WO2009013285A1 - Solar cell and method for preparation thereof - Google Patents

Solar cell and method for preparation thereof Download PDF

Info

Publication number
WO2009013285A1
WO2009013285A1 PCT/EP2008/059575 EP2008059575W WO2009013285A1 WO 2009013285 A1 WO2009013285 A1 WO 2009013285A1 EP 2008059575 W EP2008059575 W EP 2008059575W WO 2009013285 A1 WO2009013285 A1 WO 2009013285A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
ald
layer
dye
metal oxide
Prior art date
Application number
PCT/EP2008/059575
Other languages
French (fr)
Inventor
Gerardo Triani
Jonathan Andrew Campbell
Graeme Moad
Gavin Errol Collis
Peter John Evans
Robert Paul Burford
Attila Janos Mozer
Original Assignee
Polymers Crc Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymers Crc Ltd. filed Critical Polymers Crc Ltd.
Priority to CN200880100462A priority Critical patent/CN101779258A/en
Priority to JP2010517386A priority patent/JP2010534394A/en
Priority to EP08786311A priority patent/EP2171735A1/en
Priority to US12/669,799 priority patent/US8440908B2/en
Publication of WO2009013285A1 publication Critical patent/WO2009013285A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2036Light-sensitive devices comprising an oxide semiconductor electrode comprising mixed oxides, e.g. ZnO covered TiO2 particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2095Light-sensitive devices comprising a flexible sustrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to photovoltaic devices and more particularly to dye sensitized solar cells and to a method of preparation thereof. More particularly, the present invention relates to a dye sensitized solar cell comprising a semiconductor formed of a particulate metal oxide, a dye adsorbed onto the semiconductor wherein the semiconductor interface with the dye is formed by atomic layer deposition (ALD) of a semiconductor material onto the particulate metal oxide.
  • ALD atomic layer deposition
  • a dye sensitized solar cell is a photovoltaic system which uses a semiconductor formed of a nanoparticulate or nanoporous metal oxide to provide a high surface area structure, a dye (typically comprising an organic or metal complex component) adsorbed onto the semiconductor to produce excited electrons from absorbed light and an electrolyte in contact with both the dye and the counter electrode.
  • the electrodes of a DSSC include an optical electrode generally in the form of a transparent conducting oxide (TCO) which is supported on a light transmissible substrate and a counter electrode separated from the anode by the electrolyte, semiconductor and dye.
  • TCO transparent conducting oxide
  • US 4927721 and US 5084365 disclose one of the first practical DSSCs (referred to as the Gratzel cell). It contained a liquid electrolyte and ruthenium dye-coated sintered titanium dioxide.
  • the energy conversion efficiency (ECE) of this type of DSSC has been reported to be as high as 10.4% although variation in performance and reproducibility mean that typically much lower ECEs of ca 5% are reliably obtained.
  • the manufacture of DSSCs typically requires a high temperature sintering process that has limited the substrate to rigid light transmissible materials such as glass.
  • the Gratzel DSSC contains electrolyte in the form of a solution containing corrosive iodine in an organic solvent and raises problems of leakage and long term operational stability.
  • the use of gel/polymer electrolytes, molten salts, hole transport materials or plastic crystals have been proposed as potential alternatives.
  • Ionic liquids that contain the iodide/triiodide redox are viscous liquids and thus reduce the potential for leakage problems.
  • Gratzel et al in Adv. Mater. 19, 1 133-1 137, (2007) have shown that ionic liquids in DSSC have high cell performance and good stability properties.
  • hole transport materials organic charger carrier materials
  • solid state DSSC devices that contain doped hole transport materials, such as SpiroMeOTAD (2,2',7,7'-tetrakis-( ⁇ /, ⁇ /-di-p-methoxyphenylamine)-9,9'-spirobifluorene), have been shown to produce moderate efficiencies by Gratzel et al in Adv. Mater. 17, 813-815 (2005).
  • the present invention can provide a DSSC with improved properties.
  • Said properties include one or more of the following: efficiency, short circuit current, open circuit voltage, fill factor, stability, improved dye takeup, and ease of fabrication. Said properties being with reference to a similar DSSC prepared under similar conditions but without said ALD layer efficiency.
  • the invention provides a dye sensitized solar cell comprising a semiconductor formed of a particulate metal oxide (e.g. a layer), a dye adsorbed onto the semiconductor wherein the semiconductor interface with the dye is formed by atomic layer deposition of a semiconductor material onto the particulate metal oxide.
  • the metal of the particulate metal oxide is for instance selected from the group consisting of metals of Groups IB, NA, INA, NIB, IVA, IVB, VA, VB, VIA, VIB and VIII .
  • the metal is selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Ni, Cu, In, Al and Ga.
  • the preferred metal oxide comprises one or more of, for example, titanium oxide, niobium oxide, tungsten oxide, indium oxide, iron oxide, tin oxide, nickel oxide, and strontium titanate, most preferably titanium oxide, niobium oxide, tungsten oxide, indium oxide, tin oxide, nickel oxide, and the like, but is not necessarily limited thereto. These metal oxides may be used alone or in a mixture of two or more.
  • a semiconductor in contact with the optical electrode comprising a plurality of layers including (i) a layer of metal oxide nanoparticles, (ii) an ALD coating layer of a semiconductor material deposited on the metal oxide nanoparticles for providing an interface with a dye.
  • the semiconductor interface with the dye is preferably formed by atomic layer deposition (ALD) onto the layer of particulate metal oxide of a semiconductor material selected from the group consisting of titanium oxide, niobium oxide, tungsten oxide, indium oxide, tin oxide, nickel oxide, zirconium oxide and zinc oxide.
  • the layer of nanoparticles of metal oxide may be in direct contact with an optical electrode or a interface between the optical electrode and nanoparticles may be provided by a compact layer of metal oxide semiconductor material.
  • the additional layer of metal oxide semiconductor material between the optical electrode and layer of metal oxide particles is preferably formed by atomic layer deposition (ALD) of a metal oxide selected from the group consisting of titanium oxide, niobium oxide, tungsten oxide, indium oxide, tin oxide, nickel oxide, zirconium oxide and zinc oxide.
  • ALD atomic layer deposition
  • the DSSC will typically further comprise a counter electrode and electrolyte that separates the counter electrode from the semiconductor.
  • the process preferably further comprises a preliminary step of providing an optical electrode which is generally in the form of a transparent conducting oxide (TCO) which is supported on a light transmissible substrate.
  • TCO transparent conducting oxide
  • a compact layer of a metal oxide semiconductor on the optical electrode, for providing an interface of the electrode with the particulate layer of metal oxide; the particulate layer of metal oxide is preferably then formed on said compact layer of metal oxide semiconductor; and an ALD layer is deposited on the particulate layer of metal oxide for providing an interface with the dye.
  • the process for preparing a dye sensitized solar cell comprises:
  • an optical electrode being a transparent substrate having on one face thereof preferably a transparent conducting oxide (TCO);
  • depositing a compact layer of semiconductor material preferably by a method selected from atomic layer deposition, spin coating, dip coating and spray coating onto said optical electrode;
  • the temperature is preferably below the melting temperature of the polymer and no more than 20 0 C above the glass transition temperature. More preferably the temperature is 10°C below the glass transition temperature.
  • the glass transition temperature of PET is 79°C and of PEN is 1 18°C.
  • the DSSC comprises an optical electrode of a transparent conducting oxide (TCO) and a flexible light transmissible polymeric material on which the TCO is supported and wherein the atomic layer deposition is carried out at a temperature of no more than 150 0 C.
  • TCO transparent conducting oxide
  • the atomic layer deposition is carried out at a temperature of no more than 150 0 C.
  • Metal oxide is used to designate a compound that comprises at least one metal bound to oxygen.
  • the metal is selected from the group consisting of metals of Groups IB, NA, NB, INA, 1MB, IVA, IVB, VA, VB, VIA, VIB and VIII. More preferably, the metal is selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Ni, Cu, In, Al and Ga.
  • the preferred metal oxide comprises one or more of, for example, titanium oxide, niobium oxide, tungsten oxide, indium oxide, tin oxide, nickel oxide, most preferably titanium oxide, niobium oxide, tungsten oxide, indium oxide, tin oxide, nickel oxide, and the like, but is not necessarily limited thereto. These metal oxides may be used alone or in a mixture of two or more. Preferred examples of the metal oxide include TiC>2, SnC>2, WO3 Nb2 ⁇ 5 , NiO and SrTiO 3 .
  • Adsorption is used to designate a physical and/or chemical attachment of atoms or molecules on a surface.
  • transparent is used herein to refer to materials allowing at least 50%, preferably at least about 80% visible light (having wavelength of about 400 to about 700nm).
  • the average particle size of primary particles is 5-400 nm and more preferably 5 to 150 nm and most preferably from 5 to 80 nm.
  • the particulate metal oxide comprises particles of size in the range of from 5 to 400nm. It is also possible to use a mixture of at least two metal oxides having different particle sizes to scatter incident light and increase quantum yield.
  • the metal oxide layer may also be formed to have a two or more layered structure using two kinds of metals having different particle sizes. The metal oxides particles form the mesoporous layer to which the dye is adsorbed thus creating a light-absorbing or photo-responsive layer.
  • the mesoporous layer has large surface area in order to enable improved dye incorporation.
  • the metal oxides of the particulate layer preferably have a nanostructure selected from the group consisting of: quantum dots, nanodots, nanorods, nanoparticles with spherical or platelet morphologies, nanotubes, nanobelts and mixtures thereof.
  • underlayer underlayer
  • overlayer top coat
  • top coat top coat
  • low temperature paste relates to a semiconductor particulate metal oxide formulation which can be processed at temperatures usually lower than 200 0 C.
  • Peccell PECC-C01-06 may be processed at about 150 0 C.
  • high temperature paste relates to a semiconductor particulate metal oxide formulation which can be processed at temperatures usually greater than 300 0 C.
  • Solaronix Ti - Nanoxide 300 is typically processed at about 450°C.
  • interparticle connectivity refers to the formation of interparticle connectivity that involves heating the semiconductor layer of particulate metal oxide to high temperatures, typically about 400°C or greater for TiO 2 .
  • the invention uses an optical electrode that may comprise a light transmissible substrate and a conventional transparent conductive oxide (TCO) electrode of the type known for Gratzel DSSCs.
  • TCO transparent conductive oxide
  • the TCO is preferably made in the form of a thin layer of the order of 100 to 5000 nanometers in thickness.
  • the TCO is advantageously made of a material chosen from the group consisting of fluorine doped tin oxide (FTO), antimony or arsenic, indium doped tin oxide (ITO), aluminum stannate, and zinc oxide doped with aluminum.
  • the person skilled in the art may of course choose any other suitably effective transparent electronic conducting layer.
  • the preferred TCO is ITO or FTO.
  • the TCO may be deposited by a method known in the art such as sputter coating or the like or may be deposited by ALD.
  • an ALD process generally refers to a process for producing thin films over a substrate where the thin film is formed by surface-initiated chemical reactions.
  • ALD gaseous reactants, i.e. precursors are conducted into a reaction chamber of an ALD type reactor where they contact a substrate located in the chamber to provide a surface reaction.
  • the pressure, temperature and flow conditions in the reaction chamber are adjusted to a range where physisorption (i.e. condensation) and thermal decomposition of the precursors does not occur or is minimised.
  • the invention involves formation via a process comprising atomic layer deposition of a conformal thin film of semiconductor on a layer of metal oxide particles.
  • atomic layer deposition on a nanoparticulate layer provides an interfacial layer with efficient semiconductor properties without a requirement for high temperature processing.
  • ALD atomic layer deposition
  • a substrate having an optical electrode and a nanoparticulate layer thereon is placed in a reaction chamber and subjected to alternately repeated surface reactions.
  • thin films are formed by repetition of surface-initiated ALD cycles.
  • Atomic layer deposition is a known method of producing a thin metal oxide coating.
  • ALD is based on two or more separate half-reactions between vapour phase reactants and the deposition surface. Film growth is believed to involve the incoming vapour phase reacting by a process of chemisorption with surface functional groups. The process is continued with the separate introduction of the second vapour phase, which reacts with ligands attached to the precursor species previously deposited on the surface.
  • the first half reaction generally involves deposition of a metal compound.
  • the second precursor may then be reacted to provide modification of the adsorbed metal compound.
  • process conditions including temperatures, pressures, gas flows and cycle timing, are adjusted to meet the requirements of the process chemistry and substrate materials.
  • the temperature and pressure are controlled within a reaction chamber.
  • Typical temperatures used in the process of the invention are less than 400 0 C and preferably greater than 25°C, more preferably less than 300 0 C, e.g. at no more than 299°C, especially at less than 299°C, for example at no more than 250 0 C, such as at no more than 200 0 C, in particular at no more than 150°C, for instance at no more than 120 0 C and pressure within the range of about 1 to 10,000 Pascal.
  • the conditions used should be chosen having regard to the substrate and temperature needed for treating the metal oxide particles to remove any solvent or carrier used as an aid in deposition of the metal oxide particles.
  • the DSSC comprises a light transmissible substrate which is a polymeric material and ALD is conducted at a temperature of no more than 150°C.
  • An inert purge gas is introduced to remove any excess of the first vapor and any volatile reaction products.
  • the embodiments of the deposition process are described herein as involving purging with an inert gas.
  • the terms "purging” and “purge” are intended to be construed broadly, to include not only flushing of the reaction space by introduction of a flow of an inert gas or other material, but also more generally to include the removal or cleansing of excess chemicals and reaction byproducts from the reaction space.
  • excess chemicals and reaction byproducts may be removed from the reaction space by pumping the reaction space and/or by lowering the pressure within the reaction space. Consistent with the broad definition of the term "purge,” the removal of excess chemicals from the reaction space need not be perfectly effective, but will typically involve leaving surface bound chemicals and possibly some insignificant amount of non-surface bound chemicals or residual matter within the reaction space.
  • purge gases when a purge gas is used to remove chemicals from the reaction space, various inert purge gases, oxygen (O 2 ) and mixtures thereof may be used.
  • Preferred purge gases include nitrogen (N 2 ), helium (He), neon (Ne), argon (Ar).
  • a constant or pulsed flow of one or more of these purge gases may also be used to transport the first chemical and the second chemical into the reaction space and/or to adjust the pressure within the reaction space.
  • a second precursor vapor is introduced into the reaction chamber and reacts with the adsorbed first precursor vapor and creates a film conforming to the nanoparticulate structure. As with the first precursor vapor, the second precursor vapor does not react with itself.
  • Each film growth cycle is typically of the order of a monolayer or less.
  • metal reactants for use in the present invention include at least one metal compound selected from the group consisting of: halides (e.g. MX n where X is a halogen), preferably chlorides, bromides or iodides, particularly TiCI 4 which is liquid at room temperature and particularly useful as a precursor for TiO 2 ; alkoxides (e.g.
  • R is Ci to C 4 alkyl alkylamides (e.g. M(NR 2 ) n where R is independently H or alkyl such as Ci to C 4 alkyl); amidinates (e.g.
  • M is the metal and n is the number of ligands in the complex and is generally the valency of the metal or, in the case of bidentate ligands, half the metal valency.
  • the metal compounds listed above may be modified after deposition by use of an appropriate second vapour or may be used to provide desirable ligands for interaction with a dye species adsorbed onto the semiconductor.
  • the ALD process used to prepare the interface with the dye allows the metal reagent to penetrate into the particulate layer to coat and form a continuous or discontinuous layer of semiconductor material covering the metal oxide particles.
  • the layer resulting from the ALD onto the metal oxide is a semiconductor layer and comprises a metal oxide.
  • the metal is selected from the group consisting of metals of Groups NA, NB, INA, NIB, IVA, IVB, VA, VB, VIA, VIB and VIII. More preferably, the metal is selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Ni, Cu, Zn, In, Al and Ga.
  • interfacial ALD is selected from the group consisting of TiO 2 , SnO 2 , ZnO, WO 3 , Nb 2 O 5 , In 2 O 3 , Fe 2 O 3 , NiO and SrTiO 3 and precursor complexes of the metal ion species.
  • Most particularly preferred examples of the interfacial ALD are selected from the group consisting Of TiO 2 and Nb 2 O 5 , and precursor complexes of the metal ion species.
  • the dye sensitized solar cell comprises a semiconductor formed of (i) an ALD compact layer of semiconductor material, (ii) a metal oxide particulate layer on said compact ALD layer and (iii) a conformal ALD coating of semiconductor on the metal oxide particulate layer.
  • the invention may involve a process of applying a particulate metal oxide to the optical electrode on a light transmissible substrate.
  • the particulate metal oxide may be applied using a range of methods of general type known in the art for deposition of nanoparticulate metal oxides for forming a semiconductor.
  • the particulate metal oxide is applied as a colloid or paste of particles of size in the range of from 5 to 400 nm and preferably from 5 to 150 nm and most preferably from 5 to 80 nm.
  • Colloidal titanium oxide particles may be prepared by methods known in the art such as by hydrolysis of titanium isopropoxide. Examples of methods for preparation of colloidal titanium dioxide are described for example by Gratzel in US 5530644.
  • the particulate metal oxide is formed from a colloidal dispersion or paste of metal oxide.
  • the particulate metal oxide comprises metal oxide particles formed by a sol-gel process.
  • the layer of metal oxide particles is typically in the range of from 0.1 to 100 ⁇ m and typically up to 20 ⁇ m thick.
  • the metal oxide particulates can be deposited onto the optical electrode (e.g. the TCO or TCO plus blocking layer, known as the underlayer) by doctor blading, screen- printing, spin coating and/or by spray coating methods.
  • the Ti ⁇ 2 nanoparticles are mixed with an organic vehicle as described in J. M. Kroon Prog. Photovolt. Res. Appl. 15, 1-18, (2007).
  • Typical solids loading are between 2 and 50 weight percent of the nanoparticulate, preferably between 10 to 50.
  • the paste is applied by one of the film forming methods above to create a continuous film on the optical electrode. Following deposition, the resultant film is heated to remove the organic material. The temperature of this organic binder removal is typically between 50 0 C and 500 0 C which is determined by the composition of the binder and the nature of the substrate.
  • a heat treatment step of at least about 450 0 C would normally be required to sinter the particulates to create both a connective pathway between the semiconducting particles and adhesion to the optical electrode.
  • a low temperature paste such that removal of volatiles can be carried out at low temperatures such as at less than or equal to 150°C we find that the efficiency can be improved significantly by ALD overcoating of the particulate layer.
  • the ALD procedure may also be conducted at or below such temperatures so that the entire process of the invention may then be carried out at low temperatures as might be required when a flexible substrate is used.
  • any material may be used without any particular limitation as long as it is one compatible with use in the photovoltaic cell field.
  • the interconnected nanoparticle material is coated with a photosensitizing agent (such as a dye) that includes a molecule selected from the group consisting of anthocyanins, squarates, eosins, xanthines, cyanines, merocyanines, phthalocyanines, indolines, porphyrins, oligothiophenes, coumarins, perylenes and pyrroles.
  • a photosensitizing agent such as a dye
  • the photosensitizing agent is selected, for example, based on its ability to absorb photons in a wavelength range of operation, its ability to produce free electrons in a conduction band of the interconnected nanoparticles and its effectiveness in complexing with or adsorbing onto the surface of the interconnected nanoparticles.
  • Suitable photosensitizing agents may include, for example, dyes that include functional groups, such as carboxyl and/or hydroxyl groups, that can chelate to the nanoparticles, e.g., to Ti (IV) sites on a TiO 2 surface.
  • Suitable dyes include, but are not limited to, anthocyanins, squarates, eosins, xanthines, cyanines, merocyanines, phthalocyanines, indolines, porphyrins, oligothiophenes, coumarins, perylenes and pyrroles, and metal-containing dyes such as ruthenium complexes like RuL 2 (SCN) 2 , RuL 2 (H. 2 O) 2 , RuL 3 , and RuL 2 , wherein L represents 2,2'-bipyridyl-4,4'-dicarboxylate and the like.
  • cis-bis (isothiocyanato) bis (2,2'-bipyridyl-4, 4'-dicarboxylato)-ruthenium (II) ("N3 dye”); tris (isothiocyanato)-ruthenium (ll)-2, 2' : 6', 2"-terpyridine-4,4', 4"- tricarboxylic acid ("black dye”); cis-bis (isothiocyanato) bis (2,2'-bipyridyl-4, 4'- dicarboxylato)-ruthenium (II) bis- tetrabutylammonium (“N719 dye”); cis-bis (isothiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylato) (2,2'-bipyridyl-4,4'-di-nonyl) ruthenium(ll) (“Z907 dye”); and tris
  • indoline dyes such as 5-[[4-[4-(2,2-diphenylethenyl)phenyl]-1 ,2,3,3a,4,8b- hexahydrocyclopent[t)]indol-7-yl]methylene]-2-(3-ethyl-4-oxo-2-thioxo-5- thiazolidinylidene)-4-oxo-3-thiazolidineacetic acid, 5-[[4-[4-(2,2- diphenylethenyl)phenyl]-1 ,2,3,3a,4,8b-hexahydrocyclopent[b]indol-7-yl]methylene]-2- (3-ethyl-4-oxo-2-thioxo-5-thiazolidinylidene)-4-oxo-3-thiazolidineacetic acid (“D149 indoline dye").
  • Any dye may be used as long as it has a charge separation function and shows photosensitivity and binds to the metal oxide particulate layer.
  • the electrolyte layer may be made of any material that has a hole transport function.
  • a material that can be used to form the electrolyte layer in the present invention include iodide/iodine in a suitable solvent such as acetonitrile or other suitable media.
  • the process of the invention may provide improved incorporation of the dye by the metal oxide layer.
  • the following procedure may be used to determine the dye uptake of a surface.
  • the dye-covered particulate metal oxide (e.g. TiO 2 ) layer with known surface area is immersed into 4 ml. of 0.1 M NaOH (in EtOH/H 2 O, 50:50 by VA/). Once the dye is completely removed from the TiO 2 (it turns to white or transparent), the absorption spectra of the solution is measured using UV-Vis spectrophotometry. The amount of dye is calculated using the molar extinction coefficient and normalized to the metal oxide (e.g. TiO 2 ) surface area.
  • a general class of suitable charge carrier materials can include, but is not limited to solvent based liquid electrolytes, polyelectrolytes, polymeric electrolytes, solid electrolytes, n-type and p- type transporting materials (e.g., conducting polymers, functionalised arylamines, SpiroMeOTAD, organic hole transport materials, etc), and gel electrolytes, which are described in more detail below.
  • solvent based liquid electrolytes polyelectrolytes, polymeric electrolytes, solid electrolytes, n-type and p- type transporting materials (e.g., conducting polymers, functionalised arylamines, SpiroMeOTAD, organic hole transport materials, etc), and gel electrolytes, which are described in more detail below.
  • the electrolyte composition may include a lithium salt that has the formula LiX, where X is an iodide, bromide, chloride, perchlorate, thiocyanate, trifluoromethyl sulfonate, or hexafluorophosphate.
  • the charge carrier material includes a redox system. Suitable redox systems may include organic and/or inorganic redox systems. Examples of such systems include, but are not limited to, cerium (III) sulfate/cerium (IV), sodium bromide/bromine, lithium iodide/iodine, Fe 2 VFe 3+ , Co 2 VCo 3+ , and viologens.
  • an electrolyte solution may have the formula M
  • X is an anion
  • M is selected from the group consisting of Li, Cu, Ba, Zn, Ni, lanthanides, Co, Ca, Al, and Mg.
  • Suitable anions include, but are not limited to, chloride, perchlorate, thiocyanate, trifluoromethyl sulfonate, and hexafluorophosphate.
  • the electrolyte is iodide/iodine in a (e.g. suitable) solvent such as acetonitrile.
  • the charge carrier material includes a polymeric electrolyte.
  • the polymeric electrolyte includes polyvinyl imidazolium halide) and lithium iodide.
  • the polymeric electrolyte includes polyvinyl pyridinium salts).
  • the charge carrier material includes a solid electrolyte.
  • the solid electrolyte includes lithium iodide and pyridinium iodide.
  • the solid electrolyte includes substituted imidazolium iodide.
  • the solid electrolyte includes (2,2',7,7'-tetrakis- ( ⁇ /, ⁇ /-di-p-methoxyphenylamine)-9,9'-spirobifluorene), f-butyl pyridine and bis((trifluoromethane)sulfonamide lithium salt.
  • the ion-conducting polymer may include, for example, polyethylene oxide (PEO), polyacrylonitrile (PAN), certain acrylics, polyethers, and polyphenols.
  • PEO polyethylene oxide
  • PAN polyacrylonitrile
  • suitable plasticizers include, but are not limited to, ethyl carbonate, propylene carbonate, mixtures of carbonates, organic phosphates, butyrolactone, and dialkylphthalates.
  • Figure 1 shows a schematic cross section views and general construction process of a DSSC in accordance with the invention for use with liquid electrolytes.
  • Figures 2a to 2d show stages used in a process for preparing a DSSC in accordance with the invention for use with liquid electrolytes and ionic liquid electrolytes;
  • Solaronix (product name Ti-Nanoxide 300) is a paste with organic binders and solvents containing a mixture of sub 60 nm particles of titanium dioxide and about 20 % wt. of 400 nm sized titanium dioxide anatase particles, acting as optical dispersant.
  • the semiconductor particulate metal oxide photoanode is prepared using a TiO 2 paste formulation from Solaronix (product name Ti-Nanoxide 300).
  • Ti-Nanoxide 300 is a paste containing about 20 % wt. of 400 nm sized titanium dioxide anatase particles, acting as optical dispersant.
  • TiO 2 particulate films is doctor bladed onto the conductive side of the substrates using a clean glass pipette.
  • the thickness of the TiO 2 particulate layer is regulated by using either a single or double layer of 3M Scotch Magic Tape (Catalogue No 810) applied along the first 5 mm of each long edge of the substrate.
  • the paste is allowed to dry at room temperature before thermal de-binding and sintering to 450 0 C for 30 minutes.
  • the photoanode electrode represented in the examples below is prepared on either glass or polymer substrate.
  • the glass substrates are Asahi FTO glass substrates (sheet resistance: 12 Ohm per square, effective transmittance >80%, haze: 10 - 20 %, glass side thickness: 1.8 mm) cut into 1.8 cm by 1.6 cm rectangles.
  • the substrates are cryogenically cleaned on the conductive side with a liquid CO 2 and dried before the deposition of either the semiconductor particulate metal oxide or application an ALD layer.
  • the polymer substrate is ITO coated polyethylene naphthalate (PEN) (sheet resistance: 13 Ohm per square, 200 micrometres thick) that is cut into 1.8 cm by 1.6 cm rectangles.
  • PEN polyethylene naphthalate
  • the polymer substrates are gently wiped with ethanol then cryogenically cleaned on the conductive side with a liquid CO 2 and dried.
  • ALD layers are deposited in one of two configurations as outlined in the drawings.
  • An ALD top coat is applied after the deposition and treatment of the semiconductor particulate layer.
  • the first ALD layer is deposited directly onto the TCO coated glass or polymer substrate before the semiconductor particulate layer.
  • a further deposition of an ALD layer onto the semiconductor metal oxide produces dual layered DSSC architecture.
  • ALD layers are deposited using a flow-type hot-walled F-120 ALD reactor from ASM Microchemistry. Substrates are positioned in the hot-zone of the vacuum chamber, in the centre of the gas flow, on a microscope glass slide for support. The chamber is continually flushed with nitrogen gas flowing at 350/200 seem, and pressure is maintained at less than 1 mbar. Precursor vapour is delivered to the vacuum chamber coating all exposed surfaces. Coating is completed at the temperature range specified in the examples.
  • the ALD TiC> 2 is formed at a deposition temperature of 120 0 C using titanium tetrachloride (TiCI 4 ) and water (H 2 O).
  • TiCI 4 titanium tetrachloride
  • H 2 O water
  • Precursor vapour from TiCI 4 and H 2 O are delivered from Peltier cooled reservoirs maintained at 20 0 C.
  • the pulsing sequence is based on published papers where pulsing duration is typically 0.5 seconds exposure to TiCI 4 followed by a 1.0 second nitrogen-only purge, then 1.0 second exposure to water followed by a 1.5 second nitrogen-only purge.
  • An additional pulsing regime follows the first set where pulsing duration is altered to 0.4 seconds exposure to TiCI 4 followed by a 10 second nitrogen-only purge, then 1.0 second exposure to water followed by a 10 second nitrogen-only purge.
  • the thickness of the TiO 2 layer is controlled by the number of deposition cycles.
  • the ALD TiO 2 layer is formed at a deposition temperature of 120°C using titanium tetrachloride (TiCI 4 ) and water (H 2 O), 20 additional water (H 2 O) pulses are applied.
  • TiCI 4 titanium tetrachloride
  • H 2 O water
  • the ALD TiO 2 is formed at a deposition temperature of 200 0 C using titanium tetrachloride (TiCI 4 ) and water (H 2 O). Precursor vapour from TiCI 4 and H 2 O are delivered from Peltier cooled reservoirs maintained at 20 0 C.
  • the pulsing sequence is based on published papers where pulsing duration is typically 0.4 seconds exposure to TiCI 4 followed by a 0.5 second nitrogen-only purge, then 0.5 second exposure to water followed by a 0.5 second nitrogen-only purge.
  • the thickness of the TiO 2 layer is controlled by the number of deposition cycles.
  • the ALD TiO 2 is formed at a deposition temperature of 250°C using titanium iso-propoxide (Ti(i-OC 3 H 7 ) 4 ) and water (H 2 O).
  • Precursor vapour from the (Ti(i-OC 3 H 7 ) 4 ) is delivered by an open boat with the vacuum chamber at 50°C.
  • the water is delivered from a Peltier cooled reservoir maintained at 20 0 C.
  • the pulsing sequence is typically 1.0 second exposure to (Ti(i-OC 3 H 7 ) 4 ) followed by a 1.0 second nitrogen-only purge, then 1 second exposure to water followed by a 2 second nitrogen-only purge.
  • the thickness of the TiC> 2 layer is controlled by the number of deposition cycles.
  • the ALD Nb 2 O 5 is formed using precursors niobium ethoxide (Nb(OC 2 Hs) 5 ) and water (H 2 O).
  • Precursor vapour from the (Nb(OC 2 H 5 ) 5 ) is delivered by an open boat with the vacuum chamber at 95°C.
  • the water is delivered from a Peltier cooled reservoir maintained at 20 0 C.
  • the pulsing sequence is typically 0.5 second exposure to (Nb(OC 2 H 5 ) 5 ) followed by a 0.5 second nitrogen-only purge, then 2 second exposure to water followed by a 2 second nitrogen-only purge.
  • the ALD process is performed at a temperature range between 200 0 C and 300 0 C.
  • the thickness of the Nb 2 O 5 layer is controlled by the number of deposition cycles.
  • All control samples are processed at the same temperature zone as the specimens being topcoated but placed in a region of the reactor where there is no exposure to the precursor vapour.
  • samples of the metal oxide photoanode are removed from the vacuum chamber and placed in standard N719 dye (c/s-bis (isothiocyanato) bis(2,2'- bipyridyl-4,4'-dicarboxylato)-ruthenium(ll) bis-tetrabutylammonium, Solaronix) solution for 1 day, consisting of 0.3 mM in acetonitrile (anhydrous, 99.8%, Sigma)/ 2-methyl-2- propanol (99%, Alfa Aesar ) (1 :1 ) (V:V).
  • standard N719 dye c/s-bis (isothiocyanato) bis(2,2'- bipyridyl-4,4'-dicarboxylato)-ruthenium(ll) bis-tetrabutylammonium, Solaronix
  • DSSCs are assembled with an active area of -0.64 cm 2 .
  • Sandwich-type photovoltaic devices are assembled using the dye sensitized, ALD coated or non-ALD coated semiconductor particulate layer as photoanodes and sputtered Pt (8 nm) on ITO glass as counter electrodes.
  • a 25 ⁇ m thick, polymer film (SX 1170-25, Solaronix) is used as a spacer between the glass photoanode and counter electrode.
  • a 60 ⁇ m thick, polymer film (SX 1170-60, Solaronix) is used as a spacer between the polymer photoanode and counter electrode.
  • the sandwich type device In the case of sealed cells the sandwich type device is held together and placed on a hotplate for sealing by placing Pt counter electrode face down at a temperature of approximately 120°C to 135°C, so that the polymer spacer melts and seals the cell.
  • the electrolyte consisting of 0.6 M 1-propyl- 2,3-dimethylimidazolium iodide (DMPII, Solaronix), 0.03 M iodine (Suprapur, Merck), 0.1 M guanidium thiocyanate (for molecular biology, Sigma), 0.5 M 4-tert-butylpyridine (99%, Aldrich) is dissolved in a 85:15 mixture by volume of acetonitrile (anhydrous, 99/8%, Sigma) and valeronitrile (99.5% Sigma). The electrolyte is injected into the space between the semiconductor photoanode and counter electrode.
  • DMPII 1-propyl- 2,3-dimethylimidazolium iod
  • the underlayer in an ionic liquid DSSC can be made by a number of methods. In these examples, they are deposited by the ALD method (as described earlier) or by spray pyrolysis (described below).
  • the photoanode electrode represented in the ionic liquid examples below is prepared on glass substrate.
  • the glass substrates are Asahi FTO glass substrates (sheet resistance: 12 Ohm per square, effective transmittance >80%, haze: 10 - 20 %, glass side thickness: 1.8 mm) are cut into 2 (top) cm by 2.5 (length) cm rectangles.
  • the substrates are cleaned with sonication, in the following order; in solutions of 10% aqueous Decon 90, distilled water and finally ethanol (Absolute, Merck) at 20 minutes for each cycle and then dried.
  • These FTO substrates can be subjected to ALD or spray pyrolysis treatment.
  • Spray pyrolysis is performed on the FTO glass heated at 450 0 C by spraying with an ethanolic solution of diisoproxy titanium(IV) bis(acetylacetonate) [Ti(acac) 2 (i-C 3 H 7 O) 2 ] (Aldrich) and heating for a further 5 minutes.
  • the spray pyrolysis solution, deposition method and underlayer optimisation is based on the protocol of Thelekkat et al. Coordin. Chem. Rev., 248, 1479-1489 (2004).
  • the titania photoanode is screen printed in the centre of the FTO glass and covers a section of the underlayer. The surrounding edges of the substrate that are not coated with paste are masked during the ALD topcoat process.
  • the photoanode is reactivated at a temperature used to form the topcoat and kept there for 60 minutes.
  • the samples are placed in N719 dye ⁇ cis- bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(ll) bis- tetrabutylammonium, Solaronix) solution for 1 day consisting of 0.3 mM in acetonitrile (anhydrous, 99.8%, Sigma)/ 2-methyl-2-propanol (99%, Alfa Aesar ) (1 :1 ) (V:V).
  • DSSCs are assembled with an active area of -0.64 cm 2 .
  • Sandwich-type photovoltaic devices are assembled using the dye sensitized, spray pyrolysis or ALD underlayer and with or without ALD topcoated semiconductor particulate layer as photoanodes and sputtered Pt (12-15 nm) on ITO glass as counter electrodes.
  • a 25 ⁇ m thick, polymer film (SX 1170-25, Solaronix) is used as a spacer between the photoanode and counter electrode.
  • the sandwich type device is held together and placed on a hotplate for sealing by placing Pt counter electrode face down at a temperature of 135°C, so that the polymer between the glass construction melts and seals the cell.
  • the electrolyte consists of ionic liquid consists of 5M 1-hexyl-3-methylimidiazolium iodide (Shikoku, CAS No. 178631-05-5) and 0.5M Iodine (99.8%, Aldrich).
  • the electrolyte is vacuum filled through a small hole in the Pt electrode and closed by heat sealing with polymer film (SX 1 170-25, Solaronix) and a glass cover slip. The sample is left in the dark for 1 day to stabilize and then photovoltaic data is acquired.
  • the underlayer in the solid state DSSC can be made by a number of methods. In these examples, they are deposited by the ALD method (as described earlier) or by spray pyrolysis (described below).
  • the photoanode electrode represented in the solid state examples below is prepared on glass substrate.
  • the glass substrates are Asahi FTO glass (sheet resistance: 12 Ohm per square, effective transmittance >80%, haze: 10 - 20 %, glass side thickness: 1.8 mm) are cut into 2.5 cm (length) by 2 cm (top) rectangles.
  • the substrates are cleaned with sonication, in the following order; in solutions of 10% aqueous Decon 90, distilled water and finally ethanol (Absolute, Merck) at 20 minutes for each cycle and then dried.
  • This masked FTO glass is heated at 450 0 C and an ethanolic solution of di-isoproxy titanium(IV) bis(acetylacetonate) [Ti(acac) 2 (i-C 3 H 7 O) 2 ] (Aldrich) is repeatedly sprayed over this surface to give the desired underlayer material. These FTO samples are heated for a further 5 minutes.
  • the spray pyrolysis solution, deposition method and underlayer optimisation is based on the protocol of Thelekkat et al., Coordin. Chem. Rev., 248, 1479-1489 (2004).
  • the titania photoanode is screen printed on the patterned FTO glass, whereby a 1 1 (top) mm x 8 (length) mm rectangle is deposited in the centre of this rectangular glass.
  • the photoanode covers sections of the patterned FTO that consists of the underlayer/FTO/glass and underlayer/glass surfaces. The surrounding edges of the substrate that are not coated with paste are masked during the ALD topcoat process.
  • the photoanode is reactivated at a temperature used to form the topcoat and kept there for 60 minutes.
  • the samples are placed in standard N719 dye (cis- bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(ll) bis- tetrabutylammonium, Solaronix) solution for 1 day, consisting of 0.3 mM in acetonitrile (anhydrous, 99.8%, Sigma)/ 2-methyl-2-propanol (99%, Alfa Aesar ) (1 :1 ) (V:V).
  • the samples are removed from the dye solution and dried under air while in the dark for 10 minutes.
  • the dye coated photoanode is then treated with hole transport material electrolyte solution.
  • the electrolyte solution consists of 170 mM SpiroMeOTAD (2,2',7,7'-tetrakis-( ⁇ /, ⁇ /-di-p-methoxyphenylamine)-9,9'-spirobifluorene), 13 mM bis((trifluoromethane)sulfonamide lithium salt ((CF 3 SO 2 ) 2 NLi) (99.95% Aldrich), 130 mM f-butyl pyridine (99%, Aldrich) dissolved in chlorobenzene (99.5%, BDH AnalaR).
  • a 100 ⁇ L portion of this electrolyte solution is spin coated onto the photoanode twice.
  • the substrate is then placed in a glovebox antechamber and evacuated/purged to obtain a nitrogen atmosphere.
  • the sample is then placed in the Edwards evaporator and evacuated to -2.5 x 10 "6 mbar before gold is deposited in.
  • the thickness is measured by a quartz microbalance sensor and is -100 nm.
  • the sample is removed and run 1 day later to obtain photovoltaic data. These cells are not masked as the cell sizes are much smaller than the liquid and ionic liquid cells.
  • results in the associated tables are averages of the data generated for each of the cells described in the examples.
  • Usually four cells are assembled for each of the experimental conditions, although in the case of ionic liquid and solid state cells eight cells are usually prepared for each experimental condition.
  • results in the associated tables are averages of the data generated for each of the cells described in the examples.
  • Usually four cells are assembled for each of the experimental conditions, although in the case of ionic liquid and solid state cells eight cells are usually prepared for each experimental condition.
  • the Asahi FTO glass substrates (sheet resistance: 12 Ohm per square, effective transmittance >80%, haze: 10 - 20 %, glass side thickness: 1.8 mm) are cut to 7 cm by 3 cm rectangles.
  • an ALD coating of TiC> 2 is applied (300 cycles) on top of the doctor bladed paste (sample #2).
  • the surrounding edges of the substrate that are not coated with paste are masked with pieces of soda glass attached with metal clips, in order to prevent coating of the conductive FTO during the ALD process.
  • the thin films of titania are deposited using a flow-type hot-walled F-120 ALD reactor from ASM Microchemistry. Substrates are positioned in the hot-zone of the vacuum chamber, in the centre of the gas flow, on a microscope glass slide for support. The chamber is continually flushed with nitrogen gas flowing at 350/200 seem, and pressure is maintained at less than 1 mbar. Precursor vapour from titanium tetrachloride (TiCI 4 ) and water is delivered from Peltier cooled reservoirs maintained at 20 0 C. The pulsing sequence chosen is 0.5 seconds exposure to TiCI 4 followed by a 1.0 second nitrogen-only purge, then 1.0 second exposure to water followed by a 1.5 second nitrogen-only purge. Coating processes are completed at 150°C and the thickness of the titania coating is controlled by the number of deposition cycles.
  • the ALD coated samples Prior to immersion the ALD coated samples are heated to 150 C for 4 hours in an oven. The samples are placed in standard N719 dye (c/s-bis(isothiocyanato)bis(2,2'- bipyridyl-4,4'-dicarboxylato)-ruthenium(ll) bis-tetrabutylammonium, Solaronix) solution for 3 days, consisting of 0.3 mM in acetonitrile (anhydrous, 99.8%, Sigma)/ 2-methyl- 2-propanol (99%, Alfa Aesar ) (1 :1 ) (V:V).
  • standard N719 dye c/s-bis(isothiocyanato)bis(2,2'- bipyridyl-4,4'-dicarboxylato)-ruthenium(ll) bis-tetrabutylammonium, Solaronix
  • Sandwich-type photovoltaic devices are assembled using the dye sensitized TiC> 2 films as photoanodes and sputtered Pt (8 nm) on ITO glass as counter electrodes.
  • a 25 ⁇ m thick, U-shaped polymer film (SX 1170-25, Solaronix) is used as a spacer between the photoanode and counter electrode.
  • the sandwich type device is held together using foldback clips.
  • the electrolyte consisting of 0.6 M 1-propyl-2,3- dimethylimidazolium iodide (DMPII, Solaronix), 0.03 M iodine (Suprapur, Merck), 0.1 M guanidium thiocyanate (for molecular biology, Sigma), 0.5 M 4-tert-butylpyridine (99%, Aldrich) dissolved in a 85:15 mixture by volume of acetonitrile (anhydrous, 99.8%, Sigma) and valeronitrile (99.5% Sigma).
  • the electrolyte is injected into the space between the TiC> 2 photoanode and counter electrode.
  • the photovoltaic performance is tested using a 1000 W Solar Simulator (Newspec Ltd) equipped with an AM 1.5 G filter (Newspec Ltd.).
  • the light intensity is adjusted to 100 mW cm "2 using a calibrated Si photodetector (PECSI01 , Peccell Technologies, Inc.).
  • PECSI01 calibrated Si photodetector
  • a black paper mask with open area of 0.81 cm 2 is attached to the FTO glass facing the solar simulator.
  • the current voltage curves are recorded using a source-measure unit (2400, Keithley Instruments), controlled by a custom-made Labview program.
  • the voltage is swept from 850 mV to -30 mV in 5 mV steps.
  • the settling time is 40 ms between each measurement points.
  • the results in the table are averages of the data generated for each of the cells described above.
  • the Asahi FTO glass substrates (sheet resistance: 12 Ohm per square, effective transmittance >80%, haze: 10 - 20 %, glass side thickness: 1.8 mm) are cut to 7 cm by 3 cm rectangles.
  • the substrates are then cryogenically cleaned on the conductive side with a liquid CO 2 spray, and then UV-O 3 treated for 18 min.
  • the low temperature titania paste from Peccell (product name PECC-C01-06) is doctor bladed twice onto the conductive side of the substrates using a clean glass pipette.
  • the thickness of the first layer is regulated by two layers of 3M Scotch Magic
  • an ALD coating of TiO 2 is applied (300 or 500 cycles) on top of the doctor bladed paste (sample #2 or #3).
  • the two edges of the substrate that are not coated with paste are masked with pieces of soda glass attached with metal clips, in order to prevent coating of this area during the ALD process.
  • the thin films of titania are deposited using a flow-type hot-walled F-120 ALD reactor from ASM Microchemistry. Substrates are positioned in the hot-zone of the vacuum chamber, in the centre of the gas flow, on a microscope glass slide for support. The chamber is continually flushed with nitrogen gas flowing at 350/200 seem, and pressure is maintained at less than 1 mbar. Precursor vapour from titanium tetrachloride (TiCI 4 ) and water is delivered from Peltier cooled reservoirs maintained at 20 0 C. The pulsing sequence chosen is 0.5 seconds exposure to TiCI 4 followed by a 1.0 second nitrogen-only purge, then 1.0 second exposure to water followed by a 1.5 second nitrogen-only purge.
  • TiCI 4 titanium tetrachloride
  • Coating processes are completed at 150 0 C and the thickness of the titania coating is controlled by the number of deposition cycles.
  • the control sample (sample #1 ) is heated within the ALD heating zone, but outside the reaction chamber, therefore resulting in the same thermal drying cycle as the coated samples.
  • the samples are taken from the ALD furnace and placed into the dye solution immediately, consisting of 0.3 mM N719 dye (c/s-bis(isothiocyanato)bis(2,2'-bipyridyl- 4,4'-dicarboxylato)-ruthenium(ll) bis-tetrabutylammonium, Solaronix) and 0.15 mM chenodeoxycholic acid (Fluka).in acetonitrile (anhydrous, 99.8%, Sigma)/ 2-methyl-2- propanol (99%, Alfa Aesar) (1 :1 ) (V:V). The substrates are kept in the dye solution for 1 1 days.
  • N719 dye c/s-bis(isothiocyanato)bis(2,2'-bipyridyl- 4,4'-dicarboxylato)-ruthenium(ll) bis-tetrabutylammonium, Solaronix
  • the electrolyte consisting of 0.6 M 1-propyl-2,3- dimethylimidazolium iodide (DMPII, Solaronix), 0.03 M iodine (Suprapur, Merck), 0.1 M guanidium thiocyanate (for molecular biology, Sigma), 0.5 M 4-tert-butylpyridine (99%, Aldrich) dissolved in a 85:15 mixture by volume of acetonitrile (anhydrous, 99.8%, Sigma) and valeronitrile (99.5% Sigma).
  • DMPII 1-propyl-2,3- dimethylimidazolium iodide
  • Suprapur 0.03 M iodine
  • 0.1 M guanidium thiocyanate for molecular biology, Sigma
  • 4-tert-butylpyridine 99%, Aldrich
  • acetonitrile anhydrous, 99.8%, Sigma
  • valeronitrile 99.5% Sigma
  • the electrolyte is injected into the space between the TiO 2 photoanode and counter electrode, and the photovoltaic performance is tested using a 1000 W Solar Simulator (Newspec Ltd) equipped with an AM 1.5 G filter (Newspec Ltd.).
  • the light intensity is adjusted to 100 mW cm "2 using a calibrated Si photodetector (PECSI01 , Peccell Technologies, Inc.).
  • PECSI01 calibrated Si photodetector
  • a black paper mask with open area of 0.81 cm 2 is attached to the FTO glass facing the solar simulator.
  • the current voltage curves are recorded using a source-measure unit (2400, Keithley Instruments), controlled by a home-made Labview program. The voltage is swept from 850 mV to -30 mV in 5 mV steps. The settling time is 40 ms between each measurement point.
  • a graph showing the recorded current density for the variation in voltage is shown in Figure 2.
  • the results in the table are averages of the data generated for each of the cells described above.
  • Example 3 - Combination of ALD underlaver and topcoat The Asahi FTO glass substrates (sheet resistance: 12 Ohm per square, effective transmittance >80%, haze: 10 - 20 %, glass side thickness: 1.8 mm) are cut to 7 cm by 3 cm rectangles.
  • An ALD underlayer of 1000 cycles of TiO 2 is applied at 120 0 C to the conductive side of the substrate (sample #2).
  • the two edges of the substrate that are not to be coated with paste are masked with pieces of soda glass attached with metal clips, in order to prevent coating of this area during the ALD process.
  • the thin film of titania is deposited onto sample #2 using a flow-type hot-walled F-120 ALD reactor from ASM Microchemistry. Substrates are positioned in the hot-zone of the vacuum chamber, in the centre of the gas flow, on a microscope glass slide for support. The chamber is continually flushed with nitrogen gas flowing at 350/200 seem, and pressure is maintained at less than 1 mbar. Precursor vapour from titanium tetrachloride (TiCI 4 ) and water is delivered from Peltier cooled reservoirs maintained at 20 0 C. The pulsing sequence chosen is 0.5 seconds exposure to TiCI 4 followed by a 1.0 second nitrogen-only purge, then 1.0 seconds exposure to water followed by a 1.5 second nitrogen-only purge. Coating processes are completed at 120 0 C and the thickness of the titania coating is controlled by the number of deposition cycles.
  • the low temperature titania paste from Peccell (product name PECC-C01-06) is doctor bladed twice onto the conductive side of the substrates using a clean glass pipette.
  • the thickness of the layer is regulated by two layers of 3M Scotch Magic Tape (Catalogue No 810) applied along the first 5 mm of each long edge of the substrate. After application of the first doctor bladed layer, the paste is allowed to dry prior to application of the second layer.
  • the samples are heated to 120 C for 3 hours prior to immersion in dye, then placed into the dye solution consisting of 0.3 mM N719 dye (c/s-bis(isothiocyanato)bis(2,2'- bipyridyl-4,4'-dicarboxylato)-ruthenium(ll) bis-tetrabutylammonium, Solaronix) and 0.15 mM chenodeoxycholic acid (Fluka) in acetonitrile (anhydrous, 99.8%, Sigma) / 2- Methyl-2-propanol (99%, Alfa Aeasar) (1 :1 ) (V:V).
  • the substrates are kept in the dye solution for 1 day.
  • the electrolyte consisting of 0.6 M 1-propyl-2,3- dimethylimidazolium iodide (DMPII, Solaronix), 0.03 M iodine (Suprapur, Merck), 0.1 M guanidium thiocyanate (for molecular biology, Sigma), 0.5 M 4-tert-butylpyridine (99%, Aldrich) dissolved in a 85:15 mixture by volume of acetonitrile (anhydrous, 99.8%, Sigma) and valeronitrile (99.5% Aldrich).
  • DMPII 1-propyl-2,3- dimethylimidazolium iodide
  • Suprapur 0.03 M iodine
  • 0.1 M guanidium thiocyanate for molecular biology, Sigma
  • 4-tert-butylpyridine 99%, Aldrich
  • acetonitrile anhydrous, 99.8%, Sigma
  • valeronitrile 99.5% Aldrich
  • Example 4 ALD topcoat on low temperature paste
  • the Jsc, Voc and energy conversion efficiency are increased for the cells with ALD top coat.
  • the resultant net gain in efficiency for the ALD top-coated cells is 17%.
  • the effect of time lapse prior to dye immersion on an ALD topcoat on a low temperature paste is investigated.
  • the topcoat is applied at 120 0 C using 50 alternating cycles of titanium tetrachloride (TiCI 4 ) and water (H 2 O), followed by 20 additional water (H 2 O) pulses, in preparation for the assembly of a liquid DSSC.
  • samples are removed from the vacuum chamber and stored under ambient (room temperature) conditions for a period of 1 day.
  • ambient temperature room temperature
  • the control and ALD coated samples are heated to 120°C on a hotplate for 15 minutes and then placed in standard N719 dye solution for the standard period described above.
  • the Jsc, Voc and energy conversion efficiency is increased for the cells with ALD top coat.
  • the resultant net gain in efficiency from for ALD topcoated cells is 11 %.
  • Both the control and ALD coated photoanodes are immersed in Z907 dye for a period of 1 day before DSSC assembly.
  • the Jsc, Voc and energy conversion efficiency are increased for the cells with ALD top coat.
  • the resultant net gain in efficiency for ALD topcoated cells is 7%.
  • Example 7 ALD topcoat with a non-ruthenium dye
  • Both the control and ALD coated photoanodes are immersed in D149 dye for a period of 2 hours before DSSC assembly.
  • Example 8 Combination of ALD niobium oxide underlayer and ALD titanium dioxide topcoat
  • the effect of ALD deposition of an underlayer and topcoat, using a titania low temperature paste in preparation of a liquid DSSC is investigated.
  • the underlayer is Nb 2 O 5 formed using (Nb(OC 2 H 5 ) 5 ) precursor at 200 0 C and the topcoat is applied at 120 0 C using 50 alternating cycles of titanium tetrachloride (TiCI 4 ) and water (H 2 O), followed by 20 additional water (H 2 O) pulses, in preparation for the assembly of a liquid DSSC.
  • the Jsc, Voc and energy conversion efficiency are increased for the cells with ALD top coat and/or underlayer.
  • a combination of an underlayer and a topcoat on a TiC> 2 semiconductor formed of a particulate metal oxide produces the highest gain in efficiency of 40%.
  • Example 9 ALD topcoat on in-house tin oxide photoanode
  • ALD TiC> 2 topcoat on an in-house paste prepared from SnC> 2 on the photoanode in preparation for the assembly of a liquid DSSC is investigated.
  • the topcoat is applied at 120 0 C using 50 alternating cycles of titanium tetrachloride (TiCI 4 ) and water (H 2 O), followed by 20 additional water (H 2 O) pulses.
  • Example 10 ALD underlaver and topcoat with low temperature titanium dioxide photoanode on polymer substrate
  • the effect of a combination of ALD underlayer and topcoat on a low temperature TiO 2 photoanode layer on a polymer substrate is investigated.
  • the underlayer is applied at 120 0 C using 25 alternating cycles of titanium tetrachloride (TiCI 4 ) and water (H 2 O) and the topcoat is applied at 120 0 C using 50 alternating cycles of titanium tetrachloride (TiCI 4 ) and water (H 2 O), followed by 20 additional water (H 2 O) pulses, in preparation for the assembly of a liquid DSSC.
  • the polymer substrates are H 2 O plasma treated before the application of the ALD underlayer. After application and drying of the TiO 2 photoanode, a further heat treatment is undertaken at 150 0 C on a hotplate substrate for 15 minutes.
  • the polymer substrate with coated photoanode is processed according to the DSSC assembly description.
  • the counter electrode is Pt coated glass substrate.
  • the spacer in the assembly of the photoanode and counter electrode is Solaronix spacer 60 ⁇ m (SX1 170-60).
  • Both the Jsc and energy conversion efficiency is increased for the cells with ALD top coat.
  • the resultant gain in efficiency for cells prepared with an ALD topcoat on a low temperature paste is 10%.
  • Example 11 ALD topcoat using alternate titanium precursor
  • the Jsc, Voc and energy conversion efficiency are increased for the cells with ALD top coat. .
  • the resultant gain in efficiency for the ALD topcoated cells is 136%.
  • Example 12 ALD niobium oxide topcoat on high temperature paste
  • Example 13 ALD topcoat of niobium oxide on high temperature paste
  • ALD Nb 2 O 5 topcoat on a high temperature paste on the photoanode in preparation for the assembly of a liquid DSSC is investigated.
  • the topcoat is applied at 250 0 C using 50 alternating cycles of niobium ethoxide (Nb(OC 2 H 5 ) 5 ) and water (H 2 O).
  • the Jsc, Voc and energy conversion efficiency are increased for the cells with ALD top coat.
  • the resultant gain in efficiency for cells prepared with an ALD topcoat on a high temperature paste is 72%.
  • Example 15 ALD underlaver and topcoat of titanium dioxide on high temperature paste with hole transport material
  • the effect of an ALD deposition on dual layered DSCC architecture using a high temperature paste where an underlayer and topcoat are applied in preparation of a solid state DSSC is investigated.
  • the TiO 2 underlayer is applied at 300 0 C using 400 alternating cycles of titanium tetrachloride (TiCI 4 ) and water (H 2 O) and the topcoat is applied at 120 0 C using 50 alternating cycles of titanium tetrachloride (TiCI 4 ) and water (H 2 O), followed by 20 additional water (H 2 O) pulses.
  • the counter electrode is gold and is deposited by evaporation.
  • Example 16 Spray pyrolysis titanium dioxide underlayer and ALD topcoat of titanium dioxide on high temperature paste with hole transport material
  • TiO 2 underlayer is formed using [Ti(acac)2(i-C 3 H 7 O)2] precursor and deposited at 450 0 C.
  • TiO 2 topcoat is formed using titanium tetrachloride (TiCI 4 ) precursor deposited at 120 0 C using 50 alternating cycles of titanium tetrachloride (TiCI 4 ) and water (H 2 O), followed by 20 additional water (H 2 O) pulses.
  • the Jsc, Voc and energy conversion efficiency are increased for the cells with ALD top coat.
  • the resultant gain in efficiency from cells prepared with a spray pyrolysis underlayer and an ALD topcoat on a high temperature paste with solid state hole transport material electrolyte is 133%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a dye sensitized solar cell comprising a semiconductor formed of a particulate metal oxide, a dye adsorbed onto the semiconductor wherein the semiconductor interface with the dye is formed by atomic layer deposition (ALD) of asemiconductor material onto the particulate metal oxide.

Description

SOLAR CELL AND METHOD FOR PREPARATION THEREOF
The present invention relates to photovoltaic devices and more particularly to dye sensitized solar cells and to a method of preparation thereof. More particularly, the present invention relates to a dye sensitized solar cell comprising a semiconductor formed of a particulate metal oxide, a dye adsorbed onto the semiconductor wherein the semiconductor interface with the dye is formed by atomic layer deposition (ALD) of a semiconductor material onto the particulate metal oxide.
Background
A dye sensitized solar cell (DSSC) is a photovoltaic system which uses a semiconductor formed of a nanoparticulate or nanoporous metal oxide to provide a high surface area structure, a dye (typically comprising an organic or metal complex component) adsorbed onto the semiconductor to produce excited electrons from absorbed light and an electrolyte in contact with both the dye and the counter electrode. The electrodes of a DSSC include an optical electrode generally in the form of a transparent conducting oxide (TCO) which is supported on a light transmissible substrate and a counter electrode separated from the anode by the electrolyte, semiconductor and dye.
US 4927721 and US 5084365 disclose one of the first practical DSSCs (referred to as the Gratzel cell). It contained a liquid electrolyte and ruthenium dye-coated sintered titanium dioxide. The energy conversion efficiency (ECE) of this type of DSSC has been reported to be as high as 10.4% although variation in performance and reproducibility mean that typically much lower ECEs of ca 5% are reliably obtained. The manufacture of DSSCs typically requires a high temperature sintering process that has limited the substrate to rigid light transmissible materials such as glass.
The Gratzel DSSC contains electrolyte in the form of a solution containing corrosive iodine in an organic solvent and raises problems of leakage and long term operational stability. The use of gel/polymer electrolytes, molten salts, hole transport materials or plastic crystals have been proposed as potential alternatives. Ionic liquids that contain the iodide/triiodide redox are viscous liquids and thus reduce the potential for leakage problems. Gratzel et al in Adv. Mater. 19, 1 133-1 137, (2007) have shown that ionic liquids in DSSC have high cell performance and good stability properties. In recent years, there has been an interest to find alternatives to liquid electrolytes, which contain the iodide/triodide redox system, that has seen the development of organic charger carrier materials, referred to as hole transport materials. For example, solid state DSSC devices that contain doped hole transport materials, such as SpiroMeOTAD (2,2',7,7'-tetrakis-(Λ/,Λ/-di-p-methoxyphenylamine)-9,9'-spirobifluorene), have been shown to produce moderate efficiencies by Gratzel et al in Adv. Mater. 17, 813-815 (2005).
Kroon (J. M. Kroon et al, Prog. Photovolt. Res. Appl. 15, 1-18 (2007)) describes the use of blocking layers to improve the performance of DSSC by retarding the electron recombination at the electrode interface. In addition, Law (Law et al, J. Phys. Chem. B. 1 10, 22652-22663 (2006)) has shown that coating the photoanode by means of high temperature (3000C for TiCI4) ALD enhanced the efficiency of ZnO nanowire DSSCs.
The present invention can provide a DSSC with improved properties. Said properties include one or more of the following: efficiency, short circuit current, open circuit voltage, fill factor, stability, improved dye takeup, and ease of fabrication. Said properties being with reference to a similar DSSC prepared under similar conditions but without said ALD layer efficiency.
The discussion of documents, acts, materials, devices, articles and the like is included in this specification solely for the purpose of providing a context for the present invention. It is not suggested or represented that any or all of these matters formed part of the prior art base or are common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.
Summary
Accordingly the invention provides a dye sensitized solar cell comprising a semiconductor formed of a particulate metal oxide (e.g. a layer), a dye adsorbed onto the semiconductor wherein the semiconductor interface with the dye is formed by atomic layer deposition of a semiconductor material onto the particulate metal oxide. The metal of the particulate metal oxide is for instance selected from the group consisting of metals of Groups IB, NA, INA, NIB, IVA, IVB, VA, VB, VIA, VIB and VIII . Preferably, the metal is selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Ni, Cu, In, Al and Ga. The preferred metal oxide comprises one or more of, for example, titanium oxide, niobium oxide, tungsten oxide, indium oxide, iron oxide, tin oxide, nickel oxide, and strontium titanate, most preferably titanium oxide, niobium oxide, tungsten oxide, indium oxide, tin oxide, nickel oxide, and the like, but is not necessarily limited thereto. These metal oxides may be used alone or in a mixture of two or more. Specific examples of the metal oxide include TiO2, SnO2, WO3, Fe2O3,, Nb2O5, NiO and SrTiO3, in particular TiO2, SnO2, WO3, Nb2O5, NiO and SrTiO3, especially TiO2 and SnO2.
We have found that a semiconductor formed of combination a layer of nanoparticles of metal oxide deposited on the optical electrode and an ALD coating of semiconductor material on the nanoparticles provides a significant improvement in cell efficiency.
Accordingly one embodiment of the invention provides a dye sensitized solar cell comprising: a transparent substrate having an internal face, an optical electrode
(preferably formed of a transparent conducting oxide (TCO) disposed on the internal face) and a semiconductor in contact with the optical electrode comprising a plurality of layers including (i) a layer of metal oxide nanoparticles, (ii) an ALD coating layer of a semiconductor material deposited on the metal oxide nanoparticles for providing an interface with a dye. The semiconductor interface with the dye is preferably formed by atomic layer deposition (ALD) onto the layer of particulate metal oxide of a semiconductor material selected from the group consisting of titanium oxide, niobium oxide, tungsten oxide, indium oxide, tin oxide, nickel oxide, zirconium oxide and zinc oxide.
The layer of nanoparticles of metal oxide may be in direct contact with an optical electrode or a interface between the optical electrode and nanoparticles may be provided by a compact layer of metal oxide semiconductor material.
In a preferred embodiment the DSSC thus further comprises (iii) an additional layer of metal oxide semiconductor material between said layer of metal oxide particles and said optical electrode by a method selected from the group consisting of ALD, spin coating, dip coating and spray coating, still more preferably the additional layer is deposited by ALD. For instance, the DSSC comprises a transparent substrate having an internal face; an optical electrode on the internal face of the substrate; a semiconductor comprising a layer of metal oxide particles; and a dye adsorbed onto the semiconductor wherein layers of semiconductor material formed by atomic layer deposition (ALD) provide an interface between each of the metal oxide particles and optical electrode and the metal oxide particles and the dye. In this embodiment the additional layer of metal oxide semiconductor material between the optical electrode and layer of metal oxide particles is preferably formed by atomic layer deposition (ALD) of a metal oxide selected from the group consisting of titanium oxide, niobium oxide, tungsten oxide, indium oxide, tin oxide, nickel oxide, zirconium oxide and zinc oxide.
The DSSC will typically further comprise a counter electrode and electrolyte that separates the counter electrode from the semiconductor.
The invention in a further embodiment provides a process for forming a DSSC comprising:
(i) forming a layer of metal oxide particles as defined herein; (ii) applying a semiconductor layer to the particles by a process comprising atomic layer deposition;
(iii) preferably adsorbing a photosensitive dye into the semiconductor layer;
(Nv) preferably providing an electrolyte and counter electrode in operational relationship with said dye.
Preferred is a process further comprising forming an optical electrode on a light transmissible substrate and forming an ALD deposited layer of a metal oxide semiconductor on the optical electrode and forming the particulate layer of metal oxide on said ALD deposited layer.
The process preferably further comprises a preliminary step of providing an optical electrode which is generally in the form of a transparent conducting oxide (TCO) which is supported on a light transmissible substrate.
Furthermore in this process it is preferred to form a compact layer of a metal oxide semiconductor on the optical electrode, for providing an interface of the electrode with the particulate layer of metal oxide; the particulate layer of metal oxide is preferably then formed on said compact layer of metal oxide semiconductor; and an ALD layer is deposited on the particulate layer of metal oxide for providing an interface with the dye.
Accordingly in the second embodiment, the process for preparing a dye sensitized solar cell comprises:
(i) providing an optical electrode being a transparent substrate having on one face thereof preferably a transparent conducting oxide (TCO); (ii) depositing a compact layer of semiconductor material preferably by a method selected from atomic layer deposition, spin coating, dip coating and spray coating onto said optical electrode;
(iii) applying at least one layer of metal oxide nanoparticles onto said compact layer of semiconductor material as defined herein;
(iv) depositing a coating of semiconductor material by atomic layer deposition on to said at least one layer of metal oxide particles;
(v) contacting the coating of semiconductor material with a dye; and
(vi) providing an electrolyte and counter electrode in operational relationship with said dye.
It will be understood by those skilled in the art that the step (iii) of applying the layer of metal oxide nanoparticles will typically involve applying the layer in the form of a colloid paste, providing particle interconnectivity by sintering or some other process and/or removing of volatiles used in applying the colloid layer of metal oxide particles. Another method of applying the layer of metal oxide nanoparticles is flame spray pyrolysis.
The substrate may be a rigid substrate such as glass or a temperature sensitive flexible material such as a plastic. The complete ALD process of the invention is preferably conducted at temperatures of no more than 4000C and preferably no less than 25 0C, more preferably no more than 3000C, for instance at no more than 299°C, especially at less than 299°C, for example at no more than 2500C, such as at no more than 200°C, especially at no more than 1500C, for example at no more than 120°C. The temperature used (in this step and in other steps) may be decided on the basis of the thermal sensitivity of the chosen substrate and the nature of the semiconductor layer to be deposited. For example in the case of polymer based transparent substrates the temperature is preferably below the melting temperature of the polymer and no more than 200C above the glass transition temperature. More preferably the temperature is 10°C below the glass transition temperature. For instance, the glass transition temperature of PET is 79°C and of PEN is 1 18°C.
For instance, the DSSC comprises an optical electrode of a transparent conducting oxide (TCO) and a flexible light transmissible polymeric material on which the TCO is supported and wherein the atomic layer deposition is carried out at a temperature of no more than 1500C. Detailed Description
Definitions
"Metal oxide" is used to designate a compound that comprises at least one metal bound to oxygen. Preferably, the metal is selected from the group consisting of metals of Groups IB, NA, NB, INA, 1MB, IVA, IVB, VA, VB, VIA, VIB and VIII. More preferably, the metal is selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Ni, Cu, In, Al and Ga. The preferred metal oxide comprises one or more of, for example, titanium oxide, niobium oxide, tungsten oxide, indium oxide, tin oxide, nickel oxide, most preferably titanium oxide, niobium oxide, tungsten oxide, indium oxide, tin oxide, nickel oxide, and the like, but is not necessarily limited thereto. These metal oxides may be used alone or in a mixture of two or more. Preferred examples of the metal oxide include TiC>2, SnC>2, WO3 Nb2θ5, NiO and SrTiO3.
"Adsorption" is used to designate a physical and/or chemical attachment of atoms or molecules on a surface.
The term "transparent" is used herein to refer to materials allowing at least 50%, preferably at least about 80% visible light (having wavelength of about 400 to about 700nm).
Throughout the description and the claims of this specification the word "comprise" and variations of the word, such as "comprising" and "comprises" is not intended to exclude other additives, components, integers or steps.
"ParticlesTparticulate". Although there is no particular limitation on the particle size of the metal oxides forming the metal oxide layer, the average particle size of primary particles is 5-400 nm and more preferably 5 to 150 nm and most preferably from 5 to 80 nm. For instance, the particulate metal oxide comprises particles of size in the range of from 5 to 400nm. It is also possible to use a mixture of at least two metal oxides having different particle sizes to scatter incident light and increase quantum yield. In addition, the metal oxide layer may also be formed to have a two or more layered structure using two kinds of metals having different particle sizes. The metal oxides particles form the mesoporous layer to which the dye is adsorbed thus creating a light-absorbing or photo-responsive layer. The mesoporous layer has large surface area in order to enable improved dye incorporation. Accordingly, the metal oxides of the particulate layer preferably have a nanostructure selected from the group consisting of: quantum dots, nanodots, nanorods, nanoparticles with spherical or platelet morphologies, nanotubes, nanobelts and mixtures thereof.
The terms "underlayer", "overlayer" and "top coat" are used herein to refer to the orientations of semiconductor layers with respect to a layer of metal oxide particles supported on a base transparent substrate and optical electrode during construction. The terms overlayer, underlayer and top coat do not refer to the order of respective layers of the final product during operation of the DSSC.
The term "low temperature paste" relates to a semiconductor particulate metal oxide formulation which can be processed at temperatures usually lower than 2000C. For example, Peccell PECC-C01-06 may be processed at about 1500C.
The term "high temperature paste" relates to a semiconductor particulate metal oxide formulation which can be processed at temperatures usually greater than 3000C. For example, Solaronix Ti - Nanoxide 300 is typically processed at about 450°C.
The term "sintering" refers to the formation of interparticle connectivity that involves heating the semiconductor layer of particulate metal oxide to high temperatures, typically about 400°C or greater for TiO2.
Abbreviations Voc open-circuit voltage Jsc short-circuit current density FF fill factor
The invention uses an optical electrode that may comprise a light transmissible substrate and a conventional transparent conductive oxide (TCO) electrode of the type known for Gratzel DSSCs. The TCO is preferably made in the form of a thin layer of the order of 100 to 5000 nanometers in thickness. The TCO is advantageously made of a material chosen from the group consisting of fluorine doped tin oxide (FTO), antimony or arsenic, indium doped tin oxide (ITO), aluminum stannate, and zinc oxide doped with aluminum.
The person skilled in the art may of course choose any other suitably effective transparent electronic conducting layer. The preferred TCO is ITO or FTO. The TCO may be deposited by a method known in the art such as sputter coating or the like or may be deposited by ALD.
The light transmissible substrate may be a rigid substrate such as glass or flexible material such as a light transmissible polymeric material. Examples of suitable polymeric material may include: polycarbonates such as polycarbonate (bisphenol A polycarbonate, or (2,2-bis 4-hydroxyphenylpropane) carbonate) (PC) modified polycarbonate polycarbonate blended with other polymers, poly(phthalate carbonate) (PPC) and bisphenol A / tetramethylpolycarbonate (PC-TMPC); , polyacrylates such as poly(methyl methacrylate) (PMMA) and cycloaliphatic acrylic; polyamides such as transparent polyamide (nylon) (PA-T); polyesters such as poly(ethylene terephthalate) (PET), poly(ethylene naphthalate) (PEN), polyester copolymer (copolyester) and fluorinated copolyester (O-PET); polyarylates (PAr); styrenics such as polystyrene (PS), high-impact polystyrene (HIPS), styrene-acrylonitrile copolymer (SAN), methyl methacrylateacrylonitrile-butadienestyrene copolymer (MABS) and advanced styrenic copolymers; polyetherimides; sulfone polymers such as polysulfone (PSU), poly(ether sulfone) (PES) and poly(phenyl sulfone) (PPSU); poly(ether imide) (PEI); polyimides, such as Kapton H or Kapton E (made by Dupont) or Upilex (made by UBE Industries, Ltd.); polynorbornenes; olefinics such as cyclo-olefinic copolymer (COC), cyclo-olefinic polymer (COP) and clarified polypropylene; liquid crystal polymers (LCP) such as polyetheretherketone (PEEK), polyethylene terephthalate (PET), polyethylene naphtalate (PEN); Poly(phenylene ether) (PPE), poly(phenylene oxide) (PPO), Rigid thermoplastic polyurethane (PUR-R); optically transparent thermosetting polymers including: diethylene glycol bis(allyl carbonate) or allyl diglycol carbonate (CR39); other ophthalmic resins based on sulfur containing monomers, urethane monomers, halogenated aromatic diallyl, divinyl or dimethacrylyl monomers; and other optical polymers such as fluorinated polyimide (Pl-f) and poly(methylpentene) (TPX). Products such as Barix™ barrier film, transparent organic-inorganic hybrid materials, transparent nanocomposite materials and similar materials may also be used
In context of the present invention, "an ALD process" generally refers to a process for producing thin films over a substrate where the thin film is formed by surface-initiated chemical reactions. The general principles of ALD are disclosed, e.g., in U.S. Pat. Nos. 4,058,430 and 5,71 1 ,811 , the disclosures of which are incorporated herein by reference. In an ALD process, gaseous reactants, i.e. precursors are conducted into a reaction chamber of an ALD type reactor where they contact a substrate located in the chamber to provide a surface reaction. The pressure, temperature and flow conditions in the reaction chamber are adjusted to a range where physisorption (i.e. condensation) and thermal decomposition of the precursors does not occur or is minimised. In the process of the present invention temperatures are selected having regard to the nature of the substrate and other materials so as to avoid decomposition and to form an effective semiconductor coating layer without a requirement for high temperature processes. Only up to one monolayer (i.e. an atomic layer or a molecular layer) of material is usually deposited at a time during each metal-oxidant pulsing cycle. The actual growth rate of the thin film typically depends on the number of available reactive surface sites or active sites on the surface and the bulkiness and reactivity of the chemisorbing molecules. Gas phase reactions between precursors and any undesired reactions of by-products are inhibited because precursor pulses are separated from each other by time and the reaction chamber is purged with an inactive gas (e.g. nitrogen or argon) and/or evacuated using, e.g., a pump between precursor pulses to remove surplus gaseous reactants and reaction by-products from the chamber.
The number of ALD cycles used is chosen according to the nature and reactivity of the substrate and the reactant gases, the process conditions of temperature, pressure and reactant concentration, and the coating thickness required to provide an effective coating which gives improved performance characteristics. Preferably the number of cycles will be between 1 cycles and 1000 cycles more preferably it is between 2 cycles and 500 cycles.
The invention involves formation via a process comprising atomic layer deposition of a conformal thin film of semiconductor on a layer of metal oxide particles. We have found that atomic layer deposition on a nanoparticulate layer provides an interfacial layer with efficient semiconductor properties without a requirement for high temperature processing.
Without wishing to be bound by theory we believe the significant advantage arises from two aspects. 1/ The ALD process is a non-line of sight process which results in effective coating of a large surface area within a porous nanoparticulate layer. This significantly enhances its performance as a semiconductor while maintaining a high surface area for dye adsorption. 2/ The application of an ALD layer provides an optically transparent layer and a surface for adsorption of dye. According to the preferred embodiments, an atomic layer deposition (ALD) type process is used to form thin films on the surface of the nanoparticulate metal oxide layer.
In a preferred embodiment of the invention, a substrate having an optical electrode and a nanoparticulate layer thereon is placed in a reaction chamber and subjected to alternately repeated surface reactions. In particular, thin films are formed by repetition of surface-initiated ALD cycles.
Atomic layer deposition (ALD) is a known method of producing a thin metal oxide coating. ALD is based on two or more separate half-reactions between vapour phase reactants and the deposition surface. Film growth is believed to involve the incoming vapour phase reacting by a process of chemisorption with surface functional groups. The process is continued with the separate introduction of the second vapour phase, which reacts with ligands attached to the precursor species previously deposited on the surface. The first half reaction generally involves deposition of a metal compound. The second precursor may then be reacted to provide modification of the adsorbed metal compound. For example, the growth of TiO2 from TiCI4 and H2O on a hydroxylated surface commences with the chemisorption of TiCI4 to form Ti-O bonds together with some unreacted Ti-Cl terminal ligands. The latter ligands then react with H2O vapor during the second half-reaction cycle to re-hydroxylate the growth surface and form HCI vapour as a reaction by-product. This process is repeated for a predetermined number cycles to form a TiO2 film of the desired thickness.
In performing ALD, process conditions, including temperatures, pressures, gas flows and cycle timing, are adjusted to meet the requirements of the process chemistry and substrate materials. The temperature and pressure are controlled within a reaction chamber. Typical temperatures used in the process of the invention are less than 4000C and preferably greater than 25°C, more preferably less than 3000C, e.g. at no more than 299°C, especially at less than 299°C, for example at no more than 2500C, such as at no more than 2000C, in particular at no more than 150°C, for instance at no more than 1200C and pressure within the range of about 1 to 10,000 Pascal. The conditions used should be chosen having regard to the substrate and temperature needed for treating the metal oxide particles to remove any solvent or carrier used as an aid in deposition of the metal oxide particles.
For instance, the DSSC comprises a light transmissible substrate which is a polymeric material and ALD is conducted at a temperature of no more than 150°C. An inert purge gas is introduced to remove any excess of the first vapor and any volatile reaction products. The embodiments of the deposition process are described herein as involving purging with an inert gas. The terms "purging" and "purge" are intended to be construed broadly, to include not only flushing of the reaction space by introduction of a flow of an inert gas or other material, but also more generally to include the removal or cleansing of excess chemicals and reaction byproducts from the reaction space. For example, excess chemicals and reaction byproducts may be removed from the reaction space by pumping the reaction space and/or by lowering the pressure within the reaction space. Consistent with the broad definition of the term "purge," the removal of excess chemicals from the reaction space need not be perfectly effective, but will typically involve leaving surface bound chemicals and possibly some insignificant amount of non-surface bound chemicals or residual matter within the reaction space.
Moreover, when a purge gas is used to remove chemicals from the reaction space, various inert purge gases, oxygen (O2) and mixtures thereof may be used. Preferred purge gases include nitrogen (N2), helium (He), neon (Ne), argon (Ar). A constant or pulsed flow of one or more of these purge gases may also be used to transport the first chemical and the second chemical into the reaction space and/or to adjust the pressure within the reaction space.
A second precursor vapor is introduced into the reaction chamber and reacts with the adsorbed first precursor vapor and creates a film conforming to the nanoparticulate structure. As with the first precursor vapor, the second precursor vapor does not react with itself.
Each film growth cycle is typically of the order of a monolayer or less.
The second precursor vapor is purged to remove excess precursor vapor as well as any volatile reaction products. This completes one cycle. This procedure is repeated until the desired thickness of the film is achieved.
Successful ALD growth requires that the precursor vapors be alternately pulsed into the reaction chamber. The ALD process also requires that each starting material be available in sufficient concentration for thin film formation over the substrate area. Preferred examples of metal reactants for use in the present invention include at least one metal compound selected from the group consisting of: halides (e.g. MXn where X is a halogen), preferably chlorides, bromides or iodides, particularly TiCI4 which is liquid at room temperature and particularly useful as a precursor for TiO2; alkoxides (e.g. M(OR)n where R is alkyl), preferably Ci to Ce alkoxides and more preferably C3 and C4 alkoxides such as isopropoxide and sec-butoxide and tert- butoxide or a combination thereof. Specific examples of preferred alkoxides include titanium iso-propoxide (Ti(i-OC3H7)4) zirconium tert-butoxide (Zr(t-OC4H9)4) and niobium ethoxide (Nb(OC2Hs)5); β-diketonate chelates (e.g. M=(O2C3R3)n) where R is Ci to C4 alkyl alkylamides (e.g. M(NR2)n where R is independently H or alkyl such as Ci to C4 alkyl); amidinates (e.g. M(N2CR3)n wherein R is independently H or alkyl such as Ci to C4 alkyl); and organometallics (that is compounds wherein the metal is bonded directly to carbon) such as alkyls, including Ci to C4 alkyls, cyclopentadienyls such as dicyclopentadienyldimethyl metal complexes; wherein the metal species preferably includes at least one metal selected from the group consisting of titanium, niobium, tungsten, indium, tin and zinc.
In the above list M is the metal and n is the number of ligands in the complex and is generally the valency of the metal or, in the case of bidentate ligands, half the metal valency. The metal compounds listed above may be modified after deposition by use of an appropriate second vapour or may be used to provide desirable ligands for interaction with a dye species adsorbed onto the semiconductor.
In the case of a porous particulate metal oxide layer the ALD process used to prepare the interface with the dye allows the metal reagent to penetrate into the particulate layer to coat and form a continuous or discontinuous layer of semiconductor material covering the metal oxide particles.
The layer resulting from the ALD onto the metal oxide is a semiconductor layer and comprises a metal oxide. Preferably, the metal is selected from the group consisting of metals of Groups NA, NB, INA, NIB, IVA, IVB, VA, VB, VIA, VIB and VIII. More preferably, the metal is selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Ni, Cu, Zn, In, Al and Ga. The preferred metal oxide comprises one or more of, for example, titanium oxide, tin oxide, zinc oxide, zirconium oxide, niobium oxide, tungsten oxide, indium oxide, nickel oxide, iron oxide, and most preferably titanium oxide, niobium oxide, tungsten oxide, indium oxide, tin oxide, nickel oxide and zinc oxide and the like, but is not necessarily limited thereto. These metal oxides may be used alone or in a mixture of two or more. Particularly preferred examples of the interfacial ALD are selected from the group consisting of TiO2, SnO2, ZnO, WO3, Nb2O5, In2O3, Fe2O3, NiO and SrTiO3 and precursor complexes of the metal ion species. Most particularly preferred examples of the interfacial ALD are selected from the group consisting Of TiO2 and Nb2O5, and precursor complexes of the metal ion species.
Preferred is a DSSC comprising a semiconductor formed from metal oxide particles on an optical electrode, a dye adsorbed onto the semiconductor and wherein the semiconductor interface with the dye and optical electrode is formed by atomic layer deposition of a semiconductor material onto the optical electrode and metal oxide particles.
We have also found that the deposition by ALD of a semiconducting layer (which may be referred to as an underlayer to the metal oxide particles or a compact layer) between the optical electrode and particulate metal oxide layer improves the bonding and integrity of the multilayer system. Accordingly in a preferred embodiment the dye sensitized solar cell comprises a semiconductor formed of (i) an ALD compact layer of semiconductor material, (ii) a metal oxide particulate layer on said compact ALD layer and (iii) a conformal ALD coating of semiconductor on the metal oxide particulate layer.
The invention may involve a process of applying a particulate metal oxide to the optical electrode on a light transmissible substrate. The particulate metal oxide may be applied using a range of methods of general type known in the art for deposition of nanoparticulate metal oxides for forming a semiconductor. In the preferred embodiment the particulate metal oxide is applied as a colloid or paste of particles of size in the range of from 5 to 400 nm and preferably from 5 to 150 nm and most preferably from 5 to 80 nm. Colloidal titanium oxide particles may be prepared by methods known in the art such as by hydrolysis of titanium isopropoxide. Examples of methods for preparation of colloidal titanium dioxide are described for example by Gratzel in US 5530644. For instance, the particulate metal oxide is formed from a colloidal dispersion or paste of metal oxide. For example, the particulate metal oxide comprises metal oxide particles formed by a sol-gel process.
The layer of metal oxide particles is typically in the range of from 0.1 to 100 μm and typically up to 20 μm thick.
The nanoparticle layer of metal oxide may, for example, be prepared by a sol-gel process and deposited on the TCO coated substrate.
The metal oxide particulates can be deposited onto the optical electrode (e.g. the TCO or TCO plus blocking layer, known as the underlayer) by doctor blading, screen- printing, spin coating and/or by spray coating methods. In a typical example, the Tiθ2 nanoparticles are mixed with an organic vehicle as described in J. M. Kroon Prog. Photovolt. Res. Appl. 15, 1-18, (2007). Typical solids loading are between 2 and 50 weight percent of the nanoparticulate, preferably between 10 to 50. The paste is applied by one of the film forming methods above to create a continuous film on the optical electrode. Following deposition, the resultant film is heated to remove the organic material. The temperature of this organic binder removal is typically between 500C and 5000C which is determined by the composition of the binder and the nature of the substrate.
With the conventional DSSC procedure a heat treatment step of at least about 4500C would normally be required to sinter the particulates to create both a connective pathway between the semiconducting particles and adhesion to the optical electrode. With a low temperature paste such that removal of volatiles can be carried out at low temperatures such as at less than or equal to 150°C we find that the efficiency can be improved significantly by ALD overcoating of the particulate layer. The ALD procedure may also be conducted at or below such temperatures so that the entire process of the invention may then be carried out at low temperatures as might be required when a flexible substrate is used.
As the dye in the present invention, any material may be used without any particular limitation as long as it is one compatible with use in the photovoltaic cell field.
According to a further embodiment, the interconnected nanoparticle material is coated with a photosensitizing agent (such as a dye) that includes a molecule selected from the group consisting of anthocyanins, squarates, eosins, xanthines, cyanines, merocyanines, phthalocyanines, indolines, porphyrins, oligothiophenes, coumarins, perylenes and pyrroles.
According to another embodiment the photosensitizing agent is a metal complex that includes a metal atom or ion selected from the group consisting of multivalent metals. Preferably this metal comples is selected from the group consisting of a ruthenium transition metal complex, an osmium transition metal complex, and an iron transition metal complex. In one illustrative embodiment, the photosensitizing agent is adsorbed (e.g. chemisorbed and/or physisorbed) on the interconnected nanoparticles. The photosensitizing agent may be adsorbed on the surfaces of the interconnected nanoparticles throughout the interconnected nanoparticles or both. The photosensitizing agent is selected, for example, based on its ability to absorb photons in a wavelength range of operation, its ability to produce free electrons in a conduction band of the interconnected nanoparticles and its effectiveness in complexing with or adsorbing onto the surface of the interconnected nanoparticles. Suitable photosensitizing agents may include, for example, dyes that include functional groups, such as carboxyl and/or hydroxyl groups, that can chelate to the nanoparticles, e.g., to Ti (IV) sites on a TiO2 surface. Examples of suitable dyes include, but are not limited to, anthocyanins, squarates, eosins, xanthines, cyanines, merocyanines, phthalocyanines, indolines, porphyrins, oligothiophenes, coumarins, perylenes and pyrroles, and metal-containing dyes such as ruthenium complexes like RuL2(SCN)2, RuL2(H.2O)2, RuL3, and RuL2, wherein L represents 2,2'-bipyridyl-4,4'-dicarboxylate and the like.
For example, cis-bis (isothiocyanato) bis (2,2'-bipyridyl-4, 4'-dicarboxylato)-ruthenium (II) ("N3 dye"); tris (isothiocyanato)-ruthenium (ll)-2, 2' : 6', 2"-terpyridine-4,4', 4"- tricarboxylic acid ("black dye"); cis-bis (isothiocyanato) bis (2,2'-bipyridyl-4, 4'- dicarboxylato)-ruthenium (II) bis- tetrabutylammonium ("N719 dye"); cis-bis (isothiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylato) (2,2'-bipyridyl-4,4'-di-nonyl) ruthenium(ll) ("Z907 dye"); and tris (2,2'-bipyridyl-4, 4'-dicarboxylato) ruthenium (II) dichloride, all of which are available from Solaronix. Further suitable dyes are those known as indoline dyes such as 5-[[4-[4-(2,2-diphenylethenyl)phenyl]-1 ,2,3,3a,4,8b- hexahydrocyclopent[t)]indol-7-yl]methylene]-2-(3-ethyl-4-oxo-2-thioxo-5- thiazolidinylidene)-4-oxo-3-thiazolidineacetic acid, 5-[[4-[4-(2,2- diphenylethenyl)phenyl]-1 ,2,3,3a,4,8b-hexahydrocyclopent[b]indol-7-yl]methylene]-2- (3-ethyl-4-oxo-2-thioxo-5-thiazolidinylidene)-4-oxo-3-thiazolidineacetic acid ("D149 indoline dye").
Any dye may be used as long as it has a charge separation function and shows photosensitivity and binds to the metal oxide particulate layer.
In a solar cell that utilizes the inventive semiconductor electrode, the electrolyte layer may be made of any material that has a hole transport function. Examples of a material that can be used to form the electrolyte layer in the present invention include iodide/iodine in a suitable solvent such as acetonitrile or other suitable media.
The process of the invention may provide improved incorporation of the dye by the metal oxide layer. The following procedure may be used to determine the dye uptake of a surface. The dye-covered particulate metal oxide (e.g. TiO2) layer with known surface area is immersed into 4 ml. of 0.1 M NaOH (in EtOH/H2O, 50:50 by VA/). Once the dye is completely removed from the TiO2 (it turns to white or transparent), the absorption spectra of the solution is measured using UV-Vis spectrophotometry. The amount of dye is calculated using the molar extinction coefficient and normalized to the metal oxide (e.g. TiO2) surface area.
The DSSC of the invention comprises a charge carrier material or electrolyte layer which may be of the type known in the art. The charge carrier may be a liquid, gel, salt or solid electrolyte. The charge carrier material may be any material that facilitates the transfer of electrical charge from a ground potential or a current source to the interconnected nanoparticles (and/or a dye associated therewith). A general class of suitable charge carrier materials can include, but is not limited to solvent based liquid electrolytes, polyelectrolytes, polymeric electrolytes, solid electrolytes, n-type and p- type transporting materials (e.g., conducting polymers, functionalised arylamines, SpiroMeOTAD, organic hole transport materials, etc), and gel electrolytes, which are described in more detail below.
Other choices for the charge carrier material are possible. For example, the electrolyte composition may include a lithium salt that has the formula LiX, where X is an iodide, bromide, chloride, perchlorate, thiocyanate, trifluoromethyl sulfonate, or hexafluorophosphate. In one embodiment, the charge carrier material includes a redox system. Suitable redox systems may include organic and/or inorganic redox systems. Examples of such systems include, but are not limited to, cerium (III) sulfate/cerium (IV), sodium bromide/bromine, lithium iodide/iodine, Fe2VFe3+, Co2VCo3+, and viologens. Furthermore, an electrolyte solution may have the formula M|Xj, where i and j are greater than or equal to: 1. X is an anion, and M is selected from the group consisting of Li, Cu, Ba, Zn, Ni, lanthanides, Co, Ca, Al, and Mg. Suitable anions include, but are not limited to, chloride, perchlorate, thiocyanate, trifluoromethyl sulfonate, and hexafluorophosphate.
For instance, the electrolyte is iodide/iodine in a (e.g. suitable) solvent such as acetonitrile.
In some illustrative embodiments the charge carrier material includes a polymeric electrolyte. In one version, the polymeric electrolyte includes polyvinyl imidazolium halide) and lithium iodide. In another version, the polymeric electrolyte includes polyvinyl pyridinium salts). In still another embodiment, the charge carrier material includes a solid electrolyte. In one version, the solid electrolyte includes lithium iodide and pyridinium iodide. In another version, the solid electrolyte includes substituted imidazolium iodide. In another version, the solid electrolyte includes (2,2',7,7'-tetrakis- (Λ/,Λ/-di-p-methoxyphenylamine)-9,9'-spirobifluorene), f-butyl pyridine and bis((trifluoromethane)sulfonamide lithium salt.
According to some illustrative embodiments, the charge carrier material includes various types of polymeric polyelectrolytes. In one version, the polyelectrolyte includes between about 5% and about 100% (e. g. , 5-60%, 5-40%, or 5-20%) by weight of a polymer, e.g., an ion-conducting polymer, about 5% to about 95%, e.g., about 35-95%, 60-95%, or 80-95%, by weight of a plasticizer and about 0.05 M to about 10 M of a redox electrolyte, e.g., about 0.05 M to about 10 M, e.g., 0.05-2 M, 0. 05-1 M, or 0.05- 0. 5 M, of organic or inorganic iodides, and about 0. 01 M to about 1 M, e.g., 0.05-5 M, 0.05-2 M, or 0. 05-1 M, of iodine. The ion-conducting polymer may include, for example, polyethylene oxide (PEO), polyacrylonitrile (PAN), certain acrylics, polyethers, and polyphenols. Examples of suitable plasticizers include, but are not limited to, ethyl carbonate, propylene carbonate, mixtures of carbonates, organic phosphates, butyrolactone, and dialkylphthalates.
Specific embodiments of the invention will be discussed with reference to the accompanying drawings, in which: Figure 1 shows a schematic cross section views and general construction process of a DSSC in accordance with the invention for use with liquid electrolytes.
Figures 1 a to 1 d show stages used in a process for preparing a DSSC in accordance with the invention for use with liquid electrolytes;
(i) the cell is based on a TCO electrode (2) supported on a transparent substrate (1 ) as shown in Figure 1 a;
(ii) (referring to Figure 1 b) depositing a layer (3) of metal oxide nanoparticles (4) onto the TCO layer (2). At this stage the layer of particles (3) is generally not an optimised semiconductor. This layer can be heated or sintered in accordance with the procedures described in the examples;
(iii) applying an ALD conformal coating (5) of semiconductor to the particles of metal oxide (4) supported on the substrate (1 ) and TCO film (2) as shown in Figure 1c; and
(iv) (referring to Figure 1d), depositing a dye (6) onto the ALD coated particles so it is adsorbed on the ALD coated surface of the particles (5). The assembly may be completed with the electrolyte (7), counter electrode (8) on TCO (9) and substrate (10), in accordance with procedures known in the art to provide an operational DSSC.
Figure 2 shows a schematic cross section views and general construction process of a DSSC in accordance with the invention for use with liquid electrolytes and ionic liquid electrolytes. This underlayer is optional for liquid electrolytes though is preferred as it leads to improved overall performance in combination with the ALD topcoat applied to particles of metal oxide.
Figures 2a to 2d show stages used in a process for preparing a DSSC in accordance with the invention for use with liquid electrolytes and ionic liquid electrolytes;
(i) depositing a compact layer (11 ) of metal oxide typically by ALD (but alternatively be deposited by spin coating or spray pyrolysis in the case of a glass substrate) on the TCO electrode (2) (i.e. typically FTO) supported on a transparent substrate (1 ) as shown in Figure 2a; (ii) (referring to Figure 2b) depositing a layer (3) of metal oxide nanoparticles (4) onto the metal oxide compact layer (11 ), commonly referred to as the underlayer. At this stage the layer (3) is generally not an optimised semiconductor. This layer (3) can be heated or sintered in accordance with the procedures described in the examples to improve the semiconducting properties;
(iii) applying an ALD conformal coating (5) of semiconductor to particles of metal oxide (4) supported on the substrate (1 ), TCO film (2) and metal oxide compact layer (11 ) as shown in Figure 2c; and
(iv) (referring to Figure 2d), depositing a dye (6) onto the ALD coated particles so it is adsorbed on the ALD coated surface of the particles (5). The assembly may be completed with the electrolyte (7), counter electrode (8) on TCO (9) and substrate (10), in accordance with procedures known in the art to provide an operational DSSC.
Figure 3 shows a schematic cross section views and general construction process of a DSSC in accordance with the invention for use with solid state electrolytes;
Figure 3a to 3d show stages used in a process for preparing a solid state DSSC in accordance with the invention;
(i) depositing a compact layer (11 ) of metal oxide typically by ALD (but alternatively be deposited by spin coating or spray pyrolysis in the case of a glass substrate) on the TCO electrode (2) (i.e. typically FTO) supported on a transparent substrate (1 ) as shown in Figure 3a;
(ii) (referring to Figure 3b) depositing a layer (3) of metal oxide nanoparticles (4) onto the metal oxide compact layer (11 ), commonly referred to as the underlayer. At this stage the layer (3) is generally not an optimised semiconductor. This layer (3) can be heated or sintered in accordance with the procedures described in the examples to improve the semiconducting properties;
(iii) applying an ALD conformal coating (5) of semiconductor to particles of metal oxide (4) supported on the substrate (1 ), TCO film (2) and metal oxide compact layer (11 ) as shown in Figure 3c; and (iv) (referring to Figure 3d), depositing a dye (6) onto the ALD coated particles so it is adsorbed on the ALD coated surface of the particles (5). The assembly may be completed with the electrolyte (7) and metal counter electrode (12), which is deposited by evaporation, in accordance with procedures known in the art to provide an operational DSSC.
The invention will now be described with reference to the following examples. It is to be understood that the examples are provided by way of illustration of the invention and that they are in no way limiting to the scope of the invention.
Examples Experimental section
Definitions Peccell (product name PECC-C01-06) is a paste that does not contain resin binders containing 8-9% by weight of 60 nm particles of titanium dioxide anatase.
Solaronix (product name Ti-Nanoxide 300) is a paste with organic binders and solvents containing a mixture of sub 60 nm particles of titanium dioxide and about 20 % wt. of 400 nm sized titanium dioxide anatase particles, acting as optical dispersant.
Examples using Particulate metal oxide pastes
Low temperature paste. The semiconductor particulate metal oxide photoanode is prepared using low temperature TiO2 paste formulation from Peccell (product name PECC-C01-06). The film is doctor bladed onto the substrate or ALD layer. The thickness of the titania particulate layer is controlled using either one or two layers of 3M Scotch Magic Tape (Catalogue No 810). The paste is allowed to dry at room temperature before thermal treatment in the ALD chamber.
High temperature paste.
The semiconductor particulate metal oxide photoanode is prepared using a TiO2 paste formulation from Solaronix (product name Ti-Nanoxide 300). Ti-Nanoxide 300 is a paste containing about 20 % wt. of 400 nm sized titanium dioxide anatase particles, acting as optical dispersant. TiO2 particulate films is doctor bladed onto the conductive side of the substrates using a clean glass pipette. The thickness of the TiO2 particulate layer is regulated by using either a single or double layer of 3M Scotch Magic Tape (Catalogue No 810) applied along the first 5 mm of each long edge of the substrate. The paste is allowed to dry at room temperature before thermal de-binding and sintering to 4500C for 30 minutes.
Preparation of in-house particulate metal oxide paste
In one embodiment, the particulate metal oxide is prepared from SnO2. The semiconducting SnO2 powder is produced from hydrothermal methods using SnCI4 as the precursor and a procedure described by M. Anpo et al., J.Phys. Chem. VoI 91 , pages 4305-4310 (1987). The paste containing SnO2 metal oxide particulates is prepared using organic vehicles, ethyl cellulose (EC-100FTR, Nisshin Kasei) in terpineol using a 3 roll mill (M-50 EXAKT) as described by S. lto et al., Thin solid films 516, pages 4613-4619 (2008) . The final paste composition contains 22.7 wt% of SnO2.
Glass and polymer substrates (liquid DSSC).
The photoanode electrode represented in the examples below is prepared on either glass or polymer substrate. The glass substrates are Asahi FTO glass substrates (sheet resistance: 12 Ohm per square, effective transmittance >80%, haze: 10 - 20 %, glass side thickness: 1.8 mm) cut into 1.8 cm by 1.6 cm rectangles. The substrates are cryogenically cleaned on the conductive side with a liquid CO2 and dried before the deposition of either the semiconductor particulate metal oxide or application an ALD layer. The polymer substrate is ITO coated polyethylene naphthalate (PEN) (sheet resistance: 13 Ohm per square, 200 micrometres thick) that is cut into 1.8 cm by 1.6 cm rectangles. The polymer substrates are gently wiped with ethanol then cryogenically cleaned on the conductive side with a liquid CO2 and dried.
After drying, the surrounding edges of the substrate that are not coated with paste are masked with pieces of soda glass during the ALD process.
Atomic layer deposition process
ALD layers are deposited in one of two configurations as outlined in the drawings. An ALD top coat is applied after the deposition and treatment of the semiconductor particulate layer. When an ALD underlayer and overlayer design is used, the first ALD layer is deposited directly onto the TCO coated glass or polymer substrate before the semiconductor particulate layer. A further deposition of an ALD layer onto the semiconductor metal oxide produces dual layered DSSC architecture.
ALD layers are deposited using a flow-type hot-walled F-120 ALD reactor from ASM Microchemistry. Substrates are positioned in the hot-zone of the vacuum chamber, in the centre of the gas flow, on a microscope glass slide for support. The chamber is continually flushed with nitrogen gas flowing at 350/200 seem, and pressure is maintained at less than 1 mbar. Precursor vapour is delivered to the vacuum chamber coating all exposed surfaces. Coating is completed at the temperature range specified in the examples.
In several embodiments, the ALD TiC>2 is formed at a deposition temperature of 1200C using titanium tetrachloride (TiCI4) and water (H2O). Precursor vapour from TiCI4 and H2O are delivered from Peltier cooled reservoirs maintained at 200C. The pulsing sequence is based on published papers where pulsing duration is typically 0.5 seconds exposure to TiCI4 followed by a 1.0 second nitrogen-only purge, then 1.0 second exposure to water followed by a 1.5 second nitrogen-only purge. An additional pulsing regime follows the first set where pulsing duration is altered to 0.4 seconds exposure to TiCI4 followed by a 10 second nitrogen-only purge, then 1.0 second exposure to water followed by a 10 second nitrogen-only purge. The thickness of the TiO2 layer is controlled by the number of deposition cycles.
In several embodiments, after the ALD TiO2 layer is formed at a deposition temperature of 120°C using titanium tetrachloride (TiCI4) and water (H2O), 20 additional water (H2O) pulses are applied.
In one embodiment, the ALD TiO2 is formed at a deposition temperature of 2000C using titanium tetrachloride (TiCI4) and water (H2O). Precursor vapour from TiCI4 and H2O are delivered from Peltier cooled reservoirs maintained at 200C. The pulsing sequence is based on published papers where pulsing duration is typically 0.4 seconds exposure to TiCI4 followed by a 0.5 second nitrogen-only purge, then 0.5 second exposure to water followed by a 0.5 second nitrogen-only purge. The thickness of the TiO2 layer is controlled by the number of deposition cycles.
In another embodiment, the ALD TiO2 is formed at a deposition temperature of 250°C using titanium iso-propoxide (Ti(i-OC3H7)4) and water (H2O). Precursor vapour from the (Ti(i-OC3H7)4) is delivered by an open boat with the vacuum chamber at 50°C. The water is delivered from a Peltier cooled reservoir maintained at 200C. The pulsing sequence is typically 1.0 second exposure to (Ti(i-OC3H7)4) followed by a 1.0 second nitrogen-only purge, then 1 second exposure to water followed by a 2 second nitrogen-only purge. The thickness of the TiC>2 layer is controlled by the number of deposition cycles.
In several embodiments, the ALD Nb2O5 is formed using precursors niobium ethoxide (Nb(OC2Hs)5) and water (H2O). Precursor vapour from the (Nb(OC2H5)5) is delivered by an open boat with the vacuum chamber at 95°C. The water is delivered from a Peltier cooled reservoir maintained at 200C. The pulsing sequence is typically 0.5 second exposure to (Nb(OC2H5)5) followed by a 0.5 second nitrogen-only purge, then 2 second exposure to water followed by a 2 second nitrogen-only purge. The ALD process is performed at a temperature range between 2000C and 3000C. The thickness of the Nb2O5 layer is controlled by the number of deposition cycles.
All control samples are processed at the same temperature zone as the specimens being topcoated but placed in a region of the reactor where there is no exposure to the precursor vapour.
DSSC assembly
Following ALD coating, samples of the metal oxide photoanode are removed from the vacuum chamber and placed in standard N719 dye (c/s-bis (isothiocyanato) bis(2,2'- bipyridyl-4,4'-dicarboxylato)-ruthenium(ll) bis-tetrabutylammonium, Solaronix) solution for 1 day, consisting of 0.3 mM in acetonitrile (anhydrous, 99.8%, Sigma)/ 2-methyl-2- propanol (99%, Alfa Aesar ) (1 :1 ) (V:V).
DSSCs are assembled with an active area of -0.64 cm2. Sandwich-type photovoltaic devices are assembled using the dye sensitized, ALD coated or non-ALD coated semiconductor particulate layer as photoanodes and sputtered Pt (8 nm) on ITO glass as counter electrodes. A 25 μm thick, polymer film (SX 1170-25, Solaronix) is used as a spacer between the glass photoanode and counter electrode. A 60 μm thick, polymer film (SX 1170-60, Solaronix) is used as a spacer between the polymer photoanode and counter electrode. In the case of sealed cells the sandwich type device is held together and placed on a hotplate for sealing by placing Pt counter electrode face down at a temperature of approximately 120°C to 135°C, so that the polymer spacer melts and seals the cell. The electrolyte consisting of 0.6 M 1-propyl- 2,3-dimethylimidazolium iodide (DMPII, Solaronix), 0.03 M iodine (Suprapur, Merck), 0.1 M guanidium thiocyanate (for molecular biology, Sigma), 0.5 M 4-tert-butylpyridine (99%, Aldrich) is dissolved in a 85:15 mixture by volume of acetonitrile (anhydrous, 99/8%, Sigma) and valeronitrile (99.5% Sigma). The electrolyte is injected into the space between the semiconductor photoanode and counter electrode.
Glass substrates (ionic liquid DSSC with underlaver - spray pyrolysis or ALD methods)
The underlayer in an ionic liquid DSSC can be made by a number of methods. In these examples, they are deposited by the ALD method (as described earlier) or by spray pyrolysis (described below).
The photoanode electrode represented in the ionic liquid examples below is prepared on glass substrate. The glass substrates are Asahi FTO glass substrates (sheet resistance: 12 Ohm per square, effective transmittance >80%, haze: 10 - 20 %, glass side thickness: 1.8 mm) are cut into 2 (top) cm by 2.5 (length) cm rectangles.
The substrates are cleaned with sonication, in the following order; in solutions of 10% aqueous Decon 90, distilled water and finally ethanol (Absolute, Merck) at 20 minutes for each cycle and then dried. These FTO substrates can be subjected to ALD or spray pyrolysis treatment.
Spray pyrolysis is performed on the FTO glass heated at 4500C by spraying with an ethanolic solution of diisoproxy titanium(IV) bis(acetylacetonate) [Ti(acac)2(i-C3H7O)2] (Aldrich) and heating for a further 5 minutes. The spray pyrolysis solution, deposition method and underlayer optimisation is based on the protocol of Thelekkat et al. Coordin. Chem. Rev., 248, 1479-1489 (2004). The titania photoanode is screen printed in the centre of the FTO glass and covers a section of the underlayer. The surrounding edges of the substrate that are not coated with paste are masked during the ALD topcoat process.
The photoanode is reactivated at a temperature used to form the topcoat and kept there for 60 minutes. The samples are placed in N719 dye {cis- bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(ll) bis- tetrabutylammonium, Solaronix) solution for 1 day consisting of 0.3 mM in acetonitrile (anhydrous, 99.8%, Sigma)/ 2-methyl-2-propanol (99%, Alfa Aesar ) (1 :1 ) (V:V). DSSCs are assembled with an active area of -0.64 cm2. Sandwich-type photovoltaic devices are assembled using the dye sensitized, spray pyrolysis or ALD underlayer and with or without ALD topcoated semiconductor particulate layer as photoanodes and sputtered Pt (12-15 nm) on ITO glass as counter electrodes. A 25 μm thick, polymer film (SX 1170-25, Solaronix) is used as a spacer between the photoanode and counter electrode. The sandwich type device is held together and placed on a hotplate for sealing by placing Pt counter electrode face down at a temperature of 135°C, so that the polymer between the glass construction melts and seals the cell.
The electrolyte consists of ionic liquid consists of 5M 1-hexyl-3-methylimidiazolium iodide (Shikoku, CAS No. 178631-05-5) and 0.5M Iodine (99.8%, Aldrich). The electrolyte is vacuum filled through a small hole in the Pt electrode and closed by heat sealing with polymer film (SX 1 170-25, Solaronix) and a glass cover slip. The sample is left in the dark for 1 day to stabilize and then photovoltaic data is acquired.
Glass substrates (solid state DSSC with underlayer - spray pyrolysis or ALD methods)
The underlayer in the solid state DSSC can be made by a number of methods. In these examples, they are deposited by the ALD method (as described earlier) or by spray pyrolysis (described below).
The photoanode electrode represented in the solid state examples below is prepared on glass substrate. The glass substrates are Asahi FTO glass (sheet resistance: 12 Ohm per square, effective transmittance >80%, haze: 10 - 20 %, glass side thickness: 1.8 mm) are cut into 2.5 cm (length) by 2 cm (top) rectangles.
The substrates are cleaned with sonication, in the following order; in solutions of 10% aqueous Decon 90, distilled water and finally ethanol (Absolute, Merck) at 20 minutes for each cycle and then dried.
From the top of the FTO glass sample, a 1 1 mm section is left exposed, while the remaining FTO surface is covered with a layer of 3M Scotch Magic Tape (Catalogue No 810). The exposed FTO surface is removed by treatment with zinc powder (95%, Merck) and 1 M HCI aqueous solution. This process is repeated until all the exposed FTO is removed. Spray pyrolysis is performed on this etched FTO glass substrate. From the bottom of the FTO glass sample, a 6 mm section is masked, while the remaining FTO surface is left exposed for spray pyrolysis or ALD coating. The conditions and method for ALD deposition are described earlier, while spray pyrolysis is described below. This masked FTO glass is heated at 4500C and an ethanolic solution of di-isoproxy titanium(IV) bis(acetylacetonate) [Ti(acac)2(i-C3H7O)2] (Aldrich) is repeatedly sprayed over this surface to give the desired underlayer material. These FTO samples are heated for a further 5 minutes. The spray pyrolysis solution, deposition method and underlayer optimisation is based on the protocol of Thelekkat et al., Coordin. Chem. Rev., 248, 1479-1489 (2004). The titania photoanode is screen printed on the patterned FTO glass, whereby a 1 1 (top) mm x 8 (length) mm rectangle is deposited in the centre of this rectangular glass. The photoanode covers sections of the patterned FTO that consists of the underlayer/FTO/glass and underlayer/glass surfaces. The surrounding edges of the substrate that are not coated with paste are masked during the ALD topcoat process.
The photoanode is reactivated at a temperature used to form the topcoat and kept there for 60 minutes. The samples are placed in standard N719 dye (cis- bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(ll) bis- tetrabutylammonium, Solaronix) solution for 1 day, consisting of 0.3 mM in acetonitrile (anhydrous, 99.8%, Sigma)/ 2-methyl-2-propanol (99%, Alfa Aesar ) (1 :1 ) (V:V).
The samples are removed from the dye solution and dried under air while in the dark for 10 minutes. The dye coated photoanode is then treated with hole transport material electrolyte solution. The electrolyte solution consists of 170 mM SpiroMeOTAD (2,2',7,7'-tetrakis-(Λ/,Λ/-di-p-methoxyphenylamine)-9,9'-spirobifluorene), 13 mM bis((trifluoromethane)sulfonamide lithium salt ((CF3SO2)2NLi) (99.95% Aldrich), 130 mM f-butyl pyridine (99%, Aldrich) dissolved in chlorobenzene (99.5%, BDH AnalaR). A 100 μL portion of this electrolyte solution is spin coated onto the photoanode twice. The substrate is then placed in a glovebox antechamber and evacuated/purged to obtain a nitrogen atmosphere. The sample is then placed in the Edwards evaporator and evacuated to -2.5 x 10"6 mbar before gold is deposited in. The thickness is measured by a quartz microbalance sensor and is -100 nm. The sample is removed and run 1 day later to obtain photovoltaic data. These cells are not masked as the cell sizes are much smaller than the liquid and ionic liquid cells.
Photovoltaic performance Both control and ALD coated DSSCs are tested using a 1000 W Solar Simulator (Newspec Ltd) equipped with an AM 1.5 G filter (Newspec Ltd.). The light intensity is adjusted to 100 mW cm"2 using a calibrated Si photodetector (PECSI01 , Peccell Technologies, Inc.). A black paper or ink mask with open area of -0.81 cm2 is attached to the FTO glass facing the solar simulator. The current voltage curves are recorded using a source-measure unit (2400, Keithley Instruments), controlled by a custom-made Labview program. The voltage is swept from 850 mV to -30 mV in 5 mV steps. The settling time is 40 ms between each measurement point.
The results in the associated tables are averages of the data generated for each of the cells described in the examples. Usually four cells are assembled for each of the experimental conditions, although in the case of ionic liquid and solid state cells eight cells are usually prepared for each experimental condition.
Description of Examples
Examples 1 to 3 of liquid DSSCs in open configuration are described in detail. Further examples of DSSCs in closed configuration are described more concisely and are included in order to highlight the scope of the invention. Unless otherwise stated, the preparation of these cells follows the experimental methods described above.
The results in the associated tables are averages of the data generated for each of the cells described in the examples. Usually four cells are assembled for each of the experimental conditions, although in the case of ionic liquid and solid state cells eight cells are usually prepared for each experimental condition.
Example 1 ALD topcoat
The effect of ALD deposition onto a titania paste in preparation of a DSSCs at low temperature is investigated by the following procedure:
The Asahi FTO glass substrates (sheet resistance: 12 Ohm per square, effective transmittance >80%, haze: 10 - 20 %, glass side thickness: 1.8 mm) are cut to 7 cm by 3 cm rectangles.
The substrates are then cryogenically cleaned on the conductive side with a liquid CO2 spray, and then UV-O3 treated for 18 min. The low temperature titania paste from Peccell (product name PECC-C01-06) is doctor bladed twice onto the conductive side of the substrates using a clean glass pipette. The thickness of the first layer is regulated by two layers of 3M Scotch Magic Tape (Catalogue No 810) applied along the first 5 mm of each long edge of the substrate. The paste is allowed to dry prior to application of the second layer. The thickness of the second layer is regulated by one layer of 3M Scotch Magic Tape (Catalogue No 810) applied along the first 5 mm of each long edge of the substrate. The films are heated in an oven to a maximum of 1500C for 4 hours.
After drying of the second doctor bladed layer of paste, an ALD coating of TiC>2 is applied (300 cycles) on top of the doctor bladed paste (sample #2). The surrounding edges of the substrate that are not coated with paste are masked with pieces of soda glass attached with metal clips, in order to prevent coating of the conductive FTO during the ALD process.
The thin films of titania are deposited using a flow-type hot-walled F-120 ALD reactor from ASM Microchemistry. Substrates are positioned in the hot-zone of the vacuum chamber, in the centre of the gas flow, on a microscope glass slide for support. The chamber is continually flushed with nitrogen gas flowing at 350/200 seem, and pressure is maintained at less than 1 mbar. Precursor vapour from titanium tetrachloride (TiCI4) and water is delivered from Peltier cooled reservoirs maintained at 200C. The pulsing sequence chosen is 0.5 seconds exposure to TiCI4 followed by a 1.0 second nitrogen-only purge, then 1.0 second exposure to water followed by a 1.5 second nitrogen-only purge. Coating processes are completed at 150°C and the thickness of the titania coating is controlled by the number of deposition cycles.
Prior to immersion the ALD coated samples are heated to 150 C for 4 hours in an oven. The samples are placed in standard N719 dye (c/s-bis(isothiocyanato)bis(2,2'- bipyridyl-4,4'-dicarboxylato)-ruthenium(ll) bis-tetrabutylammonium, Solaronix) solution for 3 days, consisting of 0.3 mM in acetonitrile (anhydrous, 99.8%, Sigma)/ 2-methyl- 2-propanol (99%, Alfa Aesar ) (1 :1 ) (V:V).
Three DSSCs for each condition are fabricated with an active area of -0.64 cm2. Sandwich-type photovoltaic devices are assembled using the dye sensitized TiC>2 films as photoanodes and sputtered Pt (8 nm) on ITO glass as counter electrodes. A 25 μm thick, U-shaped polymer film (SX 1170-25, Solaronix) is used as a spacer between the photoanode and counter electrode. The sandwich type device is held together using foldback clips. The electrolyte consisting of 0.6 M 1-propyl-2,3- dimethylimidazolium iodide (DMPII, Solaronix), 0.03 M iodine (Suprapur, Merck), 0.1 M guanidium thiocyanate (for molecular biology, Sigma), 0.5 M 4-tert-butylpyridine (99%, Aldrich) dissolved in a 85:15 mixture by volume of acetonitrile (anhydrous, 99.8%, Sigma) and valeronitrile (99.5% Sigma). The electrolyte is injected into the space between the TiC>2 photoanode and counter electrode. The photovoltaic performance is tested using a 1000 W Solar Simulator (Newspec Ltd) equipped with an AM 1.5 G filter (Newspec Ltd.). The light intensity is adjusted to 100 mW cm"2 using a calibrated Si photodetector (PECSI01 , Peccell Technologies, Inc.). A black paper mask with open area of 0.81 cm2 is attached to the FTO glass facing the solar simulator. The current voltage curves are recorded using a source-measure unit (2400, Keithley Instruments), controlled by a custom-made Labview program. The voltage is swept from 850 mV to -30 mV in 5 mV steps. The settling time is 40 ms between each measurement points.
RESULTS
The results in the table are averages of the data generated for each of the cells described above.
Figure imgf000030_0001
Efficiency increases by 8%
Example 2 - In-situ ALD topcoat As a comparison to Example 1 (above), in this experiment the ALD deposition and film drying are performed at the same time inside the ALD reaction chamber at 120 C using the following procedure:
The Asahi FTO glass substrates (sheet resistance: 12 Ohm per square, effective transmittance >80%, haze: 10 - 20 %, glass side thickness: 1.8 mm) are cut to 7 cm by 3 cm rectangles. The substrates are then cryogenically cleaned on the conductive side with a liquid CO2 spray, and then UV-O3 treated for 18 min.
The low temperature titania paste from Peccell (product name PECC-C01-06) is doctor bladed twice onto the conductive side of the substrates using a clean glass pipette. The thickness of the first layer is regulated by two layers of 3M Scotch Magic
Tape (Catalogue No 810) applied along the first 5 mm of each long edge of the substrate. The paste is allowed to dry prior to application of the second layer. The thickness of the second layer is regulated by one layer of 3M Scotch Magic Tape (Catalogue No 810) applied along the first 5 mm of each long edge of the substrate.
After drying of the second doctor bladed layer of paste, an ALD coating of TiO2 is applied (300 or 500 cycles) on top of the doctor bladed paste (sample #2 or #3). The two edges of the substrate that are not coated with paste are masked with pieces of soda glass attached with metal clips, in order to prevent coating of this area during the ALD process.
The thin films of titania are deposited using a flow-type hot-walled F-120 ALD reactor from ASM Microchemistry. Substrates are positioned in the hot-zone of the vacuum chamber, in the centre of the gas flow, on a microscope glass slide for support. The chamber is continually flushed with nitrogen gas flowing at 350/200 seem, and pressure is maintained at less than 1 mbar. Precursor vapour from titanium tetrachloride (TiCI4) and water is delivered from Peltier cooled reservoirs maintained at 200C. The pulsing sequence chosen is 0.5 seconds exposure to TiCI4 followed by a 1.0 second nitrogen-only purge, then 1.0 second exposure to water followed by a 1.5 second nitrogen-only purge. Coating processes are completed at 1500C and the thickness of the titania coating is controlled by the number of deposition cycles. The control sample (sample #1 ) is heated within the ALD heating zone, but outside the reaction chamber, therefore resulting in the same thermal drying cycle as the coated samples.
The samples are taken from the ALD furnace and placed into the dye solution immediately, consisting of 0.3 mM N719 dye (c/s-bis(isothiocyanato)bis(2,2'-bipyridyl- 4,4'-dicarboxylato)-ruthenium(ll) bis-tetrabutylammonium, Solaronix) and 0.15 mM chenodeoxycholic acid (Fluka).in acetonitrile (anhydrous, 99.8%, Sigma)/ 2-methyl-2- propanol (99%, Alfa Aesar) (1 :1 ) (V:V). The substrates are kept in the dye solution for 1 1 days. Four DSSCs for each condition are fabricated with an active area of -0.6 cm2. Sandwich-type photovoltaic devices are assembled using the dye sensitized TiO2 films as photoanodes and sputtered Pt (8 nm) on ITO glass as counter electrodes. A 25 μm thick, U-shaped polymer film is used as a spacer between the photoanode and counter electrode. The sandwich type device is held together using foldback clips (SX 1 170-25, Solaronix). The electrolyte consisting of 0.6 M 1-propyl-2,3- dimethylimidazolium iodide (DMPII, Solaronix), 0.03 M iodine (Suprapur, Merck), 0.1 M guanidium thiocyanate (for molecular biology, Sigma), 0.5 M 4-tert-butylpyridine (99%, Aldrich) dissolved in a 85:15 mixture by volume of acetonitrile (anhydrous, 99.8%, Sigma) and valeronitrile (99.5% Sigma). The electrolyte is injected into the space between the TiO2 photoanode and counter electrode, and the photovoltaic performance is tested using a 1000 W Solar Simulator (Newspec Ltd) equipped with an AM 1.5 G filter (Newspec Ltd.). The light intensity is adjusted to 100 mW cm"2 using a calibrated Si photodetector (PECSI01 , Peccell Technologies, Inc.). A black paper mask with open area of 0.81 cm2 is attached to the FTO glass facing the solar simulator. The current voltage curves are recorded using a source-measure unit (2400, Keithley Instruments), controlled by a home-made Labview program. The voltage is swept from 850 mV to -30 mV in 5 mV steps. The settling time is 40 ms between each measurement point. A graph showing the recorded current density for the variation in voltage is shown in Figure 2.
The results in the table are averages of the data generated for each of the cells described above.
Figure imgf000032_0001
Efficiency increases by 12% (300 cycle) and 30% (500 cycle)
Example 3 - Combination of ALD underlaver and topcoat The Asahi FTO glass substrates (sheet resistance: 12 Ohm per square, effective transmittance >80%, haze: 10 - 20 %, glass side thickness: 1.8 mm) are cut to 7 cm by 3 cm rectangles.
The substrates are then cryogenically cleaned on the conductive side with a liquid CO2 spray.
An ALD underlayer of 1000 cycles of TiO2 is applied at 1200C to the conductive side of the substrate (sample #2). The two edges of the substrate that are not to be coated with paste are masked with pieces of soda glass attached with metal clips, in order to prevent coating of this area during the ALD process.
The thin film of titania is deposited onto sample #2 using a flow-type hot-walled F-120 ALD reactor from ASM Microchemistry. Substrates are positioned in the hot-zone of the vacuum chamber, in the centre of the gas flow, on a microscope glass slide for support. The chamber is continually flushed with nitrogen gas flowing at 350/200 seem, and pressure is maintained at less than 1 mbar. Precursor vapour from titanium tetrachloride (TiCI4) and water is delivered from Peltier cooled reservoirs maintained at 200C. The pulsing sequence chosen is 0.5 seconds exposure to TiCI4 followed by a 1.0 second nitrogen-only purge, then 1.0 seconds exposure to water followed by a 1.5 second nitrogen-only purge. Coating processes are completed at 1200C and the thickness of the titania coating is controlled by the number of deposition cycles.
The low temperature titania paste from Peccell (product name PECC-C01-06) is doctor bladed twice onto the conductive side of the substrates using a clean glass pipette. The thickness of the layer is regulated by two layers of 3M Scotch Magic Tape (Catalogue No 810) applied along the first 5 mm of each long edge of the substrate. After application of the first doctor bladed layer, the paste is allowed to dry prior to application of the second layer.
After drying of the doctor bladed paste, an ALD coating of TiO2 is applied (500 cycles) on top of the doctor bladed paste (sample #2). The two edges of the substrate that are not coated with paste are masked with pieces of soda glass attached with metal clips, in order to prevent coating during the ALD process. The control sample (sample #1 ) is heated within the ALD heating zone, but outside the reaction chamber, therefore resulting in the same thermal drying cycle as the ALD top coated sample. The experimental conditions are the same as described in Step 3. The samples are heated to 120 C for 3 hours prior to immersion in dye, then placed into the dye solution consisting of 0.3 mM N719 dye (c/s-bis(isothiocyanato)bis(2,2'- bipyridyl-4,4'-dicarboxylato)-ruthenium(ll) bis-tetrabutylammonium, Solaronix) and 0.15 mM chenodeoxycholic acid (Fluka) in acetonitrile (anhydrous, 99.8%, Sigma) / 2- Methyl-2-propanol (99%, Alfa Aeasar) (1 :1 ) (V:V). The substrates are kept in the dye solution for 1 day.
Two DSSCs with ALD, 1 DSSC without ALD are fabricated with an active area of -0.6 cm2. Sandwich-type photovoltaic devices are assembled using the dye sensitized TiC>2 films as photoanodes and sputtered Pt (8 nm) on ITO glass as counter electrodes. A 25 μm thick, U-shaped polymer film is used as a spacer between the photoanode and counter electrode. The sandwich type device is held together using foldback clips (SX 1 170-25, Solaronix). The electrolyte consisting of 0.6 M 1-propyl-2,3- dimethylimidazolium iodide (DMPII, Solaronix), 0.03 M iodine (Suprapur, Merck), 0.1 M guanidium thiocyanate (for molecular biology, Sigma), 0.5 M 4-tert-butylpyridine (99%, Aldrich) dissolved in a 85:15 mixture by volume of acetonitrile (anhydrous, 99.8%, Sigma) and valeronitrile (99.5% Aldrich). The electrolyte is injected into the space between the TiC>2 photoanode and counter electrode, and the photovoltaic performance is tested using a 1000 W Solar Simulator (Newspec Ltd) equipped with an AM 1.5 G filter (Newspec Ltd.). The light intensity is adjusted to 100 mW cm"2 using a calibrated Si photodetector (PECSI01 , Peccell Technologies, Inc.). A black paper mask with open area of 0.81 cm2 is attached to the FTO glass facing the solar simulator. The current voltage curves are recorded using a source-measure unit (2400, Keithley Instruments), controlled by a home-made Labview program. The voltage is swept from 850 mV to -30 mV in 5 mV steps. The settling time is 40 ms between each measurement point.
RESULTS The results in the table are averages of the data generated for each of the cells described above.
Figure imgf000034_0001
The Jsc, Voc and energy conversion efficiency are increased for the cells with ALD top coat.. Efficiency increases by 39%.
Further examples are provided to highlight the scope of the invention.
Example 4 - ALD topcoat on low temperature paste
The effect of an ALD TiO2 topcoat using TiCI4 as the precursor deposited at 120° C on a low temperature paste, on the photoanode in preparation for the assembly of a liquid DSSC is investigated.
The topcoat is applied at 1200C using 50 alternating cycles of titanium tetrachloride (TiCI4) and water (H2O), followed by 20 additional water (H2O) pulses.
Figure imgf000035_0001
The Jsc, Voc and energy conversion efficiency are increased for the cells with ALD top coat.. The resultant net gain in efficiency for the ALD top-coated cells is 17%.
Example 5 - Effect of time lapse before dye immersion
The effect of time lapse prior to dye immersion on an ALD topcoat on a low temperature paste is investigated. The topcoat is applied at 1200C using 50 alternating cycles of titanium tetrachloride (TiCI4) and water (H2O), followed by 20 additional water (H2O) pulses, in preparation for the assembly of a liquid DSSC.
Following ALD coating of the low temperature paste, samples are removed from the vacuum chamber and stored under ambient (room temperature) conditions for a period of 1 day. Before dye loading, the control and ALD coated samples are heated to 120°C on a hotplate for 15 minutes and then placed in standard N719 dye solution for the standard period described above.
Figure imgf000036_0001
The Jsc, Voc and energy conversion efficiency is increased for the cells with ALD top coat.. The resultant net gain in efficiency from for ALD topcoated cells is 11 %.
Example 6 - ALD topcoat with alternative ruthenium dye
The effect of an ALD TiO2 topcoat using TiCI4 as the precursor deposited at 1200C on a low temperature paste on the photoanode using Z907 dye, cis-bis (isothiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylato) (2,2'-bipyridyl-4,4'-di-nonyl) ruthenium(ll) instead of N719 dye, in preparation for the assembly of a liquid DSSC is investigated. The topcoat is applied using 50 alternating cycles of titanium tetrachloride (TiCI4) and water (H2O), followed by 20 additional water (H2O) pulses.
Both the control and ALD coated photoanodes are immersed in Z907 dye for a period of 1 day before DSSC assembly.
Figure imgf000036_0002
The Jsc, Voc and energy conversion efficiency are increased for the cells with ALD top coat. The resultant net gain in efficiency for ALD topcoated cells is 7%.
Example 7 - ALD topcoat with a non-ruthenium dye
The effect of an ALD TiO2 topcoat using TiCI4 as the precursor deposited at 1200C on a low temperature paste, on the photoanode with D149 indoline dye, 5-[[4-[4-(2,2- diphenylethenyOphenyO-I ^^.Sa^^b-hexahydrocyclopent^indol^-yOmethylene]^- (3-ethyl-4-oxo-2-thioxo-5-thiazolidinylidene)-4-oxo-3-thiazolidineacetic acid, 5-[[4-[4- (2,2-diphenylethenyl)phenyl]-1 ,2,3,3a,4,8b-hexahydrocyclopent[b]indol-7- yl]methylene]-2-(3-ethyl-4-oxo-2-thioxo-5-thiazolidinylidene)-4-oxo-3-thiazolidineacetic acid instead of N719 dye, in preparation for the assembly of a liquid DSSC is investigated. The topcoat is applied using 50 alternating cycles of titanium tetrachloride (TiCI4) and water (H2O), followed by 20 additional water (H2O) pulses.
Both the control and ALD coated photoanodes are immersed in D149 dye for a period of 2 hours before DSSC assembly.
Figure imgf000037_0001
Both the Jsc and energy conversion efficiency are increased for the cells with ALD top coat. The resultant net gain in efficiency from ALD topcoated cells is 14%.
Example 8 - Combination of ALD niobium oxide underlayer and ALD titanium dioxide topcoat
The effect of ALD deposition of an underlayer and topcoat, using a titania low temperature paste in preparation of a liquid DSSC is investigated. The underlayer is Nb2O5 formed using (Nb(OC2H5)5) precursor at 2000C and the topcoat is applied at 1200C using 50 alternating cycles of titanium tetrachloride (TiCI4) and water (H2O), followed by 20 additional water (H2O) pulses, in preparation for the assembly of a liquid DSSC.
Figure imgf000038_0001
The Jsc, Voc and energy conversion efficiency are increased for the cells with ALD top coat and/or underlayer. A combination of an underlayer and a topcoat on a TiC>2 semiconductor formed of a particulate metal oxide produces the highest gain in efficiency of 40%.
Example 9 - ALD topcoat on in-house tin oxide photoanode
The effect of an ALD TiC>2 topcoat on an in-house paste prepared from SnC>2 on the photoanode in preparation for the assembly of a liquid DSSC is investigated. The topcoat is applied at 1200C using 50 alternating cycles of titanium tetrachloride (TiCI4) and water (H2O), followed by 20 additional water (H2O) pulses.
Figure imgf000038_0002
In this case the increase in energy conversion efficiency is 1 1%. The Jsc and Voc are increased by the application of an ALD topcoat by 5% and 12% respectively
Example 10 - ALD underlaver and topcoat with low temperature titanium dioxide photoanode on polymer substrate
The effect of a combination of ALD underlayer and topcoat on a low temperature TiO2 photoanode layer on a polymer substrate is investigated. The underlayer is applied at 1200C using 25 alternating cycles of titanium tetrachloride (TiCI4) and water (H2O) and the topcoat is applied at 1200C using 50 alternating cycles of titanium tetrachloride (TiCI4) and water (H2O), followed by 20 additional water (H2O) pulses, in preparation for the assembly of a liquid DSSC.
The polymer substrates are H2O plasma treated before the application of the ALD underlayer. After application and drying of the TiO2 photoanode, a further heat treatment is undertaken at 1500C on a hotplate substrate for 15 minutes. The polymer substrate with coated photoanode is processed according to the DSSC assembly description. The counter electrode is Pt coated glass substrate. The spacer in the assembly of the photoanode and counter electrode is Solaronix spacer 60 μm (SX1 170-60).
Figure imgf000039_0001
Both the Jsc and energy conversion efficiency is increased for the cells with ALD top coat. The resultant gain in efficiency for cells prepared with an ALD topcoat on a low temperature paste is 10%.
Example 11 - ALD topcoat using alternate titanium precursor
The effect of a 25 cycle ALD TiO2 topcoat using (Ti(i-OC3H7)4) as the precursor deposited at 250°C on a high temperature paste on the photoanode in preparation of a liquid DSSCs is investigated.
Figure imgf000039_0002
The Jsc, Voc and energy conversion efficiency are increased for the cells with ALD top coat. . The resultant gain in efficiency for the ALD topcoated cells is 136%.
Example 12 - ALD niobium oxide topcoat on high temperature paste
The effect of a 50 cycle ALD Nb2O5 topcoat using (Nb(OC2Hs)5) as the precursor deposited at 3000C on a high temperature paste on the photoanode in preparation for the assembly of a liquid DSSC is investigated.
Figure imgf000040_0001
Both the Jsc and energy conversion efficiency are increased for the cells with ALD top coat.. The resultant gain in efficiency for the ALD top-coated cells is 38%.
Example 13 - ALD topcoat of niobium oxide on high temperature paste
The effect of an ALD Nb2O5 topcoat on a high temperature paste on the photoanode in preparation for the assembly of a liquid DSSC is investigated. The topcoat is applied at 2500C using 50 alternating cycles of niobium ethoxide (Nb(OC2H5)5) and water (H2O).
Figure imgf000040_0002
The Jsc, Voc and energy conversion efficiency are increased for the cells with ALD top coat.. The resultant gain in efficiency for cells prepared with an ALD topcoat on a high temperature paste is 72%.
Example 14 - ALD underlaver and topcoat of titanium dioxide on high temperature paste with ionic liguid electrolyte The effect of a combination of ALD underlayer and topcoat on a high temperature TiC>2 paste on a photoanode layer using ionic liquid electrolyte is investigated, in preparation for the assembly of an ionic liquid DSSC. The underlayer is applied at 3000C using 400 alternating cycles of titanium tetrachloride (TiCI4) and water (H2O) and the topcoat is applied at 1200C using 50 alternating cycles of titanium tetrachloride (TiCI4) and water (H2O), followed by 20 additional water (H2O) pulses.
Figure imgf000041_0001
Both the Voc and energy conversion efficiency are increased for the cells with ALD top coat.. The resultant gain in efficiency for cells prepared with an ALD underlayer and topcoat on a high temperature paste with ionic liquid electrolyte is 12%.
Example 15 - ALD underlaver and topcoat of titanium dioxide on high temperature paste with hole transport material
The effect of an ALD deposition on dual layered DSCC architecture using a high temperature paste where an underlayer and topcoat are applied in preparation of a solid state DSSC is investigated. The TiO2 underlayer is applied at 3000C using 400 alternating cycles of titanium tetrachloride (TiCI4) and water (H2O) and the topcoat is applied at 1200C using 50 alternating cycles of titanium tetrachloride (TiCI4) and water (H2O), followed by 20 additional water (H2O) pulses. The counter electrode is gold and is deposited by evaporation.
Figure imgf000042_0001
Both the Jsc and energy conversion efficiency are increased for the cells with ALD top coat.. The resultant gain in efficiency from cells prepared with an ALD underlayer and topcoat on a high temperature paste with solid electrolyte is 100%.
Example 16 - Spray pyrolysis titanium dioxide underlayer and ALD topcoat of titanium dioxide on high temperature paste with hole transport material
The effect of a spray pyrolysis underlayer of TiC>2 and an ALD TiC>2 topcoat using a high temperature paste in a solid state DSSC is investigated. The TiO2 underlayer is formed using [Ti(acac)2(i-C3H7O)2] precursor and deposited at 4500C. The TiO2 topcoat is formed using titanium tetrachloride (TiCI4) precursor deposited at 1200C using 50 alternating cycles of titanium tetrachloride (TiCI4) and water (H2O), followed by 20 additional water (H2O) pulses.
Figure imgf000042_0002
The Jsc, Voc and energy conversion efficiency are increased for the cells with ALD top coat.. The resultant gain in efficiency from cells prepared with a spray pyrolysis underlayer and an ALD topcoat on a high temperature paste with solid state hole transport material electrolyte is 133%.

Claims

1. A dye sensitized solar cell (DSSC) having a semiconductor comprising a layer of particulate metal oxide and a dye adsorbed onto the semiconductor wherein the semiconductor interface with the dye is formed by atomic layer deposition (ALD) of a semiconductor material onto the particulate metal oxide, wherein the metal of the particulate metal oxide is selected from the group consisting of metals of Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Ni, Cu, In, Al and Ga.
2. A DSSC according to claim 1 , wherein the particulate metal oxide comprises at least one or more of titanium oxide, niobium oxide, tungsten oxide, indium oxide, tin oxide, nickel oxide, strontium titanate and zirconium oxide.
3. A DSSC according to any one of the previous claims comprising a transparent substrate having an internal face; an optical electrode on the internal face of the substrate; a semiconductor comprising a layer of metal oxide particles; and a dye adsorbed onto the semiconductor wherein layers of semiconductor material formed by atomic layer deposition (ALD) provide an interface between each of the metal oxide particles and optical electrode and the metal oxide particles and the dye.
4. A DSSC according to claim 3 wherein the ALD layer between the metal oxide particles and the optical electrode is formed of a metal oxide selected from the group consisting of titanium oxide, niobium oxide, tungsten oxide, indium oxide, tin oxide, nickel oxide, zirconium oxide and zinc oxide.
5. A DSSC according to any one of the previous claims wherein the semiconductor interface with the dye is formed by atomic layer deposition (ALD) onto the layer of particulate metal oxide of a semiconductor material selected from the group consisting of titanium oxide, niobium oxide, tungsten oxide, indium oxide, tin oxide, nickel oxide, zirconium oxide and zinc oxide.
6. A DSSC according to any one of the previous claims comprising an optical electrode of a transparent conducting oxide (TCO) and a flexible light transmissible polymeric material on which the TCO is supported and wherein the atomic layer deposition is carried out at a temperature of no more than 1500C.
7. A DSSC according to claim 3 or claim 6 wherein the optical electrode is a transparent conducting oxide selected from fluorine doped tin oxide (FTO) and indium doped tin oxide (ITO).
8. A DSSC according to any one of the previous claims wherein the particulate metal oxide comprises particles of size in the range of from 5 to 400nm.
9. A DSSC according to any one of the previous claims wherein the dye is selected from the group consisting of anthocyanins, squarates, eosins, xanthines, cyanines, merocyanines, phthalocyanines, indolines, porphyrins, oligothiophenes, coumarins, perylenes and pyrroles or the dye is a metal complex that includes a metal atom or ion selected from the group consisting of multivalent metals, preferably a ruthenium transition metal complex, an osmium transition metal complex or an iron transition metal complex.
10. A DSSC according to any one of the previous claims wherein the dye comprises at least one selected from the group consisting of cis-bis (isothiocyanato) bis (2,2'- bipyridyl-4, 4'-dicarboxylato)-ruthenium (II) ("N3 dye"); tris (isothiocyanato)-ruthenium (ll)-2, 2' : 6', 2"-terpyridine-4,4', 4"- tricarboxylic acid; cis-bis (isothiocyanato) bis (2,2'- bipyridyl-4, 4'-dicarboxylato)-ruthenium (II) bis- tetrabutylammonium; cis-bis (isocyanato) (2,2'-bipyridyl-4, 4'dicarboxylato) ruthenium (II); cis-bis (isothiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylato) (2,2'-bipyridyl-4,4'-di-nonyl) ruthenium(ll) ("Z907 dye"); tris (2,2'-bipyridyl-4, 4'-dicarboxylato) ruthenium (II) dichloride; and 5-[[4-[4-(2,2-diphenylethenyl)phenyl]-1 ,2,3,3a,4,8b- hexahydrocyclopent[b]indol-7-yl]methylene]-2-(3-ethyl-4-oxo-2-thioxo-5- thiazolidinylidene)-4-oxo-3-thiazolidineacetic acid, 5-[[4-[4-(2,2- diphenylethenyOphenyO-I ^^.Sa^^b-hexahydrocyclopenttblindol^-yOmethylene]^- (3-ethyl-4-oxo-2-thioxo-5-thiazolidinylidene)-4-oxo-3-thiazolidineacetic acid ("D149 indoline dye").
1 1. A DSSC according to any one of the previous claims comprising a electrolyte layer in the form of a liquid, gel, salt or solid electrolytes or n-type and p-type transporting materials.
12. A DSSC according to claim 1 1 where the electrolyte is iodide/iodine in a suitable solvent, preferably in acetonitrile.
13. A process for forming a DSSC comprising:
(i) forming a layer of metal oxide semiconductor particles wherein the particulate layer comprises nanoparticles of oxides selected from Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Ni, Cu, In, Al and Ga. (ii) applying a semiconductor layer to the particles by a process comprising atomic layer deposition; and (iii) preferably adsorbing a photosensitive dye into the semiconductor layer.
14. A process according to claim 13 further comprising forming an optical electrode on a light transmissible substrate and forming an ALD deposited layer of a metal oxide semiconductor on the optical electrode and forming the particulate layer of metal oxide on said ALD deposited layer.
15. A process according to any one of claim 13 or 14 wherein the DSSC comprises a light transmissible substrate which is a polymeric material and ALD is conducted at a temperature of no more than 1500C.
PCT/EP2008/059575 2007-07-25 2008-07-22 Solar cell and method for preparation thereof WO2009013285A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200880100462A CN101779258A (en) 2007-07-25 2008-07-22 Solar cell and method for preparation thereof
JP2010517386A JP2010534394A (en) 2007-07-25 2008-07-22 Solar cell and method for manufacturing the same
EP08786311A EP2171735A1 (en) 2007-07-25 2008-07-22 Solar cell and method for preparation thereof
US12/669,799 US8440908B2 (en) 2007-07-25 2008-07-22 Solar cell and method for preparation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US93506507P 2007-07-25 2007-07-25
US60/935,065 2007-07-25

Publications (1)

Publication Number Publication Date
WO2009013285A1 true WO2009013285A1 (en) 2009-01-29

Family

ID=39869502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/059575 WO2009013285A1 (en) 2007-07-25 2008-07-22 Solar cell and method for preparation thereof

Country Status (7)

Country Link
US (1) US8440908B2 (en)
EP (1) EP2171735A1 (en)
JP (1) JP2010534394A (en)
KR (1) KR20100046032A (en)
CN (1) CN101779258A (en)
TW (1) TW200913338A (en)
WO (1) WO2009013285A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009156321A1 (en) * 2008-06-27 2009-12-30 Polymers Crc Ltd. Method for preparing dye sensitised solar cells
CN102103929A (en) * 2009-12-18 2011-06-22 乐金显示有限公司 Dye-sensitized solar cell module and method of fabricating the same
CN102360952A (en) * 2011-10-13 2012-02-22 北京交通大学 Gel electrolyte for dye-sensitized nanocrystal solar cell
CN104659124A (en) * 2015-02-03 2015-05-27 北京科技大学 Solar battery absorbing layer material and preparation method thereof
TWI500173B (en) * 2011-12-01 2015-09-11
CN112853266A (en) * 2021-01-05 2021-05-28 西京学院 Flexible transparent solar energy hydrolysis photoelectrode and preparation method thereof

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI495114B (en) * 2009-03-19 2015-08-01 Univ Nat Taiwan Fabrication method for light absorbing layers precursor solution
TWI406424B (en) * 2010-04-26 2013-08-21 Nat Univ Tsing Hua Process for impregnating photosensitizing dye of photoanode on a conductive substrate
US20120073640A1 (en) * 2010-09-24 2012-03-29 Ut-Battelle, Llc Pulsed photothermal phase transformation control for titanium oxide structures and reversible bandgap shift for solar absorption
US20130206215A1 (en) * 2010-10-15 2013-08-15 Sharp Corporation Quantum dot sensitized solar cell
WO2012078063A1 (en) * 2010-12-09 2012-06-14 Faculdade De Ciências E Tecnologia Da Universidade Nova De Lisboa Mesoscopic optoelectronic devices comprising arrays of semiconductor pillars deposited from a suspension and production method thereof
US20130327401A1 (en) * 2010-12-16 2013-12-12 National Yunlin University Of Science And Technology Composite dye-sensitized solar cell
US20160225534A1 (en) * 2010-12-16 2016-08-04 National Yunlin University Of Science And Technology Composite dye-sensitized solar cell
TWI426617B (en) * 2010-12-22 2014-02-11 Univ Nat Cheng Kung Dye-sensitized solar cell and method for manufacturing the same
JP2012204275A (en) * 2011-03-28 2012-10-22 Toyota Central R&D Labs Inc Method for manufacturing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module
KR101243664B1 (en) 2011-05-16 2013-03-14 한국세라믹기술원 Manufacturing method, the same and Dye-Sensitized solar cell using niobium oxide
CN104025329B (en) * 2011-10-30 2017-07-04 日本麦可罗尼克斯股份有限公司 Rechargeable quanta battery
KR101350478B1 (en) * 2011-11-16 2014-01-17 재단법인대구경북과학기술원 Organic-Inorganic Hybrid Solar Cell and Method Thereof
CN104106118B (en) * 2011-12-08 2018-06-22 洛桑联邦理工学院 Semi-conducting electrode including barrier layer
TWI511310B (en) * 2012-01-17 2015-12-01 Microjet Technology Co Ltd Manufacturing method of dye sensitized solar cell
US9236194B2 (en) 2012-02-17 2016-01-12 Northwestern University Metal oxide-encapsulated dye-sensitized photoanodes for dye-sensitized solar cells
EP2833414B1 (en) * 2012-05-08 2020-11-25 LG Chem, Ltd. Dye-sensitized solar cell and method for manufacturing same
PL2850627T3 (en) 2012-05-18 2016-10-31 Optoelectronic device comprising porous scaffold material and perovskites
GB201208793D0 (en) 2012-05-18 2012-07-04 Isis Innovation Optoelectronic device
EP2850669B1 (en) 2012-05-18 2016-02-24 Isis Innovation Limited Photovoltaic device comprising perovskites
KR101408696B1 (en) * 2012-05-30 2014-06-18 이화여자대학교 산학협력단 Hybrid nanostructure including gold nanoparticle and photoelectrode for solar cell having the same
KR101327996B1 (en) * 2012-07-11 2013-11-13 한국화학연구원 Nanostructured inorganic semiconductor-sensitized solar cell with vertically aligned photoelectrode
KR102607292B1 (en) 2012-09-18 2023-11-29 옥스포드 유니버시티 이노베이션 리미티드 Optoelectonic device
WO2014047616A1 (en) * 2012-09-24 2014-03-27 Arizona Board Of Regents For And On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
WO2014109814A2 (en) 2012-10-26 2014-07-17 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Metal complexes, methods, and uses thereof
JP5955305B2 (en) * 2012-12-26 2016-07-20 富士フイルム株式会社 Semiconductor film, semiconductor film manufacturing method, solar cell, light emitting diode, thin film transistor, and electronic device
KR101462866B1 (en) * 2013-01-23 2014-12-05 성균관대학교산학협력단 Solar cell and method of manufacturing the solar cell
KR101449849B1 (en) * 2013-05-08 2014-10-15 한국원자력연구원 ElECTRODE FOR DYE-SENSITIZED SOLAR CELL AND METHOD OF MANUFACTURING THE SAME
JP6245495B2 (en) * 2013-05-23 2017-12-13 オリンパス株式会社 Photodetector
JP6804823B2 (en) 2013-10-14 2020-12-23 アリゾナ・ボード・オブ・リージェンツ・オン・ビハーフ・オブ・アリゾナ・ステイト・ユニバーシティーArizona Board of Regents on behalf of Arizona State University Platinum complex and device
US9960140B2 (en) * 2013-11-11 2018-05-01 Nippon Steel & Sumitomo Metal Corporation Metal joining structure using metal nanoparticles and metal joining method and metal joining material
US10020455B2 (en) 2014-01-07 2018-07-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
JP6249093B2 (en) * 2014-04-16 2017-12-20 株式会社リコー Photoelectric conversion element
US9941479B2 (en) 2014-06-02 2018-04-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US9923155B2 (en) 2014-07-24 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues
WO2016025921A1 (en) 2014-08-15 2016-02-18 Arizona Board Of Regents On Behalf Of Arizona State University Non-platinum metal complexes for excimer based single dopant white organic light emitting diodes
US11329244B2 (en) 2014-08-22 2022-05-10 Arizona Board Of Regents On Behalf Of Arizona State University Organic light-emitting diodes with fluorescent and phosphorescent emitters
US10033003B2 (en) 2014-11-10 2018-07-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US9879039B2 (en) 2015-06-03 2018-01-30 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
CN105304340B (en) * 2015-10-16 2017-12-29 湖北大学 The preparation method of used by dye sensitization solar battery porous titanium dioxide thin-film
US11335865B2 (en) 2016-04-15 2022-05-17 Arizona Board Of Regents On Behalf Of Arizona State University OLED with multi-emissive material layer
WO2018071697A1 (en) 2016-10-12 2018-04-19 Jian Li Narrow band red phosphorescent tetradentate platinum (ii) complexes
US11183670B2 (en) 2016-12-16 2021-11-23 Arizona Board Of Regents On Behalf Of Arizona State University Organic light emitting diode with split emissive layer
US11708385B2 (en) 2017-01-27 2023-07-25 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing pyrido-pyrrolo-acridine and analogues
US10516117B2 (en) 2017-05-19 2019-12-24 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emttters employing benzo-imidazo-phenanthridine and analogues
US11101435B2 (en) 2017-05-19 2021-08-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complexes based on biscarbazole and analogues
WO2019079505A1 (en) 2017-10-17 2019-04-25 Jian Li Hole-blocking materials for organic light emitting diodes
WO2019079508A2 (en) 2017-10-17 2019-04-25 Jian Li Phosphorescent excimers with preferred molecular orientation as monochromatic emitters for display and lighting applications
WO2019104022A1 (en) * 2017-11-22 2019-05-31 Ppg Industries Ohio, Inc. Patterning paste
CN108413625B (en) * 2018-02-10 2019-12-03 温岭市合丰鞋材有限公司 A kind of improved solar battery board heat collector
US12037348B2 (en) 2018-03-09 2024-07-16 Arizona Board Of Regents On Behalf Of Arizona State University Blue and narrow band green and red emitting metal complexes
CN109148694A (en) * 2018-08-27 2019-01-04 领旺(上海)光伏科技有限公司 ITO electrode surface method of modifying for flexible perovskite solar battery
CN109273602A (en) * 2018-09-10 2019-01-25 天津师范大学 Application of the 2,2 '-bipyridine ligand metal organic Hybrid Materials in photoelectric field
US11878988B2 (en) 2019-01-24 2024-01-23 Arizona Board Of Regents On Behalf Of Arizona State University Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues
US11594691B2 (en) 2019-01-25 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters
US11785838B2 (en) 2019-10-02 2023-10-10 Arizona Board Of Regents On Behalf Of Arizona State University Green and red organic light-emitting diodes employing excimer emitters
US11945985B2 (en) 2020-05-19 2024-04-02 Arizona Board Of Regents On Behalf Of Arizona State University Metal assisted delayed fluorescent emitters for organic light-emitting diodes
CN112420937B (en) * 2020-11-26 2023-01-13 合肥福纳科技有限公司 Use of organic molecules for preparing solid films with improved thermal stability
CN114958036B (en) * 2022-06-30 2023-12-01 丰田自动车株式会社 Pearlescent pigment and preparation method thereof
CN115433959A (en) * 2022-08-22 2022-12-06 湖南大学 Photoelectrochemical electrode and preparation method thereof, photoelectrochemical reaction device and preparation method of urea

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH674596A5 (en) 1988-02-12 1990-06-15 Sulzer Ag
AU650878B2 (en) 1990-04-17 1994-07-07 Ecole Polytechnique Federale De Lausanne Photovoltaic cells
DE4207659A1 (en) 1992-03-11 1993-09-16 Abb Patent Gmbh METHOD FOR PRODUCING A PHOTOELECTROCHEMICAL CELL AND A CLEARLY PRODUCED CELL
CH686206A5 (en) 1992-03-26 1996-01-31 Asulab Sa Cellule photoelectrochimique regeneratrice transparent.
US8258398B2 (en) 2007-06-28 2012-09-04 Uchicago Argonne, Llc Heterojunction photovoltaic assembled with atomic layer deposition
GB0718839D0 (en) 2007-09-26 2007-11-07 Eastman Kodak Co method of patterning a mesoporous nano particulate layer
WO2009156321A1 (en) 2008-06-27 2009-12-30 Polymers Crc Ltd. Method for preparing dye sensitised solar cells

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
LEE S ET AL: "Modification of electrodes in nanocrystalline dye-sensitized TiO2 solar cells", SOLAR ENERGY MATERIALS AND SOLAR CELLS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 65, no. 1-4, 1 January 2001 (2001-01-01), pages 193 - 200, XP004217119, ISSN: 0927-0248 *
MENZIES D B ET AL: "Characterization of nanostructured core-shell working electrodes for application in dye-sensitized solar cells", SURFACE AND COATINGS TECHNOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 198, no. 1-3, 1 August 2005 (2005-08-01), pages 118 - 122, XP004935889, ISSN: 0257-8972 *
MENZIES D B ET AL: "MODIFICATION OF MESOPOROUS TIO2 ELECTRODES BY SURFACE TREATMENT WITH TITANIUM(IV), INDIUM(III) AND ZIRCONIUM(IV) OXIDE PRECURSORS: PREPARATION, CHARACTERIZATION AND PHOTOVOLTAIC PERFORMANCE IN DYE-SENSITIZED NANOCRYSTALLINE SOLAR CELLS", NANOTECHNOLOGY, IOP, BRISTOL, GB, vol. 18, no. 12, 28 March 2007 (2007-03-28), pages 1 - 11, XP008077492, ISSN: 0957-4484 *
ROH SEUNG-JAE ET AL: "Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in TiO2 based dye-sensitized solar cells", APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, vol. 89, no. 25, 22 December 2006 (2006-12-22), pages 253512 - 253512, XP012087812, ISSN: 0003-6951 *
TAGUCHI T ET AL: "IMPROVING THE PERFORMANCE OF SOLID-STATE DYE-SENSITIZED SOLAR CELL USING MGO-COATED TIO2 NANOPOROUS FILM", CHEMICAL COMMUNICATIONS, CHEMICAL SOCIETY, LONDON, GB, vol. 19, 1 January 2003 (2003-01-01), pages 2480/2481, XP008039024, ISSN: 0009-241X *
ZHANG X-T ET AL: "Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films", SOLAR ENERGY MATERIALS AND SOLAR CELLS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 81, no. 2, 6 February 2004 (2004-02-06), pages 197 - 203, XP004487986, ISSN: 0927-0248 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009156321A1 (en) * 2008-06-27 2009-12-30 Polymers Crc Ltd. Method for preparing dye sensitised solar cells
CN102103929A (en) * 2009-12-18 2011-06-22 乐金显示有限公司 Dye-sensitized solar cell module and method of fabricating the same
US20110146783A1 (en) * 2009-12-18 2011-06-23 Joo Sung Hoon Dye-sensitized solar cell module and method of fabricating the same
JP2011129526A (en) * 2009-12-18 2011-06-30 Lg Display Co Ltd Dye-sensitized solar cell module and method of manufacturing the same
EP2337041A3 (en) * 2009-12-18 2012-10-31 LG Display Co., Ltd. Dye-sensitized solar cell module and method of fabricating the same
KR101373503B1 (en) 2009-12-18 2014-03-14 엘지디스플레이 주식회사 Dye-sensitized solar cells module and method for fabricating the same
US8952248B2 (en) * 2009-12-18 2015-02-10 Lg Display Co., Ltd. Dye-sensitized solar cell module and method of fabricating the same
CN102360952A (en) * 2011-10-13 2012-02-22 北京交通大学 Gel electrolyte for dye-sensitized nanocrystal solar cell
CN102360952B (en) * 2011-10-13 2012-09-05 北京交通大学 Gel electrolyte for dye-sensitized nanocrystal solar cell
TWI500173B (en) * 2011-12-01 2015-09-11
CN104659124A (en) * 2015-02-03 2015-05-27 北京科技大学 Solar battery absorbing layer material and preparation method thereof
CN112853266A (en) * 2021-01-05 2021-05-28 西京学院 Flexible transparent solar energy hydrolysis photoelectrode and preparation method thereof

Also Published As

Publication number Publication date
KR20100046032A (en) 2010-05-04
EP2171735A1 (en) 2010-04-07
US20100200051A1 (en) 2010-08-12
CN101779258A (en) 2010-07-14
US8440908B2 (en) 2013-05-14
TW200913338A (en) 2009-03-16
JP2010534394A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
US8440908B2 (en) Solar cell and method for preparation thereof
JP5081345B2 (en) Method for manufacturing photoelectric conversion element
KR101061970B1 (en) Photoelectrode using conductive nonmetallic film and dye-sensitized solar cell comprising same
KR100854711B1 (en) Photo electrodes equipped blocking layer for dye-sensitized photovoltaic cell and method for preparing the same
EP1942511B1 (en) A photo-electrode for a dye-sensitized solar cell comprising a meso-porous metal oxide thin film and a process for preparation thereof
JP5572029B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP5620316B2 (en) Photoelectric conversion element, photoelectrochemical cell and dye
JP5360054B2 (en) Dye-sensitized solar cell and method for producing the same
JP5240681B2 (en) Photoelectric conversion element and manufacturing method thereof
JP6224003B2 (en) Photoelectric conversion element
JP2007066526A (en) Semiconductor electrode, dye-sensitized solar cell, and its manufacturing method
JP2004152613A (en) Dye-sensitized solar cell
JP5620496B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP4307701B2 (en) Photoelectric conversion element and photovoltaic cell
Badr et al. Effect of TiCl4‐based TiO2 compact and blocking layers on efficiency of dye‐sensitized solar cells
JP4620286B2 (en) Electrolyte composition, photoelectric conversion element and photoelectrochemical cell
WO2009156321A1 (en) Method for preparing dye sensitised solar cells
JP2004134298A (en) Manufacturing method of dye-sensitized solar cell, and dye-sensitized solar cell
JP4578695B2 (en) Method for creating photoelectric conversion element
WO2012017873A1 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP5131732B2 (en) Method for producing dye-adsorbing semiconductor electrode for dye-sensitized solar cell
KR101625451B1 (en) Blocking layer for dye-sensitized solar cell photoelectrode and preparing method of the same
JP6461331B2 (en) Photoelectric conversion element and dye-sensitized solar cell
WO2014057942A1 (en) Photoelectric conversion element and process for producing same, and photoelectric conversion module
WO2012138037A1 (en) Dye-sensitized solar cell comprising ion layer and method for manufacturing same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880100462.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08786311

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2008786311

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008786311

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010517386

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107004059

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12669799

Country of ref document: US