbetrieb als „zu vermeidende Bereiche" markiert werden, die während des Betriebes möglichst vermieden werden sollen.
9. Verwendung des gemäß den Ansprüchen 1 bis 5 berechneten Wirkungsgrades des an die Elektromaschine eines parallelen Hybridfahrzeugs angeschlossenen Energiespeichers nach Anspruch 6, 7 oder 8, wobei der berechnete Wirkungsgrad des Energiespeichers an der Schnittstelle zwischen Energiespeichermodul und Funktionsmodul des Hybrid-Antriebsstrangs an das Funktionsmodul des Hybrid-Antriebsstrangs übermittelt wird, wodurch sichergestellt ist, dass energiespeicherspezifische Daten nur im Energiespeicher-Modul benötigt werden, so dass das Funktionsmodul des Hybrid-Antriebsstrangs unabhängig vom aktuell verwendeten Energiespeicher ist.
PCT/EP2008/064237 2007-11-20 2008-10-22 Verfahren zur berechnung des wirkungsgrades eines energiespeichers und verwendung des wirkungsgrades WO2009065691A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/743,784 US20110035084A1 (en) 2007-11-20 2008-10-22 Method for calculating the efficiency of an energy store, and use of said efficiency
CN200880116972XA CN101878141A (zh) 2007-11-20 2008-10-22 计算蓄能器效率的方法以及这种效率的应用
EP08851285A EP2210451A2 (de) 2007-11-20 2008-10-22 Verfahren zur berechnung des wirkungsgrades eines energiespeichers und verwendung des wirkungsgrades
JP2010534433A JP2011505287A (ja) 2007-11-20 2008-10-22 エネルギ貯蔵部の効率を算出する方法、及び、当該効率の利用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007047825.0 2007-11-20
DE102007047825A DE102007047825A1 (de) 2007-11-20 2007-11-20 Verfahren zur Berechnung des Wirkungsgrades eines Energiespeichers und Verwendung des Wirkungsgrades

Publications (2)

Publication Number Publication Date
WO2009065691A2 true WO2009065691A2 (de) 2009-05-28
WO2009065691A3 WO2009065691A3 (de) 2009-08-13

Family

ID=40576729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/064237 WO2009065691A2 (de) 2007-11-20 2008-10-22 Verfahren zur berechnung des wirkungsgrades eines energiespeichers und verwendung des wirkungsgrades

Country Status (6)

Country Link
US (1) US20110035084A1 (de)
EP (1) EP2210451A2 (de)
JP (1) JP2011505287A (de)
CN (1) CN101878141A (de)
DE (1) DE102007047825A1 (de)
WO (1) WO2009065691A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9757397B2 (en) 2011-07-05 2017-09-12 Novan, Inc. Methods of manufacturing topical compositions and apparatus for the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20120446A1 (it) 2012-09-18 2014-03-19 Calbatt S R L Sistema e metodo per la misura e la predizione dell¿efficienza di carica di accumulatori.
US20140095088A1 (en) * 2012-09-28 2014-04-03 Caterpillar Inc. Systems and methods for characterization of energy storage devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6484833B1 (en) * 2000-03-17 2002-11-26 General Motors Corporation Apparatus and method for maintaining state of charge in vehicle operations
EP1319556A1 (de) * 2000-09-18 2003-06-18 Sanyo Electric Co., Ltd. Steuerungssystem und methode für batteriesteuerungseinheit
US20040060751A1 (en) * 1995-05-31 2004-04-01 The Regents Of The University Of California Method for controlling the operating characteristics of a hybrid electric vehicle
WO2006053624A1 (de) * 2004-11-16 2006-05-26 Volkswagen Aktiengesellschaft Verfahren zur steuerung eines betriebs eines hybridkraftfahrzeugs sowie hybridfahrzeug
WO2007006121A1 (en) * 2005-04-20 2007-01-18 Mountain Power Inc. Detecting the state-of-charge of a lithium ion battery in a hybrid electric vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3536704B2 (ja) * 1999-02-17 2004-06-14 日産自動車株式会社 車両の駆動力制御装置
JP3832237B2 (ja) * 2000-09-22 2006-10-11 日産自動車株式会社 ハイブリッド車の制御装置
DE10157669A1 (de) 2001-11-24 2003-06-05 Bosch Gmbh Robert Verfahren zur Steuerung des Betriebsverhaltens eines Hybridantriebes eines Fahrzeuges
US7395837B2 (en) * 2005-04-28 2008-07-08 General Motors Corporation Multiplexed pressure switch system for an electrically variable hybrid transmission
CN101687504B (zh) * 2007-05-10 2013-11-20 沃尔沃建筑设备公司 用于控制工程机械的方法和控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040060751A1 (en) * 1995-05-31 2004-04-01 The Regents Of The University Of California Method for controlling the operating characteristics of a hybrid electric vehicle
US6484833B1 (en) * 2000-03-17 2002-11-26 General Motors Corporation Apparatus and method for maintaining state of charge in vehicle operations
EP1319556A1 (de) * 2000-09-18 2003-06-18 Sanyo Electric Co., Ltd. Steuerungssystem und methode für batteriesteuerungseinheit
WO2006053624A1 (de) * 2004-11-16 2006-05-26 Volkswagen Aktiengesellschaft Verfahren zur steuerung eines betriebs eines hybridkraftfahrzeugs sowie hybridfahrzeug
WO2007006121A1 (en) * 2005-04-20 2007-01-18 Mountain Power Inc. Detecting the state-of-charge of a lithium ion battery in a hybrid electric vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9757397B2 (en) 2011-07-05 2017-09-12 Novan, Inc. Methods of manufacturing topical compositions and apparatus for the same

Also Published As

Publication number Publication date
WO2009065691A3 (de) 2009-08-13
DE102007047825A1 (de) 2009-05-28
JP2011505287A (ja) 2011-02-24
EP2210451A2 (de) 2010-07-28
US20110035084A1 (en) 2011-02-10
CN101878141A (zh) 2010-11-03

Similar Documents

Publication Publication Date Title
DE102004043589B4 (de) Vorrichtung und Verfahren zur Bestimmung der Antriebsleistungsverteilung in einem Hybrid-Antriebsstrang eines Fahrzeuges
DE102007026135B4 (de) Verfahren zum Betreiben eines Hybrid-Elektrotriebwerks auf der Basis von Vorhersageeffekten auf eine Speichereinrichtung für elektrische Energie
DE102007026134B4 (de) Verfahren zum vorhersagen einer änderung in einem betriebszustand einer speichereinrichtung für elektrische energie
DE102012002529B4 (de) Verfahren und System zum Steuern eines Antriebsstrangs zur Verringerung des Kraftstoffverbrauchs im Ladungserschöpfungsmodus
DE102012222650A1 (de) Optimieren einer Systemleistung unter Verwendung von Informationen bezüglich des Zustands der Betriebsfähigkeit
WO2010031678A1 (de) Verfahren zur einstellung einer motorischen antriebseinrichtung in einem kraftfahrzeug
DE102007013336A1 (de) Umgang mit Ruckeln unter Verwendung einer Multivariablen Aktiven Endantriebsdämpfung
DE102007054361A1 (de) Steuerarchitektur und Verfahren für eine zweidimensionale Optimierung von Antriebsdrehmoment und Motordrehmoment in einer festen Übersetzung für ein Hybridantriebsstrangsystem
WO2009021913A2 (de) Verfahren zur lastpunktverschiebung im hybridbetrieb bei einem parallelen hybridfahrzeug
DE102015110414A1 (de) Hybridantriebsstrang und Verfahren zum Steuern desselben
DE102015107192A1 (de) Erlernen der Energieverbrauchseffizienz eines Fahrzeugs in der Energiedomäne
EP4182198A1 (de) Verfahren zum betreiben eines fahrzeugs
WO2015024623A2 (de) Fahrzeugsteuerung für ein zumindest teilweise elektrisch angetriebenes fahrzeug
DE102016118719A1 (de) Gangwechsel-drehmomentergänzungs-strategie
DE102011079566B4 (de) Verfahren zum Betreiben eines elektrischen Netzes und Vorrichtung zum Steuern eines elektrischen Netzes
DE102006036443A1 (de) Vorrichtung zum Steuern eines Hybridantriebs
DE102015116404A1 (de) Hohlraddrehmomentmanagement bei einem hybridelektrofahrzeug zur erhöhung des verfügbaren raddrehmoments
WO2009065691A2 (de) Verfahren zur berechnung des wirkungsgrades eines energiespeichers und verwendung des wirkungsgrades
DE102013106319A1 (de) Fahrzeug und Verfahren zur Leistungsverbesserung bei niedrigen Batteriegrenzen
DE102006008641A1 (de) Verfahren zum Betreiben eines Hybridfahrzeugs und Steuergerät zur Durchführung des Verfahrens
EP2988979B1 (de) Betriebsstrategie für hybridfahrzeuge zur realisierung einer lastpunktverschiebung, einer rekuperation und eines boost
WO2009156192A1 (de) Verfahren und vorrichtung zum betreiben eines fahrzeuges mit hybridantrieb
EP2818675A1 (de) Steuerung für das Antriebssystem einer Arbeitsmaschine
AT513476B1 (de) Verfahren zum Betrieb eines Range Extanders für Elektrofahrzeuge
CH706518A1 (de) Steuerung für das Antriebssystem einer Arbeitsmaschine.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880116972.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08851285

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010534433

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008851285

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12743784

Country of ref document: US