WO2009004093A1 - Preparation of an esterase - Google Patents

Preparation of an esterase Download PDF

Info

Publication number
WO2009004093A1
WO2009004093A1 PCT/EP2008/058731 EP2008058731W WO2009004093A1 WO 2009004093 A1 WO2009004093 A1 WO 2009004093A1 EP 2008058731 W EP2008058731 W EP 2008058731W WO 2009004093 A1 WO2009004093 A1 WO 2009004093A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
identity
protein
expression
coli
Prior art date
Application number
PCT/EP2008/058731
Other languages
French (fr)
Inventor
Martin Kietzmann
Helmut Schwab
Harald Pichler
Mirela Ivancic
Oliver May
Rudolf Gijsbertus Marie Luiten
Original Assignee
Dsm Ip Assets B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dsm Ip Assets B.V. filed Critical Dsm Ip Assets B.V.
Priority to EP08774807.5A priority Critical patent/EP2171061B1/en
Priority to NO08774807A priority patent/NO2171061T3/no
Priority to JP2010514010A priority patent/JP5553354B2/en
Priority to PL08774807T priority patent/PL2171061T3/en
Priority to CN200880023253.3A priority patent/CN101688208B/en
Priority to US12/667,414 priority patent/US9309503B2/en
Priority to ES08774807.5T priority patent/ES2652559T3/en
Publication of WO2009004093A1 publication Critical patent/WO2009004093A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01001Carboxylesterase (3.1.1.1)

Definitions

  • the present invention relates to a method for the preparation of a protein with esterase activity comprising expression of a gene encoding such a protein in an Escherichia coli (E. coli) strain.
  • At least part of the problems encountered in proper expression of ⁇ -rPLE relates to the occurrence of multiple disulfide bonds in the protein.
  • the present invention relates to a method for the preparation of a protein with esterase activity comprising expression of a gene encoding such protein in an E. coli strain, characterized in that the gene encoding the protein with esterase activity has at least 70% identity, preferably at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity and most preferably at least 99% identity to the polynucleotide of SEQ ID NO 1 1 , SEQ ID NO 32, SEQ ID NO 34, SEQ ID NO 36, SEQ ID NO 38, SEQ ID NO 40, SEQ ID NO 42 or SEQ ID NO 44 and encodes a protein that has at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity, more preferably at least 99% identity to SEQ ID NO 12, SEQ ID NO 33, SEQ ID NO 35, SEQ ID NO 37, SEQ ID NO 39, SEQ ID NO
  • the invention relates to a method for the preparation of a protein with esterase activity comprising expression of a gene encoding such protein in an E. coli strain, characterized in that the gene encoding the protein with esterase activity has at least 70% identity, preferably at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity and most preferably at least 99% identity to the polynucleotide of SEQ ID NO 1 1 , and encodes a protein that has at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity, more preferably at least 99% identity to SEQ ID NO 12.
  • the present invention relates to a method for the preparation of a protein with esterase activity comprising expression of a gene encoding such protein in an E. coli strain, characterized in that the gene encodes a protein that has at least 80 % identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity, more preferably at least 99% identity to.
  • SEQ ID NO 12 represents the amino acid sequence of APLE.
  • the present invention relates to a recombinant E.
  • coli strain suitable for the preparation of a protein with esterase activity characterized in that the organism contains a gene encoding the protein with esterase activity which has at least 70 % identity, preferably 80% identity, more preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity and most preferably at least 99% identity to the polynucleotide of SEQ ID NO 1 1 SEQ ID NO 32, SEQ ID NO 34, SEQ ID NO 36, SEQ ID NO 38, SEQ ID NO 40, SEQ ID NO 42 or SEQ ID NO 44, and encodes a protein that has at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity, more preferably at least 99% identity to SEQ ID NO 12 SEQ ID NO 33, SEQ ID NO 35, SEQ ID NO 37, SEQ ID NO 39, SEQ ID NO 41 , SEQ ID NO 43 or SEQ ID NO 45, respectively.
  • the recombinant E. coli strains do not comprise a plasmid for co-expression of GroEL and/or GroES and are capable of producing proteins with esterase activity.
  • the present invention relates to a recombinant E.
  • the organism contains a gene coding for a protein with esterase activity wherein the gene has at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, at least 95% identity, preferably 98% identity and most preferably at least 99% identity to the polynucleotide of SEQ ID NO 1 1 , and encodes a protein that has at least 80 % identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity, more preferably at least 99% identity to SEQ ID NO 12.
  • the present invention also relates to a recombinant E. coli strain suitable for the preparation of a protein with esterase activity according to - A -
  • the present invention relates to a recombinant E. coli strain suitable for the preparation of a protein with esterase activity, characterized in that the expression of glutathione reductase and/or thioredoxin reductase is abolished, e.g. by a mutation.
  • the recombinant E.coli has been further modified so as to produce a low molecular weight helper protein which is capable to introduce disulfide bonds for a proper folding of proteins requiring disulfide bonds and or is capable to correct misfolding caused by inappropriate disulfide bonds.
  • helper proteins are disulfide isomerases.
  • the helper protein is a protein indicated as DsbC of E. coli (Bessette et al (1999)).
  • E. coli strains which suitably can be used according to the present invention have the property of a less reductive intracellular environment than wild-type E. coli strains.
  • a particular example of such E. coli strain is the E. coli Origami strain which possesses mutations in the glutathione reductase gene and the thioredoxin reductase gene (Terpe (2006)[6]. When functionally expressed, these genes are counteracting disulfide bond formation in the cytoplasm. Thus heterologous expression of proteins containing disulfide bonds was hitherto considered to require elimination of glutathione and thioredoxin reductase activities, respectively.
  • esterase encoding genes are polynucleotides which encode esterase proteins, and which have codon usage adapted to Pichia.
  • the present invention relates to genes encoding functional esterase protein and which have nucleotide sequence with at least 70% identity, preferably at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity and most preferably at least 99% at least 95 % identity compared to the polynucleotide of SEQ ID NO 1 1 , and encodes a protein that has at least 80 % identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity, more preferably at least 99% identity to SEQ ID NO 12.
  • the invention relates to an isolated polynucleotide encoding a functional protein with esterase activity which has a nucleotide sequence of at least 70% identity, preferably at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least
  • such a gene encoding the protein of interest is expressed in a transformed E. coli strain. Transformation of E. coli with the heterologous gene can be accomplished by any suitable method, such as by electroporation, by heat shock transformation, or by chemical transformation.
  • the gene encoding the protein with esterase activity can be part of a vector, such as a plasmid, a bacteriophage or a phagemid.
  • a vector such as a plasmid, a bacteriophage or a phagemid.
  • the invention also relates to vectors suitable for replication and expression in E.
  • coli containing a polynucleotide encoding a protein with esterase activity which has a nucleotide sequence with at least 70% identity, preferably at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity and most preferably at least 99% identity to the polynucleotide of SEQ ID NO 1 1 , SEQ ID NO 32, SEQ ID NO 34, SEQ ID NO 36, SEQ ID NO 38, SEQ ID NO 40, SEQ ID NO 42, or SEQ ID NO 44 and encodes a protein that has at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity, more preferably at least 99% identity to SEQ ID NO 12, SEQ ID NO 33, SEQ ID NO 35, SEQ ID NO 37, SEQ ID NO 39, SEQ ID NO 41 , SEQ ID NO 43 or SEQ ID NO 45, respectively.
  • the vector should contain the necessary functional elements suitable for e.g. selection, replication, gene regulation transcription (initiation and termination) and the cloning of the desired gene sequence.
  • selection of an E. coli strain, a vector, the vector elements, the method of transfection, the culturing of the transfected organisms and the harvesting and isolation of the desired polypeptide suitable for use according to the present invention will be obvious for the man skilled in the art.
  • PLE Pig Liver Esterase
  • the commercial enzyme preparation has been shown to at least consist of several PLE isozymes possibly with different substrate specificities.
  • Commercial PLE is used in a variety of biocatalytic reactions exploiting the broad substrate specificity and enantioselectivity of the ester hydrolysis.
  • WO 01/09079 describes the use of animal derived PLE for the selective hydrolysis of the (R)-enantiomer of (4E)-5-chloro-2-isopropylpent-4-enoic acid methylester.
  • cDNA from pig liver was prepared and screened for PLE ⁇ - isozyme related sequences.
  • PCR primers were designed that recognize cDNA fragments encoding PLE ⁇ - isozyme related proteins.
  • DNA sequencing of a number of these ⁇ -PLE related cDNA fragments as expected the known ⁇ -PLE encoding DNA sequence was retrieved, but in addition a second PLE isozyme was identified that differed from the mature ⁇ -PLE protein in 21 out of 548 amino acids.
  • This new PLE isozyme was called APLE for Alternative Pig Liver Esterase.
  • both ⁇ -PLE and APLE encoding DNA sequences were inserted in expression cassettes designed for secreted protein production in Pichia pastoris, similar as described by Lange et al.. In contrast to the latter publication, successful expression of both proteins was accomplished even when the C-terminal amino acid sequence HAEL was present in the encoded protein. Esterase activity was identified by activity determination using a general esterase assay using alpha-naphtylacetate.
  • PLE isozymes are structurally very related, and it is known that the protein requires intramolecular disulfide bonds for maintaining its structural integrity and activity. Many attractive microbial protein expression systems will only allow disulfide bonds to be formed when the protein is targeted to the extracellular environment, essentially as described above for Pichia pastoris. Most bacteria, notably Escherichia coli, maintain a reducing environment intracellular ⁇ ; however, mutants of E.coli in which disulfide bonds can be formed in proteins expressed in the cytoplasm have been described (Prinz et al. (1997)), and various strains are available commercially (E.coli Origami, Novagen). B ⁇ ttcher et al.
  • APLE with only 21 differences out of 548 amino acids when compared to ⁇ -PLE, can be produced as an active esterase enzyme in E.coli Origami strains without requiring concomitant overexpression of chaperone proteins; even in the presence of various overexpressed chaperones no effect on APLE activity level is noticed.
  • altering the codon usage of the native APLE gene provided an additional boost to APLE expression in E.coli Origami strains.
  • particularly altering the codon usage to resemble a set of Pichia pastoris genes proved more efficient than performing "codon optimization" towards E.coli (for codon tables see: http://www.kazusa.or.jp/). This result indicates that there is a direct effect of the DNA and derived messenger RNA sequence on the folding efficiency yielding active APLE protein, rather than optimal codon induced increased translation efficiency and protein production level.
  • DsbC E.coli endogenous disulfide bond isomerase
  • APLE Functional expression did not absolutely require a full non- reducing environment in the E.coli cell caused by disruption of both trxB and gor genes. Active APLE expression is possible in E.coli BL21 Star (full reducing environment !), and in E.coli strains in which only one of the genes trxB or gor were inactivated.
  • the gene structure of the optimal APLE gene, C8P has been used to construct various esterase isoforms, allowing their high level production in simple and scalable industrial E. coli fermentation processes.
  • Fig. 4/6 A Plate assay using racemic (4E)-5-chloro-2-isopropylpent-4-enoic acid methyl ester as a substrate.
  • the alphanumerically numbered dots have the following meanings: A. E. coli Origami non-transformed strain
  • A E. coli Origami [pMS470_dsbC_C8P] Fig. 6/6.
  • A E. coli Origami B [p MS470_dsbC_APLE-C8CpO] (APLE C8CpO gene)
  • 5 E. coli Origami B [p MS470_dsbC_APLE-C8P] (APLE C8P gene)
  • Example 1 Isolation of mRNA and cDNA synthesis; identification of alternative pig liver esterase
  • the cDNA obtained was used as a template in a PCR reaction using specific primers fw-PLE and rv-PLE designed to amplify pig liver esterase/amidase sequences related to the gene described by Matsushima et al. (GenBank Accession
  • fw-cPLE ⁇ '-CAGAATTCATGGCTATCGGGCAGCCAGCCTCGC-S' (SEQ ID NO 3)
  • rv-cPLE 5'-CCGGA4TTCAGCCTCCCCTTCACAGCTCAG -3' (SEQ ID NO 4), introducing EcoRI restriction sites (Italics) for cloning purposes. Sequences homologous to known pig liver esterase/amidase sequences are underlined.
  • PCR conditions 30 s denaturation at 98°C, followed by 30 cycles (10 s 98°C, 20 s 68°C, 1 min 72°C) for amplification, and a final incubation for 8 min at 72°C to ensure full-length amplification products.
  • the resulting 1.7 kbp DNA fragment was cleaned using QIAquick Gel Extraction Kit (QIAGEN, Hilden, Germany), digested using EcoRI restriction endonuclease, inserted into plasmid vectors pHILZ and pHIL-D2 (Invitrogen, Carlsbad, USA), and transformed into electrocompetent E.coli TOP10 cells.
  • DNA sequencing of plasmid DNA from randomly selected transformants revealed two different DNA fragments, one of which was completely identical to the gene described by Matsushima et al., which was later also identified as Y-PLE encoding gene by B ⁇ ttcher et al.; the second fragment had the nucleotide sequence SEQ ID NO 5 and encoded a protein (APLE; SEQ ID NO 6) that differed from Y-PLE at 21 out of 548 amino acids of the mature protein sequence.
  • APLE SEQ ID NO 6
  • Y-PLE and APLE genes were adapted for secretory expression in Pichia pastoris by fusion with the ⁇ -mating factor secretion signal sequence as present in vector pPICZ ⁇ (Invitrogen, Carlsbad, USA).
  • the ⁇ -mating factor secretion signal sequence and the ⁇ -PLE and APLE genes were first amplified separately:
  • PCR 1 ⁇ -mating factor secretion signal sequence using the primers: fw-alpha: 5'-TCTTCGAAGAATTCACGATGAGATTTCCTTCAATTTTTACTGC-S'
  • PCR 2 (Y-PLE) and PCR 3 (APLE) using the primers: fw-PLE: ⁇ '-AGAGAGGCTGAAGCTGGGCAGCCAGCCTCGCCG-S'
  • DNA DNA, 0.5 ⁇ M of each primer, 0.2 mM dNTPs, 1x Phusion HF buffer and 1 U of Phusion DNA-Polymerase, according to Phusion High-Fidelity DNA Polymerase Manual (Finnzymes), 3 min denaturation at 85°C, amplification in 30 cycles (30 s 95°C, 30 s 57°C, 15 s 72°C), and a final incubation of 7 min at 72°C.
  • PCR1 ⁇ -mating factor secretion signal amplification
  • PCR2 and PCR3 were the cDNA's in pHILZ vectors described in example 1.
  • Reactions were started in a total volume of 45 ⁇ l with 3 ⁇ l each from PCR1 and PCR2 or PCR3, respectively, 0.2 mM dNTPs, 1x Phusion HF buffer, and 1 U of Phusion DNA-Polymerase, 3 min at 95°C followed by 10 cycles of 30 s at 95°C and 45 s at 72°C. Subsequently, primers fw-alpha and rv-PLE were added to 0.5 ⁇ M final concentration and full-length product amplification was achieved by 3 min denaturation at 95°C, amplification in 30 cycles (30 s 95°C, 30 s 57°C, 15 s 72°C), and a final incubation of 7 min at 72°C.
  • the resulting fragments were purified using the QIAquick PCR Purification Kit (QIAGEN, Hilden, Germany), and after digestion with EcoRI inserted into vector pGAPZ A (Invitrogen, Carlsbad, USA), resulting in plasmids pGAPZA_ ⁇ - PLE and pGAPZA_APLE.
  • DNA of plasmids pGAPZA_ ⁇ -PLE and pGAPZA_APLE was linearized and introduced into Pichia pastoris X-33 according to the Pichia Expression Kit manual (Invitrogen, Carlsbad, USA). Transformants were selected on YPD-agar containing 100mg/I Zeocin.
  • Pichia pastoris transformants carrying pGAPZA_ ⁇ -PLE and pGAPZA_APLE were streaked onto YPD agar supplemented with 100 mg/l Zeocin and grown for 48 h at 30 0 C. Cell material was then lifted onto Whatman 541 hardened ashless 70mm0 filters (Whatman International Ltd., Maidstone, Great Britain) and dried.
  • Enzyme activity is indicated by a color change from red (basic and neutral pH) to yellow (acidic pH), caused by the hydrolysis of (4E)-5-chloro-2-isopropylpent-4- enoic acid methyl ester and the associated liberation of acidic groups.
  • Synthetic APLE gene variants C8P (SEQ ID NO 1 1 ), C8A (SEQ ID NO 13), C8CpO (SEQ ID NO 14), and C8E (SEQ ID NO 15) all encode mature APLE protein with an additional N-terminal Methionine as a required translation startcodon (SEQ ID NO 12).
  • Fw-C8P Fw-C8P (SEQ ID NO 16): CTTTAAGAAG G AG AT ATAGA TA TGGGACAACCAGCTTCGCCGCC
  • Rv-C8P (SEQ ID NO 17):
  • Rv-C8A (SEQ ID NO 19):
  • Ndel and Hindi 11 restriction sites for cloning purposes are in italics, sequences homologous to the gene templates are underlined.
  • Rv-PLEnat (SEQ ID NO 25) CCGCC/A/AGC7TATCACAGCTCAGCATGCTTTATCTTGGGTGG
  • Ndel and Hindi 11 restriction sites for cloning purposes are in italics, sequences homologous to templates are underlined.
  • E.coli strains harboring various expression plasmids were streaked onto LB-agar plates containing 100 ⁇ g/ml I ampicillin and 0.1 mM IPTG, and incubated for 16 h at 37°C.
  • E. coli strains carrying the respective expression plasmid was inoculated in 5 ml of Luria-Bertani (LB) broth with 100 ⁇ g/ml ampicillin and incubated at 28 0 C under continuous shaking for 16 hrs. This culture was then used to inoculate 250 ml LB broth withl OO ⁇ g/ml ampicillin, in 1 L baffled shake flasks. When the culture reached an optical density of 0.6 to 0.8 at 600 nm, IPTG was added to a final concentration of 0.1 mM to induce gene expression. Cells were harvested after 16 to 20 h incubation at 28°C.
  • LB Luria-Bertani
  • Esterase activity was quantitatively determined on cell suspensions in MOPS buffer (100 mM) with 5 mM p- nitrophenyl acetate as substrate. The amount of p-nitrophenol released was determined spectrophotometrically at 405 nm.
  • One unit (U) of esterase activity is defined as the amount of enzyme that liberates 1 micromole p-nitrophenol per minute under the conditions of the test (pH 7.5, 37°C).
  • the expression cassettes for the different APLE encoding genes were transformed to various E.coli strains: both regular gene expression strains like E.coli BL21 strains, and specifically engineered E.coli strains that allow functional intracellular expression of proteins requiring intramolecular disulfide bonds for correct folding and enzymatic activity (Prinz et al., Bessette et al.) were used as expression host strains.
  • E.coli strains of the Origami family Novagen
  • Functional expression of APLE SEQ ID NO 12
  • E.coli Origami strains were transformed with the respective expression vectors, and selected transformants were subsequently evaluated for esterase expression either by plating on substrate specific assay plates or via shake flask cultures.
  • Figure 4A shows the expression difference of C8E and C8P as such and in the presence of chaperone pTf16; the plate results are confirmed by the shake flask results presented in Table 1.
  • E. coli Topi OF' chromosomal DNA was used as a template to amplify a truncated version of the E. coli dsbC gene (native DsbC protein is secreted to the periplasm, the truncated DsbC protein remains in the intracellular compartment) by polymerase chain reaction (PCR) with PhusionTM High-Fidelity DNA Polymerase
  • the PCR product was digested with BamVW and inserted in the
  • APLE was detected by Western blot analysis using a rabbit polyclonal antibody against porcine liver esterase (abeam, Cambridge, UK) as primary antibody and goat-anti- rabbit polyclonal antibody conjugated with alkaline phosphatase (Leinco Technologies Inc., St. Louis, USA) as secondary antibody.
  • Figure 5 shows the Coomassie stained SDS-PAGE gel (Figure 5A) and the results of the Western blotting experiment (Figure 5B), indicating that the protein expression level parallels the activity difference.
  • Figure 5A also shows that truncated DsbC is very well expressed.
  • Example 6 shows that
  • E.coli strain RV308 ATCC 31608
  • two genes involved in intracellular disulfide reduction were inactivated. These two genes, trxB and gor encoding thioredoxin reductase and glutathione oxidoreductase, respectively, were inactivated through deletion using site directed recombination technology according to the procedures described by Datsenko et al. (2000) [9].
  • the initial result of this modification is that the E.coli strain is no longer capable of growing aerobically, except in the presence of a reducing agent; however, suppressor mutations restoring aerobic growth in the absence of a reductant are easily selected.
  • deletion cassettes were obtained by PCR using the following primers and plasmid pKD3 as a template: Application in this reaction of fw-trxB (SEQ ID NO 28): 5'- GTAAATTCCCTACAATCCTGCCCATTGTCTGCCAACAACTATGGGGATCTTGTGTA GGCTGGAGCTGCTTC-3' and rv-trxB (SEQ ID NO 29):: 5'-
  • the trxB and gor deletion cassettes were transformed separately to an E.coli RV308 strain that already contains plasmid pKD46, and successful transformants were selected based on their acquired resistance towards the antibiotic chloramphenicol. Correct exchange of the trxB gene or the gor gene by the respective deletion cassettes was confirmed by PCR controls and Southern blotting. The chloramphenicol resistance gene was subsequently removed by transformation with plasmid pCP20, encoding a FLP recombinase enzyme [reference 6]. The resulting E.coli strain RV308 ⁇ trxB was checked again for a clean deletion of trxB using PCR and Southern blotting. Similarly the clean deletion of the gor gene i n E. coli strain RV308 confirmed.
  • the genes with their encoded proteins are represented by: Natural isoforms: New hypothetical Bos taurus ⁇ -PLE like gene (SEQ ID NO 32) C8P encoded natural esterases: C8P- ⁇ -PLE (SEQ ID NO 34) and C8P-PICE (SEQ ID NO 36).
  • C8P encoded hybrid esterases C8P-H1 (SEQ ID NO 38), C8P-H2 (SEQ ID NO 40), C8P-H3 (SEQ ID NO 42), and C8P-H4 (SEQ ID NO 44).

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a recombinant E. coli strain characterized in that the organisms contains a gene coding for a protein having esterase activity. Such E. coli is suitable for the preparation of a protein with esterase activity, whereby the expression takes place without coexpression of GroEL and/or GroES from a plasmid. The expression of glutathione reductase and/or thioredoxin reductase may be abolished by mutation. Furthermore, the ability of the organism to grow under oxygen-rich conditions has been restored by mutation. The expression of the gene of the protein with esterase activity is unaccompanied by the expression of an additional gene encoding a heat shock chaperone protein.

Description

PREPARATION OF AN ESTERASE
The present invention relates to a method for the preparation of a protein with esterase activity comprising expression of a gene encoding such a protein in an Escherichia coli (E. coli) strain.
High level expression of proteins with Pig Liver Esterase activity is not easily realized. Reports by Lange et a/ (2001 ) [1] indicate low but detectable production of the γ-isoenzyme of Pig Liver Esterase (γ-rPLE) in Pichia pastoris. More recently a method has been described by Bόttcher et al. (2007) [2]. These authors showed that the expression of the γ-isoenzyme of Pig Liver Esterase (γ-rPLE) in an E. coli strain was not a straightforward process. Such expression failed completely if no additional measures were taken. These measures imply not only proper selection of a suitable E. coli strain, but also co-expression of chaperone proteins. In particular, preparation of functional γ-rPLE turned out to be possible only in the E. coli strain Origami, co- expressing considerable amounts of the chaperone proteins designated as GroEL and GroES.
At least part of the problems encountered in proper expression of γ-rPLE relates to the occurrence of multiple disulfide bonds in the protein.
Very surprisingly and against the teaching reported by Bόttcher et al. (2007) [1] it was discovered according to the present invention that functional expression of a protein with pig liver esterase (PLE) activity could be achieved without the extensive additional measures disclosed by Bόttcher et al. (2007) [1] and in particular without co-expression of additional genes.
Accordingly, the present invention relates to a method for the preparation of a protein with esterase activity comprising expression of a gene encoding such protein in an E. coli strain, characterized in that the gene encoding the protein with esterase activity has at least 70% identity, preferably at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity and most preferably at least 99% identity to the polynucleotide of SEQ ID NO 1 1 , SEQ ID NO 32, SEQ ID NO 34, SEQ ID NO 36, SEQ ID NO 38, SEQ ID NO 40, SEQ ID NO 42 or SEQ ID NO 44 and encodes a protein that has at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity, more preferably at least 99% identity to SEQ ID NO 12, SEQ ID NO 33, SEQ ID NO 35, SEQ ID NO 37, SEQ ID NO 39, SEQ ID NO 41 , SEQ ID NO 43 or SEQ ID NO 45, respectively. It is an advantage of the invention that correctly folded esterases are obtained, without the need to co-express GroEL and/or GroES from a plasmid. In a preferred embodiment the expression takes place without coexpression of GroEL and/or GroES from a plasmid. In the framework of this invention, identity is calculated as described in Tatiana A. Tatusova, Thomas L. Madden (1999), "Blast 2 sequences - a new tool for comparing protein and nucleotide sequences", FEMS Microbiol Lett. 174:247-250, using the following standard parameters at http://www.ncbi.nlm.nih.qov/BLAST/bl2seg/wblast2.cqi
for Protein sequences:
Matrix: BLOSUM62
Open gap: 5 extension gap: 2 Penalties gap x_dropoff: 1 1
Expected: 10 word size: 1 1
for nucleotide sequences: Reward for match: 1
Penalty for mismatch:-2
Open gap: 1 1 extension gap: 1
Penalties gap x_dropoff: 50 Expected: 10 word size: 3
More preferably, the invention relates to a method for the preparation of a protein with esterase activity comprising expression of a gene encoding such protein in an E. coli strain, characterized in that the gene encoding the protein with esterase activity has at least 70% identity, preferably at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity and most preferably at least 99% identity to the polynucleotide of SEQ ID NO 1 1 , and encodes a protein that has at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity, more preferably at least 99% identity to SEQ ID NO 12.
According to a further embodiment the present invention relates to a method for the preparation of a protein with esterase activity comprising expression of a gene encoding such protein in an E. coli strain, characterized in that the gene encodes a protein that has at least 80 % identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity, more preferably at least 99% identity to. SEQ ID NO 12. SEQ ID NO 12 represents the amino acid sequence of APLE. According to another embodiment the present invention relates to a recombinant E. coli strain suitable for the preparation of a protein with esterase activity, characterized in that the organism contains a gene encoding the protein with esterase activity which has at least 70 % identity, preferably 80% identity, more preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity and most preferably at least 99% identity to the polynucleotide of SEQ ID NO 1 1 SEQ ID NO 32, SEQ ID NO 34, SEQ ID NO 36, SEQ ID NO 38, SEQ ID NO 40, SEQ ID NO 42 or SEQ ID NO 44, and encodes a protein that has at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity, more preferably at least 99% identity to SEQ ID NO 12 SEQ ID NO 33, SEQ ID NO 35, SEQ ID NO 37, SEQ ID NO 39, SEQ ID NO 41 , SEQ ID NO 43 or SEQ ID NO 45, respectively. In a preferred embodiment, the recombinant E. coli strains do not comprise a plasmid for co-expression of GroEL and/or GroES and are capable of producing proteins with esterase activity. In particular, the present invention relates to a recombinant E. coli strain suitable for the preparation of a protein with esterase activity according to the method described above, wherein the organism contains a gene coding for a protein with esterase activity wherein the gene has at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, at least 95% identity, preferably 98% identity and most preferably at least 99% identity to the polynucleotide of SEQ ID NO 1 1 , and encodes a protein that has at least 80 % identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity, more preferably at least 99% identity to SEQ ID NO 12.
In particular, the present invention also relates to a recombinant E. coli strain suitable for the preparation of a protein with esterase activity according to - A -
the method described above, wherein the organism contains a gene coding for a protein that has at least 80 % identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity, more preferably at least 99% identity to SEQ ID NO. 12. According to a further embodiment the present invention relates to a recombinant E. coli strain suitable for the preparation of a protein with esterase activity, characterized in that the expression of glutathione reductase and/or thioredoxin reductase is abolished, e.g. by a mutation.
According to a further embodiment of the present invention the expression of both glutathione reductase and thioredoxin reductase of the recombinant E. coli strain is abolished.
Prinz et al (1997) [3] have taught that the activity of a protein containing disulfide bridges (in particular alkaline phosphatase) expressed in E. coli is higher if this protein has been produced in a strain in which the activity of a reductase has been abolished. It was shown also that if both reductases have been abolished spontaneous mutations will take place which enable growth under aerobic conditions. Beckwith et al. (2005) [4] identified a possible spontaneous mutation which restores the ability of the organism to grow under aerobic conditions. They claimed that a mutation in the AhpC gene, comprising an insertion of three nucleotides in the TCT triplet rich region at about codons 36-39 of this gene provides this effect.
Bessette et al. (1999) [5] have analyzed the expression system described by Prinz et al. (1997) in further detail and have shown that the co-expression of the helper protein DsbC (disulfide bond isomerase) enhances the expression of active tissue plasminogen activator and of active alkaline phosphatase. In addition it was disclosed that intracellular expression of a truncated version of DsbC resulted in a functional disulfide bond isomerase protein.
According to a further embodiment of the present invention the recombinant E.coli has been further modified so as to produce a low molecular weight helper protein which is capable to introduce disulfide bonds for a proper folding of proteins requiring disulfide bonds and or is capable to correct misfolding caused by inappropriate disulfide bonds.
Suitable low molecular weight helper proteins referred to above are disulfide isomerases. In a particularly preferred embodiment the helper protein is a protein indicated as DsbC of E. coli (Bessette et al (1999)). E. coli strains which suitably can be used according to the present invention have the property of a less reductive intracellular environment than wild-type E. coli strains. A particular example of such E. coli strain is the E. coli Origami strain which possesses mutations in the glutathione reductase gene and the thioredoxin reductase gene (Terpe (2006)[6]. When functionally expressed, these genes are counteracting disulfide bond formation in the cytoplasm. Thus heterologous expression of proteins containing disulfide bonds was hitherto considered to require elimination of glutathione and thioredoxin reductase activities, respectively.
However, it was discovered that only one of the mutations is sufficient to have increased functional expression of proteins with PLE activity.
Surprisingly, suitable esterase encoding genes are polynucleotides which encode esterase proteins, and which have codon usage adapted to Pichia.
More in particular, the present invention relates to genes encoding functional esterase protein and which have nucleotide sequence with at least 70% identity, preferably at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity and most preferably at least 99% at least 95 % identity compared to the polynucleotide of SEQ ID NO 1 1 , and encodes a protein that has at least 80 % identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity, more preferably at least 99% identity to SEQ ID NO 12.
In an embodiment of the invention, the invention relates to an isolated polynucleotide encoding a functional protein with esterase activity which has a nucleotide sequence of at least 70% identity, preferably at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least
95% identity, preferably at least 98% identity and most preferably at least 99% identity to the polynucleotide of SEQ ID NO 1 1 , SEQ ID NO 32, SEQ ID NO 34, SEQ ID NO 36, SEQ ID NO 38, SEQ ID NO 40, SEQ ID NO 42, or SEQ ID NO 44 and encodes a protein that has at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity, more preferably at least 99% identity to SEQ ID NO 12, SEQ ID NO 33, SEQ ID NO 35, SEQ ID NO 37, SEQ ID NO 39, SEQ ID NO 41 , SEQ ID NO 43 or SEQ ID NO 45, respectively.
Production of proteins in large amounts can be achieved by expression of the gene encoding the protein of interest in inter alia microbial hosts like bacteria and yeasts, that are amenable to large scale fermentative production. Bacterial protein expression systems have recently been reviewed by Terpe (2006).
According to the present invention such a gene encoding the protein of interest is expressed in a transformed E. coli strain. Transformation of E. coli with the heterologous gene can be accomplished by any suitable method, such as by electroporation, by heat shock transformation, or by chemical transformation.
For transformation of E. coli the gene encoding the protein with esterase activity can be part of a vector, such as a plasmid, a bacteriophage or a phagemid. The invention also relates to vectors suitable for replication and expression in E. coli containing a polynucleotide encoding a protein with esterase activity which has a nucleotide sequence with at least 70% identity, preferably at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity and most preferably at least 99% identity to the polynucleotide of SEQ ID NO 1 1 , SEQ ID NO 32, SEQ ID NO 34, SEQ ID NO 36, SEQ ID NO 38, SEQ ID NO 40, SEQ ID NO 42, or SEQ ID NO 44 and encodes a protein that has at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity, more preferably at least 99% identity to SEQ ID NO 12, SEQ ID NO 33, SEQ ID NO 35, SEQ ID NO 37, SEQ ID NO 39, SEQ ID NO 41 , SEQ ID NO 43 or SEQ ID NO 45, respectively.
The vector should contain the necessary functional elements suitable for e.g. selection, replication, gene regulation transcription (initiation and termination) and the cloning of the desired gene sequence. The selection of an E. coli strain, a vector, the vector elements, the method of transfection, the culturing of the transfected organisms and the harvesting and isolation of the desired polypeptide suitable for use according to the present invention will be obvious for the man skilled in the art.
Commercial Pig Liver Esterase (PLE) preparations, obtained from animal sources by extraction of pig liver, are widely used in synthetic organic chemistry.
The commercial enzyme preparation has been shown to at least consist of several PLE isozymes possibly with different substrate specificities. Commercial PLE is used in a variety of biocatalytic reactions exploiting the broad substrate specificity and enantioselectivity of the ester hydrolysis.
E.g. WO 01/09079 describes the use of animal derived PLE for the selective hydrolysis of the (R)-enantiomer of (4E)-5-chloro-2-isopropylpent-4-enoic acid methylester.
As for pharmaceuticals production the interest in using only non animal derived raw materials is increasing due to concerns with respect to transmissible diseases caused by among others viruses and prions, microbial production of esterases using recombinant DNA technology can provide a solution for this issue.
Based on available information (Matsushima et al (1991 ) [7]., Lange et al. (2001 )) on identification and expression of the PLE major (γ-) isozyme, cDNA from pig liver was prepared and screened for PLE γ- isozyme related sequences. For this purpose, PCR primers were designed that recognize cDNA fragments encoding PLE γ- isozyme related proteins. By DNA sequencing of a number of these γ-PLE related cDNA fragments, as expected the known γ-PLE encoding DNA sequence was retrieved, but in addition a second PLE isozyme was identified that differed from the mature γ-PLE protein in 21 out of 548 amino acids. This new PLE isozyme was called APLE for Alternative Pig Liver Esterase. For functional characterization of both the γ-PLE and APLE isozymes with respect to substrate specificity, both γ-PLE and APLE encoding DNA sequences were inserted in expression cassettes designed for secreted protein production in Pichia pastoris, similar as described by Lange et al.. In contrast to the latter publication, successful expression of both proteins was accomplished even when the C-terminal amino acid sequence HAEL was present in the encoded protein. Esterase activity was identified by activity determination using a general esterase assay using alpha-naphtylacetate.
Surprisingly, although having a more than 95% identity in amino acid sequence, a distinct difference between γ-PLE and APLE was observed with respect to the hydrolysis of 5-halogen-2-alkylpent-4-enoic acid esters. APLE was able to hydrolyze racemic (4E)-5-chloro-2-isopropylpent-4-enoic acid methylester very efficiently, whereas γ-PLE did not hydrolyze this compound at all. Moreover, it could be shown that the hydrolysis of racemic (4E)-5-chloro-2-isopropylpent-4-enoic acid methylester was by selective hydrolysis of the R-enantiomer only: APLE showed no reactivity towards (2S, 4E)-5-chloro-2-isopropylpent-4-enoic acid methylester. It can be concluded that the known enantioselective hydrolysis of 5-chloro-2-isopropylpent-4- enoic acid methylester by animal derived PLE as described in WO 01/09079 can be attributed to a minor isozyme, APLE, present in the commercial pig liver extract.
For large scale production of a non-animal derived esterase preparation capable of enantioselective hydrolysis of 5-halogen-2-alkylpent-4-enoic acid esters, the Pichia pastoris based expression levels of APLE insufficient. Therefore alternative protein production systems were contemplated, taking into account that fast and reliable production at industrial scales will be required for economic production.
PLE isozymes are structurally very related, and it is known that the protein requires intramolecular disulfide bonds for maintaining its structural integrity and activity. Many attractive microbial protein expression systems will only allow disulfide bonds to be formed when the protein is targeted to the extracellular environment, essentially as described above for Pichia pastoris. Most bacteria, notably Escherichia coli, maintain a reducing environment intracellular^; however, mutants of E.coli in which disulfide bonds can be formed in proteins expressed in the cytoplasm have been described (Prinz et al. (1997)), and various strains are available commercially (E.coli Origami, Novagen). Bόttcher et al. have made use of such E.coli strains, and have shown that γ-PLE can be successfully produced provided that additional measures are taken to ensure proper folding of the γ-PLE protein by overexpression of heat shock proteins; these heat shock proteins, or chaperones, function as folding or refolding helpers to assist proteins to attain their natural conformation. Bόttcher et al. (2007) report that no expression of active γ-PLE was observed in the absence of large amounts of the chaperone proteins.
Surprisingly APLE, with only 21 differences out of 548 amino acids when compared to γ-PLE, can be produced as an active esterase enzyme in E.coli Origami strains without requiring concomitant overexpression of chaperone proteins; even in the presence of various overexpressed chaperones no effect on APLE activity level is noticed.
More surprisingly, altering the codon usage of the native APLE gene (as isolated from pig liver cDNA) provided an additional boost to APLE expression in E.coli Origami strains. Still more surprisingly, particularly altering the codon usage to resemble a set of Pichia pastoris genes proved more efficient than performing "codon optimization" towards E.coli (for codon tables see: http://www.kazusa.or.jp/). This result indicates that there is a direct effect of the DNA and derived messenger RNA sequence on the folding efficiency yielding active APLE protein, rather than optimal codon induced increased translation efficiency and protein production level.
Further improvement of active APLE enzyme production was achieved by overexpressing an E.coli endogenous disulfide bond isomerase (DsbC); as already shown by Bessette et al. (1999), truncated versions of DsbC protein can be constructed, that result in intracellular localization of this protein. Combining expression of such truncated DsbC protein results in a considerable increase in APLE activity expressed by the various recombinant E.coli hosts.
Functional expression of APLE did not absolutely require a full non- reducing environment in the E.coli cell caused by disruption of both trxB and gor genes. Active APLE expression is possible in E.coli BL21 Star (full reducing environment !), and in E.coli strains in which only one of the genes trxB or gor were inactivated.
The gene structure of the optimal APLE gene, C8P, has been used to construct various esterase isoforms, allowing their high level production in simple and scalable industrial E. coli fermentation processes.
Description of the Figures
Fig. 1/6:
A. Plate-assay of P. pastoris strain X-33 transformed with an APLE or γ-PLE expression cassette using racemic (4E)-5-chloro-2-isopropylpent-4-enoic acid methyl ester as a substrate. B. Plate-assay of P. pastoris strain X33 transformed with an APLE or γ-PLE expression cassette using (2S,4E)-5-chloro-2-isopropylpent-4-enoic acid methyl ester as a substrate.
Fig. 2/6:
A. Functional map of expression plasmid pMS470 _C8P; B. Functional map of expression plasmid pMS470_dsbC_C8P.
Fig. 3/6:
Plate-assay using racemic (4E)-5-chloro-2-isopropylpent-4-enoic acid methyl ester as a substrate and cell-free extract of E. coli BL21 Star strains as a source of APLE.
Fig. 4/6 A: Plate assay using racemic (4E)-5-chloro-2-isopropylpent-4-enoic acid methyl ester as a substrate.
1. E. co// Origami [pMS470_C8E] induced with 0.1 mM IPTG
2. E. co// Origami [pMS470_C8E] induced with 0.5 mM IPTG 3. E. co// Origami [pMS470_C8E] induced with 0.1 mM IPTG in the presence of chaperone encoding plasmid pTf12 4. E. coli Origami [pMS470_C8P] induced with 0.1 mM IPTG
3. E. coli Origami [pMS470_C8P] induced with 0.1 mM IPTG in the presence of chaperone encoding plasmid pTf12 B. Plate assay using racemic (4E)-5-chloro-2-isopropylpent-4-enoic acid methyl ester as a substrate On the left a 2 μl sample of whole cell suspension has been applied to the plate, on the right to each sample 1 μl of 1 M potassium phosphate buffer, pH 8.0 was added to highlight the most efficient hydrolysis. The alphanumerically numbered dots have the following meanings: A. E. coli Origami non-transformed strain
B. E. coli Origami [pMS470_C8P] stored at 40C for 1 month
C. E. coli Origami [pMS470_C8P]
D. E. coli Origami [pMS470_dsbC_C8P]
E. technical PLE (commercial pig liver esterase, Boehringer) Fig. 5/6:
A. Coomassie-stained SDS-PAGE.
1 = technical PLE
2 = E. coli Origami non-transformed strain
3 = E. coli Origami [pMS470_C8P] A = E. coli Origami [pMS470_dsbC_C8P]
5 = PageRuler prestained protein standard
B. Western blot using polyclonal antibody against PLE.
1 = technical PLE
2 = E. coli Origami non-transformed strain 3 = E. coli Origami [pMS470_C8P]
A = E. coli Origami [pMS470_dsbC_C8P] Fig. 6/6.
Qualitative plate assay of various esterase gene constructs using dimethyl methylsuccinate as substrate (both γ-PLE and APLE are reactive towards this substrate). 1 = E. coli Origami B [pMS470_dsbC_ γ-PLE] (native γ-PLE)
2 = E. coli Origami B [p MS470_dsbC_APLE] (native APLE)
3 = E. coli Origami B [p MS470_dsbC_APLE-C8A] (APLE C8A gene)
A = E. coli Origami B [p MS470_dsbC_APLE-C8CpO] (APLE C8CpO gene) 5 = E. coli Origami B [p MS470_dsbC_APLE-C8P] (APLE C8P gene)
Q = E. coli Origami B [p MS470_dsbC_APLE-C8E2] (APLE C8E2 gene) I = E. coli Origami B [p MS470_dsbC_γ-PLE-C8P] (γ-PLE C8A gene)
8 = E. coli Origami B [p MS470_dsbC_APLE-C8E] (APLE C8E gene)
9 = E. coli Origami B [p MS470_dsbC_BosTaurus] (BosTaurus γ-PLE like gene) 10 =Negative control
Examples
Example 1 Isolation of mRNA and cDNA synthesis; identification of alternative pig liver esterase
(APLE)
0.7 g fresh pig liver from a local slaughterhouse was frozen in liquid nitrogen and homogenized using mortar and pestle. mRNA was extracted from the homogenate using the Fast Track® 2.0 mRNA Isolation Kit (Invitrogen, Carlsbad, USA) according to the manufacturer's instructions. The extraction protocol yielded 13 μg mRNA. 0.26 μg mRNA was taken as template for cDNA synthesis using Superscript™
III First-Strand Synthesis System for RT-PCR (Invitrogen, Carlsbad, USA), according to the manufacturer's instructions.
The cDNA obtained was used as a template in a PCR reaction using specific primers fw-PLE and rv-PLE designed to amplify pig liver esterase/amidase sequences related to the gene described by Matsushima et al. (GenBank Accession
No X63323; SEQ ID NO 1 ). fw-cPLE: δ'-CAGAATTCATGGCTATCGGGCAGCCAGCCTCGC-S' (SEQ ID NO 3) rv-cPLE: 5'-CCGGA4TTCAGCCTCCCCTTCACAGCTCAG -3' (SEQ ID NO 4), introducing EcoRI restriction sites (Italics) for cloning purposes. Sequences homologous to known pig liver esterase/amidase sequences are underlined.
Amplification was performed using 1 U Phusion DNA Polymerase
(Finnzymes, Espoo, Finland), with 500 ng cDNA as template, 20 μmol of each forward and reverse primer according to the Phusion High-Fidelity DNA Polymerase Manuals (Finnzymes). PCR conditions: 30 s denaturation at 98°C, followed by 30 cycles (10 s 98°C, 20 s 68°C, 1 min 72°C) for amplification, and a final incubation for 8 min at 72°C to ensure full-length amplification products.
The resulting 1.7 kbp DNA fragment was cleaned using QIAquick Gel Extraction Kit (QIAGEN, Hilden, Germany), digested using EcoRI restriction endonuclease, inserted into plasmid vectors pHILZ and pHIL-D2 (Invitrogen, Carlsbad, USA), and transformed into electrocompetent E.coli TOP10 cells.
DNA sequencing of plasmid DNA from randomly selected transformants revealed two different DNA fragments, one of which was completely identical to the gene described by Matsushima et al., which was later also identified as Y-PLE encoding gene by Bόttcher et al.; the second fragment had the nucleotide sequence SEQ ID NO 5 and encoded a protein (APLE; SEQ ID NO 6) that differed from Y-PLE at 21 out of 548 amino acids of the mature protein sequence.
Example 2 Functional expression of APLE and characterization of APLE activity
Both Y-PLE and APLE genes were adapted for secretory expression in Pichia pastoris by fusion with the α-mating factor secretion signal sequence as present in vector pPICZα (Invitrogen, Carlsbad, USA).
The α-mating factor secretion signal sequence and the γ-PLE and APLE genes were first amplified separately:
PCR 1 : α-mating factor secretion signal sequence using the primers: fw-alpha: 5'-TCTTCGAAGAATTCACGATGAGATTTCCTTCAATTTTTACTGC-S'
(SEQ ID NO 7) rv-alpha: 5'-GAGGCTGGCTGCCCAGCTTCAGCCTCTCTTTTCTCG-S' (SEQ ID NO 8)
PCR 2 (Y-PLE) and PCR 3 (APLE) using the primers: fw-PLE: δ'-AGAGAGGCTGAAGCTGGGCAGCCAGCCTCGCCG-S'
(SEQ ID NO 9) rv-PLE: 5'-ATGGTACCGAATTCTCACTTTATCTTGGGTGGCTTCTTTG-S' (SEQ ID NO 10)
EcoRI restriction sites for cloning purposes are italicized, whereas sequences homologous to templates are underlined.
PCR conditions for all reactions: 50 μl reaction mix with 2 ng template
DNA, 0.5 μM of each primer, 0.2 mM dNTPs, 1x Phusion HF buffer and 1 U of Phusion DNA-Polymerase, according to Phusion High-Fidelity DNA Polymerase Manual (Finnzymes), 3 min denaturation at 85°C, amplification in 30 cycles (30 s 95°C, 30 s 57°C, 15 s 72°C), and a final incubation of 7 min at 72°C.
Template for the α-mating factor secretion signal amplification (PCR1 ) was plasmid pPICZα; template for the γ-PLE and APLE gene amplification (PCR2 and PCR3, respectively) were the cDNA's in pHILZ vectors described in example 1.
Subsequently, the separate fragments obtained were combined in fusion reactions between the α-mating factor fragment and each of the pig liver esterase genes, as follows: α-mating factor fragment (PCR1 )+ γ-PLE fragment (PCR2); α-mating factor fragment (PCR1 ) + APLE fragment (PCR3).
Reactions were started in a total volume of 45 μl with 3 μl each from PCR1 and PCR2 or PCR3, respectively, 0.2 mM dNTPs, 1x Phusion HF buffer, and 1 U of Phusion DNA-Polymerase, 3 min at 95°C followed by 10 cycles of 30 s at 95°C and 45 s at 72°C. Subsequently, primers fw-alpha and rv-PLE were added to 0.5 μM final concentration and full-length product amplification was achieved by 3 min denaturation at 95°C, amplification in 30 cycles (30 s 95°C, 30 s 57°C, 15 s 72°C), and a final incubation of 7 min at 72°C.
The resulting fragments were purified using the QIAquick PCR Purification Kit (QIAGEN, Hilden, Germany), and after digestion with EcoRI inserted into vector pGAPZ A (Invitrogen, Carlsbad, USA), resulting in plasmids pGAPZA_γ- PLE and pGAPZA_APLE.
DNA of plasmids pGAPZA_γ-PLE and pGAPZA_APLE was linearized and introduced into Pichia pastoris X-33 according to the Pichia Expression Kit manual (Invitrogen, Carlsbad, USA). Transformants were selected on YPD-agar containing 100mg/I Zeocin.
Pichia pastoris transformants carrying pGAPZA_γ-PLE and pGAPZA_APLE were streaked onto YPD agar supplemented with 100 mg/l Zeocin and grown for 48 h at 300C. Cell material was then lifted onto Whatman 541 hardened ashless 70mm0 filters (Whatman International Ltd., Maidstone, Great Britain) and dried. Then, filters were soaked in a mixture of 6 mg α-naphthylacetate (Sigma, dissolved in 500 μl acetone), 2.5 mg Fast Blue Salt BN (Sigma, dissolved in 125 μl water) and 5 ml 0.1 M potassium phosphate buffer, pH 7.0, incubated to visualize esterase activity by hydrolysis of α-naphthylacetate resulting in a colored product. All Pichia pastoris strains transformed with γ-PLE and APLE expression cassettes showed increased esterase activity when compared to the non-transformed Pichia pastoris X- 33 parent strain.
A similar set-up as described for the general esterase assay was developed to determine activity of γ-PLE and APLE towards 5-halogen-2-alkylpent-4- enoic acid esters. The filters were now soaked in assay mixture consisting of 14 mM potassium phosphate buffer, pH 8.0, 10 % (v/v) racemic (4E)-5-chloro-2-isopropylpent- 4-enoic acid methyl ester (DSM Fine Chemicals Austria Nfg GmbH & Co KG, Linz, Austria), 1 % (v/v) Emulgen 913 detergent (Kao Corporation, Tokyo, Japan), 2 mg/ml phenol red. Enzyme activity is indicated by a color change from red (basic and neutral pH) to yellow (acidic pH), caused by the hydrolysis of (4E)-5-chloro-2-isopropylpent-4- enoic acid methyl ester and the associated liberation of acidic groups.
As shown in Figure 1 A, only APLE gives a positive signal indicating that this enzyme is capable of hydrolysis of racemic (4E)-5-chloro-2-isopropylpent-4- enoic acid methyl ester; γ-PLE does not hydrolyze this substrate to a detectable extent. More importantly, it can be concluded that the APLE enzyme selectively hydrolyzes (2R,4E)-5-chloro-2-isopropylpent-4-enoic acid methyl ester: in a plate assay in which only the S-enantiomer of the substrate was applied to the filter no hydrolysis of the S- form can be detected (Figure 1 B).
Example 3
Design of synthetic APLE genes
Based on the amino acid sequence of mature APLE (SEQ ID NO 6) derived from the APLE encoding gene (SEQ ID NO 5), synthetic genes with altered codon usage and lacking the native secretion signal sequence were designed and chemically synthesized (supplier: DNA2.0, Menlo Park, USA). Synthetic APLE gene variants C8P (SEQ ID NO 1 1 ), C8A (SEQ ID NO 13), C8CpO (SEQ ID NO 14), and C8E (SEQ ID NO 15) all encode mature APLE protein with an additional N-terminal Methionine as a required translation startcodon (SEQ ID NO 12).
For expression studies in E. coli, synthetic APLE genes were inserted into plasmid pMS470 (Balzer et al. (1992) [8]). PCR amplification (for conditions see Example 1 ) was used to add an Nde\ restriction site (including an ATG startcodon) to the 5' end and a Hinό\\\ restriction site to the 3' end, respectively, using the following primers:
For gene APLE C8P the following PCR primers were designed Fw-C8P (SEQ ID NO 16): CTTTAAGAAG G AG AT ATAGA TA TGGGACAACCAGCTTCGCCGCC
Rv-C8P (SEQ ID NO 17):
CCCCCCCCCCCC/A/AGCTTATTACAATTCGGCGTGCTTTATCTTAGG
For gene APLE C8A the following PCR primers were designed Fw-C8A (SEQ ID NO 18):
ATTTATAC/A TA TGGGACAACCAGCTTCGCCGCCTGTCG
Rv-C8A (SEQ ID NO 19):
CCGCCA4GCTTATTACAATTCAGCGTGCTTAATCTTTGGAGGC
For gene APLE C8CpO the following PCR primers were designed Fw-C8CpO (SEQ ID NO 20):
ATTTATAC/A TA TGGGCCAACCTGCTTCTCCACCTGTTG
Rv-C8CpO (SEQ ID NO 21 ):
CCGCCA4GCTTATTACAATTCAGCATGCTTGATCTTTGGTGGC
For gene APLE C8E the following PCR primers were designed Fw-C8E (SEQ ID NO 22):
ATTTATAC/A TA TGGGACAACCAGCTTCGCCGCCTGTCG
Rv-C8E (SEQ ID NO 23):
CCGCCA4GC7TATT ACAATTCGGCGTGCTTT ATCTT AGGTGGC
Ndel and Hindi 11 restriction sites for cloning purposes are in italics, sequences homologous to the gene templates are underlined.
The resulting fragments were inserted into Nde\/Hinό\\\ digested pMS470 creating the plasmids pMS470_C8P, pMS470_C8A, pMS470_C8CpO, and pMS470_C8E. A map of plasmid pMS470_C8P is depicted in Figure 2A.
Natural sequences of APLE and γ-PLE were obtained as cDNA from pig liver as described in example 1. These natural genes were amplified and transferred to E.coli expression vectors using the following primers:
Fw-PLEnat (SEQ ID NO 24)
ATTTATAC/A TA TGGGGCAGCCAGCCTCGCCGCCTG
Rv-PLEnat (SEQ ID NO 25) CCGCC/A/AGC7TATCACAGCTCAGCATGCTTTATCTTGGGTGG
Ndel and Hindi 11 restriction sites for cloning purposes are in italics, sequences homologous to templates are underlined.
Because these natural genes have an internal Hinό\\\ restriction site, a two-step ligation was necessary: first the longer fragment with Nde\ and Hinό\\\ was inserted into pMS470, subsequently each gene was completed by adding the 3' Hinό\\\ fragment, resulting in the final expression vectors pMS470_ γ-PLE and pMS470_APLE, respectively.
Example 4. Transformation of APLE expression vectors to suitable E.coli host: functional expression of APLE in E. coli
For analyzing esterase expression in E.coli, the following procedures were used for cultivation and preparation of cells for activity analysis.
For plate assays, E.coli strains harboring various expression plasmids were streaked onto LB-agar plates containing 100 μg/ml I ampicillin and 0.1 mM IPTG, and incubated for 16 h at 37°C.
For liquid culture assays, E. coli strains carrying the respective expression plasmid was inoculated in 5 ml of Luria-Bertani (LB) broth with 100 μg/ml ampicillin and incubated at 28 0C under continuous shaking for 16 hrs. This culture was then used to inoculate 250 ml LB broth withl OO μg/ml ampicillin, in 1 L baffled shake flasks. When the culture reached an optical density of 0.6 to 0.8 at 600 nm, IPTG was added to a final concentration of 0.1 mM to induce gene expression. Cells were harvested after 16 to 20 h incubation at 28°C.
Plate assays: Assay on cells grown on agar plates have been described in Example 2 with various esterase substrates.
Activity analysis on liquid E.coli cultures: Esterase activity was quantitatively determined on cell suspensions in MOPS buffer (100 mM) with 5 mM p- nitrophenyl acetate as substrate. The amount of p-nitrophenol released was determined spectrophotometrically at 405 nm. One unit (U) of esterase activity is defined as the amount of enzyme that liberates 1 micromole p-nitrophenol per minute under the conditions of the test (pH 7.5, 37°C).
The expression cassettes for the different APLE encoding genes were transformed to various E.coli strains: both regular gene expression strains like E.coli BL21 strains, and specifically engineered E.coli strains that allow functional intracellular expression of proteins requiring intramolecular disulfide bonds for correct folding and enzymatic activity (Prinz et al., Bessette et al.) were used as expression host strains. For this purpose, commercially available E.coli strains of the Origami family (Novagen) were used, notably Origami 1 , Origami 2, and Origami B. Functional expression of APLE (SEQ ID NO 12) was observed in standard expression strain E. coli BL21 Star (Figure 3), however activity was far below activities obtained by the use of E. coli Origami strains.
E.coli Origami strains were transformed with the respective expression vectors, and selected transformants were subsequently evaluated for esterase expression either by plating on substrate specific assay plates or via shake flask cultures.
The expression levels of several APLE gene variants are summarized in Figure 4A and Table 1 ; gene C8E has only minor changes as compared to natural APLE gene. Figure 4A shows the expression difference of C8E and C8P as such and in the presence of chaperone pTf16; the plate results are confirmed by the shake flask results presented in Table 1.
Figure imgf000018_0001
A series of experiments was executed to assess whether co- expression of various heat shock chaperones contributed to APLE expression. The results (summarized in table 2) show that heat shock protein/chaperone expression does not significantly affect APLE production.
Figure imgf000019_0001
Example 5.
Increase in APLE expression through addition of DsbC With no effect observed of co-expressed heat shock proteins, it was investigated whether other cofactors like overexpression of the E. coli endogenous disulfide-isomerase gene dsbC (Bessette et al.) would affect expression of APLE in
E. coli.
E. coli Topi OF' chromosomal DNA was used as a template to amplify a truncated version of the E. coli dsbC gene (native DsbC protein is secreted to the periplasm, the truncated DsbC protein remains in the intracellular compartment) by polymerase chain reaction (PCR) with Phusion™ High-Fidelity DNA Polymerase
(Finnzymes, Espoo, Finland), using Phusion HF-Buffer and the following conditions: 5 minutes denaturation at 95°C, amplification in 30 cycles (10 s 98°C, 30 s 66°C, 30 s 72°C), and a final incubation of 8 min at 72°C. Primers used were designed to include a Shine-Dalgamo sequence in front of truncated DsbC coding sequence:
Fw-dsbC (SEQ ID NO 26):
5'-
CGGATCCTTTAACTTTAAGAAGGAGATATAATGGATGACGCGGCAATTCAACAAAC G-3'
Rv-dsbC (SEQ ID NO 27):
5'-CGGATCCTTATTTACCGCTGGTCATTTTTTGGTGTTCG-S'
The PCR product was digested with BamVW and inserted in the
BamVW restriction site of the APLE expression plasmid pMS470_C8P. DsbC and C8P are separated by 49bp. The constructs were verified by sequencing. The construct was named pMS470_dsbC_C8P and improved expression of APLE drastically (see Figure 4 for plate assays, and Table 3). A functional map of plasmid pMS470_dsbC_C8P is depicted in Figure 2B.
Figure imgf000020_0001
To confirm that the observed esterase activity was indeed due to functional expression of the APLE encoding gene Western blotting experiments were performed. After fermentation, E.coli cells were centrifuged at 5.000 g for 10 min. The resulting pellet was resuspended in 4 volumes of 20 mM potassium phosphate buffer, pH 8.0, and 2-2.5 μl of the cell suspension were combined with 17.5-18 μl SDS loading buffer, heated at 95°C for 10-15 min and loaded onto a 12.5% SDS-PAGE gel. APLE was detected by Western blot analysis using a rabbit polyclonal antibody against porcine liver esterase (abeam, Cambridge, UK) as primary antibody and goat-anti- rabbit polyclonal antibody conjugated with alkaline phosphatase (Leinco Technologies Inc., St. Louis, USA) as secondary antibody. Western blot detection was done by Lumi-Phos™ WB Chemiluminescent Substrate (AP) (Pierce, Rockford, USA) and chemiluminescence detection in a G:Box HR (Syngene, Cambridge, UK) or by BCIP/NBT detection solution (CALBIOCHEM; La JoIIa; USA) and direct staining of the nitrocellulose membrane (Hybond-ECL™, Amersham Biosciences, Uppsala, Sweden).
Figure 5 shows the Coomassie stained SDS-PAGE gel (Figure 5A) and the results of the Western blotting experiment (Figure 5B), indicating that the protein expression level parallels the activity difference. Figure 5A also shows that truncated DsbC is very well expressed. Example 6.
Preparation of new E.coli host strains and analysis of the APLE production properties of these hosts
Escherichia coli K12 strain RV308 ΔtrxB; Δgor was constructed starting from E.coli strain RV308 (ATCC 31608). Similarly as described by Prinz et al., two genes involved in intracellular disulfide reduction were inactivated. These two genes, trxB and gor encoding thioredoxin reductase and glutathione oxidoreductase, respectively, were inactivated through deletion using site directed recombination technology according to the procedures described by Datsenko et al. (2000) [9]. The initial result of this modification is that the E.coli strain is no longer capable of growing aerobically, except in the presence of a reducing agent; however, suppressor mutations restoring aerobic growth in the absence of a reductant are easily selected. These properties and phenotypic change have been described previously in E.coli strains in which the genes trxB and gor were inactivated using a different approach.
In detail: deletion cassettes were obtained by PCR using the following primers and plasmid pKD3 as a template: Application in this reaction of fw-trxB (SEQ ID NO 28): 5'- GTAAATTCCCTACAATCCTGCCCATTGTCTGCCAACAACTATGGGGATCTTGTGTA GGCTGGAGCTGCTTC-3' and rv-trxB (SEQ ID NO 29):: 5'-
CCCATAGTCGCATGGTGTCGCCTTCTTTACTTTTGTTACTGATTTGTAAAACATATG AAT ATCCTCCTT AG-3' results in a deletion cassette for the gene trxB Application in this reaction of fw-gor (SEQ ID NO 30): 5'- CCTATTACGTCTCGCGCTACAATCGCGGTAATCAACGATAAGGACACTTTGTCTGT GTAGGCTGGAGCTGCTTC-3' and rv-gor (SEQ ID NO): 5'-
CTGATAGCGGAAACGTAATTAAGGGCTAAGAGCACACTACTCTTAGCCCTTTAACC AT ATGAAT ATCCTCCTTAG-3' results in a deletion cassette for the gene gor.
The trxB and gor deletion cassettes were transformed separately to an E.coli RV308 strain that already contains plasmid pKD46, and successful transformants were selected based on their acquired resistance towards the antibiotic chloramphenicol. Correct exchange of the trxB gene or the gor gene by the respective deletion cassettes was confirmed by PCR controls and Southern blotting. The chloramphenicol resistance gene was subsequently removed by transformation with plasmid pCP20, encoding a FLP recombinase enzyme [reference 6]. The resulting E.coli strain RV308 ΔtrxB was checked again for a clean deletion of trxB using PCR and Southern blotting. Similarly the clean deletion of the gor gene i n E. coli strain RV308 confirmed.
Starting from strain E. coli strain RV308 ΔtrxB exactly the same set of reactions was carried out to perform a clean deletion of the gene gor. Because the initial result of this second modification, as described by Prinz et al. is that this E.coli RV308 strain having both trxB and gor deleted is no longer capable of growing aerobically except in the presence of a reducing agent, growth of E.coli strains that were assumed to also have the gor deletion was conducted in the presence of the reducing agent DTT. Finally, spontaneous RV308 ΔtrxB; Δgor mutants could be selected that for aerobic growth were no longer dependent on the presence DTT.
Transformation of E.coli strain RV308 ΔtrxB; Δgor and intermediate strains with only a single reductase deletion were transformed with selected APLE expression plasmids and evaluated in shake flask for APLE production (Table 4).
Figure imgf000022_0001
Example 7
Additional synthetic genes were chemically synthesized that encoded various natural isoforms of pig liver esterase protein. For production of a new esterase protein, a Bos taurus γ-PLE like gene was synthesized.
Other new genes encoded known the PLE esterases γ-PLE and PICE; also hybrids between the APLE and γ-PLE isoforms were designed. The common feature of the latter set was that all are based on the APLE C8P template. Starting from APLE C8P, only the codons required to obtain the isoforms or hybrid proteins were changed.
The genes with their encoded proteins are represented by: Natural isoforms: New hypothetical Bos taurus γ-PLE like gene (SEQ ID NO 32) C8P encoded natural esterases: C8P-γ-PLE (SEQ ID NO 34) and C8P-PICE (SEQ ID NO 36).
C8P encoded hybrid esterases: C8P-H1 (SEQ ID NO 38), C8P-H2 (SEQ ID NO 40), C8P-H3 (SEQ ID NO 42), and C8P-H4 (SEQ ID NO 44).
All sequences were inserted in the E.coli expression vector of Figure 2B (pMS470_dsbC_APLE) effectively replacing the C8P gene.
The results of the qualitative plate assay (see example 2) using dimethyl methylsuccinate as a substrate confirm that each of the designed genes encodes an active esterase (Figure 6). This plate assay however does not allow quantitative conclusions because the specific activity of enzyme variants towards the dimethyl methylsuccinate is not known.
References
[1] Lange S., Musidlowska A.,Schmidt-Dannert C, Schmitt J., Bomscheuer UT. (2001 ) Chem BioChem 2, 576-582
[2] Bόttcher, D., Brϋsehaber, E., Doderer, K. and Bomscheuer, UT. (2007) Appl.
Microbiol. Biotechnol. 73, 1282-1289
[3] Prinz, W.A., Aslund, F., Holmgren, A. and Beckwith, J. (1997) J. Biol.Chem. 272:
15661-15667
[4] Beckwith, J., Aslund, F., Bessette, P. H., Georgiou, G., Ritz, D. and Lim, J. E. US patent No 6,872,563
[5] Bessette, P. H., Aslund, F., Beckwith, J. And Georgiou, G. (1999) PNAS 96 (24), 13703-13708
[6] Terpe, K. (2006) Appl. Microbiol. Biotechnol. 72, 21 1-222.
[7] Matsushima M, lnoue H, lchinose M, Tsukada S, Miki K, Kurokawa K, Takahashi T, Takahashi K. (1991 ). FEBS Lett. 293, 37-41
[8] Balzer D, Ziegelin G, Pansegrau W, Kruft V, Lanka E. (1992). Nucleic Acids Res. 20, 1851-1858 [9] Datsenko, K.A. & Wanner, B.L. (2000) PNAS 97, 6640-6645

Claims

1. Method for the preparation of a protein with esterase activity comprising expression of a gene encoding such protein in an E. coli strain, characterized in that the gene encoding the protein with esterase activity has at least 70% identity, preferably at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity and most preferably at least 99% identity to the polynucleotide of SEQ ID NO 1 1 , SEQ ID NO 32, SEQ ID NO 34, SEQ ID NO 36, SEQ ID NO 38, SEQ ID NO 40, SEQ ID NO 42 or SEQ ID NO 44 and encodes a protein that has at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity, more preferably at least 99% identity to SEQ ID NO 12, SEQ ID NO 33, SEQ ID NO 35, SEQ ID NO 37, SEQ ID NO 39, SEQ ID NO 41 , SEQ ID NO 43 or SEQ ID NO 45, respectively and wherein the expression takes place without coexpression of GroEL and/or GroES from a plasmid.
2. Method according to claim 1 wherein the gene encodes a protein that has at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity, more preferably at least 99% identity to SEQ ID NO 12.
3. Recombinant E. coli strain suitable for the preparation of a protein with esterase activity, characterized in that the organism contains a gene encoding the protein with esterase activity has at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity and most preferably at least 99% identity to the polynucleotide of SEQ ID NO 1 1 , SEQ ID NO 32, SEQ ID NO 34, SEQ ID NO 36, SEQ ID NO 38, SEQ ID NO 40, SEQ ID NO 42 or SEQ ID NO 44, and encodes a protein that has at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity, more preferably at least 99% identity to SEQ ID NO 12, SEQ ID NO 33, SEQ ID NO 35, SEQ ID NO 37, SEQ ID NO 39, SEQ ID NO 41 , SEQ ID NO 43 or SEQ ID NO 45, respectively and wherein the expression takes place without coexpression of GroEL and/or GroES from a plasmid.
4. Recombinant E. coli strain suitable for the preparation of a protein with esterase activity according to claim 3, characterized in that the strain is unable to express glutathione reductase and/or thioredoxin reductase.
5. Recombinant E. coli strain suitable for the preparation of a protein with esterase activity according to claim 3, characterized in that the strain is unable to express both glutathione reductase and thioredoxin reductase.
6. Recombinant E. coli strain suitable for the preparation of a protein with esterase activity according to claim 3, characterized in that the expression of glutathione reductase and/or thioredoxin reductase is abolished by mutation.
7. Recombinant E. coli strain according to any one of claims 3 - 6 obtained from an E. coli Origami 1 , Origami 2 or Origami B strain.
8. Isolated polynucleotide encoding a functional protein with esterase activity which has a nucleotide sequence of at least 70% identity, preferably at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity and most preferably at least 99% identity to the polynucleotide of SEQ ID NO 32, SEQ ID NO 34, SEQ ID NO 36, SEQ ID NO 38, SEQ ID NO 40, SEQ ID NO 42, or SEQ ID NO 44 and encodes a protein that has at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity, more preferably at least
99% identity to SEQ ID NO 33, SEQ ID NO 35, SEQ ID NO 37, SEQ ID NO 39, SEQ ID NO 41 , SEQ ID NO 43 or SEQ ID NO 45, respectively.
9. Vector suitable for replication and expression in E. coli containing a polynucleotide encoding a protein with esterase activity which has a nucleotide sequence with at least 70% identity, preferably at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity and most preferably at least 99% identity to the polynucleotide of SEQ ID NO 32, SEQ ID NO 34, SEQ ID NO 36, SEQ ID NO 38, SEQ ID NO 40, SEQ ID NO 42, or SEQ ID NO 44 and encodes a protein that has at least 80% identity, preferably at least 85% identity, preferably at least 90% identity, preferably at least 95% identity, preferably at least 98% identity, more preferably at least 99% identity to SEQ ID NO 33, SEQ ID NO 35, SEQ ID NO 37, SEQ ID NO 39, SEQ ID NO 41 , SEQ ID NO 43 or SEQ ID NO 45, respectively.
10. Use of the protein having esterase activity obtained by the method of claim 1 , for hydrolysis of esters.
PCT/EP2008/058731 2007-07-04 2008-07-04 Preparation of an esterase WO2009004093A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP08774807.5A EP2171061B1 (en) 2007-07-04 2008-07-04 Preparation of an esterase
NO08774807A NO2171061T3 (en) 2007-07-04 2008-07-04
JP2010514010A JP5553354B2 (en) 2007-07-04 2008-07-04 Preparation of esterase
PL08774807T PL2171061T3 (en) 2007-07-04 2008-07-04 Preparation of an esterase
CN200880023253.3A CN101688208B (en) 2007-07-04 2008-07-04 The preparation of esterase
US12/667,414 US9309503B2 (en) 2007-07-04 2008-07-04 Preparation of an esterase
ES08774807.5T ES2652559T3 (en) 2007-07-04 2008-07-04 Preparation of an esterase

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP07013092 2007-07-04
EP07013092.7 2007-07-04
EP08000828.7 2008-01-17
EP08000828 2008-01-17

Publications (1)

Publication Number Publication Date
WO2009004093A1 true WO2009004093A1 (en) 2009-01-08

Family

ID=39735566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/058731 WO2009004093A1 (en) 2007-07-04 2008-07-04 Preparation of an esterase

Country Status (9)

Country Link
US (1) US9309503B2 (en)
EP (1) EP2171061B1 (en)
JP (1) JP5553354B2 (en)
CN (1) CN101688208B (en)
ES (1) ES2652559T3 (en)
HU (1) HUE037655T2 (en)
NO (1) NO2171061T3 (en)
PL (1) PL2171061T3 (en)
WO (1) WO2009004093A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122175A1 (en) * 2009-04-24 2010-10-28 Dsm Ip Assets B.V. Improved pig liver esterases
CN101886063A (en) * 2010-06-23 2010-11-17 中国科学院微生物研究所 Esterase with racemic phenyl glycidyl ester split activity, encoding gene and application thereof
WO2014023623A1 (en) 2012-08-07 2014-02-13 Basilea Pharmaceutica Ag Process for the manufacture of isavuconazole or ravuconazole
US10533201B2 (en) 2014-09-10 2020-01-14 Basf Se Enzymatic transphosphorylation of sugar substrates
US11464954B2 (en) 2016-09-21 2022-10-11 Cytrellis Biosystems, Inc. Devices and methods for cosmetic skin resurfacing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105255916B (en) * 2015-11-02 2018-12-21 华中农业大学 A kind of coding has the pork liver carboxy-lesterase subtype gene of high hydrolysing activity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048322A2 (en) * 2000-12-12 2002-06-20 Degussa Ag Recombinant porcine liver esterases, their use and a method for the production thereof
WO2004055177A2 (en) * 2002-12-13 2004-07-01 Degussa Ag Artificial esterases
US6872563B1 (en) * 1999-10-05 2005-03-29 President And Fellows Of Harvard College Compositions and methods for production of disulfide bond containing proteins in host cells
WO2007073847A1 (en) * 2005-12-27 2007-07-05 Dsm Fine Chemicals Austria Nfg Gmbh & Co Kg Novel polypeptide having esterase activity and recombinant esterase and use thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69828338T2 (en) * 1997-07-18 2005-06-02 Mitsui Chemicals, Inc. Esterase and its use for the preparation of optically active chroman compounds
AT502990A1 (en) * 2005-12-27 2007-07-15 Dsm Fine Chem Austria Gmbh NEW POLYPEPTIDE WITH ESTERASE ACTIVITY, AND RECOMBINANT ESTERASE AND THEIR USE
DE102006031600A1 (en) * 2006-07-06 2008-01-17 Evonik Degussa Gmbh Microorganism for the production of recombinant porcine liver esterase

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872563B1 (en) * 1999-10-05 2005-03-29 President And Fellows Of Harvard College Compositions and methods for production of disulfide bond containing proteins in host cells
WO2002048322A2 (en) * 2000-12-12 2002-06-20 Degussa Ag Recombinant porcine liver esterases, their use and a method for the production thereof
US20040161836A1 (en) * 2000-12-12 2004-08-19 Uwe Bornscheur Recombinant porcine liver esterases, their use and a method for the production thereof
WO2004055177A2 (en) * 2002-12-13 2004-07-01 Degussa Ag Artificial esterases
WO2007073847A1 (en) * 2005-12-27 2007-07-05 Dsm Fine Chemicals Austria Nfg Gmbh & Co Kg Novel polypeptide having esterase activity and recombinant esterase and use thereof

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ASLUND F ET AL: "Efficient production of disulfide bonded proteins in the cytoplasm in oxidizing mutants of E. coli", INNOVATIONS, XX, XX, vol. 10, 1 November 1999 (1999-11-01), pages 11 - 12, XP002456634 *
BESSETTE P H ET AL: "Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE, WASHINGTON, DC, vol. 96, no. 24, 23 November 1999 (1999-11-23), pages 13703 - 13708, XP002233564, ISSN: 0027-8424 *
BOETTCHER DOMINIQUE ET AL: "Functional expression of the gamma-isoenzyme of pig liver carboxyl esterase in Escherichia coli", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, SPRINGER VERLAG, BERLIN, DE, vol. 73, no. 6, 8 September 2006 (2006-09-08), pages 1282 - 1289, XP002456633, ISSN: 0175-7598 *
BRUESEHABER E ET AL: "Identification of pig liver esterase variants by tandem mass spectroscopy analysis and their characterization", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, SPRINGER VERLAG, BERLIN, DE, vol. 76, 26 June 2007 (2007-06-26), pages 853 - 859, XP002456632, ISSN: 0175-7598 *
KAY TERPE: "Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, SPRINGER-VERLAG, BE, vol. 72, no. 2, 22 June 2006 (2006-06-22), pages 211 - 222, XP019422070, ISSN: 1432-0614 *
MATSUSHIMA M ET AL: "The nucleotide and deduced amino acid sequences of porcine liver proline- beta-naphthylamidase. Evidence for the identity with carboxylesterase", FEBS LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 293, no. 1-2, 18 November 1991 (1991-11-18), pages 37 - 41, XP002209303, ISSN: 0014-5793 *
R. NOVY ET AL: "Overcoming the codon bias of E. coli for enhanced protein expression", INNOVATIONS, vol. 12, June 2001 (2001-06-01), pages 1 - 3, XP002483885 *
S. LANGE ET AL: "Cloning, functional expression, and characterization of recombinant Pig liver Esterase.", CHEMBIOCEM, vol. 2, 2001, pages 576 - 582, XP002483884 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122175A1 (en) * 2009-04-24 2010-10-28 Dsm Ip Assets B.V. Improved pig liver esterases
JP2012524535A (en) * 2009-04-24 2012-10-18 ディーエスエム アイピー アセッツ ビー.ブイ. Improved porcine liver esterase
US8921080B2 (en) 2009-04-24 2014-12-30 Dsm Ip Assets B.V. Pig liver esterases
JP2016025867A (en) * 2009-04-24 2016-02-12 ディーピーエックス ホールディングス ビー.ブイ. Improved porcine liver esterase
CN101886063A (en) * 2010-06-23 2010-11-17 中国科学院微生物研究所 Esterase with racemic phenyl glycidyl ester split activity, encoding gene and application thereof
WO2014023623A1 (en) 2012-08-07 2014-02-13 Basilea Pharmaceutica Ag Process for the manufacture of isavuconazole or ravuconazole
US10533201B2 (en) 2014-09-10 2020-01-14 Basf Se Enzymatic transphosphorylation of sugar substrates
US11464954B2 (en) 2016-09-21 2022-10-11 Cytrellis Biosystems, Inc. Devices and methods for cosmetic skin resurfacing

Also Published As

Publication number Publication date
JP5553354B2 (en) 2014-07-16
HUE037655T2 (en) 2018-09-28
EP2171061A1 (en) 2010-04-07
PL2171061T3 (en) 2019-03-29
ES2652559T3 (en) 2018-02-05
EP2171061B1 (en) 2017-09-27
US9309503B2 (en) 2016-04-12
US20110177553A1 (en) 2011-07-21
CN101688208B (en) 2016-10-12
NO2171061T3 (en) 2018-02-24
JP2010531658A (en) 2010-09-30
CN101688208A (en) 2010-03-31

Similar Documents

Publication Publication Date Title
US7608434B2 (en) Mutated Tn5 transposase proteins and the use thereof
US7067298B2 (en) Compositions and methods of using a synthetic Dnase I
US9309503B2 (en) Preparation of an esterase
KR101877303B1 (en) Promoter systems induced by 3-hydroxypropionic acid and method for production of 3-hydroxypropionic acid using the same
KR20180083350A (en) Microbiological preparation of nicotinamide riboside
JP4262206B2 (en) Fermentation method for production of coenzyme Q10 with recombinant Agrobacterium tumefaciens
JP7491587B2 (en) Engineered Galactose Oxidase Modifier Enzymes
Endoh et al. Cell-free protein synthesis at high temperatures using the lysate of a hyperthermophile
JP7491588B2 (en) Engineered Pantothenate Kinase Variants
US20220348974A1 (en) Biotin synthases for efficient production of biotin
JP2005198655A (en) Cephalosporin c acylase
KR20220028053A (en) Engineered sucrose phosphorylase variant enzyme
WO2007049829A1 (en) Method for preparing soluble and active recombinant proteins using pdi as a fusion partner
EP2670844B1 (en) A method for producing disulfide bond containing proteins in a prokaryotic cytoplasm
US20100112662A1 (en) Microorganism for producing recombinant pig liver esterase
US8017354B2 (en) Microorganism for producing recombinant pig liver esterase
JP2023544408A (en) Engineered galactose oxidase variant enzyme
KR20230006803A (en) Production of NMN and its derivatives through microbial processes
KR20220025884A (en) Engineered Acetate Kinase Variant Enzyme
EP2970869A2 (en) Low-phosphate repressible promoter
EP1231266A1 (en) Arabidopsis-origin gdp-4-keto-6-deoxy-d-mannose-3,5-epimerase-4-reductase gene
WO2007123498A2 (en) MUTATED TRUNCATED MT-PFKA GENE FOR THE SYNTHESIS OF ACTIVE SHORTER FRAGMENT OF 6-PHOSPHOFRUCTO-l-KINASE
KR101596435B1 (en) Lipase of Bacillus pumilus from the Antarctic
JP2023526433A (en) Reductase enzymes and methods of making and using reductase enzymes
JP2004121234A (en) New glycerol kinase, gene of the same and method for producing the glycerol kinase by using the gene

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880023253.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08774807

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010514010

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 91/DELNP/2010

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2008774807

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008774807

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12667414

Country of ref document: US