WO2009065187A1 - Cutting apparatus - Google Patents

Cutting apparatus Download PDF

Info

Publication number
WO2009065187A1
WO2009065187A1 PCT/AU2008/001735 AU2008001735W WO2009065187A1 WO 2009065187 A1 WO2009065187 A1 WO 2009065187A1 AU 2008001735 W AU2008001735 W AU 2008001735W WO 2009065187 A1 WO2009065187 A1 WO 2009065187A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
blades
blade
cutting edge
axis
Prior art date
Application number
PCT/AU2008/001735
Other languages
French (fr)
Inventor
Kevin Ross Inkster
Original Assignee
Arbortech Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2007906434A external-priority patent/AU2007906434A0/en
Application filed by Arbortech Industries Ltd filed Critical Arbortech Industries Ltd
Priority to US12/744,147 priority Critical patent/US20110030524A1/en
Priority to EP20080851609 priority patent/EP2222430A1/en
Publication of WO2009065187A1 publication Critical patent/WO2009065187A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/18Sawing tools of special type, e.g. wire saw strands, saw blades or saw wire equipped with diamonds or other abrasive particles in selected individual positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D57/00Sawing machines or sawing devices not covered by one of the preceding groups B23D45/00 - B23D55/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/006Oscillating saw blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27BSAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
    • B27B19/00Other reciprocating saws with power drive; Fret-saws
    • B27B19/006Other reciprocating saws with power drive; Fret-saws with oscillating saw blades; Hand saws with oscillating saw blades
    • B27B19/008Other reciprocating saws with power drive; Fret-saws with oscillating saw blades; Hand saws with oscillating saw blades having a plurality of saw blades or saw blades having plural cutting zones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/768Rotatable disc tool pair or tool and carrier
    • Y10T83/7809Tool pair comprises rotatable tools

Definitions

  • This invention relates to a cutting apparatus and in particular to a cutting arrangement where two juxtaposed blades are caused to move sequential approximately elliptical paths.
  • Cutting is achieved using the described action by having teeth on respective outer edges of the two juxtaposed blades and then urging the relatively moving teeth on the edge of the respective blades against a surface to be cut
  • My proposal is, in relation to a cutting apparatus as previously described, to provide an anchoring locator or locators which can engage with a work piece while it is being cut and provide thereby a potential pivot position about which the apparatus can be turned and effect a shifting of the position of the moving blades about such pivot locator.
  • such anchoring locator is a sharp tooth which is adapted to ensnare and provide a pivot location point by engaging against a work piece as it is being cut by the relatively moving blades.
  • sharp tooth is shaped and positioned to provide an anchoring location for many instances of work piece type, size and shape.
  • the member includes at least two anchor point locators at least one of which is inboard from adjacent cutting edges of the respective cutting blades.
  • the position of the anchoring locators include a plurality of locators where at least one is beyond the perimeter of the cutting edges of the juxtaposed blades and at least two anchoring locations which are spaced apart are located inboard from the cutting edges of the juxtaposed blades.
  • An advantage of having two members or parts with mutually aligned anchoring locations in the first instance is that both anchoring locators engaging against a work piece, when the work piece is being cut at a mutually perpendicular alignment, then both anchoring locators which is to say one to each side provide a stabilizing support and help to hold an alignment of the cutting blades.
  • An incidental advantage of two members each extending beyond the cutting edge of the blades is also that these can then act to support the cutting apparatus as a whole so that on a planar surface, the outer ends of the members can rest upon the planar support surface with a remainder of the body resting otherwise on the surface and teeth of the respective blades also being held above the surface.
  • the anchoring locator or. locators positioned beyond the periphery of the cutting edges are positioned at or toward one end of the cutting edges of the blade where the major axes of the approximately elliptical path of the respective cutting edges of the blades are approximately aligned with the alignment of the cutting edge, and this compares to the other end of the blades cutting edges where the alignment of the cutting edge is ctoser to alignment of a major axis of the approximate elliptical path of the respective cutting edges.
  • anchor locators which are spaced at spaced apart locations of the member (or each part) extending from an outer locator position with respect to the cutting edges and then extending in a concave alignment with at least a further anchor locator positioned closest to a body of the cutting apparatus and relatively equal distant from the respective two outer end of the cutting edges of each respective blade.
  • an anchoring locator in one position beyond a periphery of the cutting edges of the respective blades is in a preferred example a sharp point, in a further location around the periphery of the cutting edges of the blades where the relative movement of the teeth at this location may be close to or tangential to the curve of the respective cutting edges at this location, an anchoring locator can then be an edge that provides a relatively linear surface which extends approximately at least in a transverse alignment of the path of the respective teeth of the cutting edges
  • a cutting tooJ having a body, the first blade secured at a first location to a link secured to the body and arranged to allow constrained relative motion to the body, the first blade being further secured to the body by a first pivot connection which itself is secured to a rotatable drive adapted to provide an oscillatory motion to the blade in a direction co-planar with the plane of the blade relative to the body, the first blade having an outer cutting edge with teeth, the cutting edge being spaced apart from an axis of the rotatable drive, and spaced apart further from said first location, the cutting edge being of convex arcuate shape having an approximate radius with a radial centre being an axis through an outermost position of the central axis of its connection with the rotatable drive, and its extent being from a position approximately aligned with the said first location and the said axis through an outermost position of the central axis of its connection
  • a cutting tool comprising two juxtaposed cutting members. each having a tooth cutting edge of a substantially same shape and extent, each of said cutting members having a drive portion extending in a direction lateral to the cutting edge, said drive portions being in a juxtaposed relation;
  • a drive means adapted for coupling to a motor and operatively interacting with each said drive portion to impart thereto an eccentric movement in a plane of each respective said drive portion about a common axis, the eccentric movement imparted to the respective drive portions being equal and angularly out of phase;
  • each cutting member prescribes, in a plane of the cutting member, simultaneous oscillatory movements in the direction of the cutting edge and in a direction substantially at right angles to the cutting edge, the corresponding movements of the respective cutting members being outer phase, and the teeth of the cutting edge being adapted to each cut when moving individually in one direction in the direction of the extent of the cutting edge, and a member located to a side of the respective cutting members and providing an anchor locator shape which is positioned beyond the position of the cutting edges of each respective blade.
  • FIG. 1 is a perspective view of a cutting apparatus incorporating the embodiment of the invention the view being from slightly behind and above the cutting arrangement;
  • FIG. 2 is a view of the same embodiment as in. Figure 1 but being viewed from directly in front of the arrangement;
  • FIG. 3 and FIG. 4 are both side views shown now more schematically with the views in each case being from a side and illustrating relative teeth paths with relation to anchor locations provided by the respective teeth of the jaw;
  • FIG. 5 is a view partly cut away and being in perspective from in front and to a side of the cutting arrangement illustrating also however the support arrangement in part providing the cutting action of the blades;
  • FIG. 6 is a side view of the same cut away view as shown in Figure 5;
  • FIG. 7 is an exploded view of the operating parts connecting and effecting the movement of the respective blades but not in this case including the jaws;
  • FIG. 8 is a cross sectional view of the parts effecting the respective elliptical drives of the blades but also showing a top portion of the respective jaw parts;
  • FIG. 9 is an enlarged view of the parts affecting the drive of the blades and also an upper part of the jaw member
  • FlG. 10 is a part cut away perspective view showing the operating portions driving the respective blades and also the jaw member providing two jaw parts;
  • FlG- 11 is a side view of the same embodiment as shown in all the previous figures except in this case, an attempt has been made to illustrate the relative path followed by each of the respective teeth of each blade;
  • FIG. 12 is an enlarged view of that same figure and in Figure 11,
  • FIG. 13 is a side view of a further embodiment with an alternative anchor locator being in position
  • FIG. 14 is a perspective view of the said further embodiment.
  • the invention in this case relates to locating a jaw or jaws which provide anchor locators to assist in use of the unique cutting action offered by the system of my earlier patent where there are two juxtaposed blades which are caused to move through a path which, by reason of the mechanics and specific linkages, move alternatively in a forward out in a retracted position then back with a cutting action because of a projecting position through a cutting path.
  • the drive system uses an innermost HnK to a body and then at a further outer point, effects movement of an axis at this further location which is circular.
  • the resutt is that at an outer periphery there are cutting teeth outwardly projecting and orientated so that they have a cutting edge which will effect the cutting effect in relation to the work piece when the path of a respective tooth is caused to proceed along an outer projecting cutting path.
  • a cutting apparatus 1 which includes a body 2, an engine 3. Juxtaposed blades 4 and 5 are supported so as to be able to be driven by the motor 3 so as to effect the respective travel of teeth 6 so that they act so that as one set of teeth are projected forward Iy and then along in a cutting action, the other set of teeth are withdrawn and returning retracted from a cutting action to a position to recommence an outwardly projecting cutting action.
  • At least one of the teeth on each side in this case 12 and 13, is positioned to have its sharp point beyond a periphery of the cutting periphery of the blades 4 and 5 (this means that when viewed directly from a side of the blades the tooth is seen to be beyond the periphery of the blades and especially the cutting teeth of the blades).
  • this tooth is shaped so that it has relatively sharply inclined sides and of equal alignment or angle with relation to a direction which is parallel to the major axes of a path that the closest of the teeth would follow.
  • tooth 14 which is closest to the body 2 as compared to the remainder of the teeth but which again is a sharp tooth with sides inclined to perhaps 15° to a central axis and this central axis passing through a base in the apex so as to be at right angles to the path of teeth that are located generally directed in front of that tooth.
  • the alignment of the remaining teeth between the outer tooth 12 in the one case and 13 in the other and an inner tooth 17 at least bn one side, are intended then also inboard with relation to the outer cutting teeth of the respective juxtaposed blades 4 and 5. They are also aligned so that they sequentially will be directed to in each case a further path area of the cutting teeth further outward than those of the respective blades.
  • the respective blades 4 and 5 are each rotatably affixed to the off-centre drives 24 as previously described and 27 which are 180° out of alignment
  • the jaw 7 in the embodiment is manufactured as a single unit and has a back 34 with an open arch portion 35 and to each side a forwardly directed portion which provides on its forward outer edge the plurality of teeth which have been previously described.
  • each of the teeth are shaped to point in a direction which is useful in relation to the anchoring location appropriate for its position.
  • a further feature of the embodiment as shown is that the jaw member 34 being split into two spread legs, which are positioned wide of the respective blades 4 and 5 and to some extent lower than at least the rear heel of the blades ensures that these jaws can be used to rest the cutting apparatus 1 on the ground or ⁇ other supporting surface in a stable position with a remainder of the body of the engine 3 also then resting on the ground in a tripod alignment but this of course then acts to keep the cutting edges of the blades clear of having to rest on a surface and perhaps be damaged or blunted.
  • an anchoring locator in one position beyond a periphery of the cutting edges of the respective blades is in one embodiment a sharp point
  • this location can be located further 39 and 40 of the blades 41 and 42.
  • the relative movement of the teeth 43 and 44 may be close to or tangential to the curve of the respective cutting edges at this location, and an anchoring locator 45 can then be an edge 4 ⁇ that provides a around the periphery of the cutting edges of the blades.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

A cutting apparatus of a type where two juxtaposed blades are caused to move through sequential approximately elliptical paths and having teeth at respective outer edges of the two juxtaposed blades the relatively moving teeth on the edge of the respective blades being adapted to be urged against a surface to b cut, and at least one anchoring locator which is positioned beyond a periphery of the respective blades and thereby adapted to engage with a work piece while it is being cut and provide thereby a potential anchoring position for a work piece.

Description

CUTTING APPARATUS
This invention relates to a cutting apparatus and in particular to a cutting arrangement where two juxtaposed blades are caused to move sequential approximately elliptical paths.
BACKGROUND OF THE INVENTION
The cutting action that I have described is described in my earlier patent one example of which is US Patent No. 5456011 filed 12 October 1993.
Cutting is achieved using the described action by having teeth on respective outer edges of the two juxtaposed blades and then urging the relatively moving teeth on the edge of the respective blades against a surface to be cut
In practice, using such a cutting arrangement with blades that project to a respective cutting edge will, because of the mechanism controlling the geometry of the cutting action, exhibit differing elliptical paths and differently orientated elliptical paths as one progresses from location to location around the cutting edge.
The effect of this is that cutting, using the system, involves an operator holding the cutting apparatus and pulling the relatively moving cutting edges of the blades through a cutting stroke.
This in part requires strength in holding and pushing down to have the cutting edge of the blades engage with adequate pressure against the surface being cut but also requires further strength in being able to effect rotation of the blades through a cutting slot so that some part of the cutting edges will be brought to bear against a surface to be cut where perhaps there is a more appropriately angled elliptical or approximately elliptical path for effecting such cutting. However, such actions can be awkward and tiring and an object of this invention is to provide for an arrangement and method of operating machinery that will be of advantage over what currently exists.
BRIEF SUMMARY OF THE INVENTION
My proposal is, in relation to a cutting apparatus as previously described, to provide an anchoring locator or locators which can engage with a work piece while it is being cut and provide thereby a potential pivot position about which the apparatus can be turned and effect a shifting of the position of the moving blades about such pivot locator.
This is achieved in one instance by having a member attached to the body of the apparatus and extending to one side at least of the blades and extending further than the peripheral alignment of a cutting edge of the respective blades, and there being provided at such distal location, an anchoring locator.
In preference, such anchoring locator is a sharp tooth which is adapted to ensnare and provide a pivot location point by engaging against a work piece as it is being cut by the relatively moving blades. In preference such sharp tooth is shaped and positioned to provide an anchoring location for many instances of work piece type, size and shape.
In preference, the member includes at least two anchor point locators at least one of which is inboard from adjacent cutting edges of the respective cutting blades.
In preference, the position of the anchoring locators include a plurality of locators where at least one is beyond the perimeter of the cutting edges of the juxtaposed blades and at least two anchoring locations which are spaced apart are located inboard from the cutting edges of the juxtaposed blades.
While reference so far has been made to a single member and this is able to be attached anywhere to the body, there is advantage in having two members or two parts of a single member secured to the body but each extending, a first member or part along one side of the blades, and the other member or part to the other side of the blades and each providing mutually aligned anchoring locators.
An advantage of having two members or parts with mutually aligned anchoring locations in the first instance is that both anchoring locators engaging against a work piece, when the work piece is being cut at a mutually perpendicular alignment, then both anchoring locators which is to say one to each side provide a stabilizing support and help to hold an alignment of the cutting blades.
An incidental advantage of two members each extending beyond the cutting edge of the blades, is also that these can then act to support the cutting apparatus as a whole so that on a planar surface, the outer ends of the members can rest upon the planar support surface with a remainder of the body resting otherwise on the surface and teeth of the respective blades also being held above the surface.
In preference, the anchoring locator or. locators positioned beyond the periphery of the cutting edges are positioned at or toward one end of the cutting edges of the blade where the major axes of the approximately elliptical path of the respective cutting edges of the blades are approximately aligned with the alignment of the cutting edge, and this compares to the other end of the blades cutting edges where the alignment of the cutting edge is ctoser to alignment of a major axis of the approximate elliptical path of the respective cutting edges.
In preference, there are provided a plurality of anchor locators which are spaced at spaced apart locations of the member (or each part) extending from an outer locator position with respect to the cutting edges and then extending in a concave alignment with at least a further anchor locator positioned closest to a body of the cutting apparatus and relatively equal distant from the respective two outer end of the cutting edges of each respective blade. While an anchoring locator in one position beyond a periphery of the cutting edges of the respective blades is in a preferred example a sharp point, in a further location around the periphery of the cutting edges of the blades where the relative movement of the teeth at this location may be close to or tangential to the curve of the respective cutting edges at this location, an anchoring locator can then be an edge that provides a relatively linear surface which extends approximately at least in a transverse alignment of the path of the respective teeth of the cutting edges
In a further form of the invention, although this need not necessarily be the only or indeed the broadest form of this, there is provided a cutting tooJ having a body, the first blade secured at a first location to a link secured to the body and arranged to allow constrained relative motion to the body, the first blade being further secured to the body by a first pivot connection which itself is secured to a rotatable drive adapted to provide an oscillatory motion to the blade in a direction co-planar with the plane of the blade relative to the body, the first blade having an outer cutting edge with teeth, the cutting edge being spaced apart from an axis of the rotatable drive, and spaced apart further from said first location, the cutting edge being of convex arcuate shape having an approximate radius with a radial centre being an axis through an outermost position of the central axis of its connection with the rotatable drive, and its extent being from a position approximately aligned with the said first location and the said axis through an outermost position of the central axis of its connection with the rotatable drive, and extending around to approximately a position where it is aligned at approximately 45* to said first radius, a second blade secured at a second location to a second link secured to the body and arranged to allow constrained relative movement to the body, the second blade being further secured to the body by a second pivot connection which itself is secured to a rotatable drive adapted to provide an oscillatory motion to the blade in a direction parallel with the plane of the blade relative to the body, the second blade having an outer cutting edge with teeth, the cutting edge being spaced apart from the axis of the rotatable drive, and spaced apart further from the said second location, the cutting edge being of convex arcuate shape having an approximate radius with a radial centre being the axis through an outermost position of the central axis of its connection with the rotatable drive, and its extent being from a position approximately aligned with the said second location and the said axis through an outermost position of the central axis of its connection with the rotatable drive, and extending around to approximately a position where it is aligned at approximately 45° to the said second radius, the first and second blades being shaped and supported relative to the body so that each cutting surface is restrained to move in an elliptical path the one being with an action that is out of phase compared to the action of the other, and having the cutting edges in a co-operatively mutually aligned cutting relation, a member secured to the body and extending to provide a first anchor locator which is positioned to be further out from the body than the respective cutting edges of the respective adjacent blades, and having further anchor locators positioned closer to the body than the outer cutting edges of the respective blades.
In an alternative description of the arrangement, there is provided a cutting tool comprising two juxtaposed cutting members. each having a tooth cutting edge of a substantially same shape and extent, each of said cutting members having a drive portion extending in a direction lateral to the cutting edge, said drive portions being in a juxtaposed relation;
a drive means adapted for coupling to a motor and operatively interacting with each said drive portion to impart thereto an eccentric movement in a plane of each respective said drive portion about a common axis, the eccentric movement imparted to the respective drive portions being equal and angularly out of phase; and
means to restrain movement of the respective drive portions at a specific location spaced from said common axis to a approximately linear movement in a direction radial to the common axis and to angular movement about a respectively pivot axis parallel to said common axis, whereby in response to activation of the drive means, the cutting edge of each cutting member prescribes, in a plane of the cutting member, simultaneous oscillatory movements in the direction of the cutting edge and in a direction substantially at right angles to the cutting edge, the corresponding movements of the respective cutting members being outer phase, and the teeth of the cutting edge being adapted to each cut when moving individually in one direction in the direction of the extent of the cutting edge, and a member located to a side of the respective cutting members and providing an anchor locator shape which is positioned beyond the position of the cutting edges of each respective blade.
In preference there are two members with aligned anchor locating shapes positioned one to each side of the blades.
DISCLOSURE OF THE INVENTION
For a better understanding of the invention it will now be described in relation to an embodiment which shall be described with the assistance of drawings wherein:
FIG. 1 is a perspective view of a cutting apparatus incorporating the embodiment of the invention the view being from slightly behind and above the cutting arrangement;
FIG. 2 is a view of the same embodiment as in. Figure 1 but being viewed from directly in front of the arrangement;
FIG. 3 and FIG. 4 are both side views shown now more schematically with the views in each case being from a side and illustrating relative teeth paths with relation to anchor locations provided by the respective teeth of the jaw;
FIG. 5 is a view partly cut away and being in perspective from in front and to a side of the cutting arrangement illustrating also however the support arrangement in part providing the cutting action of the blades;
FIG. 6 is a side view of the same cut away view as shown in Figure 5; FIG. 7 is an exploded view of the operating parts connecting and effecting the movement of the respective blades but not in this case including the jaws;
FIG. 8 is a cross sectional view of the parts effecting the respective elliptical drives of the blades but also showing a top portion of the respective jaw parts;
FIG. 9 is an enlarged view of the parts affecting the drive of the blades and also an upper part of the jaw member;
FlG. 10 is a part cut away perspective view showing the operating portions driving the respective blades and also the jaw member providing two jaw parts;
FlG- 11 is a side view of the same embodiment as shown in all the previous figures except in this case, an attempt has been made to illustrate the relative path followed by each of the respective teeth of each blade;
FIG. 12 is an enlarged view of that same figure and in Figure 11,
FIG. 13 is a side view of a further embodiment with an alternative anchor locator being in position, and
FIG. 14 is a perspective view of the said further embodiment.
BEST MODE FOR CARRYING OUT THE INVENTION
Now referring to the drawings and describing the embodiment, the invention in this case relates to locating a jaw or jaws which provide anchor locators to assist in use of the unique cutting action offered by the system of my earlier patent where there are two juxtaposed blades which are caused to move through a path which, by reason of the mechanics and specific linkages, move alternatively in a forward out in a retracted position then back with a cutting action because of a projecting position through a cutting path. We have referred to this as being somewhat elliptical but it is to be understood that the actual path itself is quite a complex shape and is not intended and should not be considered as necessarily elliptical in a most general sense.
The drive system uses an innermost HnK to a body and then at a further outer point, effects movement of an axis at this further location which is circular.
In so far that a blade is then held and caused to follow this particular pathway, the resutt is that at an outer periphery there are cutting teeth outwardly projecting and orientated so that they have a cutting edge which will effect the cutting effect in relation to the work piece when the path of a respective tooth is caused to proceed along an outer projecting cutting path.
Now referring specifically to the drawings, there is a cutting apparatus 1 which includes a body 2, an engine 3. Juxtaposed blades 4 and 5 are supported so as to be able to be driven by the motor 3 so as to effect the respective travel of teeth 6 so that they act so that as one set of teeth are projected forward Iy and then along in a cutting action, the other set of teeth are withdrawn and returning retracted from a cutting action to a position to recommence an outwardly projecting cutting action.
The mechanism by which the blades and therefore the teeth are caused to move will be later more fully explained and shown but it will be observed especially in Figures 11 and 12 that the paths of the teeth change from a forward or toe position of the blades to a base position of the blades where, if we were talking a pure ellipse, the size of a minor axis would be less at the toe than at the base.
We now have however a jaw 7 which has two parts S and 9 which provide therefore on each side of the blades 4 and 5, forwardly projecting teeth shown typically at 10 and 11.
More specifically, at least one of the teeth on each side in this case 12 and 13, is positioned to have its sharp point beyond a periphery of the cutting periphery of the blades 4 and 5 (this means that when viewed directly from a side of the blades the tooth is seen to be beyond the periphery of the blades and especially the cutting teeth of the blades). Further, this tooth is shaped so that it has relatively sharply inclined sides and of equal alignment or angle with relation to a direction which is parallel to the major axes of a path that the closest of the teeth would follow.
The reason for this and the advantage of this will be later explained.
Further inboard, there is a progression of teeth ending in a tooth 14 which is closest to the body 2 as compared to the remainder of the teeth but which again is a sharp tooth with sides inclined to perhaps 15° to a central axis and this central axis passing through a base in the apex so as to be at right angles to the path of teeth that are located generally directed in front of that tooth.
This alignment is best shown in Figures 3 and 4 where there can be seen an alignment 15 of the paths of closest teeth to tooth 12 and the alignment 1θ which passes generally perpendicularly through the tooth 12 through its apex which alignment is then parallel to this alignment 15.
The alignment of the remaining teeth between the outer tooth 12 in the one case and 13 in the other and an inner tooth 17 at least bn one side, are intended then also inboard with relation to the outer cutting teeth of the respective juxtaposed blades 4 and 5. They are also aligned so that they sequentially will be directed to in each case a further path area of the cutting teeth further outward than those of the respective blades.
The mechanism by which the respective blades 4 and 5 are caused to move is shown in greater detail in other drawings for instance Figure 5 where it is seen that the blades 4 and 5 are secured so that they lie in juxtaposed posrtion and ' are supported respectively by a support structure 20 which is supported at its upper end by a flexible blade 21 which is secured to the body at 22 and is secured to the structure at 23. This then acts as a tethered link which confines the locality at 23 to a path that is defined by possible movement of the blade or flexible link 20.
There is then also a rotating drive 24 which is off-centre from a drive axis which is perhaps easiest seen in Figure 7 at 25.
The respective blades 4 and 5 are each rotatably affixed to the off-centre drives 24 as previously described and 27 which are 180° out of alignment
The description applies thus far to 4 but is likewise the same drive mechanism for 5 where there is a blade 30 acting as a tethering link to the body location 31 and this being at its outer end joined to a drive structure 32 which itself is driven by being rotatably coupled to the off-centre drive 27 which in turn is rotated by being coupled to the axis 25 which again then is coupled to pulley 33.
As has been previously clarified, this mechanism is not of itself new but it is being assisted in its use by the improvement of this invention.
Further to the above, the jaw 7 in the embodiment is manufactured as a single unit and has a back 34 with an open arch portion 35 and to each side a forwardly directed portion which provides on its forward outer edge the plurality of teeth which have been previously described.
Also as previously described, each of the teeth are shaped to point in a direction which is useful in relation to the anchoring location appropriate for its position.
As the blades 4 and 5 cut deeper into say a wooden piece, it is then possible for teeth further inboard from the periphery of the cutting teeth to be engaged against the edge of a work piece and provide the ensnarement or positive engagement into the wood or in the case of masonry, masonry. This also offers more of the toe end teeth to provide the cutting effect to a cutting surface and these are those with a shallower projection and therefore have by reason of the relative position of the respective tooth providing a pivot axis more cutting path distance for less projection. This implicitly provides a higher mechanical advantage for the cutting action.
A further feature of the embodiment as shown is that the jaw member 34 being split into two spread legs, which are positioned wide of the respective blades 4 and 5 and to some extent lower than at least the rear heel of the blades ensures that these jaws can be used to rest the cutting apparatus 1 on the ground or ■ other supporting surface in a stable position with a remainder of the body of the engine 3 also then resting on the ground in a tripod alignment but this of course then acts to keep the cutting edges of the blades clear of having to rest on a surface and perhaps be damaged or blunted.
It is of value to have the legs or jaws acting as legs in this case widely spread and the only limit to this is the extent to which they are providing support for the anchor locators which would usefully engage against a portion of a work piece which therefore requires a work piece to have a width sufficient for this purpose,
While an anchoring locator in one position beyond a periphery of the cutting edges of the respective blades is in one embodiment a sharp point, in a further embodiment shown in Figures 13 and 14 this location can be located further 39 and 40 of the blades 41 and 42. Here the relative movement of the teeth 43 and 44 may be close to or tangential to the curve of the respective cutting edges at this location, and an anchoring locator 45 can then be an edge 4Θ that provides a around the periphery of the cutting edges of the blades. In this case there are two arms 36 and 37 which are secured to respective sides of a jaw 38 to then project forwardly past the peripheral cutting edges rela tively linear surface which extends approximately at least in a transverse alignment of the path of the respective teeth 42 and 43 of the cutting edges 39 and 40.
From the above, it will be seen that there is provided a very useful addition to a cutting apparatus of unique cutting characteristics which has thus far proved itself to be of great value. By providing the improvement of the invention, the cutting itself can be of even greater advantage in both cutting of wood, logs, and masonry items.

Claims

1. A cutting apparatus of a type where two juxtaposed blades are caused to move through sequential approximately elliptical paths and having teeth at
5 respective outer edges of the two juxtaposed blades the relatively moving teeth on the edge of the respective blades being adapted to be urged against a surface to be cut, and at least one anchoring locator which is positioned beyond a periphery of the respective blades and thereby adapted to engage with a work piece while it is being cut and provide thereby a -10 potential anchoring position for a work piece.
2. A cutting apparatus as in claim 1 further characterized in that the anchoring locator is provided by a member attached to the body of the apparatus and extending to one side at least of the blades and extending further than the peripheral alignment of a cutting edge of the respective blades, and there
15 being provided at such distal location, an anchoring locator.
3. A cutting apparatus as. in either one of preceding claim 1 or 2 further characterized in that said anchoring locator is a sharp tooth which is adapted to ensnare and provide a pivot location point by engaging against a work piece as it is being cut by the relatively moving blades. 0
4. A cutting apparatus as in any one of the preceding claims further characterized in that the member includes at least two anchor point locators at least one of which is inboard from adjacent cutting edges of the respective cutting blades.
5. A cutting apparatus as in any one of the preceding claims further 5 characterized in that the position of the anchoring locators include a plurality of locators where at least one is beyond the perimeter of the cutting edges of the juxtaposed blades and at least two anchoring locations which are spaced apart are located inboard from the cutting edgss of the juxtaposed blades.
6. A cutting apparatus as in any one of the preceding claims further characterized in that the anchor locators are provided by two members or two parts of a single member secured to the body but each extending, a first member or part along one side of the blades, and the other member or part to the other side of the blades and each providing mutually aligned anchoring locators.
7. A cutting apparatus as in any one of the preceding claims further characterized in that the anchoring locator or locators positioned beyond the periphery of the cutting edges are positioned at or toward one end of the cutting edges of the blade where the major axes of the approximately elliptical path of the respective cutting edges of the blades are approximately aligned with the alignment of the cutting edge, and this compares to the other end of the blades cutting edges where the alignment of the cutting edge is closer to alignment of a major axis of the approximate elliptical path of the respective cutting edges.
8. A cutting apparatus as in any one of the preceding claims further characterized in that there are provided a plurality of anchor locators which are spaced at spaced apart locations of the member (or each part) extending from an outer locator position with respect to the cutting edges and then extending in a concave alignment with at least a further anchor locator positioned closest to a body of the cutting apparatus and relatively equal distant from the respective two outer end of the cutting edges of each respective blade.
9. A cutting tool having a body, the first blade secured at a first location to a link secured to the body and arranged to allow constrained relative motion to the body, the first blade being further secured to the body by a first pivot connection which itself is secured to a rotatable drive adapted to provide an oscillatory motion to the blade in a direction co-planar with the plane of the blade relative to the body, the first blade having an outer cutting edge with teeth, the cutting edge being spaced apart from an axis of the rotatable drive, and spaced apart further from said first location, the cutting edge being of convex arcuate shape having an approximate radius with a radial centre being an axis through an outermost position of the central axis of its connection with the rotatable drive, and its extent being from a position approximately aligned with the said first location and the said axis through an outermost position of the central axis of its connection with the rotatable drive, and extending around to approximately a position where it is aligned at approximately 45° to said first radius, a second blade secured at a second location to a second link secured to the body and arranged to allow constrained relative movement to the body, the second blade being further secured to the body by a second pivot connection which itself is secured to a rotatable drive adapted to provide an oscillatory motion to the blade in a direction parallel with the plane of the blade relative to the body, the second blade having an outer cutting edge with teeth, the cutting edge being spaced apart from the axis of the rotatable drive, and spaced apart further from the said second location, the cutting edge being of convex arcuate shape having an approximate radius with a radial centre being the axis through an outermost position of the central axis of its connection with the rotatable drive, and its extent being from a position approximately aligned with the said second location and the said axis through an outermost position of the central axis of its connection with the rotatable drive, and extending around to approximately a position where it is aligned at approximately 45° to the said second radius, the first and second blades being shaped and supported relative to the body so that each cutting surface is restrained to move in an elliptical path the one being with an action that is out of phase compared to the action of the other, and having the cutting edges in a co-operatively mutually aligned cutting relation, a member secured to the body and extending to provide a first anchor locator which is positioned to be further out from the body than the respective cutting edges of the respective adjacent blades, ,
16
10. A cutting tool as in the immediately preceding claim having further anchor locators positioned closer to the body than the outer cutting edges of the respective blades.
11.A cutting tool comprising two juxtaposed cutting members each having a tooth cutting edge of a substantially same shape and extent, each of said cutting members having a drive portion extending in a direction lateral to the cutting edge, said drive portions being in a juxtaposed relation;
a. a drive means adapted for coupling to a motor and operatively interacting with each said drive portion to impart thereto an eccentric movement in a plane of each respective said drive portion about a common axis, the eccentric movement imparted to the respective drive portions being equal and angularly out of phase; and
b. means to restrain movement of the respective drive portions at a specific location spaced from said common axis to a approximately linear movement in a direction radial to the common axis and to angular movement about a respectively pivot axis parallel to said common axis, whereby in response to activation of the drive means, the cutting edge of each cutting member prescribes, in a plane of the cutting member, simultaneous oscillatory movements in the direction of the cutting edge and in a direction substantially at right angles to the cutting edge, the corresponding movements of the respective cutting members being outer phase, and the teeth of the cutting edge being adapted to each cut when moving individually in one direction in the direction of the extent of the cutting edge, and a member located to a side of the respective cutting members and providing an anchor locator shape which is positioned beyond the position of the cutting edges of each respective blade.
12. A cutting tool as in the immediately preceding claim further characterized in that there are two members with aligned anchor locating shapes positioned one to each side of the blades.
13. A cutting tool as in any one of preceding claims 9 to 11 where there is an anchoring locator being an edge that is a relatively linear surface which extends approximately at least in a transverse alignment of the path of the respective teeth of the cutting edges.
PCT/AU2008/001735 2007-11-23 2008-11-24 Cutting apparatus WO2009065187A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/744,147 US20110030524A1 (en) 2007-11-23 2008-11-24 Cutting apparatus
EP20080851609 EP2222430A1 (en) 2007-11-23 2008-11-24 Cutting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2007906434 2007-11-23
AU2007906434A AU2007906434A0 (en) 2007-11-23 Cutting apparatus

Publications (1)

Publication Number Publication Date
WO2009065187A1 true WO2009065187A1 (en) 2009-05-28

Family

ID=40667063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2008/001735 WO2009065187A1 (en) 2007-11-23 2008-11-24 Cutting apparatus

Country Status (3)

Country Link
US (1) US20110030524A1 (en)
EP (1) EP2222430A1 (en)
WO (1) WO2009065187A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011044615A1 (en) * 2009-10-12 2011-04-21 Arbortech Industries Ltd Oscillating blade improvement
WO2012097409A1 (en) * 2011-01-19 2012-07-26 Arbortech Industries Limited Method and means to effect caulking removal
WO2016023085A1 (en) * 2014-08-15 2016-02-18 Arbortech Industries Limited Cutting tool and mechanism therefor
US9873178B2 (en) 2013-10-10 2018-01-23 Arbortech Industries Limited Rotary gear transmission for tools

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015252768B2 (en) * 2014-05-02 2019-03-07 Vincent CANDRAWINATA Extraction of polyphenolic compounds from pomace
US10843282B2 (en) 2017-08-16 2020-11-24 Imperial Blades Oscillating blade with universal arbor engagement portion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706474A (en) * 1970-06-11 1972-12-19 Henry Neuenburg Motor-driven chiseling device
WO1992014587A1 (en) * 1991-02-21 1992-09-03 Spectacular Holdings Pty. Limited Improved cutting tool
DE4140836A1 (en) * 1991-12-11 1993-06-17 Black & Decker Inc Hand guided power saw with contra-reciprocating blades - connected by robust coupling rods to each end of centrally pivoted rocking lever driven by connecting rod and crank

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2821213A (en) * 1953-06-29 1958-01-28 Floyd L York Power chain saw hook attachment
US2879814A (en) * 1957-05-21 1959-03-31 Omark Industries Inc Attachment for converting a portable circular saw to a chain saw
US2948310A (en) * 1958-03-25 1960-08-09 Harrison H Herron Limbing attachment for power saws
US3360021A (en) * 1965-01-11 1967-12-26 Portable Electric Tools Inc Powered saw
US3834019A (en) * 1972-11-22 1974-09-10 Maremont Corp Apparatus for cutting exhaust system tubes
US4294012A (en) * 1980-03-25 1981-10-13 Lanz Donald D Chain saw anti-pinch guard arm
US5511315A (en) * 1994-10-11 1996-04-30 Raya; Ruben N. Chain saw with reinforcing and cutting attachment
US5826343A (en) * 1996-10-22 1998-10-27 Kinetic Stump Cutter, Inc. Chain saw attachment
US6073528A (en) * 1999-01-06 2000-06-13 Porter; Gerald R. Chain saw jig
JP3709748B2 (en) * 1999-08-11 2005-10-26 日立工機株式会社 Saver saw
US6742266B2 (en) * 2001-10-04 2004-06-01 Robson L. Splane, Jr. Miniature reciprocating saw device
DE102004024092B3 (en) * 2004-05-14 2005-09-22 Hilti Ag Guide adapter with claw contour
AU2010306067A1 (en) * 2009-10-12 2012-05-31 Arbortech Industries Ltd Oscillating blade improvement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706474A (en) * 1970-06-11 1972-12-19 Henry Neuenburg Motor-driven chiseling device
WO1992014587A1 (en) * 1991-02-21 1992-09-03 Spectacular Holdings Pty. Limited Improved cutting tool
DE4140836A1 (en) * 1991-12-11 1993-06-17 Black & Decker Inc Hand guided power saw with contra-reciprocating blades - connected by robust coupling rods to each end of centrally pivoted rocking lever driven by connecting rod and crank

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011044615A1 (en) * 2009-10-12 2011-04-21 Arbortech Industries Ltd Oscillating blade improvement
WO2012097409A1 (en) * 2011-01-19 2012-07-26 Arbortech Industries Limited Method and means to effect caulking removal
US9873178B2 (en) 2013-10-10 2018-01-23 Arbortech Industries Limited Rotary gear transmission for tools
WO2016023085A1 (en) * 2014-08-15 2016-02-18 Arbortech Industries Limited Cutting tool and mechanism therefor
EP3180150A4 (en) * 2014-08-15 2018-04-11 Arbortech Industries Ltd Cutting tool and mechanism therefor

Also Published As

Publication number Publication date
US20110030524A1 (en) 2011-02-10
EP2222430A1 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
US20110030524A1 (en) Cutting apparatus
ES2220660T3 (en) TUBE CUTTER.
US8499674B2 (en) Yoke accessory tool for an oscillating tool
EP2893885B1 (en) Surgical device
CN101647720B (en) Surgical tilt anvil assembly
ES2902199T3 (en) garden tying machine
EP2452781B1 (en) Staple gun wire guide
US20180272517A1 (en) Guide Foot for an Oscillating Power Tool
JP2017514624A5 (en)
JP2019520921A5 (en)
US8677872B2 (en) Sawing machine having a miter angle adjustment assembly
JP5897614B2 (en) Stapler
CA2810464C (en) Yoke accessory tool for an oscillating tool
US20120198709A1 (en) Oscillating blade improvement
TWI490066B (en) Bevel angle adjustment device for a miter saw
JP3234582U (en) Tool transfer mechanism for chain-type tool magazines
JP2007175820A (en) Connector for piping
JP5221448B2 (en) Chainsaw
JP6755470B2 (en) Tissue closure device
US20220063006A1 (en) Tool attachment for cutting heavy duty substrate
JPH02104952U (en)
CN101265639B (en) Button sewing machine
US20240083045A1 (en) Securing structure of folding knife
JP6537678B1 (en) TUNNING AID UNIT AND TUNTING DEVICE HAVING THE SAME
JP6608231B2 (en) Meander control pulley mounting structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08851609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008851609

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12744147

Country of ref document: US