WO2009043892A1 - Circuit de protection pour mosfet - Google Patents

Circuit de protection pour mosfet Download PDF

Info

Publication number
WO2009043892A1
WO2009043892A1 PCT/EP2008/063189 EP2008063189W WO2009043892A1 WO 2009043892 A1 WO2009043892 A1 WO 2009043892A1 EP 2008063189 W EP2008063189 W EP 2008063189W WO 2009043892 A1 WO2009043892 A1 WO 2009043892A1
Authority
WO
WIPO (PCT)
Prior art keywords
mosfet
diode
signal
gate
module
Prior art date
Application number
PCT/EP2008/063189
Other languages
English (en)
Inventor
André Bouchet
Bertrand Gerfault
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to US12/681,552 priority Critical patent/US8094423B2/en
Priority to EP08804978.8A priority patent/EP2193602B1/fr
Publication of WO2009043892A1 publication Critical patent/WO2009043892A1/fr

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/52Circuit arrangements for protecting such amplifiers
    • H03F1/523Circuit arrangements for protecting such amplifiers for amplifiers using field-effect devices

Definitions

  • the present invention relates to a protection circuit for field effect transistors in MOS technology, these transistors being commonly called MOSFETs with reference to the English expression "Metal-Oxide Semiconductor Field Effect Transistor".
  • the invention applies in particular to the protection of power MOSFETs included in amplification stages of electronic systems.
  • the power MOSFETs used in the amplification stages of these systems are sometimes subjected to electric shocks which can lead to their damage or even their destruction.
  • a power amplifier present in a radio communication system is sometimes subjected to sudden changes in load impedances, for example when connecting / disconnecting an antenna at the output of the amplifier or when a spectral band switching in operation. In the use phase of the system, the accumulation of these electric shocks can degrade the reliability of the amplifier.
  • MOSFET whose intrinsic characteristics make it possible to withstand rather unfavorable operating conditions, without however being able to protect the MOSFET against certain incidents such as excessively high excitation currents.
  • Some circuits have been proposed to protect the MOSFETs. In particular, it is known to associate the MOSFET a circuit behaving as a fuse cutting the excitation current of the MOSFET in case of malfunction.
  • known circuits do not operate in radio frequencies and / or require many components.
  • a protection circuit comprising a switching transistor acting as a switch between the gate of the MOSFET to be protected and the electrical earth, the switching transistor being placed in the closed position when a control signal is emitted on the drain of said transistor of commutation.
  • this switching transistor when this switching transistor is placed open position, it plays the unwanted role of capacity between the gate of the MOSFET and the electrical ground, this capacity disrupting the operation of the circuit including the MOSFET, especially at high frequencies.
  • the protection circuit should preferably neither affect the performance of the circuit including the MOSFET nor restrict its operating ranges, particularly in temperature.
  • An object of the invention is to protect a MOSFET from damage or destruction by associating a protective module with few components and not affecting or almost no operation of the circuit comprising said MOSFET.
  • the subject of the invention is a circuit comprising at least one MOSFET protected by a blocking module of said MOSFET, the module being placed between the gate of the MOSFET and an electrical conductor, the module comprising switched connection means having at least minus two states:
  • a first state operating a connection of the gate of the MOSFET with the conductor, which is maintained at an electrical potential adapted to block the MOSFET, this first state being activated in the presence of an alarm signal
  • a second state operating a disconnection of the gate of the MOSFET this second state being activated in the absence of an alarm signal
  • the circuit being characterized in that the switching means comprise at least one diode and a switching transistor to field effect, the anode of the diode being connected to the gate of the MOSFET, the cathode of the diode being connected to the drain of the switching transistor, the source of the switching transistor being connected to the electrical conductor, and the gate of the transistor of switching being controlled by the alarm signal.
  • the protection circuit thus constitutes a power switch with low parasitic elements, a simple switching transistor does not not not allowing both to protect the MOSFET and to allow its normal operation out of protection.
  • the switching means are based on the diode and not on the switching transistor.
  • the switching transistor is used to turn the diode on in the off mode.
  • the switching transistor is a field effect transistor.
  • the diode may be a PIN diode.
  • the circuit according to the invention may comprise a counter-bias resistor, said resistor being fed on its first terminal by a voltage source and connected by its second terminal to the drain of the switching transistor.
  • the diode is a Schottky diode.
  • the electrical conductor is connected to the electrical ground.
  • the alarm signal can be generated by a control module comprising at least one comparator, which compares a reference signal with a second signal representing a physical quantity to be monitored to generate an alert signal when the second signal exceeds a defined threshold by the reference signal, the alarm signal being produced by combining the warning signals from the comparators.
  • the MOSFET is a power MOSFET.
  • the MOSFET can operate in radio frequencies.
  • FIG. 1 a first embodiment of a circuit comprising a protective module according to the invention
  • FIG. 2 an equivalent diagram showing the principle of the protective module according to the invention
  • FIG. 3 a second embodiment of a circuit comprising a protective module according to the invention
  • FIG. 4 an embodiment of a control module producing an alarm signal for the protective module according to the invention
  • FIG. 1 shows an embodiment of a circuit comprising a protective module according to the invention.
  • a MOSFET 102 included in an electronic device 100 for example a power amplification circuit, is associated with a protective module 101.
  • a first access terminal 101a to the protective module 101 is connected to the gate 102a of the MOSFET 102 to be protected.
  • a second access terminal 101b to the protective module 101 is connected to the electrical ground 103.
  • a third access terminal 101c to the protective module 101 is connected to a control module 110.
  • the source 102b of the MOSFET 102 is connected to the electric ground 103.
  • the protective module 101 comprises a diode 104, a resistor 106, and a transistor 108.
  • the transistor 108 is, in the example, a field effect transistor, which transistor type being suitable for switching.
  • the anode 104a of the diode 104 is connected to the first access terminal 101a to the protective module 101.
  • the cathode 104b of the diode 104 is connected to a first terminal 106a of the resistor 106 and the drain 108c of the transistor 108.
  • the source 108b of the transistor 108 is connected to the second access terminal 101b to the protective module 101, ie to the electrical ground 103, while the gate 108a of the transistor 108 is connected to the third base station 101c to the protective module 101, in other words, to the control module 110.
  • the second terminal 106b of the resistor 106 is connected to a voltage source 114.
  • the control module 110 receives, at the input 110a, indicator signals 112 coming, for example, from sensors arranged in the electronic device 100. These sensors make it possible, for example, to monitor the temperature, the standing wave ratio present in the circuit or the current received at the gate of the MOSFET 102.
  • a sensor indicating an abnormal value makes it possible to anticipate hostile operating conditions for the MOSFET 102, an abnormal value triggering a signal alarm and / or a control signal to prevent damage to the MOSFET 102. For example, a sudden load change in the output of the electronic device 100 suddenly increases the standing wave ratio present in the device 100.
  • a threshold stored for example at the level of the control module 110, is determined as a function of the minimum rate of standing waves from which the protection of the MOSFET 102 must be triggered, this threshold being chosen in particular according to the characteristics of the MOSFET 102 used. If the standing wave ratio exceeds the threshold chosen, then an alarm signal 111 is delivered to an output 110b of the control module 110.
  • Other thresholds each corresponding to a physical quantity to be monitored, can be stored in the control module 110.
  • the MOSFET 102 to be protected is enriched, which means that a zero electric potential at the gate 102a of the MOSFET 102 is sufficient to block it.
  • the gate 108a of the transistor 108 is controlled by a signal from the output 110b of the control module 110.
  • This signal is an electric current received by the gate of the transistor 108a, then increasing the voltage V G s between the gate 108a and the source 108b of the transistor 108.
  • the increase of the voltage V G acts as a command allowing, when V G s exceeds the threshold voltage of the transistor 108, to almost short-circuit the drain 108c of the transistor 108 with its source 108b, which is connected to the electrical ground 103.
  • a short circuit is substantially operated between the first access terminal 101a and the second terminal of access 101 b of the protective module 101, that is to say, in the example, between the gate 102a of the MOSFET 102 and the electrical ground 103.
  • This conduction makes it possible to derive the gate current 102a of the MOSFET 102 towards the electrical ground 103 , stopping In this case, MOSFET 102 is energized. MOSFET 102 then remains blocked and thus protected.
  • the second access terminal 101b of the protective module 101 is connected to a voltage source and not to the electrical ground 103 as illustrated in FIG. 1.
  • This variant can in particular be used to protect depletion MOSFETs for which a polarization of the gate 102a MOSFET 102 at a non-zero voltage is necessary to be able to block the MOSFET 102.
  • the second access terminal 101b of the protective module 101 is connected to a source of negative voltage, so as to bias the gate 102a of the MOSFET 102 to cancel the conductivity of the conduction channel.
  • the protective module 101 can be modeled as a switch 201 between the gate 102a of the MOSFET 102 and an electric potential which, in the example, is the electric ground 103.
  • the transistor 108 plays a switch function controlled by the control module 110. Without abnormality detected by the control module 110, the switch formed by the transistor 108 and the diode 104 (fig.1) remains open, which makes the protective module 101 electrically quasi-transparent with respect to the MOSFET 102.
  • the voltage V G s increases suddenly and the transistor 108 conducts the current between its drain 108c and its source 108b, otherwise said, the switch 201 is placed in the closed position.
  • the diode 104 masks the parasitic capacitance of the transistor 108 when the latter is in open mode, that is to say when it does not conduct the current between its drain 108c and its source 108b. Without the diode 104, the parasitic capacitance of the transistor 108 would parallel the MOSFET 102 would greatly limit the operation at high frequencies of the circuit. Due to the presence of the diode 104, provided with a low equivalent inverse capacitance, the effects of the parasitic capacitance of the transistor 108 when it is placed in the open position can be canceled.
  • the resulting capacitance CS due to the transistor 108 and to the diode 104 is equal to 1 / (1 / C1 + 1 / C2) ⁇ 1.96pF.
  • the parasitic capacitance C1 of the transistor 108 is very large compared with the equivalent capacitance C2 of the diode 104, the capacitance CS resulting from the series association of these two capacitors is almost equal to that of the diode 104, so to a very low CS capacity.
  • the diode 104 In order to maintain a positive voltage V Ds between the drain 108c and the source 108b of the transistor 108 when the excitation current of the gate 102a of the MOSFET 102 is reciprocating, the diode 104 performs a half-wave rectification of the current. At high frequencies, those of the order of 1 GHz, for example, a PIN ("Positive Intrinsic Negative Diode") diode is preferably used for its low switching times. In this case, the counter-bias resistor 106 supplied by the voltage source 114 becomes necessary.
  • FIG. presents a second embodiment of the protective module according to the invention in which no polarization resistor is used.
  • the switch 201 between the gate 102a of the MOSFET 102 and the electrical ground 103 may be made with other means, for example by thyristor or by electromechanical microsystem, often referred to as MEMS with reference to FIG. acronym for "Micro Electro Mechanical Systems”.
  • FIG. 4 shows an embodiment of a control module used for the protective module according to the invention.
  • the control module 110 of FIG. 4 comprises, for each physical quantity monitored, a threshold voltage comparator 402, 404, 406, a flip-flop 408, 410, 412, and a light-emitting diode 414, 416, 418.
  • a threshold voltage comparator 402, 404, 406, a flip-flop 408, 410, 412, and a light-emitting diode 414, 416, 418 In FIG. As shown in FIG. 4, three physical quantities are monitored: the temperature, the standing wave ratio, and the excitation current received by the gate 102a of the MOSFET 102. Other physical quantities could be monitored by the device.
  • a first portion 421 of the control module 110, for monitoring the temperature is described in more detail below.
  • the first part 421 comprises a comparator 402 comprising two inputs 402a, 402b.
  • a first electrical signal 413 whose temperature dependent characteristics is directed to the first input 402a, while the second input 402b receives a reference electrical signal 411.
  • the amplitude of the first signal 413 indicates the temperature measured at the electronic device 100 and the reference signal 411 is a direct current of 5V.
  • the first signal 413 representing the temperature can be generated by the electronic device 100 using sensors known to those skilled in the art, as well as the other signals representing the other physical quantities monitored.
  • the comparator 402 also includes an output 402c which provides the result of the comparison between the first signal 413 and the reference electrical signal 411.
  • the voltage of the reference signal 411 is chosen as a function of the maximum temperature value admitted by the electronic device 100.
  • a first signal 413 of voltage higher than that of the reference signal 411 leads to producing a signal of alert 415 at the comparator output 402c.
  • the voltage of the first signal 413 does not exceed the voltage of the reference signal 411, no signal is emitted at the output of the comparator 402 of the example.
  • the same voltage value or different reference voltage values may be used.
  • the output 402c of the comparator 402 is connected to a flip-flop 408 connected in series with a light-emitting diode 414.
  • the flip-flop 408 In the absence of an alert signal 415 at the output 402c of the comparator 402, the flip-flop 408 remains in the open position. As soon as an alert signal 415 is received by the flip-flop 408, the latter is placed in the closed position, so as to turn on the light-emitting diode 414.
  • This light-emitting diode 414 makes it possible to alert the user of the electronic device 100 that an abnormal temperature has been reached.
  • the control module 110 has neither a flip-flop nor a light-emitting diode.
  • Each portion 421, 422, 423 is therefore able to provide an alert signal at the output 402c, 404c, 406c of the comparator 402, 404, 406.
  • these warning signals are gathered in a logical function, which in the example is a module of "or inclusive" 420.
  • each comparator 402, 404, 406 is connected to an input 420a, 420b, 420c of the "or inclusive" module 420, so that, if at least one of the comparators 402, 404, 406 produces an alert signal, the "or inclusive" module generates an alarm signal 111 on its output 42Od, connected to the output 110b of the control module 110. Accordingly, if at least one of the monitored physical quantities changes abnormally , which is a sign of a malfunction of the device 100, then an alarm signal 111 is generated at the output 110b of the control module 110.
  • the same control module 110 may be associated with several protective circuits 101 so as to control several MOSFET gate locks concomitantly.
  • FIG. 5 shows an implementation of the protective module according to the invention on symmetrically mounted MOSFETs.
  • the gate 502a of a first MOSFET 502 is connected to a first protective module 501 and the gate 502a 'of a second MOSFET 502' is connected to a second protective module 501 '.
  • each protective module 501, 501 ' comprises, as in the embodiment shown in FIG.
  • a transistor 508, 508' and a diode 504, 504 ' whose anode 504a, 504a' is connected to the input 501a, 501a 'of the protective module 501, 501' and whose cathode 504b, 504b 'is connected to the drain 508c, 508c' of the transistor.
  • the source 508b, 508b 'of the transistor is connected to the electrical ground 503.
  • a control module 510 receiving indicating signals 512 is connected to the gate 508a, 508a' of each of the transistors 508, 508 '.
  • An advantage of the protective module according to the invention is that it requires only a few simple components, which makes it a space-saving and inexpensive circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Electronic Switches (AREA)

Abstract

La présente invention concerne un circuit de protection pour transistors à effet de champ en technologie MOS. Le circuit comporte au moins un MOSFET (102) protégé par un module de blocage (101) dudit MOSFET, le module (101) étant placé entre la grille (102a) du MOSFET et un conducteur électrique (103), le module comportant des moyens de connexion commutés ayant au moins deux états : un premier état opérant une connexion de la grille (102a) du MOSFET avec le conducteur (103), lequel est maintenu à un potentiel électrique adapté à bloquer le MOSFET (102), ce premier état étant activé en présence d'un signal d'alarme (111); et un deuxième état opérant une déconnexion de la grille (102a) du MOSFET, ce deuxième état étant activé en l'absence de signal d'alarme (111). L'invention s'applique notamment à la protection des MOSFET de puissance compris dans des étages d'amplification de systèmes électroniques.

Description

Circuit de protection pour MOSFET
La présente invention concerne un circuit de protection pour transistors à effet de champ en technologie MOS, ces transistors étant couramment appelés MOSFET en référence à l'expression anglo-saxonne « Metal-Oxide-Semiconductor Field Effect Transistor ». L'invention s'applique notamment à la protection des MOSFET de puissance compris dans des étages d'amplification de systèmes électroniques.
Les MOSFET de puissance utilisés dans les étages d'amplification de ces systèmes sont parfois soumis à des chocs électriques qui peuvent conduire à leur endommagement, voire à leur destruction. A titre d'exemple, un amplificateur de puissance présent dans un système de radiocommunications est parfois soumis à des changements brutaux d'impédances de charge, par exemple lors d'une connexion/déconnexion d'une antenne en sortie de l'amplificateur ou d'une commutation de bande spectrale en fonctionnement. En phase d'utilisation du système, l'accumulation de ces chocs électriques peut dégrader la fiabilité de l'amplificateur.
Par ailleurs, durant la phase de mise au point des systèmes électroniques, l'amplitude du courant électrique utilisé peut varier fortement du fait des essais opérés sur le système, rendant ainsi les composants, notamment les MOSFET, vulnérables aux destructions. Ces destructions pendant les phases de mise au point engendrent des surcoûts importants, certains MOSFET de puissance étant particulièrement coûteux. Beaucoup de systèmes existants reposent sur l'utilisation de
MOSFET dont les caractéristiques intrinsèques permettent de résister à des conditions de fonctionnement assez défavorables, sans pouvoir néanmoins protéger le MOSFET contre certains incidents tels que des courants d'excitation trop élevés. Quelques circuits ont été proposés afin de protéger les MOSFET. Notamment, il est connu d'associer au MOSFET un circuit se comportant comme un fusible coupant le courant d'excitation du MOSFET en cas de dysfonctionnement. Cependant, les circuits connus ne fonctionnent pas en radiofréquences et/ou requièrent beaucoup de composants. Le brevet américain publié sous la référence US6856200 pour la société Marvell International Ltd. Propose un circuit de protection comprenant un transistor de commutation jouant le rôle d'interrupteur entre la grille du MOSFET à protéger et la masse électrique, le transistor de commutation étant placé en position fermée lorsqu'un signal de commande est émis sur le drain dudit transistor de commutation. Toutefois, lorsque ce transistor de commutation est placé position ouverte, il joue le rôle non souhaité de capacité entre la grille du MOSFET et la masse électrique, cette capacité perturbant le fonctionnement du circuit comprenant le MOSFET, notamment aux fréquences élevées.
Le circuit de protection ne doit, de préférence, ni affecter les performances du circuit comprenant le MOSFET ni restreindre ses plages de fonctionnement, en particulier en température.
Un but de l'invention est de protéger un MOSFET de l'endommagement ou de la destruction en lui associant un module protecteur comportant peu de composants et n'affectant pas ou quasiment pas le fonctionnement du circuit comprenant ledit MOSFET. A cet effet, l'invention a pour objet un circuit comportant au moins un MOSFET protégé par un module de blocage dudit MOSFET, le module étant placé entre la grille du MOSFET et un conducteur électrique, le module comportant des moyens de connexion commutés ayant au moins deux états :
• un premier état opérant une connexion de la grille du MOSFET avec le conducteur, lequel est maintenu à un potentiel électrique adapté à bloquer le MOSFET, ce premier état étant activé en présence d'un signal d'alarme,
• un deuxième état opérant une déconnexion de la grille du MOSFET, ce deuxième état étant activé en l'absence de signal d'alarme, le circuit étant caractérisé en ce que les moyens de commutation comportent au moins une diode et un transistor de commutation à effet de champ, l'anode de la diode étant reliée à la grille du MOSFET, la cathode de la diode étant reliée au drain du transistor de commutation, la source du transistor de commutation étant reliée au conducteur électrique, et la grille du transistor de commutation étant commandée par le signal d'alarme.
Le circuit de protection constitue ainsi un commutateur de puissance avec des éléments parasites faibles, un simple transistor de commutation ne permettant pas à la fois d'effectuer une protection du MOSFET et de permettre son fonctionnement normal hors protection.
Contrairement aux circuits de protection de l'art antérieur, les moyens de commutation sont basés sur la diode et non sur le transistor de commutation. Le transistor de commutation est utilisé pour mettre la diode en conduction la mettre en mode bloqué. Selon un mode de réalisation, le transistor de commutation est un transistor à effet de champ.
La diode peut être une diode PIN.
Le circuit selon l'invention peut comporter une résistance de contre- polarisation, ladite résistance étant alimentée sur sa première borne par une source de tension et reliée par sa deuxième borne au drain du transistor de commutation.
Selon un autre mode de réalisation, la diode est une diode Schottky.
Selon un mode de réalisation dans lequel le MOSFET est à enrichissement, le conducteur électrique est relié à la masse électrique.
Le signal d'alarme peut être généré par un module de commande comportant au moins un comparateur, lequel compare un signal de référence avec un second signal représentant une grandeur physique à surveiller pour générer un signal d'alerte lorsque le second signal dépasse un seuil défini par le signal de référence, le signal d'alarme étant produit par combinaison des signaux d'alerte issus des comparateurs.
Selon un mode de réalisation, le MOSFET est un MOSFET de puissance. Par ailleurs, le MOSFET peut fonctionner en radiofréquences.
D'autres caractéristiques apparaîtront à la lecture de la description détaillée donnée à titre d'exemple et non limitative qui suit faite en regard de dessins annexés qui représentent :
- la figure 1 , un premier mode de réalisation d'un circuit comportant un module protecteur selon l'invention, - la figure 2, un schéma équivalent montrant le principe du module protecteur selon l'invention,
- la figure 3, un second mode de réalisation d'un circuit comportant un module protecteur selon l'invention, - la figure 4, un mode de réalisation d'un module de commande produisant un signal d'alarme pour le module protecteur selon l'invention,
- la figure 5, une mise en œuvre du module protecteur selon l'invention sur des MOSFET en montage symétrique.
La figure 1 présente un mode de réalisation d'un circuit comportant un module protecteur selon l'invention. Un MOSFET 102 compris dans un dispositif électronique 100, par exemple un circuit d'amplification de puissance, est associé à un module protecteur 101.
Une première borne d'accès 101a au module protecteur 101 est reliée à la grille 102a du MOSFET 102 à protéger. Une seconde borne d'accès 101 b au module protecteur 101 est reliée à la masse électrique 103. Une troisième borne d'accès 101 c au module protecteur 101 est reliée à un module de commande 110. La source 102b du MOSFET 102 est reliée à la masse électrique 103. Dans l'exemple de la figure 1 , le module protecteur 101 comporte une diode 104, une résistance 106, et un transistor 108. Le transistor 108 est, dans l'exemple, un transistor à effet de champ, ce type de transistor étant approprié pour effectuer des commutations. L'anode 104a de la diode 104 est connectée à la première borne d'accès 101 a au module protecteur 101. La cathode 104b de la diode 104 est reliée à une première borne 106a de la résistance 106 et au drain 108c du transistor 108. La source 108b du transistor 108 est reliée à la seconde borne d'accès 101 b au module protecteur 101 , c'est à dire à la masse électrique 103, tandis que la grille 108a du transistor 108 est reliée à la troisième borne d'accès 101c au module protecteur 101 , autrement dit, au module de commande 110. La seconde borne 106b de la résistance 106 est reliée à une source de tension 114.
Le module de commande 110 reçoit en entrée 110a des signaux indicateurs 112 issus, par exemple, de capteurs disposés dans le dispositif électronique 100. Ces capteurs permettent, par exemple, de surveiller la température, le taux d'ondes stationnaires présent dans le circuit ou encore le courant reçu au niveau de la grille du MOSFET 102. Un capteur indiquant une valeur anormale permet d'anticiper des conditions de fonctionnement hostiles pour le MOSFET 102, une valeur anormale déclenchant un signal d'alarme et/ou un signal de commande afin de prévenir l'endommagement du MOSFET 102. Par exemple, un changement brutal de charge en sortie du dispositif électronique 100 accroît soudainement le taux d'ondes stationnaires présent dans le dispositif 100. Aussi, un seuil, mémorisé par exemple au niveau du module de commande 110, est déterminé en fonction du taux minimal d'ondes stationnaires à partir duquel la protection du MOSFET 102 doit être déclenchée, ce seuil étant notamment choisi selon les caractéristiques du MOSFET 102 utilisé. Si le taux d'ondes stationnaires dépasse le seuil choisi, alors un signal d'alarme 111 est délivré sur une sortie 110b du module de commande 110. D'autres seuils, correspondant chacun à une grandeur physique à surveiller, peuvent être mémorisés dans le module de commande 110.
Dans l'exemple de la figure 1 , le MOSFET 102 à protéger est à enrichissement, ce qui signifie qu'un potentiel électrique nul au niveau de la grille 102a du MOSFET 102 suffit à le bloquer.
Par ailleurs, la grille 108a du transistor 108 est commandée par un signal issu de la sortie 110b du module de commande 110. Ce signal est un courant électrique reçu par la grille du transistor 108a, augmentant alors la tension VGs entre la grille 108a et la source 108b du transistor 108. L'augmentation de la tension VGs agit comme une commande permettant, lorsque VGs dépasse la tension de seuil du transistor 108, de quasiment court-circuiter le drain 108c du transistor 108 avec sa source 108b, laquelle est connectée à la masse électrique 103. Ainsi, lorsqu'un courant est produit en sortie 110b du module de commande 110, un court-circuit est sensiblement opéré entre la première borne d'accès 101 a et la deuxième borne d'accès 101 b du module protecteur 101 , c'est à dire, dans l'exemple, entre la grille 102a du MOSFET 102 et la masse électrique 103. Cette conduction permet de dériver le courant de grille 102a du MOSFET 102 vers la masse électrique 103, stoppant ainsi l'excitation du MOSFET 102. Le MOSFET 102 reste alors bloqué, donc protégé.
Selon une variante du module protecteur selon l'invention, la deuxième borne d'accès 101 b du module protecteur 101 est reliée à une source de tension et non pas à la masse électrique 103 comme illustré en figure 1. Cette variante peut notamment être employée pour protéger des MOSFET à appauvrissement pour lesquels une polarisation de la grille 102a du MOSFET 102 à une tension non nulle est nécessaire pour pouvoir bloquer le MOSFET 102. A titre d'exemple, dans le cas d'un MOSFET 102 à canal N à appauvrissement, la deuxième borne d'accès 101 b du module protecteur 101 est reliée à une source de tension négative, de manière à polariser la grille 102a du MOSFET 102 pour annuler la conductivité du canal de conduction.
Comme l'illustre la figure 2, le module protecteur 101 peut être modélisé comme un interrupteur 201 entre la grille 102a du MOSFET 102 et un potentiel électrique qui, dans l'exemple, est la masse électrique 103. En effet, le transistor 108 joue un rôle d'interrupteur commandé par le module de commande 110. Sans anomalie détectée par le module de commande 110, l'interrupteur formé par le transistor 108 et la diode 104 (fig.1 ) reste ouvert, ce qui rend le module protecteur 101 quasi-transparent électriquement vis à vis du MOSFET 102. Lorsqu'un signal d'alarme 111 est produit par le module 110, la tension VGs augmente soudainement et le transistor 108 conduit le courant entre son drain 108c et sa source 108b, autrement dit, l'interrupteur 201 est placé en position fermée.
La diode 104 masque la capacité parasite du transistor 108 lorsque celui-ci est en mode ouvert, c'est-à-dire lorsqu'il ne conduit pas le courant entre son drain 108c et sa source 108b. Sans la diode 104, la capacité parasite du transistor 108 se placerait en parallèle au MOSFET 102 limiterait fortement le fonctionnement aux fréquences élevées du circuit. Grâce à la présence de la diode 104, pourvue d'une faible capacité inverse équivalente, on peut annuler les effets de la capacité parasite du transistor 108 lorsqu'il est placé en position ouverte. A titre d'illustration, pour une capacité C1 parasite du transistor 108 égale à 10OpF, une capacité C2 équivalente de la diode 104 égale à 2pF, la capacité CS résultante due au transistor 108 et à la diode 104 est égale à 1/(1/C1 +1/C2) ≈ 1.96pF. Autrement dit, lorsque la capacité parasite C1 du transistor 108 est très grande devant la capacité C2 équivalente de la diode 104, la capacité CS résultant de l'association en série de ces deux capacités est quasiment égale à celle de la diode 104, donc à une capacité CS très faible. L'influence néfaste de cette capacité résultante CS est donc largement amoindrie grâce à la présence de la diode 104. Afin de maintenir une tension VDs positive entre le drain 108c et la source 108b du transistor 108 lorsque le courant d'excitation de la grille 102a du MOSFET 102 est alternatif, la diode 104 effectue un redressement à demi-alternance du courant. Aux fréquences élevées, celles de l'ordre par exemple de 1 GHz, une diode PIN (acronyme anglo-saxon pour « Positive Intrinsic Négative Diode ») est, de préférence, employée pour ses faibles temps de commutation. Dans ce cas, la résistance 106 de contre-polarisation alimentée par la source de tension 114 devient nécessaire. A des fréquences moins élevées, par exemple de l'ordre de quelques centaines de kilohertz, une diode de type Schottky peut être utilisée, auquel cas la résistance 106 de contre-polarisation n'est pas nécessaire, comme l'illustre la figure 3 qui présente un second mode de réalisation du module protecteur selon l'invention dans lequel aucune résistance de polarisation n'est utilisée. Les éléments identiques aux éléments déjà présentés sur les autres figures portent les mêmes références.
Selon un autre mode de réalisation, l'interrupteur 201 entre la grille 102a du MOSFET 102 et la masse électrique 103 peut être réalisé avec d'autres moyens, par exemple par thyristor ou par microsystème électromécanique, souvent qualifié de MEMS en référence à l'acronyme anglo- saxon « Micro Electro Mechanical Systems ».
Afin de mieux comprendre le principe d'activation du module protecteur 101 , la figure 4 présente un mode de réalisation d'un module de commande utilisé pour le module protecteur selon l'invention. Le module de commande 110 de la figure 4 comporte, pour chaque grandeur physique surveillée, un comparateur de tension à seuil 402, 404, 406, une bascule 408, 410, 412, et une diode électroluminescente 414, 416, 418. Dans l'exemple de la figure 4, trois grandeurs physiques sont surveillées : la température, le taux d'ondes stationnaires, et le courant d'excitation reçu par la grille 102a du MOSFET 102. D'autres grandeurs physiques pourraient être surveillées par le dispositif. Une première partie 421 du module de commande 110, permettant de surveiller la température est décrite de manière plus détaillée ci-après. Chacune des autres parties 422, 423 du module de commande 110 permet de surveiller une autre grandeur physique et est réalisée selon le même principe que la première partie 421. La première partie 421 comporte un comparateur 402 comprenant deux entrées 402a, 402b. Un premier signal électrique 413 dont les caractéristiques dépendent de la température est dirigé vers la première entrée 402a, tandis que la seconde entrée 402b reçoit un signal électrique 411 de référence. A titre d'exemple, l'amplitude du premier signal 413 indique la température mesurée au niveau du dispositif électronique 100 et le signal 411 de référence est un courant continu de 5V. Le premier signal 413 représentant la température peut être généré par le dispositif électronique 100 à l'aide de capteurs connus de l'homme du métier, de même que les autres signaux représentant les autres grandeurs physiques surveillées. Le comparateur 402 comprend également une sortie 402c qui fournit le résultat de la comparaison entre le premier signal 413 et le signal électrique 411 de référence. Dans l'exemple, la tension du signal 411 de référence est choisie en fonction de la valeur maximale de température admise par le dispositif électronique 100. Un premier signal 413 de tension supérieure à celle du signal 411 de référence conduit à produire un signal d'alerte 415 en sortie 402c du comparateur. Lorsque la tension du premier signal 413 ne dépasse pas la tension du signal 411 de référence, aucun signal n'est émis en sortie du comparateur 402 de l'exemple. Pour les autres parties 421 , 422, 423 du module de commande 110, une même valeur de tension ou des valeurs de tension de référence différentes peuvent être utilisées. La sortie 402c du comparateur 402 est reliée à une bascule 408 montée en série avec une diode électroluminescente 414. En l'absence de signal d'alerte 415 au niveau de la sortie 402c du comparateur 402, la bascule 408 demeure en position ouverte. Dès qu'un signal d'alerte 415 est reçu par la bascule 408, celle-ci est placée en position fermée, de manière à allumer la diode électroluminescente 414. Cette diode électroluminescente 414 permet d'alerter l'utilisateur du dispositif électronique 100 qu'une température anormale a été atteinte. Selon un mode de réalisation simplifié, le module de commande 110 ne comporte ni bascule, ni diode électroluminescente.
Chaque partie 421 , 422, 423 est donc susceptible de fournir un signal d'alerte au niveau de la sortie 402c, 404c, 406c du comparateur 402, 404, 406. Pour produire le signal d'alarme 111 permettant d'activer le module protecteur 101 (figure 1 ), ces signaux d'alerte sont rassemblés dans une fonction logique, qui dans l'exemple, est un module de « ou inclusif » 420. Ainsi la sortie 402c, 404c, 406c de chaque comparateur 402, 404, 406 est reliée à une entrée 420a, 420b, 420c du module de « ou inclusif » 420, de sorte que, si au moins un des comparateurs 402, 404, 406 produit un signal d'alerte, le module de « ou inclusif » génère un signal d'alarme 111 sur sa sortie 42Od, reliée à la sortie 110b du module de commande 110. En conséquence, si au moins une des grandeurs physiques surveillées évolue anormalement, ce qui est le signe d'un dysfonctionnement du dispositif 100, alors un signal d'alarme 111 est généré en sortie 110b du module de commande 110.
Un même module de commande 110 peut être associé à plusieurs circuits protecteurs 101 de manière à commander plusieurs blocages de grilles de MOSFET concomitamment.
Pour illustrer ce principe, la figure 5 présente une mise en œuvre du module protecteur selon l'invention sur des MOSFET en montage symétrique. La grille 502a d'un premier MOSFET 502 est reliée à un premier module protecteur 501 et la grille 502a' d'un second MOSFET 502' est reliée à un second module protecteur 501 '. Dans l'exemple, chaque module protecteur 501 , 501 ' comporte, comme dans le mode de réalisation présenté en figure 3, un transistor 508, 508' et une diode 504, 504' dont l'anode 504a, 504a' est reliée à l'entrée 501 a, 501 a' du module protecteur 501 , 501 ' et dont la cathode 504b, 504b' est reliée au drain 508c, 508c' du transistor. La source 508b, 508b' du transistor est reliée à la masse électrique 503. Un module de commande 510 recevant des signaux indicateurs 512 est relié à la grille 508a, 508a' de chacun des transistors 508, 508'.
Un avantage du module protecteur selon l'invention est qu'il ne requiert que quelques composants simples, ce qui en fait un circuit peu encombrant et peu coûteux.

Claims

REVENDICATIONS
1. Circuit comportant au moins un MOSFET (102) protégé par un module de blocage (101 ) dudit MOSFET, le module (101 ) étant placé entre la grille (102a) du MOSFET et un conducteur électrique (103), le module comportant des moyens de connexion commutés (201 ) ayant au moins deux états :
• un premier état opérant une connexion de la grille (102a) du MOSFET avec le conducteur (103), lequel est maintenu à un potentiel électrique adapté à bloquer le MOSFET (102), ce premier état étant activé en présence d'un signal d'alarme
(1 1 1 ),
• un deuxième état opérant une déconnexion de la grille (102a) du MOSFET, ce deuxième état étant activé en l'absence de signal d'alarme (1 1 1 ), le circuit étant caractérisé en ce que les moyens de commutation
(201 ) comportent au moins une diode (104) et un transistor de commutation (108), l'anode (104a) de la diode étant reliée à la grille (102a) du MOSFET, la cathode (104b) de la diode étant reliée au drain (108c) du transistor de commutation, la source (108b) du transistor de commutation étant reliée au conducteur électrique (103), et la grille (108a) du transistor de commutation étant commandée par le signal d'alarme (1 1 1 ).
2. Circuit selon la revendication 1 , caractérisé en ce que le transistor de commutation (108) est un transistor à effet de champ..
3. Circuit selon la revendication 2, caractérisé en ce que la diode (104) est une diode PIN.
4. Circuit selon l'une des revendications 2 à 3, caractérisé en ce qu'il comporte une résistance (106) de contre-polarisation, ladite résistance étant alimentée sur sa première borne (106b) par une source de tension et reliée par sa deuxième borne (106a) au drain du transistor de commutation.
5. Circuit selon la revendication 2, caractérisé en ce que la diode (104) est une diode Schottky.
6. Circuit selon l'une des revendications précédentes, le MOSFET (102) étant à enrichissement, caractérisé en ce que le conducteur électrique (103) est relié à la masse électrique.
7. Circuit selon l'une des revendications précédentes, caractérisé en ce que le signal d'alarme (111 ) est généré par un module de commande
(110) comportant au moins un comparateur (402, 404, 406), lequel compare un signal de référence (411 ) avec un second signal (413) représentant une grandeur physique à surveiller pour générer un signal d'alerte (415) lorsque le second signal (413) dépasse un seuil défini par le signal de référence (411 ), le signal d'alarme (111 ) étant produit par combinaison des signaux d'alerte issus des comparateurs.
8. Circuit selon l'une des revendications précédentes, caractérisé en ce que le MOSFET (102) est un MOSFET de puissance.
9. Circuit selon l'une des revendications précédentes, caractérisé en ce que le MOSFET (102) fonctionne en radiofréquences.
PCT/EP2008/063189 2007-10-02 2008-10-01 Circuit de protection pour mosfet WO2009043892A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/681,552 US8094423B2 (en) 2007-10-02 2008-10-01 Protection circuit for MOSFET
EP08804978.8A EP2193602B1 (fr) 2007-10-02 2008-10-01 Circuit de protection pour mosfet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0706898 2007-10-02
FR0706898A FR2921773B1 (fr) 2007-10-02 2007-10-02 Circuit de protection pour mosfet

Publications (1)

Publication Number Publication Date
WO2009043892A1 true WO2009043892A1 (fr) 2009-04-09

Family

ID=39495984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/063189 WO2009043892A1 (fr) 2007-10-02 2008-10-01 Circuit de protection pour mosfet

Country Status (4)

Country Link
US (1) US8094423B2 (fr)
EP (1) EP2193602B1 (fr)
FR (1) FR2921773B1 (fr)
WO (1) WO2009043892A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9142951B2 (en) 2009-07-28 2015-09-22 Stmicroelectronics (Rousset) Sas Electronic device for protecting against a polarity reversal of a DC power supply voltage, and its application to motor vehicles
FR2948828B1 (fr) * 2009-07-28 2011-09-30 St Microelectronics Rousset Dispositif electronique de protection contre une inversion de polarite d'une tension d'alimentation continue, et application au domaine de l'automobile
CN106899284A (zh) * 2015-12-20 2017-06-27 西安图安电机驱动系统有限公司 一种直接测量mosfet导通后的漏源电压进行短路保护的电路
TWI664808B (zh) * 2018-11-20 2019-07-01 立積電子股份有限公司 放大裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3792292A (en) * 1972-06-16 1974-02-12 Nat Semiconductor Corp Three-state logic circuit
US4678950A (en) * 1983-05-13 1987-07-07 Nec Corporation Output circuit having an improved protecting circuit
US5229660A (en) * 1990-01-29 1993-07-20 Fujitsu Limited Integrated circuit with means to prevent its logic output circuit breakdown
US6856200B1 (en) * 2002-09-19 2005-02-15 Marvell International Ltd. Protection circuit and method for RF power amplifiers in WLAN tranceivers

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211059A (ja) * 2000-01-26 2001-08-03 Toshiba Corp 半導体スイッチ素子の過電流保護回路
DE102004007208B3 (de) * 2004-02-13 2005-05-25 Infineon Technologies Ag Schaltungsanordnung mit einem Lasttransistor und einer Spannungsbegrenzungsschaltung und Verfahren zur Ansteuerung eines Lasttransistors
TWI243230B (en) * 2004-07-16 2005-11-11 Delta Electronics Inc Hot-swap circuit system for fan tray
US7242560B2 (en) * 2004-09-14 2007-07-10 Delphi Technologies, Inc Discrete circuit for driving field effect transistors
JP4926468B2 (ja) * 2005-12-07 2012-05-09 ローム株式会社 静電破壊保護回路及びこれを備えた半導体集積回路装置
US7592673B2 (en) * 2006-03-31 2009-09-22 Freescale Semiconductor, Inc. ESD protection circuit with isolated diode element and method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3792292A (en) * 1972-06-16 1974-02-12 Nat Semiconductor Corp Three-state logic circuit
US4678950A (en) * 1983-05-13 1987-07-07 Nec Corporation Output circuit having an improved protecting circuit
US5229660A (en) * 1990-01-29 1993-07-20 Fujitsu Limited Integrated circuit with means to prevent its logic output circuit breakdown
US6856200B1 (en) * 2002-09-19 2005-02-15 Marvell International Ltd. Protection circuit and method for RF power amplifiers in WLAN tranceivers

Also Published As

Publication number Publication date
FR2921773A1 (fr) 2009-04-03
US8094423B2 (en) 2012-01-10
EP2193602A1 (fr) 2010-06-09
FR2921773B1 (fr) 2011-04-22
US20100271737A1 (en) 2010-10-28
EP2193602B1 (fr) 2018-12-19

Similar Documents

Publication Publication Date Title
FR3035751A1 (fr) Coupe-circuit pour courant continu et procede d'utilisation
FR2679082A1 (fr) Dispositif de commutation a semiconducteurs pouvant etre commande et comportant un systeme integre de limitation de courant et de coupure pour temperature excessive.
EP2193602B1 (fr) Circuit de protection pour mosfet
EP3428666B1 (fr) Dispositif de commutation électrique et procédé de détection d'usure associé
EP3373459B1 (fr) Protection d'un routeur nfc contre des surtensions
EP3082072B1 (fr) Bloc récepteur d'une radio-étiquette
EP3070798B1 (fr) Dispositif de protection contre des surtensions
EP3280020B1 (fr) Circuit et procédé de protection de moyens de régulation de tension contre les décharges électrostatiques
FR3049766A1 (fr) Dispositif de protection contre des decharges electrostatiques a seuil de declenchement ajustable
FR3021167B1 (fr) Circuit de derivation d'energie et procede de mise en fonctionnement de ce circuit
EP3361268B1 (fr) Circuit de surveillance d'un réseau d'alimentation électrique
EP3806162B1 (fr) Extinction d'une spad
FR2465373A1 (fr) Circuit servant a detecter l'etat d'un contact d'interrupteur isole et installation de reglage de la pression de pneumatiques comportant un tel dispositif
EP3413419B1 (fr) Liaison électrique comprenant un dispositif de protection électrique - test d'intégrité
EP1115195B1 (fr) Redresseur synchrone auto-commandé
EP3420619B1 (fr) Aéronef comprenant un réseau électrique à courant continu et un système de protection dudit réseau
WO2018130594A1 (fr) Dispositif de protection d'un equipement electrique
FR2902888A1 (fr) Dispositif de detection hyperfrequence large bande
EP4107856A1 (fr) Amplificateur de puissance radiofrequence
EP3749937A1 (fr) Methode et dispositif pour detection de depassement d'un seuil de température prédéfini
EP4167261A1 (fr) Dispositif de commutation électrique, système de commutation et procédé associés
EP4376039A1 (fr) Dispositif de coupure de circuit électrique à protection en surtension et procédé de coupure associé
EP2309726B1 (fr) Circuit de détection avec dérivation d'une partie du courant d'un photodétecteur
EP4407825A1 (fr) Dispositif électronique de protection d'une charge électrique, système d'alimentation d'une charge électrique et procédé de commande d'un tel dispositif
FR3070552A1 (fr) Generateur de courant protege contre des surtensions transitoires ou permanentes.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08804978

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008804978

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2128/CHENP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12681552

Country of ref document: US