WO2009000913A1 - Fsh producing cell clone - Google Patents

Fsh producing cell clone Download PDF

Info

Publication number
WO2009000913A1
WO2009000913A1 PCT/EP2008/058274 EP2008058274W WO2009000913A1 WO 2009000913 A1 WO2009000913 A1 WO 2009000913A1 EP 2008058274 W EP2008058274 W EP 2008058274W WO 2009000913 A1 WO2009000913 A1 WO 2009000913A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
acid sequence
recombinant
seq
acid molecule
Prior art date
Application number
PCT/EP2008/058274
Other languages
French (fr)
Inventor
Stefan Arnold
Nanni Jelinek
Original Assignee
Biogenerix Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2010000385A priority Critical patent/MX2010000385A/en
Priority to US12/666,257 priority patent/US8318457B2/en
Priority to CA2690844A priority patent/CA2690844C/en
Priority to PL08774439T priority patent/PL2170942T3/en
Priority to DK08774439.7T priority patent/DK2170942T3/en
Priority to EA201070071A priority patent/EA022993B1/en
Priority to EP08774439.7A priority patent/EP2170942B1/en
Priority to ES08774439T priority patent/ES2432183T3/en
Priority to AU2008267138A priority patent/AU2008267138B9/en
Priority to RS20130443A priority patent/RS52976B/en
Application filed by Biogenerix Ag filed Critical Biogenerix Ag
Priority to KR1020107001959A priority patent/KR101522217B1/en
Priority to BRPI0813913-0A priority patent/BRPI0813913B1/en
Priority to UAA201000813A priority patent/UA103598C2/en
Priority to JP2010513938A priority patent/JP5570980B2/en
Priority to CN200880022358.7A priority patent/CN101720332B/en
Priority to NZ581702A priority patent/NZ581702A/en
Priority to SI200831065T priority patent/SI2170942T1/en
Publication of WO2009000913A1 publication Critical patent/WO2009000913A1/en
Priority to IL202280A priority patent/IL202280A/en
Priority to HK10107184.9A priority patent/HK1140782A1/en
Priority to HRP20130921AT priority patent/HRP20130921T1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/59Follicle-stimulating hormone [FSH]; Chorionic gonadotropins, e.g.hCG [human chorionic gonadotropin]; Luteinising hormone [LH]; Thyroid-stimulating hormone [TSH]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells

Definitions

  • the present invention relates to nucleic acid molecules comprising a nucleic acid sequence coding for the ⁇ - and the ⁇ -chain of the human follicle stimulating hormone (FSH), respectively, wherein the nucleic acid sequence has been modified with respect to the codon usage in CHO cells, in comparison to the wild-type human FSH nucleic acid sequence.
  • FSH human follicle stimulating hormone
  • the present invention further relates to a recombinant nucleic acid molecule comprising such nucleic acid sequences and host cells containing such recombinant nucleic acid molecules, as well as their use in the production of recombinant human FSH.
  • the present invention also relates to a method for producing host cells expressing human follicle stimulating hormone by transfecting cells in suspension culture under serum-free conditions with the recombinant nucleic acid molecule of the present invention.
  • Follicle stimulating hormone is produced by the gonadotrophic cells of the anterior pituitary and released into the circulation. FSH acts together with the luteinizing hormone (LH) in the control of oocyte maturation in females and of spermatogenesis in males. Both FSH and LH belong to a family of heterodimeric glycoproteins which consist of two non-covalently linked ⁇ - and ⁇ -chains which are encoded by separate genes. While the amino acid sequence of the ⁇ -chain of FSH and LH is identical, the amino acid sequence of the ⁇ -chain is different in both proteins. Both the ⁇ - and the ⁇ -chains are glycosylated.
  • the ⁇ -chain of FSH has two potential asparagine- linked glycosylation sites at positions 52 and 78, while the ⁇ - chain of FSH has two potential asparagine-linked glycosylation sites at positions 7 and 24 (Olijve et al. (1996) MoI. Hum. Reprod. 2(5): 371-382).
  • Human FSH is used to treat women with unovulation, for stimulation of multifollicular development (superovulation) and in preparation for an assisted conception such as IVF, GIFT or ZIFT. Furthermore, human FSH is used to stimulate the maturation of follicles in women with a low or absent FSH production and for the stimulation of spermatogenesis in men with congenital or acquired hypogonadotropic hypogonadism.
  • FSH for medicinal uses was purified from human post-menopausal urine.
  • this purified FSH has the disadvantage that it also contains LH and other contaminating proteins of human origin.
  • the use of such a natural source implies limited product availability and consistency.
  • nucleic acid molecules comprising modified nucleic acid sequences coding for the ⁇ - and the ⁇ -chain of human FSH which have been adapted to the codon usage in Chinese hamster ovary (CHO) cells are used for transfecting CHO cells and lead to a significant increase in FSH production in the trans fected CHO cells.
  • the term "increase in FSH production” refers to the situation that upon expressing the modified nucleic acid sequences in the host cell, a higher amount of FSH is produced in a host cell compared to the situation where a non-modified nucleic acid sequence encoding FSH with the same amino acid sequence is expressed in the same type of host cells under similar conditions such as e.g. comparable transfection procedures, comparable expression vectors etc.
  • the genetic code is redundant, as 20 amino acids are specified by 61 triplet codons. Thus, most of the 20 proteinogenic amino acids are coded by several base triplets (codons).
  • the codons which specify a particular amino acid are not used with the same frequency in a specific organism, however, but there are preferred codons, which are used frequently, and rare codons which are used less frequently. Said differences in codon usage are put down to selective evolutionary pressures, and, in particular, to the efficiency of translation. One reason for the lower translation efficiency of rarely occurring codons could be that the corresponding aminoacyl-tRNA pools are depleted and are therefore no longer available for protein synthesis.
  • nucleic acid sequence for the purposes of the present invention relates to any nucleic acid molecule that codes for polypeptides such as peptides, proteins etc.
  • nucleic acid molecules may be made of DNA, RNA or analogues thereof.
  • nucleic acid molecules being made of DNA are preferred.
  • the coding sequence of a foreign wild type enzyme is adjusted to the codon usage of CHO cells, the changes introduced can be easily identified by comparing the modified sequence and the starting sequence (see Figures Ia and Ib). Moreover, both sequences will code for the same amino acid sequence.
  • the amino acid sequence of the ⁇ -chain of human FSH is depicted in SEQ ID No. 5 and the amino acid sequence of the ⁇ -chain of human FSH is depicted in SEQ ID No. 6.
  • amino acid sequences correspond to the wild-type amino acid sequences of the ⁇ - and the ⁇ -chain of human FSH as deposited under accession number J 00152 in the EMBL database and under accession number NM 000510 in the NCBI database, respectively.
  • the nucleic acid sequence coding for the ⁇ -chain of human FSH is modified with respect to the codon usage in CHO cells at least at 30 positions, preferably at least at 40 positions, particularly preferably at least at 50 positions, also particularly preferably at least at 60 or 70 positions, and most preferably at least at 75 positions compared to the starting sequence.
  • the nucleic acid sequence coding for the ⁇ -chain of human FSH is modified with respect to the codon usage in CHO cells at least at 25 positions, preferably at least at 30 positions, more preferably at least at 40 positions, particularly preferably at least at 50 positions, also particularly preferably at 60 positions and most preferably at least at 65 positions compared to the starting sequence.
  • the modified nucleic acid sequence coding for the ⁇ -chain of human FSH is the coding region of the nucleic acid sequence given in SEQ ID No. 1 or a nucleic acid sequence which is identical to the coding region of the nucleic acid sequence given in SEQ ID No. 1 by at least 90%, preferably by at least 92% or 94%, particularly preferably by at least 96% or 98%, and most preferably by at least 99% over the entire coding region.
  • the coding region starts at nucleotide 56 and extends up to nucleotide 442.
  • the optimized nucleic acid sequence coding for the ⁇ -chain of human FSH is the coding region of the nucleic acid sequence given in SEQ ID No. 2, or a nucleic acid sequence which is identical to the coding region of the nucleic acid sequence given in SEQ ID No. 2 by at least 85%, preferably by at least 87% or 90%, particularly preferably by at least 92% or 94% and most preferably by at least 96%, 98% or 99% over the entire coding region.
  • the coding region starts at nucleotide 19 and extends up to nucleotide 366.
  • non-modified nucleic acid sequence refers to a nucleic acid sequence which is intended to be used for (over)expression in a host cell and which has not been adapted to the codon usage in the host cell, but is the actual wild-type nucleic acid sequence coding for the protein.
  • modified nucleic acid sequence or “optimized nucleic acid sequence” for the purposes of the present invention relate to a sequence that has been modified for expression in a host cell by adapting the sequence of the non-modified/starting nucleic acid sequence to the codon usage of the host cell.
  • a modified or optimized nucleic acid sequence codes for a protein having the same amino acid sequence as the protein encoded by the non-modified sequence.
  • Sequence identity is determined by a number of programs based on different algorithms.
  • the algorithms of Needleman and Wunsch or Smith and Waterman achieve particularly reliable results.
  • the program PiIeUp (Feng and Doolittle (1987) J. MoI. Evolution 25: 351 - 360; Higgins et al. (1989) CABIOS 5: 151 - 153) or the programs Gap and Best Fit (Needleman and Wunsch (1970) J. MoI. Biol. 48: 443 - 453 and Smith and Waterman (1981) Adv. Appl. Math. 2: 482 - 489) were used, which are contained in the GCG software package (Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA).
  • sequence identity values given herein in percent were determined with the program Gap over the entire sequence region with the following settings: Gap Weight: 50, Length Weight: 3, Average Match: 10,000, and Average Mismatch: 0.000. Unless specified otherwise, said settings were used as standard settings for sequence comparisons.
  • an object of the present invention is a recombinant nucleic acid molecule comprising a modified nucleic acid sequence coding for the ⁇ -chain of human FSH wherein the modified nucleic acid sequence is selected from the group consisting of the coding region of the nucleotide sequence according to SEQ ID No. 1 and nucleotide sequences having a sequence identity of at least 90% to the coding region of the nucleotide sequence as depicted in SEQ ID No. 1 and wherein the modified nucleic acid sequence is under the control of a promoter which is active in a host cell.
  • promoter which is active in a host cell is intended to mean that the promoter within the recombinant nucleic acid molecule allows the expression of the nucleic acid sequence in a host cell in which the expression of the nucleic acid sequence is desired.
  • the activity of a promoter is usually determined by the presence of transcription factors which are able to bind to the promoter and to activate transcription.
  • Promoters which are suitable for the expression of nucleic acid sequences in mammalian cells are well known to the person skilled in the art and include viral promoters such as a CMV, SV40, HTLV or adenovirus major late promoter and other promoters such as the EF-l ⁇ -promoter or the UbC promoter.
  • host cell refers to any cell that is commonly used for expression, i.e. transcription and translation of nucleic acid sequences for the production of e.g. polypeptides.
  • the term "host cell” or “organism” relates to prokaryotes, lower eukaryotes, plants, insect cells or mammalian cell culture systems.
  • the host cell is a mammalian cell, more preferably the host cell is a rodent cell, even more preferably the host cell is a rodent cell which has a similar codon usage as the CHO cell and most preferably this host cell is a CHO cell.
  • the host CHO cell line used for expression of the modified sequences and for the production of recombinant human FSH is a derivative of a CHO-Kl cell line and is deficient in dihydro folate reductase (dhfr) activity.
  • the cell line was obtained from DSMZ (Cat. No. ACC 126) and adapted to suspension and serum- free culture conditions.
  • a CHO cell line containing a recombinant nucleic acid molecule comprising a first optimized nucleic acid sequence coding for the ⁇ -chain of human FSH and a second optimized nucleic acid sequence coding for the ⁇ -chain of human FSH was deposited on 28 March 2007 at the DSMZ in Braunschweig under deposit number DSM ACC2833.
  • recombinant nucleic acid molecule within the meaning of the present invention is intended to comprise all kinds of nucleic acid molecules which are capable of being introduced into a host cell and effecting the expression of a nucleic acid sequence which is contained within the recombinant nucleic acid molecule.
  • the term comprises, inter alia, plasmid vectors and viral vectors such as adenoviral, lentiviral and retroviral vectors, with plasmid vectors being preferred.
  • a recombinant nucleic acid molecule usually contains other functional elements such as polyadenylation sequences, prokaryotic and/or eukaryotic selection genes which allow the identification of positively transformed prokaryotic and/or eukaryotic cells, and an origin of replication.
  • functional elements such as polyadenylation sequences, prokaryotic and/or eukaryotic selection genes which allow the identification of positively transformed prokaryotic and/or eukaryotic cells, and an origin of replication.
  • the expert knows which elements he has to select for a specific purpose and which plasmid vector is suitable for the expression of a specific nucleic acid sequence in a specific host cell.
  • Recombinant nucleic acid molecules comprising the nucleic acid sequences of the present invention can be obtained by standard molecular biological methods which are described in the literature, e.g. in Sambrook and Russell (2001) Molecular cloning - a laboratory manual, 3 rd edition, Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY, USA.
  • the recombinant nucleic acid molecule of the present invention comprises both a modified nucleic acid sequence coding for the ⁇ -chain of human FSH and a nucleic acid sequence coding for the ⁇ -chain of FSH.
  • the nucleic acid sequence coding for the ⁇ -chain of human FSH is selected from an optimized nucleic acid sequence coding for the ⁇ -chain of human FSH which is selected from the group consisting of the coding region of the nucleic acid sequence according to SEQ ID No. 2, nucleic acid sequences having a sequence identity of at least 85% to the coding region of the nucleic acid sequence as depicted in
  • SEQ ID No. 2 the coding region of the non-modified nucleic acid sequence as depicted in SEQ ID No. 3 and nucleic acid sequences having a sequence identity of at least 70% to the coding region of the nucleic acid sequence as depicted in SEQ ID No. 3.
  • the nucleic acid sequence coding for the ⁇ -chain of human FSH may be under the control of the same promoter as the nucleic acid sequence coding for the ⁇ -chain of human FSH, for example by means of an internal ribosome entry site (IRES), or it may be under the control of a separate promoter.
  • the nucleic acid sequence coding for the ⁇ -chain of human FSH is under the control of a separate promoter.
  • the nucleic acid sequence coding for the optimized ⁇ - chain of human FSH is under the control of an SV40 promoter and the nucleic acid sequence coding for the ⁇ -chain of human FSH is under the control of a CMV promoter.
  • the recombinant nucleic acid molecule of the present invention has the nucleic acid sequence depicted in SEQ ID No. 7.
  • the present invention further relates to a host cell which contains a recombinant nucleic acid molecule comprising the optimized nucleic acid sequence coding for the ⁇ -chain of human FSH and which further contains a nucleic acid sequence coding for the ⁇ -chain of human FSH which is selected from a modified nucleic acid sequence selected from the group consisting of the coding region of the nucleotide sequence according to SEQ ID No. 2 and nucleotide sequences having a sequence identity of at least 85% to the coding region of the nucleic acid sequence as depicted in SEQ ID NO. 2 and the coding region of the non-modified nucleic acid sequence as depicted in SEQ ID No. 3 and nucleic acid sequences having a sequence identity of at least 70% to the coding region of the nucleic acid sequence as depicted in SEQ ID No. 3.
  • the nucleic acid sequence coding for the ⁇ -chain of human FSH may be present in the same recombinant nucleic acid molecule as the optimized nucleic acid sequence coding for the ⁇ -chain of human FSH, or it may be introduced into the host cell on a separate recombinant nucleic acid molecule.
  • the nucleic acid sequence coding for the ⁇ -chain of human FSH is present in the same recombinant nucleic acid molecule as the optimized nucleic acid sequence coding for the ⁇ -chain of human FSH.
  • the host cell may be selected from mammalian cell culture systems such as NIH3T3 cells, CHO cells, COS cells, 293 cells, Jurkat cells, BHK cells and HeLa cells.
  • the host cell is a rodent cell, more preferably the host cell is a rodent cell which has a similar codon usage as the CHO cell and most preferably this host cell is a CHO cell.
  • an object of the present invention is a cell culture comprising the host cells containing a recombinant nucleic acid molecule comprising a modified nucleic acid sequence coding for the ⁇ -chain of human FSH and a nucleic acid sequence coding for the ⁇ -chain of human FSH, wherein the nucleic acid sequence coding for the ⁇ - chain may be selected from the group consisting of the non-modified nucleic acid sequence and the modified nucleic acid sequence as defined above, in a suitable culture medium.
  • the cell culture is obtained by cultivating the host cells in a suitable culture medium under conditions which support the growth of the host cells.
  • the term “cultivating cells” is to be understood to mean that the cells are kept in vivo under conditions that allow proliferation, normal metabolism of the cells and formation of the recombinant protein. That means that the cells are provided with all necessary nutrients as well as with oxygen and are kept at a suitable pH and a suitable osmolarity.
  • the cells may be cultivated in any suitable manner. Preferably, the cells are cultivated as suspension culture, for example in flasks or in roller flasks.
  • the term “cultivation” includes batch cultivation, fed-batch cultivation as well as perfusion cultures and other suitable culture methods. "Cultivating in suspension” means that the cells do not adhere to a surface, but are distributed in the culture medium.
  • Batch cultivation within the meaning of the present invention is a cultivation method in which culture medium is neither added nor withdrawn during the cultivation.
  • a “fed-batch method" within the meaning of the present invention is a cultivation method in which culture medium is added during the cultivation, but no culture medium is withdrawn.
  • Perfusion culturing within the scope of the present invention is a cultivation method in which culturing medium is withdrawn and new culture medium is added during cultivation.
  • the culture medium preferably has only a low serum content, e.g. a maximum content of 1% (v/v) serum; most preferably, the medium is serum- free.
  • suitable culture media are basal media such as RPMI 1640, DMEM, F 12, ProCHO5 or eRDF, which may be mixed with each other and with supplements according to the need of the cells.
  • the medium may contain chelators such as aurin tricarboxylic acid (ATA), anorganic salts such as phosphate salts, polyamines and their precursors such as putrescine, hormones such as insulin, antioxidants such as ascorbic acid and vitamin mixtures, lipid precursors such as ethanolamine and cell-protecting substances such as pluronic F68.
  • chelators such as aurin tricarboxylic acid (ATA), anorganic salts such as phosphate salts, polyamines and their precursors such as putrescine, hormones such as insulin, antioxidants such as ascorbic acid and vitamin mixtures, lipid precursors such as ethanolamine and cell-protecting substances such as pluronic F68.
  • ATA aurin tricarboxylic acid
  • anorganic salts such as phosphate salts
  • polyamines and their precursors such as putrescine
  • hormones such as insulin
  • antioxidants such as ascorbic acid and vitamin mixtures
  • lipid precursors such
  • an object of the present invention is a method in which a host cell according to the present invention is first cultured in a suitable culture medium for a certain period of time and then the cell culture supernatant is harvested.
  • the "cell culture supernatant" is the cell culture medium which was in contact with the cells for a certain period of time and which has then been separated from the cells.
  • the cell culture supernatant contains the recombinant protein produced by the cells.
  • the cells may be separated from the supernatant by conventional separation techniques such as filtration and centrifugation.
  • the supernatant of the host cells according to the present invention contains FSH concentrations of at least 500 ng/ml, preferably et least 1000 ng/ml, more preferably at least 1500 ng/ml and most preferably at least 2000 ng/ml.
  • the recombinant human FSH may be purified from the cell culture supernatant by one or more purification steps. Suitable purification methods are known to the expert and include ion exchange chromatography, hydrophobic interaction chromatography, hydroxyapatite chromatography, affinity chromatography and gel filtration. Methods for purifying recombinant human FSH are disclosed e.g. in WO 00/63248, WO 2006/051070 and WO 2005/063811.
  • the purified recombinant human FSH is mixed with one or more excipients to obtain a formulation which can be administered to patients.
  • Suitable formulations for recombinant human FSH are disclosed inter alia in EP 0 853 945, EP 1 285 665, EP 0 974 359, EP 1 188 444 and EP 1 169 349.
  • the host cell of the present invention is produced by transfecting cells with a recombinant nucleic acid molecule of the present invention which comprises either only the modified nucleic acid sequence coding for the ⁇ -chain of human FSH or also a nucleic acid sequence coding for the ⁇ -chain of human FSH.
  • a recombinant nucleic acid molecule of the present invention which comprises either only the modified nucleic acid sequence coding for the ⁇ -chain of human FSH or also a nucleic acid sequence coding for the ⁇ -chain of human FSH.
  • the nucleic acid sequence coding for the ⁇ -chain and the nucleotide sequence coding for the ⁇ -chain may be present on separate recombinant nucleic acid molecules which are introduced into the host cell either simultaneously or successively.
  • transfection methods include for example calcium phosphate precipitation, DEAE-dextran-mediated transfection, electroporation and lipofection.
  • kits for transfection such as
  • the cells are transfected while in suspension and are transfected under serum- free conditions.
  • the cells are usually stably transfected, which means that successfully transformed cells are selected after transfection by means of a selection agent which kills the non- transfected cells, whereas the transfected cells containing the resistance gene continue growing.
  • Suitable selection reagents include antibiotics such as zeocin, neomycin and puromycin and other drugs such as methotrexate.
  • a pUC18 vector backbone was used which already contained an SV40 polyadenylation site and splice site and a dhfr gene cassette consisting of an RSV promoter, the mouse dihydro folate reductase gene and an SV40 polyadenylation and splice site.
  • the dihydrofolate reductase gene enables the selection of positively transfected cells and the amplification of the transfected gene with the drug methotrexate.
  • the non-modified sequences of the ⁇ - and the ⁇ -chain of human FSH were derived from Fiddes and Goodman (1979) Nature 281 : 351-356 and Jameson et al. (1988) MoI. Endocrinol. 2(9): 806-815, respectively. These sequences were optimized in that the coding regions were adapted to the codon usage in frequently used CHO genes.
  • the optimized nucleotide sequences for the ⁇ - and the ⁇ -chain are depicted in SEQ ID No. 1 and 2, respectively, and a comparison of the wild-type and the modified nucleic acid sequences is shown in Figs. Ia and Ib.
  • the sequence comparison shows that the modified and the non-modified nucleic acid sequence coding for the ⁇ -chain of human FSH are 80% identical, whereas the modified and the non-modified nucleic acid sequence coding for the ⁇ -chain of human FSH are 85% identical.
  • the modified sequences were inserted separately into two copies of the pUC18 backbone by cutting them with the restriction enzymes Sacll and Ncol and subsequent ligation.
  • the CMV promoter and the SV40 promoter were amplified from suitable template DNA with the following primers, simultaneously introducing an Ascl and a Pad restriction site (underlined in the following primers):
  • the CMV promoter was introduced into the plasmid containing the ⁇ -chain of human FSH by cutting the plasmid with the restriction enzymes Ascl and Pad and ligation and the SV40 promoter was introduced into the plasmid containing the ⁇ - chain of human FSH by cutting the plasmid with the restriction enzymes Asd and Pad and ligation.
  • the expression cassette for the ⁇ -chain of human FSH comprising the SV40 promoter, the nucleic acid sequence coding for the ⁇ -chain and the SV40 polyadenylation signal was amplified with the following primers, simultaneously introducing a Not ⁇ restriction site both on the 5' and on the 3' end of the amplificate (underlined in the following primers):
  • the amplificate was then inserted into the Notl-cut plasmid containing the ⁇ -chain of human FSH.
  • the resulting plasmid containing both the optimized nucleic acid sequence coding for the ⁇ -chain and the optimized nucleic acid sequence coding for the ⁇ -chain is shown in Fig. 2.
  • the sequence of the plasmid with both optimized nucleic acid sequences is depicted in SEQ ID No. 7. 2.
  • Plasmids containing either an optimized nucleic acid sequence coding for the ⁇ -chain or an optimized nucleic acid sequence coding for the ⁇ -chain in combination with the corresponding wild-type ⁇ -chain or ⁇ -chain or containing both optimized sequences were produced as described under 1) above.
  • the DNA was mixed with the medium ProCHO5 (Lonza) containing 8 mM glutamine without HT to a total volume of 200 ⁇ l.
  • 20 ⁇ l of the SuperFect reagent (Qiagen) was added to the DNA solution and mixed. This mixture was then incubated for 5-10 minutes at room temperature.
  • Fig. 1 Comparison of the non-modified and the modified nucleic acid sequences coding for the ⁇ -chain and the ⁇ -chain of human FSH a) Sequence comparison of the modified and the non-modified nucleic acid sequence coding for the ⁇ -chain of human FSH pXM17ss#6: part of a plasmid containing the modified nucleic acid sequence coding for the ⁇ -chain of human FSH (SEQ ID No. 2) wt ⁇ FSH: non-modified nucleic acid sequence coding for the ⁇ -chain of human FSH (SEQ ID No. 3) The start codon and the stop codons are shown in bold letters.
  • Fig 2 Map of the recombinant nucleic acid molecule containing both the modified nucleic acid sequence coding for the ⁇ -chain of human FSH and the modified nucleic acid sequence coding for the ⁇ -chain of human FSH
  • Fig. 3 Expression analysis of different combinations of ⁇ - and ⁇ -chains after transient expression in CHO cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Endocrinology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Reproductive Health (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to nucleic acid molecules comprising a nucleic acid sequence coding for the α- and the β-chain of the human follicle stimulating hormone (FSH), respectively, which has been modified with respect to the codon usage in CHO cells. The present invention further relates to a recombinant nucleic acid molecule comprising such nucleic acid sequences and host cells containing such recombinant nucleic acid molecules, as well as their use in the production of recombinant human FSH. Finally, the present invention also relates to a method for producing host cells expressing human follicle stimulating hormone by transfecting cells in suspension culture under serum- free conditions with the recombinant nucleic acid molecule of the present invention.

Description

FSH producing cell clone
The present invention relates to nucleic acid molecules comprising a nucleic acid sequence coding for the α- and the β-chain of the human follicle stimulating hormone (FSH), respectively, wherein the nucleic acid sequence has been modified with respect to the codon usage in CHO cells, in comparison to the wild-type human FSH nucleic acid sequence.
The present invention further relates to a recombinant nucleic acid molecule comprising such nucleic acid sequences and host cells containing such recombinant nucleic acid molecules, as well as their use in the production of recombinant human FSH.
Finally, the present invention also relates to a method for producing host cells expressing human follicle stimulating hormone by transfecting cells in suspension culture under serum-free conditions with the recombinant nucleic acid molecule of the present invention.
Follicle stimulating hormone (FSH) is produced by the gonadotrophic cells of the anterior pituitary and released into the circulation. FSH acts together with the luteinizing hormone (LH) in the control of oocyte maturation in females and of spermatogenesis in males. Both FSH and LH belong to a family of heterodimeric glycoproteins which consist of two non-covalently linked α- and β-chains which are encoded by separate genes. While the amino acid sequence of the α-chain of FSH and LH is identical, the amino acid sequence of the β-chain is different in both proteins. Both the α- and the β-chains are glycosylated. The α-chain of FSH has two potential asparagine- linked glycosylation sites at positions 52 and 78, while the β- chain of FSH has two potential asparagine-linked glycosylation sites at positions 7 and 24 (Olijve et al. (1996) MoI. Hum. Reprod. 2(5): 371-382).
Human FSH is used to treat women with unovulation, for stimulation of multifollicular development (superovulation) and in preparation for an assisted conception such as IVF, GIFT or ZIFT. Furthermore, human FSH is used to stimulate the maturation of follicles in women with a low or absent FSH production and for the stimulation of spermatogenesis in men with congenital or acquired hypogonadotropic hypogonadism.
Originally, FSH for medicinal uses was purified from human post-menopausal urine. However, this purified FSH has the disadvantage that it also contains LH and other contaminating proteins of human origin. Furthermore, the use of such a natural source implies limited product availability and consistency.
With the advent of recombinant DNA technology, it became possible to produce human FSH in cell cultures transfected with the nucleic acid sequences coding for the α- and the β-chain. DNA sequences coding for the α- and the β-chains and methods for producing recombinant human FSH have been disclosed e.g. in WO 88/10270, WO 86/04589 and EP 0 735 139.
Currently, there are two commercial recombinant human FSH products on the market in Germany, namely GONAL-F® and PUREGON®, both of which are produced by expression of the wild-type DNA coding for the α- and the β-chains in CHO cells.
However, there is still a need to optimize the expression of the FSH chains to improve the yield and expression rate of FSH for a given number of cells. It is thus a problem underlying the present invention to provide nucleic acid sequences and recombinant nucleic acid molecules by which recombinant human FSH can be produced in large quantities in eukaryotic cells.
According to the present invention, this and further problems are solved by means of the features of the main claim.
Advantageous embodiments are defined in the sub-claims. According to the present invention, nucleic acid molecules comprising modified nucleic acid sequences coding for the α- and the β-chain of human FSH which have been adapted to the codon usage in Chinese hamster ovary (CHO) cells are used for transfecting CHO cells and lead to a significant increase in FSH production in the trans fected CHO cells.
In the context of the present invention, the term "increase in FSH production" refers to the situation that upon expressing the modified nucleic acid sequences in the host cell, a higher amount of FSH is produced in a host cell compared to the situation where a non-modified nucleic acid sequence encoding FSH with the same amino acid sequence is expressed in the same type of host cells under similar conditions such as e.g. comparable transfection procedures, comparable expression vectors etc.
The genetic code is redundant, as 20 amino acids are specified by 61 triplet codons. Thus, most of the 20 proteinogenic amino acids are coded by several base triplets (codons). The codons which specify a particular amino acid are not used with the same frequency in a specific organism, however, but there are preferred codons, which are used frequently, and rare codons which are used less frequently. Said differences in codon usage are put down to selective evolutionary pressures, and, in particular, to the efficiency of translation. One reason for the lower translation efficiency of rarely occurring codons could be that the corresponding aminoacyl-tRNA pools are depleted and are therefore no longer available for protein synthesis.
Furthermore, different organisms prefer different codons. Thus, for example, the expression of a recombinant DNA originating from a mammalian cell often proceeds only suboptimally in E. coli cells. Therefore, the replacement of rarely used codons by frequently used codons can enhance expression in some cases. For many organisms, the DNA sequence of a larger number of genes is known and there are tables, from which the frequency of the usage of specific codons in the respective organism can be derived. By using said tables, protein sequences can be relatively exactly back-translated to form a DNA sequence, which contains the codons preferred in the respective organism for the different amino acids of the protein. Tables for codon usage can, inter alia, be found at the following internet addresses: http://www.kazusa.or.jp/codon/index.html; or http://www.entelechon.com/index.php?id=tools/index.
There are also programs available for reverse translation of a protein sequence, for example the protein sequence of the α- or the β-chain of human FSH, to form a degenerate DNA sequence, like for instance at httpV/www.entelechon.com/eng/backtranslation.html.
The term "nucleic acid sequence" for the purposes of the present invention relates to any nucleic acid molecule that codes for polypeptides such as peptides, proteins etc.
These nucleic acid molecules may be made of DNA, RNA or analogues thereof.
However, nucleic acid molecules being made of DNA are preferred.
The person skilled in the art is clearly aware that modification of the starting nucleotide sequence describes the process of optimization with respect to codon usage.
If, for example, the coding sequence of a foreign wild type enzyme is adjusted to the codon usage of CHO cells, the changes introduced can be easily identified by comparing the modified sequence and the starting sequence (see Figures Ia and Ib). Moreover, both sequences will code for the same amino acid sequence. The amino acid sequence of the α-chain of human FSH is depicted in SEQ ID No. 5 and the amino acid sequence of the β-chain of human FSH is depicted in SEQ ID No. 6.
These amino acid sequences correspond to the wild-type amino acid sequences of the α- and the β-chain of human FSH as deposited under accession number J 00152 in the EMBL database and under accession number NM 000510 in the NCBI database, respectively.
In the case of the α-chain of human FSH the starting nucleic acid sequence is shown in SEQ ID No. 3 and in the case of the β-chain of human FSH the starting nucleic acid sequence is shown in SEQ ID No. 4.
According to the invention, the nucleic acid sequence coding for the α-chain of human FSH is modified with respect to the codon usage in CHO cells at least at 30 positions, preferably at least at 40 positions, particularly preferably at least at 50 positions, also particularly preferably at least at 60 or 70 positions, and most preferably at least at 75 positions compared to the starting sequence.
Further, according to the invention, the nucleic acid sequence coding for the β-chain of human FSH is modified with respect to the codon usage in CHO cells at least at 25 positions, preferably at least at 30 positions, more preferably at least at 40 positions, particularly preferably at least at 50 positions, also particularly preferably at 60 positions and most preferably at least at 65 positions compared to the starting sequence.
Most preferably, the modified nucleic acid sequence coding for the β-chain of human FSH is the coding region of the nucleic acid sequence given in SEQ ID No. 1 or a nucleic acid sequence which is identical to the coding region of the nucleic acid sequence given in SEQ ID No. 1 by at least 90%, preferably by at least 92% or 94%, particularly preferably by at least 96% or 98%, and most preferably by at least 99% over the entire coding region. In SEQ ID No. 1 the coding region starts at nucleotide 56 and extends up to nucleotide 442.
Most preferably, the optimized nucleic acid sequence coding for the α-chain of human FSH is the coding region of the nucleic acid sequence given in SEQ ID No. 2, or a nucleic acid sequence which is identical to the coding region of the nucleic acid sequence given in SEQ ID No. 2 by at least 85%, preferably by at least 87% or 90%, particularly preferably by at least 92% or 94% and most preferably by at least 96%, 98% or 99% over the entire coding region. In SEQ ID No. 2 the coding region starts at nucleotide 19 and extends up to nucleotide 366.
The terms "non-modified nucleic acid sequence", "wild-type nucleic acid sequence" or "starting nucleic acid sequence" for the purposes of the present invention relate to a nucleic acid sequence which is intended to be used for (over)expression in a host cell and which has not been adapted to the codon usage in the host cell, but is the actual wild-type nucleic acid sequence coding for the protein.
The terms "modified nucleic acid sequence" or "optimized nucleic acid sequence" for the purposes of the present invention relate to a sequence that has been modified for expression in a host cell by adapting the sequence of the non-modified/starting nucleic acid sequence to the codon usage of the host cell. A modified or optimized nucleic acid sequence codes for a protein having the same amino acid sequence as the protein encoded by the non-modified sequence.
Sequence identity is determined by a number of programs based on different algorithms. Herein, the algorithms of Needleman and Wunsch or Smith and Waterman achieve particularly reliable results. For sequence comparisons, the program PiIeUp (Feng and Doolittle (1987) J. MoI. Evolution 25: 351 - 360; Higgins et al. (1989) CABIOS 5: 151 - 153) or the programs Gap and Best Fit (Needleman and Wunsch (1970) J. MoI. Biol. 48: 443 - 453 and Smith and Waterman (1981) Adv. Appl. Math. 2: 482 - 489) were used, which are contained in the GCG software package (Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA).
The sequence identity values given herein in percent were determined with the program Gap over the entire sequence region with the following settings: Gap Weight: 50, Length Weight: 3, Average Match: 10,000, and Average Mismatch: 0.000. Unless specified otherwise, said settings were used as standard settings for sequence comparisons.
Without intending to be bound by a hypothesis, it is assumed that the codon- optimized DNA sequences allow a more efficient translation and the mRNAs formed thereof possibly have a longer half- life period in the cell and are therefore more frequently available for translation.
The person skilled in the art is well familiar with techniques that allow to change the original starting nucleic acid sequence into a modified nucleic acid sequence encoding polypeptides of identical amino acid but with different codon usage. This may e.g. be achieved by polymerase chain reaction based mutagenesis techniques, by commonly known cloning procedures, by chemical synthesis etc.
Also an object of the present invention is a recombinant nucleic acid molecule comprising a modified nucleic acid sequence coding for the β-chain of human FSH wherein the modified nucleic acid sequence is selected from the group consisting of the coding region of the nucleotide sequence according to SEQ ID No. 1 and nucleotide sequences having a sequence identity of at least 90% to the coding region of the nucleotide sequence as depicted in SEQ ID No. 1 and wherein the modified nucleic acid sequence is under the control of a promoter which is active in a host cell.
The term "promoter which is active in a host cell" is intended to mean that the promoter within the recombinant nucleic acid molecule allows the expression of the nucleic acid sequence in a host cell in which the expression of the nucleic acid sequence is desired. The activity of a promoter is usually determined by the presence of transcription factors which are able to bind to the promoter and to activate transcription. Promoters which are suitable for the expression of nucleic acid sequences in mammalian cells are well known to the person skilled in the art and include viral promoters such as a CMV, SV40, HTLV or adenovirus major late promoter and other promoters such as the EF-lα-promoter or the UbC promoter.
The term "host cell" for the purposes of the present invention refers to any cell that is commonly used for expression, i.e. transcription and translation of nucleic acid sequences for the production of e.g. polypeptides. In particular, the term "host cell" or "organism" relates to prokaryotes, lower eukaryotes, plants, insect cells or mammalian cell culture systems. Preferably, the host cell is a mammalian cell, more preferably the host cell is a rodent cell, even more preferably the host cell is a rodent cell which has a similar codon usage as the CHO cell and most preferably this host cell is a CHO cell.
The host CHO cell line used for expression of the modified sequences and for the production of recombinant human FSH is a derivative of a CHO-Kl cell line and is deficient in dihydro folate reductase (dhfr) activity. The cell line was obtained from DSMZ (Cat. No. ACC 126) and adapted to suspension and serum- free culture conditions.
A CHO cell line containing a recombinant nucleic acid molecule comprising a first optimized nucleic acid sequence coding for the β-chain of human FSH and a second optimized nucleic acid sequence coding for the α-chain of human FSH was deposited on 28 March 2007 at the DSMZ in Braunschweig under deposit number DSM ACC2833.
The term "recombinant nucleic acid molecule" within the meaning of the present invention is intended to comprise all kinds of nucleic acid molecules which are capable of being introduced into a host cell and effecting the expression of a nucleic acid sequence which is contained within the recombinant nucleic acid molecule. The term comprises, inter alia, plasmid vectors and viral vectors such as adenoviral, lentiviral and retroviral vectors, with plasmid vectors being preferred.
Examples of suitable plasmid vectors which can be used to express proteins in mammalian cells are well known and include for example the pCI vector series, pSI (Promega), pcDNA® vectors, pCEP4, pREP4, pSHOOTER™, pZeoSV2 (Invitrogen), pBlast, pMono, pSELECT, pVITRO and pVIVO (InVivogen). Besides the promoter and the nucleic acid sequence to be expressed, a recombinant nucleic acid molecule usually contains other functional elements such as polyadenylation sequences, prokaryotic and/or eukaryotic selection genes which allow the identification of positively transformed prokaryotic and/or eukaryotic cells, and an origin of replication. The expert knows which elements he has to select for a specific purpose and which plasmid vector is suitable for the expression of a specific nucleic acid sequence in a specific host cell.
Recombinant nucleic acid molecules comprising the nucleic acid sequences of the present invention can be obtained by standard molecular biological methods which are described in the literature, e.g. in Sambrook and Russell (2001) Molecular cloning - a laboratory manual, 3rd edition, Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY, USA.
Preferably, the recombinant nucleic acid molecule of the present invention comprises both a modified nucleic acid sequence coding for the β-chain of human FSH and a nucleic acid sequence coding for the α-chain of FSH.
The nucleic acid sequence coding for the α-chain of human FSH is selected from an optimized nucleic acid sequence coding for the α-chain of human FSH which is selected from the group consisting of the coding region of the nucleic acid sequence according to SEQ ID No. 2, nucleic acid sequences having a sequence identity of at least 85% to the coding region of the nucleic acid sequence as depicted in
SEQ ID No. 2, the coding region of the non-modified nucleic acid sequence as depicted in SEQ ID No. 3 and nucleic acid sequences having a sequence identity of at least 70% to the coding region of the nucleic acid sequence as depicted in SEQ ID No. 3.
The nucleic acid sequence coding for the α-chain of human FSH may be under the control of the same promoter as the nucleic acid sequence coding for the β-chain of human FSH, for example by means of an internal ribosome entry site (IRES), or it may be under the control of a separate promoter. Preferably, the nucleic acid sequence coding for the α-chain of human FSH is under the control of a separate promoter. More preferably, the nucleic acid sequence coding for the optimized β- chain of human FSH is under the control of an SV40 promoter and the nucleic acid sequence coding for the α-chain of human FSH is under the control of a CMV promoter. Most preferably, the recombinant nucleic acid molecule of the present invention has the nucleic acid sequence depicted in SEQ ID No. 7.
The present invention further relates to a host cell which contains a recombinant nucleic acid molecule comprising the optimized nucleic acid sequence coding for the β-chain of human FSH and which further contains a nucleic acid sequence coding for the α-chain of human FSH which is selected from a modified nucleic acid sequence selected from the group consisting of the coding region of the nucleotide sequence according to SEQ ID No. 2 and nucleotide sequences having a sequence identity of at least 85% to the coding region of the nucleic acid sequence as depicted in SEQ ID NO. 2 and the coding region of the non-modified nucleic acid sequence as depicted in SEQ ID No. 3 and nucleic acid sequences having a sequence identity of at least 70% to the coding region of the nucleic acid sequence as depicted in SEQ ID No. 3.
The nucleic acid sequence coding for the α-chain of human FSH may be present in the same recombinant nucleic acid molecule as the optimized nucleic acid sequence coding for the β-chain of human FSH, or it may be introduced into the host cell on a separate recombinant nucleic acid molecule. Preferably, the nucleic acid sequence coding for the α-chain of human FSH is present in the same recombinant nucleic acid molecule as the optimized nucleic acid sequence coding for the β-chain of human FSH.
The host cell may be selected from mammalian cell culture systems such as NIH3T3 cells, CHO cells, COS cells, 293 cells, Jurkat cells, BHK cells and HeLa cells. Preferably, the host cell is a rodent cell, more preferably the host cell is a rodent cell which has a similar codon usage as the CHO cell and most preferably this host cell is a CHO cell.
Also an object of the present invention is a cell culture comprising the host cells containing a recombinant nucleic acid molecule comprising a modified nucleic acid sequence coding for the β-chain of human FSH and a nucleic acid sequence coding for the α-chain of human FSH, wherein the nucleic acid sequence coding for the α- chain may be selected from the group consisting of the non-modified nucleic acid sequence and the modified nucleic acid sequence as defined above, in a suitable culture medium.
The cell culture is obtained by cultivating the host cells in a suitable culture medium under conditions which support the growth of the host cells.
The term "cultivating cells" is to be understood to mean that the cells are kept in vivo under conditions that allow proliferation, normal metabolism of the cells and formation of the recombinant protein. That means that the cells are provided with all necessary nutrients as well as with oxygen and are kept at a suitable pH and a suitable osmolarity. The cells may be cultivated in any suitable manner. Preferably, the cells are cultivated as suspension culture, for example in flasks or in roller flasks. The term "cultivation" includes batch cultivation, fed-batch cultivation as well as perfusion cultures and other suitable culture methods. "Cultivating in suspension" means that the cells do not adhere to a surface, but are distributed in the culture medium.
"Batch cultivation" within the meaning of the present invention is a cultivation method in which culture medium is neither added nor withdrawn during the cultivation.
A "fed-batch method" within the meaning of the present invention is a cultivation method in which culture medium is added during the cultivation, but no culture medium is withdrawn.
"Perfusion culturing" within the scope of the present invention is a cultivation method in which culturing medium is withdrawn and new culture medium is added during cultivation.
The culture medium preferably has only a low serum content, e.g. a maximum content of 1% (v/v) serum; most preferably, the medium is serum- free. Examples of suitable culture media are basal media such as RPMI 1640, DMEM, F 12, ProCHO5 or eRDF, which may be mixed with each other and with supplements according to the need of the cells. In addition to glucose and amino acids, the medium may contain chelators such as aurin tricarboxylic acid (ATA), anorganic salts such as phosphate salts, polyamines and their precursors such as putrescine, hormones such as insulin, antioxidants such as ascorbic acid and vitamin mixtures, lipid precursors such as ethanolamine and cell-protecting substances such as pluronic F68. The expert knows which culture medium to use for the cultivation of the specific cell type. Preferably, the culture medium is ProCHO5.
Also an object of the present invention is a method in which a host cell according to the present invention is first cultured in a suitable culture medium for a certain period of time and then the cell culture supernatant is harvested. The "cell culture supernatant" is the cell culture medium which was in contact with the cells for a certain period of time and which has then been separated from the cells. The cell culture supernatant contains the recombinant protein produced by the cells. The cells may be separated from the supernatant by conventional separation techniques such as filtration and centrifugation. In long-term cultures, the supernatant of the host cells according to the present invention contains FSH concentrations of at least 500 ng/ml, preferably et least 1000 ng/ml, more preferably at least 1500 ng/ml and most preferably at least 2000 ng/ml.
The recombinant human FSH may be purified from the cell culture supernatant by one or more purification steps. Suitable purification methods are known to the expert and include ion exchange chromatography, hydrophobic interaction chromatography, hydroxyapatite chromatography, affinity chromatography and gel filtration. Methods for purifying recombinant human FSH are disclosed e.g. in WO 00/63248, WO 2006/051070 and WO 2005/063811.
For administration as a medicament, the purified recombinant human FSH is mixed with one or more excipients to obtain a formulation which can be administered to patients. Suitable formulations for recombinant human FSH are disclosed inter alia in EP 0 853 945, EP 1 285 665, EP 0 974 359, EP 1 188 444 and EP 1 169 349.
The host cell of the present invention is produced by transfecting cells with a recombinant nucleic acid molecule of the present invention which comprises either only the modified nucleic acid sequence coding for the β-chain of human FSH or also a nucleic acid sequence coding for the α-chain of human FSH. Alternatively, the nucleic acid sequence coding for the β-chain and the nucleotide sequence coding for the α-chain may be present on separate recombinant nucleic acid molecules which are introduced into the host cell either simultaneously or successively.
Suitable transfection methods are known to the person skilled in the art and include for example calcium phosphate precipitation, DEAE-dextran-mediated transfection, electroporation and lipofection. Commercially available kits for transfection, such as
SuperFect, PolyFect, Effectene (Qiagen), TransFast TM , ProFection , Transfectam
(Promega) and TransPass TM (NEB) may also be used. Preferably, the cells are transfected while in suspension and are transfected under serum- free conditions.
For the production of recombinant human FSH on a commercial scale, the cells are usually stably transfected, which means that successfully transformed cells are selected after transfection by means of a selection agent which kills the non- transfected cells, whereas the transfected cells containing the resistance gene continue growing. Suitable selection reagents include antibiotics such as zeocin, neomycin and puromycin and other drugs such as methotrexate.
The present invention is illustrated by means of the following examples, which are not to be understood as limiting.
Examples
1. Cloning of a recombinant nucleic acid molecule comprising optimized nucleic acid sequences coding for the α- and the β-chain of human FSH
A pUC18 vector backbone was used which already contained an SV40 polyadenylation site and splice site and a dhfr gene cassette consisting of an RSV promoter, the mouse dihydro folate reductase gene and an SV40 polyadenylation and splice site. The dihydrofolate reductase gene enables the selection of positively transfected cells and the amplification of the transfected gene with the drug methotrexate.
The non-modified sequences of the α- and the β-chain of human FSH were derived from Fiddes and Goodman (1979) Nature 281 : 351-356 and Jameson et al. (1988) MoI. Endocrinol. 2(9): 806-815, respectively. These sequences were optimized in that the coding regions were adapted to the codon usage in frequently used CHO genes.
Furthermore, an additional stop codon was introduced to ensure efficient termination of translation. The optimized nucleotide sequences for the β- and the α-chain are depicted in SEQ ID No. 1 and 2, respectively, and a comparison of the wild-type and the modified nucleic acid sequences is shown in Figs. Ia and Ib. The sequence comparison shows that the modified and the non-modified nucleic acid sequence coding for the α-chain of human FSH are 80% identical, whereas the modified and the non-modified nucleic acid sequence coding for the β-chain of human FSH are 85% identical.
The modified sequences were inserted separately into two copies of the pUC18 backbone by cutting them with the restriction enzymes Sacll and Ncol and subsequent ligation.
The CMV promoter and the SV40 promoter were amplified from suitable template DNA with the following primers, simultaneously introducing an Ascl and a Pad restriction site (underlined in the following primers):
Asc-CMV-F Primer
5' - GGC GCG CCT TTT GCT CAC ATG GCT CG - 3' (SEQ ID No. 8)
Pac-CMV-R Primer 5 ' - CCT TAA TTA AGA GCT GTA ATT GAA CTG GGA GTG -3 ' (SEQ ID No. 9)
Asc-SV40-F Primer
5' - GGC GCG CCG CAT ACG CGG ATC TG - 3' (SEQ IDNo.10)
Pac-SV40-R Primer - \6 -
5' - CCT TAA TTA AGT TCG AGA CTG TTG TGT CAG AAG A - 3' (SEQ ID
No. 11)
The CMV promoter was introduced into the plasmid containing the α-chain of human FSH by cutting the plasmid with the restriction enzymes Ascl and Pad and ligation and the SV40 promoter was introduced into the plasmid containing the β- chain of human FSH by cutting the plasmid with the restriction enzymes Asd and Pad and ligation.
Finally, the expression cassette for the β-chain of human FSH comprising the SV40 promoter, the nucleic acid sequence coding for the β-chain and the SV40 polyadenylation signal was amplified with the following primers, simultaneously introducing a Not\ restriction site both on the 5' and on the 3' end of the amplificate (underlined in the following primers):
beta-Notl-F Primer
5' - GCG GCC GCA TAC GCG GAT CTG C - 3' (SEQ IDNo.12)
beta-Notl-R Primer
5' - GCG GCC GCT CAC TCA TTA GGC ACC CCA GG - 3' (SEQ ID No.13)
The amplificate was then inserted into the Notl-cut plasmid containing the α-chain of human FSH. The resulting plasmid containing both the optimized nucleic acid sequence coding for the α-chain and the optimized nucleic acid sequence coding for the β-chain is shown in Fig. 2. The sequence of the plasmid with both optimized nucleic acid sequences is depicted in SEQ ID No. 7. 2. Transient transfection of CHO cells with recombinant nucleic acid molecules containing different combinations of α- and β-chains of human FSH
Plasmids containing either an optimized nucleic acid sequence coding for the α-chain or an optimized nucleic acid sequence coding for the β-chain in combination with the corresponding wild-type β-chain or α-chain or containing both optimized sequences, were produced as described under 1) above. The DNA was mixed with the medium ProCHO5 (Lonza) containing 8 mM glutamine without HT to a total volume of 200 μl. Then 20 μl of the SuperFect reagent (Qiagen) was added to the DNA solution and mixed. This mixture was then incubated for 5-10 minutes at room temperature.
Aliquots containing 1.68 x 106 CHO cells were centrifuged (5 min, 800 rpm, 18- 25°C), the supernatant was removed and the cells were resuspended in 1.1 ml culture medium ProCHO5 containing 8 mM glutamine without HT. The suspension was then transferred to the DNA mixture, after the DNA mixture had been incubated for 5-10 minutes, mixed and transferred to a well of a 6-well plate. The cells were incubated for 3 hours at 37°C, which incubation leads to the adherence of the cells. The supernatant was removed, the cells were washed three times with 1 ml PBS and then fresh culture medium (2 ml ProCHO5 containing 8 mM glutamine without HT) was added. After 2 days incubation at 37°C, the supernatant was removed and centrifuged. The supernatant was concentrated (concentration factor 16.67) and the FSH concentration was determined in an ELISA reader (Anogen). The results of this measurement are shown in Fig. 3.
The results show that the introduction of a modified α-chain in combination with a wild-type β-chain leads to a reduction of expression of almost 50% as compared to a combination of two wild-type chains. In contrast, the introduction of a modified β- chain, both in combination with a wild-type and the modified α-chain, leads to a transient FSH expression which is enhanced by a factor of 1.5 - 3 as compared to the combination of the wild-type α-chain and the wild- type β-chain. Therefore, in particular the use of the modified β-chain leads to a significant enhancement of FSH expression after transient transfection, whereas the modified α-chain does not positively influence FSH production.
Brief description of the drawings
Fig. 1 : Comparison of the non-modified and the modified nucleic acid sequences coding for the α-chain and the β-chain of human FSH a) Sequence comparison of the modified and the non-modified nucleic acid sequence coding for the α-chain of human FSH pXM17ss#6: part of a plasmid containing the modified nucleic acid sequence coding for the α-chain of human FSH (SEQ ID No. 2) wt α FSH: non-modified nucleic acid sequence coding for the α-chain of human FSH (SEQ ID No. 3) The start codon and the stop codons are shown in bold letters.
b) Sequence comparison of the modified and the non-modified nucleic acid sequence coding for the β-chain of human FSH
Query: non-modified nucleic acid sequence coding for the β-chain of human FSH (SEQ ID No. 4)
Subject: modified nucleic acid sequence coding for the β-chain of human FSH (SEQ ID No. 1) The start and the stop codons are shown in bold letters.
Fig 2: Map of the recombinant nucleic acid molecule containing both the modified nucleic acid sequence coding for the α-chain of human FSH and the modified nucleic acid sequence coding for the β-chain of human FSH Fig. 3: Expression analysis of different combinations of α- and β-chains after transient expression in CHO cells
The relative FSH expression in relation to cells expressing a combination of the wildtype CC- and β- chains is shown. w/w: non-modified CC- and β- chain s/w: modified cc-chain and non-modified β- chain w/s: modified β-chain and non-modified CC- chain s/s: modified CC- and β- chain
1/1
PCT
Print Out (Original in Electronic Form) (This sheet is not part of and does not count as a sheet of the international application)
Figure imgf000023_0001
1 The indications made below relate to the deposited microorganism(s) or other biological material referred to in the description on: 1-1 paragraph number 8
1-3 Identification of deposit
1-3-1 Name of depositary institution DSMZ DSMZ-Deutsche Sammlung von Mikroor- ganismen und Zellkulturen GmbH
1-3-2 Address of depositary institution Mascheroder Weg Ib, D-38124 Braunschweig, Germany
1-3-3 Date of deposit 28 March 2007 (28 . 03 .2007 ) 1-3-4 Accession Number DSMZ ACC2833
1-5 Designated States for Which Indications are Made all designations
FOR RECEIVING OFFICE USE ONLY
Figure imgf000023_0002
FOR INTERNATIONAL BUREAU USE ONLY
0-5 This form was received by the international Bureau on:
0-5-1 Authorized officer

Claims

- 21 -C L A I M S
1. Nucleic acid molecule comprising a nucleic acid sequence coding for the β chain of human follicle stimulating hormone (FSH), which is selected from the group consisting of the coding region of the nucleic acid sequence according to SEQ ID No. 1 and nucleic acid sequences having a sequence identity of at least 90% to the coding region of the nucleic acid sequence as depicted in SEQ ID No. 1.
2. Nucleic acid molecule comprising a nucleic acid sequence coding for the α chain of human follicle stimulating hormone (FSH), which is selected from the group consisting of the coding region of the nucleic acid sequence according to SEQ ID No. 2 and nucleic acid sequences having a sequence identity of at least 85% to the coding region of the nucleic acid sequence as depicted in SEQ ID No. 2.
3. Recombinant nucleic acid molecule comprising a first nucleic acid sequence according to claim 1 under the control of a promoter which is active in a host cell.
4. Recombinant nucleic acid molecule according to claim 3, further comprising a second nucleic acid sequence according to claim 2.
5. Recombinant nucleic acid molecule according to claim 3, further comprising a second nucleic acid sequence which is selected from the group consisting of the coding region of the nucleic acid sequence according to SEQ ID No. 3 and nucleic acid sequences having a sequence identity of at least 70% to the coding region of the nucleic acid sequence as depicted in SEQ ID No. 3.
6. Recombinant nucleic acid molecule according to claim 4 or 5, wherein the second nucleic acid sequence is under the control of a separate promoter. - 22 -
7. Recombinant nucleic acid molecule according to any of claims 3 to 6, wherein the first nucleic acid sequence and/or the second nucleic acid sequence is under the control of a viral promoter.
8. Recombinant nucleic acid molecule according to claim 7, wherein the first nucleic acid sequence is under the control of an SV40 promoter.
9. Recombinant nucleic acid molecule according to claim 7, wherein the second nucleic acid sequence is under the control of a CMV promoter.
10. Recombinant nucleic acid molecule according to any of claims 3 to 9, having the nucleic acid sequence as depicted in SEQ ID No. 7.
11. Host cell containing a recombinant nucleic acid molecule according to any of claims 4 to 10.
12. Host cell according to claim 11, being a mammalian cell.
13. Host cell according to claim 11 or 12, being a Chinese hamster ovary (CHO) cell.
14. Host cell according to any of claims 11 to 13, having the deposit number DSM ACC2833.
15. Host cell containing a first recombinant nucleic acid molecule according to claim 3 and a second recombinant nucleic acid molecule comprising a nucleic acid sequence selected from the nucleic acid sequence according to claim 2 and the nucleic acid sequence as depicted in SEQ ID No. 3.
16. Cell culture comprising the host cell according to any of claims 11 to 15 in a suitable culture medium. - 23 -
17. Method for producing recombinant human FSH, comprising the steps of: culturing a host cell according to any of claims 11 to 15 in a suitable culture medium; and - harvesting the cell culture supernatant.
18. Method according to claim 17, further comprising the step of purifying the recombinant human FSH from the cell culture supernatant.
19. Method for producing the host cell according to any of claims 11 to
14, comprising transfecting cells in suspension culture under serum- free conditions with a recombinant nucleic acid molecule according to any of claims 4 to 10.
20. Method for producing the host cell according claim 15, comprising transfecting cells in suspension culture under serum- free conditions with a first recombinant nucleic acid molecule according to claim 3 and a second recombinant nucleic acid molecule comprising a nucleic acid sequence selected from the nucleic acid sequence according to claim 2 and the nucleic acid sequence as depicted in SEQ ID No. 3.
21. Use of a nucleic acid sequence according to SEQ ID No. 1 and/or 2 for the production of human recombinant FSH.
PCT/EP2008/058274 2007-06-28 2008-06-27 Fsh producing cell clone WO2009000913A1 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
KR1020107001959A KR101522217B1 (en) 2007-06-28 2008-06-27 Fsh producing cell clone
US12/666,257 US8318457B2 (en) 2007-06-28 2008-06-27 FSH producing cell clone
PL08774439T PL2170942T3 (en) 2007-06-28 2008-06-27 Fsh producing cell clone
DK08774439.7T DK2170942T3 (en) 2007-06-28 2008-06-27 FSH PRODUCING CELL CLEON
EA201070071A EA022993B1 (en) 2007-06-28 2008-06-27 Nucleic acid molecules coding for alpha- and beta-chains of human follicle stimulating hormone (fsh)
EP08774439.7A EP2170942B1 (en) 2007-06-28 2008-06-27 Fsh producing cell clone
ES08774439T ES2432183T3 (en) 2007-06-28 2008-06-27 Clone of cells that produce FSH
BRPI0813913-0A BRPI0813913B1 (en) 2007-06-28 2008-06-27 Nucleic acid molecule, recombinant nucleic acid sequence, host cell, methods for producing recombinant human fsh, and for producing the host cell, and, use of a nucleic acid sequence.
RS20130443A RS52976B (en) 2007-06-28 2008-06-27 Fsh producing cell clone
MX2010000385A MX2010000385A (en) 2007-06-28 2008-06-27 Fsh producing cell clone.
CA2690844A CA2690844C (en) 2007-06-28 2008-06-27 Fsh producing cell clone
AU2008267138A AU2008267138B9 (en) 2007-06-28 2008-06-27 FSH producing cell clone
UAA201000813A UA103598C2 (en) 2007-06-28 2008-06-27 Fsh producing cell clone
JP2010513938A JP5570980B2 (en) 2007-06-28 2008-06-27 FSH producing cell clone
CN200880022358.7A CN101720332B (en) 2007-06-28 2008-06-27 Fsh producing cell clone
NZ581702A NZ581702A (en) 2007-06-28 2008-06-27 Follicle stimulating hormone producing cell clone
SI200831065T SI2170942T1 (en) 2007-06-28 2008-06-27 Fsh producing cell clone
IL202280A IL202280A (en) 2007-06-28 2009-11-23 Codon-optimized fsh-coding nucleic acid and use thereof for recombinant fsh production
HK10107184.9A HK1140782A1 (en) 2007-06-28 2010-07-27 Fsh producing cell clone fsh
HRP20130921AT HRP20130921T1 (en) 2007-06-28 2013-09-30 Fsh producing cell clone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07111257.7 2007-06-28
EP07111257 2007-06-28

Publications (1)

Publication Number Publication Date
WO2009000913A1 true WO2009000913A1 (en) 2008-12-31

Family

ID=39745099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/058274 WO2009000913A1 (en) 2007-06-28 2008-06-27 Fsh producing cell clone

Country Status (24)

Country Link
US (1) US8318457B2 (en)
EP (2) EP2170942B1 (en)
JP (1) JP5570980B2 (en)
KR (1) KR101522217B1 (en)
CN (1) CN101720332B (en)
AU (1) AU2008267138B9 (en)
BR (1) BRPI0813913B1 (en)
CA (1) CA2690844C (en)
CY (1) CY1114463T1 (en)
DK (1) DK2170942T3 (en)
EA (1) EA022993B1 (en)
ES (1) ES2432183T3 (en)
HK (1) HK1140782A1 (en)
HR (1) HRP20130921T1 (en)
IL (1) IL202280A (en)
MX (1) MX2010000385A (en)
NZ (1) NZ581702A (en)
PL (1) PL2170942T3 (en)
PT (1) PT2170942E (en)
RS (1) RS52976B (en)
SI (1) SI2170942T1 (en)
UA (1) UA103598C2 (en)
WO (1) WO2009000913A1 (en)
ZA (1) ZA200908168B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009009905U1 (en) 2008-02-08 2009-10-29 Biogenerix Ag Liquid formulation of FSH
WO2010115586A2 (en) 2009-04-01 2010-10-14 Biogenerix Ag Method for purifying recombinant fsh
EP2325194A1 (en) 2009-11-24 2011-05-25 Glycotope GmbH Process for the purification of glycoproteins
CN111349154A (en) * 2018-12-21 2020-06-30 江苏众红生物工程创药研究院有限公司 Recombinant human follicle-stimulating hormone, preparation method and pharmaceutical application thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6279466B2 (en) * 2012-04-27 2018-02-14 Jcrファーマ株式会社 New expression vector
CN103539861B (en) * 2013-11-01 2015-02-18 广州联康生物科技有限公司 Long-acting recombinant human follicle-stimulating hormone-Fc fusion protein (hFSH-Fc)
CN103554269B (en) * 2013-11-01 2015-02-11 广州联康生物科技有限公司 Recombinant porcine follicle-stimulating hormone-Fc fusion protein (pFSH-Fc)
CN103539860B (en) * 2013-11-01 2014-12-03 广州优联康医药科技有限公司 Long-acting recombinant human follicle-stimulating hormone-Fc fusion protein (hFSH-Fc)
CN105462909B (en) * 2015-12-31 2019-09-27 哈药集团技术中心 A kind of cultural method of the Chinese hamster ovary celI of high efficient expression Human Fallicle-Stimulating Hormone
CN107460206B (en) * 2017-09-11 2020-05-01 深圳市深研生物科技有限公司 Recombinant expression vector of human FSH, recombinant cell strain and preparation method of recombinant human FSH
CN110812366B (en) * 2019-11-18 2023-11-17 珠海丽凡达生物技术有限公司 mRNA medicine for hormone supplement and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986004589A1 (en) 1985-01-30 1986-08-14 Reddy Vemuri B Fsh
WO1988010270A1 (en) 1987-06-26 1988-12-29 Istituto Di Ricerca Cesare Serono Spa Urinary follicle stimulating hormone
EP0404546A2 (en) * 1989-06-20 1990-12-27 Genzyme Corporation Heteropolymeric protein production
EP0853945A1 (en) 1997-01-15 1998-07-22 Akzo Nobel N.V. Liquid gonadotropin containing formulations
EP0974359A2 (en) 1998-07-23 2000-01-26 Eli Lilly And Company FSH and FSH variant formulations, products and methods
WO2000063248A2 (en) 1999-04-16 2000-10-26 Instituto Massone S.A. Highly purified gonadotropin compositions and process for preparing them
WO2001058493A1 (en) 2000-02-11 2001-08-16 Maxygen Aps Conjugates of follicle stimulating hormones
WO2005030969A1 (en) * 2003-10-02 2005-04-07 Progen Co., Ltd. Method for mass production of human follicle stimulating hormone
WO2005063811A1 (en) 2003-12-22 2005-07-14 Ares Trading S.A. Method for purifying fsh
WO2006051070A1 (en) 2004-11-09 2006-05-18 Ares Trading S.A. Method for purifying fsh
WO2007003640A1 (en) 2005-07-05 2007-01-11 Ares Trading S.A. Serum-free culture medium for the production of recombinant gonadotropins

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0842275A1 (en) 1995-02-17 1998-05-20 Instituut Voor Dierhouderij En Diergezondheid (Id-Dlo) PRODUCTION OF BIOLOGICALLY ACTIVE RECOMBINANT BOVINE FOLLICLE STIMULATING HORMONE (REC bFSH) IN THE BACULOVIRUS EXPRESSION SYSTEM
US20020127652A1 (en) 2000-02-11 2002-09-12 Schambye Hans Thalsgard Follicle stimulating hormones
AU2003258388C1 (en) * 2002-09-13 2010-03-18 The University Of Queensland Gene expression system based on codon translation efficiency
US20070281883A1 (en) 2006-06-05 2007-12-06 Hanna Rosenfeld Development of follicle stimulating hormone agonists and antagonists in fish

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986004589A1 (en) 1985-01-30 1986-08-14 Reddy Vemuri B Fsh
WO1988010270A1 (en) 1987-06-26 1988-12-29 Istituto Di Ricerca Cesare Serono Spa Urinary follicle stimulating hormone
EP0404546A2 (en) * 1989-06-20 1990-12-27 Genzyme Corporation Heteropolymeric protein production
EP0735139A1 (en) 1989-06-20 1996-10-02 Genzyme Corporation Heteropolymeric protein production
EP0853945A1 (en) 1997-01-15 1998-07-22 Akzo Nobel N.V. Liquid gonadotropin containing formulations
EP1285665A1 (en) 1997-01-15 2003-02-26 Akzo Nobel N.V. Liquid gonadotropin containing formulations
EP1188444A1 (en) 1998-07-23 2002-03-20 Eli Lilly And Company FSH and FSH variant formulations, products and methods
EP0974359A2 (en) 1998-07-23 2000-01-26 Eli Lilly And Company FSH and FSH variant formulations, products and methods
EP1169349A2 (en) 1999-04-16 2002-01-09 Instituto Massone S.A. Highly purified gonadotropin compositions and process for preparing them
WO2000063248A2 (en) 1999-04-16 2000-10-26 Instituto Massone S.A. Highly purified gonadotropin compositions and process for preparing them
WO2001058493A1 (en) 2000-02-11 2001-08-16 Maxygen Aps Conjugates of follicle stimulating hormones
WO2005030969A1 (en) * 2003-10-02 2005-04-07 Progen Co., Ltd. Method for mass production of human follicle stimulating hormone
WO2005063811A1 (en) 2003-12-22 2005-07-14 Ares Trading S.A. Method for purifying fsh
WO2006051070A1 (en) 2004-11-09 2006-05-18 Ares Trading S.A. Method for purifying fsh
WO2007003640A1 (en) 2005-07-05 2007-01-11 Ares Trading S.A. Serum-free culture medium for the production of recombinant gonadotropins

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
FENG; DOOLITTLE, J. MOL. EVOLUTION, vol. 25, 1987, pages 351 - 360
FIDDES; GOODMAN, NATURE, vol. 281, 1979, pages 351 - 356
GUSTAFSSON C ET AL: "Codon bias and heterologous protein expression", TRENDS IN BIOTECHNOLOGY, ELSEVIER PUBLICATIONS, CAMBRIDGE, GB, vol. 22, no. 7, 1 July 2004 (2004-07-01), pages 346 - 353, XP004520507, ISSN: 0167-7799 *
GUSTAFSSON ET AL., TRENDS IN BIOTECHNOLOGY, vol. 22, no. 7, 2004, pages 346 - 353
HIGGINS ET AL., CABIOS, vol. 5, 1989, pages 151 - 153
JAMESON ET AL., MOL. ENDOCRINOL., vol. 2, no. 9, 1988, pages 806 - 815
KEENE J L ET AL: "Expression of biologically active human follitropin in Chinese hamster ovary cells", JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY OF BIOLOCHEMICAL BIOLOGISTS, BIRMINGHAM,; US, vol. 264, no. 9, 25 March 1989 (1989-03-25), pages 4769 - 4775, XP003001629, ISSN: 0021-9258 *
NEEDLEMAN; WUNSCH, J MOL. BIOL., vol. 48, 1970, pages 443 - 453
OLIJVE ET AL., MOL. HUM. REPROD., vol. 2, no. 5, 1996, pages 371 - 382
SAMBROOK; RUSSELL: "Molecular cloning - a laboratory manual", 2001, COLD SPRING HARBOUR LABORATORY PRESS
SMITH; WATERMAN, ADV. APPL. MATH., vol. 2, 1981, pages 482 - 489
WANG ET AL., CHINESE JOURNAL OF EXPERIMENTAL AND CLINICAL VIROLOGY, vol. 20, no. 3, 2006, pages 266 - 269
WANG Z Y ET AL: "[Codon usage of Chinese hamster ovary cells.]", ZHONGHUA SHI YAN HE LIN CHUANG BING DU XUE ZA ZHI = ZHONGHUA SHIYAN HE LINCHUANG BINGDUXUE ZAZHI = CHINESE JOURNAL OF EXPERIMENTAL AND CLINICAL VIROLOGY SEP 2006, vol. 20, no. 3, September 2006 (2006-09-01), pages 266 - 269, XP002497445, ISSN: 1003-9279 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009009905U1 (en) 2008-02-08 2009-10-29 Biogenerix Ag Liquid formulation of FSH
EP2412385A1 (en) 2008-02-08 2012-02-01 BioGeneriX AG Liquid formulation of FSH
WO2010115586A2 (en) 2009-04-01 2010-10-14 Biogenerix Ag Method for purifying recombinant fsh
JP2012522736A (en) * 2009-04-01 2012-09-27 バイオジェネリクス アクチェンゲゼルシャフト Method for purifying recombinant FSH
US9096683B2 (en) 2009-04-01 2015-08-04 Ratiopharm Gmbh Method for purifying recombinant FSH
EP2325194A1 (en) 2009-11-24 2011-05-25 Glycotope GmbH Process for the purification of glycoproteins
WO2011063943A1 (en) 2009-11-24 2011-06-03 Glycotope Gmbh Process for the purification of glycoproteins
CN111349154A (en) * 2018-12-21 2020-06-30 江苏众红生物工程创药研究院有限公司 Recombinant human follicle-stimulating hormone, preparation method and pharmaceutical application thereof

Also Published As

Publication number Publication date
CY1114463T1 (en) 2016-10-05
IL202280A (en) 2014-12-31
CN101720332B (en) 2014-08-13
HRP20130921T1 (en) 2013-11-08
EP2170942A1 (en) 2010-04-07
HK1140782A1 (en) 2010-10-22
BRPI0813913A2 (en) 2014-12-30
AU2008267138A1 (en) 2008-12-31
US8318457B2 (en) 2012-11-27
PT2170942E (en) 2013-10-22
AU2008267138B2 (en) 2014-01-16
EA022993B1 (en) 2016-04-29
BRPI0813913A8 (en) 2018-02-14
RS52976B (en) 2014-02-28
EA201070071A1 (en) 2010-10-29
EP2170942B1 (en) 2013-07-31
CN101720332A (en) 2010-06-02
JP2010531148A (en) 2010-09-24
JP5570980B2 (en) 2014-08-13
NZ581702A (en) 2011-10-28
KR20100051632A (en) 2010-05-17
KR101522217B1 (en) 2015-05-21
US20120034655A1 (en) 2012-02-09
CA2690844C (en) 2016-05-17
DK2170942T3 (en) 2013-11-04
EP2492280A1 (en) 2012-08-29
MX2010000385A (en) 2010-03-29
PL2170942T3 (en) 2013-12-31
UA103598C2 (en) 2013-11-11
ZA200908168B (en) 2010-07-28
CA2690844A1 (en) 2008-12-31
SI2170942T1 (en) 2013-12-31
IL202280A0 (en) 2010-06-16
BRPI0813913B1 (en) 2022-04-19
ES2432183T3 (en) 2013-12-02
AU2008267138B9 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
AU2008267138B2 (en) FSH producing cell clone
KR100994610B1 (en) Modified growth hormones
Tanihara et al. Identification of transforming growth factor-beta expressed in cultured human retinal pigment epithelial cells.
US7423139B2 (en) High level expression of recombinant human erythropoietin having a modified 5′-UTR
KR101425686B1 (en) Mature dendritic cell compositions and methods for culturing same
CA2613471C (en) Cell lines for expressing enzyme useful in the preparation of amidated products
KR20220002609A (en) Modification of Mammalian Cells Using Artificial Micro-RNAs and Compositions of These Products to Alter Properties of Mammalian Cells
CN108610398B (en) Functional sequence and application in secretory protein expression
EP3444270A1 (en) Novel natural protein and application thereof
KR20020047096A (en) Super-active porcine growth hormone releasing hormone analog
CN107460206B (en) Recombinant expression vector of human FSH, recombinant cell strain and preparation method of recombinant human FSH
RU2560596C2 (en) Expression plasmid for human recombinant follicle-stimulating hormone (fsh) in cho cells, expression plasmid for beta-subunit of human recombinant fsh in cho cells, cho cell producing human recombinant fsh, and method for producing above hormone
CN103917655A (en) Decorin compositions and use thereof
CA2337088C (en) Methods and constructs for protein expression
Budd et al. Preproinsulin mRNA in the rat eye.
EP1458240B1 (en) Nucleic acid constructs useful for glucose regulated production of human insulin in somatic cell lines
WO2023154777A2 (en) Methods of producing human analog insulins and derivatives thereof in a mammalian cell
AU9067998A (en) Human glial cell line-derived neurotrophic factor promoters, vectors containing same, and methods of screening compounds therewith
WO2002052016A2 (en) Regulation of human protein l-isoaspartate o-methyltransferase-like enzyme
CA2575926A1 (en) Canine specific growth hormone releasing hormone

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880022358.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08774439

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008267138

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 7667/DELNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010513938

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 581702

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2690844

Country of ref document: CA

Ref document number: 2008774439

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2008267138

Country of ref document: AU

Date of ref document: 20080627

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/000385

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20107001959

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201070071

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 12666257

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: P-2013/0443

Country of ref document: RS

ENP Entry into the national phase

Ref document number: PI0813913

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091223