WO2009018074A1 - Pearlescent color pigments - Google Patents

Pearlescent color pigments Download PDF

Info

Publication number
WO2009018074A1
WO2009018074A1 PCT/US2008/070981 US2008070981W WO2009018074A1 WO 2009018074 A1 WO2009018074 A1 WO 2009018074A1 US 2008070981 W US2008070981 W US 2008070981W WO 2009018074 A1 WO2009018074 A1 WO 2009018074A1
Authority
WO
WIPO (PCT)
Prior art keywords
color pigment
pearlescent color
organic polymer
red
pearlescent
Prior art date
Application number
PCT/US2008/070981
Other languages
French (fr)
Inventor
Thomas C. Dipietro
Original Assignee
Day-Glo Color Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Day-Glo Color Corp. filed Critical Day-Glo Color Corp.
Priority to MX2010000980A priority Critical patent/MX2010000980A/en
Priority to CA2694609A priority patent/CA2694609A1/en
Priority to EP08782301A priority patent/EP2173681A4/en
Publication of WO2009018074A1 publication Critical patent/WO2009018074A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/36Pearl essence, e.g. coatings containing platelet-like pigments for pearl lustre
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/1004Interference pigments characterized by the core material the core comprising at least one inorganic oxide, e.g. Al2O3, TiO2 or SiO2
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/102Interference pigments characterized by the core material the core consisting of glass or silicate material like mica or clays, e.g. kaolin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/40Interference pigments comprising an outermost surface coating
    • C09C2200/402Organic protective coating
    • C09C2200/405High molecular weight materials, e.g. polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/40Interference pigments comprising an outermost surface coating
    • C09C2200/402Organic protective coating
    • C09C2200/407Organosilicon materials, e.g. silanes, silicones

Definitions

  • the present invention relates generally to colored lustrous pigments and more particularly to a new series of pearlescent color pigments that derive color from both light interference and light absorption and to methods of making and using the same.
  • Colored lustrous pigments are available in which the lustrous pigment part is a natural pearlescent material or synthetic pearlescent substance (also called a nacreous pigment) and the colored part or dyestuff includes a wide variety of inorganic and organic coloring agents.
  • the processes that have been used to make colored lustrous pigments have many difficulties, among which the following are noteworthy: severe bleeding out of the color upon filtration of the coated product from suspension; poor adherence of dyestuff to the surface of the pigment such that the color could be washed off with water; and difficulty of retaining luster with increased color intensity.
  • these processes may be restricted to the use of dyes that are typically water soluble materials, which severely limit the coloration selection.
  • colored lustrous pigments may be prepared by chemically binding the dyestuff on the surface of the lustrous pigment with the help of a laking reagent, such as aluminum chloride. On hydrolysis, this produces layers of aluminum hydroxide with which the dye reacts to form the insoluble color lake, thereby permitting the dye to deposit on the surface of the lustrous pigment.
  • a laking reagent such as aluminum chloride.
  • this approach particularly addresses the problem of poor adherence of the organic dye on the surface of the lustrous pigment, the problem of heavy bleeding of any uncoated dye remains severe. The failure to control the heavy bleeding has been a serious obstacle to developing a suitable process of preparing colored lustrous pigments of superior quality.
  • Another attempt at producing colored lustrous pigments employed a two-step process in which aluminum hydroxide, for example, is first deposited on the plate-like surface of the lustrous pigment and, thereafter, the aluminum hydroxide coated lustrous pigment, with or without isolation from the suspension in which it is formed and re-suspended, is reacted with a dye to form the insoluble color lake.
  • This process depends on how well the dye binds to the surface of the lustrous pigment that has been modified by previous precipitation of aluminum hydroxide.
  • the binding of the dye to form the color lake by this method may become increasingly inefficient because active binding sites on the lustrous pigment are lost as a result of the firmly adhering aluminum hydroxide layers already bound to the surface of the lustrous pigment.
  • the pearlescent color pigment includes an inorganic substrate having a metal oxide coating, an organic polymer coated over the metal oxide coating, and a colorant, wherein the colorant is dispersed or dissolved in the organic polymer.
  • the pearlescent color pigments may be formed by providing a suspension of metal oxide-coated inorganic substrate in water; adding an organic polymer to the suspension; adding a colorant to the suspension, wherein the colorant dissolves or disperses in the organic polymer; and coating the organic polymer on the metal-oxide coated inorganic substrate to provide the pearlescent pigment, hi accordance with this method, the colorant remains dissolved, in the case of a dye, or dispersed, in the case of a pigment, in the organic polymer when the metal oxide-coated inorganic substrate is coated with the organic polymer.
  • pearlescent color pigment means a compound that contains both a pearlescent component and a colorant, in contrast to the typical and more commonly known organic and inorganic pigments.
  • the pearlescent component is a plate-like particle containing a metal oxide coating that produces the interference color and this is seen as a colored highlight.
  • the added colorant is any variety of organic dye or dyes and/or organic and inorganic pigment or pigments that impart its own unique second color by light absorption and this provides the background color.
  • the pearlescent color pigments derive color from both light interference and light absorption mechanisms. The combination of these two-color-producing mechanisms results in a unique double color.
  • the pearlescent color pigments described herein are colored, lustrous pigments of superior quality in that they possess strong color intensity, high luster, soft powder texture and superior light stability, bleed resistance and thermal stability. These products can be produced with a variety of dyes and pigments and are not limited to water soluble dyes that can be laked, a fact that allows the usage of high quality organic pigments that possess superior physical properties. Usage of high quality organic pigments extends the field of usage of the colored, lustrous pigments into the fields of plastics and decorative paints and coatings.
  • the new pearlescent color pigments described herein are formed by bonding a colorant (an organic or inorganic coloring agent) to metal oxide coated inorganic substrate using an organic polymer.
  • a colorant an organic or inorganic coloring agent
  • the colorant is dispersed in or dissolved in the organic polymer, and the polymer is then coated on the metal oxide coated inorganic substrate.
  • the methods comprise the steps of providing a suspension of metal oxide coated inorganic substrate in water; adding a thermosetting organic polymer to the suspension; adding a colorant to the suspension, wherein the colorant dissolves or disperses in the thermosetting organic polymer; and sufficiently heating the suspension to cause the thermosetting organic polymer to coat the metal oxide-coated inorganic substrate to thereby provide the pearlescent color pigment.
  • the colorant remains dissolved or dispersed in the thermosetting organic polymer when the metal oxide-coated inorganic substrate is coated with the thermosetting organic polymer.
  • this process may be accomplished via an aqueous process that is environmentally advantageous.
  • the metal oxide-coated inorganic substrates are suspended in water.
  • the pH of this suspension is preferably adjusted to 3-4 by the use of acetic acid before the optional surface enhancement agent is added.
  • the mixture is warmed to 60-70° C and maintained at that temperature for a period of 30-120 minutes.
  • the pH is then adjusted to neutral by means of a 20% NaOH solution.
  • the thermosetting organic polymer which may be in the form of a dispersion, is added followed by the pigment concentrate or the organic dye.
  • a hardener or cross-linking agent
  • the temperature of the entire mixture is raised to 95° C and maintained at that temperature for 30 minutes.
  • the polymer dispersion becomes unstable and precipitates onto the surface of the metal oxide- coated inorganic substrate.
  • the crosslinking reaction is then completed on the surface of the substrate.
  • the pearlescent color pigment is filtered, dried and cured to give the final bleed- free highly colored product.
  • the inorganic substrates used to manufacture the pearlescent color pigments described herein are metal oxide-coated inorganic substrates.
  • Such substrates may include natural micas; i.e., micas mined from the earth and washed, screened, etc., or synthetically produced aluminum oxide or silicon dioxide, or similar, m an exemplary embodiment, the metal oxide coating comprises titanium dioxide. In other exemplary embodiments, metal
  • ⁇ oxides other than titanium dioxide may also be used to prepare similar types of pearlescent color pigments, by coating such other metal oxides on the inorganic substrate.
  • Some examples of such other metal oxides include ferric oxide, zirconium dioxide, tin dioxide, and the like.
  • the metal oxide coating on the inorganic substrate has a high refractive index and provides the optical effects, including high luster or reflectivity, coverage, interference reflection color when the metal oxide coating is sufficiently thick, and absorption color when the metal oxide contains color material.
  • the inorganic substrate has a low refractive index and functions as a carrier or substrate, in addition to contributing to some extent towards the optical effects of the pearlescent color pigment.
  • the pearlescent color pigments are made with titanium dioxide coated mica, which is composed of a mica platelet having a crystalline titanium dioxide coating adhered thereon.
  • the interference color exhibited is a function of the thickness of the titanium dioxide coating.
  • the exemplary pearlescent color pigment has good reflectivity characteristics, high stability to both heat and chemical agents, and it is non-toxic; making it suitable for cosmetic application.
  • the titanium dioxide may be in the anatase form as described, e.g., in U.S. Pat. Nos. 3,087,827; 3,087,828; 3,418,146; and, 3,437,515, or in the rutile crystalline form as described in U.S. Pat. No. 4,038,099, each of which is incorporated herein by reference.
  • nacreous pigments may be used.
  • nacreous pigments include, but are not limited to Lumina Pigments from BASF, the Iriodin series of products available from EMD Chemicals, the Colorstream series of products available from EMD Chemicals, the 200 Rutile series of pigments available from Zhejiang Huake Fine Chemical Co., Ltd., and the like.
  • an organic polymer in which the colorant is dissolved or dispersed, is used to coat the metal oxide-coated inorganic substrate to form the pearlescent color pigments.
  • the organic polymer is a thermosetting organic polymer.
  • thermosetting organic polymers include epoxy resins, melamine, urea formaldehyde, and so forth.
  • the thermosetting organic polymer is an epoxy resin.
  • Epoxy resins suitable for the invention compositions have molecular weights generally within the range of about 200 to about 6000.
  • the molecular weight of the epoxy resin is in the range from about 350 to about 2000.
  • One indication of the specific grade of epoxy resin utilized is the epoxy equivalent weight.
  • the epoxy resin has an epoxy equivalent weight in the range from about 175 to about 3800.
  • the epoxy resin has an epoxy equivalent weight in the range from about 175 to about 525.
  • the epoxy resin has an epoxy equivalent weight in the range from about 175 to about 197.
  • EPON 828 from Hexion Specialty Chemicals, a reaction product of epichlorohydrin and bisphenol A having a molecular weight of about 828, and an epoxide equivalent (ASTM D-1652) of about 185 to 192 is used, hi this embodiment, EPON 828 is utilized in the form of a water dispersion that is prepared by emulsifying the epoxy resin in water with the aid of typical nonionic surfactants, hi an alternate embodiment, EPI-REZ Resin 3510-W-60 available from Hexion Specialty Chemicals, which is a nonionic, aqueous dispersion of a bisphenol A epoxy resin similar to EPON 828, with an epoxide equivalent weight of 187, is used. This product is supplied at 60% resin solids and contains no organic solvents.
  • the epoxide group on the ends of these molecules serves as the reactive site for crosslinking in these thermoset polymers.
  • the chemical chosen to react with these epoxides is referred to as the curing agent, and it typically has active hydrogen attached to nitrogen, oxygen, or sulfur.
  • Amine curing agents are the most common and can be primary or secondary, aliphatic, aromatic, or cycloaliphatic.
  • the amines typically have greater than three reactive sites per molecule that facilitate the formation of a three-dimensional polymer network when mixed with the epoxy resin, hi some embodiments, the curing agents are aliphatic and cycloaliphatic amines, hi one specific embodiment, the aliphatic amine diethylenetriamine is used, hi another specific embodiment, amidoamine is used as the curing agent.
  • the surface enhancement agent is an organosilane.
  • the basic structure of an organosilane is R n Si(OR) 4-11 , with "R” being an alkyl, aryl, or organofunctional group and "OR” being a methoxy, ethoxy, or acetoxy group.
  • the organosilane used is an epoxy functional material sold as Z-6040 available from Dow Corning.
  • no surface enhancement agent is used. It has been discovered that, in some embodiments, no surface enhancement agent is needed to provide sufficient epoxy coverage, and thus sufficient colorant coverage. The ability to produce high quality pearlescent color pigments without the use of a surface enhancement agent represents a significant cost savings in the production of these pearlescent color pigments.
  • Colorants useful in the processes described herein include a wide variety of organic dyes and organic and inorganic pigments, and it will be understood that any suitable colorants may be used.
  • Organic and inorganic pigments may be utilized in the methods described herein in a pre-dispersed format commonly referred to as a colorant dispersion or concentrate.
  • the concentrate should be free of additives or other polymers that will interfere with the formation of, or degrade the physical properties of the final thermosetting epoxy polymer.
  • the dyes need not be water-soluble and are not required to form complex salts with laking reagents. Additionally, the dyes used are not limited to reactive
  • Example 1 200 g of HK-625, a red interference pigment available from Wenzhou Huake Pearl Luster Pigment Co., Ltd., was suspended in 50 ml of water by means of mechanical stirring. To this mixture were added 25 g of epoxy dispersion and 60 g of AIT- 644, an aqueous Pigment Blue 15:1 dispersion available from DayGlo Color Corp. The mixture was heated to a temperature of 65 0 C at which time 2.0 g of diethylenetriamine was added to the slurry. The temperature was then raised to 95 0 C and maintained at that temperature for 45 minutes. The solids were then removed from the suspension via vacuum filtration and the wet presscake was transferred to a 130°C oven to completely dry the product and complete the crosslinking reaction. The dried and cured product was then ready for usage.
  • HK-625 a red interference pigment available from Wenzhou Huake Pearl Luster Pigment Co., Ltd.
  • Example 2 200 g of Lumina Gold 9Y30D available from BASF was suspended in 500 ml of water by the means of a mechanical stirrer. To this mixture 1.0 g of glacial acetic acid was added followed by 2.5 g of an epoxy functional silane. The temperature of this suspension was raised to 65° C and maintained at 65-70° C for 60 minutes. The pH of this mixture was then adjusted to pH 7.0 by using a 20% aqueous solution of NaOH. 25 g of epoxy dispersion was then added and mixed thoroughly, followed by 60 g of Hostafine Red HF3S an aqueous dispersion of Pigment Red 188 sold by Clariant Pigments and Additives.
  • the product possesses both red and gold hues depending on the viewing angles.
  • Example 3 Following the same procedure as Example 2, the following materials were utilized:
  • D&C Red 22 primarily the disodium salt of 2',4',5',7'-tetrabromofluorescein
  • the product has both fluorescent red and blue tones that vary with viewing angle.
  • Example 4 Following the same procedure as Example 2, the following materials were utilized:
  • the colorant dispersion utilized was prepared as follows. 20 g of E-sperse321 a polyoxyethylene styrenated phenyl ether available from Ethox Chemicals, LLC
  • the product has both blue and red hues that are viewing angle dependant.
  • Example 5 Following the same procedure as Example 2, the following materials were utilized:
  • the product has multiple shades of violet, blue and green that are viewing angle dependant.
  • Example 6 Following the same procedure as Example 2, the following materials were utilized:
  • the product has violet and black satin hues that are viewing angle dependant.
  • Example 7 This example was performed the same as Example 4, the following materials were utilized:
  • the product has violet and red hues that are viewing angle dependant.

Abstract

Described are a series of pearlescent color pigments and methods of making such pearlescent color pigments that derive color from both light interference and light absorption. In one embodiment, the pearlescent color pigment includes an inorganic substrate having a metal oxide coating, an organic polymer coated on the metal oxide coating, and a colorant, wherein the colorant is dispersed or dissolved in the organic polymer. The pearlescent color pigments may be formed by first providing a suspension of metal oxide coated inorganic substrate in water; adding a thermosetting organic polymer to the suspension; adding a colorant to the suspension, wherein the colorant dissolves or disperses in the thermosetting organic polymer; and sufficiently heating the suspension to cause the thermosetting organic polymer to coat the metal oxide coated inorganic substrate to provide the pearlescent color pigment, hi accordance with this method, the colorant remains dissolved or dispersed in the thermosetting organic polymer when the metal oxide coated inorganic substrate is coated with the thermosetting organic polymer.

Description

PEARLESCENT COLOR PIGMENTS
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims priority to and any other benefits of U.S. Provisional Application No. 60/952,410 (Attorney Docket No 06821/08146) filed July 27, 2007, entitled PEARL COLOR PIGMENTS, which is expressly incorporated by reference herein.
TECHNICAL FIELD
[0002] The present invention relates generally to colored lustrous pigments and more particularly to a new series of pearlescent color pigments that derive color from both light interference and light absorption and to methods of making and using the same.
BACKGROUND ART
[0003] Colored lustrous pigments are available in which the lustrous pigment part is a natural pearlescent material or synthetic pearlescent substance (also called a nacreous pigment) and the colored part or dyestuff includes a wide variety of inorganic and organic coloring agents. The processes that have been used to make colored lustrous pigments, however, have many difficulties, among which the following are noteworthy: severe bleeding out of the color upon filtration of the coated product from suspension; poor adherence of dyestuff to the surface of the pigment such that the color could be washed off with water; and difficulty of retaining luster with increased color intensity. Furthermore, these processes may be restricted to the use of dyes that are typically water soluble materials, which severely limit the coloration selection.
[0004] In one attempt to overcome these problems, colored lustrous pigments may be prepared by chemically binding the dyestuff on the surface of the lustrous pigment with the help of a laking reagent, such as aluminum chloride. On hydrolysis, this produces layers of aluminum hydroxide with which the dye reacts to form the insoluble color lake, thereby permitting the dye to deposit on the surface of the lustrous pigment. Although this approach particularly addresses the problem of poor adherence of the organic dye on the surface of the lustrous pigment, the problem of heavy bleeding of any uncoated dye remains severe. The failure to control the heavy bleeding has been a serious obstacle to developing a suitable process of preparing colored lustrous pigments of superior quality.
[0005] Another attempt at producing colored lustrous pigments employed a two-step process in which aluminum hydroxide, for example, is first deposited on the plate-like surface of the lustrous pigment and, thereafter, the aluminum hydroxide coated lustrous pigment, with or without isolation from the suspension in which it is formed and re-suspended, is reacted with a dye to form the insoluble color lake. This process depends on how well the dye binds to the surface of the lustrous pigment that has been modified by previous precipitation of aluminum hydroxide. The binding of the dye to form the color lake by this method may become increasingly inefficient because active binding sites on the lustrous pigment are lost as a result of the firmly adhering aluminum hydroxide layers already bound to the surface of the lustrous pigment.
[0006] By following the reverse procedure, it is possible to improve not only the efficiency of the laking process but also the quality of the product. When an aqueous solution of the dye is combined with the suspension of lustrous pigment particles and the lustrous pigment particles are allowed to settle out of the suspension, it has been found that the lustrous pigment particles carry the dye molecules with them by physical adsorption so that much of the dye originally in solution is weakly adsorbed onto the lustrous pigment particles. At this point in time the dye can be easily washed off the lustrous pigment surface with water. The laking reagent (e.g. a hydrolyzable aluminum compound) is added and the aluminum hydroxide, which precipitates on hydrolysis, reacts with the already adsorbed dye to form a firmly adhering color lake on the surface of the lustrous pigment.
[0007] Even with such advances, however, these laked, colored lustrous pigments are inherently unstable. The laking process, in which a dye in water solution is chemically precipitated onto a plate-like surface of the lustrous pigment, produces colored lustrous pigments with several key defects. One of the most serious defects of the laked, colored lustrous pigments is their tendency to bleed or become soluble in the dispersing media. This is particularly the case with aqueous solutions. Because these processes require water soluble dyes, which as a class are inherently unstable to light or heat, the laked, colored lustrous pigments suffer the same fate. Thus, there remains a need for improved colored lustrous pigments and methods of making such pigments.
{0Q348138.DOC;! } 2 DISCLOSURE
[0008] Pearlescent color pigments and methods of making such pigments are provided. In one embodiment, the pearlescent color pigment includes an inorganic substrate having a metal oxide coating, an organic polymer coated over the metal oxide coating, and a colorant, wherein the colorant is dispersed or dissolved in the organic polymer.
[0009] The pearlescent color pigments may be formed by providing a suspension of metal oxide-coated inorganic substrate in water; adding an organic polymer to the suspension; adding a colorant to the suspension, wherein the colorant dissolves or disperses in the organic polymer; and coating the organic polymer on the metal-oxide coated inorganic substrate to provide the pearlescent pigment, hi accordance with this method, the colorant remains dissolved, in the case of a dye, or dispersed, in the case of a pigment, in the organic polymer when the metal oxide-coated inorganic substrate is coated with the organic polymer.
[0010] Provided herein is a new series of pearlescent color pigments and methods of making such pigments. As used herein "pearlescent color pigment" means a compound that contains both a pearlescent component and a colorant, in contrast to the typical and more commonly known organic and inorganic pigments. The pearlescent component is a plate-like particle containing a metal oxide coating that produces the interference color and this is seen as a colored highlight. The added colorant is any variety of organic dye or dyes and/or organic and inorganic pigment or pigments that impart its own unique second color by light absorption and this provides the background color. The pearlescent color pigments derive color from both light interference and light absorption mechanisms. The combination of these two-color-producing mechanisms results in a unique double color.
[0011] The pearlescent color pigments described herein are colored, lustrous pigments of superior quality in that they possess strong color intensity, high luster, soft powder texture and superior light stability, bleed resistance and thermal stability. These products can be produced with a variety of dyes and pigments and are not limited to water soluble dyes that can be laked, a fact that allows the usage of high quality organic pigments that possess superior physical properties. Usage of high quality organic pigments extends the field of usage of the colored, lustrous pigments into the fields of plastics and decorative paints and coatings.
{00348138.DOC;! } [0012] The new pearlescent color pigments described herein are formed by bonding a colorant (an organic or inorganic coloring agent) to metal oxide coated inorganic substrate using an organic polymer. The colorant is dispersed in or dissolved in the organic polymer, and the polymer is then coated on the metal oxide coated inorganic substrate. In some embodiments, the methods comprise the steps of providing a suspension of metal oxide coated inorganic substrate in water; adding a thermosetting organic polymer to the suspension; adding a colorant to the suspension, wherein the colorant dissolves or disperses in the thermosetting organic polymer; and sufficiently heating the suspension to cause the thermosetting organic polymer to coat the metal oxide-coated inorganic substrate to thereby provide the pearlescent color pigment. The colorant remains dissolved or dispersed in the thermosetting organic polymer when the metal oxide-coated inorganic substrate is coated with the thermosetting organic polymer.
[0013] For example, this process may be accomplished via an aqueous process that is environmentally advantageous. In accordance with methods described herein, the metal oxide-coated inorganic substrates are suspended in water. If an optional surface enhancing agent is being used, the pH of this suspension is preferably adjusted to 3-4 by the use of acetic acid before the optional surface enhancement agent is added. The mixture is warmed to 60-70° C and maintained at that temperature for a period of 30-120 minutes. The pH is then adjusted to neutral by means of a 20% NaOH solution. To the pH neutral suspension the thermosetting organic polymer, which may be in the form of a dispersion, is added followed by the pigment concentrate or the organic dye. Finally, a hardener, or cross-linking agent, is added and the temperature of the entire mixture is raised to 95° C and maintained at that temperature for 30 minutes. During the progression of the organic polymer reaction, the polymer dispersion becomes unstable and precipitates onto the surface of the metal oxide- coated inorganic substrate. The crosslinking reaction is then completed on the surface of the substrate. The pearlescent color pigment is filtered, dried and cured to give the final bleed- free highly colored product.
[0014] The inorganic substrates used to manufacture the pearlescent color pigments described herein are metal oxide-coated inorganic substrates. Such substrates may include natural micas; i.e., micas mined from the earth and washed, screened, etc., or synthetically produced aluminum oxide or silicon dioxide, or similar, m an exemplary embodiment, the metal oxide coating comprises titanium dioxide. In other exemplary embodiments, metal
{00348138.DOC;! } oxides other than titanium dioxide may also be used to prepare similar types of pearlescent color pigments, by coating such other metal oxides on the inorganic substrate. Some examples of such other metal oxides include ferric oxide, zirconium dioxide, tin dioxide, and the like.
[0015] The metal oxide coating on the inorganic substrate has a high refractive index and provides the optical effects, including high luster or reflectivity, coverage, interference reflection color when the metal oxide coating is sufficiently thick, and absorption color when the metal oxide contains color material. The inorganic substrate, on the other hand, has a low refractive index and functions as a carrier or substrate, in addition to contributing to some extent towards the optical effects of the pearlescent color pigment.
[0016] In an exemplary embodiment, the pearlescent color pigments are made with titanium dioxide coated mica, which is composed of a mica platelet having a crystalline titanium dioxide coating adhered thereon. The interference color exhibited is a function of the thickness of the titanium dioxide coating. The exemplary pearlescent color pigment has good reflectivity characteristics, high stability to both heat and chemical agents, and it is non-toxic; making it suitable for cosmetic application. The titanium dioxide may be in the anatase form as described, e.g., in U.S. Pat. Nos. 3,087,827; 3,087,828; 3,418,146; and, 3,437,515, or in the rutile crystalline form as described in U.S. Pat. No. 4,038,099, each of which is incorporated herein by reference.
[0017] In some embodiments, commercially available lustrous (i.e.: nacreous) pigments may be used. Such commercially available nacreous pigments include, but are not limited to Lumina Pigments from BASF, the Iriodin series of products available from EMD Chemicals, the Colorstream series of products available from EMD Chemicals, the 200 Rutile series of pigments available from Zhejiang Huake Fine Chemical Co., Ltd., and the like.
[0018] An organic polymer, in which the colorant is dissolved or dispersed, is used to coat the metal oxide-coated inorganic substrate to form the pearlescent color pigments. In an exemplary embodiment, the organic polymer is a thermosetting organic polymer. Although the examples and specific embodiments described herein employ a thermosetting polymer, it should be pointed out that any suitable organic polymer may be used. Some exemplary thermosetting organic polymers include epoxy resins, melamine, urea formaldehyde, and so forth. In an exemplary embodiment, the thermosetting organic polymer is an epoxy resin.
{00348138.DOC;!} 5 Epoxy resins suitable for the invention compositions have molecular weights generally within the range of about 200 to about 6000.
[0019] In an exemplary embodiment, the molecular weight of the epoxy resin is in the range from about 350 to about 2000. One indication of the specific grade of epoxy resin utilized is the epoxy equivalent weight. In accordance with the methods described herein, many different grades of epoxy resins may be used, hi some embodiments, the epoxy resin has an epoxy equivalent weight in the range from about 175 to about 3800. hi other embodiments, the epoxy resin has an epoxy equivalent weight in the range from about 175 to about 525. hi still other embodiments, the epoxy resin has an epoxy equivalent weight in the range from about 175 to about 197.
[0020] hi some embodiments, a commercially available epoxy resin may be used. In one embodiment, EPON 828 from Hexion Specialty Chemicals, a reaction product of epichlorohydrin and bisphenol A having a molecular weight of about 828, and an epoxide equivalent (ASTM D-1652) of about 185 to 192 is used, hi this embodiment, EPON 828 is utilized in the form of a water dispersion that is prepared by emulsifying the epoxy resin in water with the aid of typical nonionic surfactants, hi an alternate embodiment, EPI-REZ Resin 3510-W-60 available from Hexion Specialty Chemicals, which is a nonionic, aqueous dispersion of a bisphenol A epoxy resin similar to EPON 828, with an epoxide equivalent weight of 187, is used. This product is supplied at 60% resin solids and contains no organic solvents.
[0021] The epoxide group on the ends of these molecules serves as the reactive site for crosslinking in these thermoset polymers. The chemical chosen to react with these epoxides is referred to as the curing agent, and it typically has active hydrogen attached to nitrogen, oxygen, or sulfur. Amine curing agents are the most common and can be primary or secondary, aliphatic, aromatic, or cycloaliphatic. The amines typically have greater than three reactive sites per molecule that facilitate the formation of a three-dimensional polymer network when mixed with the epoxy resin, hi some embodiments, the curing agents are aliphatic and cycloaliphatic amines, hi one specific embodiment, the aliphatic amine diethylenetriamine is used, hi another specific embodiment, amidoamine is used as the curing agent.
{00348138.DOC;! } [0022] In some embodiments described herein, it is advantageous to improve the surface receptivity of the inorganic substrate with the use of a surface enhancement agent, hi these embodiments, the surface treatment effectively allows for a greater amount of the epoxy polymer to be deposited on the surface of the inorganic substrate, which concurrently deposits a greater depth of color. In an exemplary embodiment, the surface enhancement agent is an organosilane. The basic structure of an organosilane is RnSi(OR)4-11, with "R" being an alkyl, aryl, or organofunctional group and "OR" being a methoxy, ethoxy, or acetoxy group. In one embodiment, the organosilane used is an epoxy functional material sold as Z-6040 available from Dow Corning.
[0023] In other embodiments, however, no surface enhancement agent is used. It has been discovered that, in some embodiments, no surface enhancement agent is needed to provide sufficient epoxy coverage, and thus sufficient colorant coverage. The ability to produce high quality pearlescent color pigments without the use of a surface enhancement agent represents a significant cost savings in the production of these pearlescent color pigments.
[0024] Colorants useful in the processes described herein include a wide variety of organic dyes and organic and inorganic pigments, and it will be understood that any suitable colorants may be used. Organic and inorganic pigments may be utilized in the methods described herein in a pre-dispersed format commonly referred to as a colorant dispersion or concentrate. In embodiments using colorant concentrates, the concentrate should be free of additives or other polymers that will interfere with the formation of, or degrade the physical properties of the final thermosetting epoxy polymer.
[0025] There is no limitation of the types of colorants that may be used, with materials as diverse as carbon black, azo salts, and phthalocyanines having been used successfully in various embodiments. In other embodiments, a wide variety of organic dyes may be used in accordance with the processes described herein. In embodiments utilizing organic dyes, the dye used should have adequate solubility in the thermosetting organic polymer to impart desirable coloration.
[0026] Unlike other methods for preparing colored, luminous pigments, when the processes described herein are used, the dyes need not be water-soluble and are not required to form complex salts with laking reagents. Additionally, the dyes used are not limited to reactive
{00348138.DOC;! } dyes, but are merely dyes that are soluble in the thermosetting organic polymer. A nonexclusive list of pigments and dyes useful in the methods described herein is listed in Table 1.
Table 1 Non-exclusive list of pigments and dyes useful in the methods described herein
Figure imgf000009_0001
{00348138.DOC;!}
Figure imgf000010_0001
EXAMPLES
[0027] Example 1: 200 g of HK-625, a red interference pigment available from Wenzhou Huake Pearl Luster Pigment Co., Ltd., was suspended in 50 ml of water by means of mechanical stirring. To this mixture were added 25 g of epoxy dispersion and 60 g of AIT- 644, an aqueous Pigment Blue 15:1 dispersion available from DayGlo Color Corp. The mixture was heated to a temperature of 650C at which time 2.0 g of diethylenetriamine was added to the slurry. The temperature was then raised to 950C and maintained at that temperature for 45 minutes. The solids were then removed from the suspension via vacuum filtration and the wet presscake was transferred to a 130°C oven to completely dry the product and complete the crosslinking reaction. The dried and cured product was then ready for usage.
[0028] Example 2: 200 g of Lumina Gold 9Y30D available from BASF was suspended in 500 ml of water by the means of a mechanical stirrer. To this mixture 1.0 g of glacial acetic acid was added followed by 2.5 g of an epoxy functional silane. The temperature of this suspension was raised to 65° C and maintained at 65-70° C for 60 minutes. The pH of this mixture was then adjusted to pH 7.0 by using a 20% aqueous solution of NaOH. 25 g of epoxy dispersion was then added and mixed thoroughly, followed by 60 g of Hostafine Red HF3S an aqueous dispersion of Pigment Red 188 sold by Clariant Pigments and Additives.
{00348138.DOC;!} After an additional 5 minutes of mixing, 2.O g of diethylenetriamine was added and the slurry temperature was raised to 950C and maintained at that temperature for 30 minutes. The solids were then removed from the suspension via vacuum filtration and the wet presscake was transferred to a 130°C oven to completely dry the product and complete the crosslinking reaction. The dried and cured product was then ready for usage.
[0029] The product possesses both red and gold hues depending on the viewing angles.
[0030] Example 3: Following the same procedure as Example 2, the following materials were utilized:
200 g Lumina Blue Red 9B30D from BASF
1.0 g Glacial acetic acid
2.5 g epoxy functional silane
25 g epoxy dispersion
0.5 g D&C Red 22 (primarily the disodium salt of 2',4',5',7'-tetrabromofluorescein)
2.2 g diethylenetriamine
[0031] The product has both fluorescent red and blue tones that vary with viewing angle.
[0032] Example 4: Following the same procedure as Example 2, the following materials were utilized:
200 g Iriodin7225 Blue pearl from EMD Chemicals
1.0 g Glacial acetic acid
2.5 g Epoxy functional silane
20 g Epoxy dispersion
75 g Pigment Red 264 Dispersion
1.85 g diethylenetriamine
[0033] However, the colorant dispersion utilized was prepared as follows. 20 g of E- Sperse321 a polyoxyethylene styrenated phenyl ether available from Ethox Chemicals, LLC
{00348138.DOC;!} 10 was added to 80 g of water and 2.0 g of DEE-FO 97-3, an emulsifiable mineral oil that was used as a defoamer, available from Ultra Additives. To this mixture 100 g of Casacolor Red 264030, Pigment Red 264 available from Thomas Swan & Co. was added with stirring. The thick paste was then homogenized with a Janke & Kunkel Ultra Turrax T-50 homogenizer for 30 minutes.
[0034] The product has both blue and red hues that are viewing angle dependant.
[0035] Example 5: Following the same procedure as Example 2, the following materials were utilized:
100 g T 10-02 Colorstream, Artie Fire from EMD Chemicals
0.5 g Glacial acetic acid
1.25 g epoxy functional silane
14.5 g epoxy dispersion
1O g AIT-644 Green Shade Phthalo Blue dispersion from DayGlo Color Corp.
1.0 g norbornanediamine
[0036] The product has multiple shades of violet, blue and green that are viewing angle dependant.
[0037] Example 6: Following the same procedure as Example 2, the following materials were utilized:
200 g HK-223 Violet Satin Pearl from Zhejiang Huake Fine Chemical Co., Ltd.
1.0 g Glacial acetic acid
2.5 g epoxy functional silane
25 g epoxy dispersion
100 g AIT-734 Carbon Black Dispesion from DayGlo Color Corp.
1.0 g diethylenetriamine
[0038] The product has violet and black satin hues that are viewing angle dependant.
{00348138.DOC;!} 1 1 [0039] Example 7: This example was performed the same as Example 4, the following materials were utilized:
20O g Iriodin 7219 Lilac
1.0 g Glacial acetic acid
2.5 g epoxy functional silane
25 g epoxy dispersion
2.2 g diethylenetriamine
[0040] The following materials were utilized for the colorant dispersion:
2O g E-Sperse 321
LO g DEE-FO 97-3
50 g Unipure LC-304, D&C Red 6
43 g Water
[0041] The product has violet and red hues that are viewing angle dependant.
[0042] The examples described herein are for illustrative purposes only, and do not limit the scope of the invention, as defined by the claims.
{00348138.DOC;! } 12

Claims

CLAIMSThe invention claimed is:
1. A pearlescent color pigment comprising an inorganic substrate having a metal oxide coating, an organic polymer coated on the metal oxide coating, and a colorant, wherein the colorant is dispersed or dissolved in the organic polymer.
2. The pearlescent color pigment of claim 1 wherein the inorganic substrate is selected from the group consisting of natural micas, synthetic micas, aluminum oxide, silicon dioxide, and combinations thereof.
3. The pearlescent color pigment of claim 1 wherein the metal oxide coating is selected from the group consisting of titanium dioxide, ferric oxide, zirconium dioxide, tin dioxide, and combinations thereof.
4. The pearlescent color pigment of claim 3 wherein the metal oxide coating is titanium dioxide.
5. The pearlescent color pigment of claim 1 wherein the organic polymer comprises a thermosetting organic polymer.
6. The pearlescent color pigment of claim 5 wherein the thermosetting organic polymer is selected from the group consisting of epoxy resins, melamine, urea formaldehyde polymers, and combinations thereof.
7. The pearlescent color pigment of claim 6 wherein the thermosetting organic polymer is an epoxy resin.
8. The pearlescent color pigment of claim 7 wherein the epoxy resin has an average molecular weight in the range from about 200 to about 6000.
9. The pearlescent color pigment of claim 8 wherein there epoxy resin has an average molecular weight in the range from about 350 to about 2000.
10. The pearlescent color pigment of claim 7 wherein the epoxy resin has an epoxide equivalent in the range from about 175 to about 3800.
{0Q348138.DOC;!} 13
11. The pearlescent color pigment of claim 10 wherein the epoxy resin has an epoxide equivalent in the range from about 175 to about 525.
12. The pearlescent color pigment of claim 11 wherein the epoxy resin has an epoxide equivalent in the range from about 175 to about 197.
13. The pearlescent color pigment of claim 12 wherein the epoxy resin has an epoxide equivalent in the range from about 185 to about 192.
14. The pearlescent color pigment of claim 1 wherein the colorant comprises a pigment.
15. The pearlescent color pigment of claim 14 wherein the colorant is selected from the group consisting of Permanent Orange G, 12-1007 Permanent Orange G, 13-3042 Colanyl Red FGRG-100, 16-2034 Hostaperm Green GNX, 15-1042 Hostaperm Blue BT-617-D, 13- 7012 Hostaperm Red E5B-02, 13-7016 Host. Red EG Transparent, Quindo Red R-6700, Sunbrite Red 3 216-3300, 11-3012 Novoperm YeI, Hostaperm Pink E 13-7000, 14-4007 PV Fast Viol, 15-1023 Hostaperm Blue BT-627-D, 11-2210 Colanyl Yellow 5GX-100 (82%), 12-5005 Hansa Red GG-A5 13-3061 Novoperm Red, Tricolith Yellow IYP, 13-7011 Host. Red Violet ER-02, Hansa Yellow G, Heliogen Blue L 6875, Brilliant Red 2R 30AC0186, 11-3015 F2G-A Yellow, Monolite Green GLX, Red B NRT-742-D, 11-1418 Novoperm Yellow HR-70, 248-0156 Fastogen BL, Ultramarine Blue E-37, 13-2100 Hansa Scarle, 234- 6485 Perm Red 2B, Sicotan Yellow L 1012, Manox Easisperse 154, 13-3610 Novoperm Red, VCD-4272, 13-3050 Permanent Red FGR, 11-2527 Hansa Bril Y, 11-2520 Hansa Bril Y, QHD-6040, 11-3030 Hostaperm Yellow H6G, 11-1101 Permanent YE, 2915 Dianisidine Orange 16, Fast Scarlet Red BBC, YT-805-D Dalamar M. A, Tricolith Green GN-I, Dalamar Yellow R YT-820-D, 13-3070 Perm Red 2R, Tricolith Yellow SFY, Fast Scarlet Red BBN, 11-1400 Novoperm YeI, 12-3004 Novoperm HL-70, Ultramarine Blue EP-37, 11-2310 Hansa Brill. Yellow 4GX, Unipure Redu LC 3079, Unipure Black LC902, and combinations thereof.
16. The pearlescent color pigment of claim 1 wherein the colorant comprises a dye.
17. The pearlescent color pigment of claim 16 wherein the dye is selected from the group consisting of FD&C Yellow 5, D&C Red 28, D&C Red 22, Macrolex Violet B, Macrolex Yellow 3G, Savanna Yellow and combinations thereof.
{QQ348138.DOC;! } 14
18. A pearlescent color pigment consisting essentially of a titanium dioxide coated inorganic substrate, a thermosetting organic polymer, and a colorant.
19. The pearlescent color pigment of claim 18, wherein the inorganic substrate is selected from the group consisting of natural micas, synthetic micas, aluminum oxide, silicon dioxide, and combinations thereof.
20. The pearlescent pigment of claim 18 wherein the thermosetting organic polymer comprises an epoxy resin.
21. The pearlescent color pigment of claim 20 wherein the epoxy resin has an average molecular weight in the range from about 200 to about 6000.
22. The pearlescent color pigment of claim 21 wherein there epoxy resin has an average molecular weight in the range from about 350 to about 2000.
23. The pearlescent color pigment of claim 20 wherein the epoxy resin has an epoxide equivalent in the range from about 175 to about 197.
24. The pearlescent color pigment of claim 18 wherein the colorant comprises a pigment.
25. The pearlescent color pigment of claim 18 wherein the colorant comprises a dye.
26. The pearlescent color pigment of any one of claims 1-25 further comprising a surface enhancement agent.
27. The pearlescent color pigment of claim 26 wherein the surface enhancement agent comprises an organosilane.
28. The pearlescent color pigment of any one of claims 1-27 further comprising a curing agent.
29. The pearlescent color pigment of claim 28 wherein the curing agent is an amine curing agent.
30. The pearlescent color pigment of claim 28 wherein the amine curing agent is diethylenetriamine.
{Q0348138.DOC;! } 15
31. A method for producing a pearlescent color pigment, the method comprising the steps of
a. providing a suspension of metal oxide coated inorganic substrate in water;
b. adding a thermosetting organic polymer to the suspension;
c. adding a colorant to the suspension, wherein the colorant dissolves or disperses in the organic polymer; and
d. sufficiently heating the suspension to cause the thermosetting organic polymer to coat the metal oxide coated inorganic substrate to thereby provide the pearlescent color pigment;
wherein the colorant remains dissolved or dispersed in the thermosetting organic polymer when the metal oxide coated inorganic substrate is coated with the thermosetting organic polymer.
32. The method of claim 31 wherein the inorganic substrate is selected from the group consisting of natural micas, synthetic micas, aluminum oxide, silicon dioxide, and combinations thereof.
33. The method of claim 30 wherein the inorganic substrate has a metal oxide coating selected from the group consisting of titanium dioxide, ferric oxide, zirconium dioxide, tin dioxide, and combinations thereof.
34. The method of claim 33 wherein the metal oxide coating is titanium dioxide.
35. The method of claim 34 wherein the thermosetting organic polymer is selected from the group consisting of epoxy resins, melamine, urea formaldehyde polymers, and combinations thereof.
36. The method of claim 35 wherein the thermosetting organic polymer is an epoxy resin.
37. The method of claim 36 wherein the epoxy resin has an average molecular weight in the range from about 200 to about 6000.
38. The method of claim 37 wherein the epoxy resin has an average molecular weight in the range from about 350 to about 2000.
{00348138.DOC;! } 16
39. The method of claim 36 wherein the epoxy resin has an epoxide equivalent in the range from about 175 to about 525.
40. The method of claim 39 wherein the epoxy resin has an epoxide equivalent in the range from about 175 to about 197.
41. The method of claim 31 wherein the colorant comprises a pigment.
42. The method of claim 31 wherein the colorant comprises a dye.
43. The method of claim 31 further comprising the step of adding a surface enhancement agent to the suspension prior to adding the organic polymer to the suspension.
44. The method of claim 43 wherein the surface enhancement agent comprises an organosilane.
45. The method of any one of claims 31-44 further comprising the step of adding a curing agent to the suspension after adding the thermosetting organic polymer to the suspension.
46. The method of claim 45 wherein the curing agent is an amine curing agent.
47. The method of claim 46 wherein the amine curing agent is diethylenetriamine.
{Q0348138.DOC;!} 17
PCT/US2008/070981 2007-07-27 2008-07-24 Pearlescent color pigments WO2009018074A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2010000980A MX2010000980A (en) 2007-07-27 2008-07-24 Pearlescent color pigments.
CA2694609A CA2694609A1 (en) 2007-07-27 2008-07-24 Pearlescent color pigments
EP08782301A EP2173681A4 (en) 2007-07-27 2008-07-24 Pearlescent color pigments

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US95241007P 2007-07-27 2007-07-27
US60/952,410 2007-07-27

Publications (1)

Publication Number Publication Date
WO2009018074A1 true WO2009018074A1 (en) 2009-02-05

Family

ID=40304758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/070981 WO2009018074A1 (en) 2007-07-27 2008-07-24 Pearlescent color pigments

Country Status (4)

Country Link
EP (1) EP2173681A4 (en)
CA (1) CA2694609A1 (en)
MX (1) MX2010000980A (en)
WO (1) WO2009018074A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181253A (en) * 2011-03-22 2011-09-14 苏州市相城区开来化工有限公司 Light emitting diode (LED) epoxy encapsulation adhesive
WO2013037928A1 (en) * 2011-09-16 2013-03-21 Basf Se Coating system
CN107652731A (en) * 2017-11-06 2018-02-02 东莞市全印铼实业有限公司 A kind of high heat conduction almag ground LED solidify coating and its manufacture method
US11808833B2 (en) 2016-10-28 2023-11-07 Ppg Industries Ohio, Inc. Coatings for increasing near-infrared detection distances
US11809933B2 (en) 2018-11-13 2023-11-07 Ppg Industries Ohio, Inc. Method of detecting a concealed pattern

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113956801B (en) * 2020-07-21 2023-05-05 杭州玻美文化艺术有限公司 Color adhesive film, preparation method thereof and color solar photovoltaic module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070042126A1 (en) * 2005-08-18 2007-02-22 Passman Richard K Coatings on fiber reinforced composites
US20070107635A1 (en) * 2005-08-09 2007-05-17 Soane Laboratories, Llc Dye-attached and/or surface modified pigments

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7312257B2 (en) * 2003-01-23 2007-12-25 General Electric Company Polymer encapsulation of high aspect ratio materials and methods of making same
DE102005032346A1 (en) * 2005-06-24 2007-01-04 Eckart Gmbh & Co.Kg Pearlescent pigments with crosslinkable binder coating, coating composition, process for the preparation of the coated pearlescent pigments and their use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070107635A1 (en) * 2005-08-09 2007-05-17 Soane Laboratories, Llc Dye-attached and/or surface modified pigments
US20070042126A1 (en) * 2005-08-18 2007-02-22 Passman Richard K Coatings on fiber reinforced composites

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2173681A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181253A (en) * 2011-03-22 2011-09-14 苏州市相城区开来化工有限公司 Light emitting diode (LED) epoxy encapsulation adhesive
WO2013037928A1 (en) * 2011-09-16 2013-03-21 Basf Se Coating system
US10174213B2 (en) 2011-09-16 2019-01-08 Basf Se Coating system
US11808833B2 (en) 2016-10-28 2023-11-07 Ppg Industries Ohio, Inc. Coatings for increasing near-infrared detection distances
CN107652731A (en) * 2017-11-06 2018-02-02 东莞市全印铼实业有限公司 A kind of high heat conduction almag ground LED solidify coating and its manufacture method
US11809933B2 (en) 2018-11-13 2023-11-07 Ppg Industries Ohio, Inc. Method of detecting a concealed pattern

Also Published As

Publication number Publication date
CA2694609A1 (en) 2009-02-05
EP2173681A1 (en) 2010-04-14
EP2173681A4 (en) 2013-01-09
MX2010000980A (en) 2010-05-03

Similar Documents

Publication Publication Date Title
US20080249210A1 (en) Surface-modified particles
EP2173681A1 (en) Pearlescent color pigments
US7875112B2 (en) Effect pigments that are surface-modified with LCST and/or UCST polymers
AU2005245856B2 (en) Organic dyes suitable for use in drugs and cosmetics laked onto a platy titanium dioxide pigment
JP3947573B2 (en) Nacreous pigments for aqueous surface coating systems
JPH0587101B2 (en)
KR102608547B1 (en) Use of iron oxide coated aluminum flakes with red first interference color in coatings
US5441564A (en) Pigment mixture
US20170002223A1 (en) Colored platelets
JP2002534575A (en) Multi-layer pearlescent pigment
JPH0641456A (en) Process for producing composite pigment
JP2003513139A (en) Strongly colored interference pigment
JP2002188023A (en) Stabilization of pearly luster pigment
JP2007523219A (en) Carbon coated high gloss material
JP7254774B2 (en) A golden effect pigment with a hue (H15) in the range of 67°-78° and a chroma (C*15) of 90 or more
JPH04227666A (en) Pigment having light decorating effect and coated with organic dye
WO2009114541A2 (en) Hybrid pigment composition comprising dyes or pigments and fibrous clay
KR20120010172A (en) Colored system
CN111234611A (en) Nano iron oxide pigment dispersion for automobile flashing paint and preparation method thereof
CN114479509A (en) Preparation method of uniformly dispersed pigment red
CN109912994B (en) Composite pearlescent pigment and preparation method and application thereof
JPH07157689A (en) Production of green nacreous pigment
JPH05503732A (en) Surface modified plate-like substrate
KR100485632B1 (en) Colored pearl pigment with dichromatism and method for preparing the same
CN110698728A (en) Cellulose/nano inorganic particle composite pigment and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08782301

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/000980

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2694609

Country of ref document: CA

Ref document number: 2008782301

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE