WO2009059149A1 - System and method for pretreating biomass - Google Patents
System and method for pretreating biomass Download PDFInfo
- Publication number
- WO2009059149A1 WO2009059149A1 PCT/US2008/082011 US2008082011W WO2009059149A1 WO 2009059149 A1 WO2009059149 A1 WO 2009059149A1 US 2008082011 W US2008082011 W US 2008082011W WO 2009059149 A1 WO2009059149 A1 WO 2009059149A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- temperature
- biomass
- pretreatment reactor
- pretreatment
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L9/00—Treating solid fuels to improve their combustion
- C10L9/08—Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D11/00—Solvent extraction
- B01D11/02—Solvent extraction of solids
- B01D11/0215—Solid material in other stationary receptacles
- B01D11/0219—Fixed bed of solid material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D11/00—Solvent extraction
- B01D11/02—Solvent extraction of solids
- B01D11/028—Flow sheets
- B01D11/0284—Multistage extraction
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/40—Solid fuels essentially based on materials of non-mineral origin
- C10L5/44—Solid fuels essentially based on materials of non-mineral origin on vegetable substances
-
- C—CHEMISTRY; METALLURGY
- C13—SUGAR INDUSTRY
- C13B—PRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
- C13B10/00—Production of sugar juices
- C13B10/02—Expressing juice from sugar cane or similar material, e.g. sorghum saccharatum
-
- C—CHEMISTRY; METALLURGY
- C13—SUGAR INDUSTRY
- C13B—PRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
- C13B10/00—Production of sugar juices
- C13B10/02—Expressing juice from sugar cane or similar material, e.g. sorghum saccharatum
- C13B10/04—Expressing juice from sugar cane or similar material, e.g. sorghum saccharatum combined with imbibition
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/18—Treatment of sludge; Devices therefor by thermal conditioning
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Definitions
- This disclosure generally relates to biomass processing, and more particularly, to a system and method for pretreating biomass.
- biomass pretreatment process can be performed in a reactor at high temperatures and pressures in the presence of a liquid. Certain agents, such as acids, alkalis, and oxidizers are often used to enhance this process.
- Example pretreatment processes include, but are not limited to, those that are base catalyzed (ammonia, alkaline-peracetic acid, alkaline peroxide, alkaline-solvent, lime, lime under oxygen pressure, sodium hydroxide), non catalyzed (autohydrolysis, hot water, hot water -pH neutral, steam), acid catalyzed (concentrated or dilute acid using sulfuric acid, hydrochloric acid, peracetic acid, phosphoric acid, sulfur dioxide), solvent based (organosolv, other solvents), and chemical based (peroxide, wet oxidation).
- base catalyzed ammonia, alkaline-peracetic acid, alkaline peroxide, alkaline-solvent, lime, lime under oxygen pressure, sodium hydroxide
- non catalyzed autohydrolysis, hot water, hot water -pH neutral, steam
- acid catalyzed concentrated or dilute acid using sulfuric acid, hydrochloric acid, peracetic acid, phosphoric acid
- a method for heat treatment of a biomass includes allowing biomass in a pretreatment reactor to undergo a pre-treatment reaction process.
- the pre-treatment reaction process yields pretreated biomass along with soluble components.
- a first liquid having a first temperature is transported into the pretreatment reactor and the pretreated biomass elevates the first temperature to a second temperature.
- At least a port of the soluble components are captured in the first liquid, and the at least a portion of the soluble components in the first liquid and the first liquid are removed from the pretreatment reactor.
- a second liquid having a third temperature is transported into the pretreatment reactor and the pretreated biomass elevates the third temperature to a fourth temperature, the fourth temperature being less than second temperature.
- a technical advantage of one embodiment may include the capability to gradually cool and heat biomass in a reactor while efficiently recovering heat.
- Other technical advantages of other embodiments may include the capability to simultaneously allow the extraction and removal of soluble species generated during pretreatment in a reactor.
- Yet other technical advantages of other embodiments may include the capability to employ a technique known as "displacement extraction" to recover both heat and soluble species, letting liquid present in the biomass to be displaced by incoming liquid without any mixing, thus allowing a more efficient extraction and heat recovery.
- Still yet other technical advantages of other embodiments may include the capability to utilize hydrostatic head of liquid to keep the biomass particles interstitial spaces filled with liquid at all times, thus excluding air, allowing percolation rates to be much faster than when liquid is simply allowed to drain. Still yet other technical advantages of other embodiments may include the capability to employ an efficient mass transfer technique to efficiently recover heat and soluble species from the pretreated biomass. Still yet other technical advantages of other embodiments may include the capability to avoid the use of expensive dewatering equipment, such as screw presses or roller mills for extraction. Still yet other technical advantages of other embodiments may include the capability to avoid the use of expensive heat exchangers.
- FIGURES IA through IH show one embodiment of a biomass pretreatment system in which a biomass may undergo a heating cycle
- FIGURES 2A through 2H show the biomass pretreatment system of FIGURES IA through IH in which a biomass may undergo a cooling cycle
- FIGURE 3 shows one embodiment of a purging process for each of the tanks of the biomass pretreatment system of FIGURES IA through IH;
- FIGURE 4 is a diagram showing another embodiment of biomass pretreatment system in which multiple pretreatment reactors are implemented
- FIGURE 5 is a diagram showing another embodiment of biomass pretreatment system in which multiple pretreatment reactors are implemented in a circular arrangement.
- FIGURE 6 is a time chart showing one embodiment of implementing a pretreatment process using the embodiments of FIGURES 4 or 5.
- this liquid is the preferred heat transfer fluid.
- Some heat transfer may be attempted by removing the liquid in the reactor after the pretreatment has occurred and reusing this same liquid in the next pretreatment cycle.
- the heat present in the biomass and the entrained water can not be recovered efficiently.
- soluble species released during pretreatment can not be efficiently removed. Accordingly, teachings of certain embodiments recognize the use of displacement extraction where little, if any, axial mixing occurs, allowing recovery of the liquid present in a biomass bed without decreasing the liquid temperature or soluble species concentration. Additionally, teachings of certain embodiments recognize that through the use of several stages, the recovery of both heat and soluble products may be almost complete.
- Displacement extraction is a process in which differing liquids may displace one another without significant mixing.
- the displacement extraction process may use a Meichage effect for example, to extract sugar from sugarcane, as described in U.S. Patent No. 5,772,775.
- U.S. Patent No. 5,772,775 describes transporting a bed of ground sugarcane from an inlet to an outlet of a horizontal drag conveyor system. The liquid from one particular stage is pumped upwards to flood the bed and displace any air present (i.e., Meichage effect). Then liquid from the next stage is used to displace the liquid present in the bed.
- This process has been shown to be relatively efficient, attaining relatively good sugar extraction from cane with only three stages compared to 17 to 19 stages needed in conventional diffusers for sugar extraction.
- Biomass pretreatment to enhance biodigestibility is often performed in a reactor at high temperatures and pressures in the presence of a liquid (e.g., water) that may contain certain agents, such as acids, alkalis, oxidizers. Efficient heat recovery and, many times, extraction of soluble species generated during pretreatment may be desirable. Accordingly, teachings of certain embodiments recognize the use of displacement extraction, aided by air exclusion (i.e., Meichage effect), to recover heat and soluble species from biomass pretreatment.
- a series of tanks may be used to gradually heat or gradually cool down the biomass bed inside a pretreatment reactor.
- the liquid present in the pretreatment reactor may be allowed to exit and is sent to the next tank/stage.
- the displacing liquid may flow through the bed as an advancing front similar to the phenomenon that occurs in chromatography columns, where axial mixing ideally does not occur. In this manner, the liquid from the tank may displace the liquid present within the biomass bed at any given time and may allow the exiting liquid to maintain its temperature and soluble species concentration.
- the fresh biomass contains natural soluble substances (e.g., sugars, proteins), in particular embodiments, it might be desirable to extract these natural solubles prior to the heating cycle.
- natural soluble substances e.g., sugars, proteins
- a separate set of tanks arranged in the same fashion as the proposed embodiment for the recovery of heat and soluble species generated during pretreatment, may also be employed.
- the number of tanks/stages can be any number necessary to attain adequate and cost-effective heat and soluble species recovery. Because of temperature differences, in particular embodiments it may be beneficial to transfer the liquid in such a manner that a denser liquid is located at the bottom of the reactor to avoid undesired liquid buoyancies, which will cause axial mixing. That is, if the liquid in the tank is denser than the liquid in the reactor, it may be introduced at the bottom of the reactor. Conversely, if the liquid in the tank is less dense than the liquid in the reactor, it may be introduced at the top of the reactor.
- FIGURES IA through IH show one embodiment of a biomass pretreatment system 10.
- the biomass pretreatment system 10 generally includes a pretreatment reactor 12 configured to contain a biomass and a number of tanks 14 that are each configured to hold a liquid, such as water, at differing temperatures.
- the tanks 14 are coupled to the pretreatment reactor 12 through a pump that is operable to alternatively pump liquid from each of the plurality of tanks 14 to the pretreatment reactor 12 such that the temperature of the biomass may be raised and lowered with relatively good efficiency.
- FIGURES IA through IH shows a biomass pretreatment process that may be administered on a biomass contained in the pretreatment reactor 12.
- FIGURE IA a biomass may be loaded into the pretreatment reactor 12 and liquid in each of the tanks 14 elevated to differing temperatures.
- FIGURES IA through IH generally describes a heating cycle in which the temperature of the biomass may be gradually raised to an elevated temperature. Although specific temperatures and number of tanks and reactors are shown, it should be understood that different temperatures and a different number of tanks and/or reactors may be used in other embodiments.
- the liquid from tank 14a is transferred to the reactor to flood the biomass bed and remove air, a process known as the Meichage effect.
- the liquid in tank 14a is maintained at 4O 0 C. Because the biomass in the reactor is colder, this may cause the temperature to drop to approximately 30°C.
- the entrained liquid which is at 30 0 C, is then displaced by liquid in tank 14b that may be at a temperature of 6O 0 C.
- the exiting liquid at 30 0 C is directed to the tank 14a, whereas the biomass bed and the liquid in the reactor achieve an intermediate equilibrium temperature of approximately 50 0 C.
- the 50 0 C liquid in the reactor is then displaced by liquid in the tank 14c that may be at a temperature of 8O 0 C.
- the 5O 0 C liquid maintains its temperature and it is sent to the tank 14b.
- the biomass bed then achieves an intermediate equilibrium temperature of approximately 70 0 C.
- the 70 0 C liquid in the reactor is then displaced by liquid in the tank 14d that may be at a temperature of 100 0 C.
- the 70 0 C liquid maintains its temperature and it is sent to the tank 14c.
- the biomass bed achieves an intermediate equilibrium temperature of approximately 9O 0 C.
- the 90 0 C liquid in the reactor is then displaced by liquid in the tank 14e that may be at a temperature of 120 0 C.
- the 9O 0 C liquid maintains its temperature and it is sent to tank 14d.
- the biomass bed achieves an intermediate equilibrium temperature of approximately 110 0 C.
- the 110 0 C liquid in the reactor is then displaced by liquid in the tank 14f that may be at a temperature of 140 0 C.
- the 110 0 C liquid maintains its temperature and it is sent to tank 14e.
- the biomass bed achieves an intermediate equilibrium temperature of approximately 130 0 C.
- pretreatment agents may be added to the pretreatment reactor 12 to bring the reactor to a desired reaction temperature.
- the pretreatment agent(s) may be added before or after the final heating to the desired temperature, although often it is preferred to add it before to use any heat that might be released from diluting the agent in the liquid.
- the pretreatment process described above may use water as the medium and may occur over a period of approximately 6 hours.
- water is maintained at 160°C, so the whole system may be pressurized to allow pretreatment at these relatively high temperatures.
- steam may be injected into the reactor to raise the temperature to the desired level, but any other appropriate heating mechanism can also be employed.
- the displacement extraction cycle for all the stages may take approximately 30 minutes to complete during heating and during cooling.
- the pretreatment agent(s) such as acid, alkali, oxidizers
- the pretreatment agent(s) may be added either before or after heat recovery.
- an agent that has an exothermic heat of dilution e.g., quicklime, sulfuric acid
- Mixing in the reactor during the pretreatment reaction may be implemented as appropriate (e.g., tumbling, recirculation of liquid through the biomass bed, augering).
- the number of tanks/stages is six in the embodiment shown in FIGURES IA- IH, although more or fewer tanks/stages may be used.
- FIGURES 2A through 2H show the biomass pretreatment system 10 describing one embodiment of a cooling cycle in which the temperature of the biomass in the pretreatment reactor 12 heated according to the heating cycle of FIGURES IA through IH may be gradually lowered.
- the biomass in the pretreatment reactor 12 is at an elevated temperature of approximately 160°C.
- the pretreatment reactor 12 is at the desired temperature and the appropriate pretreatment agents have been added, the reaction occurs for the desired time.
- the temperature in the reactor may be controlled by either providing steam or other appropriate heating material or by cooling water, depending on the thermal nature of the pretreatment reaction.
- the pretreatment is stopped and the cooling cycle commences.
- the 160°C liquid in the reactor is then displaced by liquid in tank 14e that may be at a temperature of 110°C.
- the 160 0 C liquid maintains its temperature and it is sent to the tank 14f.
- the biomass bed then achieves an intermediate equilibrium temperature of approximately 120°C.
- the 120°C liquid in the pretreatment reactor 12 is then displaced by liquid in tank 14d at a temperature of 9O 0 C.
- the 120 0 C liquid maintains its temperature and it is sent to tank 14e.
- the biomass bed then achieves an intermediate equilibrium temperature of approximately 100 0 C.
- liquid at approximately 160 0 C in tank 14f may have a relatively high concentration of the soluble species extracted from the pretreatment process. To avoid accumulating these soluble products, a certain amount of this liquid may be purged and sent to a suitable downstream processing mechanism.
- the purged liquid may be replaced with fresh liquid, which could be at ambient temperature or it could be hot fresh liquid generated from heat integration with other units in the bioconversion process.
- tank 14f is shown as being purged in this embodiment at FIGURE 2C, in other embodiments purging may occur directly from the pretreatment reactor 12 instead of transporting the liquid to tank 14f with reference to FIGURE 2B.
- the reactor 12 may be drained of fluid at FIGURE 2A (after processing) and the remaining steps of FIGURES 2B-2H may proceed.
- the 100 0 C liquid in the pretreatment reactor 12 is then displaced by liquid in tank 14c at a temperature of approximately 70 0 C.
- the 100 0 C liquid maintains its temperature and it is sent to tank 14d.
- the biomass bed may then have an intermediate equilibrium temperature of approximately 80 0 C.
- the 80°C liquid in the pretreatment reactor 12 is then displaced by liquid in tank 14b at a temperature of approximately 50 0 C.
- the 80 0 C liquid maintains its temperature and it is sent to tank 14c.
- the biomass bed then achieves an intermediate equilibrium temperature of approximately 60 0 C.
- the 60°C liquid in the pretreatment reactor 12 is then displaced by liquid in tank 14a at a temperature of approximately 30 0 C.
- the 60 0 C liquid maintains its temperature and it is sent to tank 14b.
- the biomass bed then achieves an intermediate equilibrium temperature of approximately 40 0 C.
- the 40°C liquid in the pretreatment reactor 12 is then displaced by fresh water introduced through a fresh water inlet 16 at approximately 30 0 C.
- the 40 0 C liquid maintains its temperature and it is sent to the tank 14a.
- the biomass bed then achieves an intermediate equilibrium temperature of approximately 3O 0 C. This liquid is sent to tank 14a where it will be used for the next heating cycle.
- the biomass in the pretreatment reactor 12 may be saturated with fresh liquid, thus allowing the pretreated biomass to exit the system as a slurry to a downstream bioconversion.
- the pretreated biomass may be free of soluble species, in which the downstream bioconversion may not be necessary.
- each displacement for example as shown in FIGURES 2B- 2F, may pick up soluble species left behind from the immediately preceding displacement. Additionally, in such an embodiment, the fluid leaving the chamber in each respective displacement would have a lesser amount of soluble species than the fluid leaving the chamber in the prior displacement.
- the biomass and any entrained liquid may be unloaded from the pretreatment reactor 12.
- FIGURE 3 shows another embodiment of a process for replacing the liquid from the tank 14f.
- This particular purging process may be used in place of the purging process as shown in FIGURE 2C. After purging the concentrated liquid, some liquid may be transferred sequentially from each tank 14a to tank 14f. Finally, fresh liquid enters the system at tank 14a.
- FIGURE 3 shows another embodiment of a process for replacing the liquid from the tank 14f. This particular purging process may be used in place of the purging process as shown in FIGURE 2C. After purging the concentrated liquid, some liquid may be transferred sequentially from each tank 14a to tank 14f. Finally, fresh liquid enters the system at tank 14a.
- FIGURE 3 shows another embodiment of a process for replacing the liquid from the tank 14f.
- FIGURE 4 shows another embodiment of a biomass pretreatment system 20 in which multiple pretreatment reactors 12 may be serviced by the tanks 14. In this particular embodiment, seven pretreatment reactors 12 are shown; however, it should be appreciated that any quantity of pretreatment reactors 12 may be used.
- two pumps 22 are used to perform the recovery of heat and soluble species. Movement of the liquid from the two pumps 22 may be provided by valves 24 configured on the inlets and outlets of each of the tanks 14 and pretreatment reactors 12.
- FIGURE 5 shows another embodiment of the biomass pretreatment system 30 that is similar to the embodiment of FIGURE 4 except that the tanks 14 and pretreatment reactors 12 are configured in a circular arrangement for convenience and compactness.
- FIGURE 6 is a time chart showing how the two pumps 22 may be used to service each of the seven pretreatment reactors 12 of FIGURES 4 and/or 5.
- a 24 hour operation schedule for the biomass pretreatment systems 20 and 30 may be accomplished.
- This schedule is an example of what could be accomplished as a relatively good layout for operation. It can be seen that the operations have been arranged in such a manner that equipment is operated at a relatively high duty cycle, as at any given time there is always one pretreatment reactor 12 being loaded, heated, cooled and unloaded, while the other pretreatment reactors 12 are engaged in pretreatment.
- the biomass pretreatment methods that may potentially employ this system can be (but are not limited to) those that are base catalyzed (ammonia, alkaline- peracetic acid, alkaline peroxide, alkaline-solvent, lime, lime under oxygen pressure, sodium hydroxide), non catalyzed (autohydrolysis, hot water, hot water -pH neutral, steam), acid catalyzed (concentrated or dilute acid using sulfuric acid, hydrochloric acid, peracetic acid, phosphoric acid, sulfur dioxide), solvent based (organosolv, other solvents), chemical based (peroxide, wet oxidation).
- This process use extraction displacement to displace liquid in one or more pretreatment reactors 12 where the pretreatment occurs.
- the pretreatment reactors 12 are accompanied by a series of tanks 14, each one representing one extraction or recovery stage, which are filled and emptied sequentially with the liquid being sent through the pretreatment reactors 12 to displace the liquid present there at any given time. This would allow a gradual and thus more efficient cooling and heating of the biomass in the reactor.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Processing Of Solid Wastes (AREA)
- Extraction Or Liquid Replacement (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2704471A CA2704471C (en) | 2007-11-02 | 2008-10-31 | System and method for pretreating biomass |
CN2008801226243A CN101909713B (en) | 2007-11-02 | 2008-10-31 | System and method for pretreating biomass |
JP2010532283A JP2011502753A (en) | 2007-11-02 | 2008-10-31 | System and method for pretreatment of biomass |
EP08844560A EP2219754A1 (en) | 2007-11-02 | 2008-10-31 | System and method for pretreating biomass |
BRPI0818867 BRPI0818867A2 (en) | 2007-11-02 | 2008-10-31 | Method and system for heat treatment of a biomass |
MX2010004664A MX2010004664A (en) | 2007-11-02 | 2008-10-31 | System and method for pretreating biomass. |
AU2008318478A AU2008318478A1 (en) | 2007-11-02 | 2008-10-31 | System and method for pretreating biomass |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US98505907P | 2007-11-02 | 2007-11-02 | |
US60/985,059 | 2007-11-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009059149A1 true WO2009059149A1 (en) | 2009-05-07 |
Family
ID=40293806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/082011 WO2009059149A1 (en) | 2007-11-02 | 2008-10-31 | System and method for pretreating biomass |
Country Status (10)
Country | Link |
---|---|
US (1) | US8137955B2 (en) |
EP (1) | EP2219754A1 (en) |
JP (1) | JP2011502753A (en) |
KR (1) | KR20100094494A (en) |
CN (1) | CN101909713B (en) |
AU (1) | AU2008318478A1 (en) |
BR (1) | BRPI0818867A2 (en) |
CA (1) | CA2704471C (en) |
MX (1) | MX2010004664A (en) |
WO (1) | WO2009059149A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017088892A1 (en) | 2015-11-24 | 2017-06-01 | Inbicon A/S | Bitumen compositions comprising lignin |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102292310B (en) | 2008-12-02 | 2014-03-26 | 得克萨斯A&M大学体系 | Alternative paths to alcohols and hydrocarbons from biomass |
CA2802552A1 (en) * | 2010-06-20 | 2011-12-29 | The Trustees Of Dartmouth College | Flowthrough pretreatment of lignocellulosic biomass and selective separation of components using high-temperature nanoporous membranes |
EP3290494B1 (en) | 2016-09-02 | 2019-08-14 | Clariant International Ltd | Process for reduction of energy consumption during the pretreatment of biomass |
EA039199B1 (en) * | 2018-01-31 | 2021-12-16 | Авантиум Нолидж Сентр Б.В. | Process for the conversion of a solid material containing hemicellulose, cellulose and lignin |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0769561A1 (en) * | 1995-10-24 | 1997-04-23 | Michele Marcelle Amelie Riviere | Method of extraction of juice from sugar cane |
US5693296A (en) * | 1992-08-06 | 1997-12-02 | The Texas A&M University System | Calcium hydroxide pretreatment of biomass |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH655948A5 (en) * | 1983-11-09 | 1986-05-30 | Armand Cotton | PROCESS AND PLANT FOR THE PRODUCTION OF BIOGAS AND COMPOST. |
DE3801962A1 (en) * | 1988-01-23 | 1989-07-27 | Bolz Alfred Gmbh Co Kg | DEVICE FOR PRODUCING FUELS FROM ORGANIC MATERIAL |
NZ248884A (en) * | 1993-10-07 | 1995-10-26 | Convertech Group Ltd | Hydrolysis and/or drying of biological material with steam |
US6464875B1 (en) * | 1999-04-23 | 2002-10-15 | Gold Kist, Inc. | Food, animal, vegetable and food preparation byproduct treatment apparatus and process |
FI106817B (en) * | 1999-06-08 | 2001-04-12 | Pekka Ahtila | Dry biofuel drying system |
US7179379B2 (en) * | 2003-03-28 | 2007-02-20 | Ab-Cwt, Llc | Apparatus for separating particulates from a suspension, and uses thereof |
-
2008
- 2008-10-31 BR BRPI0818867 patent/BRPI0818867A2/en not_active IP Right Cessation
- 2008-10-31 MX MX2010004664A patent/MX2010004664A/en active IP Right Grant
- 2008-10-31 CN CN2008801226243A patent/CN101909713B/en not_active Expired - Fee Related
- 2008-10-31 AU AU2008318478A patent/AU2008318478A1/en not_active Abandoned
- 2008-10-31 KR KR1020107012082A patent/KR20100094494A/en not_active Application Discontinuation
- 2008-10-31 US US12/262,282 patent/US8137955B2/en not_active Expired - Fee Related
- 2008-10-31 JP JP2010532283A patent/JP2011502753A/en active Pending
- 2008-10-31 CA CA2704471A patent/CA2704471C/en not_active Expired - Fee Related
- 2008-10-31 EP EP08844560A patent/EP2219754A1/en not_active Withdrawn
- 2008-10-31 WO PCT/US2008/082011 patent/WO2009059149A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5693296A (en) * | 1992-08-06 | 1997-12-02 | The Texas A&M University System | Calcium hydroxide pretreatment of biomass |
EP0769561A1 (en) * | 1995-10-24 | 1997-04-23 | Michele Marcelle Amelie Riviere | Method of extraction of juice from sugar cane |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017088892A1 (en) | 2015-11-24 | 2017-06-01 | Inbicon A/S | Bitumen compositions comprising lignin |
EP3447086A1 (en) | 2015-11-24 | 2019-02-27 | Inbicon A/S | Bitumen compositions comprising lignin |
Also Published As
Publication number | Publication date |
---|---|
US8137955B2 (en) | 2012-03-20 |
BRPI0818867A2 (en) | 2015-05-05 |
EP2219754A1 (en) | 2010-08-25 |
US20090114591A1 (en) | 2009-05-07 |
CN101909713A (en) | 2010-12-08 |
AU2008318478A1 (en) | 2009-05-07 |
MX2010004664A (en) | 2010-08-11 |
CN101909713B (en) | 2013-06-26 |
CA2704471C (en) | 2012-09-18 |
JP2011502753A (en) | 2011-01-27 |
KR20100094494A (en) | 2010-08-26 |
CA2704471A1 (en) | 2009-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2704471C (en) | System and method for pretreating biomass | |
US9260818B2 (en) | Single vessel reactor system for hydrolysis and digestion of wood chips with chemical enhanced wash method | |
JP4699567B1 (en) | Biomass hydrothermal decomposition apparatus, temperature control method thereof, and organic raw material production system using biomass raw material | |
JP7411567B2 (en) | How to process lignocellulose biomass | |
EP2003241A2 (en) | Two vessel reactor system and method for hydrolysis and digestion of wood chips with chemical enhanced wash method | |
CN102730917B (en) | Low-water-content dehydrated sludge direct supercritical water gasification processing apparatus and method | |
CN106795024B (en) | Drying method and drying apparatus by hydrothermal carbonization and filtration | |
CN104986816B (en) | Process and apparatus for carrying out wastewater desorption and falling film evaporation on coking sewage | |
CA2868572C (en) | Biomass processing system, saccharide solution production method using biomass feedstock, alcohol production method | |
AU2013407828B2 (en) | Method and system | |
CN110793369B (en) | Supercritical water oxidation reaction product waste heat and residual pressure utilization system | |
JP6004313B2 (en) | Method for producing resin raw material from lignocellulosic biomass and method for avoiding blockage of solid line in reactor outlet line in the apparatus | |
JP2012019730A (en) | Lignocellulosic biomass saccharification pre-treatment device | |
JP7411658B2 (en) | 2x2 tank process and system | |
JP2013163796A5 (en) | ||
CN209810187U (en) | Silica gel regeneration deoiling device after adsorption and extraction of regenerated base oil | |
US20230172243A1 (en) | Method and plant for the production of tomato concentrate with vapour recovery | |
CN113880224B (en) | Novel supercritical oxidation process | |
CN220467637U (en) | HPMC contains treatment facility of salt waste water | |
CN217628290U (en) | Illegal cooking oil, hogwash oil-subcritical gaseous methanol esterification reaction equipment | |
CN102179062A (en) | Ultrasound/microwave continuous countercurrent extraction device and method | |
EP2563498A1 (en) | Biogas upgrading | |
CN114534307A (en) | System and method for separating pentaerythritol and calcium formate from pentaerythritol mother liquor | |
WO2019212067A1 (en) | Method for continuous hydrolysis of herbaceous biomass | |
CN114634843A (en) | Method for esterification reaction of swill-cooked dirty oil and subcritical gaseous methanol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880122624.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08844560 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2010/004664 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2704471 Country of ref document: CA Ref document number: 2010532283 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008318478 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3255/DELNP/2010 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008844560 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2008318478 Country of ref document: AU Date of ref document: 20081031 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20107012082 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: PI0818867 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100430 |