WO2009035399A1 - Improved use of subframes in a cellular communications system - Google Patents

Improved use of subframes in a cellular communications system Download PDF

Info

Publication number
WO2009035399A1
WO2009035399A1 PCT/SE2008/050276 SE2008050276W WO2009035399A1 WO 2009035399 A1 WO2009035399 A1 WO 2009035399A1 SE 2008050276 W SE2008050276 W SE 2008050276W WO 2009035399 A1 WO2009035399 A1 WO 2009035399A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
traffic
subframe
downlink
parts
Prior art date
Application number
PCT/SE2008/050276
Other languages
French (fr)
Inventor
David Astely
Stefan Parkvall
Johan NYSTRÖM
Original Assignee
Telefonaktiebolaget Lm Ericsson (Publ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40452251&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009035399(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP2010524819A priority Critical patent/JP5016114B2/en
Priority to PL12173734T priority patent/PL2506479T3/en
Priority to CA2698756A priority patent/CA2698756C/en
Priority to PL08724223T priority patent/PL2198550T3/en
Priority to BRPI0816249-2A priority patent/BRPI0816249A2/en
Application filed by Telefonaktiebolaget Lm Ericsson (Publ) filed Critical Telefonaktiebolaget Lm Ericsson (Publ)
Priority to ES08724223T priority patent/ES2390798T3/en
Priority to EP12173734.0A priority patent/EP2506479B1/en
Priority to EP19156060.6A priority patent/EP3512139A1/en
Priority to CN2008801068786A priority patent/CN101803262B/en
Priority to EP08724223A priority patent/EP2198550B1/en
Publication of WO2009035399A1 publication Critical patent/WO2009035399A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M9/00Arrangements for interconnection not involving centralised switching
    • H04M9/02Arrangements for interconnection not involving centralised switching involving a common line for all parties
    • H04M9/022Multiplex systems
    • H04M9/025Time division multiplex systems, e.g. loop systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the present invention discloses a method for use in a cellular communications system, in which system the traffic in a cell is sent in frames.
  • Each frame comprises a first number of subframes, and a second number of said subframes is available for at least either uplink or downlink traffic,
  • TDD Time Division Duplex
  • uplink and downlink traffic use the same carrier frequency
  • interference may also occur between different cells in different but co-located or adjoining systems, for example systems which are run by different operators.
  • guard periods are arranged at the transitions between downlink and uplink traffic, i.e. periods during which no traffic may occur. Guard periods may also be arranged at transitions from uplink to downlink. Co-existence, i.e. the ability to avoid interference between cells in one and the same system, as well as between cells of adjoining or co-located cells of different systems, is an important factor.
  • the frame structures in some current UTRA and LTE TDD standards offer limited co-existence opportunities.
  • the frame structure should preferably make it possible to have a large flexibility when it comes to configuring it to overcome interference problems, both interference from cells in the "own" system as well as from cells in co-located or adjoining cells of other systems.
  • Such a solution is offered by the present invention in that it discloses a method for use in a cellular communications system, in which system the traffic is sent in frames, with each frame comprising a first number of subframes and with a second number of subframes being available for at least either uplink or downlink traffic.
  • At least one of the second number of subframes is made to comprise at least three parts, as follows:
  • the guard period part is placed between the uplink and the downlink parts, and according to the invention, the duration of at least two of said three parts may be varied to fit the current system need.
  • the present invention offers a solution by means of which a subframe may be made to comprise a guard period of varying length, so that it can be suited to overcome the interference problems of a specific system, and so that the remaining part of the subframe can be made to comprise uplink and downlink traffic in varying proportions, since, according to the invention, the remaining part can be divided between the uplink and downlink directions, thus ensuring maximum efficiency regarding the use of the available resources.
  • the inventive method can in one embodiment be applied to a system which uses so called TDD, Time Division Duplex, i.e. a system with a so called unpaired spectrum, in which uplink and down link traffic in at least a first plurality of cells in the system occur during different subframes, but on the same frequency.
  • TDD Time Division Duplex
  • the inventive method may also be applied to a system which uses so called half duplex FDD, Frequency Division Duplex, so that uplink and down link traffic for one and the same user in at least a first number of cells in the system occur during different subframes, and on different frequencies.
  • a subframe of the invention is placed at a transition between uplink and downlink, either at a transition from downlink to uplink, or at a transition from uplink to downlink.
  • the invention also discloses a transceiver for use as a controlling node in a cell of a system of the invention, and a transceiver for use as a user terminal in a system of the invention.
  • Fig 1 shows a schematic view of a system in which the invention may be applied
  • Fig 2 and 3 show prior art frames
  • Fig 4 shows a subframe of the invention
  • Fig 5 shows a flow chart of a method of the invention
  • Fig 6 shows a block scheme of a first transceiver of the invention
  • Fig 7 shows a block scheme of a second transceiver of the invention.
  • Fig 1 shows a schematic view of a wireless cellular system 100 in which the present invention may be applied.
  • the invention will in the following be described with terms from so called LTE systems (Long Term Evolution), but it should be pointed out that this should not be construed as limiting the scope of protection sought for the present invention, the LTE terminology is merely used in order to facilitate the reader's understanding of the present invention, the invention can be used in other types of wireless cellular systems as well.
  • LTE systems Long Term Evolution
  • the word "traffic” is used in this text. It should be pointed out that the word “traffic” in this text is taken to mean all communication that is sent in downlink and uplink, e.g. both so called “payload data' ' and control signals, etc.
  • the system comprises a number of cells one of which is shown as 130 in fig 1.
  • a cell in the system can accommodate a number of users, one of which is shown as 120 in fig 1 , and, using LTE terminology, the user is shown as a "UE", User Equipment.
  • controlling node shown as 110 in fig. 1 , which has as one of its functions to control the traffic to and from the UEs 120 in the cell 130.
  • the controlling node is in LTE known as "eNodeB", evolved NodeB.
  • Traffic from the UEs 120 to the eNodeB 110 is known as uplink traffic, UL 1 and traffic from the eNodeB to the UEs is known as downlink traffic, DL.
  • Type 1 Both UL and DL traffic is sent in so called frames, and an LTE TDD system at present has two different frame structures, known as type 1 and type 2.
  • Type 1 will be described with reference to figs 2 and 3: as shown in fig 2, one frame of Type 1 comprises 10 so called subframes, SF, shown as 201-210.
  • a subframe can be used either for DL or UL traffic.
  • inter-cell interference can be caused in neighboring cells by "lingering" DL traffic.
  • guard periods are periods during which no transmissions may be made, and which are created by "silencing" the last part of a DL subframe, as shown in fig 3.
  • TDD systems can use a frame of a type known as type 2, which differs slightly from type 1 , but which basically also uses the principle of guard periods in order to overcome interference problems.
  • a basic idea behind the present invention is to let a subframe comprise three parts, one of which is used for uplink traffic, one of which is used for downlink traffic, and one of which is used as a guard period.
  • the "guard period part” is placed between the "uplink part” and the "down link part".
  • an LTE system which uses TDD or half duplex FDD to coexist in a better way than hitherto with other LTE TDD systems as well as with 3G TDD systems such as TD-SCDMA, or with WiMax systems.
  • the present invention makes it possible to allocate, for example, the first part of a subframe to downlink transmission and the last part of a subframe to uplink transmission.
  • the DL part of an inventive subframe will be referred to as DwPTS
  • the UL part of the inventive subframe will be referred to as UpPTS.
  • Fig 4 shows a subframe 420 of the invention, flanked by a DL subframe 410 and an UL subframe 420.
  • a guard period, GP may thus be configured.
  • the duration of the GP of the inventive subframe will be based on a number of parameters, one of which may be the maximum roundtrip propagation time in a cell, the so called RTT, so that the GP in such a case will be based on the size of the cell.
  • a prior art subframe may only contain DwPTS and GP. This may lead to significant efficiency losses, which can be avoided by the subframe of the invention, since the invention allows for the use of part of the subframe for uplink transmissions as well, i.e. the UpPTS part.
  • the total sum of the durations of the DwPTS, UpPTS and the GP constitute the total subframe length, which is a difference as compared to the LTE TDD frame structure type 2, and also as compared to the frame structure used in systems which use TD-SCDMA, Time Division Synchronous Code Multiple Access.
  • Another improvement of the invention over the LTE TDD frame structure type 2 is that the length of the different parts can be varied, for example according to the need for a guard period based on the maximum roundtrip propagation time in the cell and requirements of co-existence with co-located or adjoining cells of other systems, as well as a need to adapt the capacity need between UL and DL on a finer scale than previously possible.
  • LTE TDD frame structure type 1 a difference with regard to the inventive subframe is that part of the subframe of the invention may be used for uplink transmission.
  • a subframe allocated to DL may only be used for DL transmission, and may possibly also contain an ' idle" guard part, i.e. a part that is not used for transmissions.
  • a difference between the subframe of the invention and the LTE TDD Type 1 frame is thus that in the subframe of the invention, UL data can be transmitted as well.
  • the subframe of the invention is suitably placed following a period of DL subframes and before a period of UL subframes. i.e. at a transition from DL to UL.
  • the DL part of the inventive subframe is in such an application placed first in the subframe.
  • the subframe of the invention can be placed following a period of UL subframes and before a period of DL subframes, i.e. at a transition from UL to DL.
  • the UL part of the inventive subframe is in such an application placed first in the subframe.
  • the guard period is one of the parts which is varied, it may be varied with respect to at least one of the following parameters:
  • the duration of the GP may suitably be determined so that it is adapted to be at least equal to the propagation time of signals from or to at least one controlling node in another cell in the system.
  • At least one of the parts for uplink traffic, downlink traffic, and guard period is varied freely, i.e. without discrete steps, according to the needs of the system.
  • the duration of the guard period is varied according to the modulation scheme used for traffic in the cell
  • the system is one which uses an OFDM modulation method, Orthogonal Frequency Division Modulation
  • at least one of the uplink traffic, UpPTS, and downlink parts, DwPTS may be given a duration which corresponds to an integer amount of OFDM symbols in the modulation method.
  • the UpPTS and DwPTS are given a length of 1 or 2 OFDM symbols, although other OFDM symbol lengths can also be envisioned within the scope of the present invention.
  • the invention will facilitate harmonization of the two frame structures in present day LTE TDD systems into a single frame structure which is harmonized with LTE FDD frame structures, which will be beneficial at the present stage in 3GPP standardization, or at a later stage, as LTE evolves into the so called IMT (International Mobile Telecommunications) Advanced.
  • IMT International Mobile Telecommunications
  • the invention also solves some drawbacks of present day LTE solutions, namely in that it:
  • TD-CDMA systems, as well as with TD-SCDMA and WiMAX systems.
  • Fig 5 shows a rough flow chart of a method 500 of the invention. Steps which are options or alternatives are shown with dashed lines.
  • the method of the invention is intended for use in a cellular communications system, in which traffic in a cell is sent in frames, and where each frame comprises a first number of subframes.
  • a second number of the subframes are available for at least either uplink or downlink traffic, and as shown in step 510, at least one of said second number of subframes is made to comprise at least three parts, as shown in step 515, as follows: • One part which is utilized for uplink traffic, step 520.
  • step 530 One part which is utilized as a guard period, step 530.
  • the guard period part of step 525 is scheduled between the uplink and the downlink parts, and as shown in step 532, the duration of at least two of the three parts of steps 520, 525 and 530 may be varied to fit the current system need.
  • the method of the invention may suitably be applied to a TDD-system, Time Division Duplex, i.e. a system with an unpaired spectrum, so that uplink and down link traffic in at least a first plurality of cells in the system occur during different subframes, but on the same frequency.
  • a TDD-system Time Division Duplex
  • Time Division Duplex i.e. a system with an unpaired spectrum
  • the method of the invention may also be applied to a half duplex FDD-system, Frequency Division Duplex, so that uplink and down link traffic in at least a first plurality of cells in the system occur during different subframes, and on different frequencies.
  • the guard period is one of said at least two of three parts, and the guard period is varied in duration with respect to at least one of the following parameters: • Interference from or with other cells in the same system, or other cells in other adjoining or co-located systems,
  • the guard period may also be varied with respect to the interference from or with other cells in the system, so that the duration of the guard period is adapted to be at least equal to the propagation time of signals from at least one controlling node in another cell in the system.
  • the inventive method may be applied in a system in which an OFDM modulation method, Orthogonal Frequency Division Modulation is used in at least one of the uplink and downlink directions, and at least one of the uplink traffic and downlink parts in said second number of subframes is given a duration which corresponds to an integer number of OFDM symbols in the modulation method.
  • the subframe which is made to comprise at least three parts is interposed after a subframe used for downlink traffic and is followed by a subframe which is used for uplink traffic, with the downlink part being first in said subframe.
  • the inventive subframe which is made to comprise at least three parts is interposed after a subframe used for uplink traffic and is followed by a subframe which is used for downlink traffic, with the uplink part being first in said subframe.
  • the method of the invention can be applied to an LTE system, Long Term Evolution.
  • Fig 6 shows a block diagram of some parts of a first transceiver 600 which is intended for use as a controlling node in a system of the invention.
  • the transceiver 600 will be referred to as an eNodeB. Since the eNodeB of the invention works basically according to the method which has been described above, all of the details of the operation of the eNodeB will not be repeated again here.
  • the decision or decisions regarding the details of the inventive subframe 420 can be decided in a number of different ways in a system of the invention.
  • the decision can be taken by the operator of the system, and simply forwarded to the eNodeB 600.
  • the eNodeB will comprise input means 610 for receiving such decisions.
  • the input means 610 are suitably an interface towards another, "higher" node in the system, via which the eNodeB communicates with the system.
  • the decision from the operator of the system can also be to let the eNodeB decide the particulars of the inventive subframe in a more or less autonomous manner.
  • the eNodeB can be instructed to decide the particulars of the inventive subframe in a completely autonomous manner, based on, for example, interference measurements which the eNodeB carries out.
  • the eNodeB comprises measurement means 620, which can measure the interference in the cell.
  • a third possibility is that the operator instructs the eNodeB to decide the particulars of the inventive subframe in a semi-autonomous manner, e.g. based on interference measurements, but with certain conditions which are laid down by the operator, such as, for example, that the duration of one of the three parts, the DwPTS, the GP and the UpPTS, may not exceed or be shorter than a certain specified period of time.
  • the eNodeB 600 will comprise means 630 for taking a decision to arrive at these particulars. As shown in fig 6, this decision making means 630 can receive information both from the input means 610 and the measurement means 620. The decision means 630 will also suitably carry out the actual setting of the particulars of the inventive subframe in the eNodeB 600.
  • the decision and setting means will comprise a microcomputer or some similar computing component.
  • the eNodeB 600 will also need to communicate the details of the inventive subframe to the UEs in the cell, as well as to UEs which are on their way in to the cell, i.e. UEs in a so called "hand over procedure", and also to UEs which are turned on in the cell, i.e. UEs which have entered the cell with their power turned off, and which are switched on in the cell,
  • the eNodeB 600 is shown as comprising communication means 640, which will suitably comprise a transmitter and an antenna, which are normally comprised in an eNodeB for communication with the UEs in a cell.
  • the information regarding the inventive subframe which the eNodeB communicates to the UEs in the cell will comprise the duration of the different parts of the subframe of the invention, i.e. the DwPTS, GP and UpPTS.
  • One preferred method of signaling this information to the UEs in a cell is to use the channel known as BCH, the "Broadcast Channel", although the information may in principle be communicated to the UEs via other control channels in the system.
  • Fig 7 shows a block diagram of some parts of a second transceiver 700 of the invention, which is intended for use as a user terminal (telephone/portable computer etc) in a system of the invention.
  • the transceiver 700 will be referred to as a UE, "User Equipment”. Since the UE of the invention works basically according to the method which has been described above, all of the details of the operation of the UE will not be repeated again here.
  • the UE 700 of the invention is, as is indicated in fig 7, equipped with means for receiving instructions from the eNodeB of the cell regarding the duration of the three parts of the inventive subframe, i.e. the DwPTS, the GP and the UpPTS.
  • these instructions are received via the same means as other communication from the eNodeB, i.e. via a receiver and an antenna of the UE.
  • the instructions which are received from the eNodeB are then processed by the UE, i.e. the UE is set to those values of the DwPTS, GP and UpPTS. This is done by means 720 for setting or reconfiguring the DwPTS. GP and UpPTS in the UE.
  • the setting and/or reconfiguration means will suitably comprise microcomputer or some similar computing component.
  • the invention facilitates harmonization of the two frame structures in LTE for TDD into a single frame structure which can be given a subframe duration of 1ms.
  • the invention also solves a number of drawbacks of present solutions, for example;
  • half duplex FDD Frequency Division Duplex
  • uplink and downlink transmissions from one and the same terminal in the system occur on different frequencies and during different intervals in time, such as the previously mentioned subframes.
  • the invention can also be applied in such a system, i.e. a half duplex FDD system.

Abstract

The invention discloses a method (500) for a cellular communications system (100), in which traffic is sent in frames (200), each frame comprising a first number of subframes (201-210), with a second number of said subframes being available for at least either uplink or downlink traffic. At least one of said second number of subframes is made to comprise at least three parts (515), as follows: • One part (520) which is utilized for uplink traffic, • One part (525) which is utilized for downlink traffic, • One part (530) which is utilized as a guard period, with said guard period part (525) being scheduled between the uplink and the downlink parts. The duration of at least two of said three parts (520, 525, 530) may be varied to fit the current system need.

Description

TITLE
Improved use of subframes in a cellular communications system.
TECHNICAL FIELD The present invention discloses a method for use in a cellular communications system, in which system the traffic in a cell is sent in frames. Each frame comprises a first number of subframes, and a second number of said subframes is available for at least either uplink or downlink traffic,
BACKGROUND
In cellular wireless systems, both current systems such as, for example, UTRA (UMTS Terrestrial Radio Access) systems, and future systems such as the LTE (Long Term Evolution) systems, a principle which is used is so called TDD, Time Division Duplex, i.e. a principle according to which uplink and downlink traffic occur during different periods of time, so called subframes, which are comprised in a larger frame. Usually, in a TDD system, the uplink and downlink traffic use the same carrier frequency,
Due to the fact that uplink and downlink traffic share one and the same frequency in a TDD system, interference problems may occur between different cells in the system. In particular, downlink traffic from one cell may cause interference in other cells.
In addition to interference between different cells in one and the same TDD system, interference may also occur between different cells in different but co-located or adjoining systems, for example systems which are run by different operators.
One way of reducing the problems of inter-cell interference in TDD systems is to arrange so called 'guard periods" at the transitions between downlink and uplink traffic, i.e. periods during which no traffic may occur. Guard periods may also be arranged at transitions from uplink to downlink. Co-existence, i.e. the ability to avoid interference between cells in one and the same system, as well as between cells of adjoining or co-located cells of different systems, is an important factor.
However, the frame structures in some current UTRA and LTE TDD standards offer limited co-existence opportunities. To make efficient coexistence possible, the frame structure should preferably make it possible to have a large flexibility when it comes to configuring it to overcome interference problems, both interference from cells in the "own" system as well as from cells in co-located or adjoining cells of other systems.
SUMMARY
As has emerged from the description above, there is thus a need for a solution by means of which increased coexistence in the form of reduced risk of interference between cells of one and the same or different wireless cellular systems can be increased, in particular in systems which use the TDD principle.
Such a solution is offered by the present invention in that it discloses a method for use in a cellular communications system, in which system the traffic is sent in frames, with each frame comprising a first number of subframes and with a second number of subframes being available for at least either uplink or downlink traffic.
According to the method of the invention, at least one of the second number of subframes is made to comprise at least three parts, as follows:
• One part which is utilized for uplink traffic,
• One part which is utilized for downlink traffic, • One part which is utilized as a guard period. The guard period part is placed between the uplink and the downlink parts, and according to the invention, the duration of at least two of said three parts may be varied to fit the current system need.
Thus, the present invention offers a solution by means of which a subframe may be made to comprise a guard period of varying length, so that it can be suited to overcome the interference problems of a specific system, and so that the remaining part of the subframe can be made to comprise uplink and downlink traffic in varying proportions, since, according to the invention, the remaining part can be divided between the uplink and downlink directions, thus ensuring maximum efficiency regarding the use of the available resources.
The inventive method can in one embodiment be applied to a system which uses so called TDD, Time Division Duplex, i.e. a system with a so called unpaired spectrum, in which uplink and down link traffic in at least a first plurality of cells in the system occur during different subframes, but on the same frequency. In another embodiment, the inventive method may also be applied to a system which uses so called half duplex FDD, Frequency Division Duplex, so that uplink and down link traffic for one and the same user in at least a first number of cells in the system occur during different subframes, and on different frequencies.
Suitably, a subframe of the invention is placed at a transition between uplink and downlink, either at a transition from downlink to uplink, or at a transition from uplink to downlink.
The invention also discloses a transceiver for use as a controlling node in a cell of a system of the invention, and a transceiver for use as a user terminal in a system of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS The invention will be described in more detail in the following, with reference to the appended drawings, in which
Fig 1 shows a schematic view of a system in which the invention may be applied, and Fig 2 and 3 show prior art frames, and
Fig 4 shows a subframe of the invention, and
Fig 5 shows a flow chart of a method of the invention, and
Fig 6 shows a block scheme of a first transceiver of the invention, and
Fig 7 shows a block scheme of a second transceiver of the invention.
DETAILED DESCRIPTION
Fig 1 shows a schematic view of a wireless cellular system 100 in which the present invention may be applied. The invention will in the following be described with terms from so called LTE systems (Long Term Evolution), but it should be pointed out that this should not be construed as limiting the scope of protection sought for the present invention, the LTE terminology is merely used in order to facilitate the reader's understanding of the present invention, the invention can be used in other types of wireless cellular systems as well.
In addition, the word "traffic" is used in this text. It should be pointed out that the word "traffic" in this text is taken to mean all communication that is sent in downlink and uplink, e.g. both so called "payload data'' and control signals, etc.
Returning now to the system 100 shown in fig 1 , the system comprises a number of cells one of which is shown as 130 in fig 1. A cell in the system can accommodate a number of users, one of which is shown as 120 in fig 1 , and, using LTE terminology, the user is shown as a "UE", User Equipment.
In the system 100. there is also a controlling node, shown as 110 in fig. 1 , which has as one of its functions to control the traffic to and from the UEs 120 in the cell 130. The controlling node is in LTE known as "eNodeB", evolved NodeB.
Traffic from the UEs 120 to the eNodeB 110 is known as uplink traffic, UL1 and traffic from the eNodeB to the UEs is known as downlink traffic, DL.
Both UL and DL traffic is sent in so called frames, and an LTE TDD system at present has two different frame structures, known as type 1 and type 2. Type 1 will be described with reference to figs 2 and 3: as shown in fig 2, one frame of Type 1 comprises 10 so called subframes, SF, shown as 201-210.
As indicated with arrows in the subframes 201-210, a subframe can be used either for DL or UL traffic. However, as has also been indicated previously, in systems in which a multitude of cells are synchronized with respect to which subframes that are used for UL or DL, at, for example, a transition from DL to UL, inter-cell interference can be caused in neighboring cells by "lingering" DL traffic.
Such interference can be reduced, if not eliminated, by means of so called guard periods, which are periods during which no transmissions may be made, and which are created by "silencing" the last part of a DL subframe, as shown in fig 3.
In addition, it can also be mentioned that TDD systems can use a frame of a type known as type 2, which differs slightly from type 1 , but which basically also uses the principle of guard periods in order to overcome interference problems.
It is a purpose of the present invention to offer a new frame structure which may be used to replace the existing frames of type 1 and type 2. since it is also desirable to reduce the amount of options, and to have only one type of frame. A basic idea behind the present invention is to let a subframe comprise three parts, one of which is used for uplink traffic, one of which is used for downlink traffic, and one of which is used as a guard period. Suitably, the "guard period part" is placed between the "uplink part" and the "down link part".
By means of the invention, as will emerge from the more detailed description below, it will be possible for an LTE system which uses TDD or half duplex FDD to coexist in a better way than hitherto with other LTE TDD systems as well as with 3G TDD systems such as TD-SCDMA, or with WiMax systems.
As opposed to UTRA TDD and LTE TDD systems, in which subframes can be allocated to uplink or to downlink, the present invention makes it possible to allocate, for example, the first part of a subframe to downlink transmission and the last part of a subframe to uplink transmission. The DL part of an inventive subframe will be referred to as DwPTS, and the UL part of the inventive subframe will be referred to as UpPTS.
Fig 4 shows a subframe 420 of the invention, flanked by a DL subframe 410 and an UL subframe 420. As shown in fig 4, in the inventive subframe 420, between the two UL/DL periods, i.e. DwPTS and UpPTS. a guard period, GP, of varying length may thus be configured. The duration of the GP of the inventive subframe will be based on a number of parameters, one of which may be the maximum roundtrip propagation time in a cell, the so called RTT, so that the GP in such a case will be based on the size of the cell.
As compared to the current situation, a prior art subframe (LTE TDD Type 2) may only contain DwPTS and GP. This may lead to significant efficiency losses, which can be avoided by the subframe of the invention, since the invention allows for the use of part of the subframe for uplink transmissions as well, i.e. the UpPTS part. The total sum of the durations of the DwPTS, UpPTS and the GP constitute the total subframe length, which is a difference as compared to the LTE TDD frame structure type 2, and also as compared to the frame structure used in systems which use TD-SCDMA, Time Division Synchronous Code Multiple Access.
Another improvement of the invention over the LTE TDD frame structure type 2 is that the length of the different parts can be varied, for example according to the need for a guard period based on the maximum roundtrip propagation time in the cell and requirements of co-existence with co-located or adjoining cells of other systems, as well as a need to adapt the capacity need between UL and DL on a finer scale than previously possible.
Turning now to the LTE TDD frame structure type 1 , a difference with regard to the inventive subframe is that part of the subframe of the invention may be used for uplink transmission. Currently, in the LTE TDD frame Type 1 , a subframe allocated to DL may only be used for DL transmission, and may possibly also contain an ' idle" guard part, i.e. a part that is not used for transmissions. A difference between the subframe of the invention and the LTE TDD Type 1 frame is thus that in the subframe of the invention, UL data can be transmitted as well.
The subframe of the invention is suitably placed following a period of DL subframes and before a period of UL subframes. i.e. at a transition from DL to UL. The DL part of the inventive subframe is in such an application placed first in the subframe.
In another embodiment, the subframe of the invention can be placed following a period of UL subframes and before a period of DL subframes, i.e. at a transition from UL to DL. The UL part of the inventive subframe is in such an application placed first in the subframe. Hence, at least two of the three parts of the inventive subframe can be varied to fit the system needs, since, if two parts are varied, the third part will naturally be determined by what is left over of the sub frame.
If the guard period, the GP, is one of the parts which is varied, it may be varied with respect to at least one of the following parameters:
1. Interference from or with other cells in the same system, or other cells in other adjoining or co-located systems, 2. The size of the cell, which determines the maximum propagation round trip time, RTT, in the cell, 3. The modulation scheme used for traffic in the cell.
In case 1 above, i.e. when the guard period is varied with respect to the interference from or with other cells in the system, the duration of the GP may suitably be determined so that it is adapted to be at least equal to the propagation time of signals from or to at least one controlling node in another cell in the system.
Suitably, at least one of the parts for uplink traffic, downlink traffic, and guard period is varied freely, i.e. without discrete steps, according to the needs of the system. However, in case 3 above, i.e. when the duration of the guard period is varied according to the modulation scheme used for traffic in the cell, if the system is one which uses an OFDM modulation method, Orthogonal Frequency Division Modulation, then at least one of the uplink traffic, UpPTS, and downlink parts, DwPTS, may be given a duration which corresponds to an integer amount of OFDM symbols in the modulation method. Suitably, the UpPTS and DwPTS are given a length of 1 or 2 OFDM symbols, although other OFDM symbol lengths can also be envisioned within the scope of the present invention. Hence, the invention will facilitate harmonization of the two frame structures in present day LTE TDD systems into a single frame structure which is harmonized with LTE FDD frame structures, which will be beneficial at the present stage in 3GPP standardization, or at a later stage, as LTE evolves into the so called IMT (International Mobile Telecommunications) Advanced.
The invention also solves some drawbacks of present day LTE solutions, namely in that it:
• allows for a finer granularity when it comes to allocating resources to
UL and DL, as well as allowing for increased flexibility when it comes to creating guard periods.
• Allows for increased flexibility when creating UL and DL period lengths, which is beneficial from a perspective of co-existence with
TD-CDMA systems, as well as with TD-SCDMA and WiMAX systems.
Fig 5 shows a rough flow chart of a method 500 of the invention. Steps which are options or alternatives are shown with dashed lines.
As has emerged from the description above, the method of the invention is intended for use in a cellular communications system, in which traffic in a cell is sent in frames, and where each frame comprises a first number of subframes.
A second number of the subframes are available for at least either uplink or downlink traffic, and as shown in step 510, at least one of said second number of subframes is made to comprise at least three parts, as shown in step 515, as follows: • One part which is utilized for uplink traffic, step 520.
• One part which is utilized for downlink traffic, step 525,
• One part which is utilized as a guard period, step 530. The guard period part of step 525 is scheduled between the uplink and the downlink parts, and as shown in step 532, the duration of at least two of the three parts of steps 520, 525 and 530 may be varied to fit the current system need.
As indicated in step 540. the method of the invention may suitably be applied to a TDD-system, Time Division Duplex, i.e. a system with an unpaired spectrum, so that uplink and down link traffic in at least a first plurality of cells in the system occur during different subframes, but on the same frequency.
However, as indicated in step 535, the method of the invention may also be applied to a half duplex FDD-system, Frequency Division Duplex, so that uplink and down link traffic in at least a first plurality of cells in the system occur during different subframes, and on different frequencies.
As shown in step 550, in one embodiment of inventive method, the guard period is one of said at least two of three parts, and the guard period is varied in duration with respect to at least one of the following parameters: • Interference from or with other cells in the same system, or other cells in other adjoining or co-located systems,
• The size of the cell, which determines the maximum propagation round trip time, RTT, in the cell,
• The modulation scheme used for traffic in the cell.
As shown in step 545, the guard period may also be varied with respect to the interference from or with other cells in the system, so that the duration of the guard period is adapted to be at least equal to the propagation time of signals from at least one controlling node in another cell in the system. In one embodiment, as shown in step 560, the inventive method may be applied in a system in which an OFDM modulation method, Orthogonal Frequency Division Modulation is used in at least one of the uplink and downlink directions, and at least one of the uplink traffic and downlink parts in said second number of subframes is given a duration which corresponds to an integer number of OFDM symbols in the modulation method.
Also, in a further embodiment of the method of the invention, the subframe which is made to comprise at least three parts is interposed after a subframe used for downlink traffic and is followed by a subframe which is used for uplink traffic, with the downlink part being first in said subframe.
However, in an alternative embodiment, the inventive subframe which is made to comprise at least three parts is interposed after a subframe used for uplink traffic and is followed by a subframe which is used for downlink traffic, with the uplink part being first in said subframe.
As shown in step 570, the method of the invention can be applied to an LTE system, Long Term Evolution.
Fig 6 shows a block diagram of some parts of a first transceiver 600 which is intended for use as a controlling node in a system of the invention. With retained use of the exemplary LTE terminology, the transceiver 600 will be referred to as an eNodeB. Since the eNodeB of the invention works basically according to the method which has been described above, all of the details of the operation of the eNodeB will not be repeated again here.
The decision or decisions regarding the details of the inventive subframe 420, such as, for example, the duration of the three parts, the DwPTS, the GP and the UpPTS, can be decided in a number of different ways in a system of the invention. For example, the decision can be taken by the operator of the system, and simply forwarded to the eNodeB 600. In order to open for this possibility, the eNodeB will comprise input means 610 for receiving such decisions. The input means 610 are suitably an interface towards another, "higher" node in the system, via which the eNodeB communicates with the system.
The decision from the operator of the system can also be to let the eNodeB decide the particulars of the inventive subframe in a more or less autonomous manner. For example, the eNodeB can be instructed to decide the particulars of the inventive subframe in a completely autonomous manner, based on, for example, interference measurements which the eNodeB carries out. To open up for such a possibility, the eNodeB comprises measurement means 620, which can measure the interference in the cell.
A third possibility is that the operator instructs the eNodeB to decide the particulars of the inventive subframe in a semi-autonomous manner, e.g. based on interference measurements, but with certain conditions which are laid down by the operator, such as, for example, that the duration of one of the three parts, the DwPTS, the GP and the UpPTS, may not exceed or be shorter than a certain specified period of time.
Regardless of how the particulars of the inventive subframe are arrived at by the eNodeB 600, the eNodeB 600 will comprise means 630 for taking a decision to arrive at these particulars. As shown in fig 6, this decision making means 630 can receive information both from the input means 610 and the measurement means 620. The decision means 630 will also suitably carry out the actual setting of the particulars of the inventive subframe in the eNodeB 600. Suitably, the decision and setting means will comprise a microcomputer or some similar computing component.
In addition, the eNodeB 600 will also need to communicate the details of the inventive subframe to the UEs in the cell, as well as to UEs which are on their way in to the cell, i.e. UEs in a so called "hand over procedure", and also to UEs which are turned on in the cell, i.e. UEs which have entered the cell with their power turned off, and which are switched on in the cell, For this reason, the eNodeB 600 is shown as comprising communication means 640, which will suitably comprise a transmitter and an antenna, which are normally comprised in an eNodeB for communication with the UEs in a cell.
Thus, the information regarding the inventive subframe which the eNodeB communicates to the UEs in the cell will comprise the duration of the different parts of the subframe of the invention, i.e. the DwPTS, GP and UpPTS. One preferred method of signaling this information to the UEs in a cell is to use the channel known as BCH, the "Broadcast Channel", although the information may in principle be communicated to the UEs via other control channels in the system.
Fig 7 shows a block diagram of some parts of a second transceiver 700 of the invention, which is intended for use as a user terminal (telephone/portable computer etc) in a system of the invention. With retained use of the exemplary LTE terminology, the transceiver 700 will be referred to as a UE, "User Equipment". Since the UE of the invention works basically according to the method which has been described above, all of the details of the operation of the UE will not be repeated again here.
The UE 700 of the invention is, as is indicated in fig 7, equipped with means for receiving instructions from the eNodeB of the cell regarding the duration of the three parts of the inventive subframe, i.e. the DwPTS, the GP and the UpPTS. Suitably, these instructions are received via the same means as other communication from the eNodeB, i.e. via a receiver and an antenna of the UE.
The instructions which are received from the eNodeB are then processed by the UE, i.e. the UE is set to those values of the DwPTS, GP and UpPTS. This is done by means 720 for setting or reconfiguring the DwPTS. GP and UpPTS in the UE. The setting and/or reconfiguration means will suitably comprise microcomputer or some similar computing component.
In conclusion, the invention facilitates harmonization of the two frame structures in LTE for TDD into a single frame structure which can be given a subframe duration of 1ms. In addition, the invention also solves a number of drawbacks of present solutions, for example;
• Allows for increased flexibility in creating of UL and DL period lengths, which is beneficial from co-existences perspective with TD-CDMA as well as TD-SCDMA and WiMAX.
• Allows fine granularity when it comes to allocating resources to UL and DL, as well as increased flexibility when creating guard periods,
Another principle which may be used is so called half duplex FDD, Frequency Division Duplex, in which uplink and downlink transmissions from one and the same terminal in the system occur on different frequencies and during different intervals in time, such as the previously mentioned subframes. The invention can also be applied in such a system, i.e. a half duplex FDD system.
The invention is not limited to the examples of embodiments described above and shown in the drawings, but may be freely varied within the scope of the appended claims.

Claims

1. A method (500) for use in a cellular communications system (100), in which system the traffic is sent in frames (200), each frame comprising a first number of subframes (201-210), with a second number of said subframes being available for at least either uplink or downlink traffic, the method (500) being characterized in that (510) at least one of said second number of subframes is made to comprise at least three parts (515), as follows:
• One part (520) which is utilized for uplink traffic, • One part (525) which is utilized for downlink traffic,
• One part (530) which is utilized as a guard period, with said guard period part (525) being scheduled between the uplink and the downlink parts, and according to which method (532) the duration of at least two of said three parts (520, 525, 530) may be varied to fit the current system need.
2. The method (500, 540) of claim 1 , applied to a TDD-system, Time Division Duplex, i.e. a system which uses an unpaired frequency spectrum, so that uplink and downlink traffic in at least a first plurality of cells in the system occur during different subframes,
3.The method (500, 540) of claim 2, in which the uplink and the downlink traffic occur on the same frequency.
4. The method (500, 535) of claim 1 , applied to a half duplex FDD-system, Frequency Division Duplex, so that uplink and downlink traffic for one and the same user in at least a first number of cells in the system occur during different subframes, and on different frequencies.
5. The method (500) of any of the previous claims, according to which the guard period is one of said at least two of three parts, and according to which method the guard period is varied (550) in duration with respect to at least one of the following parameters:
• Interference from or with other cells in the same system, or other cells in other adjoining or co-located systems, • The size of the cell, which determines the maximum propagation round trip time, RTT, in the cell,
• The modulation scheme used for traffic in the cell.
6. The method (500, 545) of claim 5, according to which the guard period (525) is varied with respect to the interference from or with other cells in the system so that the duration of the guard period is made at least equal to the propagation time of signals from at least one controlling node in another cell in the system.
7. The method (500) of any of claims 1-6, according to which the system is one in which an OFDM modulation method, Orthogonal Frequency Division Modulation is used in at least one of the uplink and downlink directions, and in which at least one of the uplink traffic and downlink parts in said second number of subframes is given a duration which corresponds to an integer number of OFDM symbols in the modulation method.
8. The method (500) of any of the previous claims, according to which said subframe (420) which is made to comprise at least three parts is interposed after a subframe (410) used for downlink traffic and is followed by a subframe (430) which is used for uplink traffic, with the downlink part being first in said subframe.
9. The method (500) of any of claims 1-8, according to which said subframe (410) which is made to comprise at least three parts is interposed after a subframe used for uplink traffic and is followed by a subframe which is used for downlink traffic, with the uplink part being first in said subframe.
10. The method (500, 570) of any of the previous claims, applied to an LTE system, Long Term Evolution.
11. A transceiver (600) for use as a controlling node (110) in a cell (130) of a cellular communications system (100), the transceiver being adapted to send and receive traffic in frames (200), with each frame comprising a first number of subframes (201-210) and with a second number of said subframes being available for at least either uplink or downlink traffic, the transceiver being characterized in that it is equipped with means (640) for sending and receiving at least one (420) of said second number of subframes in at least three parts, as follows:
• One part (UpPTS) which is utilized for uplink traffic,
• One part (DwPTS) which is utilized for downlink traffic, • One part (GP) which is utilized as a guard period, the transceiver (600) being equipped with means (610, 620, 630) for scheduling said guard period part between the uplink and the downlink parts, and for varying the duration of at least two of said three parts to fit the current system need.
12. The transceiver (600) of claim 11 , additionally being equipped with means (610) for receiving information from an external source in the system regarding the varying of said three parts.
13. The transceiver (600) of clam 11 or 12, being equipped with means (640) for transmitting to users in a cell of the system information regarding the duration of said three pats.
14. The transceiver (600) of any of claims 10-12, adapted to be used in a TDD-system, Time Division Duplex, i.e. a system which uses an unpaired spectrum, so that uplink and downlink traffic occur during different subframes.
15. The transceiver (600) of claim 14, adapted to be used on the same frequency for both uplink and downlink traffic.
16. The transceiver (600) of any of claims 11-13. adapted to be used in a half duplex FDD-system, Frequency Division Duplex, so that uplink and downlink traffic for one and the same user occur during different subframes, and on different frequencies.
17. The transceiver (600) of any of claims 10-16, in which the guard period is one of said at least two of three parts, and is equipped with means (610, 620, 630) for varying the guard period in duration with respect to at least one of the following parameters:
• Interference from or with other cells in the same system, or other cells in other adjoining or co-located systems,
• The size of the cell, which determines the maximum propagation round trip time, RTT, in the cell, • The modulation scheme used for traffic in the cell.
18. The transceiver (600) of claim 17, adapted to vary the guard period with respect to the interference from or with other cells in the system, so that the duration of the guard period is adapted to be at least equal to the propagation time of signals from at least one controlling node in another cell in the system.
19. The transceiver (600) of any of claims 11-18, being adapted for use in a system in which an OFDM modulation method, Orthogonal Frequency Division Modulation is used in at least one of the uplink and downlink directions, being equipped with means (630) for giving at least one of the uplink traffic and downlink parts in said second number of subframes a duration which corresponds to an integer number of OFDM symbols in the modulation method.
20. The transceiver of any of claims 11-19, which comprises means for interposing said subframe (420) which is comprised of at least three parts after a subframe (410) used for downlink traffic and before a subframe (430) which is used for uplink traffic, with the downlink part being first in said subframe.
21. The transceiver of any of claims 11-19, which comprises means for interposing said subframe (420) which is comprised of at least three parts after a subframe (410) used for uplink traffic and before a subframe (430) which is used for downlink traffic, with the uplink part being first in said subframe.
22. The transceiver (600) of any of claims 11-21 , applied to an LTE system, Long Term Evolution.
23. A transceiver (700) for use as a user terminal (120) in a cellular communications system (100), the transceiver being adapted to send and receive traffic in frames (200), with each frame comprising a first number of subframes (201-210) and with a second number of said subframes being available for at least either uplink or downlink traffic, the transceiver (700) being characterized in that it is equipped with means for sending and receiving at least one of said second number of subframes in at least three parts, as follows:
• One part (UpPTS) which is utilized for uplink traffic,
• One part (DwPTS) which is utilized for downlink traffic, • One part (GP) which is utilized as a guard period, the transceiver (700) also being equipped with means (720) for scheduling said guard period part between the uplink and the downlink parts, and with means (710) for receiving information from a controlling node regarding said scheduling as well as the duration of said three parts.
PCT/SE2008/050276 2007-09-14 2008-03-13 Improved use of subframes in a cellular communications system WO2009035399A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP08724223A EP2198550B1 (en) 2007-09-14 2008-03-13 Improved use of subframes in a cellular communications system
PL12173734T PL2506479T3 (en) 2007-09-14 2008-03-13 Improved use of subframes in a cellular communications system
CA2698756A CA2698756C (en) 2007-09-14 2008-03-13 Improved use of subframes in a cellular communications system
PL08724223T PL2198550T3 (en) 2007-09-14 2008-03-13 Improved use of subframes in a cellular communications system
BRPI0816249-2A BRPI0816249A2 (en) 2007-09-14 2008-03-13 Method for use in a cellular communications system, and, transceiver
JP2010524819A JP5016114B2 (en) 2007-09-14 2008-03-13 Improving subframe usage in cellular communication systems.
ES08724223T ES2390798T3 (en) 2007-09-14 2008-03-13 Improved use of subframes in a cellular communications system
EP12173734.0A EP2506479B1 (en) 2007-09-14 2008-03-13 Improved use of subframes in a cellular communications system
EP19156060.6A EP3512139A1 (en) 2007-09-14 2008-03-13 Improved use of subframes in a cellular communications system
CN2008801068786A CN101803262B (en) 2007-09-14 2008-03-13 Improved use of subframes in a cellular communications system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0702066 2007-09-14
SE0702066-2 2007-09-14

Publications (1)

Publication Number Publication Date
WO2009035399A1 true WO2009035399A1 (en) 2009-03-19

Family

ID=40452251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2008/050276 WO2009035399A1 (en) 2007-09-14 2008-03-13 Improved use of subframes in a cellular communications system

Country Status (13)

Country Link
US (6) US7986681B2 (en)
EP (3) EP2198550B1 (en)
JP (1) JP5016114B2 (en)
CN (1) CN101803262B (en)
BR (1) BRPI0816249A2 (en)
CA (1) CA2698756C (en)
DK (1) DK2506479T3 (en)
ES (2) ES2390798T3 (en)
HU (1) HUE044364T2 (en)
PL (2) PL2198550T3 (en)
PT (1) PT2506479T (en)
TR (1) TR201907328T4 (en)
WO (1) WO2009035399A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012010244A (en) * 2010-06-28 2012-01-12 Kyocera Corp Base station, communication terminal, and radio communication system
CN102859914A (en) * 2010-04-15 2013-01-02 高通股份有限公司 Coordinated silent period with sounding reference signal (SRS) configuration
WO2013024590A1 (en) * 2011-08-12 2013-02-21 Sharp Kabushiki Kaisha Devices for converting a downlink subframe
WO2012150775A3 (en) * 2011-05-03 2013-03-21 엘지전자 주식회사 Method for terminal to transmit/receive signal to/from base station in wireless communication system and device therefor
WO2013089530A1 (en) * 2011-12-16 2013-06-20 엘지전자 주식회사 Method for measuring channel state information in a wireless access system and apparatus for same
WO2014053885A1 (en) * 2012-10-05 2014-04-10 Broadcom Corporation Methods, apparatus and computer programs for half-duplex frequency division duplexing
US8934424B2 (en) 2011-09-29 2015-01-13 Sharp Laboratories Of America, Inc. Devices for reconfiguring a subframe allocation
US9357554B2 (en) 2009-03-11 2016-05-31 Huawei Technologies Co., Ltd. Method and apparatus for coexistence of multiple operating entity systems
WO2017004024A3 (en) * 2015-07-02 2017-02-09 Qualcomm Incorporated Method and apparatus for efficient data transmissions in half-duplex communication systems with large propagation delays
US9602251B2 (en) 2012-01-27 2017-03-21 Sharp Kabushiki Kaisha Devices for reconfiguring uplink and downlink allocations in time domain duplexing wireless systems

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2390798T3 (en) 2007-09-14 2012-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Improved use of subframes in a cellular communications system
WO2009128632A1 (en) * 2008-04-14 2009-10-22 엘지전자주식회사 Communication method for radio communication system
CN101594175B (en) * 2008-05-27 2012-12-26 电信科学技术研究院 Method, system and device for beamforming transmission
JP5309218B2 (en) * 2008-09-26 2013-10-09 リサーチ イン モーション リミテッド System and method for coordinating half-duplex communication protocols
US8537724B2 (en) * 2009-03-17 2013-09-17 Motorola Mobility Llc Relay operation in a wireless communication system
CN101990230A (en) * 2009-07-30 2011-03-23 大唐移动通信设备有限公司 Method and equipment for measuring wireless network communication system
KR20110047073A (en) * 2009-10-29 2011-05-06 삼성전자주식회사 Apparatus and method for configuring frame struture in fdd wireless communication system
CN102668674A (en) * 2009-12-28 2012-09-12 京瓷株式会社 Adaptive array base station and communication method for an adaptive array base station
CN102036296B (en) * 2010-12-02 2016-08-03 大唐移动通信设备有限公司 A kind of determine the method for uplink-downlink configuration, system and equipment
US20120147793A1 (en) * 2010-12-09 2012-06-14 Futurewei Technologies, Inc. System and Method for the Coexistence of Multiple Communications Systems
US9282556B2 (en) 2011-02-15 2016-03-08 Kyocera Corporation Base station and communication method thereof
US9363798B2 (en) * 2011-03-11 2016-06-07 Lg Electronics Inc. Method and device for terminal to transmit/receive signal in wireless communication system having carrier aggregation technique applied thereto
PT2702706E (en) * 2011-04-29 2015-04-08 Ericsson Telefon Ab L M Decentralised control of interference reduction in a wireless communication system
JP5691845B2 (en) 2011-05-30 2015-04-01 ソニー株式会社 Radio resource allocation method, radio resource allocation apparatus, and communication system
JP2012249119A (en) 2011-05-30 2012-12-13 Sony Corp Wireless resource allocation method, wireless resource allocation device, and communication system
US10405306B2 (en) * 2011-09-29 2019-09-03 Qualcomm Incorporated Half-duplex operation for low cost wireless devices
EP2829139A1 (en) * 2012-03-22 2015-01-28 Telefonaktiebolaget LM Ericsson (Publ) Dynamic configuration of subframes in a radio communications system
WO2013149651A1 (en) * 2012-04-03 2013-10-10 Nokia Siemens Networks Oy Frame format in communications
WO2013151338A1 (en) * 2012-04-03 2013-10-10 엘지전자 주식회사 Method and apparatus for transmitting reference signals
KR20150013458A (en) * 2012-05-25 2015-02-05 엘지전자 주식회사 Signal transceiving method and apparatus for same
US10397942B2 (en) * 2012-08-10 2019-08-27 Industrial Technology Research Institute Method of handling communication operation in TDD system and related apparatus
GB2508383B (en) * 2012-11-29 2014-12-17 Aceaxis Ltd Processing interference due to non-linear products in a wireless network
US9036580B2 (en) 2013-01-17 2015-05-19 Sharp Laboratories Of America, Inc. Systems and methods for dynamically configuring a flexible subframe
EP2953417B1 (en) * 2013-02-22 2020-02-12 Huawei Technologies Co., Ltd. Sub-frame generating method and equipment, sub-frame determining method and user equipment
US9246663B2 (en) 2013-03-15 2016-01-26 Sharp Kabushiki Kaisha Systems and methods for feedback reporting
US9219595B2 (en) 2013-04-04 2015-12-22 Sharp Kabushiki Kaisha Systems and methods for configuration signaling
US9692582B2 (en) 2013-05-09 2017-06-27 Sharp Kabushiki Kaisha Systems and methods for signaling reference configurations
US9112685B2 (en) * 2013-05-10 2015-08-18 Blackberry Limited Mechanisms for direct inter-device signaling
CN107431610A (en) 2013-12-25 2017-12-01 华为技术有限公司 Communication means, base station and the terminal of half-duplex frequency division duplex
WO2015100649A1 (en) 2013-12-31 2015-07-09 华为技术有限公司 Network controller, site and method for establishing protection period
US10567202B2 (en) * 2015-03-20 2020-02-18 Ntt Docomo, Inc. User equipment and base station
CA2985667C (en) 2015-05-13 2022-03-15 Huawei Technologies Co., Ltd. Data transmission method, and apparatus
CN106899527B (en) * 2015-12-17 2020-10-27 华为技术有限公司 Data symbol transmission method and wireless network equipment
CN107040998B (en) 2016-02-03 2021-08-20 华为技术有限公司 Communication method and device
WO2019098681A1 (en) 2017-11-14 2019-05-23 엘지전자 주식회사 Method for transmitting random access preamble in narrowband iot system supporting time division duplexing and apparatus therefor
KR102095047B1 (en) * 2017-11-14 2020-03-30 엘지전자 주식회사 Method and apparatus for transmitting a random access preamble in a narrow band IoT system supporting time division duplexing
CN117499003A (en) * 2022-07-20 2024-02-02 华为技术有限公司 Communication method, device, equipment and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040264431A1 (en) * 2003-06-27 2004-12-30 Rhodes Valentine J. Adaptive guard intervals in OFDM systems
EP1511190A1 (en) * 2003-08-27 2005-03-02 Siemens Aktiengesellschaft Method for transmission in a TDD system with variable length guard period
WO2005109705A1 (en) * 2004-05-01 2005-11-17 Neocific, Inc. Methods and apparatus for communication with time-division duplexing
EP1746743A1 (en) * 2005-07-21 2007-01-24 Mitsubishi Electric Information Technology Centre Europe B.V. Method for transmission in a TDD system with variable length guard period

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3759106B2 (en) * 2000-10-05 2006-03-22 サムスン エレクトロニクス カンパニー リミテッド Time switch transmission diversity apparatus and method for time division duplexing code division multiple access mobile communication system
US6825475B2 (en) 2002-09-19 2004-11-30 Applied Materials Israel, Ltd. Deflection method and system for use in a charged particle beam column
US20050259629A1 (en) 2004-05-24 2005-11-24 Neal Oliver Adapting uplink/downlink subframe ratio in time division duplex physical frames
EP1657736B1 (en) 2004-11-15 2016-12-14 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH High current density particle beam system
CN1832378B (en) 2005-03-11 2011-05-11 大唐移动通信设备有限公司 Method for radio transmission using high-efficient high performance frame structure for wide-band TDD system
CN100563127C (en) 2005-04-19 2009-11-25 大唐移动通信设备有限公司 A kind of initial uplink method for synchronous in TDS-CDMA system
CN100566214C (en) 2005-06-09 2009-12-02 大唐移动通信设备有限公司 The communication means of time division duplex mobile communication system
CN100566232C (en) * 2005-08-08 2009-12-02 大唐移动通信设备有限公司 The method of supporting changable cover by time division duplex system
CN101005305A (en) * 2006-01-17 2007-07-25 上海原动力通信科技有限公司 Transmitting method for time division duplex mobile communication system
US7613104B2 (en) * 2006-05-31 2009-11-03 Nokia Corporation Method, apparatus and computer program product providing synchronization for OFDMA downlink signal
WO2008053342A2 (en) * 2006-11-02 2008-05-08 Nokia Corporation Alternative time division duplex frame structure optimization
US8077694B2 (en) * 2006-11-28 2011-12-13 Motorola Mobility, Inc. Intelligent scheduling in a time division duplexing system to mitigate near/far interference scenarios
US7560691B1 (en) 2007-01-19 2009-07-14 Kla-Tencor Technologies Corporation High-resolution auger electron spectrometer
KR20080092222A (en) 2007-04-11 2008-10-15 엘지전자 주식회사 Data transmission method in tdd system
US20080304404A1 (en) * 2007-06-06 2008-12-11 Wei Lu Architecture for owa based tdd-ofdm system
US8798183B2 (en) * 2007-08-13 2014-08-05 Qualcomm Incorporated Feedback and rate adaptation for MIMO transmission in a time division duplexed (TDD) communication system
US8014265B2 (en) * 2007-08-15 2011-09-06 Qualcomm Incorporated Eigen-beamforming for wireless communication systems
ES2390798T3 (en) * 2007-09-14 2012-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Improved use of subframes in a cellular communications system
US8461526B2 (en) 2010-12-01 2013-06-11 Kla-Tencor Corporation Electron beam column and methods of using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040264431A1 (en) * 2003-06-27 2004-12-30 Rhodes Valentine J. Adaptive guard intervals in OFDM systems
EP1511190A1 (en) * 2003-08-27 2005-03-02 Siemens Aktiengesellschaft Method for transmission in a TDD system with variable length guard period
WO2005109705A1 (en) * 2004-05-01 2005-11-17 Neocific, Inc. Methods and apparatus for communication with time-division duplexing
EP1746743A1 (en) * 2005-07-21 2007-01-24 Mitsubishi Electric Information Technology Centre Europe B.V. Method for transmission in a TDD system with variable length guard period

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2198550A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9357554B2 (en) 2009-03-11 2016-05-31 Huawei Technologies Co., Ltd. Method and apparatus for coexistence of multiple operating entity systems
CN102859914A (en) * 2010-04-15 2013-01-02 高通股份有限公司 Coordinated silent period with sounding reference signal (SRS) configuration
CN102859914B (en) * 2010-04-15 2016-06-01 高通股份有限公司 Use the coordinated silence period that detection reference signal (SRS) configures
US8929230B2 (en) 2010-04-15 2015-01-06 Qualcomm Incorporated Coordinated silent period with sounding reference signal (SRS) configuration
JP2012010244A (en) * 2010-06-28 2012-01-12 Kyocera Corp Base station, communication terminal, and radio communication system
CN103503335A (en) * 2011-05-03 2014-01-08 Lg电子株式会社 Method for terminal to transmit/receive signal to/from base station in wireless communication system and device therefor
WO2012150775A3 (en) * 2011-05-03 2013-03-21 엘지전자 주식회사 Method for terminal to transmit/receive signal to/from base station in wireless communication system and device therefor
US9479965B2 (en) 2011-05-03 2016-10-25 Lg Electronics Inc. Method for terminal to transmit/receive signal to/from base station in wireless communication system and device therefor
EP2706679A4 (en) * 2011-05-03 2014-10-22 Lg Electronics Inc Method for terminal to transmit/receive signal to/from base station in wireless communication system and device therefor
EP2706679A2 (en) * 2011-05-03 2014-03-12 LG Electronics Inc. Method for terminal to transmit/receive signal to/from base station in wireless communication system and device therefor
WO2013024590A1 (en) * 2011-08-12 2013-02-21 Sharp Kabushiki Kaisha Devices for converting a downlink subframe
US9036491B2 (en) 2011-08-12 2015-05-19 Sharp Laboratories Of America, Inc. Devices for converting a downlink subframe
US8934424B2 (en) 2011-09-29 2015-01-13 Sharp Laboratories Of America, Inc. Devices for reconfiguring a subframe allocation
WO2013089530A1 (en) * 2011-12-16 2013-06-20 엘지전자 주식회사 Method for measuring channel state information in a wireless access system and apparatus for same
CN103988456A (en) * 2011-12-16 2014-08-13 Lg电子株式会社 Method for measuring channel state information in a wireless access system and apparatus for same
US9467881B2 (en) 2011-12-16 2016-10-11 Lg Electronics Inc. Method for measuring channel state information in a wireless access system and apparatus for same
CN103988456B (en) * 2011-12-16 2017-05-24 Lg电子株式会社 Method for measuring channel state information in a wireless access system and apparatus for same
US9877215B2 (en) 2011-12-16 2018-01-23 Lg Electronics Inc. Method for measuring channel state information in a wireless access system and apparatus for same
KR101915133B1 (en) 2011-12-16 2018-11-05 엘지전자 주식회사 Method for measuring channel state information in a wireless access system and apparatus for same
US9602251B2 (en) 2012-01-27 2017-03-21 Sharp Kabushiki Kaisha Devices for reconfiguring uplink and downlink allocations in time domain duplexing wireless systems
WO2014053885A1 (en) * 2012-10-05 2014-04-10 Broadcom Corporation Methods, apparatus and computer programs for half-duplex frequency division duplexing
WO2017004024A3 (en) * 2015-07-02 2017-02-09 Qualcomm Incorporated Method and apparatus for efficient data transmissions in half-duplex communication systems with large propagation delays
US10693574B2 (en) 2015-07-02 2020-06-23 Qualcomm Incorporated Method and apparatus for efficient data transmissions in half-duplex communication systems with large propagation delays

Also Published As

Publication number Publication date
US20090073902A1 (en) 2009-03-19
HUE044364T2 (en) 2019-10-28
CA2698756C (en) 2016-04-26
CN101803262B (en) 2013-06-12
US20220337705A1 (en) 2022-10-20
US9699322B2 (en) 2017-07-04
EP3512139A1 (en) 2019-07-17
ES2741177T3 (en) 2020-02-10
US8767697B2 (en) 2014-07-01
CN101803262A (en) 2010-08-11
EP2198550A1 (en) 2010-06-23
EP2198550B1 (en) 2012-07-25
USRE45653E1 (en) 2015-08-11
PL2506479T3 (en) 2019-10-31
EP2506479A3 (en) 2014-07-30
JP5016114B2 (en) 2012-09-05
US20150003303A1 (en) 2015-01-01
CA2698756A1 (en) 2009-03-19
US20110274015A1 (en) 2011-11-10
JP2010539785A (en) 2010-12-16
EP2506479A2 (en) 2012-10-03
EP2506479B1 (en) 2019-05-08
TR201907328T4 (en) 2019-06-21
PT2506479T (en) 2019-06-06
ES2390798T3 (en) 2012-11-16
EP2198550A4 (en) 2011-02-09
US7986681B2 (en) 2011-07-26
PL2198550T3 (en) 2012-12-31
US20170279969A1 (en) 2017-09-28
DK2506479T3 (en) 2019-06-11
US11405508B2 (en) 2022-08-02
BRPI0816249A2 (en) 2015-03-24

Similar Documents

Publication Publication Date Title
US20220337705A1 (en) Tdd time slot splitting
US11683132B2 (en) System and method for a long-term evolution (LTE)-compatible subframe structure for wideband LTE
CN102326347B (en) The method distributing the reference signal of back haul link in relay communications system and the method and apparatus using the method to send/receive data
CN1748377B (en) Method, base station and mobile station for tdd operation in a communication system
EP3420772B1 (en) Flexible frame structure for ofdm systems
EP2908444A1 (en) Methods and arrangements for frequency selective repetition
CN104380626B (en) In a wireless communication system according to the devices and methods therefor for the frame structure receiving and transmitting signal for supporting multiple carrier waves
WO2015126027A1 (en) Method for transreceiving signal using user-specific flexible tdd technology in wireless communication system and device for same
EP3285530B1 (en) Methods and devices for transmitting data
US9264210B2 (en) Method for user equipment transreceiving signal in wireless communication system
US9036519B2 (en) LTE wireless communication method for transceiving wireless device data
KR101657497B1 (en) Method and apparatus of relaying operation using uplink resource
WO2021098127A1 (en) A system and method for signal transmission

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880106878.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08724223

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 804/CHENP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2010524819

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2698756

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008724223

Country of ref document: EP

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: PI0816249

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100310