WO2009006837A1 - A system for optical fiber detection, an optical wavelength division multiplexing network system and a method for optical fiber fault localization - Google Patents

A system for optical fiber detection, an optical wavelength division multiplexing network system and a method for optical fiber fault localization Download PDF

Info

Publication number
WO2009006837A1
WO2009006837A1 PCT/CN2008/071560 CN2008071560W WO2009006837A1 WO 2009006837 A1 WO2009006837 A1 WO 2009006837A1 CN 2008071560 W CN2008071560 W CN 2008071560W WO 2009006837 A1 WO2009006837 A1 WO 2009006837A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
optical signal
module
wavelength
Prior art date
Application number
PCT/CN2008/071560
Other languages
French (fr)
Chinese (zh)
Inventor
Guo Wei
Bo Liang
Fei Ye
Huafeng Lin
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN2007101184290A priority Critical patent/CN101079668B/en
Priority to CN200710118429.0 priority
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2009006837A1 publication Critical patent/WO2009006837A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3127Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR using multiple or wavelength variable input source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3136Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR for testing of multiple fibers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time-domain reflectometers [OTDRs]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission

Abstract

A system for optical fiber detection, a wavelength division multiplexing optical network system and a method for optical fiber fault localization are disclosed in this invention, which is related to the field of optical access network. The said system comprises a light source, the first arrayed-waveguide grating, a pulse generator, a module for optical signal amplification and modulation, a circulator, the first selection module and a module for reflected optical signal receiving. The said method comprises: a device for optical fiber fault localization detecting a fault in an upstream path, informing the optical line terminal to switch off the transmission of downstream data transmitted by the transmitter, which is related to the said upstream path; generating a signal for line diagnosis; the light source being modulated by the said signal through a modulation transmitter and being sent downstream; the device for optical fiber fault localization receiving selectively, processing and analyzing the reflected signal for line diagnosis; reporting the specific optical fiber fault location to a network management server, according to the result of process and analyzation. By using the device for optical fiber fault localization with the module for optical time domain reflection wavelength selection, this invention cuts the utilization costs of the system for optical fault localization.

Description

光纤检测系统、 波分复用光网络系统及光纤故障定位方法 技术领域  Optical fiber detection system, wavelength division multiplexing optical network system and optical fiber fault location method
本发明涉及光接入网络领域, 特别涉及一种光纤检测系统、 一种波分复用光网络系统及 一种波分复用光网络中光纤故障定位方法。  The present invention relates to the field of optical access networks, and in particular, to an optical fiber detection system, a wavelength division multiplexing optical network system, and a fiber fault location method in a wavelength division multiplexing optical network.
 Say
背景技术 Background technique
近来随着各种数据业务的不断涌现, 对宽带接入业务的需求迅速增加, 为了满足这些高 带宽、 大容量接入的需求, 出现了基于 ATM的无源光网络 (APON-ATM Passive Optical Network) 、 宽带无源光网络 (BPON-Broadband Passiv书e Optical Network) 、 基于以太网的无 源光网络 (EPON-Ethemet Passive Optical Network) 和吉比特无源光网络 ( GPON-Gigabit Passive Optical Network)等 TDMA-PON (Time Division Multiple Access-Passive Optical Network 时分多址接入无源光网络) 网络。 但是由于用户带宽要求的增加, 而 TDMA-PON网络由于受 到突发技术以及只有一个传输波长的限制, 使其难以实现带宽和传输容量的扩展, 要提高带 宽就要增加用户数据传输的光波长的数目, 目前基于多波长传输的波分复用无源光网络 ( WDM— PON- Wavelength Division Multiplexing- Passive Optical Network)被认为是带宽提高 的终极解决方案, 如图 1所示。 在对 WDM-PON系统运行维护的过程中, 光纤线路故障检测和 故障定位是必不可少的, 目前 GPON/EPON系统中一般都使用光时域反射计 (OTDR-Optical Time Domain Reflectometer) 来进行光纤线路故障检测和故障定位: 在 CO (Central Office-中 心局) 端使用 OTDR测试仪的激光光源向被测光纤发送一光脉冲, 光脉冲在光纤本身及各特 征点 (包括连接器、 断纤点、 过度弯曲光纤段等)上会有光信号反射回 OTDR, 反射回的光信号 又通过定向耦合到 OTDR的接收器, 并在这里转换成电信号, 最终在显示屏上显示出 OTDR测 试曲线图, 根据 OTDR测试曲线图可以检测到光纤故障点以及该故障点的具体位置。 WDM-PON系统与 APON、 BPON GPON及 EPON等 TDMA-PON系统不同, 它在远端节点使 用了波长路由器 (例如阵列波导光栅), 因此各路馈线段光纤上只能传输对应波长路由器的通 道波长的光信号, 这就使得 OTDR检测光信号要想到达馈线段光纤进行故障检测和故障定位, 就必须提供多个 OTDR检测波长。  Recently, with the continuous emergence of various data services, the demand for broadband access services has rapidly increased. In order to meet the demand for these high-bandwidth and large-capacity access, ATM-based passive optical networks (APON-ATM Passive Optical Network) have emerged. ), Broadband Passive Optical Network (BPON-Broadband Passiv Optical Network), EPON-Ethemet Passive Optical Network and GPON-Gigabit Passive Optical Network TDMA-PON (Time Division Multiple Access-Passive Optical Network) network. However, due to the increase in user bandwidth requirements, the TDMA-PON network is limited by the burst technology and only one transmission wavelength, making it difficult to expand the bandwidth and transmission capacity. To increase the bandwidth, it is necessary to increase the optical wavelength of the user data transmission. The number, currently based on multi-wavelength transmission of WDM-PON-Wavelength Division Multiplexing-Passive Optical Network (WDM) is considered to be the ultimate solution for bandwidth improvement, as shown in Figure 1. In the process of operation and maintenance of WDM-PON system, fiber line fault detection and fault location are indispensable. Currently, GPON/EPON systems generally use OTDR-Optical Time Domain Reflectometer for fiber optics. Line fault detection and fault location: The laser source of the OTDR tester is used to transmit a light pulse to the fiber under test at the CO (Central Office). The light pulse is on the fiber itself and each feature point (including the connector and the fiber break point). The optical signal is reflected back to the OTDR, and the reflected optical signal is coupled to the OTDR receiver and converted into an electrical signal. Finally, the OTDR test curve is displayed on the display. According to the OTDR test curve, the fiber fault point and the specific location of the fault point can be detected. Unlike the TDMA-PON system such as APON, BPON GPON and EPON, the WDM-PON system uses a wavelength router (such as an arrayed waveguide grating) at the remote node, so that only the channel wavelength of the corresponding wavelength router can be transmitted on each feeder segment fiber. The optical signal, which allows the OTDR to detect the optical signal to reach the feeder segment fiber for fault detection and fault location, must provide multiple OTDR detection wavelengths.
现有技术中,针对单纤双向和双纤双向的 WDM-PON系统提供了两种光纤故障定位方法。 对于单纤双向的 WDM-PON系统,采用一种外置式的检测设备进行光纤故障定位,如图 2所示, 其检测原理为:使用控制单元控制可调光滤波器,使可调光滤波器从宽谱光源中过滤出 OTDR 波长 (该 OTDR波长对应于待检测馈线段光纤对应的 AWG通道波长) , 然后将 OTDR光信号 注入 FP-LD(Fabry-Perot Laser Diodes-法布里-珀罗激光器)中进行放大, 再经过可调光滤波器、 环行器 3端口和 CWDM滤波器输入馈线段光纤中; OTDR反射光光信号再次通过 CWDM滤波 器, 从环行器 4端口进入光电转换器进行接收, 通过相应放大和信号处理后, 最终在显示器上 得到 OTDR测试曲线图; 上述技术方案中将 OTDR部分单独做成一个设备, 并且在 WDM-PON 系统部署时, 先在 OLT (Optical Line Terminal-光线路终结设备) 侧预先安装 CWDM滤波器, 当需要进行光纤故障定位时, 需要将该 OTDR测试设备插入 CWDM滤波器进行操作。 但是, 传统的 OTDR测量方法在进行光纤故障定位时,需要调整可调光滤波器使 OTDR的中心波长动 态地与被测系统中远程节点处的 AWG (Array Waveguide Grating-阵列波导光栅) 波长对准, 而这个对准操作难度很大, 同时可调光滤波器的价格比较高, 势必会导致光纤故障定位系统 的应用成本过高。 发明内容 In the prior art, two fiber fault location methods are provided for a single-fiber bidirectional and dual-fiber bidirectional WDM-PON system. For the single-fiber bidirectional WDM-PON system, an external detection device is used for fiber fault location, as shown in Figure 2. The detection principle is: using a control unit to control the tunable optical filter to make the tunable optical filter The OTDR wavelength is filtered from the broad-spectrum light source (the OTDR wavelength corresponds to the AWG channel wavelength corresponding to the feeder segment fiber to be detected), and then the OTDR optical signal is injected into the FP-LD (Fabry-Perot Laser Diodes-Fabry-Perot laser) Enlarged, and then passed through the tunable filter, circulator 3 port and CWDM filter input feeder segment fiber; OTDR reflected optical signal again through the CWDM filter, from the circulator 4 port into the photoelectric converter for receiving, After corresponding amplification and signal processing, the OTDR test curve is finally obtained on the display; in the above technical solution, the OTDR part is separately formed into one device, and in the WDM-PON system deployment, first in the OLT (Optical Line Terminal-optical line) Termination device) The CWDM filter is pre-installed on the side. When fiber fault location is required, the OTDR test device needs to be inserted into the CWDM filter for operation. . However, the traditional OTDR measurement method needs to adjust the tunable optical filter to make the center wavelength of the OTDR dynamically align with the AWG (Array Waveguide Grating) wavelength at the remote node in the system under test. This alignment operation is very difficult, and the price of the tunable filter is relatively high, which is bound to cause the application cost of the fiber fault location system to be too high. Summary of the invention
为了使光纤故障定位系统的投入成本降低, 以及提高光纤故障定位系统的可操作性, 本 发明实施例提供了一种光纤检测系统、 一种波分复用光网络系统及一种波分复用光网络中光 纤故障定位方法。 技术方案如下:  In order to reduce the input cost of the fiber fault location system and improve the operability of the fiber fault location system, the embodiments of the present invention provide an optical fiber detection system, a wavelength division multiplexing optical network system, and a wavelength division multiplexing Optical fiber fault location method in optical networks. The technical solutions are as follows:
一种光纤检测系统, 所述系统包括光源、 第一阵列波导光栅、 脉冲发生器、 光信号放大 调制模块、 环形器、 第一选择模块、 反射光信号接收模块,  A fiber optic detection system, the system comprising a light source, a first array of waveguide gratings, a pulse generator, an optical signal amplification modulation module, a circulator, a first selection module, and a reflected optical signal receiving module,
所述光源输出的种子光通过所述第一阵列波导光栅进行谱分割;  The seed light output by the light source is spectrally divided by the first arrayed waveguide grating;
光信号放大调制模块, 用于将所述脉冲发生器生成的线路诊断电信号放大调制到经所述 阵列波导光栅谱分割后的至少一个波长通道的光信号, 生成线路诊断光信号, 所述线路诊断 光信号通过所述第一阵列波导光栅发送给所述环形器;  An optical signal amplification modulation module, configured to amplify and modulate a line diagnostic electrical signal generated by the pulse generator to an optical signal of at least one wavelength channel divided by the arrayed waveguide grating spectrum to generate a line diagnostic optical signal, where the line A diagnostic optical signal is transmitted to the circulator through the first arrayed waveguide grating;
所述第一选择模块, 用于选择所述至少一个波长通道;  The first selection module is configured to select the at least one wavelength channel;
所述环形器, 将来自所述第一阵列波导光栅的光信号输入被测系统, 并将来自所述被测 系统的光信号输入反射光接收模块, 其中, 所述来自所述被测系统的光信号包含反射回来的 线路诊断光信号;  The circulator inputs an optical signal from the first arrayed waveguide grating into a system under test, and inputs an optical signal from the system under test to a reflected light receiving module, wherein the method from the system under test The optical signal includes a line diagnostic light signal that is reflected back;
所述反射光接收模块, 用于对接收到的光信号进行分析处理, 获得分析处理结果。  The reflected light receiving module is configured to perform an analysis process on the received optical signal to obtain an analysis processing result.
一种波分复用光网络系统, 所述波分复用光网络系统包括上述所述的光纤检测系统。 一种波分复用光网络中光纤故障定位方法, 所述波分复用光网络包括光源、 第一阵列波 导光栅、 脉冲发生器、 光信号放大调制模块、 反射光信号接收模块, 所述方法包括: A wavelength division multiplexing optical network system, the wavelength division multiplexing optical network system comprising the optical fiber detection system described above. A method for locating a fiber fault in a wavelength division multiplexed optical network, the wavelength division multiplexed optical network comprising a light source, a first array of waveguide gratings, a pulse generator, an optical signal amplification modulation module, and a reflected optical signal receiving module, include:
所述脉冲发生器生成线路诊断电信号;  The pulse generator generates a line diagnostic electrical signal;
检测到上行通路出现故障时, 将所述脉冲发生器生成的线路诊断电信号输入光信号放大 调制模块;  When detecting that the uplink path is faulty, inputting the line diagnostic electrical signal generated by the pulse generator into the optical signal amplification modulation module;
接收到线路诊断电信号的光信号放大调制模块将所述线路诊断电信号调制到种子光上生 成线路诊断光信号, 所述线路诊断光信号通过所述第一阵列波导光栅发送给被测系统, 其中, 所述种子光为所述光源通过所述第一阵列波导光栅谱分割得到;  The optical signal amplification modulation module that receives the line diagnostic electrical signal modulates the line diagnostic electrical signal onto the seed light to generate a line diagnostic optical signal, and the line diagnostic optical signal is sent to the system under test through the first arrayed waveguide grating. Wherein the seed light is obtained by dividing the light source by the first array of waveguide grating spectra;
接收来自被测系统的光信号, 所述来自所述被测系统的光信号包含反射回来的线路诊断 光信号;  Receiving an optical signal from the system under test, the optical signal from the system under test comprising a reflected line diagnostic optical signal;
所述光信号输入反射光接收模块对接收到的光信号进行分析处理, 获得分析处理结果。 本发明实施例提供的技术方案的有益效果是: 测试信号光源采用阵列波导光栅谱分割光 源, 选择相应的谱分割的波长通道来调制 OTDR测试用数据, 并结合 l xN光开关或电开关选 择,,可以保证测试信号波长通道更稳定,有效地降低了光纤故障定位系统的投入成本;另外, 光纤故障定位设备中的阵列波导光栅与被测系统中心局端的阵列波导光栅选取为同型号器 件, 二者的中心波长对齐且固定, 这样大大地降低了光纤故障定位设备的操作难度。 附图说明  The optical signal input reflected light receiving module analyzes and processes the received optical signal to obtain an analysis processing result. The technical solution provided by the embodiment of the invention has the following beneficial effects: the test signal source uses the arrayed waveguide grating spectrum to split the light source, selects the corresponding spectrally segmented wavelength channel to modulate the OTDR test data, and combines the l xN optical switch or the electric switch to select, The wavelength channel of the test signal can be more stable, and the input cost of the fiber fault location system is effectively reduced; in addition, the array waveguide grating in the fiber fault location device and the array waveguide grating at the central end of the system under test are selected as the same type of device, The center wavelength of the person is aligned and fixed, which greatly reduces the difficulty of operation of the fiber fault locating device. DRAWINGS
图 1是现有技术中 WDM-PON系统组网示意图;  1 is a schematic diagram of networking of a WDM-PON system in the prior art;
图 2是现有技术中使用外置式光纤故障定位设备对单纤双向 WDM-PON系统进行光纤故 障定位的原理示意图;  2 is a schematic diagram showing the principle of optical fiber fault location for a single-fiber bidirectional WDM-PON system using an external optical fiber fault locating device in the prior art;
图 3是本发明实施例提供的光纤故障定位设备的结构原理图;  3 is a schematic structural diagram of an optical fiber fault locating device according to an embodiment of the present invention;
图 4是本发明实施例提供的第一种单纤双向 WDM-PON系统光纤故障定位原理示意图; 图 5 是本发明实施例提供的第一种单纤双向 WDM-PON系统光纤故障定位的方法流程 图;  4 is a schematic diagram of a fiber fault location principle of a first single-fiber bidirectional WDM-PON system according to an embodiment of the present invention; FIG. 5 is a flow chart of a method for optical fiber fault location of a first single-fiber bidirectional WDM-PON system according to an embodiment of the present invention; Figure
图 6是本发明实施例提供的第一种双纤双向 WDM-PON系统光纤故障定位原理示意图; 图 7是本发明实施例提供的第二种单纤双向 WDM-PON系统光纤故障定位原理示意图; 图 8是本发明实施例提供的第二种单纤双向 WDM-PON系统光纤故障定位的方法流程 图;  6 is a schematic diagram of a fiber fault location principle of a first dual-fiber bidirectional WDM-PON system according to an embodiment of the present invention; FIG. 7 is a schematic diagram of a fiber fault location principle of a second single-fiber bidirectional WDM-PON system according to an embodiment of the present invention; 8 is a flowchart of a method for optical fiber fault location of a second single-fiber bidirectional WDM-PON system according to an embodiment of the present invention;
图 9是本发明实施例提供的第二种双纤双向 WDM-PON系统光纤故障定位原理示意图; 图 10是本发明实施例提供的光纤故障定位装置的结构图。 具体实施方式 9 is a schematic diagram of a second optical fiber fault location principle of a dual-fiber bidirectional WDM-PON system according to an embodiment of the present invention; FIG. 10 is a structural diagram of an optical fiber fault locating device according to an embodiment of the present invention. detailed description
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作进 一步地详细描述。  In order to make the objects, the technical solutions and the advantages of the present invention more apparent, the embodiments of the present invention will be further described in detail below with reference to the accompanying drawings.
如图 3所示, 本发明实施例提供了一种光纤故障定位设备, 它包括光源 301、 脉冲发生 器 302、控制单元 303、 OTDR波长选择模块 304、输出光信号放大调制模块 305、环行器 306 和反射光信号接收模块 307: OTDR波长选择模块 304由 Ι χΝ光开关 304a和 AWG3304b组 合而成, 用以替代现有技术中的可调光滤波器, 使用 l xN光开关 304a和 AWG 304b的组合 提供多个 OTDR波长, 根据 AWG 304b的波长选择作用, AWG的 N个通道将会输出 N个不 同波长的光信号, 控制单元 303控制 1 X N光开关, 使 1 X N光开关连接一路 AWG光通道, 所选择的 AWG光通道的输出做为 OTDR光信号, 由此本发明实施例提供的光纤故障定位设 备可以提供 N个 OTDR波长;输出光信号放大调制模块 305使用 IL-FP LD (注入锁定法布里 -珀罗激光器) 或 RSOA (反射式半导体光放大器) 来实现; 反射光信号接收模块 307由光电 转换器 307a、 电信号放大器 307b、 数 /模转换器 307c、 信号处理器 307d和显示器 307e组成; 光源 301可以使用宽谱光源。  As shown in FIG. 3, an embodiment of the present invention provides a fiber fault locating device, which includes a light source 301, a pulse generator 302, a control unit 303, an OTDR wavelength selection module 304, an output optical signal amplification modulation module 305, and a circulator 306. And reflected light signal receiving module 307: The OTDR wavelength selecting module 304 is formed by combining the χΝ light switch 304a and the AWG 3304b to replace the tunable optical filter in the prior art, using a combination of the l xN optical switch 304a and the AWG 304b. A plurality of OTDR wavelengths are provided. According to the wavelength selection function of the AWG 304b, the N channels of the AWG will output N different wavelengths of optical signals, and the control unit 303 controls the 1 XN optical switch to connect the 1 XN optical switch to one AWG optical channel. The output of the selected AWG optical channel is used as the OTDR optical signal, so that the optical fiber fault locating device provided by the embodiment of the present invention can provide N OTDR wavelengths; the output optical signal amplification modulation module 305 uses the IL-FP LD (injection locking method) Reed-Perot laser) or RSOA (reflective semiconductor optical amplifier) to achieve; reflected light signal receiving module 307 by light Converter 307a, an electric signal amplifier 307b, a D / A converter 307c, 307d, and a signal processor composed of a display 307e; broad spectrum light source 301 may be used.
本发明实施例提供的光纤故障定位设备的工作原理为: 宽谱光源 301输出的光信号通过 环行器 306输出到 AWG 304b的公共端口后,控制单元 303控制光开关 304a选择确定的 OTDR 波长, 将 OTDR光波注入到 IL-FP LD或 RSOA 305中进行放大和 OTDR数据调制, 再通过 环行器 306输出到被测系统中,反射回来的 OTDR光信号通过环行器 306进入光电转换器 307a 接收,通过电信号放大器 307b和数 /模转换器 307c处理后,最终在显示器 307e上显示出 OTDR 测试曲线图, 根据 OTDR测试曲线图判定故障位置进行维护。 例如: WDM-PON系统的第一 路用户发生故障,将本发明实施例提供的光纤故障定位设备连接到 WDM-PON系统中预先部 署的 CWDM滤波器 308, 然后启动该光纤故障定位设备, 通过控制单元 303控制 1 X N光开 关 304a,使 1 X N光开关 304a连接 AWG 304b的第一路通道,输出第一路通道的 OTDR信号, 之后观测 OTDR测试曲线图, 根据 OTDR测试曲线图判断光纤线路发生故障的具体位置, 并 及时进行维护操作。  The working principle of the optical fiber fault locating device provided by the embodiment of the present invention is: after the optical signal outputted by the broad spectrum light source 301 is output to the common port of the AWG 304b through the circulator 306, the control unit 303 controls the optical switch 304a to select the determined OTDR wavelength, and The OTDR light wave is injected into the IL-FP LD or the RSOA 305 for amplification and OTDR data modulation, and then output to the system under test through the circulator 306, and the reflected OTDR optical signal is received by the circulator 306 into the photoelectric converter 307a, and is passed through the OTDR. After the signal amplifier 307b and the digital-to-analog converter 307c process, the OTDR test curve is finally displayed on the display 307e, and the fault location is determined for maintenance according to the OTDR test curve. For example, the first user of the WDM-PON system fails, and the optical fiber fault location device provided by the embodiment of the present invention is connected to the pre-deployed CWDM filter 308 in the WDM-PON system, and then the optical fiber fault location device is activated, and the control is performed. The unit 303 controls the 1 XN optical switch 304a, so that the 1 XN optical switch 304a is connected to the first channel of the AWG 304b, outputs the OTDR signal of the first channel, and then observes the OTDR test curve, and determines that the optical fiber line is faulty according to the OTDR test curve. The specific location and timely maintenance operations.
本实施例提供的光纤故障定位设备中 OTDR波长选择模块 304的 AWG 304b可以选择与 被测系统中远程节点处的 AWG具有相同型号的产品, 二者的中心波长对准且固定, 波长对 准时通过控制 l xN光开关 304a, 使 l xN光开关 304a连接对应的 AWG 304b通道就可以自动 产生对应的 OTDR波长光信号, 解决了 OTDR的中心波长与被测系统中远程节点处的 AWG 通道中心对准难操作的问题; 同时, AWG 304b和 l xN光开关 304a的组合相对可调光滤波器 成本较低, 有效地降低了光纤故障定位系统的投入成本。 在 WDM-PON系统的所有方案中,使用两个宽谱光源进行光谱分割以提供种子光源, CO 端使用 IL-FP LD或 RSOA发送下行数据, ONT (Optical Network Terminal-光网络终端)端使 用 IL-FP LD或 RSOA发送上行数据,这种 WDM-PON系统包括单纤双向 WDM-PON系统和 双纤双向 WDM-PON系统,本发明实施例以宽谱光源的谱分割为基础的单纤双向 WDM-PON 系统为例, 来阐述本发明实施例提供的光纤故障定位方法。 The AWG 304b of the OTDR wavelength selection module 304 in the fiber fault location device provided in this embodiment may select the same type of product as the AWG at the remote node in the system under test, and the center wavelengths of the two are aligned and fixed, and the wavelengths are aligned. Control the l xN optical switch 304a so that the l xN optical switch 304a is connected to the corresponding AWG 304b channel to be automatically Corresponding OTDR wavelength optical signal is generated, which solves the problem that the center wavelength of the OTDR is difficult to operate with the center of the AWG channel at the remote node in the system under test; meanwhile, the combined tunable optical filtering of the AWG 304b and the l xN optical switch 304a The lower cost of the device effectively reduces the input cost of the fiber fault location system. In all schemes of the WDM-PON system, two broad-spectrum light sources are used for spectral division to provide seed light source, the CO end uses IL-FP LD or RSOA to transmit downlink data, and the ONT (Optical Network Terminal) uses IL. - FP LD or RSOA transmits uplink data. The WDM-PON system includes a single-fiber bidirectional WDM-PON system and a dual-fiber bidirectional WDM-PON system. In the embodiment of the present invention, single-fiber bidirectional WDM based on spectral splitting of a broad-spectrum light source is used. The PON system is taken as an example to describe the fiber fault location method provided by the embodiment of the present invention.
方法 1 :  method 1 :
参见图 4, 对于以宽谱光源的谱分割为基础的 WDM-PON系统, 本方法将光纤故障定位 设备内置到 OLT中, 利用 OLT的下行光源发送线路诊断信号, 例如 OTDR测试信号, 使用 可调光滤波器过滤并接收 OTDR反射信号, 对 OTDR反射信号进行分析和处理, 进而确定光 纤出现故障的具体位置。 光纤故障定位设备包括控制单元 401、 脉冲发生器 402、 OTDR接收 机 403和可调光滤波器 404。 控制单元 401用于检测上行数据发送质量以确定上行通路是否 出现故障; 控制单元 401还控制脉冲发生器 402使脉冲发生器 402生成脉冲信号; 控制单元 401还控制电开关 405以便调制得到 OTDR测试信号,控制单元 401还控制可调光滤波器 404, 使可调光滤波器 404过滤 OTDR反射信号; 控制单元 401可以分析和处理 OTDR接收机 403 收到的 OTDR反射信号, 判定光纤出现故障的具体位置。可调光滤波器 404用于对 OTDR反 射信号进行过滤; 电开关 405用于完成 OTDR测试信号和正常下行信号的调制切换。  Referring to FIG. 4, for a WDM-PON system based on spectral splitting of a broad spectrum light source, the method incorporates a fiber fault location device into the OLT, and uses a downlink light source of the OLT to transmit a line diagnostic signal, such as an OTDR test signal, which is adjustable. The optical filter filters and receives the OTDR reflected signal, analyzes and processes the OTDR reflected signal, and then determines the specific location of the fiber fault. The fiber fault location device includes a control unit 401, a pulse generator 402, an OTDR receiver 403, and a tunable optical filter 404. The control unit 401 is configured to detect the uplink data transmission quality to determine whether the uplink path is faulty; the control unit 401 further controls the pulse generator 402 to cause the pulse generator 402 to generate a pulse signal; the control unit 401 also controls the electrical switch 405 to modulate the OTDR test signal. The control unit 401 also controls the tunable optical filter 404 to filter the OTDR reflected signal; the control unit 401 can analyze and process the OTDR reflected signal received by the OTDR receiver 403 to determine the specific location of the fiber failure. . The tunable optical filter 404 is used to filter the OTDR reflected signal; the electrical switch 405 is used to perform modulation switching of the OTDR test signal and the normal downlink signal.
采用上述技术方案实现 WDM-PON系统光纤故障定位的方法具体包括以下步骤,参见图 4和图 5:  The method for implementing the fiber fault location of the WDM-PON system by using the above technical solution specifically includes the following steps, as shown in FIG. 4 and FIG. 5:
步骤 501 : 控制单元 401检测到某一条上行通路出现故障, 发送控制命令通知该通路对 应的电开关 405切断下行数据的发送, 并控制脉冲发生器 402输出脉冲信号(即诊断电信号) 以调制 OLT光源从而生成 OTDR测试信号 (即诊断光信号);  Step 501: The control unit 401 detects that a certain uplink path is faulty, and sends a control command to notify the electrical switch 405 corresponding to the path to cut off the transmission of the downlink data, and controls the pulse generator 402 to output a pulse signal (ie, a diagnostic electrical signal) to modulate the OLT. The light source thereby generating an OTDR test signal (ie, a diagnostic light signal);
控制单元 401实时监控 WDM-PON系统每一条上行通路的信号误码率和 /或接收光功率, 如果发现某一条上行通路的信号误码率发生劣化和 /或接收光功率发生突变, 则控制单元 401 认为该条上行通路出现故障, 发送控制命令通知该通路对应的电开关 405切断下行数据的发 送, 并向网管发出告警信号; 该通路对应的电开关 405收到控制命令后, 将 OLT光源切换到 OTDR调制状态; 控制单元 401向脉冲发生器 402发送控制命令, 控制脉冲发生器 402输出脉冲信号以调 制 OLT光源从而生成 OTDR测试信号; 脉冲发生器 402发出的脉冲信号中, 需要加入 ONT 光源关闭的指令, 这样可以防止 ONT上行光信号干扰 OTDR测试信号; The control unit 401 monitors the signal error rate and/or the received optical power of each uplink path of the WDM-PON system in real time. If the signal error rate of a certain uplink path is degraded and/or the received optical power is abrupt, the control unit 401: The uplink path is considered to be faulty, and the sending control command notifies the electrical switch 405 corresponding to the path to cut off the transmission of the downlink data, and sends an alarm signal to the network management; the electrical switch 405 corresponding to the path receives the control command, and then switches the OLT light source. To the OTDR modulation state; The control unit 401 sends a control command to the pulse generator 402, and the control pulse generator 402 outputs a pulse signal to modulate the OLT light source to generate an OTDR test signal. In the pulse signal sent by the pulse generator 402, an instruction to turn off the ONT light source is required, so that Preventing the ONT upstream optical signal from interfering with the OTDR test signal;
步骤 502: 脉冲发生器 402生成的脉冲信号经过 IL-FP LD或 RSOA 406调制放大后发送 至 AWG1 407;  Step 502: The pulse signal generated by the pulse generator 402 is modulated by IL-FP LD or RSOA 406, and then sent to AWG1 407;
宽谱光源 408包括宽谱光源 1和宽谱光源 2,宽谱光源 408生成的种子光信号通过 AWG1 407解复用之后,产生波长分别为 λΐ λ2 "·、 λη的光信号,并发送至 IL-FP LD或 RSOA 406; IL-FP LD或 RSOA 406根据收到的光信号和脉冲发生器 402生成的脉冲信号进行调制放大生 成 OTDR测试信号, 发送至 AWG1 407;  The broad-spectrum light source 408 includes a wide-spectrum light source 1 and a broad-spectrum light source 2, and the seed light signal generated by the broad-spectrum light source 408 is demultiplexed by AWG1 407 to generate an optical signal having wavelengths of λ ΐ λ2 "·, λη, respectively, and sent to the IL. - FP LD or RSOA 406; IL-FP LD or RSOA 406 according to the received optical signal and the pulse signal generated by the pulse generator 402 modulation amplification to generate an OTDR test signal, sent to AWG1 407;
步骤 503 : AWG1 407将收到的包含 OTDR测试信号的光信号通过环行器 409发送至 ONT ;  Step 503: AWG1 407 sends the received optical signal including the OTDR test signal to the ONT through the circulator 409;
步骤 504: 包含反射回来的 OTDR测试信号的光信号通过环行器 409发送至可调光滤波 器 404,可调光滤波器 404将反射回来的 OTDR测试信号过滤出来,发送至 OTDR接收机 403 ; 可调光滤波器 404在控制单元 401的控制下调整其自身参数, 通过可调光滤波器 404能 够从接收到的光信号中过滤出反射回来的 OTDR测试信号;  Step 504: The optical signal including the reflected OTDR test signal is sent to the tunable filter 404 through the circulator 409, and the tunable optical filter 404 filters out the reflected OTDR test signal and sends it to the OTDR receiver 403. The dimming filter 404 adjusts its own parameters under the control of the control unit 401, and the tunable optical filter 404 can filter out the reflected OTDR test signal from the received optical signal;
步骤 505: OTDR接收机 403将收到的反射回来的 OTDR测试信号转换成电信号后发送 至控制单元 401 ;  Step 505: The OTDR receiver 403 converts the received reflected OTDR test signal into an electrical signal and sends it to the control unit 401;
步骤 506: 控制单元 401对 OTDR接收机 403发送的信号进行分析和处理获得故障定位 结果, 并将故障定位结果上报网管服务器;  Step 506: The control unit 401 analyzes and processes the signal sent by the OTDR receiver 403 to obtain a fault location result, and reports the fault location result to the network management server.
控制单元 401通过对反射回来的 OTDR测试信号的分析和处理,可以得出 OTDR测试曲 线图, 根据 OTDR测试曲线图可以比较准确的定位出光纤出现故障的具体位置, 并将光纤故 障定位结果上报给网管服务器, 以便及时地进行维护。  The control unit 401 can obtain the OTDR test curve by analyzing and processing the reflected OTDR test signal. According to the OTDR test curve, the specific location of the fiber fault can be accurately located, and the fiber fault location result is reported to Network management server for timely maintenance.
在实际应用中, 对于以宽谱光源的谱分割为基础的双纤双向 WDM-PON系统(如图 6所 示) 的光纤故障定位方法与本实施例完全相同, 这里不再赘述。  In the actual application, the fiber fault location method for the dual-fiber bidirectional WDM-PON system (shown in FIG. 6) based on the spectral splitting of the wide-spectrum light source is exactly the same as that in this embodiment, and details are not described herein again.
本实施例通过将光纤故障定位设备内置到 OLT 中, 使用 IL-FP LD 或 RSOA 作为 In this embodiment, an optical fiber fault locating device is built into the OLT, and IL-FP LD or RSOA is used as the
WDM-PON系统光纤故障定位设备的光信号发生装置,用 OTDR测试用的电脉冲信号调制放 大得到 OTDR测试信号,从而有效地降低了 WDM-PON系统中光纤故障定位系统的投入成本。 方法 2: The optical signal generating device of the optical fiber fault locating device of the WDM-PON system uses the electric pulse signal of the OTDR test to modulate and amplify the OTDR test signal, thereby effectively reducing the input cost of the fiber fault locating system in the WDM-PON system. Method 2:
参见图 7, 对于以宽谱光源的谱分割为基础的 WDM-PON系统, 本方法将光纤故障定位 设备内置到 OLT中, 利用 OLT的下行光源发送线路诊断信号, 例如 OTDR测试信号, 使用 AWG (与 CO端的 AWG为同型号器件)和 l xN光开关组合选择接收反射回来的 OTDR测试 信号, 对反射回来的 OTDR测试信号进行分析和处理, 进而确定光纤出现故障的具体位置。 Referring to Figure 7, for a WDM-PON system based on spectral splitting of a broad spectrum source, the method locates the fiber fault. The device is built into the OLT, and uses the downstream light source of the OLT to send line diagnostic signals, such as OTDR test signals. The AWG (the same type of device as the CO side AWG) and the l xN optical switch combination are used to receive the reflected OTDR test signal. The returned OTDR test signal is analyzed and processed to determine the specific location of the fiber failure.
光纤故障定位设备包括控制单元 701、 脉冲发生器 702、 OTDR接收机 703、 AWG2 704a 及 l xN光开关 704b的组合 704。控制单元 701用于检测上行数据发送质量以确定上行通路是 否出现故障; 控制单元 701还控制脉冲发生器 702使脉冲发生器 702生成脉冲信号; 控制单 元 701还控制电开关 705以便调制得到 OTDR测试信号; 控制单元 701还控制 AWG2 704a 及 l xN光开关 704b的组合 704, 从反射回来的 OTDR测试信号中选择相应的信号; 控制单 元 701还 OTDR接收机 703 收到的信号进行分析和处理, 判定光纤出现故障的具体位置。 AWG2 704a及 l xN光开关 704b的组合 704用于对反射回来的 OTDR测试信号进行过滤, 选 择相应的信号; 电开关 705用于完成 OTDR测试信号和正常下行信号的调制切换。  The fiber fault location device includes a combination 704 of control unit 701, pulse generator 702, OTDR receiver 703, AWG2 704a, and lxN optical switch 704b. The control unit 701 is configured to detect an uplink data transmission quality to determine whether the uplink path is faulty. The control unit 701 further controls the pulse generator 702 to cause the pulse generator 702 to generate a pulse signal. The control unit 701 also controls the electrical switch 705 to modulate the OTDR test signal. The control unit 701 also controls the combination 704 of the AWG2 704a and the l xN optical switch 704b to select a corresponding signal from the reflected OTDR test signals; the control unit 701 also analyzes and processes the signals received by the OTDR receiver 703 to determine the optical fiber. The specific location where the failure occurred. The combination 704 of the AWG2 704a and the l xN optical switch 704b is used to filter the reflected OTDR test signal and select the corresponding signal; the electrical switch 705 is used to complete the modulation switching of the OTDR test signal and the normal downlink signal.
采用上述技术方案实现 WDM-PON系统光纤故障定位的方法具体包括以下步骤,参见图 7和图 8:  The method for implementing the fiber fault location of the WDM-PON system by using the above technical solution specifically includes the following steps, as shown in FIG. 7 and FIG. 8:
步骤 801 : 控制单元 701检测到某一条上行通路出现故障, 发送控制命令通知该通路对 应的电开关 705切断下行数据的发送, 并控制脉冲发生器 702输出脉冲信号以调制 OLT光源 从而生成 OTDR测试信号;  Step 801: The control unit 701 detects that a certain uplink path is faulty, and sends a control command to notify the electrical switch 705 corresponding to the path to cut off the transmission of the downlink data, and controls the pulse generator 702 to output a pulse signal to modulate the OLT light source to generate an OTDR test signal. ;
控制单元 701实时监控 WDM-PON系统每一条上行通路的信号误码率和 /或接收光功率, 如果发现某一条上行通路的信号误码率发生劣化和 /或接收光功率发生突变, 则控制单元 701 认为该条上行通路出现故障, 发送控制命令通知该通路对应的电开关 705切断下行数据的发 送, 并向网管发出告警信号; 该通路对应的电开关 705收到控制命令后, 将 OLT光源切换到 OTDR调制状态;  The control unit 701 monitors the signal error rate and/or the received optical power of each uplink path of the WDM-PON system in real time. If the signal error rate of a certain uplink path is degraded and/or the received optical power is abrupt, the control unit 701 is considered to be faulty in the uplink path, and the sending control command notifies the electrical switch 705 corresponding to the path to cut off the transmission of the downlink data, and sends an alarm signal to the network management; the electrical switch 705 corresponding to the path receives the control command, and then switches the OLT light source. To the OTDR modulation state;
控制单元 701向脉冲发生器 702发送控制命令, 控制脉冲发生器 702输出脉冲信号以调 制 OLT光源从而生成 OTDR测试信号; 脉冲发生器 702发出的脉冲信号中, 需要加入 ONT 光源关闭的指令, 这样可以防止 ONT上行光信号干扰 OTDR测试信号;  The control unit 701 sends a control command to the pulse generator 702, and the control pulse generator 702 outputs a pulse signal to modulate the OLT light source to generate an OTDR test signal. In the pulse signal sent by the pulse generator 702, an instruction to turn off the ONT light source is required, so that Preventing the ONT upstream optical signal from interfering with the OTDR test signal;
步骤 802: 脉冲发生器 702生成的脉冲信号经过 IL-FP LD或 RSOA 706放大调制生成 Step 802: The pulse signal generated by the pulse generator 702 is amplified and modulated by IL-FP LD or RSOA 706.
OTDR测试信号, 发送至 AWG1 707; OTDR test signal, sent to AWG1 707;
宽谱光源 708包括宽谱光源 1和宽谱光源 2,宽谱光源 708生成的种子光信号通过 AWG1 The broad spectrum source 708 includes a broad spectrum source 1 and a broad spectrum source 2, and the seed light signal generated by the broad spectrum source 708 passes through the AWG1.
707解复用之后,产生波长分别为 λ1、 λ2 λη的光信号,并发送至 IL-FP LD或 RSOA 706;After 707 demultiplexing, optical signals having wavelengths of λ1, λ2 λη are generated and sent to IL-FP LD or RSOA 706;
IL-FP LD或 RSOA 706根据收到的光信号和脉冲发生器 702生成的脉冲信号进行调制放大生 成 OTDR测试信号, 发送至 AWG1 707; 步骤 803 : AWG1 707将收到的包含 OTDR测试信号的光信号通过环行器 709发送至 ONTThe IL-FP LD or RSOA 706 is modulated and amplified according to the received optical signal and the pulse signal generated by the pulse generator 702 to generate an OTDR test signal, which is sent to the AWG1 707; Step 803: AWG1 707 sends the received optical signal including the OTDR test signal to the ONT through the circulator 709.
¾ ; 3⁄4 ;
步骤 804: 包含反射回来的 OTDR测试信号的光信号通过环行器 709发送至 AWG2 704a 及 I xN光开关 704b的组合 704 AWG2 704a和 I xN光开关 704b的组合 704从接收到的光 信号中选择性过滤出反射回来的 OTDR测试信号, 发送至 OTDR接收机 703 ;  Step 804: The optical signal including the reflected OTDR test signal is sent through the circulator 709 to the combination 704 of the AWG2 704a and the I xN optical switch 704b. The combination 704 of the AWG2 704a and the I xN optical switch 704b is selectively selected from the received optical signal. Filtering out the reflected OTDR test signal and sending it to the OTDR receiver 703;
I xN光开关 704b在控制单元 701的控制下连接对应 OTDR测试信号的 AWG2 704a通道, 使 OTDR测试信号可以通过 AWG2 704a和 I xN光开关 704b传输光信号; AWG2 704a和与 CO端的 AWG1 707 为同型号器件, 即二者的中心波长对准且固定;  The I xN optical switch 704b is connected to the AWG2 704a channel corresponding to the OTDR test signal under the control of the control unit 701, so that the OTDR test signal can transmit the optical signal through the AWG2 704a and the I xN optical switch 704b; the AWG2 704a is the same as the AWG1 707 of the CO end. Model devices, that is, the center wavelengths of the two are aligned and fixed;
步骤 805: OTDR接收机 703接收收反射回来的 OTDR测试信号, 转换成电信号后发送 至控制单元 701 ;  Step 805: The OTDR receiver 703 receives the reflected OTDR test signal, converts it into an electrical signal, and sends it to the control unit 701.
步骤 806: 控制单元 701 OTDR接收机 703发送的信号进行分析和处理获得故障定位结 果, 并将故障定位结果上报网管服务器;  Step 806: The signal sent by the control unit 701 OTDR receiver 703 is analyzed and processed to obtain a fault location result, and the fault location result is reported to the network management server;
控制单元 701经过对反射回来的 OTDR测试信号的分析和处理,可以得出 OTDR测试曲 线图, 根据 OTDR测试曲线图可以比较准确的定位出光纤出现故障的具体位置, 并将光纤故 障定位结果上报给网管服务器, 以便及时地进行维护。  The control unit 701 can analyze and process the reflected OTDR test signal to obtain an OTDR test curve. According to the OTDR test curve, the specific location of the fiber fault can be accurately located, and the fiber fault location result is reported to Network management server for timely maintenance.
在实际应用中, 对于以宽谱光源的谱分割为基础的双纤双向 WDM-PON系统(如图 9所 示) 的光纤故障定位方法与本实施例完全相同, 这里不再赘述。  In a practical application, the fiber fault location method for the dual-fiber bidirectional WDM-PON system (shown in FIG. 9) based on the spectral splitting of the wide-spectrum light source is exactly the same as that in this embodiment, and details are not described herein again.
本实施例通过将光纤故障定位设备内置到 OLT 中, 使用 IL-FP LD 或 RSOA 作为 WDM-PON系统光纤故障定位设备的光信号的发生装置, 以及使用 AWG和 1 ><N光开关的组 合来替代可调光滤波器, 用 OTDR测试用的电脉冲信号调制放大得到 OTDR测试信号, 从而 大大地降低了 WDM-PON系统中光纤故障定位系统的投入成本; 同时由于光纤故障定位设备 的 AWG与被测 WDM-PON系统中 CO端的 AWG为同型号器件, 使得二者的中心波长对准 且固定, 实现起来比较容易。  In this embodiment, the optical fiber fault locating device is built into the OLT, and the IL-FP LD or RSOA is used as the optical signal generating device of the WDM-PON system fiber fault locating device, and the combination of the AWG and the 1><N optical switch is used. Instead of the tunable optical filter, the OTDR test signal is modulated and amplified by the electric pulse signal used in the OTDR test, thereby greatly reducing the input cost of the fiber fault location system in the WDM-PON system; and the AWG and the optical fiber fault location device The AWG of the CO end in the WDM-PON system is the same type of device, so that the center wavelengths of the two are aligned and fixed, which is relatively easy to implement.
参见图 10, 本发明实施例提供了一种光纤故障定位装置, 该装置包括控制模块 1001、调 制模块 1002、 发送模块 1003和光纤故障定位模块 1004;  Referring to FIG. 10, an embodiment of the present invention provides a fiber fault location device, which includes a control module 1001, a modulation module 1002, a transmission module 1003, and a fiber fault location module 1004.
控制模块 1001用于检测上行通路是否出现故障, 并在检测到上行通路出现故障时, 向调 制模块 1002和发送模块 1003发送通知;  The control module 1001 is configured to detect whether the uplink path is faulty, and send a notification to the modulation module 1002 and the sending module 1003 when detecting that the uplink path is faulty;
信号生成模块 1002用于接收到控制模块 1001发送的通知后, 产生线路诊断信号, 并将 线路诊断信号发送给发送模块 1003 ;  The signal generating module 1002 is configured to: after receiving the notification sent by the control module 1001, generate a line diagnosis signal, and send the line diagnosis signal to the sending module 1003;
发送模块 1003用于信号生成模块 1002发送的线路诊断信号和控制模块 1001发送的通 知, 并在收到控制模块 1001发送的通知后, 切断下行数据的发送, 将收到的线路诊断信号调 制到种子光上进行下行发送; The sending module 1003 is used by the line diagnostic signal sent by the signal generating module 1002 and the communication sent by the control module 1001. After receiving the notification sent by the control module 1001, the downlink data transmission is cut off, and the received line diagnostic signal is modulated onto the seed light for downlink transmission;
光纤故障定位模块 1004用于接收光纤线路上反射的线路诊断信号,并根据对线路诊断信 号的分析处理结果, 向网管服务器上报光纤出现故障的具体位置。  The fiber fault locating module 1004 is configured to receive the line diagnostic signal reflected on the fiber line, and report the specific location of the fiber fault to the network management server according to the analysis and processing result of the line diagnosis signal.
控制模块 1001包括信号误码率检测单元和 /或接收光功率检测单元, 控制模块 1001还包 括通知发送单元;  The control module 1001 includes a signal error rate detecting unit and/or a receiving optical power detecting unit, and the control module 1001 further includes a notification transmitting unit;
信号误码率检测单元用于检测上行通路的信号误码率是否发生劣化, 并将检测结果发送 给通知发送单元;  The signal error rate detecting unit is configured to detect whether the signal error rate of the uplink path is degraded, and send the detection result to the notification sending unit;
接收光功率检测单元用于检测上行通路的接收光功率是否发生突变, 并将检测结果发送 给通知发送单元;  The receiving optical power detecting unit is configured to detect whether the received optical power of the uplink path is abrupt, and send the detection result to the notification sending unit;
通知发送单元用于接收到信号误码率发生劣化或 /和接收光功率发生突变的检测结果后, 向信号生成模块 1002和发送模块 1003发送通知。  The notification transmitting unit is configured to transmit a notification to the signal generating module 1002 and the transmitting module 1003 after receiving the detection result that the signal error rate is deteriorated or/and the received optical power is abrupt.
发送模块 1003包括通知接收单元、 放大单元和发送单元;  The sending module 1003 includes a notification receiving unit, an amplifying unit, and a sending unit;
通知接收单元用于接收通知发送单元发送的通知, 并将收到的通知发送给发送单元; 放大单元用于接收信号生成模块 1002 发送的线路诊断信号, 并对线路诊断信号进行放 大, 将放大后的线路诊断信号发送给发送单元;  The notification receiving unit is configured to receive the notification sent by the notification sending unit, and send the received notification to the sending unit; the amplifying unit is configured to receive the line diagnostic signal sent by the signal generating module 1002, and amplify the line diagnostic signal, and then zoom in The line diagnostic signal is sent to the sending unit;
发送单元用于接收到通知接收单元发送的通知后, 切断下行数据的发送, 并将收到的线 路诊断信号调制到种子光上进行下行发送。  After receiving the notification sent by the notification receiving unit, the sending unit cuts off the transmission of the downlink data, and modulates the received line diagnostic signal to the seed light for downlink transmission.
放大单元和发送单元可以处于同一物理实体, 如具体为注入锁定法布里-珀罗激光器或反 射式半导体光放大器。  The amplifying unit and the transmitting unit may be in the same physical entity, such as an injection-locked Fabry-Perot laser or a reflective semiconductor optical amplifier.
光纤故障定位模块 1001包括分析处理单元和上报单元;  The fiber fault location module 1001 includes an analysis processing unit and a reporting unit;
分析处理单元用于接收光纤线路上反射的线路诊断信号, 并对线路诊断信号进行分析处 理, 得到光纤出现故障的具体位置信息, 并将信息发送给上报单元;  The analysis processing unit is configured to receive the line diagnosis signal reflected on the optical fiber line, analyze and process the line diagnosis signal, obtain specific position information of the fiber failure, and send the information to the reporting unit;
上报单元用于接收分析处理单元发送的信息, 并将信息上报给网管服务器。 本实施例通 过使用注入锁定法布里-珀罗激光器或反射式半导体光放大器放大并调制线路诊断信号, 有效 地降低了光纤故障定位系统的投入成本。  The reporting unit is configured to receive the information sent by the analysis processing unit, and report the information to the network management server. This embodiment effectively reduces the input cost of the fiber fault locating system by amplifying and modulating the line diagnostic signal using an injection-locked Fabry-Perot laser or a reflective semiconductor optical amplifier.
本发明实施例所提供的技术方案通过将光纤故障定位设备内置到 OLT中,使用 IL-FP LD 或 RSOA作为 WDM-PON系统光纤故障定位设备的光源,以及使用 AWG对光源进行谱分割, 选择相应的谱分割的波长通道来调制 OTDR测试用数据,并结合 l xN光开关或电开关选择,, 可以保证测试信号波长通道更稳定,有效地降低了 WDM-PON系统中光纤故障定位系统的投 入成本; 同时由于光纤故障定位设备的 AWG与被测 WDM-PON系统中 CO端的 AWG为同 型号器件, 使得二者的中心波长对齐且固定, 大大地降低了光纤故障定位设备的操作难度。 The technical solution provided by the embodiment of the present invention integrates the optical fiber fault locating device into the OLT, uses the IL-FP LD or the RSOA as the light source of the WDM-PON system fiber fault locating device, and uses the AWG to perform spectral splitting on the light source, and selects corresponding The spectrally split wavelength channel is used to modulate the OTDR test data, and combined with l xN optical switch or electrical switch selection, can ensure the test signal wavelength channel is more stable, effectively reducing the investment of the fiber fault location system in the WDM-PON system. At the same time, because the AWG of the fiber fault locating device and the AWG of the CO end of the tested WDM-PON system are the same type of device, the center wavelengths of the two are aligned and fixed, which greatly reduces the operation difficulty of the fiber fault locating device.
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原则之 内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。  The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc., which are within the spirit and scope of the present invention, should be included in the protection of the present invention. Within the scope.

Claims

权 利 要 求 书 Claim
1 . 一种光纤检测系统, 其特征在于, 所述系统包括光源、 第一阵列波导光栅、 脉冲发生 器、 光信号放大调制模块、 环形器、 第一选择模块、 反射光信号接收模块, What is claimed is: 1. A fiber optic detection system, comprising: a light source, a first array of waveguide gratings, a pulse generator, an optical signal amplification modulation module, a circulator, a first selection module, and a reflected optical signal receiving module.
所述光源输出的种子光通过所述第一阵列波导光栅进行谱分割;  The seed light output by the light source is spectrally divided by the first arrayed waveguide grating;
光信号放大调制模块, 用于将所述脉冲发生器生成的线路诊断电信号放大调制到经所述 阵列波导光栅谱分割后的至少一个波长通道的光信号, 生成线路诊断光信号, 所述线路诊断 光信号通过所述第一阵列波导光栅发送给所述环形器;  An optical signal amplification modulation module, configured to amplify and modulate a line diagnostic electrical signal generated by the pulse generator to an optical signal of at least one wavelength channel divided by the arrayed waveguide grating spectrum to generate a line diagnostic optical signal, where the line A diagnostic optical signal is transmitted to the circulator through the first arrayed waveguide grating;
所述第一选择模块, 用于选择所述至少一个波长通道;  The first selection module is configured to select the at least one wavelength channel;
所述环形器, 将来自所述第一阵列波导光栅的光信号输入被测系统, 并将来自所述被测 系统的光信号输入反射光接收模块, 其中, 所述来 Θ所述被测系统的光信号包含反射回来的 线路诊断光信号;  The circulator inputs an optical signal from the first arrayed waveguide grating into a system under test, and inputs an optical signal from the system under test to a reflected light receiving module, wherein the system is The optical signal includes a line diagnostic light signal that is reflected back;
所述反射光接收模块, 用于对接收到的光信号进行分析处理, 获得分析处理结果。  The reflected light receiving module is configured to perform an analysis process on the received optical signal to obtain an analysis processing result.
2. 根据权利要求 1所述的系统, 其特征在于, 所述系统还包括第二选择模块, 所述第二 选择模块耦接于所述反射光接收模块和所述环形器之间, 所述第二选择模块受控以选择与所 述第一选择模块所选择的波长通道对准的波长通道。  The system according to claim 1, wherein the system further includes a second selection module, the second selection module being coupled between the reflected light receiving module and the circulator, The second selection module is controlled to select a wavelength channel that is aligned with the wavelength channel selected by the first selection module.
3. 根据权利要求 2所述的系统, 其特征在于,  3. The system of claim 2, wherein
所述第二选择模块为可调滤波器, 其中, 所述可调滤波器受控以选择与所述第一选择模 块所选择的波长通道对准的波长通道; 或  The second selection module is a tunable filter, wherein the tunable filter is controlled to select a wavelength channel aligned with a wavelength channel selected by the first selection module; or
所述第二选择模块为第二阵列波导光栅和至少一个光开关元件的组合, 其中, 所述至少 一个光开关元件受控以选择与所述第一选择模块所选择的波长通道对准的波长通道。  The second selection module is a combination of a second arrayed waveguide grating and at least one optical switching element, wherein the at least one optical switching element is controlled to select a wavelength aligned with a wavelength channel selected by the first selection module aisle.
4. 根据权利要求 3所述的系统, 其特征在于, 所述第一阵列波导光栅和所述第二阵列波 导光栅具有中心波长对准的通道。  4. The system of claim 3, wherein the first arrayed waveguide grating and the second array of waveguide gratings have central wavelength aligned channels.
5. 根据权利要求 1所述的系统, 其特征在于,  5. The system of claim 1 wherein:
所述第一选择模块为耦接于所述第一阵列波导光栅和所述光信号放大调制模块之间的包 含至少一个光开关元件, 其中, 所述光开关受控以选择相应的波长通道; 或  The first selection module is coupled between the first arrayed waveguide grating and the optical signal amplification modulation module, and includes at least one optical switching element, wherein the optical switch is controlled to select a corresponding wavelength channel; Or
所述第一选择模块为耦接于所述脉冲信号发生器和所述光信号放大调制模块之间的包含 至少一个电开关元件, 其中, 所述电开关受控以选择相应的波长通道。  The first selection module is coupled between the pulse signal generator and the optical signal amplification modulation module and includes at least one electrical switching element, wherein the electrical switch is controlled to select a corresponding wavelength channel.
6.根据权利要求 1所述的系统,其特征在于,所述系统还包括控制单元,所述控制单元, 用于检测所述被测系统的信号误码率和 /或接收光功率, 如果发现某一条上行通路的信号误码 率发生劣化和 /或接收光功率发生突变, 则控制所述第一选择模块选择相应的波长通道; 及 所述分析处理结果包括光纤出现故障的具体位置。 The system according to claim 1, wherein the system further comprises a control unit, configured to detect a signal error rate and/or receive optical power of the system under test, if found Signal error of a certain uplink path If the rate is degraded and/or the received optical power is abrupt, the first selection module is controlled to select a corresponding wavelength channel; and the analysis processing result includes a specific location where the optical fiber fails.
7、根据权利要求 1所述的系统, 其特征在于, 所述脉冲发生器发出的脉冲信号中包括关 闭所述被测系统的光源的指令。  7. The system of claim 1 wherein the pulse signal from the pulse generator includes an instruction to turn off the light source of the system under test.
8. 根据权利要求 1所述的系统, 其特征在于, 所述分析处理结果包括光时域反射测试曲 线和 /或根据光时域反射确定的光纤出现故障的具体位置。  8. The system according to claim 1, wherein the analysis processing result comprises an optical time domain reflection test curve and/or a specific position where the optical fiber is determined to be faulty according to optical time domain reflection.
9. 一种波分复用光网络系统, 其特征在于, 所述波分复用光网络系统包括如权利要求 1 到 8所述的光纤检测系统。  A wavelength division multiplexing optical network system, characterized in that the wavelength division multiplexing optical network system comprises the optical fiber detecting system according to any one of claims 1 to 8.
10. 根据权利要求 9所述的波分复用光网络系统, 其特征在于, 所述被测系统包括第三 阵列波导光栅, 其中, 所述第一阵列波导光栅和所述第三阵列波导光栅具有中心波长对准的 通道。  10. The wavelength division multiplexed optical network system according to claim 9, wherein the system under test comprises a third array of waveguide gratings, wherein the first arrayed waveguide grating and the third arrayed waveguide grating A channel with a central wavelength alignment.
11 . 根据权利要求 10所述的波分复用光网络系统, 其特征在于, 所述第一选择模块受控 以选择将下行数据电信号或所述脉冲发生器生成的线路诊断电信号输入所述光信号放大调制 模块。  The wavelength division multiplexing optical network system according to claim 10, wherein the first selection module is controlled to select to input a downlink data electrical signal or a line diagnostic electrical signal generated by the pulse generator. The optical signal amplification modulation module is described.
12. 一种波分复用光网络中光纤故障定位方法, 其特征在于, 所述波分复用光网络包括 光源、 第一阵列波导光栅、 脉冲发生器、 光信号放大调制模块、 反射光信号接收模块, 所述 方法包括: 12. A method for locating a fiber fault in a wavelength division multiplexed optical network, wherein the wavelength division multiplexed optical network comprises a light source, a first array of waveguide gratings, a pulse generator, an optical signal amplification modulation module, and a reflected optical signal. Receiving module, the method includes:
所述脉冲发生器生成线路诊断电信号;  The pulse generator generates a line diagnostic electrical signal;
检测到上行通路出现故障时, 将所述脉冲发生器生成的线路诊断电信号输入光信号放大 调制模块;  When detecting that the uplink path is faulty, inputting the line diagnostic electrical signal generated by the pulse generator into the optical signal amplification modulation module;
接收到线路诊断电信号的光信号放大调制模块将所述线路诊断电信号调制到种子光上生 成线路诊断光信号, 所述线路诊断光信号通过所述第一阵列波导光栅发送给被测系统, 其中, 所述种子光为所述光源通过所述第一阵列波导光栅谱分割得到;  The optical signal amplification modulation module that receives the line diagnostic electrical signal modulates the line diagnostic electrical signal onto the seed light to generate a line diagnostic optical signal, and the line diagnostic optical signal is sent to the system under test through the first arrayed waveguide grating. Wherein the seed light is obtained by dividing the light source by the first array of waveguide grating spectra;
接收来自被测系统的光信号, 所述来自所述被测系统的光信号包含反射回来的线路诊断 光信号;  Receiving an optical signal from the system under test, the optical signal from the system under test comprising a reflected line diagnostic optical signal;
所述光信号输入反射光接收模块对接收到的光信号进行分析处理, 获得分析处理结果。 The optical signal input reflected light receiving module analyzes and processes the received optical signal to obtain an analysis processing result.
13. 根据权利要求 12所述的方法, 其特征在于, 所述方法还包括: The method according to claim 12, wherein the method further comprises:
通过控制电开关选择相应波长通道对应的光信号放大调制模块, 将所述脉冲发生器生成 的线路诊断电信号输入选定的光信号放大调制模块, 其中, 所述电开关设置于所述脉冲发生 器和所述光信号放大调制模块之间; 或 Selecting an optical signal amplification modulation module corresponding to the corresponding wavelength channel by controlling the electrical switch, and inputting the line diagnostic electrical signal generated by the pulse generator into the selected optical signal amplification modulation module, where the electrical switch is set to generate the pulse And the optical signal amplification modulation module; or
通过控制光开关选择相应波长通道对应的阵列波导光栅通道, 所述光信号放大调制模块 接收选定的阵列波导光栅通道的种子光, 将所述线路诊断电信号调制到种子光上生成线路诊 断光信号, 所述线路诊断光信号通过所述第一阵列波导光栅发送给被测系统。  Selecting an arrayed waveguide grating channel corresponding to the corresponding wavelength channel by controlling the optical switch, the optical signal amplification modulation module receiving the seed light of the selected arrayed waveguide grating channel, and modulating the line diagnostic electrical signal to the seed light to generate the line diagnostic light The signal, the line diagnostic optical signal is transmitted to the system under test through the first array of waveguide gratings.
14. 根据权利要求 13所述的方法, 其特征在于, 所述接收来自被测系统的光信号包括: 通过可调滤波器从所述被测系统的光信号中选择接收相应波长通道的光信号; 或 通过阵列波导光栅和光开关的组合从所述被测系统的光信号中选择接收相应波长通道的 光信号。 The method according to claim 13, wherein the receiving the optical signal from the system under test comprises: selecting, by using a tunable filter, an optical signal of the corresponding wavelength channel from the optical signals of the system under test Or selecting, by the combination of the arrayed waveguide grating and the optical switch, the optical signal of the corresponding wavelength channel from the optical signals of the system under test.
PCT/CN2008/071560 2007-07-05 2008-07-04 A system for optical fiber detection, an optical wavelength division multiplexing network system and a method for optical fiber fault localization WO2009006837A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007101184290A CN101079668B (en) 2007-07-05 2007-07-05 Device, method and device for positioning the optical fiber failure
CN200710118429.0 2007-07-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020097026051A KR101120152B1 (en) 2007-07-05 2008-07-04 A system for optical fiber detection, an optical wavelength division multiplexing network system and a method for optical fiber fault localization

Publications (1)

Publication Number Publication Date
WO2009006837A1 true WO2009006837A1 (en) 2009-01-15

Family

ID=38906926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/071560 WO2009006837A1 (en) 2007-07-05 2008-07-04 A system for optical fiber detection, an optical wavelength division multiplexing network system and a method for optical fiber fault localization

Country Status (3)

Country Link
KR (1) KR101120152B1 (en)
CN (1) CN101079668B (en)
WO (1) WO2009006837A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279423A (en) * 2011-04-09 2011-12-14 无锡精工泰创电气有限公司 Fault self diagnosis apparatus for photoelectric area sensor channel and method thereof
CN102664678A (en) * 2012-05-15 2012-09-12 北京锐锋钝石科技有限公司 Optical fiber testing system and background server
WO2012169946A1 (en) * 2011-06-10 2012-12-13 Telefonaktiebolaget Lm Ericsson (Publ) Pon supervisoion using otdr measurements
CN103297126A (en) * 2013-06-07 2013-09-11 广西师范大学 PON (passive optical network) line fault monitoring method and device based on optical mark method
CN108072505A (en) * 2016-11-11 2018-05-25 基德科技公司 Detection based on high sensitivity optical fiber
EP3399669A1 (en) * 2017-05-05 2018-11-07 Nokia Solutions and Networks Oy An otdr test system and otdr test method for a twdm pon
CN111211833A (en) * 2020-01-15 2020-05-29 南京邮电大学 Jumper connection resource rapid patrolling device and patrolling method based on optical switch

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079668B (en) * 2007-07-05 2011-07-20 华为技术有限公司 Device, method and device for positioning the optical fiber failure
CN101692623B (en) * 2009-08-29 2012-05-30 桂林信通科技有限公司 Method for utilizing test signal for delivering management information in optical fiber online protection system
CN102104422B (en) * 2009-12-16 2014-05-28 中国电信股份有限公司 System and method for monitoring quality of optical link of passive optical network
CN101729949B (en) * 2009-12-21 2013-06-19 烽火通信科技股份有限公司 WDM PON device with dynamically allocable wavelengths
CN101848115B (en) * 2010-04-21 2012-11-21 华为技术有限公司 Fault point positioning method and device of wavelength division path
WO2013082771A1 (en) * 2011-12-07 2013-06-13 华为技术有限公司 Optical fiber link detection method, optical line terminal, and passive optical network system
CN102577179B (en) * 2011-12-31 2015-09-30 华为技术有限公司 The method of optical time domain reflectometer and acquisition test signal thereof
WO2012095044A2 (en) * 2012-02-21 2012-07-19 华为技术有限公司 Optical transceiver module, passive optical network system, optical fiber detection method and system
KR101308433B1 (en) * 2012-07-04 2013-09-12 한국광기술원 Method of dividing light source spectorum and processing its phase signal for enhancement of axial measurment range of optical-phase imaging system
CN103229432B (en) * 2012-12-24 2016-08-03 华为技术有限公司 Optical fiber characteristic measurement method and optical module
CN103344314B (en) * 2013-06-15 2018-10-26 威海北洋光电信息技术股份公司 M-Z optical fiber vibration sensing systems and its broken fiber detecting method
CN103560827B (en) * 2013-10-18 2016-08-24 华为技术有限公司 Fault detection method and device
CN104635312B (en) * 2015-03-18 2017-01-18 成都信息工程大学 Optical fiber fixing piece
GB2546031B (en) * 2015-05-07 2021-07-28 Centre For Dev Of Telematics GIS based centralized fiber fault localization system
CN107852343B (en) * 2015-11-06 2020-11-17 华为技术有限公司 HFC network fault positioning method, device and system
CN106911379A (en) * 2015-12-23 2017-06-30 中国电信股份有限公司 Realize method, management system and the optical time domain reflectometer equipment of light path detection
CN106452569B (en) * 2016-12-13 2018-11-20 无锡市德科立光电子技术有限公司 The OTDR optical amplification device and control method of prepare more part of common light source
CN109030497B (en) * 2018-07-04 2021-11-30 河海大学 Concrete structure crack automatic monitoring system
EP3829080A4 (en) * 2018-11-30 2021-08-04 Huawei Technologies Co., Ltd. Pon fault location method and device
CN110048771B (en) * 2019-05-15 2020-06-23 任永辉 Power communication laser scanning device
CN110635842A (en) * 2019-10-11 2019-12-31 太原理工大学 Passive wavelength division multiplexing network optical fiber fault detection system and detection method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1379279A (en) * 2001-04-02 2002-11-13 日本电气株式会社 Method and dvice for measuring and controlling Raman gain and Raman amplifier
US20050286895A1 (en) * 2002-10-07 2005-12-29 Novera Optics, Inc. Wavelength-division-multiplexing passive optical network utilizing fiber fault detetors and/or wavelength tracking components
CN101079668A (en) * 2007-07-05 2007-11-28 华为技术有限公司 Device, method and device for positioning the optical fiber failure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1138358C (en) * 2000-07-12 2004-02-11 信息产业部武汉邮电科学研究院 Optical cable real time monitoring system
CN1265183C (en) * 2004-01-09 2006-07-19 南京大学 Optical cable circuit failure point precision locating method
KR100698766B1 (en) * 2005-09-07 2007-03-23 한국과학기술원 Apparatus for Monitoring Failure Positions in Wavelength Division Multiplexing-Passive Optical Networks and Wavelength Division Multiplexing-Passive Optical Network Systems Having the Apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1379279A (en) * 2001-04-02 2002-11-13 日本电气株式会社 Method and dvice for measuring and controlling Raman gain and Raman amplifier
US20050286895A1 (en) * 2002-10-07 2005-12-29 Novera Optics, Inc. Wavelength-division-multiplexing passive optical network utilizing fiber fault detetors and/or wavelength tracking components
CN101079668A (en) * 2007-07-05 2007-11-28 华为技术有限公司 Device, method and device for positioning the optical fiber failure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KASAHARA R. ET AL.: "Integrated 32ch dynamic wavelength channel selector using AWG and 32x1 PLC switch", OPTICAL FIBER COMMUNICATION CONFERENCE (OFC), 22 February 2004 (2004-02-22), XP010744347 *
PARK JUHEE ET AL.: "Fault-detection technique in a WDM-PON", OPTICAL EXPRESS, vol. 15, no. 4, 19 February 2007 (2007-02-19), pages 1461 - 1466 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279423A (en) * 2011-04-09 2011-12-14 无锡精工泰创电气有限公司 Fault self diagnosis apparatus for photoelectric area sensor channel and method thereof
WO2012169946A1 (en) * 2011-06-10 2012-12-13 Telefonaktiebolaget Lm Ericsson (Publ) Pon supervisoion using otdr measurements
US9287971B2 (en) 2011-06-10 2016-03-15 Telefonaktiebolaget L M Ericsson (Publ) PON supervision using OTDR measurements
CN102664678A (en) * 2012-05-15 2012-09-12 北京锐锋钝石科技有限公司 Optical fiber testing system and background server
CN103297126A (en) * 2013-06-07 2013-09-11 广西师范大学 PON (passive optical network) line fault monitoring method and device based on optical mark method
CN103297126B (en) * 2013-06-07 2016-06-22 广西师范大学 The PON line fault monitoring method of optically-based labelling method and device thereof
CN108072505A (en) * 2016-11-11 2018-05-25 基德科技公司 Detection based on high sensitivity optical fiber
EP3399669A1 (en) * 2017-05-05 2018-11-07 Nokia Solutions and Networks Oy An otdr test system and otdr test method for a twdm pon
WO2018202778A1 (en) * 2017-05-05 2018-11-08 Nokia Solutions And Networks Oy An otdr test system and otdr test method for a twdm pon
CN111211833A (en) * 2020-01-15 2020-05-29 南京邮电大学 Jumper connection resource rapid patrolling device and patrolling method based on optical switch

Also Published As

Publication number Publication date
KR20100019515A (en) 2010-02-18
CN101079668A (en) 2007-11-28
KR101120152B1 (en) 2012-03-22
CN101079668B (en) 2011-07-20

Similar Documents

Publication Publication Date Title
WO2009006837A1 (en) A system for optical fiber detection, an optical wavelength division multiplexing network system and a method for optical fiber fault localization
US7542673B2 (en) Fault localization apparatus for optical line in wavelength division multiplexed passive optical network
US8369706B2 (en) Open access service model using WDM-PON
EP2357737A2 (en) Fault localization method and fault localization device in a passive optical network, and passive optical network having the fault localization device
US9008503B2 (en) Supervision of wavelength division multiplexed optical networks
EP2819324B1 (en) Optical transceiving module, passive optical network system, optical fibre detection method and system
EP2417714B1 (en) Optical network with shared laser array
EP2602946B1 (en) Single-fiber bi-directional optical module and passive optical network system
US9020349B2 (en) Arrangement at a remote node, a remote node, a central office and respective methods therein for supervision of a wavelength division multiplexed passive optical network
CN105451840B (en) A kind of optical time domain reflectometer realization device and system
EP2726837B1 (en) Device, remote node and methods for pon supervision
WO2004034621A2 (en) A wavelenght-division-multiplexing passive optical network utilizing fiber fault detectors and/or wavelenght tracking components
JP4431760B2 (en) Optical line fault location detector in wavelength division multiplexing passive optical network
US7660529B2 (en) System and method for providing failure protection in optical networks
US11309973B2 (en) Optical burst monitoring
KR101325858B1 (en) Apparatus and method for adaptive optical power controlling, optical communication system and for the same
KR100924572B1 (en) Method and apparatus for monitering optical line comprising self-locked laser, and optical communication network system using thereof
WO2008031261A1 (en) System and method for providing failure protection in optical networks
WO2021035487A1 (en) Method for determining connection of optical network terminals, apparatus and system
US20210083778A1 (en) Optical communication apparatus, wavelength calibration method, and program
JP2014204420A (en) Optical wavelength division multiplex system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08773116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20097026051

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08773116

Country of ref document: EP

Kind code of ref document: A1