WO2009064200A2 - Novel bacteria and methods of use thereof - Google Patents

Novel bacteria and methods of use thereof Download PDF

Info

Publication number
WO2009064200A2
WO2009064200A2 PCT/NZ2008/000305 NZ2008000305W WO2009064200A2 WO 2009064200 A2 WO2009064200 A2 WO 2009064200A2 NZ 2008000305 W NZ2008000305 W NZ 2008000305W WO 2009064200 A2 WO2009064200 A2 WO 2009064200A2
Authority
WO
WIPO (PCT)
Prior art keywords
ethanol
volume
bacterium
less
acetate
Prior art date
Application number
PCT/NZ2008/000305
Other languages
French (fr)
Other versions
WO2009064200A3 (en
Inventor
Sean Dennis Simpson
Richard Llewellyn Forster Forster
Phuong Tran Tran
Matthew James Rowe
Ian Lindstrand Warner
Original Assignee
Lanzatech New Zealand Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020107013119A priority Critical patent/KR101375029B1/en
Priority to JP2010533986A priority patent/JP5600296B2/en
Priority to NZ584652A priority patent/NZ584652A/en
Priority to EA201070608A priority patent/EA022710B1/en
Priority to US12/742,149 priority patent/US8222013B2/en
Priority to CN2008801244824A priority patent/CN101918538B/en
Priority to CA2703622A priority patent/CA2703622C/en
Priority to BRPI0820556A priority patent/BRPI0820556B1/en
Application filed by Lanzatech New Zealand Limited filed Critical Lanzatech New Zealand Limited
Priority to AU2008321615A priority patent/AU2008321615B2/en
Priority to EP08849635.1A priority patent/EP2217696B1/en
Publication of WO2009064200A2 publication Critical patent/WO2009064200A2/en
Publication of WO2009064200A3 publication Critical patent/WO2009064200A3/en
Priority to HK10111856.8A priority patent/HK1145406A1/en
Priority to US13/537,798 priority patent/US8852918B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/73After-treatment of removed components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/065Ethanol, i.e. non-beverage with microorganisms other than yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/54Acetic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/95Specific microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1681Integration of gasification processes with another plant or parts within the plant with biological plants, e.g. involving bacteria, algae, fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/145Clostridium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • This invention relates generally to the field of microbial fermentation of gases. It more particularly relates to a novel class of bacteria with improved efficiency in the production of ethanol by anaerobic fermentation of substrates containing carbon monoxide (CO).
  • CO carbon monoxide
  • Ethanol is rapidly becoming a major hydrogen-rich liquid transport fuel around the world.
  • Worldwide consumption of ethanol in 2005 was an estimated 12.2 billion gallons.
  • the global market for the fuel ethanol industry has also been predicted to grow sharply in future, due to an increased interest in ethanol in Europe, Japan, the USA, and several developing nations.
  • ethanol is used to produce ElO, a 10% mixture of ethanol in gasoline.
  • ElO blends the ethanol component acts as an oxygenating agent, improving the efficiency of combustion and reducing the production of air pollutants.
  • ethanol satisfies approximately 30% of the transport fuel demand, as both an oxygenating agent blended in gasoline, and as a pure fuel in its own right.
  • GOG Green House Gas
  • EU European Union
  • micro-organisms to grow on CO as a sole carbon source was first discovered in 1903. This was later determined to be a property of organisms that use the acetyl coenzyme A (acetyl CoA) biochemical pathway of autotrophic growth (also known as the Woods-Ljungdahl pathway and the carbon monoxide dehydrogenase / acetyl CoA synthase (CODH/ACS) pathway).
  • CODH/ACS carbon monoxide dehydrogenase / acetyl CoA synthase
  • a large number of anaerobic organisms including carboxydotrophic, photosynthetic, methanogenic and acetogenic organisms have been shown to metabolize CO to various end products, namely CO2, H2 # methane, n-butanol, acetate and ethanol. While using CO as the sole carbon source, all such organisms produce at least two of these end products.
  • Anaerobic bacteria such as those from the genus Clostridium, have been demonstrated to produce ethanol from CO, CO2 and H 2 via the acetyl CoA biochemical pathway.
  • various strains of Clostridium ljungdahlii that produce ethanol from gases are described in WO 00/68407, EP 117309, US patent nos. 5,173,429,
  • Clostridium autoethanogenum sp is also known to produce ethanol from gases (Abrini et al., Archives of Microbiology 161, pp 345-351 (1994)).
  • ethanol production by micro-organisms by fermentation of gases is always associated with co-production of acetate and/or acetic acid.
  • the efficiency of production of ethanol using such fermentation processes may be less than desirable.
  • the acetate/acetic acid by-product can be used for some other purpose, it may pose a waste disposal problem.
  • Acetate/acetic acid is converted to methane by micro-organisms and therefore has the potential to contribute to GHG emissions.
  • Microbial fermentation of CO in the presence of H2 can lead to substantially complete carbon transfer into an alcohol.
  • some of the CO is converted into alcohol, while a significant portion is converted to CO2 as shown in the following equations: 6CO + 3H 2 O -> C 2 H 5 OH + 4CO 2
  • CO 2 represents inefficiency in overall carbon capture and if released, also has the potential to contribute to Green House Gas emissions.
  • WO2007/117157 describes a process that produces alcohols, particularly ethanol, by anaerobic fermentation of gases containing carbon monoxide. Acetate produced as a by-product of the fermentation process is converted into hydrogen gas and carbon dioxide gas, either or both of which may be used in the anaerobic fermentation process.
  • WO2008/115080 describes a process for the production of alcohol(s) in multiple fermentation stages. By-products produced as a result of anaerobic fermentation of gas(es) in a first bioreactor can be used to produce products in a second bioreactor. Furthermore, by-products of the second fermentation stage can be recycled to the first bioreactor to produce products.
  • micro-organisms that are capable of fermentation of such gases to ethanol at increased efficiency, that is micro-organisms capable of producing more ethanol, and/or a greater ratio of ethanol to acetate from the same substrate, than do micro-organisms of the prior art.
  • the gaseous substrate used typically comprises about 30-65% CO by volume and about 20- 30% H 2 by volume (WO 00/68407).
  • CO-containing waste gases that are potential substrates for microbial fermentation to produce ethanol, may contain either higher levels of CO and lower levels of H 2 or both. It would therefore be beneficial to have available bacterial strains that can perform efficient fermentation of CO-containing gas with greater than 65% CO by volume and or less than 20% H 2 by volume into ethanol, for example. It is an object of the present invention to provide a new class of bacteria which overcomes one or more of the limitations of the prior art in the conversion of gaseous sources containing CO into ethanol, or at least to provide the public with a useful choice.
  • the invention provides a biologically pure isolate of a bacterium capable of producing products including ethanol and optionally acetate, by anaerobic fermentation of a substrate comprising CO, wherein the products are produced at an ethanol to acetate ratio of at least 1.0.
  • the invention provides a biologically pure isolate of a bacterium capable of producing ethanol and acetate by anaerobic fermentation in an aqueous culture medium supplied with a substrate containing CO, particularly a gaseous substrate containing CO, comprising:
  • the ethanol to acetate ratio is at least about 1.1, more preferably at least about 1.2, more preferably at least about 1.3 and most preferably at least about 1.4.
  • the bacterium is capable of producing the ethanol at a concentration of at least about 2.Og ethanol per litre of fermentation broth.
  • the concentration is at least about 2.1g ethanol per litre of fermentation broth, at least about 2.2g ethanol per litre of fermentation broth, at least about 2.3g ethanol per litre of fermentation broth, at least about 2.4g ethanol per litre of fermentation broth, at least about 2.5g ethanol per litre of fermentation broth, at least about 2.6g ethanol per litre of fermentation broth, at least about 2.7g ethanol per litre of fermentation broth at least about 2.8g ethanol per litre of fermentation broth, at least about 3.Og ethanol per litre of fermentation broth, at least about 3.2g ethanol per litre of fermentation broth, or at least about 3.4g ethanol per litre of fermentation broth.
  • the productivity of the bacterium is at least about 1.2g of ethanol/L of fermentation broth/day, at least about 1.6g/L/day, at least about 1.8g/L/day or at least 2.0g/L/day.
  • the specific ethanol productivity of the bacterium is at least about 0.7g/L/gram bacterial cells/day, at least about 0.9g/L/gram bacterial cells/day, at least about l.lg/L/gram bacterial cells/day, or at least about 1.3g/L/gram bacterial cells/day.
  • the invention provides a biologically pure isolate of a bacterium capable of producing products including alcohol and optionally acetate, by anaerobic fermentation of a substrate comprising CO, wherein the productivity of the bacterium is at least about 1.2g of ethanol/L of fermentation broth/day.
  • the invention provides a biologically pure isolate of a bacterium capable of producing ethanol by anaerobic fermentation in an aqueous culture medium supplied with a substrate containing CO, particularly a gaseous substrate containing CO, comprising:
  • the concentration is at least about 2.1g ethanol per litre of fermentation broth, at least about 2.2g ethanol per litre of fermentation broth, at least about 2.3g ethanol per litre of fermentation broth, at least about 2.4g ethanol per litre of fermentation broth, at least about 2.5g ethanol per litre of fermentation broth, at least about 2.6g ethanol per litre of fermentation broth, at least about 2.7g ethanol per litre of fermentation broth at least about 2.8g ethanol per litre of fermentation broth, at least about 3.Og ethanol per litre of fermentation broth, at least about 3.2g ethanol per litre of fermentation broth, or at least about 3.4g ethanol per litre of fermentation broth.
  • the productivity of the bacterium is at least about 1.2g of ethanol/L of fermentation broth/day, at least about 1.6g/L/day, at least about 1.8g/L/day or at least 2.0g/L/day.
  • the specific ethanol productivity of the bacterium is at least about 0.7g/L/gram bacterial cells/day, at least about 0.9g/L/gram bacterial cells/day, at least about l.lg/L/gram bacterial cells/day, or at least about 1.3g/L/gram bacterial cells/day.
  • acetate is produced as a by-product of the fermentation.
  • the ethanol is produced at an ethanol to acetate ratio of at least about 1.0.
  • the ethanol to acetate ratio is at least about 1.1, at least about 1.2, at least about 1.3 or more particularly at least about 1.4.
  • the invention provides an acetogenic bacterium wherein the bacterium has one or more of the following defining characteristics:
  • the ethanol to acetate ratio is at least about 1.1, at least about 1.2, at least about 1.3 or more particularly at least about 1.4.
  • the concentration of ethanol produced is at least about 2.1g ethanol per litre of fermentation broth, at least about 2.2g ethanol per litre of fermentation broth, at least about 2.3g ethanol per litre of fermentation broth, at least about 2.4g ethanol per litre of fermentation broth, at least about 2.5g ethanol per litre of fermentation broth, at least about 2.6g ethanol per litre of fermentation broth, at least about 2.7g ethanol per litre of fermentation broth at least about 2.8g ethanol per litre of fermentation broth, at least about 3.0g ethanol per litre of fermentation broth, at least about 3.2g ethanol per litre of fermentation broth, or at least about 3.4g ethanol per litre of fermentation broth.
  • the productivity of the bacterium is at least about 1.2g of ethanol/L of fermentation broth/day, at least about 1.6g/L/day, at least about 3.4g ethanol
  • the specific ethanol productivity of the bacterium is at least about 0.7g/L/gram bacterial cells/day, at least about 0.9g/L/gram bacterial cells/day, at least about l.lg/L/gram bacterial cells/day, or at least about 1.3g/L/gram bacterial cells/day.
  • the bacteria of the invention are derived from Clostridium autoethanogenum.
  • the bacteria have two or more and most preferably all of the above defining characteristics.
  • the bacterium has the defining characteristics of Clostridium autoethanogenum strain LBS1560 deposited at DSMZ under the accession number DSM 19630. In one embodiment the bacterium is Clostridium autoethanogenum strain LBS1560 deposited at DSMZ under the accession number DSM 19630. In a further aspect the invention provides a biologically pure isolate of Clostridium autoethanogenum strain LBS1560 deposited at DSMZ under the accession number DSM 19630.
  • the substrate comprises at least about 70% CO by volume, at least about 75% CO by volume, at least about 80% CO by volume, at least about 85% CO by volume, at least about 90% CO by volume or at least about 95% CO by volume. In a further embodiment the substrate comprises less than about 20% H 2 by volume. In particular embodiments the substrate comprises less than about 15% H 2 by volume, less than about 10% H 2 by volume, less than about 5% H 2 by volume, less than about 4% H 2 by volume, less than about 3% H 2 by volume, less than about 2% H 2 by volume, less than about 1% H 2 by volume, or substantially no H 2 .
  • the substrate comprises less than or equal to about 20% CO 2 by volume. In particular embodiments the substrate comprises less than or equal to about 15% CO 2 by volume, less than or equal to about 10% CO 2 by volume, or less than or equal to about 5% CO 2 by volume. In particular embodiments the substrate comprises at least about 85% CO by volume and at most about 15% CO 2 by volume, at least about 90% CO and at most about 10% CO 2 , or about 95% CO by volume and about 5% CO 2 by volume.
  • the aqueous culture medium is a minimal anaerobic microbial growth medium selected from but not limited to LM23 or LM33 as herein defined.
  • the medium is not supplemented with yeast extract.
  • the invention provides a method for the production of one or more alcohols from a substrate containing CO, the method comprising maintaining a culture of one or more of the bacterial isolates of the invention in the presence of the substrate, and the anaerobic fermentation of the substrate to one or more alcohols by the one or more bacterial isolate.
  • the invention provides a method for the production of one or more alcohols comprising fermenting a substrate containing CO using one or more of the bacteria as herein before described.
  • the method comprises the steps of:
  • the invention provides a method for reducing the total atmospheric carbon emissions from an industrial process, the method comprising:
  • acetate is produced as a by-product of the fermentation.
  • the one or more alcohols produced includes ethanol.
  • the bacterium or isolate is maintained in an aqueous culture medium.
  • the fermentation of the substrate takes place in a bioreactor.
  • the substrate contains less than about 15% H 2 by volume, such as less than about 10% H 2, such as less than about 5% H 2 .
  • the substrate comprises greater than about 65% CO by volume, preferably about 70% CO to about 95% CO by volume.
  • the substrate comprises at least about 70% CO by volume. In a particular embodiment the substrate comprises at least about 80% CO by volume, at least about 85% CO by volume, at least about 90% CO by volume or at least about 95% CO by volume.
  • the substrate comprises less than about 20% H 2 by volume. In particular embodiments the substrate comprises less than about 15% H 2 by volume, less than about 10% H 2 by volume, less than about 5% H 2 by volume, less than about 4% H 2 by volume, less than about 3% H 2 by volume, less than about 2% H 2 by volume, less than about 1% H 2 by volume, or substantially no H 2 .
  • the substrate comprises less than or equal to about 20% CO 2 by volume. In particular embodiments the substrate comprises less than or equal to about 15% CO 2 by volume, less than or equal to about 10% CO 2 by volume, or less than or equal to about 5% CO 2 by volume. In certain embodiments the substrate comprises at least about 85% CO by volume and at most about 15% CO 2 by volume, at least about 90% CO and at most about 10% CO2, or about 95% CO by volume and about 5% CO 2 by volume.
  • the substrate containing CO is a gaseous substrate containing CO.
  • the gaseous substrate comprises a gas obtained as a byproduct of an industrial process.
  • the industrial process is selected from the group consisting of ferrous metal products manufacturing, non-ferrous products manufacturing, petroleum refining processes, gasification of biomass, gasification of coal, electric power production, carbon black production, ammonia production, methanol production and coke manufacturing.
  • the gaseous substrate may comprise a gas obtained from a steel mill. In another embodiment, the gaseous substrate may comprise automobile exhaust fumes.
  • the alcohol is recovered from the fermentation broth, the fermentation broth being the aqueous culture medium comprising bacterial cells and the alcohol.
  • acetate is produced as a by-product of the fermentation.
  • the alcohol and the acetate are recovered from the broth.
  • the invention provides a method of selection of one or more micro-organisms which produce one or more acids, the method comprising: Culturing the micro-organisms in a nutrient media in a bioreactor; Adding fresh media at a pH higher than the nutrient media, such that the nutrient media is maintained at a substantially constant pH; and, Removing at least a portion of the nutrient media and micro-organisms, such that the media in the bioreactor is maintained at a substantially constant volume.
  • the method is for the selection of fast growing microorganisms.
  • the one or more acids includes acetate.
  • the invention provides a biologically pure isolate of a bacterium produced by the method of selection. In one embodiment, the isolate has little or no ability to sporulate.
  • Figure 1 is a schematic representation of a system adapted to select for rapid microbial growth
  • Figure 2 shows ethanol (square) and acetate (diamond) production by Clostridium autoethanogenum LBS1560. Biomass concentration is represented by the triangle data points.
  • the present invention relates to a novel bacterium and a biologically pure isolate of a bacterium with increased efficiency in an anaerobic fermentation process.
  • the bacterium is capable of producing an alcohol, preferably ethanol, from a substrate comprising:
  • the invention relates to a process for producing an alcohol, preferably ethanol, by anaerobic fermentation of a CO-containing substrate by the bacteria of the invention.
  • a “substrate containing CO” and like terms should be understood to include any substrate in which carbon monoxide is available to bacteria for growth and/or fermentation, for example.
  • the "substrate containing CO” is gaseous.
  • Such substrates may be referred to herein as “gaseous substrates containing CO” and the like.
  • gaseous substrate containing CO may be provided in alternative forms.
  • the gaseous substrate containing CO may be provided dissolved in a liquid.
  • a liquid is saturated with a carbon monoxide containing gas and then that liquid is added to the bioreactor. This may be achieved using standard methodology.
  • a microbubble dispersion generator Hensirisak et. al. Scale-up of microbubble dispersion generator for aerobic fermentation; Applied Biochemistry and Biotechnology Volume 101. Number 3 / October. 2002
  • the gaseous substrate containing CO may be adsorbed onto a solid support.
  • substrate containing CO Such alternative methods are encompassed by use of the term “substrate containing CO".
  • acetate includes both acetate salt alone and a mixture of molecular or free acetic acid and acetate salt, such as the mixture of acetate salt and free acetic acid present in a fermentation broth as described herein.
  • the ratio of molecular acetic acid to acetate in the fermentation broth is dependent upon the pH of the system.
  • bioreactor includes a fermentation device consisting of one or more vessels and/or towers or piping arrangement, which includes the Continuous Stirred Tank Reactor (CSTR), Immobilized Cell Reactor (ICR), Trickle Bed Reactor (TBR), Bubble Column, Gas Lift Fermenter, Static Mixer, or other vessel or other device suitable for gas-liquid contact.
  • CSTR Continuous Stirred Tank Reactor
  • ICR Immobilized Cell Reactor
  • TBR Trickle Bed Reactor
  • Bubble Column Gas Lift Fermenter
  • Static Mixer Static Mixer
  • the invention provides a biologically pure isolate of a bacterium capable of producing ethanol and acetate by anaerobic fermentation in an aqueous culture medium supplied with a gaseous CO-containing substrate comprising:
  • the bacterium is derived from C. autoethanogenum as described elsewhere herein.
  • the ethanol to acetate ratio is at least about 1.1, or at least about 1.2, or at least about 1.3 or at least about 1.4.
  • the bacterium is capable of producing ethanol at a concentration of at least about 2.1g ethanol per litre of fermentation broth, at least about 2.2g ethanol per litre of fermentation broth, at least about 2.3g ethanol per litre of fermentation broth, at least about 2.4g ethanol per litre of fermentation broth, at least about 2.5g ethanol per litre of fermentation broth, at least about 2.6g ethanol per litre of fermentation broth, at least about 2.7g ethanol per litre of fermentation broth at least about 2.8g ethanol per litre of fermentation broth, at least about 3.0g ethanol per litre of fermentation broth, at least about 3.2g ethanol per litre of fermentation broth, or at least about 3.4g ethanol per litre of fermentation broth.
  • Ethanol productivity is the volumetric productivity of ethanol, calculated as the ratio of the ethanol concentration and the time required to produce that concentration in batch systems.
  • Productivity can also be calculated for microbial fermentation in continuous systems.
  • the productivity of the bacteria is at least 1.2g ethanol/ L of fermentation broth/day, or at least 1.6g/L/day or at least 1.8g/L/day or at least 2.0g/LVday.
  • the specific productivity of a microbial culture depends on the proportion of live active microorganism within a microbial culture.
  • the specific ethanol productivity is at least 0.7g/L/gram bacterial cells/day, or at least 0.9g/L/gram bacterial cells/day, or at least l.lg/L/gram bacterial cells/day, or at least 1.3g/L/gram bacterial cells/day.
  • the invention also provides a biologically pure isolate of a bacterium capable of producing ethanol by anaerobic fermentation in an aqueous culture medium supplied with a gaseous CO-containing substrate comprising:
  • the bacterium is derived from C. autoethanogenum as described elsewhere herein.
  • the bacterium is capable of producing ethanol at a concentration of at least about 2.1g ethanol per litre of fermentation broth, at least about 2.2g ethanol per litre of fermentation broth, at least about 2.3g ethanol per litre of fermentation broth, at least about 2.4g ethanol per litre of fermentation broth, at least about 2.5g ethanol per litre of fermentation broth, at least about 2.6g ethanol per litre of fermentation broth, at least about 2.7g ethanol per litre of fermentation broth at least about 2.8g ethanol per litre of fermentation broth, at least about 3.Og ethanol per litre of fermentation broth, at least about 3.2g ethanol per litre of fermentation broth, or at least about 3.4g ethanol per litre of fermentation broth.
  • the productivity of the bacteria is at least 1.2g ethanol/L of fermentation broth/day, or at least 1.6g/L/day or at least 1.8g/L/day or at least 2.0g/L/day.
  • the specific ethanol productivity is at least 0.7g/L/gram bacterial cells/day, or at least 0.9g/L/gram bacterial cells/day, or at least l.lg/L/gram bacterial cells/day, or at least 1.3g/L/gram bacterial cells/day.
  • acetate is produced as a by-product of the fermentation.
  • the ethanol is produced at an ethanol to acetate ratio of at least about 1.0.
  • the ethanol to acetate ratio is at least about 1.1, or at least about 1.2, or at least about 1.3 or at least about 1.4.
  • the invention also provides acetogenic bacteria having one or more of the following defining characteristics as observed under the experimental conditions described herein after: an ability to grow in minimal media in the presence or absence of yeast extract; an ability to grow more rapidly, to produce a higher ratio of ethanol to acetate, and/or to produce a higher concentration of ethanol, in a media in which yeast extract is not present compared to a media in which yeast extract is present; little or no ability to sporulate; Gram positive; rod shaped; Non-motile.
  • the bacteria have substantially no ability to sporulate.
  • substantially none of the bacterial population exhibit spores under the conditions described herein after.
  • the acetogenic bacteria are additionally capable of producing ethanol by anaerobic fermentation in an aqueous culture medium supplied with a CO- containing substrate comprising: greater than about 65% CO by volume; less than about 20% H 2 by volume; or, greater than about 65% CO and less than about 20% H 2 by volume; at an ethanol concentration of at least about 2.Og ethanol per litre of fermentation broth and/or at an ethanol to acetate ratio of at least about 1.0.
  • the bacteria of the invention can be derived from Clostridium autoethanogenum.
  • Clostridium autoethanogenum The observation that bacteria of certain embodiments of the invention have little to no ability to sporulate is surprising. This provides an unexpected benefit over other strains of Clostridia including Clostridium autoethanogenum. Sporulation is a stagnant phase of limited activity. Reducing or ameliorating the ability to form spores has a number of advantages. For example, a single bacterial cell can only divide and produce metabolites (such as acetate and/or ethanol) while in a non sporulated condition. Accordingly, the time scale for division and metabolite production can be extended where bacteria do not sporulate.
  • metabolites such as acetate and/or ethanol
  • the lack of an ability to sporulate may also provide additional control over an entire culture, wherein the whole live population may be adapted to promote growth and/or metabolite production for extended periods. Therefore, use of bacteria of the present invention may increase the overall efficiency of a fermentation process for producing products such as acetate and/or ethanol.
  • the bacteria have two or more and more preferably all of the above mentioned characteristics.
  • the bacteria have the defining characteristics of Clostridium autoethanogenum strain LBS1560 deposited at DSMZ, Germany, in accordance with the Budapest Treaty, on 19 October 2007, and allocated the accession number DSM 19630.
  • the bacterium is Clostridium autoethanogenum strain LBS1560, DSM 19630.
  • the invention also relates to bacteria derived from the bacteria of the invention.
  • the bacteria of the invention are able to produce the concentrations of ethanol, and ethanol to acetate ratios discussed above, at elevated levels of CO in the gaseous substrate.
  • the gaseous substrate may comprise at least about 70% CO by volume. In certain embodiments the gaseous substrate comprises at least about 80% CO by volume, or at least about 85% CO by volume, or at least about 90% CO by volume or at least about 95% CO by volume. Similarly the discussed ethanol concentrations, and ethanol to acetate ratios, are achievable in certain embodiments at low to non-existent levels of H 2 in the gaseous substrate.
  • the gaseous substrate may comprise less than about 20% H 2 by volume.
  • the gaseous substrate comprises less than about 15% H 2 by volume, or the gaseous substrate comprises less than about 10% H 2 by volume, or the gaseous substrate comprises less than about 5% H 2 by volume, or the gaseous substrate comprises less than about 4% H 2 by volume, or the gaseous substrate comprises less than about 3% H 2 by volume, or the gaseous substrate comprises less than about 2% H 2 by volume, or the gaseous substrate comprises less than about 1% H 2 by volume, or the gaseous substrate comprises no H 2 .
  • the bacteria of the invention can also produce ethanol concentrations, and ethanol to acetate ratios when supplied with gaseous substrate comprising relatively little CO 2 .
  • the gaseous substrate comprises less than or equal to about 20% CO 2 by volume. In certain embodiments the gaseous substrate comprises less than or equal to about 15% CO 2 by volume, or less than or equal to about 10% CO 2 by volume, or less than or equal to about 5% CO 2 by volume.
  • the gaseous substrate comprises about 85% CO by volume and about 15% CO 2 by volume, or the gaseous substrate comprises at least about 90% CO and at most about 10% CO 2 , or the gaseous substrate comprises about 95% CO by volume and about 5% CO 2 by volume.
  • the culture is maintained in an aqueous culture medium.
  • the aqueous culture medium is a minimal anaerobic microbial growth medium.
  • Suitable media are known in the art and described for example in US patent nos 5,173,429 and 5,593,886 and WO 02/08438, and in Klasson et al [(1992). Bioconversion of Synthesis Gas into Liquid or Gaseous Fuels. Enz. Microb. Technol. 14:602-608.], Najafpour and Younesi [(2006). Ethanol and acetate synthesis from waste gas using batch culture of Clostridium ljungdahlii. Enzyme and Microbial Technology, Volume 38, Issues 1-2, p.
  • the minimal anaerobic microbial growth medium is LM23 or LM33 as herein defined.
  • the medium is supplemented with additional components, such as but not limited to amino acids and trypticase.
  • the medium is not supplemented with additional components.
  • the medium may be supplemented with yeast extract.
  • the culture grows more rapidly when the medium is not supplemented with yeast extract, than when the medium is supplemented with yeast extract.
  • the ethanol to acetate ratio produced is higher when the medium is not supplemented with yeast extract, than when the medium is supplemented with yeast extract.
  • the concentration of ethanol produced per litre of culture medium is higher when the medium is not supplemented with yeast extract, than when the medium is supplemented with yeast extract.
  • the medium is not supplemented with yeast extract.
  • the invention also provides methods for the production of one or more alcohols from a gaseous substrate comprising CO, the methods comprising maintaining a culture of one or more bacterial isolate of the invention in the presence of the gaseous substrate, and the anaerobic fermentation of the gaseous substrate to one or more alcohols by the one or more bacterial isolate.
  • the invention also provides a method for reducing the total atmospheric carbon emissions from an industrial process, the method comprising:
  • acetate is produced as a by-product of the fermentation.
  • the alcohol produced is ethanol.
  • the culture is maintained in a liquid nutrient medium.
  • the fermentation may be carried out in any suitable bioreactor, such as a continuous stirred tank reactor (CTSR), a bubble column reactor (BCR) or a trickle bed reactor (TBR).
  • the bioreactor may comprise a first, growth reactor in which the micro-organisms are cultured, and a second, fermentation reactor, to which fermentation broth from the growth reactor is fed and in which most of the fermentation product (ethanol and acetate) is produced.
  • the carbon source for the fermentation reaction is a gaseous substrate containing CO.
  • the gaseous substrate may be a CO-containing waste gas obtained as a by-product of an industrial process, or from some other source such as from automobile exhaust fumes.
  • the industrial process is selected from the group consisting of ferrous metal products manufacturing, such as a steel mill, non-ferrous products manufacturing, petroleum refining processes, gasification of coal, electric power production, carbon black production, ammonia production, methanol production and coke manufacturing.
  • the CO-containing gas may be captured from the industrial process before it is emitted into the atmosphere, using any convenient method.
  • the gaseous substrate may be filtered or scrubbed using known methods.
  • a substrate stream or CO partial pressure in a gaseous substrate
  • CO concentration of a substrate stream or CO partial pressure in a gaseous substrate
  • Increasing CO partial pressure in a gaseous substrate increases CO mass transfer into a fermentation media.
  • the composition of gas streams used to feed a fermentation reaction can have a significant impact on the efficiency and/or costs of that reaction.
  • 02 may reduce the efficiency of an anaerobic fermentation process. Processing of unwanted or unnecessary gases in stages of a fermentation process before or after fermentation can increase the burden on such stages (e.g. where the gas stream is compressed before entering a bioreactor, unnecessary energy may be used to compress gases that are not needed in the fermentation).
  • Substrate streams derived from an industrial source are typically variable in composition. Furthermore, substrate streams derived from industrial sources comprising high CO concentrations (such as at least 50% CO or at least 65%) often have a low H2 component (such as less than 20% or less than 10% or 0%). As such, it is particularly desirable that micro-organisms are capable of producing products by anaerobic fermentation of substrates comprising a range of CO and H2 concentrations, particularly high CO concentrations and low H2 concentrations.
  • the bacteria of the present invention have the surprising ability to grow and produce products (ethanol and acetate) by fermenting a substrate comprising CO (and no H2).
  • WO02/08438 describes the production of ethanol using gas stream of various compositions.
  • WO02/08438 reports a substrate stream comprising 63% H2, 32% CO and 5% CH4 being provided to a culture of C.ljungdahlii in a bioreactor to promote microbial growth and ethanol production.
  • the substrate stream was switched to 15.8% H2, 36.5% CO, 38.4% N2 and 9.3% CO2 in order to provide CO in a slight excess and promote ethanol production.
  • This document also describes gas streams with higher and lower CO and H2 concentrations.
  • the CO-containing gaseous substrate may be sourced from the gasification of biomass.
  • the process of gasification involves partial combustion of biomass in a restricted supply of air or oxygen.
  • the resultant gas typically comprises mainly CO and H 2 , with minimal volumes of CO 2 , methane, ethylene and ethane.
  • biomass by-products obtained during the extraction and processing of foodstuffs such as sugar from sugarcane, or starch from maize or grains, or non-food biomass waste generated by the forestry industry may be gasified to produce a CO-containing gas suitable for use in the present invention. It is generally preferred that the CO-containing gaseous substrate contains a major proportion of CO.
  • the gaseous substrate comprises at least about 65%, or at least about 70% to about 95% CO by volume. It is not necessary for the gaseous substrate to contain any hydrogen.
  • the gaseous substrate also optionally contains some CO 2 , such as about 1% to about 30% by volume, such as about 5% to about 10% CO 2 .
  • a suitable liquid nutrient medium will need to be fed to the bioreactor.
  • a nutrient medium will contain vitamins and minerals sufficient to permit growth of the micro-organism used. Anaerobic media suitable for the fermentation of ethanol using CO as the sole carbon source are known in the art.
  • suitable media are described in US patent nos 5,173,429 and 5,593,886 and WO 02/08438 as well as other publications referred to herein before.
  • the media is LM 23 as described in the Examples herein after.
  • the fermentation should desirably be carried out under appropriate conditions for the CO-to-ethanol fermentation to occur.
  • Reaction conditions that should be considered include pressure, temperature, gas flow rate, liquid flow rate, media pH, media redox potential, agitation rate (if using a continuous stirred tank reactor), inoculum level, maximum gas substrate concentrations to ensure that CO in the liquid phase does not become limiting, and maximum product concentrations to avoid product inhibition.
  • the optimum reaction conditions will depend partly on the particular microorganism of the invention used.
  • the fermentation be performed at pressure higher than ambient pressure.
  • Operating at increased pressures allows a significant increase in the rate of CO transfer from the gas phase to the liquid phase where it can be taken up by the micro-organism as a carbon source for the production of ethanol.
  • the retention time (defined as the liquid volume in the bioreactor divided by the input gas flow rate) can be reduced when bioreactors are maintained at elevated pressure rather than atmospheric pressure.
  • the use of pressurized systems can greatly reduce the volume of the bioreactor required, and consequently the capital cost of the fermentation equipment.
  • reactor volume can be reduced in linear proportion to increases in reactor operating pressure, i.e. bioreactors operated at 10 atmospheres of pressure need only be one tenth the volume of those operated at 1 atmosphere of pressure.
  • WO 02/08438 describes gas-to- ethanol fermentations performed under pressures of 30 psig and 75 psig, giving ethanol productivities of 150 g/l/day and 369 g/l/day respectively.
  • example fermentations performed using similar media and input gas compositions at atmospheric pressure were found to produce between 10 and 20 times less ethanol per litre per day.
  • the rate of introduction of the CO-containing gaseous substrate is such as to ensure that the concentration of CO in the liquid phase does not become limiting. This is because a consequence of CO-limited conditions may be that the ethanol product is consumed by the culture.
  • a fermentation process according to the present invention described above will result in a fermentation broth comprising ethanol, as well as bacterial cells, in the aqueous culture medium.
  • the ethanol is recovered from the fermentation broth.
  • the recovering of ethanol comprises continuously removing a portion of broth and recovering the alcohol from the removed portion of the broth.
  • the recovery of ethanol includes passing the removed portion of the broth containing ethanol through a separation unit to separate bacterial cells from the broth, to produce a cell-free alcohol-containing permeate, and returning the bacterial cells to the bioreactor.
  • the methods of the invention are continuous processes.
  • acetate is produced as a by-product of the fermentation.
  • the ethanol and the acetate are recovered from the broth.
  • the recovering of ethanol and acetate comprises continuously removing a portion of the broth and recovering separately ethanol and acetate from the removed portion of the broth.
  • the recovery of ethanol and acetate includes passing the removed portion of the broth containing ethanol and acetate through a separation unit to separate bacterial cells from the ethanol and acetate, to produce a cell-free ethanol-and acetate-containing permeate, and returning the bacterial cells to the bioreactor.
  • the recovery of ethanol and acetate preferably includes first removing ethanol from the cell-free permeate followed by removing acetate from the cell-free permeate.
  • the cell-free permeate is then returned to the bioreactor.
  • the methods of the invention are continuous processes.
  • Ethanol is the preferred desired end product of the fermentation.
  • the ethanol may be recovered from the fermentation broth by methods known in the art, such as fractional distillation or evaporation, and extractive fermentation. Distillation of ethanol from a fermentation broth yields an azeotropic mixture of ethanol and water (i.e. 95% ethanol and 5% water). Anhydrous ethanol can subsequently be obtained through the use of molecular sieve ethanol dehydration technology, which is also well known in the art. Extractive fermentation procedures involve the use of a water-miscible solvent that presents a low toxicity risk to the fermentation organism, to recover the ethanol from the dilute fermentation broth. For example, oleyl alcohol is a solvent that may be used in this type of extraction process.
  • Oleyl alcohol is continuously introduced into a fermenter, whereupon this solvent rises forming a layer at the top of the fermenter which is continuously extracted and fed through a centrifuge. Water and cells are then readily separated from the oleyl alcohol and returned to the fermenter while the ethanol-laden solvent is fed into a flash vaporization unit. Most of the ethanol is vaporized and condensed while the oleyl alcohol is non volatile and is recovered for re-use in the fermentation. Acetate may also be recovered from the fermentation broth using methods known in the art. Methods for the recovery of acetate are described in detail in WO2007/117157 and WO2008/115080.
  • ethanol and acetate are recovered from the fermentation broth by continuously removing a portion of the broth from the fermentation bioreactor, separating microbial cells from the broth (conveniently by filtration), and recovering first ethanol and then acetate from the broth.
  • the ethanol may conveniently be recovered by distillation, and the acetate may be recovered by adsorption on activated charcoal, using the methods described above.
  • the separated microbial cells are preferably returned to the fermentation bioreactor.
  • the cell free permeate remaining after the ethanol and acetate have been removed is also preferably returned to the fermentation bioreactor. Additional nutrients (such as B vitamins) may be added to the cell free permeate to replenish the nutrient medium before it is returned to the bioreactor.
  • the pH of the broth was adjusted as described above to enhance adsorption of acetic acid to the activated charcoal, the pH should be re-adjusted to a similar pH to that of the broth in the fermentation bioreactor, before being returned to the bioreactor.
  • Table 1 Media Composition for C. autoethanogenum
  • LM 17, LM23 and LM 33 media were prepared at pH 5.5 as follows. All ingredients , with the exception of cysteine HCL were mixed in dH 2 O to a total volume of IL. This solution was made anaerobic by heating to boiling and allowing it to cool to room temperature under a constant flow of 95%CO, 596CO 2 gas. Once cool, the cysteine HCL was added and the pH of the solution adjusted to 5.5; anaerobicity was maintained throughout the experiments.
  • Ethanol and acetate determinations in the following examples were made using a gas chromatograph HP 5890 series Il -Utilizing a flame ionization detector (FID), removable, deactivated glass, injection port liner, associated regulators, gas lines, and septa with sample autoinjector HP 7673A. Separations were made on a capillary GC Column EClOOO- Alltech EClOOO 30m x 0.25mm x 0.25 ⁇ m.
  • the Gas Chromatograph was operated in Split mode with a total flow of hydrogen of 50 miymin with 5 mL purge flow (1:10 split), a column head pressure of 20 psig resulting in a linear velocity of 45 cm/sec.
  • the temperature program was initiated at 602C, hold ior l minute then ramped to 170 9 C at 309C per minute. This resulted in a total run time of 4.65minutes.
  • Injector temperature was 180 9 C and the detector temperature was 225SC.
  • Reagents used were Propan-1-ol-Reagent grade - Scharlau AL0437, Min assay by GC 99.5%; Ethanol absolute- Scharlau ET0015, Min assay by GC 99.9; Acetic acid 100% glacial- BDH 100015N, Min assay by GC 99.8%; Orthophosphoric acid-BDH 294214a Min assay by GC 99.0%; Nitrogen - BOC Oxygen Free-GC make up gas; Hydrogen - BOC Oxygen Free-GC carrier gas and FID fuel; Zero air-FID oxidant; Water-deionized.
  • the method of sample preparation for HPLC was as follows: 400 ⁇ L of sample and 50 ⁇ L of 0.15M ZnSO 4 and 50 ⁇ L of 0.15M Ba(OH) 2 are loaded into an Eppendorf tube. The tubes are centrifuged for 10 min. at 12,000rpm, 4°C. 200 ⁇ L of the supernatant are transferred into an HPLC vial, and 5 ⁇ L are injected into the HPLC instrument.
  • Example 1 Production of a new bacterial isolate of the invention
  • Clostridium autoethanogenum LBS1560 was produced through a dedicated program of selection and propagation of microbial cultures initiated from the parent C. autoethanogenum culture (DSMZ 10061) over a period of 18 months.
  • a frozen stock of C. autoethanogenum 10061 (obtained from DSMZ) was initially thawed and used to inoculate LM23 medium prepared with 5g / litre yeast extract in the presence of 95% CO and 5% CO 2 .
  • This culture could not be made to grow on LM23 media in the absence of Yeast Extract.
  • actively growing microbial cultures that were observed to produce the most ethanol and the highest ratio of ethanol to acetate were repeatedly subcultured into media containing ever decreasing concentrations of yeast extract, always in the presence of 95%CO 5% CO 2 headspace gas. After this period cultures growing and producing ethanol and acetate in the absence of yeast extract could be observed.
  • This selection protocol was actively maintained to further identify and select for cultures that: i) grew most rapidly; ii) produced the most ethanol; iii) produced the highest ratio of ethanol to acetate; and, iv) grew in the absence of yeast extract in the liquid media.
  • Deviations in the pH reading from the set point of 5.5 caused a pump 4 to be activated, however, rather than the signal from the probe being relayed to a pump that dosed a base or acid solution; in this case the pump was linked to a bottle 5 containing fresh anaerobic LM17 media at pH 5.8.
  • the pump was linked to a bottle 5 containing fresh anaerobic LM17 media at pH 5.8.
  • acetic acid was produced, the pH of the media 2 began to drop causing the activation of a pump 4 that introduced media at pH 5.8.
  • the pump 4 was only de-activated once the media pH was returned to 5.5 or above.
  • the liquid level in the reactor 1 was maintained using a level probe 6 linked to a second pump 7 that operated to maintain the liquid level in the bioreactor 1 at or below a fixed level.
  • the process of selection and subculture over a period of 18 months described above resulted in the new strain LBS1560 which showed optimum performance for each of features i) to iv) above.
  • the new strain of bacteria was observed to be Gram positive (it stained Gram positive), non-motile, having a rod shape, and surprisingly exhibiting little to no ability to sporulate (as described further herein after).
  • LBS1560 was deposited at the DSMZ, Germany, in accordance with the Budapest Treaty, on 19 October 2007, and allocated the accession number DSM 19630.
  • Example 2 Culture and Storage of LBS1560
  • C. autoethanogenum LBS1560 can be cultivated using the following conditions: growth on 95% CO gas (5%CO2) 35psi in LM23 media, at 37"C, pH 5.5, with agitation (200rpm shaking) under anaerobic conditions. Growth may be monitored by measuring OD at 60On m and microscopic analysis.
  • 95% CO gas 5%CO2
  • agitation 200rpm shaking
  • a log phase culture of LBS1560 in LM23 +20% glycerol is flash frozen and then stored at -80 0 C
  • Example 3 Comparison of the new C. autoethanogenum LBS1560 with the original parental strain C. autoethanogenum DSMZ 10061 This experiment demonstrates the improved efficiency of the new strain LBS1560 for the anaerobic fermentation of a CO-containing gaseous substrate into ethanol, in comparison with the parental strain C. autoethanogenum DSMZ 10061. This experiment also demonstrates efficient fermentation of CO-containing gas to ethanol by the new strain LBS1560 in the presence of high levels CO and in the absence of H 2 .
  • Frozen stocks of the selected microbial culture LBS1560, and the original parent culture DSMZ 10061 were taken, thawed and used to inoculate sealed 15 ml Hungate tubes containing 5 ml of minimal liquid anaerobic microbial growth media (LM23) either in the presence or absence of 0.1% (w / v) yeast extract (YE). All Hungate tubes were maintained under a 95% CO, 5% CO 2 gas atmosphere. For each Hungate tube, microbial growth, ethanol and acetate production were monitored over a 7 day culture period.
  • LM23 minimal liquid anaerobic microbial growth media
  • YE 0.1% yeast extract
  • DSMZ 10061 was unable to grow in minimal media that lacked yeast extract, while LBS1560 could grow in media in the presence or absence of yeast extract, but performed best on minimal media that lacked yeast extract. LBS1560 grown on minimal media performed better in terms of growth, ethanol production, and ethanol to acetate ratio than DSMZ 10061 grown on media containing yeast extract.
  • LBS1560 was exposed to various conditions known to induce spore formation in bacteria in accordance with the methodology detailed below. • Starvation: a culture of LBS1560 was suspended in sterile distilled water
  • Exposure to Oxygen sterile air was injected into the head space of Hungate tube containing 5ml of growing culture, then the tube was placed on shaker and incubated at 37°C
  • liquid medium contained 5g/L of fructose and no reducing agent (i.e. cysteine-HCI) was saturated with oxygen and a high concentration of cells were suspended in this medium for 2 days.
  • reducing agent i.e. cysteine-HCI
  • LBS1560 The ability of LBS1560 to sporulate was determined by microscopic examination. Bacterial samples were stained with coomassie blue which facilitates the observation of spores. LBS1560 were observed on a number of occasions. Essentially none of the bacterial population were observed to exhibit spores. It was noted that while isolated spores were observed by microscopy in some instances, they were estimated to be significantly less than 0.1% of the overall microbial population. This was surprising and unexpected given that the parent strain and related strains of Clostridia are known to sporulate. The inability to sporulate provides advantages to the bacteria of the invention as herein before described.
  • Figure 2 provides a summary of the concentrations of acetate, ethanol and biomass over a 2 week period.
  • the acetic acid concentration of the culture was maintained below 4 g/L by a cell recycle and media exchange system.
  • the cells were passed through a cross flow membrane Viva 200, the filtrate was collected and the cells were returned to the reactor vessel. The filtrate was replaced with fresh media to ensure the medium volume inside the reactor remained constant.
  • the culture was operated continuously for at least 14 days.
  • the cell recycle system removed 1-1.5L of liquid nutrient media every 1-2 days without removing bacteria from the bioreactor.
  • the removed media was replaced with fresh media, to maintain constant volume.
  • the pH of the fermenter was increased from 5.6 to 6.0 over the first four days of the experiment.
  • the rapid growth phase of acetogenic bacteria (such as C. autoethanogenum) is typically associated with high acetate production in a controlled fermentation environment.
  • acetogenic bacteria such as C. autoethanogenum
  • day 0-3 the culture produced an average of 0.3g/L/day acetate and 0.16g/L/day ethanol.
  • day 3-13 the culture produced an average of 1.03 g/L/day acetate and an average of 1.4 g/L/day ethanol.
  • total ethanol produced was 14g/L
  • the results show a lower than expected level of acetate production and significantly higher ethanol production.

Abstract

A novel class of bacteria is described which has improved efficiency in the production of ethanol by anaerobic fermentation of substrates containing carbon monoxide. The exemplified bacterium, Clostridium autoethanogenum, is capable of producing ethanol and acetate at a ratio of at least 1.0.

Description

NOVEL BACTERIA AND METHODS OF USE THEREOF
FIELD OF THE INVENTION
This invention relates generally to the field of microbial fermentation of gases. It more particularly relates to a novel class of bacteria with improved efficiency in the production of ethanol by anaerobic fermentation of substrates containing carbon monoxide (CO).
BACKGROUND OF THE INVENTION
Ethanol is rapidly becoming a major hydrogen-rich liquid transport fuel around the world. Worldwide consumption of ethanol in 2005 was an estimated 12.2 billion gallons. The global market for the fuel ethanol industry has also been predicted to grow sharply in future, due to an increased interest in ethanol in Europe, Japan, the USA, and several developing nations.
For example, in the USA, ethanol is used to produce ElO, a 10% mixture of ethanol in gasoline. In ElO blends the ethanol component acts as an oxygenating agent, improving the efficiency of combustion and reducing the production of air pollutants. In Brazil, ethanol satisfies approximately 30% of the transport fuel demand, as both an oxygenating agent blended in gasoline, and as a pure fuel in its own right. Also, in Europe, environmental concerns surrounding the consequences of Green House Gas (GHG) emissions have been the stimulus for the European Union (EU) to set member nations a mandated target for the consumption of sustainable transport fuels such as biomass derived ethanol.
The vast majority of fuel ethanol is produced via traditional yeast-based fermentation processes that use crop derived carbohydrates, such as sucrose extracted from sugarcane or starch extracted from grain crops, as the main carbon source. However, the cost of these carbohydrate feed stocks is influenced by their value as human food or animal feed, while the cultivation of starch or sucrose-producing crops for ethanol production is not economically sustainable in all geographies. Therefore, it is of interest to develop technologies to convert lower cost and/or more abundant carbon resources into fuel ethanol. CO is a major, free, energy-rich by-product of the incomplete combustion of organic materials such as coal or oil and oil derived products. For example, the steel industry in Australia is reported to produce and release into the atmosphere over 500,000 tonnes of CO annually. Catalytic processes may be used to convert gases consisting primarily of CO and/or CO and hydrogen (H2) into a variety of fuels and chemicals. Micro-organisms may also be used to convert these gases into fuels and chemicals.
The ability of micro-organisms to grow on CO as a sole carbon source was first discovered in 1903. This was later determined to be a property of organisms that use the acetyl coenzyme A (acetyl CoA) biochemical pathway of autotrophic growth (also known as the Woods-Ljungdahl pathway and the carbon monoxide dehydrogenase / acetyl CoA synthase (CODH/ACS) pathway). A large number of anaerobic organisms including carboxydotrophic, photosynthetic, methanogenic and acetogenic organisms have been shown to metabolize CO to various end products, namely CO2, H2# methane, n-butanol, acetate and ethanol. While using CO as the sole carbon source, all such organisms produce at least two of these end products.
Anaerobic bacteria, such as those from the genus Clostridium, have been demonstrated to produce ethanol from CO, CO2 and H 2 via the acetyl CoA biochemical pathway. For example, various strains of Clostridium ljungdahlii that produce ethanol from gases are described in WO 00/68407, EP 117309, US patent nos. 5,173,429,
5,593,886, and 6,368,819, WO 98/00558 and WO 02/08438. The bacterium Clostridium autoethanogenum sp is also known to produce ethanol from gases (Abrini et al., Archives of Microbiology 161, pp 345-351 (1994)).
However, ethanol production by micro-organisms by fermentation of gases is always associated with co-production of acetate and/or acetic acid. As some of the available carbon is converted into acetate/acetic acid rather than ethanol, the efficiency of production of ethanol using such fermentation processes may be less than desirable. Also, unless the acetate/acetic acid by-product can be used for some other purpose, it may pose a waste disposal problem. Acetate/acetic acid is converted to methane by micro-organisms and therefore has the potential to contribute to GHG emissions. Microbial fermentation of CO in the presence of H2 can lead to substantially complete carbon transfer into an alcohol. However, in the absence of sufficient H2, some of the CO is converted into alcohol, while a significant portion is converted to CO2 as shown in the following equations: 6CO + 3H2O -> C2H5OH + 4CO2
12H2 + 4CO2 -» 2C2H5OH + 6H2O
The production of CO2 represents inefficiency in overall carbon capture and if released, also has the potential to contribute to Green House Gas emissions.
WO2007/117157 describes a process that produces alcohols, particularly ethanol, by anaerobic fermentation of gases containing carbon monoxide. Acetate produced as a by-product of the fermentation process is converted into hydrogen gas and carbon dioxide gas, either or both of which may be used in the anaerobic fermentation process. WO2008/115080 describes a process for the production of alcohol(s) in multiple fermentation stages. By-products produced as a result of anaerobic fermentation of gas(es) in a first bioreactor can be used to produce products in a second bioreactor. Furthermore, by-products of the second fermentation stage can be recycled to the first bioreactor to produce products.
It would thus be beneficial to provide micro-organisms that are capable of fermentation of such gases to ethanol at increased efficiency, that is micro-organisms capable of producing more ethanol, and/or a greater ratio of ethanol to acetate from the same substrate, than do micro-organisms of the prior art.
In addition, in prior art methods of bacterial fermentation of CO-containing gases to ethanol that produce high levels of ethanol and/or a high ethanol to acetate ratio, the gaseous substrate used typically comprises about 30-65% CO by volume and about 20- 30% H2 by volume (WO 00/68407).
CO-containing waste gases, that are potential substrates for microbial fermentation to produce ethanol, may contain either higher levels of CO and lower levels of H2or both. It would therefore be beneficial to have available bacterial strains that can perform efficient fermentation of CO-containing gas with greater than 65% CO by volume and or less than 20% H2 by volume into ethanol, for example. It is an object of the present invention to provide a new class of bacteria which overcomes one or more of the limitations of the prior art in the conversion of gaseous sources containing CO into ethanol, or at least to provide the public with a useful choice. SUMMARY OF THE INVENTION In a first aspect the invention provides a biologically pure isolate of a bacterium capable of producing products including ethanol and optionally acetate, by anaerobic fermentation of a substrate comprising CO, wherein the products are produced at an ethanol to acetate ratio of at least 1.0.
In another aspect the invention provides a biologically pure isolate of a bacterium capable of producing ethanol and acetate by anaerobic fermentation in an aqueous culture medium supplied with a substrate containing CO, particularly a gaseous substrate containing CO, comprising:
(a) greater than about 65% CO by volume
(b) less than about 20% H2 by volume, or (c) greater than about 65% CO and less than about 20% H2 by volume, at an ethanol to acetate ratio of at least about 1.0.
In one particular embodiment the ethanol to acetate ratio is at least about 1.1, more preferably at least about 1.2, more preferably at least about 1.3 and most preferably at least about 1.4. In a further embodiment the bacterium is capable of producing the ethanol at a concentration of at least about 2.Og ethanol per litre of fermentation broth.
In particular embodiments the concentration is at least about 2.1g ethanol per litre of fermentation broth, at least about 2.2g ethanol per litre of fermentation broth, at least about 2.3g ethanol per litre of fermentation broth, at least about 2.4g ethanol per litre of fermentation broth, at least about 2.5g ethanol per litre of fermentation broth, at least about 2.6g ethanol per litre of fermentation broth, at least about 2.7g ethanol per litre of fermentation broth at least about 2.8g ethanol per litre of fermentation broth, at least about 3.Og ethanol per litre of fermentation broth, at least about 3.2g ethanol per litre of fermentation broth, or at least about 3.4g ethanol per litre of fermentation broth. In particular embodiments the productivity of the bacterium is at least about 1.2g of ethanol/L of fermentation broth/day, at least about 1.6g/L/day, at least about 1.8g/L/day or at least 2.0g/L/day.
In certain embodiments, the specific ethanol productivity of the bacterium is at least about 0.7g/L/gram bacterial cells/day, at least about 0.9g/L/gram bacterial cells/day, at least about l.lg/L/gram bacterial cells/day, or at least about 1.3g/L/gram bacterial cells/day.
In another aspect the invention provides a biologically pure isolate of a bacterium capable of producing products including alcohol and optionally acetate, by anaerobic fermentation of a substrate comprising CO, wherein the productivity of the bacterium is at least about 1.2g of ethanol/L of fermentation broth/day.
In a further aspect the invention provides a biologically pure isolate of a bacterium capable of producing ethanol by anaerobic fermentation in an aqueous culture medium supplied with a substrate containing CO, particularly a gaseous substrate containing CO, comprising:
(a) greater than about 65% CO by volume
(b) less than about 20% H2 by volume, or
(c) greater than about 65% CO and less than about 20% H2 by volume, at an ethanol concentration of at least about 2.Og ethanol per litre of fermentation broth. In particular embodiments the concentration is at least about 2.1g ethanol per litre of fermentation broth, at least about 2.2g ethanol per litre of fermentation broth, at least about 2.3g ethanol per litre of fermentation broth, at least about 2.4g ethanol per litre of fermentation broth, at least about 2.5g ethanol per litre of fermentation broth, at least about 2.6g ethanol per litre of fermentation broth, at least about 2.7g ethanol per litre of fermentation broth at least about 2.8g ethanol per litre of fermentation broth, at least about 3.Og ethanol per litre of fermentation broth, at least about 3.2g ethanol per litre of fermentation broth, or at least about 3.4g ethanol per litre of fermentation broth. In particular embodiments the productivity of the bacterium is at least about 1.2g of ethanol/L of fermentation broth/day, at least about 1.6g/L/day, at least about 1.8g/L/day or at least 2.0g/L/day. In certain embodiments, the specific ethanol productivity of the bacterium is at least about 0.7g/L/gram bacterial cells/day, at least about 0.9g/L/gram bacterial cells/day, at least about l.lg/L/gram bacterial cells/day, or at least about 1.3g/L/gram bacterial cells/day. In one embodiment acetate is produced as a by-product of the fermentation.
In a particular embodiment the ethanol is produced at an ethanol to acetate ratio of at least about 1.0. In particular embodiments the ethanol to acetate ratio is at least about 1.1, at least about 1.2, at least about 1.3 or more particularly at least about 1.4.
In another aspect, the invention provides an acetogenic bacterium wherein the bacterium has one or more of the following defining characteristics:
• an ability to grow in minimal media in the presence or absence of yeast extract;
• an ability to grow more rapidly, to produce a higher ratio of ethanol to acetate, and/or to produce a higher concentration of ethanol, in a media in which yeast extract is not present compared to a media in which yeast extract is present; • little or no ability to sporulate;
• Gram positive;
• rod shaped;
• Non-motile.
In one embodiment the bacteria are additionally capable of producing ethanol by anaerobic fermentation in an aqueous culture medium supplied with a CO-containing substrate comprising:
(a) greater than about 65% CO by volume,
(b) less than about 20% H2 by volume, or
(c) greater than about 65% CO and less than about 20% H2 by volume, at an ethanol concentration of at least about 2.0g ethanol per litre of fermentation broth and/or at an ethanol to acetate ratio of at least about 1.0.
In particular embodiments the ethanol to acetate ratio is at least about 1.1, at least about 1.2, at least about 1.3 or more particularly at least about 1.4. In particular embodiments the concentration of ethanol produced is at least about 2.1g ethanol per litre of fermentation broth, at least about 2.2g ethanol per litre of fermentation broth, at least about 2.3g ethanol per litre of fermentation broth, at least about 2.4g ethanol per litre of fermentation broth, at least about 2.5g ethanol per litre of fermentation broth, at least about 2.6g ethanol per litre of fermentation broth, at least about 2.7g ethanol per litre of fermentation broth at least about 2.8g ethanol per litre of fermentation broth, at least about 3.0g ethanol per litre of fermentation broth, at least about 3.2g ethanol per litre of fermentation broth, or at least about 3.4g ethanol per litre of fermentation broth. In particular embodiments the productivity of the bacterium is at least about 1.2g of ethanol/L of fermentation broth/day, at least about 1.6g/L/day, at least about 1.8g/L/day or at least 2.0g/L/day.
In certain embodiments, the specific ethanol productivity of the bacterium is at least about 0.7g/L/gram bacterial cells/day, at least about 0.9g/L/gram bacterial cells/day, at least about l.lg/L/gram bacterial cells/day, or at least about 1.3g/L/gram bacterial cells/day.
In one embodiment, the bacteria of the invention are derived from Clostridium autoethanogenum.
In a particular embodiment, the bacteria have two or more and most preferably all of the above defining characteristics.
In a particular embodiment the bacterium has the defining characteristics of Clostridium autoethanogenum strain LBS1560 deposited at DSMZ under the accession number DSM 19630. In one embodiment the bacterium is Clostridium autoethanogenum strain LBS1560 deposited at DSMZ under the accession number DSM 19630. In a further aspect the invention provides a biologically pure isolate of Clostridium autoethanogenum strain LBS1560 deposited at DSMZ under the accession number DSM 19630.
In one embodiment the substrate comprises at least about 70% CO by volume, at least about 75% CO by volume, at least about 80% CO by volume, at least about 85% CO by volume, at least about 90% CO by volume or at least about 95% CO by volume. In a further embodiment the substrate comprises less than about 20% H2 by volume. In particular embodiments the substrate comprises less than about 15% H2 by volume, less than about 10% H2 by volume, less than about 5% H2 by volume, less than about 4% H2 by volume, less than about 3% H2 by volume, less than about 2% H2 by volume, less than about 1% H2 by volume, or substantially no H2.
In a further embodiment the substrate comprises less than or equal to about 20% CO2 by volume. In particular embodiments the substrate comprises less than or equal to about 15% CO2 by volume, less than or equal to about 10% CO2 by volume, or less than or equal to about 5% CO2 by volume. In particular embodiments the substrate comprises at least about 85% CO by volume and at most about 15% CO2 by volume, at least about 90% CO and at most about 10% CO2, or about 95% CO by volume and about 5% CO2 by volume.
In certain embodiments the aqueous culture medium is a minimal anaerobic microbial growth medium selected from but not limited to LM23 or LM33 as herein defined.
In one embodiment, the medium is not supplemented with yeast extract.
In a further aspect, the invention provides a method for the production of one or more alcohols from a substrate containing CO, the method comprising maintaining a culture of one or more of the bacterial isolates of the invention in the presence of the substrate, and the anaerobic fermentation of the substrate to one or more alcohols by the one or more bacterial isolate.
In another aspect, the invention provides a method for the production of one or more alcohols comprising fermenting a substrate containing CO using one or more of the bacteria as herein before described. In one embodiment the method comprises the steps of:
(a) providing a substrate containing CO to a bioreactor containing a culture of a bacterium as hereinbefore described; and
(b) anaerobically fermenting the culture in the bioreactor to produce one or more alcohols. In a further aspect, the invention provides a method for reducing the total atmospheric carbon emissions from an industrial process, the method comprising:
(a) capturing CO-containing gas produced as a result of the industrial process, before the gas is released into the atmosphere; (b) the anaerobic fermentation of the CO-containing gas to produce one or more alcohols by a culture containing one or more bacterial isolates of the invention.
In certain embodiments of the method aspects, acetate is produced as a by-product of the fermentation. Preferably the one or more alcohols produced includes ethanol. In particular embodiments of the method aspects, the bacterium or isolate is maintained in an aqueous culture medium.
In particular embodiments of the method aspects, the fermentation of the substrate takes place in a bioreactor.
In certain embodiments, the substrate contains less than about 15% H2 by volume, such as less than about 10% H2, such as less than about 5% H2.
In certain embodiments, the substrate comprises greater than about 65% CO by volume, preferably about 70% CO to about 95% CO by volume.
In one embodiment the substrate comprises at least about 70% CO by volume. In a particular embodiment the substrate comprises at least about 80% CO by volume, at least about 85% CO by volume, at least about 90% CO by volume or at least about 95% CO by volume.
- In one embodiment the substrate comprises less than about 20% H2 by volume. In particular embodiments the substrate comprises less than about 15% H2 by volume, less than about 10% H2 by volume, less than about 5% H2 by volume, less than about 4% H2 by volume, less than about 3% H2 by volume, less than about 2% H2 by volume, less than about 1% H2 by volume, or substantially no H2.
In one embodiment the substrate comprises less than or equal to about 20% CO2 by volume. In particular embodiments the substrate comprises less than or equal to about 15% CO2 by volume, less than or equal to about 10% CO2 by volume, or less than or equal to about 5% CO2 by volume. In certain embodiments the substrate comprises at least about 85% CO by volume and at most about 15% CO2 by volume, at least about 90% CO and at most about 10% CO2, or about 95% CO by volume and about 5% CO2 by volume.
In certain embodiments the substrate containing CO is a gaseous substrate containing CO.
In certain embodiments, the gaseous substrate comprises a gas obtained as a byproduct of an industrial process.
In certain embodiments, the industrial process is selected from the group consisting of ferrous metal products manufacturing, non-ferrous products manufacturing, petroleum refining processes, gasification of biomass, gasification of coal, electric power production, carbon black production, ammonia production, methanol production and coke manufacturing.
In one embodiment, the gaseous substrate may comprise a gas obtained from a steel mill. In another embodiment, the gaseous substrate may comprise automobile exhaust fumes.
In certain embodiments of the method aspects the alcohol is recovered from the fermentation broth, the fermentation broth being the aqueous culture medium comprising bacterial cells and the alcohol. In certain embodiments acetate is produced as a by-product of the fermentation.
In a further embodiment the alcohol and the acetate are recovered from the broth.
In another aspect, the invention provides a method of selection of one or more micro-organisms which produce one or more acids, the method comprising: Culturing the micro-organisms in a nutrient media in a bioreactor; Adding fresh media at a pH higher than the nutrient media, such that the nutrient media is maintained at a substantially constant pH; and, Removing at least a portion of the nutrient media and micro-organisms, such that the media in the bioreactor is maintained at a substantially constant volume.
In a particular embodiment, the method is for the selection of fast growing microorganisms. In one embodiment the one or more acids includes acetate. In another aspect the invention provides a biologically pure isolate of a bacterium produced by the method of selection. In one embodiment, the isolate has little or no ability to sporulate.
Although the invention is broadly as defined above, it is not limited thereto and also includes embodiments of which the following description provides examples. BRIEF DESCRIPTION OF THE DRAWINGS
The invention will now be described in detail with reference to the accompanying Figures in which:
Figure 1: is a schematic representation of a system adapted to select for rapid microbial growth
Figure 2: shows ethanol (square) and acetate (diamond) production by Clostridium autoethanogenum LBS1560. Biomass concentration is represented by the triangle data points.
DETAILED DESCRIPTION OF THE INVENTION In broad terms, in one aspect the present invention relates to a novel bacterium and a biologically pure isolate of a bacterium with increased efficiency in an anaerobic fermentation process. In one aspect the bacterium is capable of producing an alcohol, preferably ethanol, from a substrate comprising:
(a) greater than about 65% CO by volume (b) less than about 20% H2 by volume, or
(c) greater than about 65% CO and less than about 20% H2 by volume. In a further aspect, the invention relates to a process for producing an alcohol, preferably ethanol, by anaerobic fermentation of a CO-containing substrate by the bacteria of the invention. Definitions
Unless otherwise defined, the following terms as used throughout this specification are defined as follows:
A "substrate containing CO" and like terms should be understood to include any substrate in which carbon monoxide is available to bacteria for growth and/or fermentation, for example. In particular embodiments of the invention the "substrate containing CO" is gaseous. Such substrates may be referred to herein as "gaseous substrates containing CO" and the like.
In the description which follows, embodiments of the invention are described in terms of delivering and fermenting a "gaseous substrate containing CO". However, it should be appreciated that the gaseous substrate may be provided in alternative forms. For example, the gaseous substrate containing CO may be provided dissolved in a liquid. Essentially, a liquid is saturated with a carbon monoxide containing gas and then that liquid is added to the bioreactor. This may be achieved using standard methodology. By way of example, a microbubble dispersion generator (Hensirisak et. al. Scale-up of microbubble dispersion generator for aerobic fermentation; Applied Biochemistry and Biotechnology Volume 101. Number 3 / October. 2002) could be used. By way of further example, the gaseous substrate containing CO may be adsorbed onto a solid support. Such alternative methods are encompassed by use of the term "substrate containing CO". The terms "increasing the efficiency", "increased efficiency" and the like, when used in relation to a fermentation process, include, but are not limited to, increasing one or more of: the rate of growth of micro-organisms catalysing the fermentation, the volume of desired product (such as alcohols) produced per volume of substrate (such as CO) consumed, the concentration of the desired product (such as alcohols) produced in the culture medium, the rate of production or level of production of the desired product, and the relative proportion of the desired product produced compared with other byproducts of the fermentation.
The term "acetate" includes both acetate salt alone and a mixture of molecular or free acetic acid and acetate salt, such as the mixture of acetate salt and free acetic acid present in a fermentation broth as described herein. The ratio of molecular acetic acid to acetate in the fermentation broth is dependent upon the pH of the system.
The term "bioreactor" includes a fermentation device consisting of one or more vessels and/or towers or piping arrangement, which includes the Continuous Stirred Tank Reactor (CSTR), Immobilized Cell Reactor (ICR), Trickle Bed Reactor (TBR), Bubble Column, Gas Lift Fermenter, Static Mixer, or other vessel or other device suitable for gas-liquid contact. Bacteria of the invention, or cultures or isolates thereof, may be described to be in an "isolated" or "biologically pure" form. These terms are intended to mean that the bacteria have been separated from an environment or one or more constituents, cellular or otherwise, which they may be associated with if found in nature or otherwise. The terms "isolated" or "biologically pure" should not be taken to indicate the extent to which the bacteria have been purified. However, in one embodiment the isolates or cultures of the bacteria contain a predominance of the bacteria of the invention.
The invention provides a biologically pure isolate of a bacterium capable of producing ethanol and acetate by anaerobic fermentation in an aqueous culture medium supplied with a gaseous CO-containing substrate comprising:
(a) greater than about 65% CO by volume
(b) less than about 20% H2 by volume, or
(c) greater than about 65% CO and less than about 20% H2 by volume, at an ethanol to acetate ratio of at least about 1.0. In one embodiment, the bacterium is derived from C. autoethanogenum as described elsewhere herein.
In certain embodiments the ethanol to acetate ratio is at least about 1.1, or at least about 1.2, or at least about 1.3 or at least about 1.4.
In further embodiments the bacterium is capable of producing ethanol at a concentration of at least about 2.1g ethanol per litre of fermentation broth, at least about 2.2g ethanol per litre of fermentation broth, at least about 2.3g ethanol per litre of fermentation broth, at least about 2.4g ethanol per litre of fermentation broth, at least about 2.5g ethanol per litre of fermentation broth, at least about 2.6g ethanol per litre of fermentation broth, at least about 2.7g ethanol per litre of fermentation broth at least about 2.8g ethanol per litre of fermentation broth, at least about 3.0g ethanol per litre of fermentation broth, at least about 3.2g ethanol per litre of fermentation broth, or at least about 3.4g ethanol per litre of fermentation broth.
Ethanol productivity is the volumetric productivity of ethanol, calculated as the ratio of the ethanol concentration and the time required to produce that concentration in batch systems. Productivity can also be calculated for microbial fermentation in continuous systems. In particular embodiments of the invention, the productivity of the bacteria is at least 1.2g ethanol/ L of fermentation broth/day, or at least 1.6g/L/day or at least 1.8g/L/day or at least 2.0g/LVday.
The specific productivity of a microbial culture depends on the proportion of live active microorganism within a microbial culture. In certain embodiments of the present invention, the specific ethanol productivity is at least 0.7g/L/gram bacterial cells/day, or at least 0.9g/L/gram bacterial cells/day, or at least l.lg/L/gram bacterial cells/day, or at least 1.3g/L/gram bacterial cells/day.
The invention also provides a biologically pure isolate of a bacterium capable of producing ethanol by anaerobic fermentation in an aqueous culture medium supplied with a gaseous CO-containing substrate comprising:
(a) greater than about 65% CO by volume
(b) less than about 20% H2 by volume, or
(c) greater than about 65% CO and less than about 20% H2 by volume, at an ethanol concentration of at least 2.Og ethanol per litre of fermentation broth. In one embodiment, the bacterium is derived from C. autoethanogenum as described elsewhere herein.
In further embodiments the bacterium is capable of producing ethanol at a concentration of at least about 2.1g ethanol per litre of fermentation broth, at least about 2.2g ethanol per litre of fermentation broth, at least about 2.3g ethanol per litre of fermentation broth, at least about 2.4g ethanol per litre of fermentation broth, at least about 2.5g ethanol per litre of fermentation broth, at least about 2.6g ethanol per litre of fermentation broth, at least about 2.7g ethanol per litre of fermentation broth at least about 2.8g ethanol per litre of fermentation broth, at least about 3.Og ethanol per litre of fermentation broth, at least about 3.2g ethanol per litre of fermentation broth, or at least about 3.4g ethanol per litre of fermentation broth.
In particular embodiments of the invention, the productivity of the bacteria is at least 1.2g ethanol/L of fermentation broth/day, or at least 1.6g/L/day or at least 1.8g/L/day or at least 2.0g/L/day. In certain embodiments of the present invention, the specific ethanol productivity is at least 0.7g/L/gram bacterial cells/day, or at least 0.9g/L/gram bacterial cells/day, or at least l.lg/L/gram bacterial cells/day, or at least 1.3g/L/gram bacterial cells/day. Typically acetate is produced as a by-product of the fermentation. In one embodiment the ethanol is produced at an ethanol to acetate ratio of at least about 1.0. In particular embodiments the ethanol to acetate ratio is at least about 1.1, or at least about 1.2, or at least about 1.3 or at least about 1.4.
The invention also provides acetogenic bacteria having one or more of the following defining characteristics as observed under the experimental conditions described herein after: an ability to grow in minimal media in the presence or absence of yeast extract; an ability to grow more rapidly, to produce a higher ratio of ethanol to acetate, and/or to produce a higher concentration of ethanol, in a media in which yeast extract is not present compared to a media in which yeast extract is present; little or no ability to sporulate; Gram positive; rod shaped; Non-motile. In one embodiment the bacteria have substantially no ability to sporulate. In one embodiment substantially none of the bacterial population exhibit spores under the conditions described herein after.
In one embodiment the acetogenic bacteria are additionally capable of producing ethanol by anaerobic fermentation in an aqueous culture medium supplied with a CO- containing substrate comprising: greater than about 65% CO by volume; less than about 20% H2 by volume; or, greater than about 65% CO and less than about 20% H2 by volume; at an ethanol concentration of at least about 2.Og ethanol per litre of fermentation broth and/or at an ethanol to acetate ratio of at least about 1.0.
The bacteria of the invention can be derived from Clostridium autoethanogenum. The observation that bacteria of certain embodiments of the invention have little to no ability to sporulate is surprising. This provides an unexpected benefit over other strains of Clostridia including Clostridium autoethanogenum. Sporulation is a stagnant phase of limited activity. Reducing or ameliorating the ability to form spores has a number of advantages. For example, a single bacterial cell can only divide and produce metabolites (such as acetate and/or ethanol) while in a non sporulated condition. Accordingly, the time scale for division and metabolite production can be extended where bacteria do not sporulate. The lack of an ability to sporulate may also provide additional control over an entire culture, wherein the whole live population may be adapted to promote growth and/or metabolite production for extended periods. Therefore, use of bacteria of the present invention may increase the overall efficiency of a fermentation process for producing products such as acetate and/or ethanol.
In certain embodiments of the invention, the bacteria have two or more and more preferably all of the above mentioned characteristics. In some embodiments of the invention the bacteria have the defining characteristics of Clostridium autoethanogenum strain LBS1560 deposited at DSMZ, Germany, in accordance with the Budapest Treaty, on 19 October 2007, and allocated the accession number DSM 19630. In a particular embodiment, the bacterium is Clostridium autoethanogenum strain LBS1560, DSM 19630. The invention also relates to bacteria derived from the bacteria of the invention. In certain embodiments the bacteria of the invention are able to produce the concentrations of ethanol, and ethanol to acetate ratios discussed above, at elevated levels of CO in the gaseous substrate. The gaseous substrate may comprise at least about 70% CO by volume. In certain embodiments the gaseous substrate comprises at least about 80% CO by volume, or at least about 85% CO by volume, or at least about 90% CO by volume or at least about 95% CO by volume. Similarly the discussed ethanol concentrations, and ethanol to acetate ratios, are achievable in certain embodiments at low to non-existent levels of H2 in the gaseous substrate. The gaseous substrate may comprise less than about 20% H2 by volume. In particular embodiments the gaseous substrate comprises less than about 15% H2 by volume, or the gaseous substrate comprises less than about 10% H2 by volume, or the gaseous substrate comprises less than about 5% H2 by volume, or the gaseous substrate comprises less than about 4% H2 by volume, or the gaseous substrate comprises less than about 3% H2 by volume, or the gaseous substrate comprises less than about 2% H2 by volume, or the gaseous substrate comprises less than about 1% H2 by volume, or the gaseous substrate comprises no H2. In certain embodiments, the bacteria of the invention can also produce ethanol concentrations, and ethanol to acetate ratios when supplied with gaseous substrate comprising relatively little CO2. In one embodiment the gaseous substrate comprises less than or equal to about 20% CO2 by volume. In certain embodiments the gaseous substrate comprises less than or equal to about 15% CO2 by volume, or less than or equal to about 10% CO2 by volume, or less than or equal to about 5% CO2 by volume.
In certain embodiments the gaseous substrate comprises about 85% CO by volume and about 15% CO2 by volume, or the gaseous substrate comprises at least about 90% CO and at most about 10% CO2, or the gaseous substrate comprises about 95% CO by volume and about 5% CO2 by volume.
In certain embodiments the culture is maintained in an aqueous culture medium. Preferably the aqueous culture medium is a minimal anaerobic microbial growth medium. Suitable media are known in the art and described for example in US patent nos 5,173,429 and 5,593,886 and WO 02/08438, and in Klasson et al [(1992). Bioconversion of Synthesis Gas into Liquid or Gaseous Fuels. Enz. Microb. Technol. 14:602-608.], Najafpour and Younesi [(2006). Ethanol and acetate synthesis from waste gas using batch culture of Clostridium ljungdahlii. Enzyme and Microbial Technology, Volume 38, Issues 1-2, p. 223- 228] and Lewis et al [(2002). Making the connection-conversion of biomass-generated producer gas to ethanol. Abst. Bioenergy, p. 2091-2094.]. In particular embodiments of the invention, the minimal anaerobic microbial growth medium is LM23 or LM33 as herein defined.
In certain embodiments the medium is supplemented with additional components, such as but not limited to amino acids and trypticase. Preferably the medium is not supplemented with additional components. In certain embodiments the medium may be supplemented with yeast extract. In certain embodiments the culture grows more rapidly when the medium is not supplemented with yeast extract, than when the medium is supplemented with yeast extract. In a further embodiment the ethanol to acetate ratio produced is higher when the medium is not supplemented with yeast extract, than when the medium is supplemented with yeast extract. In a further embodiment the concentration of ethanol produced per litre of culture medium is higher when the medium is not supplemented with yeast extract, than when the medium is supplemented with yeast extract. In a particular embodiment, the medium is not supplemented with yeast extract.
The invention also provides methods for the production of one or more alcohols from a gaseous substrate comprising CO, the methods comprising maintaining a culture of one or more bacterial isolate of the invention in the presence of the gaseous substrate, and the anaerobic fermentation of the gaseous substrate to one or more alcohols by the one or more bacterial isolate.
The invention also provides a method for reducing the total atmospheric carbon emissions from an industrial process, the method comprising:
(a) capturing CO-containing gas produced as a result of the industrial process, before the gas is released into the atmosphere;
(b) the anaerobic fermentation of the CO-containing gas to produce one or more alcohols by a culture containing one or more bacterial isolates of the invention.
In certain embodiments of the methods of the invention, acetate is produced as a by-product of the fermentation. The alcohol produced is ethanol.
In certain embodiments, the culture is maintained in a liquid nutrient medium. The fermentation may be carried out in any suitable bioreactor, such as a continuous stirred tank reactor (CTSR), a bubble column reactor (BCR) or a trickle bed reactor (TBR). Also, in some preferred embodiments of the invention, the bioreactor may comprise a first, growth reactor in which the micro-organisms are cultured, and a second, fermentation reactor, to which fermentation broth from the growth reactor is fed and in which most of the fermentation product (ethanol and acetate) is produced. As described above, the carbon source for the fermentation reaction is a gaseous substrate containing CO. The gaseous substrate may be a CO-containing waste gas obtained as a by-product of an industrial process, or from some other source such as from automobile exhaust fumes. In certain embodiments, the industrial process is selected from the group consisting of ferrous metal products manufacturing, such as a steel mill, non-ferrous products manufacturing, petroleum refining processes, gasification of coal, electric power production, carbon black production, ammonia production, methanol production and coke manufacturing. In these embodiments, the CO-containing gas may be captured from the industrial process before it is emitted into the atmosphere, using any convenient method. Depending on the composition of the gaseous CO- containing substrate, it may also be desirable to treat it to remove any undesired impurities, such as dust particles before introducing it to the fermentation. For example, the gaseous substrate may be filtered or scrubbed using known methods.
In addition, it is often desirable to increase the CO concentration of a substrate stream (or CO partial pressure in a gaseous substrate) and thus increase the efficiency of fermentation reactions where CO is a substrate. Increasing CO partial pressure in a gaseous substrate increases CO mass transfer into a fermentation media. The composition of gas streams used to feed a fermentation reaction can have a significant impact on the efficiency and/or costs of that reaction. For example, 02 may reduce the efficiency of an anaerobic fermentation process. Processing of unwanted or unnecessary gases in stages of a fermentation process before or after fermentation can increase the burden on such stages (e.g. where the gas stream is compressed before entering a bioreactor, unnecessary energy may be used to compress gases that are not needed in the fermentation). Accordingly, it may be desirable to treat substrate streams, particularly substrate streams derived from industrial sources, to remove unwanted components and increase the concentration of desirable components.
Substrate streams derived from an industrial source are typically variable in composition. Furthermore, substrate streams derived from industrial sources comprising high CO concentrations (such as at least 50% CO or at least 65%) often have a low H2 component (such as less than 20% or less than 10% or 0%). As such, it is particularly desirable that micro-organisms are capable of producing products by anaerobic fermentation of substrates comprising a range of CO and H2 concentrations, particularly high CO concentrations and low H2 concentrations. The inventors tested C. autoethanogenum (obtained from DSMZ under accession number DSM 10061) and note it would not grow and produce products on gaseous substrates comprising CO without an H2 component. However, the bacteria of the present invention have the surprising ability to grow and produce products (ethanol and acetate) by fermenting a substrate comprising CO (and no H2).
The presence of hydrogen in the substrate stream can lead to an improvement in efficiency of overall carbon capture and/or ethanol productivity. For example, WO02/08438 describes the production of ethanol using gas stream of various compositions. WO02/08438 reports a substrate stream comprising 63% H2, 32% CO and 5% CH4 being provided to a culture of C.ljungdahlii in a bioreactor to promote microbial growth and ethanol production. When the culture reached a steady state and microbial growth was no longer the main objective, the substrate stream was switched to 15.8% H2, 36.5% CO, 38.4% N2 and 9.3% CO2 in order to provide CO in a slight excess and promote ethanol production. This document also describes gas streams with higher and lower CO and H2 concentrations.
It will be appreciated that the processes of the present invention as described herein can be used to reduce the total atmospheric carbon emissions from industrial processes, by capturing CO-containing gases produced as a result of such processes and using them as substrates for the fermentation processes described herein.
Alternatively, in other embodiments of the invention, the CO-containing gaseous substrate may be sourced from the gasification of biomass. The process of gasification involves partial combustion of biomass in a restricted supply of air or oxygen. The resultant gas typically comprises mainly CO and H2, with minimal volumes of CO2, methane, ethylene and ethane. For example, biomass by-products obtained during the extraction and processing of foodstuffs such as sugar from sugarcane, or starch from maize or grains, or non-food biomass waste generated by the forestry industry may be gasified to produce a CO-containing gas suitable for use in the present invention. It is generally preferred that the CO-containing gaseous substrate contains a major proportion of CO. In particular embodiments, the gaseous substrate comprises at least about 65%, or at least about 70% to about 95% CO by volume. It is not necessary for the gaseous substrate to contain any hydrogen. The gaseous substrate also optionally contains some CO2, such as about 1% to about 30% by volume, such as about 5% to about 10% CO2. It will be appreciated that for growth of the bacteria and CO-to-ethanol fermentation to occur, in addition to the CO-containing substrate gas, a suitable liquid nutrient medium will need to be fed to the bioreactor. A nutrient medium will contain vitamins and minerals sufficient to permit growth of the micro-organism used. Anaerobic media suitable for the fermentation of ethanol using CO as the sole carbon source are known in the art. For example, suitable media are described in US patent nos 5,173,429 and 5,593,886 and WO 02/08438 as well as other publications referred to herein before. In one embodiment of the invention the media is LM 23 as described in the Examples herein after. The fermentation should desirably be carried out under appropriate conditions for the CO-to-ethanol fermentation to occur. Reaction conditions that should be considered include pressure, temperature, gas flow rate, liquid flow rate, media pH, media redox potential, agitation rate (if using a continuous stirred tank reactor), inoculum level, maximum gas substrate concentrations to ensure that CO in the liquid phase does not become limiting, and maximum product concentrations to avoid product inhibition. The optimum reaction conditions will depend partly on the particular microorganism of the invention used. However, in general, it is preferred that the fermentation be performed at pressure higher than ambient pressure. Operating at increased pressures allows a significant increase in the rate of CO transfer from the gas phase to the liquid phase where it can be taken up by the micro-organism as a carbon source for the production of ethanol. This in turn means that the retention time (defined as the liquid volume in the bioreactor divided by the input gas flow rate) can be reduced when bioreactors are maintained at elevated pressure rather than atmospheric pressure. Also, since a given CO-to-ethanol conversion rate is in part a function of the substrate retention time, and achieving a desired retention time in turn dictates the required volume of a bioreactor, the use of pressurized systems can greatly reduce the volume of the bioreactor required, and consequently the capital cost of the fermentation equipment. According to examples given in US patent no. 5,593,886, reactor volume can be reduced in linear proportion to increases in reactor operating pressure, i.e. bioreactors operated at 10 atmospheres of pressure need only be one tenth the volume of those operated at 1 atmosphere of pressure.
The benefits of conducting a gas-to-ethanol fermentation at elevated pressures have also been described elsewhere. For example, WO 02/08438 describes gas-to- ethanol fermentations performed under pressures of 30 psig and 75 psig, giving ethanol productivities of 150 g/l/day and 369 g/l/day respectively. However, example fermentations performed using similar media and input gas compositions at atmospheric pressure were found to produce between 10 and 20 times less ethanol per litre per day.
It is also desirable that the rate of introduction of the CO-containing gaseous substrate is such as to ensure that the concentration of CO in the liquid phase does not become limiting. This is because a consequence of CO-limited conditions may be that the ethanol product is consumed by the culture.
In certain embodiments, a fermentation process according to the present invention described above will result in a fermentation broth comprising ethanol, as well as bacterial cells, in the aqueous culture medium. In preferred embodiments of the method the ethanol is recovered from the fermentation broth.
In certain embodiments, the recovering of ethanol comprises continuously removing a portion of broth and recovering the alcohol from the removed portion of the broth. In particular embodiments the recovery of ethanol includes passing the removed portion of the broth containing ethanol through a separation unit to separate bacterial cells from the broth, to produce a cell-free alcohol-containing permeate, and returning the bacterial cells to the bioreactor.
In certain embodiments, the methods of the invention are continuous processes. In particular embodiments acetate is produced as a by-product of the fermentation.
In a further embodiment the ethanol and the acetate are recovered from the broth. In certain embodiments, the recovering of ethanol and acetate comprises continuously removing a portion of the broth and recovering separately ethanol and acetate from the removed portion of the broth.
In some embodiments the recovery of ethanol and acetate includes passing the removed portion of the broth containing ethanol and acetate through a separation unit to separate bacterial cells from the ethanol and acetate, to produce a cell-free ethanol-and acetate-containing permeate, and returning the bacterial cells to the bioreactor.
In the above embodiments, the recovery of ethanol and acetate preferably includes first removing ethanol from the cell-free permeate followed by removing acetate from the cell-free permeate. Preferably the cell-free permeate is then returned to the bioreactor.
In certain embodiments, the methods of the invention are continuous processes.
Ethanol is the preferred desired end product of the fermentation. The ethanol may be recovered from the fermentation broth by methods known in the art, such as fractional distillation or evaporation, and extractive fermentation. Distillation of ethanol from a fermentation broth yields an azeotropic mixture of ethanol and water (i.e. 95% ethanol and 5% water). Anhydrous ethanol can subsequently be obtained through the use of molecular sieve ethanol dehydration technology, which is also well known in the art. Extractive fermentation procedures involve the use of a water-miscible solvent that presents a low toxicity risk to the fermentation organism, to recover the ethanol from the dilute fermentation broth. For example, oleyl alcohol is a solvent that may be used in this type of extraction process. Oleyl alcohol is continuously introduced into a fermenter, whereupon this solvent rises forming a layer at the top of the fermenter which is continuously extracted and fed through a centrifuge. Water and cells are then readily separated from the oleyl alcohol and returned to the fermenter while the ethanol-laden solvent is fed into a flash vaporization unit. Most of the ethanol is vaporized and condensed while the oleyl alcohol is non volatile and is recovered for re-use in the fermentation. Acetate may also be recovered from the fermentation broth using methods known in the art. Methods for the recovery of acetate are described in detail in WO2007/117157 and WO2008/115080.
In certain embodiments of the invention, ethanol and acetate are recovered from the fermentation broth by continuously removing a portion of the broth from the fermentation bioreactor, separating microbial cells from the broth (conveniently by filtration), and recovering first ethanol and then acetate from the broth. The ethanol may conveniently be recovered by distillation, and the acetate may be recovered by adsorption on activated charcoal, using the methods described above. The separated microbial cells are preferably returned to the fermentation bioreactor. The cell free permeate remaining after the ethanol and acetate have been removed is also preferably returned to the fermentation bioreactor. Additional nutrients (such as B vitamins) may be added to the cell free permeate to replenish the nutrient medium before it is returned to the bioreactor. Also, if the pH of the broth was adjusted as described above to enhance adsorption of acetic acid to the activated charcoal, the pH should be re-adjusted to a similar pH to that of the broth in the fermentation bioreactor, before being returned to the bioreactor. Reaction stoichiometry
Without wishing to be bound by any theory, the chemical reactions for the fermentation of CO to ethanol (a) and acetic acid (b) in the process of the present invention are believed to be as follows:
(a) 18CO + 9H2O => 3CH3CH2OH + 12CO2
(b) 12CO + 6H2O => 3CH3COOH + 6CO2
The invention will now be described in more detail with reference to the following non-limiting examples. EXAMPLES
Media
The composition of media components used in the following examples is provided in Tables 1 and 2. Table 1: Media Composition for C. autoethanogenum
Figure imgf000026_0001
Table 2: C. autoethanogenum composite mineral and vitamin solutions
Figure imgf000027_0001
LM 17, LM23 and LM 33 media were prepared at pH 5.5 as follows. All ingredients , with the exception of cysteine HCL were mixed in dH2O to a total volume of IL. This solution was made anaerobic by heating to boiling and allowing it to cool to room temperature under a constant flow of 95%CO, 596CO2 gas. Once cool, the cysteine HCL was added and the pH of the solution adjusted to 5.5; anaerobicity was maintained throughout the experiments.
Ethanol and acetate determinations Ethanol and Acetate determinations in the following examples were made using a gas chromatograph HP 5890 series Il -Utilizing a flame ionization detector (FID), removable, deactivated glass, injection port liner, associated regulators, gas lines, and septa with sample autoinjector HP 7673A. Separations were made on a capillary GC Column EClOOO- Alltech EClOOO 30m x 0.25mm x 0.25μm.
The Gas Chromatograph was operated in Split mode with a total flow of hydrogen of 50 miymin with 5 mL purge flow (1:10 split), a column head pressure of 20 psig resulting in a linear velocity of 45 cm/sec. The temperature program was initiated at 602C, hold ior l minute then ramped to 1709C at 309C per minute. This resulted in a total run time of 4.65minutes. Injector temperature was 1809C and the detector temperature was 225SC.
Reagents used were Propan-1-ol-Reagent grade - Scharlau AL0437, Min assay by GC 99.5%; Ethanol absolute- Scharlau ET0015, Min assay by GC 99.9; Acetic acid 100% glacial- BDH 100015N, Min assay by GC 99.8%; Orthophosphoric acid-BDH 294214a Min assay by GC 99.0%; Nitrogen - BOC Oxygen Free-GC make up gas; Hydrogen - BOC Oxygen Free-GC carrier gas and FID fuel; Zero air-FID oxidant; Water-deionized.
Cell density To determine the cell density in these experiments, the absorbance of the samples was measured at 60On m (spectrophotometer) and the dry mass determined via calculation according to published procedures. The level of metabolites was characterized using High Performance Liquid Chromatography (HPLC) and in some cases Gas Chromatography (GC). HPLC
HPLC System Agilent 1100 Series. Mobile Phase: 0.0025N Sulphuric Acid. Flow and pressure: 0.800 mL/min. Column: Alltech 1OA; Catalog # 9648, 150 x 6.5 mm, particle size 5 μm. Temperature of column: 600C. Detector: Refractive Index. Temperature of detector: 45°C. The method of sample preparation for HPLC was as follows: 400 μL of sample and 50 μL of 0.15M ZnSO4 and 50 μL of 0.15M Ba(OH)2 are loaded into an Eppendorf tube. The tubes are centrifuged for 10 min. at 12,000rpm, 4°C. 200 μL of the supernatant are transferred into an HPLC vial, and 5μL are injected into the HPLC instrument. Example 1: Production of a new bacterial isolate of the invention
The new strain Clostridium autoethanogenum LBS1560 was produced through a dedicated program of selection and propagation of microbial cultures initiated from the parent C. autoethanogenum culture (DSMZ 10061) over a period of 18 months. Methods
A frozen stock of C. autoethanogenum 10061 (obtained from DSMZ) was initially thawed and used to inoculate LM23 medium prepared with 5g / litre yeast extract in the presence of 95% CO and 5% CO2. This culture could not be made to grow on LM23 media in the absence of Yeast Extract. In an effort to overcome the cultures dependence on yeast extract over a period of months, actively growing microbial cultures that were observed to produce the most ethanol and the highest ratio of ethanol to acetate were repeatedly subcultured into media containing ever decreasing concentrations of yeast extract, always in the presence of 95%CO 5% CO2 headspace gas. After this period cultures growing and producing ethanol and acetate in the absence of yeast extract could be observed. This selection protocol was actively maintained to further identify and select for cultures that: i) grew most rapidly; ii) produced the most ethanol; iii) produced the highest ratio of ethanol to acetate; and, iv) grew in the absence of yeast extract in the liquid media.
Example 1.1: Rapid growth selection
In order to select for fast growing cultures, the micro-organisms propensity to produce acetic acid as a by-product of energy metabolism during periods of growth on a continuous 95% CO, 5% CO2 gas stream was exploited. The accumulation of acetic acid in the growth media has the effect of lowering the pH of the process. Accordingly, a fermenter configuration that diluted the culture in a growth dependent way in order to introduce a pressure that would select for the fastest growing populations was developed. An exemplary configuration is shown in Figure 1, wherein a culture of microorganisms was fermented in a bioreactor 1. pH of the nutrient media 2 was monitored by a conventional pH probe 3. Deviations in the pH reading from the set point of 5.5 caused a pump 4 to be activated, however, rather than the signal from the probe being relayed to a pump that dosed a base or acid solution; in this case the pump was linked to a bottle 5 containing fresh anaerobic LM17 media at pH 5.8. Thus as the culture grew, acetic acid was produced, the pH of the media 2 began to drop causing the activation of a pump 4 that introduced media at pH 5.8. The pump 4 was only de-activated once the media pH was returned to 5.5 or above. The liquid level in the reactor 1 was maintained using a level probe 6 linked to a second pump 7 that operated to maintain the liquid level in the bioreactor 1 at or below a fixed level. Media pumped away from bioreactor 1 was passed to waste container/means 8. Accordingly, the growing culture population was diluted in a growth-linked manner and the faster the population grew, the more acetate was produced and more fresh media was introduced until ultimately, relatively large volumes of media were introduced into the fermenter to maintain pH effectively selecting for the fastest growing populations as these would not be washed out in an effort to maintain the liquid volume of the vessel at a fixed level. This fermenter configuration was maintained for several months at a time as a continuous culture in order to isolate fast growing cultures. Every 14 days, an aliquot of the culture was removed and allowed to grow in a 250ml serum bottle containing 50ml of media and 35 psig of 95% CO, 5% CO2 in the headspace. Once actively growing the culture was prepared and stored as a glycerol stock for comparative work with the original culture stocks.
Results
The process of selection and subculture over a period of 18 months described above resulted in the new strain LBS1560 which showed optimum performance for each of features i) to iv) above. The new strain of bacteria was observed to be Gram positive (it stained Gram positive), non-motile, having a rod shape, and surprisingly exhibiting little to no ability to sporulate (as described further herein after).
LBS1560 was deposited at the DSMZ, Germany, in accordance with the Budapest Treaty, on 19 October 2007, and allocated the accession number DSM 19630. Example 2: Culture and Storage of LBS1560
C. autoethanogenum LBS1560 can be cultivated using the following conditions: growth on 95% CO gas (5%CO2) 35psi in LM23 media, at 37"C, pH 5.5, with agitation (200rpm shaking) under anaerobic conditions. Growth may be monitored by measuring OD at 60On m and microscopic analysis.
For storage, a log phase culture of LBS1560 in LM23 +20% glycerol is flash frozen and then stored at -800C
Example 3: Comparison of the new C. autoethanogenum LBS1560 with the original parental strain C. autoethanogenum DSMZ 10061 This experiment demonstrates the improved efficiency of the new strain LBS1560 for the anaerobic fermentation of a CO-containing gaseous substrate into ethanol, in comparison with the parental strain C. autoethanogenum DSMZ 10061. This experiment also demonstrates efficient fermentation of CO-containing gas to ethanol by the new strain LBS1560 in the presence of high levels CO and in the absence of H2. Methods
Frozen stocks of the selected microbial culture LBS1560, and the original parent culture DSMZ 10061 were taken, thawed and used to inoculate sealed 15 ml Hungate tubes containing 5 ml of minimal liquid anaerobic microbial growth media (LM23) either in the presence or absence of 0.1% (w / v) yeast extract (YE). All Hungate tubes were maintained under a 95% CO, 5% CO2 gas atmosphere. For each Hungate tube, microbial growth, ethanol and acetate production were monitored over a 7 day culture period.
Results
The results are presented in Table 3 below. Table 3. Comparison of fermentation by strain LBS1560 and the parental strain DSMZ 10061
Culture Media Growth Ethanol Acetate Ethanol : Acetate ratio (g dry mass) (g/ l) (g/ l)
Figure imgf000032_0001
LBS1560 LM 23 + YE 0.0963 0.19 2.07 0.09
IP ■ iϋl
LBS1560 LM23 0.583 2.74 1.95 1.41
The data presented in Table 3 highlight several reproducible differences between strain LBS1560 and the parent strain DSMZ 10061. DSMZ 10061 was unable to grow in minimal media that lacked yeast extract, while LBS1560 could grow in media in the presence or absence of yeast extract, but performed best on minimal media that lacked yeast extract. LBS1560 grown on minimal media performed better in terms of growth, ethanol production, and ethanol to acetate ratio than DSMZ 10061 grown on media containing yeast extract.
Example 4: Sporulation characteristics of LBS1560
To identify sporulation characteristics, LBS1560 was exposed to various conditions known to induce spore formation in bacteria in accordance with the methodology detailed below. • Starvation: a culture of LBS1560 was suspended in sterile distilled water
• Exposure to Oxygen: sterile air was injected into the head space of Hungate tube containing 5ml of growing culture, then the tube was placed on shaker and incubated at 37°C
• Exposure to low pH medium (pH 3): microbes were grown in LM23 (pH 5.5) to a high cell concentration, then the medium was exchanged to fresh growth medium pH 3.
• Exposure to Oxygen and Fructose as carbon and energy source: liquid medium contained 5g/L of fructose and no reducing agent (i.e. cysteine-HCI) was saturated with oxygen and a high concentration of cells were suspended in this medium for 2 days.
The ability of LBS1560 to sporulate was determined by microscopic examination. Bacterial samples were stained with coomassie blue which facilitates the observation of spores. LBS1560 were observed on a number of occasions. Essentially none of the bacterial population were observed to exhibit spores. It was noted that while isolated spores were observed by microscopy in some instances, they were estimated to be significantly less than 0.1% of the overall microbial population. This was surprising and unexpected given that the parent strain and related strains of Clostridia are known to sporulate. The inability to sporulate provides advantages to the bacteria of the invention as herein before described.
Example 5: Ethanol production by LBS1560
This example describes continuous ethanol production by LBS1560 over an extended period. Figure 2 provides a summary of the concentrations of acetate, ethanol and biomass over a 2 week period.
Procedure
1. 1 L media of anaerobic LM33 fermentation media in a 1 Litre CSTR was inoculated with an actively growing Clostridium autoethanogenum (LBS1560) culture (DSMZ 19630) at a level of 5% (v/v). A continuous flow of 70%CO and 15 %CO21% H2 14% N2 gas was introduced at the bottom of the fermenter vessel through a diffusing sparger at a volumetric flow rate of 19ml/minutes. The initial pH of the fermenter was set to 5.5 and the agitation speed was adjusted to 400rpm.
2. For the majority of the experiment, the acetic acid concentration of the culture was maintained below 4 g/L by a cell recycle and media exchange system. The cells were passed through a cross flow membrane Viva 200, the filtrate was collected and the cells were returned to the reactor vessel. The filtrate was replaced with fresh media to ensure the medium volume inside the reactor remained constant. 3. The culture was operated continuously for at least 14 days. The cell recycle system removed 1-1.5L of liquid nutrient media every 1-2 days without removing bacteria from the bioreactor. The removed media was replaced with fresh media, to maintain constant volume. 4. The pH of the fermenter was increased from 5.6 to 6.0 over the first four days of the experiment.
Results
The rapid growth phase of acetogenic bacteria (such as C. autoethanogenum) is typically associated with high acetate production in a controlled fermentation environment. In this experiment, using the novel strain LBS1560, during the growth phase (day 0-3) the culture produced an average of 0.3g/L/day acetate and 0.16g/L/day ethanol. Following the growth phase (day 3-13) the culture produced an average of 1.03 g/L/day acetate and an average of 1.4 g/L/day ethanol. Over the alcohol production period total ethanol produced was 14g/L The results show a lower than expected level of acetate production and significantly higher ethanol production.
The specific methods and compositions described herein are representative of preferred embodiments and are exemplary and not intended as limitations on the scope of the invention. Other objects, aspects and embodiments will occur to those skilled in the art upon consideration of this specification, and are encompassed within the scope and spirit of the invention. It will be readily apparent to one skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention. The invention illustratively described herein suitably may be practised in the absence of any element or elements, or limitation or limitations, which is not specifically disclosed herein as essential. Thus, for example, in each instance herein, in embodiments or examples of the present invention, the terms "comprising", "including", "containing" etc are to be read expansively and without limitation. Furthermore, titles, headings, or the like are provided to enhance the reader's comprehension of this document, and should not be read as limiting the scope of the present invention. The entire disclosures of all applications, patents and publications, cited above and below, if any, are hereby incorporated by reference. However, the reference to any applications, patents and publications in this specification is not, and should not be taken as, an acknowledgment or any form of suggestion that they constitute valid prior art or form part of the common general knowledge in any country in the world.

Claims

WHAT WE CLAIM IS:
1. A biologically pure isolate of a bacterium capable of producing products including ethanol and optionally acetate, by anaerobic fermentation of a substrate comprising CO, wherein the products are produced at an ethanol to acetate ratio of at least 1.0.
2. A biologically pure isolate according to claim 1, wherein the ratio is at least 1.2.
3. A biologically pure isolate according to claim 1 or 2, wherein the productivity of the bacterium is at least about 1.2g of ethanol/L of fermentation broth/day.
4. A biologically pure isolate according to claim 3 wherein the productivity of the bacterium is at least about 2.Og of ethanol/L of fermentation broth/day.
5. A biologically pure isolate of a bacterium capable of producing products including alcohol and optionally acetate, by anaerobic fermentation of a gaseous substrate comprising CO, wherein the productivity of the bacterium is at least about 1.2g of ethanol/L of fermentation broth/day.
6. A biologically pure isolate according to claim 5 wherein the productivity of the bacterium is at least about 2.Og of ethanol/L of fermentation broth/day.
7. A biologically pure isolate of a bacterium according to claim 5 or claim 6 wherein ethanol is produced at an ethanol to acetate ratio of at least about 1.0.
8. A biologically pure isolate of a bacterium as claimed in any one of claims 1 to 7 wherein the bacterium is capable of producing ethanol and acetate by anaerobic fermentation in an aqueous culture medium supplied with a CO-containing substrate comprising:
(a) greater than about 65% CO by volume (b) less than about 20% H2 by volume, or
(c) greater than about 65% CO and less than about 20% H2 by volume.,
9. An acetogenic bacterium having one or more of the following defining characteristics: an ability to grow in minimal media in the presence or absence of yeast extract; an ability to grow more rapidly, to produce a higher ratio of ethanol to acetate, and/or to produce a higher concentration of ethanol, in a media in which yeast extract is not present compared to a media in which yeast extract is present; little to no ability to sporulate; Gram positive; rod shaped; Non-motile.
10. A bacterium as claimed in claim 9 wherein the bacterium is capable of producing ethanol by anaerobic fermentation in an aqueous culture medium supplied with a CO-containing substrate comprising: greater than about 65% CO by volume; less than about 20% H2 by volume; or, greater than about 65% CO and less than about 20% H2 by volume; wherein the productivity of the bacterium is at least about 1.2g of ethanol/L of fermentation broth/day and/or the bacterium is capable of producing ethanol at an ethanol to acetate ratio of at least about 1.0.
11. A biologically pure isolate according to any one of claims 1 to 10, wherein the bacterium is derived from Clostridium autoethanogenum.
12. A bacterium according to any one of claims 1 to 11, wherein the bacterium has the defining characteristics of Clostridium autoethanogenum strain deposited at DSMZ under the accession number DSM 19630.
13. A bacterium as claimed in claim 12 wherein the bacterium is Clostridium autoethanogenum strain deposited at DSMZ under the accession number DSM 19630.
14. A method for the production of one or more alcohols comprising fermenting a substrate containing CO using one or more of the bacteria as claimed in any one of claims 1 to 13.
15. A method as claimed in claim 13 wherein the method comprises the steps of:
(a) providing a substrate containing CO to a bioreactor containing a culture of bacterium according to any one of claims 1-12; and
(b) anaerobically fermenting the culture in the bioreactor to produce one or more alcohols.
16. A method according to claim 14 or 15 wherein the one or more alcohols includes ethanol and ethanol production productivity is at least about 1.2g of ethanol/L of fermentation broth/day and/or the ethanol is produced at an ethanol to acetate ratio of at least about 1.0.
17. A method according to any one of claims 14 to 16 wherein the substrate containing CO is a gaseous substrate containing CO.
18. A method according to claim 17 wherein the gaseous substrate containing CO is a gas obtained as a by-product of an industrial process.
19. A method as claimed in claim 18 wherein the industrial process is selected from the group consisting of ferrous metal products manufacturing, non-ferrous products manufacturing, petroleum refining processes, gasification of biomass, gasification of coal, electric power production, carbon black production, ammonia production, methanol production and coke manufacturing.
20. A method as claimed in claim 19 wherein the gaseous substrate comprises a gas obtained from a steel mill.
21. A method as claimed in claim 17 wherein the gaseous substrate comprises automobile exhaust fumes.
22. A method as claimed in any one of claims 14 to 21 wherein the substrate comprises greater than about 65% CO by volume, less than about 20% H2 by volume, or greater than about 65% CO and less than about 20% H2 by volume.
23. A method as claimed in claim 22 wherein the substrate comprises at least about 70% CO by volume, at least about 75% CO by volume, at least about 80% CO by volume, at least about 85% CO by volume, at least about 90% CO by volume or at least about 95% CO by volume.
24. A method as claimed in claim 22 or claim 23 wherein the substrate comprises less than about 20% H2 by volume, less than about 15% H2 by volume, less than about 10% H2 by volume, less than about 5% H2 by volume, less than about 4% H2 by volume, less than about 3% H2 by volume, less than about 2% H2 by volume, less than about 1% H2 by volume, or substantially no H2.
25. A method as claimed in any one of claims 22 to 24 wherein the substrate comprises less than or equal to about 20% CO2 by volume, less than or equal to about 15% CO2 by volume, less than or equal to about 10% CO2 by volume, or less than or equal to about 5% CO2 by volume.
26. A method as claimed in any one claims 22 to 25 wherein the substrate comprises at least about 85% CO by volume and at most about 15% CO2 by volume, at least about 90% CO and at most about 10% CO2, or about 95% CO by volume and about 5% CO2 by volume.
27. A method for reducing the total atmospheric carbon emissions from an industrial process, the method comprising:
(a) capturing CO-containing gas produced as a result of the industrial process, before the gas is released into the atmosphere;
(b) the anaerobic fermentation of the CO-containing gas to produce one or more alcohols by a culture containing one or more bacterium according to any one of claims 1 to 13.
28. A method of selection of one or more micro-organisms which produce one or more acids, the method comprising:
Culturing the micro-organisms in a nutrient media in a bioreactor; Adding fresh media at a pH higher than the nutrient media, such that the nutrient media is maintained at a substantially constant pH; and
Removing at least a portion of the nutrient media and micro-organisms, such that the media in the bioreactor is maintained at a substantially constant volume.
29. A method according to claim 28 wherein the method is for the selection of fast growing micro-organisms.
30. A method according to claim 28 or claim 29 wherein the one or more acids includes acetate.
31. A biologically pure isolate of a bacterium produced by the method of any one of claims 28 to 30.
32. A biologically pure isolate according to claim 31, wherein the isolate has little or no ability to sporulate.
PCT/NZ2008/000305 2007-11-13 2008-11-13 Novel bacteria and methods of use thereof WO2009064200A2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CA2703622A CA2703622C (en) 2007-11-13 2008-11-13 Clostridium autoethanogenum strain and methods of use thereof to produce ethanol and acetate
NZ584652A NZ584652A (en) 2007-11-13 2008-11-13 Novel bacteria capable of producing ethanol by anaerobic fermentation of a substrate comprising co
EA201070608A EA022710B1 (en) 2007-11-13 2008-11-13 Bacterium clostridium autoethanogenum strain capable of producing ethanol and acetate by anaerobic fermentation of a substrate comprising co
US12/742,149 US8222013B2 (en) 2007-11-13 2008-11-13 Bacteria and methods of use thereof
CN2008801244824A CN101918538B (en) 2007-11-13 2008-11-13 Novel bacteria and methods of use thereof
KR1020107013119A KR101375029B1 (en) 2007-11-13 2008-11-13 Novel bacteria and methods of use thereof
BRPI0820556A BRPI0820556B1 (en) 2007-11-13 2008-11-13 bacteria and methods for their use
JP2010533986A JP5600296B2 (en) 2007-11-13 2008-11-13 Novel bacteria and use thereof
AU2008321615A AU2008321615B2 (en) 2007-11-13 2008-11-13 Novel bacteria and methods of use thereof
EP08849635.1A EP2217696B1 (en) 2007-11-13 2008-11-13 Novel bacteria and methods of use thereof
HK10111856.8A HK1145406A1 (en) 2007-11-13 2010-12-17 Novel bacteria and methods of use thereof
US13/537,798 US8852918B2 (en) 2007-11-13 2012-06-29 Bacteria and methods of use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US98775507P 2007-11-13 2007-11-13
US60/987,755 2007-11-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/742,149 A-371-Of-International US8222013B2 (en) 2007-11-13 2008-11-13 Bacteria and methods of use thereof
US13/537,798 Continuation-In-Part US8852918B2 (en) 2007-11-13 2012-06-29 Bacteria and methods of use thereof

Publications (2)

Publication Number Publication Date
WO2009064200A2 true WO2009064200A2 (en) 2009-05-22
WO2009064200A3 WO2009064200A3 (en) 2009-08-06

Family

ID=40639348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NZ2008/000305 WO2009064200A2 (en) 2007-11-13 2008-11-13 Novel bacteria and methods of use thereof

Country Status (11)

Country Link
US (1) US8222013B2 (en)
EP (1) EP2217696B1 (en)
JP (1) JP5600296B2 (en)
KR (1) KR101375029B1 (en)
CN (2) CN102876609A (en)
BR (1) BRPI0820556B1 (en)
CA (1) CA2703622C (en)
EA (1) EA022710B1 (en)
HK (1) HK1145406A1 (en)
NZ (1) NZ584652A (en)
WO (1) WO2009064200A2 (en)

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151342A1 (en) 2008-06-09 2009-12-17 Lanzatech New Zealand Limited Production of butanediol by anaerobic microbial fermentation
WO2010064932A1 (en) 2008-12-01 2010-06-10 Lanzatech New Zealand Limited Optimised fermentation media
WO2010098679A1 (en) 2009-02-26 2010-09-02 Lanzatech New Zealand Limited Methods of sustaining culture viability
EP2250274A1 (en) * 2008-03-12 2010-11-17 Lanzatech New Zealand Limited Microbial alcohol production process
WO2011087380A1 (en) 2010-01-14 2011-07-21 Lanzatech New Zealand Limited Alcohol production process
WO2011088364A2 (en) 2010-01-15 2011-07-21 Massachuseits Institute Of Technology Bioprocess and microbe engineering for total carbon utilization in biofuelproduction
WO2011129876A2 (en) 2010-04-13 2011-10-20 Ineos Usa Llc Methods for gasification of carbonaceous materials
WO2011129878A2 (en) 2010-04-13 2011-10-20 Ineos Usa Llc Methods for gasification of carbonaceous materials
WO2011129877A2 (en) 2010-04-13 2011-10-20 Ineos Usa Llc Methods for gasification of carbonaceous materials
WO2012015317A1 (en) 2010-07-28 2012-02-02 Lanzatech New Zealand Limited Novel bacteria and methods of use thereof
FR2965279A1 (en) * 2010-09-29 2012-03-30 Total Sa PROCESS FOR PRODUCING OXYGEN COMPOUND
WO2012054798A2 (en) 2010-10-22 2012-04-26 Lanzatech New Zealand Limited Methods and systems for the production of hydrocarbon products
WO2012054806A2 (en) * 2010-10-22 2012-04-26 Lanzatech New Zealand Limited Methods and systems for the production of alcohols and/or acids
WO2012058508A2 (en) 2010-10-29 2012-05-03 Lanzatech New Zealand Limited Methods and systems for the production of hydrocarbon products
WO2012074543A1 (en) 2010-12-03 2012-06-07 Ineos Bio Sa Fermentation process involving adjusting specific co-uptake
WO2012074544A1 (en) 2010-12-03 2012-06-07 Ineos Bio Sa Method of operation of fermentation of carbon monoxide and hydrogen containing gaseous substrate
WO2012074545A1 (en) 2010-12-03 2012-06-07 Ineos Bio Sa Method of operation of fermentation of gaseous substrate comprising hydrogen
WO2012115527A2 (en) 2011-02-25 2012-08-30 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
CN102791869A (en) * 2010-03-10 2012-11-21 新西兰郎泽科技公司 Acid production by fermentation
US20120301934A1 (en) * 2011-05-23 2012-11-29 Lanzatech New Zealand Limited Process for the Production of Esters
US20130149693A1 (en) * 2011-12-12 2013-06-13 Ineos Bio Sa Management of ethanol concentration during syngas fermentation
US20130157322A1 (en) * 2010-08-26 2013-06-20 Lanzatech New Zealand Limited Process for producing ethanol and ethylene via fermentation
JP2013533744A (en) * 2010-06-30 2013-08-29 コスカタ、インク. Method for injecting a feed gas stream into a vertically extending liquid column
WO2013147621A1 (en) 2012-03-30 2013-10-03 Lanzatech New Zealand Limited A fermentation method
WO2013152236A1 (en) 2012-04-05 2013-10-10 Lanzatech New Zealand Limited Enzyme-altered metabolite activity
US8592191B2 (en) 2011-06-30 2013-11-26 Ineos Bio Sa Process for fermentation of syngas
WO2013176948A2 (en) * 2012-05-22 2013-11-28 Ineos Bio Sa Method of operation of a syngas fermentation process
WO2013177466A1 (en) 2012-05-23 2013-11-28 Lanzatech New Zealand Limited A fermentation and simulated moving bed process
WO2013176938A1 (en) * 2012-05-22 2013-11-28 Ineos Bio Sa A process for fermenting co-containing gaseous substrates
WO2013180584A1 (en) 2012-06-01 2013-12-05 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
WO2013180581A1 (en) 2012-05-30 2013-12-05 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
WO2013191567A1 (en) 2012-06-21 2013-12-27 Lanzatech New Zealand Limited Recombinant microorganisms make biodiesel
US8663949B2 (en) 2010-12-20 2014-03-04 Lanzatech New Zealand Limited Fermentation method
WO2014036152A1 (en) 2012-08-28 2014-03-06 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
WO2014075013A1 (en) 2012-11-12 2014-05-15 Lanzatech New Zealand Limited Biomass liquefaction through gas fermentation
WO2014088427A1 (en) 2012-12-05 2014-06-12 Lanzatech New Zealand Limited A fermentation process
WO2014120852A2 (en) 2013-01-30 2014-08-07 Lanzatech New Zealand Limited Recombinant microorganisms comprising nadph dependent enzymes and methods of production thereof
WO2014151158A1 (en) 2013-03-15 2014-09-25 Lanzatech New Zealand Limitied A system and method for controlling metabolite production in a microbial fermentation
WO2014197746A1 (en) 2013-06-05 2014-12-11 Lanzatech New Zealand Limited Recombinant microorganisms exhibiting increased flux through a fermentation pathway
WO2015002552A1 (en) 2013-07-04 2015-01-08 Lanzatech New Zealand Limited Multiple reactor system and process for continuous gas fermentation
WO2015016722A1 (en) 2013-07-29 2015-02-05 Lanzatech New Zealand Limited Improved fermentation of gaseous substrates
CN104395455A (en) * 2012-01-31 2015-03-04 新西兰郎泽科技公司 Recombinant microorganisms and methods of use thereof
WO2015042550A1 (en) 2013-09-22 2015-03-26 Lanzatech New Zealand Limited A fermentation process
WO2015116874A1 (en) 2014-01-30 2015-08-06 Lanzatech New Zealand Limited Recombinant microorganisms and methods of use thereof
WO2015116734A1 (en) 2014-01-28 2015-08-06 Lanzatech New Zealand Limited Method of producing a recombinant microorganism
WO2016065217A1 (en) 2014-10-22 2016-04-28 Lanzatech New Zealand Limited Multi-stage bioreactor processes
WO2016065085A1 (en) 2014-10-22 2016-04-28 Lanzatech New Zealand Limited Gas testing unit and method
US9327251B2 (en) 2013-01-29 2016-05-03 Lanzatech New Zealand Limited System and method for improved gas dissolution
AU2013263735B2 (en) * 2007-10-28 2016-05-12 Lanzatech Nz, Inc. Improved carbon capture in fermentation
US9359611B2 (en) 2010-10-22 2016-06-07 Lanzatech New Zealand Limited Recombinant microorganism and methods of production thereof
US9365873B2 (en) 2014-08-11 2016-06-14 Lanzatech New Zealand Limited Genetically engineered bacterium with altered carbon monoxide dehydrogenase (CODH) activity
WO2016094334A1 (en) 2014-12-08 2016-06-16 Lanzatech New Zealand Limited Recombinant microorganisms exhibiting increased flux through a fermentation pathway
US9410130B2 (en) 2011-02-25 2016-08-09 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
WO2016138050A1 (en) 2015-02-23 2016-09-01 Lanzatech New Zealand Limited Recombinant acetogenic bacterium for the conversion of methane to products
WO2017096324A1 (en) 2015-12-03 2017-06-08 Lanzatech New Zealand Limited Arginine supplementation to improve efficiency in gas fermenting acetogens
WO2017117309A1 (en) 2015-12-28 2017-07-06 Lanzatech New Zealand Limited Microorganism with modified hydrogenase activity
WO2017136478A1 (en) 2016-02-01 2017-08-10 Lanzatech New Zealand Limited Integrated fermentation and electrolysis process
US9738875B2 (en) 2015-10-13 2017-08-22 Lanzatech New Zealand Limited Genetically engineered bacterium comprising energy-generating fermentation pathway
WO2017147555A1 (en) 2016-02-26 2017-08-31 Lanzatech New Zealand Limited Crispr/cas systems for c-1 fixing bacteria
WO2017200884A1 (en) 2016-05-14 2017-11-23 Lanzatech, Inc. Microorganism with modified aldehyde:ferredoxin oxidoreductase activity and related methods
US9890384B2 (en) 2012-06-08 2018-02-13 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
US10100336B2 (en) 2012-05-22 2018-10-16 Ineos Bio S.A. Syngas fermentation process and medium
WO2019006301A1 (en) 2017-06-30 2019-01-03 Massachusetts Institute Of Technology Controlling metabolism by substrate cofeeding
FR3075819A1 (en) * 2017-12-22 2019-06-28 Compagnie Generale Des Etablissements Michelin NEW ACETOBACTERIUM BACTERIA STRAINS
US10415043B2 (en) 2012-05-23 2019-09-17 Lanzatech New Zealand Limited Vitamin prototrophy as a selectable marker
WO2020188033A1 (en) 2019-03-20 2020-09-24 Global Bioenergies Improved means and methods for producing isobutene from acetyl-coa
US10815502B2 (en) 2013-10-17 2020-10-27 Lanzatech New Zealand Limited Carbon capture in fermentation
US11680216B2 (en) 2019-01-29 2023-06-20 Lanzatech, Inc. Production of bio-based liquefied petroleum gas
US11760989B2 (en) 2020-06-06 2023-09-19 Lanzatech, Inc. Microorganism with knock-in at acetolactate decarboxylase gene locus
US11788092B2 (en) 2021-02-08 2023-10-17 Lanzatech, Inc. Recombinant microorganisms and uses therefor
US11898134B2 (en) 2021-11-03 2024-02-13 Lanzatech, Inc. Reactor having dynamic sparger

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8852918B2 (en) * 2007-11-13 2014-10-07 Lanzatech New Zealand Limited Bacteria and methods of use thereof
DE102008062811A1 (en) * 2008-12-23 2010-11-04 Bekon Energy Technologies Gmbh & Co. Kg Gas treatment device and gas treatment process
US9701987B2 (en) * 2014-05-21 2017-07-11 Lanzatech New Zealand Limited Fermentation process for the production and control of pyruvate-derived products
MY196897A (en) 2017-12-19 2023-05-09 Lanzatech Inc Microorganisms and methods for the biological production of ethylene glycol
TW202307202A (en) 2021-08-06 2023-02-16 美商朗澤科技有限公司 Microorganisms and methods for improved biological production of ethylene glycol

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173429A (en) * 1990-11-09 1992-12-22 The Board Of Trustees Of The University Of Arkansas Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism
US5807722A (en) 1992-10-30 1998-09-15 Bioengineering Resources, Inc. Biological production of acetic acid from waste gases with Clostridium ljungdahlii
US5821111A (en) 1994-03-31 1998-10-13 Bioengineering Resources, Inc. Bioconversion of waste biomass to useful products
US6136577A (en) * 1992-10-30 2000-10-24 Bioengineering Resources, Inc. Biological production of ethanol from waste gases with Clostridium ljungdahlii
US5593886A (en) 1992-10-30 1997-01-14 Gaddy; James L. Clostridium stain which produces acetic acid from waste gases
DE69638265D1 (en) 1996-07-01 2010-11-11 Emmaus Foundation Inc BIOLOGICAL PREPARATION OF ACETIC ACID FROM EXHAUST GASES
UA72220C2 (en) 1998-09-08 2005-02-15 Байоенджініерінг Рісорсиз, Інк. Water-immiscible mixture solvent/cosolvent for extracting acetic acid, a method for producing acetic acid (variants), a method for anaerobic microbial fermentation for obtaining acetic acid (variants), modified solvent and a method for obtaining thereof
MXPA01011301A (en) * 1999-05-07 2003-07-14 Bioengineering Resources Inc Clostridium.
ES2267794T3 (en) 2000-07-25 2007-03-16 Emmaus Foundation, Inc. METHOD TO INCREASE THE PRODUCTION OF ETHANOL FROM MICROBIOAN FERMENTATION.
JP2003339371A (en) 2002-05-29 2003-12-02 Cosmo Oil Co Ltd New ethanol-producing bacteria and method for producing ethanol
NZ546496A (en) * 2006-04-07 2008-09-26 Lanzatech New Zealand Ltd Gas treatment process
US20070275447A1 (en) * 2006-05-25 2007-11-29 Lewis Randy S Indirect or direct fermentation of biomass to fuel alcohol
US7704723B2 (en) * 2006-08-31 2010-04-27 The Board Of Regents For Oklahoma State University Isolation and characterization of novel clostridial species
NZ553984A (en) 2007-03-19 2009-07-31 Lanzatech New Zealand Ltd Alcohol production process
US20080305540A1 (en) 2007-06-08 2008-12-11 Robert Hickey Membrane supported bioreactor for conversion of syngas components to liquid products
US20090035848A1 (en) 2007-08-03 2009-02-05 Robert Hickey Moving bed biofilm reactor (mbbr) system for conversion of syngas components to liquid products
CN102016052B (en) * 2007-08-15 2015-04-29 朗泽科技新西兰有限公司 Processes of producing alcohols

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2217696A4

Cited By (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013263735B2 (en) * 2007-10-28 2016-05-12 Lanzatech Nz, Inc. Improved carbon capture in fermentation
EP2250274A1 (en) * 2008-03-12 2010-11-17 Lanzatech New Zealand Limited Microbial alcohol production process
EP2250274A4 (en) * 2008-03-12 2012-08-22 Lanzatech New Zealand Ltd Microbial alcohol production process
WO2009151342A1 (en) 2008-06-09 2009-12-17 Lanzatech New Zealand Limited Production of butanediol by anaerobic microbial fermentation
US8354269B2 (en) 2008-12-01 2013-01-15 Lanzatech New Zealand Limited Optimised media containing nickel for fermentation of carbonmonoxide
WO2010064932A1 (en) 2008-12-01 2010-06-10 Lanzatech New Zealand Limited Optimised fermentation media
WO2010098679A1 (en) 2009-02-26 2010-09-02 Lanzatech New Zealand Limited Methods of sustaining culture viability
EP3399019A1 (en) 2009-02-26 2018-11-07 LanzaTech New Zealand Limited Methods of sustaining culture viability
EP3070170A1 (en) 2010-01-14 2016-09-21 Lanzatech New Zealand Limited Fermentation of co2 by using an electrical potential
WO2011087380A1 (en) 2010-01-14 2011-07-21 Lanzatech New Zealand Limited Alcohol production process
WO2011088364A2 (en) 2010-01-15 2011-07-21 Massachuseits Institute Of Technology Bioprocess and microbe engineering for total carbon utilization in biofuelproduction
US11891646B2 (en) 2010-01-15 2024-02-06 Massachusetts Institute Of Technology Bioprocess and microbe engineering for total carbon utilization in biofuel production
CN102791869A (en) * 2010-03-10 2012-11-21 新西兰郎泽科技公司 Acid production by fermentation
CN102791869B (en) * 2010-03-10 2015-08-19 朗泽科技新西兰有限公司 Produced by the acid of fermentation
WO2011129877A2 (en) 2010-04-13 2011-10-20 Ineos Usa Llc Methods for gasification of carbonaceous materials
US8580152B2 (en) 2010-04-13 2013-11-12 Ineos Usa Llc Methods for gasification of carbonaceous materials
WO2011129876A2 (en) 2010-04-13 2011-10-20 Ineos Usa Llc Methods for gasification of carbonaceous materials
US8999021B2 (en) 2010-04-13 2015-04-07 Ineos Usa Llc Methods for gasification of carbonaceous materials
US8585789B2 (en) 2010-04-13 2013-11-19 Ineos Usa Llc Methods for gasification of carbonaceous materials
WO2011129878A2 (en) 2010-04-13 2011-10-20 Ineos Usa Llc Methods for gasification of carbonaceous materials
JP2016136948A (en) * 2010-06-30 2016-08-04 コスカタ、インク. Method for injecting feed gas stream into vertically extended column of liquid
JP2013533744A (en) * 2010-06-30 2013-08-29 コスカタ、インク. Method for injecting a feed gas stream into a vertically extending liquid column
CN103415612B (en) * 2010-07-28 2016-01-20 朗泽科技新西兰有限公司 New bacteria and using method thereof
WO2012015317A1 (en) 2010-07-28 2012-02-02 Lanzatech New Zealand Limited Novel bacteria and methods of use thereof
US10494600B2 (en) 2010-07-28 2019-12-03 Lanzatech New Zealand Limited Bacteria and methods of use thereof
CN103415612A (en) * 2010-07-28 2013-11-27 新西兰郎泽科技公司 Novel bacteria and methods of use thereof
KR101375038B1 (en) * 2010-07-28 2014-03-14 란자테크 뉴질랜드 리미티드 Novel bacteria and methods of use thereof
AU2011283282B2 (en) * 2010-07-28 2013-10-03 Lanzatech Nz, Inc. Novel bacteria and methods of use thereof
AU2011283282C1 (en) * 2010-07-28 2014-03-13 Lanzatech Nz, Inc. Novel bacteria and methods of use thereof
US20130157322A1 (en) * 2010-08-26 2013-06-20 Lanzatech New Zealand Limited Process for producing ethanol and ethylene via fermentation
EP2609206A1 (en) * 2010-08-26 2013-07-03 Lanzatech New Zealand Limited Process for producing ethanol and ethylene via fermentation
EP2609206A4 (en) * 2010-08-26 2014-07-09 Lanzatech New Zealand Ltd Process for producing ethanol and ethylene via fermentation
WO2012042155A3 (en) * 2010-09-29 2012-08-30 Total Sa Process for producing an oxygen-containing compound
FR2965279A1 (en) * 2010-09-29 2012-03-30 Total Sa PROCESS FOR PRODUCING OXYGEN COMPOUND
WO2012042155A2 (en) 2010-09-29 2012-04-05 Total Sa Process for producing an oxygen-containing compound
WO2012054806A2 (en) * 2010-10-22 2012-04-26 Lanzatech New Zealand Limited Methods and systems for the production of alcohols and/or acids
WO2012054806A3 (en) * 2010-10-22 2012-07-12 Lanzatech New Zealand Limited Methods and systems for the production of alcohols and/or acids
AU2011316891B2 (en) * 2010-10-22 2013-09-19 Lanzatech Nz, Inc. Methods and systems for the production of hydrocarbon products
EA025587B1 (en) * 2010-10-22 2017-01-30 Ланцатек Нью Зилэнд Лимитед Method and system for the production of hydrocarbon products
CN103270163A (en) * 2010-10-22 2013-08-28 新西兰郎泽科技公司 Methods and systems for the production of hydrocarbon products
CN107083404A (en) * 2010-10-22 2017-08-22 朗泽科技新西兰有限公司 Produce the method and system of hydrocarbon products
EA024224B1 (en) * 2010-10-22 2016-08-31 Ланцатек Нью Зилэнд Лимитед Methods and system for the production of alcohols and/or acids
US9359611B2 (en) 2010-10-22 2016-06-07 Lanzatech New Zealand Limited Recombinant microorganism and methods of production thereof
WO2012054798A3 (en) * 2010-10-22 2012-08-16 Lanzatech New Zealand Limited Methods and systems for the production of hydrocarbon products
US8809015B2 (en) 2010-10-22 2014-08-19 Lanzatech New Zealand Limited Methods and systems for the production of hydrocarbon products
WO2012054798A2 (en) 2010-10-22 2012-04-26 Lanzatech New Zealand Limited Methods and systems for the production of hydrocarbon products
WO2012058508A2 (en) 2010-10-29 2012-05-03 Lanzatech New Zealand Limited Methods and systems for the production of hydrocarbon products
WO2012058508A3 (en) * 2010-10-29 2012-07-05 Lanzatech New Zealand Limited Methods and systems for the production of hydrocarbon products
EA024474B1 (en) * 2010-10-29 2016-09-30 Ланцатек Нью Зилэнд Лимитед Method for the production of hydrocarbon products
WO2012074545A1 (en) 2010-12-03 2012-06-07 Ineos Bio Sa Method of operation of fermentation of gaseous substrate comprising hydrogen
WO2012074544A1 (en) 2010-12-03 2012-06-07 Ineos Bio Sa Method of operation of fermentation of carbon monoxide and hydrogen containing gaseous substrate
WO2012074543A1 (en) 2010-12-03 2012-06-07 Ineos Bio Sa Fermentation process involving adjusting specific co-uptake
US8663949B2 (en) 2010-12-20 2014-03-04 Lanzatech New Zealand Limited Fermentation method
EP3401405A1 (en) 2011-02-25 2018-11-14 LanzaTech New Zealand Limited Recombinant microorganisms and uses therefor
US9410130B2 (en) 2011-02-25 2016-08-09 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
WO2012115527A2 (en) 2011-02-25 2012-08-30 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
US20120301934A1 (en) * 2011-05-23 2012-11-29 Lanzatech New Zealand Limited Process for the Production of Esters
US8658402B2 (en) * 2011-05-23 2014-02-25 Lanzatech New Zealand Limited Process for the production of esters
US8592191B2 (en) 2011-06-30 2013-11-26 Ineos Bio Sa Process for fermentation of syngas
US9976158B2 (en) 2011-06-30 2018-05-22 Peter Simpson Bell Method and apparatus for syngas fermentation with high CO mass transfer coefficient
US20130149693A1 (en) * 2011-12-12 2013-06-13 Ineos Bio Sa Management of ethanol concentration during syngas fermentation
CN104395455B (en) * 2012-01-31 2020-05-19 朗泽科技新西兰有限公司 Recombinant microorganisms and methods of use thereof
CN104395455A (en) * 2012-01-31 2015-03-04 新西兰郎泽科技公司 Recombinant microorganisms and methods of use thereof
US8735115B2 (en) 2012-03-30 2014-05-27 Lanzatech New Zealand Limited Method for controlling the sulphur concentration in a fermentation method
WO2013147621A1 (en) 2012-03-30 2013-10-03 Lanzatech New Zealand Limited A fermentation method
WO2013152236A1 (en) 2012-04-05 2013-10-10 Lanzatech New Zealand Limited Enzyme-altered metabolite activity
CN108841874B (en) * 2012-05-22 2022-03-29 巨鹏生物香港公司 Method for operating a synthesis gas fermentation process
WO2013176948A3 (en) * 2012-05-22 2014-05-01 Ineos Bio Sa Method of operation of a syngas fermentation process
US10100336B2 (en) 2012-05-22 2018-10-16 Ineos Bio S.A. Syngas fermentation process and medium
WO2013176938A1 (en) * 2012-05-22 2013-11-28 Ineos Bio Sa A process for fermenting co-containing gaseous substrates
US9193947B2 (en) 2012-05-22 2015-11-24 Ineos Bio Sa Process for culturing microorganisms on a selected substrate
EP3530742A1 (en) * 2012-05-22 2019-08-28 Jupeng Bio (HK) Limited A process for culturing microorganisms on a selected substrate
WO2013176948A2 (en) * 2012-05-22 2013-11-28 Ineos Bio Sa Method of operation of a syngas fermentation process
CN108841874A (en) * 2012-05-22 2018-11-20 伊内奥斯生物股份公司 The operating method of synthesis gas fermentation process
US10100338B2 (en) 2012-05-22 2018-10-16 Ineos Bio S.A. Method of operation of a syngas fermentation process
US10131872B2 (en) 2012-05-22 2018-11-20 Ineos Bio S.A. Process for fermenting co-containing gaseous substrates
WO2013176931A1 (en) * 2012-05-22 2013-11-28 Ineos Bio Sa A process for culturing microorganisms on a selected substrate
US8980596B2 (en) 2012-05-23 2015-03-17 Lanzatech New Zealand Limited Fermentation and simulated moving bed process
US10415043B2 (en) 2012-05-23 2019-09-17 Lanzatech New Zealand Limited Vitamin prototrophy as a selectable marker
WO2013177466A1 (en) 2012-05-23 2013-11-28 Lanzatech New Zealand Limited A fermentation and simulated moving bed process
US9994878B2 (en) 2012-05-30 2018-06-12 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
WO2013180581A1 (en) 2012-05-30 2013-12-05 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
US10913958B2 (en) 2012-06-01 2021-02-09 Lanzatech New Zealand Limited Microbial fermentation for the production of terpenes
WO2013180584A1 (en) 2012-06-01 2013-12-05 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
EP3346008A1 (en) 2012-06-01 2018-07-11 LanzaTech New Zealand Limited Recombinant microorganisms and uses therefor
EP3795680A1 (en) 2012-06-01 2021-03-24 LanzaTech New Zealand Limited Recombinant microorganisms and uses therefor
US9890384B2 (en) 2012-06-08 2018-02-13 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
WO2013191567A1 (en) 2012-06-21 2013-12-27 Lanzatech New Zealand Limited Recombinant microorganisms make biodiesel
US9347076B2 (en) 2012-06-21 2016-05-24 Lanzatech New Zealand Limited Recombinant microorganisms that make biodiesel
WO2014036152A1 (en) 2012-08-28 2014-03-06 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor
WO2014075013A1 (en) 2012-11-12 2014-05-15 Lanzatech New Zealand Limited Biomass liquefaction through gas fermentation
US10724059B2 (en) 2012-12-05 2020-07-28 Lanzatech New Zealand Limited Fermentation process
WO2014088427A1 (en) 2012-12-05 2014-06-12 Lanzatech New Zealand Limited A fermentation process
US9327251B2 (en) 2013-01-29 2016-05-03 Lanzatech New Zealand Limited System and method for improved gas dissolution
WO2014120852A2 (en) 2013-01-30 2014-08-07 Lanzatech New Zealand Limited Recombinant microorganisms comprising nadph dependent enzymes and methods of production thereof
WO2014151158A1 (en) 2013-03-15 2014-09-25 Lanzatech New Zealand Limitied A system and method for controlling metabolite production in a microbial fermentation
WO2014197746A1 (en) 2013-06-05 2014-12-11 Lanzatech New Zealand Limited Recombinant microorganisms exhibiting increased flux through a fermentation pathway
WO2015002552A1 (en) 2013-07-04 2015-01-08 Lanzatech New Zealand Limited Multiple reactor system and process for continuous gas fermentation
US9617509B2 (en) 2013-07-29 2017-04-11 Lanzatech New Zealand Limited Fermentation of gaseous substrates
WO2015016722A1 (en) 2013-07-29 2015-02-05 Lanzatech New Zealand Limited Improved fermentation of gaseous substrates
US9771603B2 (en) 2013-09-22 2017-09-26 Lanzatech New Zealand Limited Fermentation process
WO2015042550A1 (en) 2013-09-22 2015-03-26 Lanzatech New Zealand Limited A fermentation process
EP4166673A1 (en) 2013-09-22 2023-04-19 LanzaTech NZ, Inc. A fermentation process
US10815502B2 (en) 2013-10-17 2020-10-27 Lanzatech New Zealand Limited Carbon capture in fermentation
WO2015116734A1 (en) 2014-01-28 2015-08-06 Lanzatech New Zealand Limited Method of producing a recombinant microorganism
US9315830B2 (en) 2014-01-28 2016-04-19 Lanzatech New Zealand Limited Method of producing a recombinant microorganism
US11549103B2 (en) 2014-01-30 2023-01-10 Lanzatech Nz, Inc. Recombinant microorganisms and methods of use thereof
WO2015116874A1 (en) 2014-01-30 2015-08-06 Lanzatech New Zealand Limited Recombinant microorganisms and methods of use thereof
US9365873B2 (en) 2014-08-11 2016-06-14 Lanzatech New Zealand Limited Genetically engineered bacterium with altered carbon monoxide dehydrogenase (CODH) activity
EP4180806A1 (en) 2014-10-22 2023-05-17 LanzaTech NZ, Inc. Bioreactor and gas testing unit and method
US10113194B2 (en) 2014-10-22 2018-10-30 Lanzatech New Zealand Limited Gas testing unit and method
US9834792B2 (en) 2014-10-22 2017-12-05 Lanzatech New Zealand Limited Multi-stage bioreactor processes
WO2016065085A1 (en) 2014-10-22 2016-04-28 Lanzatech New Zealand Limited Gas testing unit and method
WO2016065217A1 (en) 2014-10-22 2016-04-28 Lanzatech New Zealand Limited Multi-stage bioreactor processes
EP4198118A1 (en) 2014-10-22 2023-06-21 LanzaTech NZ, Inc. Multi-stage bioreactor processes
US10590406B2 (en) 2014-12-08 2020-03-17 Lanzatech New Zealand Limited Recombinant microorganisms exhibiting increased flux through a fermentation pathway
WO2016094334A1 (en) 2014-12-08 2016-06-16 Lanzatech New Zealand Limited Recombinant microorganisms exhibiting increased flux through a fermentation pathway
WO2016138050A1 (en) 2015-02-23 2016-09-01 Lanzatech New Zealand Limited Recombinant acetogenic bacterium for the conversion of methane to products
US9957531B1 (en) 2015-10-13 2018-05-01 Lanzatech New Zealand Limited Genetically engineered bacterium for the production of 3-hydroxybutyrate
EP3901267A1 (en) 2015-10-13 2021-10-27 Lanzatech New Zealand Limited Genetically engineered bacterium comprising energy-generating fermentation pathway
US9738875B2 (en) 2015-10-13 2017-08-22 Lanzatech New Zealand Limited Genetically engineered bacterium comprising energy-generating fermentation pathway
EP3981869A1 (en) 2015-12-03 2022-04-13 LanzaTech NZ, Inc. Arginine as sole nitrogen source for c1-fixing microorganism
WO2017096324A1 (en) 2015-12-03 2017-06-08 Lanzatech New Zealand Limited Arginine supplementation to improve efficiency in gas fermenting acetogens
WO2017117309A1 (en) 2015-12-28 2017-07-06 Lanzatech New Zealand Limited Microorganism with modified hydrogenase activity
EP4234707A2 (en) 2016-02-01 2023-08-30 LanzaTech NZ, Inc. Integrated fermentation and electrolysis process
WO2017136478A1 (en) 2016-02-01 2017-08-10 Lanzatech New Zealand Limited Integrated fermentation and electrolysis process
EP4234708A2 (en) 2016-02-01 2023-08-30 LanzaTech NZ, Inc. Integrated fermentation and electrolysis process
WO2017147555A1 (en) 2016-02-26 2017-08-31 Lanzatech New Zealand Limited Crispr/cas systems for c-1 fixing bacteria
WO2017200884A1 (en) 2016-05-14 2017-11-23 Lanzatech, Inc. Microorganism with modified aldehyde:ferredoxin oxidoreductase activity and related methods
WO2019006301A1 (en) 2017-06-30 2019-01-03 Massachusetts Institute Of Technology Controlling metabolism by substrate cofeeding
FR3075819A1 (en) * 2017-12-22 2019-06-28 Compagnie Generale Des Etablissements Michelin NEW ACETOBACTERIUM BACTERIA STRAINS
US11680216B2 (en) 2019-01-29 2023-06-20 Lanzatech, Inc. Production of bio-based liquefied petroleum gas
WO2020188033A1 (en) 2019-03-20 2020-09-24 Global Bioenergies Improved means and methods for producing isobutene from acetyl-coa
US11760989B2 (en) 2020-06-06 2023-09-19 Lanzatech, Inc. Microorganism with knock-in at acetolactate decarboxylase gene locus
US11788092B2 (en) 2021-02-08 2023-10-17 Lanzatech, Inc. Recombinant microorganisms and uses therefor
US11898134B2 (en) 2021-11-03 2024-02-13 Lanzatech, Inc. Reactor having dynamic sparger

Also Published As

Publication number Publication date
EA201070608A1 (en) 2011-02-28
KR20100110300A (en) 2010-10-12
CN101918538B (en) 2013-01-30
JP2011502533A (en) 2011-01-27
CN101918538A (en) 2010-12-15
KR101375029B1 (en) 2014-03-14
EP2217696A2 (en) 2010-08-18
AU2008321615A1 (en) 2009-05-22
NZ584652A (en) 2012-11-30
CN102876609A (en) 2013-01-16
US8222013B2 (en) 2012-07-17
EP2217696A4 (en) 2011-09-14
BRPI0820556A2 (en) 2014-11-04
JP5600296B2 (en) 2014-10-01
WO2009064200A3 (en) 2009-08-06
BRPI0820556B1 (en) 2016-03-22
EP2217696B1 (en) 2015-09-16
CA2703622A1 (en) 2009-05-22
US20100311104A1 (en) 2010-12-09
CA2703622C (en) 2014-12-16
EA022710B1 (en) 2016-02-29
HK1145406A1 (en) 2011-04-15

Similar Documents

Publication Publication Date Title
EP2217696B1 (en) Novel bacteria and methods of use thereof
US10494600B2 (en) Bacteria and methods of use thereof
US7972824B2 (en) Microbial fermentation of gaseous substrates to produce alcohols
TWI509073B (en) Improved fermentation of waste gases
EP2401359B1 (en) Methods of sustaining culture viability
KR20110033193A (en) Production of butanediol by anaerobic microbial fermentation
CN104968793A (en) Method for production of n-butanol from syngas using syntrophic co-cultures of anaerobic microorganisms
EA023403B1 (en) Fermentation method
EP3146058B1 (en) Fermentation process for the production and control of pyruvate-derived products
US8852918B2 (en) Bacteria and methods of use thereof
AU2008321615B2 (en) Novel bacteria and methods of use thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880124482.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008321615

Country of ref document: AU

Ref document number: 584652

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2703622

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 3008/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2008321615

Country of ref document: AU

Date of ref document: 20081113

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010533986

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008849635

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201070608

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 20107013119

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08849635

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12742149

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0820556

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100513