WO2009045542A1 - Electrical power source - Google Patents
Electrical power source Download PDFInfo
- Publication number
- WO2009045542A1 WO2009045542A1 PCT/US2008/011527 US2008011527W WO2009045542A1 WO 2009045542 A1 WO2009045542 A1 WO 2009045542A1 US 2008011527 W US2008011527 W US 2008011527W WO 2009045542 A1 WO2009045542 A1 WO 2009045542A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power source
- photovoltaic cell
- electrical power
- cell electrical
- switch
- Prior art date
Links
- 238000003032 molecular docking Methods 0.000 claims 3
- 238000004146 energy storage Methods 0.000 description 4
- 239000004020 conductors Substances 0.000 description 2
- 238000010586 diagrams Methods 0.000 description 2
- 280000123055 Industry Standard companies 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N [Cd].[Ni] Chemical compound   [Cd].[Ni] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000001413 cellular Effects 0.000 description 1
- 239000002537 cosmetics Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000006467 substitution reactions Methods 0.000 description 1
- 230000000153 supplemental Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRA-RED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S10/00—PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
- H02S10/40—Mobile PV generator systems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRA-RED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/38—Energy storage means, e.g. batteries, structurally associated with PV modules
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Abstract
Description
Electrical Power Source
Field of the Invention
[0001] The present invention relates to a power supply, and more particularly to a power supply for charging an external storage device.
Background
[0002] Small electronic portable appliances such as cellular phones, compact entertainment devices, hand held "palm" computers, GPS navigation devices, and small wireless communication equipment have become extremely popular with people of all ages, genders, and locations.
[0003] Generally these devices use electrical power to operate. As portable devices they are not connected to the power utility outlets, but instead use batteries as a power source. An ever increasing percentage of these appliances use rechargeable batteries or other rechargeable storage devices. Unlike regular batteries which are replaced with new batteries when they run out of power, while the used batteries are disposed of, rechargeable batteries can be recharged from an external power source, again and again, and need not be replaced.
[0004] Recharging of portable appliances is typically done by connecting such portable appliances to a power supply which is, in turn, connected to a residential power utility or to an automotive power outlet so as to receive power for the rechargeable batteries. These power sources are not portable and, therefore, while the batteries of the small portable appliances are being recharged the appliances are stationary and not portable. On the other hand if the batteries of the small portable appliances are not recharged periodically, they run out of charge. This renders the portable appliances useless. Summary of the Invention
[0005] To make such small portable appliances really portable and usable everywhere without a need to recharge the batteries of these portable appliances from the power utilities or automotive power outlets, the inventor is harnessing the power of the sun.
[0006] In daily life many people carry handbags and backpacks in which they store and carry personal items such as money, documents, books, cosmetics items, and small portable electronic appliances.
[0007] According to this invention, personal backpacks and handbags are fitted with a photovoltaic device such as a solar panel to convert solar energy into electrical power to operate a special battery charging apparatus capable of charging the batteries of portable electronic appliances. This enables such a backpack or handbag to simultaneously charge and use the small portable appliances while carried around wherever the user carries the backpack or handbag.
Brief Description of the Drawings
[0008] Figure 1 shows, in block diagram form, a portion of a power supply according to one embodiment of the invention;
[0009] Figure 2 shows, in block diagram form, an exemplary adapter device according to one embodiment of the invention; and
[0010] Figure 3 shows, in perspective view, a carrying case including a photovoltaic device and device under charge, forming a system according to one embodiment of the invention. Detailed Description
[0011] The present invention is to be understood with reference to figures 1, 2 and 3. As illustrated, a photovoltaic (solar) cell 10 connects to rechargeable batteries 16 A and 16B via a diode 13. One of skill in the art will appreciate that other rechargeable devices such as, for example, a capacitive charge storage device, can also be employed in the present invention. When the solar cell 10 is exposed to light, it generates an electrical current. Due to the internal resistance of the solar cell 10, the electrical current, generated as a result of exposure to light, causes the voltage at the positive output pin of the solar cell 10 to increase above the voltage across the battery 16. Under these conditions, the current generated in the solar cell 10 can flow through the diode 13 to charge the battery 16 (16A and 16B).
[0012] The voltage across the battery 16 is a property of the chemistry of the battery and the charge in the battery. The chemistry determines the nominal voltage on the battery while the charge in the battery can change the voltage across the battery by as much as 20%. For example, the typical nominal voltage on a Nickel Cadmium battery is 1.2V, but it may be as low as 1.15V when the battery is discharged, and as high as 1.4V when such battery is fully charged.
[0013] When a voltage higher than the nominal voltage of a battery is desired, two or more batteries can be connected in series to yield an overall voltage which is the nominal voltage multiplied by the number of batteries connected in series.
[0014] The charger 200 is designed to continuously charge the portable electronic appliance 100 connected to the charger 200. However, charging the appliance 100 when intensity of the light to which the solar cell 10 is exposed is too low, may deplete the battery 16 of its charge, causing improper operation of the charger 200. Two circuits are used here to prevent the battery from being over discharged. One is such that when the solar cell 10 output is insufficient to charge the battery 16, the low light detection comparator 11 will control the output switch 21 to the OFF state, which will disconnect the charge current to the external appliance 100. One of skill in the art will appreciate that output switch 21 will, in certain embodiments, be implemented as a solid-state switching device such as, for example, a transistor. Consequently, when the light onto the solar panel 10 is of sufficient intensity to overcome the predetermined set-point voltage at the comparator input 11, the comparator 11 will change its state, and the output switch 21 will again be controlled to the ON state, completing the circuit and enabling the charge current to the external appliance 100. A green LED 22 will serve to indicate that the charger 200 has sufficient charge and is currently capable of charging an external appliance 100. The other circuit section consists of the battery under-voltage detector 15. This circuit's function is to prevent the over-discharge of the battery 16. Over discharging can be harmful to the longevity of the battery 16, if the battery remains in this discharged condition for long periods. This circuit monitors the voltage at the battery 16. If the voltage across the battery 16 falls below the preset low level threshold voltage, in this case, the detector/comparator 15 will control the output switch 21 to the OFF state, subsequently disconnecting the external appliance 100. A red LED 23, connected to the under-voltage detector 15, when illuminated, will serve to indicate that the battery 16, has reached a predetermined low level, and now the charger 200 is not currently capable of charging an external appliance 100. When the battery 16 voltage is again of sufficient level to reset the state of the comparator 15, the output of the comparator 15 will control the output switch 21 to its ON state, thereby allowing the charger to charge the external appliance 100. Consequently, the green LED 22, connected to the output of the detector 15, will illuminate to indicate that the battery 16 has been sufficiently charged and the charger 200 is now capable of charging an external appliance 100. [0015] The low battery detector circuit 12 alerts the user as to the state of the battery 16 charge. When the battery 16 voltage falls below a predetermined set-point, the low battery detection circuit 12 will change state, and will cause to illuminate a yellow LED 14. When illuminated, this will serve to alert the user as to the approaching discharged condition of the battery 16, and the user can then take the necessary action to recharge the battery 16.
[0016] When the solar cell 10 is exposed to sufficient intensity of light, the voltage generated by the solar cell 10 is no longer lower than that of the battery 16, and the under voltage detector 15 turns ON controlling the output switch 21 to ON state. Consequently, the green LED 22, connected to the output of the detector 15, will illuminate to indicate that the charger 200 is now capable of charging an external appliance 100.
[0017] External charge port 24 allows for supplemental charging of charger 200 from other sources when sunlight is unavailable, such as at night or when indoors under low light conditions. The charge port 24 consists of a USB mini-B connector that is compatible with industry standard USB format. Using an appropriate cable, the charger 200 can be charged via any personal computer that is equipped with a USB port. Charging can also be applied to this port 24 with any wall transformer type appliance that is specifically designed for this purpose. Current from the USB connector input source is coupled to the battery 16 through diode 25 and current limiting resistor 26.
[0018] Switch 27 is used to select the appropriate charge source to the battery 16. In position 1, the switch 27 will configure the battery(s) 16 so as to charge in parallel. This allows the battery 16 to charge from the lower voltage of the USB sourced input. This position also serves to disable the operation of the charger 200, while charging the battery 16. Position 2 of switch 27 also has 2 functions. One function is to enable charger 200 operation. The other function is to reconfigure the battery(s) in series so as to have sufficient voltage to charge an external device 100.
[0019] The charger 200 output circuit is protected by a resectable fuse 28. If the output of the charger 200 is shorted, or if there is a problem with the external device 100, causing the current from the battery 16 to increase beyond a preset set point, the resettable fuse 28 will be heated causing the resistance of the resettable fuse 28 to increase. This will limit the current from the charger 200 to a safe value, preventing damage to the charger 200, or the external device 100. When the cause of the short, or the external device 100, is disconnected from the output of the charger 200, the resettable fuse 28 will cool, and the resistance of the resettable fuse 28 will decrease to a normal value, allowing the charger 200 to again be ready to charge an external device 100.
[0020] In certain embodiments, the invention includes a kit having a power supply and one or more adapter devices. For example, in one embodiment, the kit includes a first iPhone ® adapter and a second iPod ® adapter (Figure 2). By connecting the adapter to the output of the power supply, a custom configuration of the power supply is provided. This configuration allows for the charging of the iPhone® and iPod® from the charger 200. In the illustrated embodiment of figure 2, the adapter is internally configured with 4 biasing resistors. These resistors are connected in such a manner so as to apply a low bias voltage to the USB Data (+) and USB Data (-) connections. Power for the biasing is derived from the charger 200 power source connection.
[0021] Figure 3 shows, in perspective view, a charging system including a luggage article according to one embodiment of the invention. In the illustrated embodiment, the luggage article is a backpack 1. A photovoltaic cell 3 is coupled to an external surface of the backpack 1. An electrical conductor 4 is provided to convey power from a power supply to a portable device 2. The power supply is disposed within the backpack and coupled to both the photovoltaic cell 3 and electrical conductor 4.
[0022] While reference is made in the above examples to batteries such as, for example, electrochemical batteries, one of skill in the art will appreciate that the invention may, according to its principles, be applied to a wide variety of other energy storage devices including, without limitation, capacitive energy storage devices, pneumatic energy storage devices, and mechanical energy storage devices, according to the requirements of any particular application. In addition, while reference is made to a photovoltaic or solar cell for receiving energy, one of skill in the art will appreciate that alternative devices and means for receiving energy such as, for example, a microwave energy receiver, would also fall within the scope of the invention. Further, one of skill in the art will appreciate that the principles of the invention are equally well applied, and that the benefits of the present invention are equally well realized in a wide variety of other systems. Therefore, while the invention has been described in detail in connection with the presently preferred embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions, or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US99782107P true | 2007-10-05 | 2007-10-05 | |
US60/997,821 | 2007-10-05 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/798,537 US20110012552A1 (en) | 2007-10-05 | 2010-04-05 | Electrical power source |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/798,537 Continuation US20110012552A1 (en) | 2007-10-05 | 2010-04-05 | Electrical power source |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009045542A1 true WO2009045542A1 (en) | 2009-04-09 |
Family
ID=40526586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/011527 WO2009045542A1 (en) | 2007-10-05 | 2008-10-05 | Electrical power source |
Country Status (2)
Country | Link |
---|---|
US (1) | US20110012552A1 (en) |
WO (1) | WO2009045542A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011100040A1 (en) * | 2010-02-15 | 2011-08-18 | Liberty Hardware Mfg. Corp. | Method of charging an energy storage device |
US10034527B2 (en) | 2015-11-06 | 2018-07-31 | JRSK, Inc. | Luggage system employing a telescopically-extendable handle and rechargeable power supply assembly |
WO2018172551A3 (en) * | 2017-03-23 | 2018-12-13 | The European Union, Represented By The European Commission | Thermo-electric generator system, monitoring system therefor, and methods of designing and constructing them |
US10595608B2 (en) | 2015-11-06 | 2020-03-24 | JRSK, Inc. | Luggage system employing a telescopically-extendable handle and battery power supply assembly equipped with a semi-automatic battery power module ejection mechanism |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8928227B2 (en) | 2009-08-23 | 2015-01-06 | Thomas John Padula | Light emitting bio-mimicry device |
US8384556B2 (en) * | 2010-04-21 | 2013-02-26 | Gordon Ko | Solar powered light and alarm system |
US8884777B2 (en) * | 2010-06-25 | 2014-11-11 | Sony Corporation | Mobile device including a solar battery |
WO2012103446A2 (en) * | 2011-01-28 | 2012-08-02 | Korman Bette | Modular portable energy system |
US9024570B2 (en) * | 2011-05-06 | 2015-05-05 | Goal Zero Llc | Charging device |
US9881136B2 (en) * | 2013-10-17 | 2018-01-30 | WellDoc, Inc. | Methods and systems for managing patient treatment compliance |
USD808616S1 (en) | 2014-02-28 | 2018-01-30 | Milwaukee Electric Tool Corporation | Single control button for an article of clothing |
JP6466761B2 (en) * | 2015-03-31 | 2019-02-06 | ラピスセミコンダクタ株式会社 | Semiconductor device and power supply method |
USD794281S1 (en) | 2015-10-09 | 2017-08-15 | Milwaukee Electric Tool Corporation | Garment |
USD808125S1 (en) | 2015-10-09 | 2018-01-23 | Milwaukee Electric Tool Corporation | Garment |
USD787160S1 (en) | 2015-10-09 | 2017-05-23 | Milwaukee Electric Tool Corporation | Garment |
USD799161S1 (en) | 2015-10-09 | 2017-10-10 | Milwaukee Electric Tool Corporation | Garment |
USD819965S1 (en) | 2016-09-16 | 2018-06-12 | Mysolar Llc | Solar handbag |
US20180198295A1 (en) * | 2017-01-11 | 2018-07-12 | Maria Warney | Portable Charging Luggage |
US10271626B1 (en) * | 2018-01-14 | 2019-04-30 | Vincent Anderson | Solar charging, illuminated hunting bag |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6346791B1 (en) * | 1998-07-30 | 2002-02-12 | Sarl Tecknisolar-Seni | Self-contained recharging device for portable telephone and/or battery and/or protective case |
US20060273757A1 (en) * | 2005-06-07 | 2006-12-07 | Naguib Ramez Y | Portable devices solar charger case |
US20070035917A1 (en) * | 2005-08-09 | 2007-02-15 | Apple Computer, Inc. | Methods and apparatuses for docking a portable electronic device that has a planar like configuration and that operates in multiple orientations |
US20070182363A1 (en) * | 2006-01-30 | 2007-08-09 | Fu-I Yang | Portable power supply |
US20070229022A1 (en) * | 2004-12-08 | 2007-10-04 | Mitsubishi Electric Corporation | Power-Supply Unit |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2454221A1 (en) * | 2003-12-24 | 2005-06-24 | Shayne Mcquade | Solar bag |
-
2008
- 2008-10-05 WO PCT/US2008/011527 patent/WO2009045542A1/en active Application Filing
-
2010
- 2010-04-05 US US12/798,537 patent/US20110012552A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6346791B1 (en) * | 1998-07-30 | 2002-02-12 | Sarl Tecknisolar-Seni | Self-contained recharging device for portable telephone and/or battery and/or protective case |
US20070229022A1 (en) * | 2004-12-08 | 2007-10-04 | Mitsubishi Electric Corporation | Power-Supply Unit |
US20060273757A1 (en) * | 2005-06-07 | 2006-12-07 | Naguib Ramez Y | Portable devices solar charger case |
US20070035917A1 (en) * | 2005-08-09 | 2007-02-15 | Apple Computer, Inc. | Methods and apparatuses for docking a portable electronic device that has a planar like configuration and that operates in multiple orientations |
US20070182363A1 (en) * | 2006-01-30 | 2007-08-09 | Fu-I Yang | Portable power supply |
Non-Patent Citations (1)
Title |
---|
CLIFFORD: ""Cyberkids"", EDUCATION CANADA, vol. 45, no. 2, 2005, pages 14 - 16, Retrieved from the Internet <URL:http://eric.ed.gov> * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011100040A1 (en) * | 2010-02-15 | 2011-08-18 | Liberty Hardware Mfg. Corp. | Method of charging an energy storage device |
US10034527B2 (en) | 2015-11-06 | 2018-07-31 | JRSK, Inc. | Luggage system employing a telescopically-extendable handle and rechargeable power supply assembly |
US10595608B2 (en) | 2015-11-06 | 2020-03-24 | JRSK, Inc. | Luggage system employing a telescopically-extendable handle and battery power supply assembly equipped with a semi-automatic battery power module ejection mechanism |
US10219600B2 (en) | 2015-11-06 | 2019-03-05 | JRSK, Inc. | Hard-shell luggage system having a laundry bag subsystem with an integrated compression-pad subsystem |
US10219599B2 (en) | 2015-11-06 | 2019-03-05 | JRSK, Inc. | Hard-shell luggage systems |
USD877508S1 (en) | 2015-11-06 | 2020-03-10 | JRSK, Inc. | Luggage |
USD877506S1 (en) | 2015-11-06 | 2020-03-10 | JRSK, Inc. | Luggage |
USD877507S1 (en) | 2015-11-06 | 2020-03-10 | JRSK, Inc. | Luggage |
US10609997B2 (en) | 2015-11-06 | 2020-04-07 | JRSK, Inc. | Telescopically-extendable handle and rechargeable power supply assembly for luggage |
US10624431B2 (en) | 2015-11-06 | 2020-04-21 | JRSK, Inc. | Hard-shell luggage system having a front accessible recessed pouch |
US10729217B2 (en) | 2015-11-06 | 2020-08-04 | JRSK, Inc. | Hard-shell luggage system having a telescopically-extendible handle and rechargeable battery supply assembly, and a compression-pad subsystem and a laundry bag subsystem |
WO2018172551A3 (en) * | 2017-03-23 | 2018-12-13 | The European Union, Represented By The European Commission | Thermo-electric generator system, monitoring system therefor, and methods of designing and constructing them |
Also Published As
Publication number | Publication date |
---|---|
US20110012552A1 (en) | 2011-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10910833B2 (en) | Adaptable recharging and lighting station and methods of using the same | |
US7554285B2 (en) | Portable battery charger | |
US10135271B2 (en) | Multi-functional portable power charger | |
US9496728B2 (en) | Portable backup charger | |
AU2008207816B2 (en) | Portable power supply | |
US10075000B2 (en) | Safety circuit for multi-function portable power charger | |
US9041338B2 (en) | Portable solar power supply | |
CN101267124B (en) | Battery pack | |
US6833685B2 (en) | Battery charger with standby mode | |
US8947040B2 (en) | Universal Charger | |
KR101074785B1 (en) | A battery management system and control method thereof, and energy storage system including the battery management system | |
CN101816110B (en) | Circuit arrangement with multiple batteries | |
KR101186724B1 (en) | Battery packs | |
EP2830188B1 (en) | Wireless charger equipped with auxiliary power supply and auxiliary power device | |
US8450979B2 (en) | Power adapter with internal battery | |
CN101171718B (en) | Bidirectional battery charge controller | |
US9093855B2 (en) | Portable battery charger | |
US7839119B2 (en) | Charging device for portable electronic device battery and portable phone battery | |
US8222863B2 (en) | Battery pack | |
US7595609B2 (en) | Battery system power path configuration and methods for implementing same | |
US20120176078A1 (en) | Solar chargeable battery for portable devices | |
US8362745B2 (en) | Method and apparatus for harvesting energy | |
TWI231639B (en) | Charger for mobile phone and operation method for the same and charging apparatus for mobile phone and charging method for the same | |
US8058840B2 (en) | Rechargeable battery assembly with movable connector and power conversion circuitry | |
US20090224722A1 (en) | Purse Having A Power Recharger Built Therein |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08835553 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08835553 Country of ref document: EP Kind code of ref document: A1 |