WO2009021035A1 - Flame retarded rigid polyurethane foams and rigid polyurethane foam formulations - Google Patents

Flame retarded rigid polyurethane foams and rigid polyurethane foam formulations Download PDF

Info

Publication number
WO2009021035A1
WO2009021035A1 PCT/US2008/072331 US2008072331W WO2009021035A1 WO 2009021035 A1 WO2009021035 A1 WO 2009021035A1 US 2008072331 W US2008072331 W US 2008072331W WO 2009021035 A1 WO2009021035 A1 WO 2009021035A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
total weight
amount
phosphate
rigid polyurethane
Prior art date
Application number
PCT/US2008/072331
Other languages
French (fr)
Inventor
Hoover B. Chew
Ravindra R. Joshi
Arthur G. Mack
Augusto Ibay
Original Assignee
Albemarle Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Albemarle Corporation filed Critical Albemarle Corporation
Priority to ES08797281T priority Critical patent/ES2374858T3/en
Priority to MX2010001411A priority patent/MX2010001411A/en
Priority to CA2695786A priority patent/CA2695786A1/en
Priority to JP2010520277A priority patent/JP2010535901A/en
Priority to EP08797281A priority patent/EP2178955B1/en
Priority to CN200880101720XA priority patent/CN101772536B/en
Priority to BRPI0814884A priority patent/BRPI0814884A8/en
Priority to US12/672,474 priority patent/US20110130476A1/en
Priority to AT08797281T priority patent/ATE532819T1/en
Priority to PL08797281T priority patent/PL2178955T3/en
Publication of WO2009021035A1 publication Critical patent/WO2009021035A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0038Use of organic additives containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to flame retarded rigid polyurethane foam formulations, flame retardant additives suitable for use therein, and flame retarded foams made therefrom.
  • Rigid polyurethane foam are most typically produced using a cast process or spray process.
  • the cast process is generally utilized for block foam production, continuous double band lamination (“DBL”), and discontinuous panel production (“DCP”), and block foam is typically produced by known discontinuous production or continuous rigid slab-stock production methods.
  • DBL continuous double band lamination
  • DCP discontinuous panel production
  • block foam is typically produced by known discontinuous production or continuous rigid slab-stock production methods.
  • the block foam is cut after production to the required shape, and is typically glued to facings to make the finished specially product.
  • Such products find use in, for example, the building industry, in truck insulation, and in the form of "half shells" for pipe insulation.
  • Double band lamination is a continuous panel production process with both sides of the panel laminated with flexible or rigid facing materials.
  • the polyurethane foam core is sandwiched between those facings and applied as insulation for floors, walls and roofs.
  • Sandwich panels with a rigid metal facing are structural building elements and can be applied as roof and wall construction elements such as cold-store panels, garage doors, refrigerated trucks, and for similar uses.
  • Sandwich panels with non-metal rigid facing, e.g., gypsum board or wood, are used in the manufacture of prefabricated houses or other building structures.
  • the present invention relates to a flame retardant additive comprising: a) at least one, in some embodiments only one, phosphorous -containing flame retardant; and b) at least one, in some embodiments only one, alkylated triaryl phosphate ester, preferably isopropylphenyl diphenyl phosphate, wherein a) is present in an amount of less than about 30wt.%, based on the total weight of the flame retardant additive and b) is present in an amount of greater than about 70 wt.%, based on the total weight of the flame retardant additive.
  • the present invention also relates to a rigid polyurethane foam formulation
  • a rigid polyurethane foam formulation comprising a) at least one, in some embodiments only one, phosphorous-containing flame retardant; and b) at least one, in some embodiments only one, alkylated triaryl phosphate ester, preferably isopropylphenyl diphenyl phosphate; c) at least one, in some embodiments only one, i) isocyanate; ii) polyol, or combinations of i) and ii); and d) at least one, in some embodiments only one, blowing agent, wherein a) is present in an amount of less than about 30wt.%, based on the total weight of a) and b), and b) is present in an amount of greater than about 70 wt.%, based on the total weight of a) and b).
  • the present invention also relates to a process for forming a rigid flame retarded polyurethane foam comprising combining or bringing together a) at least one, in some embodiments only one, phosphorous-containing flame retardant; and b) at least one, in some embodiments only one, alkylated triaryl phosphate ester, preferably isopropylphenyl diphenyl phosphate; c) at least one, in some embodiments only one, i) isocyanate; ii) polyol, or combinations of i) and ii); and d) at least one, in some embodiments only one, blowing agent, in the presence of at least one, in some embodiments only one, catalyst, wherein a) is present in an amount of less than about 30wt.%, based on the total weight of a) and b), and b) is present in an amount of greater than about 70 wt.%, based on the total weight of a) and b), and wherein the
  • the flame retardant additives of the present invention comprise a) at least one, in some embodiments only one, phosphorous-containing flame retardant; and b) at least one, in some embodiments only one, alkylated triaryl phosphate ester.
  • the flame retardant additives of the present invention contain less than about 30 wt.%, typically in the range of from about 1 to about 30wt.%, of a) and greater than about 70wt.%, typically in the range of from about 70 to about 99wt.%, of b), all based on the total weight of the flame retardant additive. In some embodiments, the flame retardant additives of the present invention contain in the range of from about 5 to about 30wt.% of a) and in the range of from about 70 to about 95wt.% of b).
  • the flame retardant additives of the present invention contain in the range of from about 5 to about 15wt.% of a) and in the range of from about 85 to about 95wt.% of b).
  • the flame retardant additives of the present invention can be characterized as having a phosphorus content in the range of from about 5 to about 15 wt,%, based on the total weight of the flame retardant additive.
  • the flame retardant additives of the present invention can be characterized as having a phosphorus content in the range of from about 8 to about 15 wt.%, preferably in the range of from about 8 to about 12 wt.%, both on the same basis.
  • the flame retardant additives of the present invention can also be characterized as having a viscosity at 25 0 C, in the range of from about 100 to about 2000 cP.
  • the flame retardant additives of the present invention can be characterized as having a viscosity in the range of from about 100 to about 1000 cP, preferably in the range of from about 400 to about 600 cP.
  • the low viscosity of the present flame retardant additives make the especially effective in rigid foam formulations because the low viscosity allows for better dispersion in the rigid foam formulations, thus allowing for more effective foams.
  • a poorly dispersed flame retardant could negatively effect the mechanical properties of the foam, as is well-known in the art.
  • phosphorous-containing flame retardant levels within the above described ranges in some embodiments in the range of from about 5 to about 15wt.%, alleviates some of the problems associated with having a component of the flame retardant additive considered a chemical weapons precursor. While heretofore levels within this range were not contemplated, the inventors hereof have unexpectedly discovered that phosphorous-containing flame retardant levels within these ranges can still provide for flame retarded polyurethane/polyisocyanurate foams that meet or exceeds the requirements of California Technical Bulletin 117 part A and D.
  • the phosphorous-containing flame retardant used herein can be selected from any phosphorous flame retardant, preferably those phosphorous flame retardants having a phosphorous content, as determined by P-NMR or ICP, in the range of from about 10 to about 30wt.%, preferably in the range of from about 15 to about 25wt.%, more preferably in the range of from about 18 to about 21wt.%, all based on the total weight of the phosphorous flame retardant.
  • the phosphorous-containing flame retardant is a phosphate, in other embodiments a phosphite, and in still other embodiments, a phosphonate.
  • the phosphorus-containing flame retardant can be cyclic or linear, preferably cyclic.
  • the phosphorous-containing flame retardant used herein is a cyclic phosphonate.
  • the cyclic phosphonate contains at least dimers and monomers, typically in the range of from about 50 to about 70 wt.% monomer and in the range of from about 15 to about 25 wt.% dimer, both based on the total weight of the cyclic phosphonate.
  • the remainder of the cyclic phosphonate is typically trimers, etc. that have a higher molecular weight than the dimers.
  • the monomers are CAS registration number 41203-81-0, and the dimers are CAS registration number 42595-45-9.
  • the alkylated triaryl phosphate ester used herein can be selected from any alkylated triaryl phosphate ester.
  • the alkylated triaryl phosphate ester used herein is a mixture of isopropylated triphenyl phosphate esters.
  • the alkylated triaryl phosphate ester can comprise in the range of from about 20 to about 50wt.%, based on the total weight of the alkylated triaryl phosphate ester, isopropylphenyldiphenylphosphate, preferably in the range of from about 20 to about 40wt.%, more preferably in the range of from about 30 to about 40wt.%, on the same basis.
  • the mixture alkylated triaryl phosphate ester can comprise in the range of from about 20 to about 40wt.%, based on the total weight of the alkylated triaryl phosphate ester, di(isopropylphenylphenyl)phenylphosphate, preferably in the range of from about 20 to about 35wt.%, more preferably in the range of from about 20 to about 30wt.%, on the same basis.
  • the alkylated triaryl phosphate ester can comprise in the range of from about 1 to about 15wt.%, based on the total weight of the alkylated triaryl phosphate ester, tri(isopropylphenyl)phosphate, preferably in the range of from about 5 to about 15wt.%, on the same basis.
  • the alkylated triaryl phosphate ester used herein can comprise in the range of from about 0 to about 50wt.%, triphenyl phosphate, based on the total weight of the alkylated triaryl phosphate ester, preferably, in the range of from about 10 to about 50wt.%, more preferably in the range of from about 20 to about 40wt.%, triphenyl phosphate, most preferably in the range of from about 20 to about 35wt.%, triphenyl phosphate, all on the same basis.
  • the alkylated triaryl phosphate ester is a mixture of isopropylated triphenyl phosphate esters comprising at least two of, preferably at least three of, more preferably all of: i) isopropylphenyldiphenylphosphate; ii) di(isopropylphenylphenyl)phenylphosphate; iii) tri(isopropylphenyl)phosphate; and iv) triphenyl phosphate.
  • the amount of i) isopropylphenyldiphenylphosphate; ii) di(isopropylphenylphenyl)phenylphosphate; iii) tri(isopropylphenyl)phosphate; and iv) triphenyl phosphate in the mixture of isopropylated triphenyl phosphate esters is as described in this paragraph, including preferred embodiments, e.g., for i) isopropylphenyldiphenylphosphate, in the range of from about 20 to about 50wt.%, based on the total weight of the alkylated triaryl phosphate ester, isopropylphenyldiphenylphosphate, preferably in the range of from about 20 to about 40wt.%, etc..
  • the flame retardant additives of the present are useful in providing flame retardancy to rigid polyurethane foams.
  • the flame retardant additives will be included as one of various additives employed in the polyurethane foam formation process and will be employed using typical polyurethane foam formation conditions.
  • anyone unfamiliar with the art of forming polyurethanes or polyurethane foams may refer to, for example United States Patent Numbers 3,954,684; 4,209,609; 5,356,943; 5,563,180; and 6,121,338, and the references cited therein.
  • the present invention relates to a rigid polyurethane foam formulation
  • a flame retardant additive according to the present invention typically a flame retarding amount of a flame retardant additive according to the present invention; at least one, in some embodiments only one, isocyanate, polyol or combination thereof; and at least one, in some embodiments only one, blowing agent, and rigid polyurethane foams formed therefrom.
  • Blowing agents suitable for use herein include water, a volatile hydrocarbon, halocarbon, or halohydrocarbon, or mixtures of two or more such materials.
  • a flame retarding amount of the flame retardant additives of the present invention it is meant that amount sufficient to meet or exceed the test standards set forth in California Technical Bulletin 117 part A and D. Generally, this is in the range of from about 5 to about to be considered in the range of from about 5 to about 20 phr, more preferably in the range of from about 5 to about 15 phr, most preferably in the range of from about 10 to about 15 phr of the flame retardant additive.
  • the isocyanate used in the present invention can be selected from any of those known in the art to be effective in producing rigid polyurethane foams.
  • organic polyisocyanates which may be employed include aromatic, aliphatic, and cycloaliphatic polyisocyanates and combinations thereof.
  • diisocyanates such as m-phenylene diisocyanate, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, mixtures of 2,4- and 2,6-toluene diisocyanate, hexamethylene diisocyanate, tetramethylene diisocyanate, cyclohexane-l ,4-diisocyanate, hexahydrotoluene diisocyanate (and isomers), naphthalene- 1 ,5 -diisocyanate, 1 -methoxyphenyl-2,4-diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-biphenylene diisocyanate, 3,3'-dimethoxy-4,4'-biphenyl diisocyanate, 3,3'- dimethyl-4,4'-biphenyl diisocyanate
  • Polyols suitable for use herein can be selected from any polyols known in the art to be effective at producing rigid polyurethane foams, in preferred embodiments a polyester polyol.
  • a polyester polyol e.g., polyethylene glycol
  • Suitable polyols meeting these criteria have been fully described in the literature, and include reaction products of (a) alkylene oxide such as propylene oxide and/or ethylene oxide, with (b) initiators having in the range of from 2 to 8 active hydrogen atoms per molecule.
  • Suitable initiators include, for example, diols (e.g., diethylene glycol, bisphenol-A), polyesters (e.g., polyethylene terephthalate), triols (e.g., glycerine), novolac resins, ethylenediamine, pentaerythritol, sorbitol, and sucrose.
  • Other usable polyols include polyesters prepared by the condensation reaction of appropriate proportions of glycols and higher functionality polyols with dicarboxylic or polycarboxylic acids.
  • the polyether polyols can be mixed with polyester types.
  • Other polyols include hydro xyl-terminated polythioethers, polyamides, polyesteramides, polycarbonates, polyacetals and polysiloxanes.
  • the rigid polyurethane foam formulations can contain any other component known in the art and used in the formation of rigid polyurethane foams. These other components are well known to those of ordinary skill in the art.
  • the rigid polyurethane foam formulations can contain i) surfactants, U) antioxidants, Hi) diluents, ⁇ v) chain extenders or cross linkers, v) synergists, preferably melamine; and vi) plasticizers.
  • these optional components are well known in the art and the amount of these optional components is conventional and not critical to the instant invention.
  • non-limiting examples of diluents such as low viscosity liquid Ci -4 halocarbon and/or halohydrocarbon diluents in which the halogen content is 1 -4 bromine and/or chlorine atoms can also be included in the compositions of this invention.
  • Non-limiting examples of such diluents include bromochloromethane, methylene chloride, ethylene dichloride, ethylene dibromide, isopropyl chloride, n-butyl bromide, sec-butyl bromide, n-butyl chloride, sec- butyl chloride, chloroform, perchloroethylene, methyl chloroform, and carbon tetrachloride.
  • the rigid polyurethane foam formulations can be combined with a catalyst, or the individual components combined in the presence of a catalyst, to form a flame retarded rigid polyurethane foam that meets or exceeds the test standards set forth in California Technical Bulletin 117 part A and D.
  • catalysts suitable for use in forming the rigid polyurethane foams include gel catalysts, blow catalysts, balanced gel/blow catalysts, trimerization catalysts, and the like.
  • foams were prepared with and without a flame retardant according to the present invention.
  • the flame retardant used in these examples was a mixture of about 10wt.% of a commercially available cyclic phosphonate flame retardant sold under the tradename Amgard CU, and about 90wt.% isopropyl diphenyl phosphate ester.
  • Foam Preparation The polyols, flame retardant, cyclopentane, silicone surfactant, dimethylcyclohexylamine, and water were weighed into a one-gallon-sized jar in the amounts indicated in the Table, which was then capped, shaken, and rolled for at least one hour to obtain a homogeneous blend. A portion of this blend and the required amount of polymeric MDI based on the amount of the blend were then weighed into a one-gallon "chicken bucket.” The contents of the cup were then mixed at 2000 rpm using a bow-tie agitator for 20 seconds and immediately poured into a polyethylene sheet-lined mold. The mold was closed and foam was allowed to rise in the mold.
  • the reactivity profile was obtained from the remaining material in the chicken bucket.
  • the typical reactivity profile was 35 sec for creme time, 1 min 5 sec for gel time, 1 min 35 sec for tack free time, and 2 min 5 sec for free rise time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

The present invention relates to flame retarded polyurethane or polyisocyanurate foam formulations, flame retardant additives suitable for use therein, and flame retarded foams made therefrom.

Description

FLAME RETARDED RIGID POLYURETHANE FOAMS AND RIGID POLYURETHANE FOAM FORMULATIONS
FIELD OF THE INVENTION
[0001] The present invention relates to flame retarded rigid polyurethane foam formulations, flame retardant additives suitable for use therein, and flame retarded foams made therefrom. BACKGROUND OF THE INVENTION
[0002] Rigid polyurethane foam are most typically produced using a cast process or spray process. The cast process is generally utilized for block foam production, continuous double band lamination ("DBL"), and discontinuous panel production ("DCP"), and block foam is typically produced by known discontinuous production or continuous rigid slab-stock production methods. If necessary for specialty products, the block foam is cut after production to the required shape, and is typically glued to facings to make the finished specially product. Such products find use in, for example, the building industry, in truck insulation, and in the form of "half shells" for pipe insulation.
[0003] Double band lamination is a continuous panel production process with both sides of the panel laminated with flexible or rigid facing materials. The polyurethane foam core is sandwiched between those facings and applied as insulation for floors, walls and roofs. Sandwich panels with a rigid metal facing are structural building elements and can be applied as roof and wall construction elements such as cold-store panels, garage doors, refrigerated trucks, and for similar uses. Sandwich panels with non-metal rigid facing, e.g., gypsum board or wood, are used in the manufacture of prefabricated houses or other building structures.
[0004] Because of the widespread use of rigid polyurethane foams, much research has been done on providing flame retardancy to polyurethane/polyisocyanurate foams. To this end, a myriad of flame retardants have been used and proposed to provide flame retardant properties to rigid polyurethane foams. However, even with the available flame retardants the industry has increasingly requested flame retardants that outperform or have more favorable characteristics than those currently available. SUMMARY OF THE INVENTION
[0005] The present invention relates to a flame retardant additive comprising: a) at least one, in some embodiments only one, phosphorous -containing flame retardant; and b) at least one, in some embodiments only one, alkylated triaryl phosphate ester, preferably isopropylphenyl diphenyl phosphate, wherein a) is present in an amount of less than about 30wt.%, based on the total weight of the flame retardant additive and b) is present in an amount of greater than about 70 wt.%, based on the total weight of the flame retardant additive. [0006] The present invention also relates to a rigid polyurethane foam formulation comprising a) at least one, in some embodiments only one, phosphorous-containing flame retardant; and b) at least one, in some embodiments only one, alkylated triaryl phosphate ester, preferably isopropylphenyl diphenyl phosphate; c) at least one, in some embodiments only one, i) isocyanate; ii) polyol, or combinations of i) and ii); and d) at least one, in some embodiments only one, blowing agent, wherein a) is present in an amount of less than about 30wt.%, based on the total weight of a) and b), and b) is present in an amount of greater than about 70 wt.%, based on the total weight of a) and b).
[0007] The present invention also relates to a process for forming a rigid flame retarded polyurethane foam comprising combining or bringing together a) at least one, in some embodiments only one, phosphorous-containing flame retardant; and b) at least one, in some embodiments only one, alkylated triaryl phosphate ester, preferably isopropylphenyl diphenyl phosphate; c) at least one, in some embodiments only one, i) isocyanate; ii) polyol, or combinations of i) and ii); and d) at least one, in some embodiments only one, blowing agent, in the presence of at least one, in some embodiments only one, catalyst, wherein a) is present in an amount of less than about 30wt.%, based on the total weight of a) and b), and b) is present in an amount of greater than about 70 wt.%, based on the total weight of a) and b), and wherein the flame retarded polyurethane/polyisocyanurate foam thus formed meets or exceeds the requirements of California Technical Bulletin 117 part A and D. DETAILED DESCRIPTION OF THE INVENTION
[0008] The inventors hereof have discovered that the use of the flame retardant additives described herein, can provide rigid flame retarded polyurethane foams that meet or exceeds the requirements of California Technical Bulletin 117 part A and D. Flame Retardant Additive
[0009] The flame retardant additives of the present invention comprise a) at least one, in some embodiments only one, phosphorous-containing flame retardant; and b) at least one, in some embodiments only one, alkylated triaryl phosphate ester.
[0010] Generally, the flame retardant additives of the present invention contain less than about 30 wt.%, typically in the range of from about 1 to about 30wt.%, of a) and greater than about 70wt.%, typically in the range of from about 70 to about 99wt.%, of b), all based on the total weight of the flame retardant additive. In some embodiments, the flame retardant additives of the present invention contain in the range of from about 5 to about 30wt.% of a) and in the range of from about 70 to about 95wt.% of b). In an exemplary embodiment, the flame retardant additives of the present invention contain in the range of from about 5 to about 15wt.% of a) and in the range of from about 85 to about 95wt.% of b). [0011] The flame retardant additives of the present invention can be characterized as having a phosphorus content in the range of from about 5 to about 15 wt,%, based on the total weight of the flame retardant additive. In some embodiments, the flame retardant additives of the present invention can be characterized as having a phosphorus content in the range of from about 8 to about 15 wt.%, preferably in the range of from about 8 to about 12 wt.%, both on the same basis.
[0012] The flame retardant additives of the present invention can also be characterized as having a viscosity at 250C, in the range of from about 100 to about 2000 cP. In some embodiments, the flame retardant additives of the present invention can be characterized as having a viscosity in the range of from about 100 to about 1000 cP, preferably in the range of from about 400 to about 600 cP. The low viscosity of the present flame retardant additives make the especially effective in rigid foam formulations because the low viscosity allows for better dispersion in the rigid foam formulations, thus allowing for more effective foams. For example, a poorly dispersed flame retardant could negatively effect the mechanical properties of the foam, as is well-known in the art.
[0013] The inventors hereof have unexpectedly discovered that by utilizing levels of a) as low as described above, flame retarded rigid polyurethane foams that meet or exceeds the requirements of California Technical Bulletin 117 part A and D can be provided. This is a desirable quality because phosphorous -containing flame retardants currently used in polyurethane, which can be used in some embodiments of the present invention, are considered chemical weapons precursors, thus their shipping, use, etc., and distribution could prove problematic and expensive. However, the inventors hereof have discovered that phosphorous-containing flame retardant levels within the above described ranges, in some embodiments in the range of from about 5 to about 15wt.%, alleviates some of the problems associated with having a component of the flame retardant additive considered a chemical weapons precursor. While heretofore levels within this range were not contemplated, the inventors hereof have unexpectedly discovered that phosphorous-containing flame retardant levels within these ranges can still provide for flame retarded polyurethane/polyisocyanurate foams that meet or exceeds the requirements of California Technical Bulletin 117 part A and D. Component a)
[0014] The phosphorous-containing flame retardant used herein can be selected from any phosphorous flame retardant, preferably those phosphorous flame retardants having a phosphorous content, as determined by P-NMR or ICP, in the range of from about 10 to about 30wt.%, preferably in the range of from about 15 to about 25wt.%, more preferably in the range of from about 18 to about 21wt.%, all based on the total weight of the phosphorous flame retardant. In some embodiments, the phosphorous-containing flame retardant is a phosphate, in other embodiments a phosphite, and in still other embodiments, a phosphonate. The phosphorus-containing flame retardant can be cyclic or linear, preferably cyclic. In an exemplary embodiment, the phosphorous-containing flame retardant used herein is a cyclic phosphonate. In some embodiments, the cyclic phosphonate contains at least dimers and monomers, typically in the range of from about 50 to about 70 wt.% monomer and in the range of from about 15 to about 25 wt.% dimer, both based on the total weight of the cyclic phosphonate. In these embodiments, the remainder of the cyclic phosphonate is typically trimers, etc. that have a higher molecular weight than the dimers. In preferred embodiments, the monomers are CAS registration number 41203-81-0, and the dimers are CAS registration number 42595-45-9. Component b)
[0015] The alkylated triaryl phosphate ester used herein can be selected from any alkylated triaryl phosphate ester. In preferred embodiments, the alkylated triaryl phosphate ester used herein is a mixture of isopropylated triphenyl phosphate esters. The alkylated triaryl phosphate ester can comprise in the range of from about 20 to about 50wt.%, based on the total weight of the alkylated triaryl phosphate ester, isopropylphenyldiphenylphosphate, preferably in the range of from about 20 to about 40wt.%, more preferably in the range of from about 30 to about 40wt.%, on the same basis. The mixture alkylated triaryl phosphate ester can comprise in the range of from about 20 to about 40wt.%, based on the total weight of the alkylated triaryl phosphate ester, di(isopropylphenylphenyl)phenylphosphate, preferably in the range of from about 20 to about 35wt.%, more preferably in the range of from about 20 to about 30wt.%, on the same basis. The alkylated triaryl phosphate ester can comprise in the range of from about 1 to about 15wt.%, based on the total weight of the alkylated triaryl phosphate ester, tri(isopropylphenyl)phosphate, preferably in the range of from about 5 to about 15wt.%, on the same basis. The alkylated triaryl phosphate ester used herein can comprise in the range of from about 0 to about 50wt.%, triphenyl phosphate, based on the total weight of the alkylated triaryl phosphate ester, preferably, in the range of from about 10 to about 50wt.%, more preferably in the range of from about 20 to about 40wt.%, triphenyl phosphate, most preferably in the range of from about 20 to about 35wt.%, triphenyl phosphate, all on the same basis. In an exemplary embodiment, the alkylated triaryl phosphate ester is a mixture of isopropylated triphenyl phosphate esters comprising at least two of, preferably at least three of, more preferably all of: i) isopropylphenyldiphenylphosphate; ii) di(isopropylphenylphenyl)phenylphosphate; iii) tri(isopropylphenyl)phosphate; and iv) triphenyl phosphate. In this particular embodiment, the amount of i) isopropylphenyldiphenylphosphate; ii) di(isopropylphenylphenyl)phenylphosphate; iii) tri(isopropylphenyl)phosphate; and iv) triphenyl phosphate in the mixture of isopropylated triphenyl phosphate esters is as described in this paragraph, including preferred embodiments, e.g., for i) isopropylphenyldiphenylphosphate, in the range of from about 20 to about 50wt.%, based on the total weight of the alkylated triaryl phosphate ester, isopropylphenyldiphenylphosphate, preferably in the range of from about 20 to about 40wt.%, etc.. Use as a Flame Retardant
[0016] The flame retardant additives of the present are useful in providing flame retardancy to rigid polyurethane foams. Typically, the flame retardant additives will be included as one of various additives employed in the polyurethane foam formation process and will be employed using typical polyurethane foam formation conditions. Anyone unfamiliar with the art of forming polyurethanes or polyurethane foams may refer to, for example United States Patent Numbers 3,954,684; 4,209,609; 5,356,943; 5,563,180; and 6,121,338, and the references cited therein.
[0017] Thus, in some embodiments, the present invention relates to a rigid polyurethane foam formulation comprising a flame retardant additive according to the present invention, typically a flame retarding amount of a flame retardant additive according to the present invention; at least one, in some embodiments only one, isocyanate, polyol or combination thereof; and at least one, in some embodiments only one, blowing agent, and rigid polyurethane foams formed therefrom. Blowing agents suitable for use herein include water, a volatile hydrocarbon, halocarbon, or halohydrocarbon, or mixtures of two or more such materials.
[0018] By a flame retarding amount of the flame retardant additives of the present invention, it is meant that amount sufficient to meet or exceed the test standards set forth in California Technical Bulletin 117 part A and D. Generally, this is in the range of from about 5 to about to be considered in the range of from about 5 to about 20 phr, more preferably in the range of from about 5 to about 15 phr, most preferably in the range of from about 10 to about 15 phr of the flame retardant additive.
[0019] The isocyanate used in the present invention can be selected from any of those known in the art to be effective in producing rigid polyurethane foams. Thus, organic polyisocyanates which may be employed include aromatic, aliphatic, and cycloaliphatic polyisocyanates and combinations thereof. Representative of these types are the diisocyanates such as m-phenylene diisocyanate, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, mixtures of 2,4- and 2,6-toluene diisocyanate, hexamethylene diisocyanate, tetramethylene diisocyanate, cyclohexane-l ,4-diisocyanate, hexahydrotoluene diisocyanate (and isomers), naphthalene- 1 ,5 -diisocyanate, 1 -methoxyphenyl-2,4-diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-biphenylene diisocyanate, 3,3'-dimethoxy-4,4'-biphenyl diisocyanate, 3,3'- dimethyl-4,4'-biphenyl diisocyanate and 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate; the triisocyanates such as 4,4',4"-triphenylmethane triisocyanate, and toluene 2,4,6-triisocyanate; and the tetraisocyanates such as 4,4'-dimethyldiphenylmethane-2,2',5,5'-tetraisocyanate and polymeric polyisocyanates such as polymethylene polyphenylene polyisocyanate. Especially useful due to its availability and properties is toluene diisocyanate.
[0020] Polyols suitable for use herein can be selected from any polyols known in the art to be effective at producing rigid polyurethane foams, in preferred embodiments a polyester polyol. Thus individual or mixtures of polyols with hydroxyl values in the range of from 150 to 850 mg KOH/g, and preferably in the range of from 200 to 600 mg KOH/g, and hydroxyl functionalities in the range of from 2 to 8 and preferably in the range of from 3 to 8 are used. Suitable polyols meeting these criteria have been fully described in the literature, and include reaction products of (a) alkylene oxide such as propylene oxide and/or ethylene oxide, with (b) initiators having in the range of from 2 to 8 active hydrogen atoms per molecule. Suitable initiators include, for example, diols (e.g., diethylene glycol, bisphenol-A), polyesters (e.g., polyethylene terephthalate), triols (e.g., glycerine), novolac resins, ethylenediamine, pentaerythritol, sorbitol, and sucrose. Other usable polyols include polyesters prepared by the condensation reaction of appropriate proportions of glycols and higher functionality polyols with dicarboxylic or polycarboxylic acids. The polyether polyols can be mixed with polyester types. Other polyols include hydro xyl-terminated polythioethers, polyamides, polyesteramides, polycarbonates, polyacetals and polysiloxanes.
[0021] In addition to these components, the rigid polyurethane foam formulations can contain any other component known in the art and used in the formation of rigid polyurethane foams. These other components are well known to those of ordinary skill in the art. For example, the rigid polyurethane foam formulations can contain i) surfactants, U) antioxidants, Hi) diluents, \v) chain extenders or cross linkers, v) synergists, preferably melamine; and vi) plasticizers. These optional components are well known in the art and the amount of these optional components is conventional and not critical to the instant invention. For example, non- limiting examples of diluents such as low viscosity liquid Ci-4 halocarbon and/or halohydrocarbon diluents in which the halogen content is 1 -4 bromine and/or chlorine atoms can also be included in the compositions of this invention. Non-limiting examples of such diluents include bromochloromethane, methylene chloride, ethylene dichloride, ethylene dibromide, isopropyl chloride, n-butyl bromide, sec-butyl bromide, n-butyl chloride, sec- butyl chloride, chloroform, perchloroethylene, methyl chloroform, and carbon tetrachloride. [0022] It should be noted that these and other ingredients that can be used in the polyurethane/polyisocyanurate foam formulations of the present invention, and the proportions and manner in which they are used are reported in the literature. [0023] In the practice of the present invention, the rigid polyurethane foam formulations can be combined with a catalyst, or the individual components combined in the presence of a catalyst, to form a flame retarded rigid polyurethane foam that meets or exceeds the test standards set forth in California Technical Bulletin 117 part A and D. Non-limiting examples of catalysts suitable for use in forming the rigid polyurethane foams include gel catalysts, blow catalysts, balanced gel/blow catalysts, trimerization catalysts, and the like. [0024] The above description is directed to several embodiments of the present invention. Those skilled in the art will recognize that other means, which are equally effective, could be devised for carrying out the spirit of this invention. It should also be noted that preferred embodiments of the present invention contemplate that all ranges discussed herein include ranges from any lower amount to any higher amount.
[0025] The following examples will illustrate the present invention, but are not meant to be limiting in any manner.
EXAMPLES
[0026] In order to prove the effectiveness of a flame retardant according to the present invention, foams were prepared with and without a flame retardant according to the present invention. The flame retardant used in these examples was a mixture of about 10wt.% of a commercially available cyclic phosphonate flame retardant sold under the tradename Amgard CU, and about 90wt.% isopropyl diphenyl phosphate ester. [0027] Foam Preparation: The polyols, flame retardant, cyclopentane, silicone surfactant, dimethylcyclohexylamine, and water were weighed into a one-gallon-sized jar in the amounts indicated in the Table, which was then capped, shaken, and rolled for at least one hour to obtain a homogeneous blend. A portion of this blend and the required amount of polymeric MDI based on the amount of the blend were then weighed into a one-gallon "chicken bucket." The contents of the cup were then mixed at 2000 rpm using a bow-tie agitator for 20 seconds and immediately poured into a polyethylene sheet-lined mold. The mold was closed and foam was allowed to rise in the mold. Meanwhile, the reactivity profile was obtained from the remaining material in the chicken bucket. For this system, the typical reactivity profile was 35 sec for creme time, 1 min 5 sec for gel time, 1 min 35 sec for tack free time, and 2 min 5 sec for free rise time.
Table: Comparison of Rigid Polyurethane Pour Foam with and without a flame retardant according to the present invention.
Figure imgf000009_0001
*Predicted ASTM E-84 values based on Cone Calorimeter results. DMCHA=dimethylcyclohexylamine

Claims

WHAT IS CLAIMED:
1) A rigid polyurethane foam derived from at least one isocyanate, polyol, or mixture thereof; at least one blowing agent; and a flame retardant additive wherein said flame retardant additive contains: a) at least one cyclic phosphonate flame retardant; b) at least one alkylated triaryl phosphate ester, and optionally c) one or more i) surfactants, H) antioxidants, in) diluents, iv) chain extenders or cross linkers, v) synergists; and vi) plasticizers, wherein a) is present in an amount of less than about 30wt.%, based on the total weight of a) and b), and b) is present in an amount of greater than about 70 wt.%, based on the total weight of a) and b), and wherein the rigid polyurethane foam meets or exceeds the requirements of California Technical Bulletin 117 part A and D.
2) The rigid polyurethane foam according to claim 1 wherein a) has a phosphorous content, as determined by P-NMR or ICP, (i) in the range of from about 10 to about 30wt.%; (H) in the range of from about 15 to about 25wt.%; or (Hi) in the range of from about 18 to about 21 wt.%, all based on the total weight of the phosphorous flame retardant.
3) The rigid polyurethane foam according to claim 1 wherein the cyclic phosphonate contains in the range of from about 50 to about 70 wt.% monomer and in the range of from about 15 to about 25 wt.% dimer, both based on the total weight of the cyclic phosphonate.
4) The rigid polyurethane foam according to any of claims 1-3 wherein the alkylated triaryl phosphate ester is a mixture of isopropylated triphenyl phosphate esters comprising at least one of: i) isopropylphenyldiphenylphosphate; ii) di(isopropylphenylphenyl)phenylphosphate; iii) tri(isopropylphenyl)phosphate; and iv) triphenyl phosphate. In this particular embodiment, the amount of i) isopropylphenyldiphenylphosphate; ii) di(isopropylphenylphenyl)phenylphosphate; iii) tri(isopropylphenyl)phosphate; and iv) triphenyl phosphate.
5) The rigid polyurethane foam according to claim 2 wherein the alkylated triaryl phosphate ester contains (a) in the range of from about 0 to about 50 wt.%; (b) in the range of from about 10 to about 50wt.%; or (c) in the range of from about 20 to about 40wt.%, triphenyl phosphate, all based on the total weight of the alkylated triaryl phosphate ester.
6) The rigid polyurethane foam according to claim 3 wherein the monomers are CAS registration number 41203-81-0, and the dimers are CAS registration number 42595-45-9. 7) The rigid polyurethane foam according to any of claims 1 or 6 wherein i) a) is present in an amount in the range of from about 5 to about 30wt.% and b) a) is present in an amount in the range of from about 70 to about 95wt.% of b); or ii) a) is present in an amount in the range of from about 5 to about 15wt.% and b) is present in an amount in the range of from about 85 to about 95wt.%, all based on the total weight of a) and b).
8) The rigid polyurethane foam according to claim 4 wherein the amount of said at least one of i)-iv) in said mixture of isopropylated triphenyl phosphate esters is: i) in the range of from about 20 to about 50wt,%, isopropylphenyldiphenylphosphate; ii) in the range of from about 20 to about 40wt.%, based on the total weight of the alkylated triaryl phosphate ester, di(isopropylphenylphenyl)phenylphosphate; iii) in the range of from about 1 to about 15wt.%, tri(isopropylphenyl)phosphate, iv) in the range of from about 0 to about 50wt.%, triphenyl phosphate, all based on the total weight of the mixture of isopropylated triphenyl phosphate esters.
9) The rigid polyurethane foam according to claim 1 wherein said at least one alkylated triaryl phosphate ester comprises at least one of: i) in the range of from about 20 to about 50wt.%, isopropylphenyldiphenylphosphate; ii) in the range of from about 20 to about 40wt.%, based on the total weight of the alkylated triaryl phosphate ester, di(isopropylphenylphenyl)phenylphosphate; iii) in the range of from about 1 to about 15wt.%, tri(isopropylphenyl)phosphate, iv) in the range of from about 0 to about 50wt.%, triphenyl phosphate, all based on the total weight of the mixture of isopropylated triphenyl phosphate esters.
10) A process for forming a flame retarded polyurethane or polyisocyanurate foam comprising combining or bringing together: a) at least one cyclic phosphonate flame retardant; b) at least one, alkylated triaryl phosphate ester; c) at least one isocyanate, polyol, or mixture thereof; d) at least one blowing agent; and optionally e) one or more i) surfactants, ii) antioxidants, Hi) diluents, iv) chain extenders or cross linkers, v) synergists; and vi) plasticizers, wherein a) is present in an amount of less than about 30wt.%, based on the total weight of a) and b), and b) is present in an amount of greater than about 70 wt.%, based on the total weight of a) and b); the rigid polyurethane foam meets or exceeds the requirements of California Technical Bulletin 117 part A and D, and a) - d), and optionally e), are combined in the presence of at least one catalyst.
1 1) The process according to claim 10 wherein a) has a phosphorous content, as determined by P-NMR or ICP, (i) in the range of from about 10 to about 30wt.%; (ii) in the range of from about 15 to about 25wt.%; or (iii) in the range of from about 18 to about 21wt.%, all based on the total weight of the phosphorous flame retardant.
12) The process according to claim 10 wherein the cyclic phosphonate contains in the range of from about 50 to about 70 wt.% monomer and in the range of from about 15 to about 25 wt.% dimer, both based on the total weight of the cyclic phosphonate.
13) The process according to any of claims 10-12 wherein the alkylated triaryl phosphate ester is a mixture of isopropylated triphenyl phosphate esters comprising at least one of: i) isopropylphenyldiphenylphosphate; ii) di(isopropylphenylphenyl)phenylphosphate; iii) tri(isopropylphenyl)phosphate; and iv) triphenyl phosphate. In this particular embodiment, the amount of i) isopropylphenyldiphenylphosphate; ii) di(isopropylphenylphenyl)phenylphosphate; iii) tri(isopropylphenyl)phosphate; and iv) triphenyl phosphate.
14) The process according to claim 13 wherein the alkylated triaryl phosphate ester contains (a) in the range of from about 0 to about 50wt.%; (b) in the range of from about 10 to about 50wt.%; or (c) in the range of from about 20 to about 40wt.%, triphenyl phosphate, all based on the total weight of the alkylated triaryl phosphate ester.
15) The process according to claim 12 wherein the monomers are CAS registration number 41203-81-0, and the dimers are CAS registration number 42595-45-9.
16) The process according to any of claims 10 or 15 wherein i) a) is present in an amount in the range of from about 5 to about 30wt.% and b) a) is present in an amount in the range of from about 70 to about 95wt.% of b); or ii) a) is present in an amount in the range of from about 5 to about 15 wt.% and b) is present in an amount in the range of from about 85 to about 95wt.%, all based on the total weight of a) and b).
17) The process according to claim 13 wherein the amount of said at least one of i)-iv) in said mixture of isopropylated triphenyl phosphate esters is: i) in the range of from about 20 to about 50wt.%, isopropylphenyldiphenylphosphate; ii) in the range of from about 20 to about 40wt.%, based on the total weight of the alkylated triaryl phosphate ester, di(isopropylphenylphenyl)phenylphosphate; iii) in the range of from about 1 to about 15wt.%, tri(isoρropylphenyl)phosphate, iv) in the range of from about 0 to about 50wt.%, triphenyl phosphate, all based on the total weight of the mixture of isopropylated triphenyi phosphate esters.
18) The process according to claim 12 wherein said at least one alkylated triaryl phosphate ester comprises at least one of: i) in the range of from about 20 to about 50wt.%, isopropylphenyldiphenylphosphate; ii) in the range of from about 20 to about 40wt.%, based on the total weight of the alkylated triaryl phosphate ester, di(isopropylphenylphenyl)phenylphosphate; iii) in the range of from about 1 to about 15wt.%, tri(isopropylphenyl)phosphate, iv) in the range of from about 0 to about 50wt.%, triphenyl phosphate, all based on the total weight of the mixture of isopropylated triphenyl phosphate esters.
19) The process according to claim 16 wherein said at least one alkylated triaryl phosphate ester comprises at least one of: i) in the range of from about 20 to about 50wt.%, isopropylphenyldiphenylphosphate; ii) in the range of from about 20 to about 40wt.%, based on the total weight of the alkylated triaryl phosphate ester, di(isopropylphenylphenyl)phenylphosphate; iii) in the range of from about 1 to about 15wt.%, tri(isopropylphenyl)phosphate, iv) in the range of from about 0 to about 50wt.%, triphenyl phosphate, all based on the total weight of the mixture of isopropylated triphenyl phosphate esters.
20) The process according to claim 10 wherein a) is present in an amount in the range of from about 5 to about 25phr.
2I) A molded or extruded article made from the flame retarded polyurethane foam according to claim 10.
PCT/US2008/072331 2007-08-07 2008-08-06 Flame retarded rigid polyurethane foams and rigid polyurethane foam formulations WO2009021035A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
ES08797281T ES2374858T3 (en) 2007-08-07 2008-08-06 PIRORRETARD RIGID POLYURETHANE FOAMS AND RIGID POLYURETHANE FOAM FORMULATIONS.
MX2010001411A MX2010001411A (en) 2007-08-07 2008-08-06 Flame retarded rigid polyurethane foams and rigid polyurethane foam formulations.
CA2695786A CA2695786A1 (en) 2007-08-07 2008-08-06 Flame retarded rigid polyurethane foams and rigid polyurethane foam formulations
JP2010520277A JP2010535901A (en) 2007-08-07 2008-08-06 Flame retardant rigid polyurethane foam and rigid polyurethane foam formulation
EP08797281A EP2178955B1 (en) 2007-08-07 2008-08-06 Flame retarded rigid polyurethane foams and rigid polyurethane foam formulations
CN200880101720XA CN101772536B (en) 2007-08-07 2008-08-06 Flame retarded rigid polyurethane foams and rigid polyurethane foam formulations
BRPI0814884A BRPI0814884A8 (en) 2007-08-07 2008-08-06 flame retardant rigid polyurethane foams and rigid polyurethane foam formulations
US12/672,474 US20110130476A1 (en) 2007-08-07 2008-08-06 Flame retarded rigid polyurethane foams and rigid polyurethane foam formulations
AT08797281T ATE532819T1 (en) 2007-08-07 2008-08-06 FLAME RETARDANT POLYURETHANE RIGID FOAM AND POLYURETHANE RIGID FOAM FORMULATIONS
PL08797281T PL2178955T3 (en) 2007-08-07 2008-08-06 Flame retarded rigid polyurethane foams and rigid polyurethane foam formulations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US95451007P 2007-08-07 2007-08-07
US60/954,510 2007-08-07

Publications (1)

Publication Number Publication Date
WO2009021035A1 true WO2009021035A1 (en) 2009-02-12

Family

ID=40125855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/072331 WO2009021035A1 (en) 2007-08-07 2008-08-06 Flame retarded rigid polyurethane foams and rigid polyurethane foam formulations

Country Status (14)

Country Link
US (1) US20110130476A1 (en)
EP (1) EP2178955B1 (en)
JP (1) JP2010535901A (en)
KR (1) KR20100051805A (en)
CN (1) CN101772536B (en)
AT (1) ATE532819T1 (en)
BR (1) BRPI0814884A8 (en)
CA (1) CA2695786A1 (en)
ES (1) ES2374858T3 (en)
MX (1) MX2010001411A (en)
PL (1) PL2178955T3 (en)
PT (1) PT2178955E (en)
TW (1) TW200920774A (en)
WO (1) WO2009021035A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010077673A1 (en) * 2008-12-08 2010-07-08 Albemarle Corporation Phosphorus flame retardants and applications therefor
CN115490915A (en) * 2022-11-02 2022-12-20 中车长春轨道客车股份有限公司 Flame retardant, preparation method thereof and hard polyurethane foam

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9422394B2 (en) 2013-06-28 2016-08-23 Sabic Global Technologies B.V. Thermoplastic polyurethane and associated method and article
US9169368B2 (en) * 2013-07-30 2015-10-27 Sabic Global Technologies B.V. Rigid foam and associated article
US9266997B2 (en) 2013-09-20 2016-02-23 Sabic Global Technologies B.V. Polyurethane foam and associated method and article
CN104710596A (en) * 2015-01-28 2015-06-17 北京东方雨虹防水技术股份有限公司 Polyurethane foam composition, polyurethane foam and preparation method of polyurethane foam
EP3660064A1 (en) * 2018-11-28 2020-06-03 LANXESS Deutschland GmbH Compositions with enhanced efficacy as flame retardants

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0075863A1 (en) * 1981-09-25 1983-04-06 General Electric Company Improved polyphenylene ether and polyalkenyl aromatic resin compositions
US4565833A (en) * 1982-10-12 1986-01-21 Ciba-Geigy Ag Fire retardant composition

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789091A (en) * 1971-11-15 1974-01-29 Mobil Oil Corp Cyclic phosphonate esters and their preparation
JPS6134011A (en) * 1984-07-26 1986-02-18 Ikeda Bussan Co Ltd Production of urethane foam
GB9004633D0 (en) * 1990-03-01 1990-04-25 Albright & Wilson Flame retardant composition and method of use
DE4309194A1 (en) * 1993-03-22 1994-09-29 Elastogran Gmbh Self-extinguishing thermoplastic polyurethanes and processes for their production
US5837760A (en) * 1994-03-16 1998-11-17 Elastogran Gmbh Self-extinguishing thermoplastic polyurethanes and their preparation
CN1240458A (en) * 1996-12-19 2000-01-05 陶氏化学公司 The use of butylene oxide (BO) based polyols to improve the compatibility of pentane and cyclopentane in rigid polyurethane foams
US6593404B1 (en) * 1997-10-23 2003-07-15 Cheil Industries, Inc. Thermoplastic resin composition
JP4493866B2 (en) * 2001-02-22 2010-06-30 株式会社クラレ Method for producing flame retardant planar fastener
AU2003273184A1 (en) * 2002-05-20 2003-12-12 Pabu Services, Inc. Blends of (alkyl substituted) triaryl phosphate esters with phosphorus-containing flame retardants for polyurethane foams
KR100506067B1 (en) * 2003-08-14 2005-08-03 제일모직주식회사 Flameproof Thermoplastic Resin Composition
JP2007520572A (en) * 2003-08-14 2007-07-26 チェイル インダストリーズ インコーポレイテッド Flame retardant rubber reinforced polystyrene resin composition
FR2864098B1 (en) * 2003-12-19 2007-08-31 Rhodia Chimie Sa FLAME RETARDANT SYSTEM COMPRISING PHOSPHORUS COMPOUNDS AND FLAME RETARDANT POLYMER COMPOSITION
EP1836250B1 (en) * 2004-12-02 2010-03-10 Chemtura Corporation Non-scorch flame retarded polyurethane foam
FR2883865B1 (en) * 2005-04-01 2007-05-18 Saint Gobain Isover Sa MINERAL WOOL, INSULATING PRODUCT AND PROCESS FOR PRODUCING THE SAME
EP1885788A2 (en) * 2005-05-27 2008-02-13 Supresta LLC Flame-retardant flexible polyurethane foam
KR20090004917A (en) * 2006-04-06 2009-01-12 알베마를 코포레이션 Flame retardant additive compositions and use thereof
TW200745148A (en) * 2006-04-24 2007-12-16 Albemarle Corp Low triphenylphosphate, high phosphorous content isopropyl phenyl phosphates with high ortho alkylation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0075863A1 (en) * 1981-09-25 1983-04-06 General Electric Company Improved polyphenylene ether and polyalkenyl aromatic resin compositions
US4565833A (en) * 1982-10-12 1986-01-21 Ciba-Geigy Ag Fire retardant composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010077673A1 (en) * 2008-12-08 2010-07-08 Albemarle Corporation Phosphorus flame retardants and applications therefor
CN115490915A (en) * 2022-11-02 2022-12-20 中车长春轨道客车股份有限公司 Flame retardant, preparation method thereof and hard polyurethane foam
CN115490915B (en) * 2022-11-02 2023-09-12 中车长春轨道客车股份有限公司 Flame retardant, preparation method thereof and rigid polyurethane foam

Also Published As

Publication number Publication date
TW200920774A (en) 2009-05-16
CN101772536A (en) 2010-07-07
BRPI0814884A8 (en) 2015-09-22
ES2374858T3 (en) 2012-02-22
PT2178955E (en) 2011-12-16
EP2178955A1 (en) 2010-04-28
JP2010535901A (en) 2010-11-25
EP2178955B1 (en) 2011-11-09
US20110130476A1 (en) 2011-06-02
PL2178955T3 (en) 2012-04-30
KR20100051805A (en) 2010-05-18
ATE532819T1 (en) 2011-11-15
BRPI0814884A2 (en) 2015-08-25
MX2010001411A (en) 2010-03-10
CA2695786A1 (en) 2009-02-12
CN101772536B (en) 2012-06-27

Similar Documents

Publication Publication Date Title
EP2178955B1 (en) Flame retarded rigid polyurethane foams and rigid polyurethane foam formulations
US20030153656A1 (en) Flame retardant polyurethanes and polyisocyanurates, and additives therefor
CA2602443C (en) Improved foam composition with chemically generated blowing gas
CN103827194B (en) Trialkylphosphate is as the purposes of the smog inhibitor in polyurethane foam
EP2820059B1 (en) Polyurethane solid foam materials
CN108623771A (en) Hydroxy-end capped base polyurethane prepolymer for use as and preparation method thereof
KR20160143880A (en) Process for preparing rigid polyisocyanurate foams using natural-oil polyols
CN113015757B (en) Foamable composition for nonflammable polyurethane foam
US20220315757A1 (en) Low tvoc flame-retardant polyurethane spray foam system
EP3864061B1 (en) A rigid polyurethane foam formulation and foam made therefrom
EP0906353B1 (en) Rigid isocyanurate-modified polyurethane foams
CA2695788A1 (en) Flame retarded flexible polyurethane foams and flexible polyurethane foam formulations
CN108017774B (en) Flame-retardant combined polyether, rigid polyurethane foam containing flame-retardant combined polyether and preparation method of rigid polyurethane foam
WO2014166898A1 (en) Polyester polyols with long-chain polyether polyol building blocks and use thereof in rigid pur/pir foams
KR100348519B1 (en) Flameretardant Polyurethane Foam and Polyol Composition for Preparing the Foam
JP6621571B1 (en) Foamable composition for nonflammable polyurethane foam
EP2325259A1 (en) Fire retardant for polyurethane foams

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880101720.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08797281

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010520277

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107002406

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 203704

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/001411

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 12672474

Country of ref document: US

Ref document number: 2695786

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 881/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008797281

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0814884

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100201