Connect public, paid and private patent data with Google Patents Public Datasets

Method and apparatus for chroma key production

Info

Publication number
WO2009005511A1
WO2009005511A1 PCT/US2007/020192 US2007020192W WO2009005511A1 WO 2009005511 A1 WO2009005511 A1 WO 2009005511A1 US 2007020192 W US2007020192 W US 2007020192W WO 2009005511 A1 WO2009005511 A1 WO 2009005511A1
Authority
WO
Grant status
Application
Patent type
Prior art keywords
scene
foreground
key
aoi
chroma
Prior art date
Application number
PCT/US2007/020192
Other languages
French (fr)
Inventor
Mehul S. Pandya
Original Assignee
Thomson Licensing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/74Circuits for processing colour signals for obtaining special effects
    • H04N9/75Chroma key

Abstract

The method and apparatus for generating an adaptive chroma key includes taking into consideration foreground object information during the creation of a composite scene. The luminance and chrominance of an area of interest between a foreground key and a background scene are considered and accounted for during the created of the composite scene.

Description

METHOD ANP APPARATUS FOR CHROMA KEY PRODUCTION

This application claims priority to International Patent Application Serial No. PCT/US2007/015254 entitled "Method and Apparatus for Chroma Key Production", filed on June 29, 2007 which is hereby incorporated by reference in its entirety. The present principles relate to chroma keying. More particularly, it relates to the production of an adaptive chroma key.

A chroma key generally places foreground objects in a background scene. Since chroma key parameters are calculated for every field based on the foreground scene only, the foreground object cannot adapt to the background scene lighting. Thus, the use of ambient or artificial light changes.

In fact, chroma key parameters are based on homogenized studio-lighting conditions rather than the lighting in the background scene. This type of lighting mismatch fails to produce a natural chroma key.

It is an aspect of the present principles to provide an adapative chroma key that overcomes the shortfalls of the prior art.

This and other aspects are achieved by the method for producing a chroma key which includes determining an area of interest (AOI) for a composite scene using a foreground key, and generating a chroma key taking into consideration physical properties of pixels in the determined AOI. In accordance with another aspect of the present principles the apparatus for producing a chroma key includes a source selection device configured to determine an area of interest (AOl) for a composite scene using a foreground key and generate a chroma key taking into consideration physical properties of pixels in the determined AOI. The source selection device could include a plurality of input sources, a processor, switching logic in communication with the processor, and an adaptive chroma key sub-system connected to the processor and switching logic, said adaptive chroma key sub-system operating under the control of the processor to selectively combine two or more of the input sources for the composite scene.

Other aspects and features of the present principles will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the present principles, for which reference should be made to the appended claims. It should be further understood that the drawings are not necessarily drawn to scale and that, unless otherwise indicated, they are merely intended to conceptually illustrate the structures and procedures described herein.

In the drawings wherein like reference numerals denote similar components throughout the views:

Figure 1 is a graphical representation of a foreground scene in a green-colored virtual studio set;

Figure 2 is a graphical representation of the foreground objects in the scene; Figure 3 is a graphical representation of the background scene intended for use with the foregoing scene;

Figure 4. is a graphical representation of the foreground key; Figure 5 is graphical representation of the composite output of both the foreground and background scenes; Figure 6 is a graphical representation of the Area of Interest (AOI) in the composite scene;

Figure 7 is a graphical representation of the composite scene with both brighter background and foreground objects; Figure 8 is a graphical representation of the composite scene with both darker background and foreground objects;

Figures 9a-9c are graphical representations showing how different hues in a background scene can create different but matching foreground objects;

Figure 10a is a flow diagram of the luminance determination for the display of the composite image according to an implementation of the present principles;

Figure 10b is a block diagram of the determination of the AOI for the chroma key according to an implementation of the present principles;

Figure 11 is flow diagram of the chrominance determination and application for the display of the composite image according to an implementation of the present principles;

Figure 1-2 is a block diagram of a switcher apparatus configured to implement the adaptive chroma keying of the present principles; and

Figure 13 is a block diagram of an adaptive chroma key subs system according to an implementation of the present principles. Generally speaking, a chroma key allows the placement of foreground objects in a background scene. Since the chroma key parameters are calculated for every field based on the foreground scene only, the foreground object cannot adapt to the background scene lighting (e.g., ambient and artificial) changes. In fact, the chroma key parameters are often homogenized for studio-lighting conditions rather than the lighting in the background scene.

The present principles provides an alternative to this chroma keying scheme by allowing an adaptive creation of the chroma key using luminance and chrominance information from the background scene.

Figures 1 -5 show some background information for understanding the concepts of the present principles. Figure 1 shows a foreground scene 10 (represented by the people in the picture) and a green-colored virtual studio set 12. Figure 2 shows the foreground objects 10 without the virtual studio set 12. Figure 3 shows a background scene 14 to be displayed on the cirtual studio set. Figure 4 shows a foreground key 16 representing the images of the foregoing scene to be superimposed over the background scene. Figure 5 is a representation of the composite output image resulting from combination of the background scene 14 and the foreground scene 10.

Initially, and in accordance with the present principles, a determination as to the area of interest (AOI) between the foreground scene and the background scene is made (step 102 Figure 10a). Referring to Figure 10b, in order to do this, a foreground key is overlayed onto the background scene (110), and an identification of all the pixels of the background scene that falls inside the foreground key is made (112). This identification constitutes the AOI. Figure 6 shows a graphical representation of the AOI 18 as obtained from this process.

In accordance with one implementation, the information from the background scene is used by the chroma key logic to.adaptively create the chroma key. In doing this, the method includes considering one or more physical properties of the pixels in the determined AOI in order to create the chroma key. In the present example, these physical properties include the luminance and the chrominance of the pixels.

Figure 10a shows the method 100 for considering the luminance of the AOI1 and Figure 11 shows the method 150 for considering the chrominance of the AOI. Referring to Figure 10a, initially the determination (102) as to the AOI for the composite scene is made. The average luminance of pixels in the AOI is then calculated (104), and the average luminance of a sampled area in the foreground scene is also calculated (106). Once these luminance calculations have been made, the luma in the foreground scene is linked to the luma in the AOI (108). Jn other words, we are applying the difference (delta) in luma AOI to luma in the foreground scene for every field. If the background has dramatic lighting changes, such as a video clip show through bright and dark streets of Manahattan. The foreground object (e.g., a new reader or report) will adapt to the background scene and change its lighting accordingly. Figure 7 shows an example of a brighter background having brighter foreground objects, and Figure 8 shows an example of a darker background having darker foreground objects.

Figure 11 shows an example of the method 150 where the chrominance signal is considered. After the determination 102 of the AOI, it is determined (120) whether a constant vector is applied to all pixels in the AOI. If not, the foreground scene remains unchanged (124). If there is a constant vector applied to all pixels in the AOI, a small percentage of the same constant vector is applied to the resulting foreground scene. For example, if the background scene is a disco club with rotating multi-colored light beams, the foreground object adapts to hue changes in the background scene (i.e., if a red beam of light falls on the AOI1 a slight tinge of red will appear on the foreground object as well. Thus, different hues in the background scene can create different, but matching objects in the foreground. This concept is shown in the exemplary images of Figures 9a-9c. In each figure, the hue is different, resulting in a change in the foreground object color and thereby an overall change of the entire composite image displayed. Figure 9b shows the effect of a redish hue (represented by an array of very small dots covering the entire Figure 9b) added to the background lighting and the overall effect of the same on the foreground objects (i.e., the matching of the same with the background), while Figure 9c shows the effect of a greenish hue (represented by an array of very small dashes covering the entire Figure 9c) in the background scene. Figure 12 shows a block diagram of a switcher system 200 programmed to operate in accordance with the present principles. The switcher 202 includes a plurality of inputs 208, a processor 204 and switching logic 206 in communication with the processor. The processor 208 can include an onboard memory 210, or may be linked to an external storage medium, such as a hard disk drive, a compact disc drive, a flash memory or other solid state memory device, or any other memory storage means. The adaptive chroma key sub-system 207 is communication with the processor 204 and switching logic 206 and is configured to perform the method of the present principle and take one of said inputs 208 having a background scene and selectively combine it with another input having a foreground scene to provide a desired composite scene at its output 212.

Figure 13 shows a block diagram of the adaptive chroma key sub-system 207 according to an implementation of the present principles. The foreground video 250 and foreground key 252 are interpolated by interpolator 258. After hue selection (via primary hue selector 262 and secondary hue selector 266) and suppression (via primary suppression 264 and secondary suppression 268, the video 270 is passed to the next logical subsystem in the switcher 202 (e.g., switching logic 206). The secondary hue selector 266 outputs the foreground information which processed (clip & gain 278) before the background changes are applied 280. The background video 254 and background key 256 are interpolated by interpolator 260, and the AOl is then determined 272. As described above, once the AOI has been determined; the Luma change 274 and chroma change 276 of the AOI is determined and are applied 280 to the foreground. At this stage, the offset 282 is applied to the foreground key signal and the foreground key 212 is output. The various aspects, implementations, and features may be implemented in one or more of a variety of manners, even if described above without reference to a particular manner or using only one manner. For example, the various aspects, implementations, and features may be implemented using, for example, one or more of a method, an apparatus, an apparatus or processing device for performing a method, a program or other set of instructions, an apparatus that includes a program or a set of instructions, and a computer readable medium.

An apparatus may include, for example, discrete or integrated hardware, firmware, and software. As an example, an apparatus may include, for example, a processor, which refers to processing devices in general, including, for example, a microprocessor, an integrated circuit, or a programmable logic device. As another example, an apparatus may include one or more computer readable media having instructions for carrying out one or more processes.

A computer readable medium may include, for example, a software carrier or other storage device such as, for example, a hard disk, a compact diskette, a random access memory ("RAM"), or a read-only memory ("ROM"). A computer readable medium also may include, for example, formatted electromagnetic waves encoding or transmitting instructions. Instructions may be, for example, in hardware, firmware, software, or in an electromagnetic wave. Instructions may be found in, for example, an operating system, a separate application, or a combination of the two. A processor may be characterized, therefore, as, for example, both a device configured to carry out a process and a device that includes a computer readable medium having instructions for carrying out a process. A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made. For example, elements of different implementations may be combined, supplemented, modified, or removed to produce other implementations. Accordingly, other implementations are within the scope of the following claims.

Claims

1. A method for producing a chroma key comprising: determining an area of interest (AOI) for a composite scene using a foreground key; generating a chroma key taking into consideration physical properties of pixels in the determined AOI.
2. The method of claim 1 , wherein said determining comprises: overlaying a foreground key on a background scene; and identifying pixels in the background scene that fall inside the foreground key.
3. The method of claim 1, wherein said generating further comprises: calculating an average luminance of pixels in the AOI; calculating an average luminance of a sampled area in the foreground scene; and linking the luma in the foreground scene to the luma in the AOI.
4. The method of claim 1, wherein said generating further comprises considering a chrominance signal in the AOI.
5. The method of claim 4, wherein said considering further comprises: determining whether a constant vector is applied to all pixels in the
AOI; and when a constant vector is applied to all pixels, applying a small percentage of the same constant vector to a resulting foreground scene.
6. The method of claim 4, wherein said considering further comprises: determining whether a constant vector is applied to all pixels in the AOI; and when a constant vector is not applied to all pixels, making no change to a resulting foreground scene.
7. The method of claim 5, wherein said small percentage comprises 5- 10%.
8. An apparatus for producing a chroma key, the apparatus comprising: means (204, 207) for determining an area of interest (AOI) for a composite scene using a foreground key; and means (204, 207) for generating a chroma key taking into consideration physical properties of pixels in the determined AOI.
9. The apparatus of claim 8, further comprising: means (204, 207) for overlaying a foreground key on a background scene; and means (204, 207) for identifying pixels in the background scene that fall inside the foreground key.
10. The apparatus of 8, further comprising: means (204, 207) calculating an average luminance of pixels in the AOI; means (204, 207) calculating an average luminance of a sampled area in the foreground scene; and means (204, 207) linking the luma in the foreground scene to the luma in the AOI.
11. The apparatus of 8, wherein said generating means further comprises means (204, 207) for considering a chrominance signal in the AOI.
12. The apparatus of 11 , wherein said considering means comprises: means (204, 207) for determining whether a constant vector is applied to all pixels in the AOI; and means (204, 207) for applying a small percentage of the same constant vector to a resulting foreground scene when it is determined a constant vector is applied to all pixels.
13. The apparatus of 11 , wherein said considering means comprises: means (204, 207) for determining whether a constant vector is applied to all pixels in the AOI; and means (124) for making no change to a resulting foreground scene when a constant vector is not applied to all pixels
14. The apparatus of 11, wherein said small percentage comprises 5-
10%.
15. An apparatus for producing a chroma key comprising: a source selection device (202) configured to determine an area of interest (AOI) for a composite scene using a foreground key and generate a chroma key taking into consideration physical properties of pixels in the determined AOI.
16. The apparatus of claim 15, wherein said source selection device comprises: a plurality of input sources (208); a processor (204); switching logic (206) in communication with the processor; and an adaptive chroma key sub-system (207) connected to the processor and switching logic, said adaptive chroma key sub-system operating under the control of the processor to selectively combine two or more of the input sources for the composite scene.
17. The apparatus of claim 15, wherein the physical properties of pixels comprise luminance and chrominance signals.
18. The apparatus of claim 17, wherein said source selection device is configured to calculate an average luminance of pixels in an area of interest AOI and a sampled area in a foreground scene, and generates the chroma key by providing link data for linking the luma in the foreground scene to the luma in the AOI.
19. The apparatus of claim 17, wherein said source selection device is configured to determine whether a constant vector is applied to all pixels in the AOI, and when a constant vector is applied to all pixels in the AOI, to apply a small percentage of the same constant vector to a resulting foregoing scene in the composite scene.
PCT/US2007/020192 2007-06-29 2007-09-18 Method and apparatus for chroma key production WO2009005511A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
USPCT/US2007/015254 2007-06-29
US2007015254 2007-06-29

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN 200780053582 CN101690245A (en) 2007-06-29 2007-09-18 Method and apparatus for chroma key production
US12451626 US8456577B2 (en) 2007-06-29 2007-09-18 Method and apparatus for chroma key production
EP20070838409 EP2172030A1 (en) 2007-06-29 2007-09-18 Method and apparatus for chroma key production
JP2010514725A JP5209713B2 (en) 2007-06-29 2007-09-18 Chroma key production method and apparatus
CA 2690987 CA2690987C (en) 2007-06-29 2007-09-18 Method and apparatus for chroma key production

Publications (1)

Publication Number Publication Date
WO2009005511A1 true true WO2009005511A1 (en) 2009-01-08

Family

ID=39092163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/020192 WO2009005511A1 (en) 2007-06-29 2007-09-18 Method and apparatus for chroma key production

Country Status (4)

Country Link
JP (1) JP5209713B2 (en)
CN (1) CN101690245A (en)
CA (1) CA2690987C (en)
WO (1) WO2009005511A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155680A (en) * 2011-03-25 2011-08-11 Casio Computer Co Ltd Image processing apparatus and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345313A (en) * 1992-02-25 1994-09-06 Imageware Software, Inc Image editing system for taking a background and inserting part of an image therein
US5907315A (en) * 1993-03-17 1999-05-25 Ultimatte Corporation Method and apparatus for adjusting parameters used by compositing devices
US6348953B1 (en) * 1996-04-30 2002-02-19 ZBIG VISION GESELLSCHAFT FüR NEUE BILDGESTALTUNG MBH Device and process for producing a composite picture
US6538396B1 (en) * 2001-09-24 2003-03-25 Ultimatte Corporation Automatic foreground lighting effects in a composited scene
US20030133044A1 (en) * 1998-08-31 2003-07-17 Hitachi Software Engineering Co Ltd Apparatus and method for image compositing
US7006155B1 (en) * 2000-02-01 2006-02-28 Cadence Design Systems, Inc. Real time programmable chroma keying with shadow generation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007770A (en) * 1998-08-31 2004-01-08 Hitachi Software Eng Co Ltd Image compositing method, and its device
JP3591575B2 (en) * 1998-12-28 2004-11-24 日立ソフトウエアエンジニアリング株式会社 Image synthesis apparatus and an image synthesis method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345313A (en) * 1992-02-25 1994-09-06 Imageware Software, Inc Image editing system for taking a background and inserting part of an image therein
US5907315A (en) * 1993-03-17 1999-05-25 Ultimatte Corporation Method and apparatus for adjusting parameters used by compositing devices
US6348953B1 (en) * 1996-04-30 2002-02-19 ZBIG VISION GESELLSCHAFT FüR NEUE BILDGESTALTUNG MBH Device and process for producing a composite picture
US20030133044A1 (en) * 1998-08-31 2003-07-17 Hitachi Software Engineering Co Ltd Apparatus and method for image compositing
US7006155B1 (en) * 2000-02-01 2006-02-28 Cadence Design Systems, Inc. Real time programmable chroma keying with shadow generation
US6538396B1 (en) * 2001-09-24 2003-03-25 Ultimatte Corporation Automatic foreground lighting effects in a composited scene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155680A (en) * 2011-03-25 2011-08-11 Casio Computer Co Ltd Image processing apparatus and program

Also Published As

Publication number Publication date Type
CA2690987C (en) 2016-01-19 grant
JP2010532629A (en) 2010-10-07 application
JP5209713B2 (en) 2013-06-12 grant
CA2690987A1 (en) 2009-01-08 application
CN101690245A (en) 2010-03-31 application

Similar Documents

Publication Publication Date Title
US7013025B2 (en) Image correction apparatus
US5850471A (en) High-definition digital video processing system
US20030035156A1 (en) System and method for efficiently performing a white balance operation
US6788813B2 (en) System and method for effectively performing a white balance operation
US7006155B1 (en) Real time programmable chroma keying with shadow generation
US5953076A (en) System and method of real time insertions into video using adaptive occlusion with a synthetic reference image
US20100177203A1 (en) Apparatus and method for local contrast enhanced tone mapping
US6154195A (en) System and method for performing dithering with a graphics unit having an oversampling buffer
US8238695B1 (en) Data reduction techniques for processing wide-angle video
US20120274634A1 (en) Depth information generating device, depth information generating method, and stereo image converter
US20100226547A1 (en) Multi-Modal Tone-Mapping of Images
US20080117333A1 (en) Method, System And Computer Program Product For Video Insertion
US20050226531A1 (en) System and method for blending images into a single image
US20090060367A1 (en) Method and apparatus for producing a contrast enhanced image
US6469747B1 (en) Parabolic mixer for video signals
US20090160992A1 (en) Image pickup apparatus, color noise reduction method, and color noise reduction program
WO2014130343A2 (en) Display management for high dynamic range video
JP2006014261A (en) Image processing apparatus, image processing method, and computer program
US20090317017A1 (en) Image characteristic oriented tone mapping for high dynamic range images
US20070242240A1 (en) System and method for multi-projector rendering of decoded video data
US20090232416A1 (en) Image processing device
JP2005130484A (en) Gradation correction apparatus and gradation correction program
US20070237391A1 (en) Device and method for image compression and decompression
US20110235905A1 (en) Image processing apparatus and method, and program
US20140085398A1 (en) Real-time automatic scene relighting in video conference sessions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07838409

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12451626

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2690987

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010514725

Country of ref document: JP

NENP Non-entry into the national phase in:

Ref country code: DE

REEP

Ref document number: 2007838409

Country of ref document: EP