WO2009000657A2 - Component comprising a ceramic layer containing a dye and method for the production thereof - Google Patents

Component comprising a ceramic layer containing a dye and method for the production thereof Download PDF

Info

Publication number
WO2009000657A2
WO2009000657A2 PCT/EP2008/057339 EP2008057339W WO2009000657A2 WO 2009000657 A2 WO2009000657 A2 WO 2009000657A2 EP 2008057339 W EP2008057339 W EP 2008057339W WO 2009000657 A2 WO2009000657 A2 WO 2009000657A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nanoparticles
layers
dye
component
Prior art date
Application number
PCT/EP2008/057339
Other languages
German (de)
French (fr)
Other versions
WO2009000657A3 (en
Inventor
Jens Dahl Jensen
Ursus KRÜGER
Daniel Körtvelyessy
Ralph Reiche
Gabriele Winkler
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2009000657A2 publication Critical patent/WO2009000657A2/en
Publication of WO2009000657A3 publication Critical patent/WO2009000657A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications

Definitions

  • the invention relates to a component having a ceramic layer forming the surface, wherein the layer is composed of a plurality of layers and incorporated in the microstructure of the layer nanoparticles of a particular dye.
  • Such a component is for example from DE
  • Turbine blade having a preferably multi-layered layer.
  • the layers of such turbine blades have different functions, including the thermal load on the turbine blade and a corrosive attack to prevent or at least reduce.
  • thermal overloading of the blade can not be completely ruled out due to operational reasons.
  • a dye in the form of nanoparticles is contained in the layer matrix, which causes a color change in thermal stresses that are too large for the component.
  • a ther- mal overload of the turbine blade can also nachwei ⁇ sen when the state it has been overload already canceled.
  • the object of the invention is to specify a component with a ceramic layer forming the surface, in the matrix of which nanoparticles of a particular dye are incorporated, which permit extended statements about the state of the layer.
  • This object is achieved by the initially mentioned component ⁇ he inventively characterized in that the nanoparticles are incorporated into the structural matrix of a layer, adjacent to the layers that have an identical structural matrix without this dye.
  • a color change of the surface layer can be regarded as a particular state of wear of the layer.
  • wear state is meant in this context, a removal of the layer surface.
  • the location may be with the nanoparticles of a ⁇ be approved dye provided in a layer depth, which is considered borderline for the necessity of the exchange of a particular component. As soon as the dye shows on the surface of the layer, this means that an exchange of the relevant component is due.
  • AOI automatic optical inspection
  • the fiction, modern ⁇ component can be produced particularly advantageously by using a coating material is applied which consist of Kera ⁇ mix precursors for the ceramic to be produced, a suitable solvent for these precursors and the nanoparticles of the specific dye.
  • a coating material is applied which consist of Kera ⁇ mix precursors for the ceramic to be produced, a suitable solvent for these precursors and the nanoparticles of the specific dye.
  • the solvent is evaporated and initiated a reaction in which the ceramic precursors react to the desired ceramic.
  • the dye must have a temperature stability, so that he endures the heat treatment to form the ceramic layer layer.
  • the method of applying ceramic precursors to metallic components to form ceramic layers on these components is known per se, and is described, for example, in US 2002/0086111 A1, WO 2004/013378 A1, US 2002/0041928 A1, US Pat WO 03/021004 A1 and WO 2004/104261 Al.
  • the processes described in these documents are concerned with the production of ceramic coatings on components in general, using ceramic
  • precursors for the ceramics which are often referred to as precursor, include the materials that make up the ceramic material of the trainee layer and also have components that in the context of the running during the heat treatment of the Besichtungsstoffes chemical conversion to a Crosslinking of the ceramic material lead. Examples of ceramic precursors can be found in the documents listed in the prior art and must be selected depending on the application.
  • the ceramic to be formed consists of an oxide or a nitride.
  • the formation of oxides, nitrides or oxynitrides can advantageously produce particularly stable layers.
  • the precursors of such ceramics must provide the elements N and O, respectively, for the formation of the oxide, nitridic or oxynitridic ceramics.
  • nanoparticles of another dye are incorporated in at least one of the adjacent layers.
  • by advantageous additional statements are possible. So z. B. the progressive Schichtabtrag be followed in layers with ⁇ , since every time a new situation is reached, a color change is observed.
  • the invention relates to a method for producing a layer on a component, in which a layer of the layer is produced by applying to the component a coating material consisting of a solvent, the dissolved precursors of a ceramic and dispersed nanoparticles.
  • a coating material consisting of a solvent, the dissolved precursors of a ceramic and dispersed nanoparticles.
  • the provided with the coating material of construction ⁇ part is then subjected to a heat treatment in which the solvent evaporates and the precursors of the ceramic under incorporation of the nanoparticles umgewan- be punched in the ceramic sheet.
  • a method is described in the initially set ⁇ led prior art. This produces layers that are also referred to as C3 coatings by various manufacturers.
  • the object of the invention is further to provide a manufacturing process for layers with nanoparticles, with the layers can be produced which extended information about the condition of the layer during operation he ⁇ possible.
  • This object is achieved with the method-called in that nanoparticles of a color substance ⁇ be used, are the adjacent layers provided with the nanoparticles position without these nanoparticles Herge ⁇ represents.
  • An embodiment of the method provides that the Benach ⁇ disclosed documents will be made ⁇ without any coloring nanoparticles ago.
  • Another embodiment of the invention provides that the adjacent layers are produced with nanoparticles of another dye. This will achieves the already mentioned advantages that can be displayed visually as the wear of the layer height profiles that allow a precise optical analysis of the wear state Ver ⁇ .
  • All multi-layer layers 11 are produced on an indicated component 12 and each form its surface 13.
  • three layers 14a are produced without nanoparticles of a particular dye.
  • a layer 14b is doped with nanoparticles 15b of a particular dye, which are incorporated into the matrix of this layer.
  • the subsequent to the surface layer 14a is slowly consumed. This is removed down to the position 14b, there is a color change, said layer thickness then a degree he ⁇ ranges, which requires an exchange of the component or a retrieval ⁇ preparation of the layer.
  • the layer 11 could be, for example, a temperature protection for a turbine blade.
  • a layer 11 with a layer sequence is Darge ⁇ provides at which nanoparticle 15b of a single specific dye alternate layers 14a without a dye layers 14b to each other.
  • layer sequences with another pattern change so z.
  • FIG. 3 is very similar to that of FIG. Instead of the layers without a dye, however, layers 14c with nanoparticles of another specific dye are provided here in alternation with the layers 14b with nanoparticles of a specific material.
  • This has the advantage that, depending on the color of the current layer surface is to determine directly to what extent the removal of the layer is already advanced. For this purpose, only the knowledge of the layer structure is necessary so the current surface color of the layer can be assigned to a specific layer depth.
  • Possible dyes are preferably ceramic compounds, as described in the already mentioned DE
  • a base precursor 1 consisting of 70% zirconium (IV) 2-ethylhexanoate, 3% yttrium (III) 2-ethylhexanoate and 27% propionic acid
  • 2nd step Preparation of a base precursor 2 consisting of the binder (58% zirconium (IV) 2-ethylhexanoate, 3% yttrium (III) 2-ethylhexanoate and 39% hexanoic acid) and 1% iron (III) oxide to produce a red color
  • 3rd step Preparation of a cover precursor consisting of the binder (58% zirconium (IV) 2-ethylhexanoate, 3% yttrium (III) 2-ethylhexanoate and 39% hexanoic acid) and 2% nanoaluminum oxide, and 1% CrAlCo oxide for the petrol-green color of the topcoat
  • 1st step Preparation of a base precursor 1 consisting of 58% zirconium (IV) 2-ethylhexanoate, 3% yttrium (III) 2-ethylhexanoate and 39% acetic acid and 1% CrAlCo oxide for petrol-green dyeing

Abstract

The invention relates to a component (12) comprising a layer (11) that forms the surface (13) and that is made of several sub-layers (14a, 14b). According to the invention, only certain sub-layers (14b) of the layer (11) are provided with nanoparticles (15b) of a predetermined dye or several predetermined dyes. Advantageously, the dyed sub-layers (14b) come to the surface in the event of wear and tear (18) enabling the state of wear and tear of the layer (11) to be inspected in a simple optical manner. The invention also relates to a method for producing said layers that are formed, preferably, from preceramic precursors.

Description

Beschreibungdescription
Bauteil mit einer einen Farbstoff enthaltenden keramischen Schicht und Verfahren zu deren HerstellungComponent with a dye-containing ceramic layer and method for their preparation
Die Erfindung betrifft ein Bauteil mit einer die Oberfläche bildenden keramischen Schicht, wobei die Schicht aus einer Vielzahl von Lagen aufgebaut ist und in der Gefügematrix der Schicht Nanopartikel eines bestimmten Farbstoffes eingebaut sind.The invention relates to a component having a ceramic layer forming the surface, wherein the layer is composed of a plurality of layers and incorporated in the microstructure of the layer nanoparticles of a particular dye.
Ein derartiges Bauteil ist beispielsweise aus der DESuch a component is for example from DE
10 2005 047 739 B3 bekannt. Es handelt sich hierbei um eine10 2005 047 739 B3 known. This is a
Turbinenschaufel, die eine vorzugsweise mehrlagige Schicht aufweist. Die Schichten solcher Turbinenschaufeln haben unterschiedliche Funktionen, u.a. die thermische Belastung der Turbinenschaufel sowie ein korrosiven Angriff zu unterbinden oder zumindest zu verringern. Allerdings kann trotz der Wirkung solcher Schichten betriebsbedingt eine thermische Über- beanspruchung der Schaufel nicht vollkommen ausgeschlossen werden. Für diesen Fall ist in der Schichtmatrix ein Farbstoff in Form von Nanopartikeln enthalten, welche bei thermischen Belastungen, die für das Bauteil zu groß sind, einen Farbumschlag bewirken. Auf diese Weise lässt sich eine ther- mische Überbelastung der Turbinenschaufel auch noch nachwei¬ sen, wenn der Zustand er Überbelastung bereits wieder aufgehoben worden ist.Turbine blade having a preferably multi-layered layer. The layers of such turbine blades have different functions, including the thermal load on the turbine blade and a corrosive attack to prevent or at least reduce. However, despite the effect of such layers, thermal overloading of the blade can not be completely ruled out due to operational reasons. In this case, a dye in the form of nanoparticles is contained in the layer matrix, which causes a color change in thermal stresses that are too large for the component. In this way, a ther- mal overload of the turbine blade can also nachwei ¬ sen when the state it has been overload already canceled.
Die Aufgabe der Erfindung liegt darin, ein Bauteil mit einer die Oberfläche bildenden keramischen Schicht anzugeben, in deren Gefügematrix Nanopartikel eines bestimmten Farbstoffes eingebaut sind, die erweiterte Aussagemöglichkeiten über den Zustand der Schicht zulassen. Diese Aufgabe wird mit dem eingangs angegebenen Bauteil er¬ findungsgemäß dadurch gelöst, dass die Nanopartikel in die Gefügematrix einer Lage eingebaut sind, an die Lagen angrenzen, die eine identische Gefügematrix ohne diesen Farbstoff aufweisen. Hierdurch ist es möglich, durch einen mehrlagigen Aufbau den Tiefenbereich der Schicht, in dem die Nanopartikel eingelagert werden sollen, genau einzusstellen . Dieser hängt nämlich lediglich von der Schichtdicke der betreffenden Lage, in die die Nanopartikel des bestimmten Farbstoffes eingebaut sind, und den angrenzenden Lagen ab. Ist die Tiefe der einge¬ lagerten Nanopartikel genau bekannt, so kann ein Farbumschlag der Schichtoberfläche als bestimmter Verschleißzustand der Schicht gewertet werden. Mit Verschleißzustand ist in diesem Zusammenhang eine Abtragung der Schichtoberfläche gemeint. Beispielsweise kann die Lage mit den Nanopartikeln eines be¬ stimmten Farbstoffes in einer Schichttiefe vorgesehen werden, die als grenzwertig für die Notwendigkeit des Austausches eines bestimmten Bauteils gilt. Sobald sich der Farbstoff an der Oberfläche der Schicht zeigt, bedeutet dies, dass ein Austausch des betreffenden Bauteils fällig ist. Ein solcher Farbumschlag kann durch eine visuelle Inspektion eines ge¬ schulten Betrachters genauso gut geleistet werden, wie durch eine automatische optische Inspektion (AOI) . Das erfindungs¬ gemäße Bauteil lässt sich besonders vorteilhaft herstellen, indem ein Beschichtungsstoff aufgetragen wird, der aus kera¬ mischen Vorstufen für die zu erzeugende Keramik, einem geeigneten Lösungsmittel für diese Vorstufen und den Nanopartikeln des bestimmten Farbstoffes bestehen. In einer nachfolgenden Wärmebehandlung wird das Lösungsmittel verdampft sowie eine Reaktion in die Wege geleitet, bei der die keramischen Vorstufen zur gewünschten Keramik reagieren. Dabei muss der Farbstoff eine Temperaturstabilität aufweisen, damit er die Wärmebehandlung zur Ausbildung der keramischen Schichtlage erträgt . Das Verfahren des Auftragens von keramischen Vorstufen auf metallische Bauteile zwecks Ausbildung keramischer Schichten auf diesen Bauteilen ist an sich bekannt, und wird beispiels- weise in der US 2002/0086111 Al, der WO 2004/013378 Al, der US 2002/0041928 Al, der WO 03/021004 Al und der WO 2004/104261 Al beschrieben. Die in diesen Dokumenten beschriebenen Verfahren beschäftigen sich mit der Herstellung von keramischen Beschichtungen auf Bauteilen im allgemeinen, wobei zur Schichterzeugung keramische Vorstufen der zu erzeugenden Keramiken verwendet werden, die nach einem Aufbringen durch eine Wärmebehandlung zu der auszubildenden Keramik umgewandelt werden.The object of the invention is to specify a component with a ceramic layer forming the surface, in the matrix of which nanoparticles of a particular dye are incorporated, which permit extended statements about the state of the layer. This object is achieved by the initially mentioned component ¬ he inventively characterized in that the nanoparticles are incorporated into the structural matrix of a layer, adjacent to the layers that have an identical structural matrix without this dye. As a result, it is possible to precisely set the depth range of the layer in which the nanoparticles are to be incorporated by means of a multilayer structure. This depends only on the thickness of the layer in which the nanoparticles of the particular dye are incorporated, and the adjacent layers. Is the depth of the nanoparticles ¬ superimposed exactly known, so a color change of the surface layer can be regarded as a particular state of wear of the layer. With wear state is meant in this context, a removal of the layer surface. For example, the location may be with the nanoparticles of a ¬ be approved dye provided in a layer depth, which is considered borderline for the necessity of the exchange of a particular component. As soon as the dye shows on the surface of the layer, this means that an exchange of the relevant component is due. Such a color change can be done just as well by a visual inspection of a ge ¬ trained observer, as by an automatic optical inspection (AOI). The fiction, modern ¬ component can be produced particularly advantageously by using a coating material is applied which consist of Kera ¬ mix precursors for the ceramic to be produced, a suitable solvent for these precursors and the nanoparticles of the specific dye. In a subsequent heat treatment, the solvent is evaporated and initiated a reaction in which the ceramic precursors react to the desired ceramic. In this case, the dye must have a temperature stability, so that he endures the heat treatment to form the ceramic layer layer. The method of applying ceramic precursors to metallic components to form ceramic layers on these components is known per se, and is described, for example, in US 2002/0086111 A1, WO 2004/013378 A1, US 2002/0041928 A1, US Pat WO 03/021004 A1 and WO 2004/104261 Al. The processes described in these documents are concerned with the production of ceramic coatings on components in general, using ceramic precursors of the ceramics to be produced, which are converted to the ceramic to be formed after application by a heat treatment for the purpose of layer formation.
Die Vorstufen für die Keramik, die häufig auch als Precursor bezeichnet werden, beinhalten die Stoffe, aus denen sich der keramische Werkstoff der auszubildenden Schicht zusammensetzt und weisen weiterhin Bestandteile auf, die im Rahmen der bei der Wärmebehandlung des Besichtungsstoffes ablaufenden chemi- sehen Umwandlung zu einer Vernetzung des keramischen Werkstoffes führen. Beispiele für keramische Vorstufen lassen sich den aufgeführten Dokumenten aus dem Stand der Technik entnehmen und müssen in Abhängigkeit des Anwendungsfalles ausgewählt werden.The precursors for the ceramics, which are often referred to as precursor, include the materials that make up the ceramic material of the trainee layer and also have components that in the context of the running during the heat treatment of the Besichtungsstoffes chemical conversion to a Crosslinking of the ceramic material lead. Examples of ceramic precursors can be found in the documents listed in the prior art and must be selected depending on the application.
Es ist beispielsweise möglich, dass die zu bildende Keramik aus einem Oxid oder einem Nitrid besteht. Durch die Bildung von Oxiden, Nitriden oder auch Oxinitriden lassen sich vorteilhaft besonders stabile Schichten erzeugen. Die Vorstufen solcher Keramiken müssen die Elemente N bzw. O zur Ausbildung der oxidischen, nitridischen oder oxinitridischen Keramik zur Verfügung stellen. Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass in zumindest einer der angrenzenden Lagen Nanopartikel eines anderen Farbstoffes eingebaut sind. Hier¬ durch werden vorteilhaft zusätzliche Aussagen möglich. So kann z. B. der fortschreitende Schichtabtrag lagenweise mit¬ verfolgt werden, da jedes Mal, wenn eine neue Lage erreicht wird, ein Farbumschlag zu beobachten ist. Besonders vorteil¬ haft ist es, wenn in den aufeinander folgenden Lagen mehrere unterschiedliche Farbstoffe in Form von Nanopartikeln einan- der abwechseln. So kann eine Beschränkung auf eine bestimmte Anzahl von Farbstoffen gewährleistet werden (mindestens zwei unterschiedliche Farbstoffe) und dennoch durch einen wieder¬ holten Farbumschlag der fortschreitende Schichtabtrag nach¬ verfolgt werden.For example, it is possible that the ceramic to be formed consists of an oxide or a nitride. The formation of oxides, nitrides or oxynitrides can advantageously produce particularly stable layers. The precursors of such ceramics must provide the elements N and O, respectively, for the formation of the oxide, nitridic or oxynitridic ceramics. According to an advantageous embodiment of the invention, it is provided that nanoparticles of another dye are incorporated in at least one of the adjacent layers. Here ¬ by advantageous additional statements are possible. So z. B. the progressive Schichtabtrag be followed in layers with ¬ , since every time a new situation is reached, a color change is observed. Particularly advantageous ¬ way if a plurality of different dyes einan- in the successive layers in the form of nanoparticles of the alternate is. Thus, a restriction to a certain number of dyes can be guaranteed (at least two different dyes) and yet be followed by a republished color change of the progressive Schichtabtrag after ¬ .
Es ist auch möglich, dass Lagen mit und ohne Nanopartikel eines bestimmten Farbstoffes einander abwechselnd vorgesehen sind. In diesem Fall ist zur Beobachtung eines fortschreitenden Schichtabtrags nur ein Farbstoff notwendig, da im Wechsel ein Farbumschlag zur Farbe des Farbstoffes und zur originären Farbe des Bauteils erfolgt. Durch einen Wechsel der Farb¬ stoffe in den Lagen bzw. ein abwechselndes Vorsehen von Lagen mit und ohne Farbstoffe ist es weiterhin möglich, durch eine optische Inspektion eine Art Abtragungsprofil zu erstellen. Wird die Oberfläche der Schicht aus einem nahezu senkrechten Winkel betrachtet, so ergibt sich das Profil ähnlich der Hö¬ henlinien auf einer Landkarte, da bei fortschreitender Abnutzung der Schicht die mit einem Farbstoff versehenen Lagen durchstoßen werden. Hierdurch lassen sich auch im Betrieb der betreffenden Bauteile Abtragungskarten erstellen, die beispielsweise die Notwendigkeit einer Verstärkung der Schicht in stark beanspruchten Regionen des Bauteils kenntlich machen . Weiterhin betrifft die Erfindung ein Verfahren zum Herstellen einer Schicht auf einem Bauteil, bei dem eine Lage der Schicht erzeugt wird, indem auf das Bauteil ein Beschich- tungsstoff, bestehend aus einem Lösungsmittel, den gelösten Vorstufen einer Keramik und dispergierten Nanopartikeln, aufgetragen wird. Das mit dem Beschichtungsstoff versehene Bau¬ teil wird dann einer Wärmebehandlung unterworfen, bei der das Lösungsmittel verdampft und die Vorstufen der Keramik unter Einlagerung der Nanopartikel in die keramische Lage umgewan- delt werden. Ein solches Verfahren ist in dem eingangs aufge¬ führten Stand der Technik beschrieben. Hierbei werden Schichten erzeugt, die durch verschiedene Hersteller auch als C3- Coatings bezeichnet werden.It is also possible that layers with and without nanoparticles of a particular dye are provided alternately. In this case, only one dye is necessary to observe a progressive Schichtabtrags, as in turn a color change to the color of the dye and the original color of the component takes place. By a change of color ¬ materials in the layers or an alternating layers with and without provision of dyes, it is also possible to create by a visual inspection of a type of ablation profile. If the surface of the layer viewed from a nearly perpendicular angle, then the profile results similar to the Hö ¬ henlinien on a map, as with progressive wear of the layer, the layers provided with a dye are punctured. As a result, removal cards can also be created during operation of the relevant components, which, for example, make it clear that a need exists to reinforce the layer in heavily stressed regions of the component. Furthermore, the invention relates to a method for producing a layer on a component, in which a layer of the layer is produced by applying to the component a coating material consisting of a solvent, the dissolved precursors of a ceramic and dispersed nanoparticles. The provided with the coating material of construction ¬ part is then subjected to a heat treatment in which the solvent evaporates and the precursors of the ceramic under incorporation of the nanoparticles umgewan- be punched in the ceramic sheet. Such a method is described in the initially set ¬ led prior art. This produces layers that are also referred to as C3 coatings by various manufacturers.
Die Aufgabe der Erfindung liegt weiterhin darin, ein Herstellungsverfahren für Schichten mit Nanopartikeln anzugeben, mit dem sich Schichten herstellen lassen, welche erweiterte Aussagen über den Zustand der Schicht während des Betriebes er¬ möglichen. Diese Aufgabe wird erfindungsgemäß mit dem genann- ten Verfahren dadurch gelöst, dass Nanopartikel eines Farb¬ stoffes verwendet werden, wobei benachbarte Lagen der mit den Nanopartikeln versehenen Lage ohne diese Nanopartikel herge¬ stellt werden. Hierdurch lassen sich Schichten erzeugen, die, wie bereits erwähnt, Nanopartikel eines bestimmten Werkstof- fes in einem genau einzugrenzenden Tiefenbereich der Schicht aufweisen. Deswegen sind vergleichsweise genaue Aussagen über den Verschleißzustand der Schicht möglich, sobald der Farb¬ stoff an der Oberfläche freigelegt wird.The object of the invention is further to provide a manufacturing process for layers with nanoparticles, with the layers can be produced which extended information about the condition of the layer during operation he ¬ possible. This object is achieved with the method-called in that nanoparticles of a color substance ¬ be used, are the adjacent layers provided with the nanoparticles position without these nanoparticles Herge ¬ represents. As a result, it is possible to produce layers which, as already mentioned, have nanoparticles of a specific material in a depth region of the layer which is to be precisely delimited. Therefore, accurate information about the state of wear layer are comparatively possible once the color ¬ material is exposed at the surface.
Eine Ausgestaltung des Verfahrens sieht vor, dass die benach¬ barten Lagen ohne irgendwelche farbgebenden Nanopartikel her¬ gestellt werden. Eine andere Ausgestaltung der Erfindung sieht vor, dass die benachbarten Lagen mit Nanopartikeln eines anderen Farbstoffes hergestellt werden. Hierdurch wer- den die bereits genannten Vorteile erzielt, dass sich bei fortschreitendem Verschleiß der Schicht Höhenprofile optisch darstellen lassen, die eine genaue optische Analyse des Ver¬ schleißzustandes ermöglichen.An embodiment of the method provides that the Benach ¬ disclosed documents will be made ¬ without any coloring nanoparticles ago. Another embodiment of the invention provides that the adjacent layers are produced with nanoparticles of another dye. This will achieves the already mentioned advantages that can be displayed visually as the wear of the layer height profiles that allow a precise optical analysis of the wear state Ver ¬ .
Weitere Einzelheiten der Erfindung werden nachfolgend anhand der Zeichnung erläutert. Gleiche oder sich entsprechende Zeichnungselemente sind jeweils mit den gleichen Bezugszei¬ chen versehen und werden nur insoweit mehrfach erläutert, wie sich Unterschiede zwischen den einzelnen Figuren ergeben. Es zeigen die Figuren 1 bis 4 unterschiedliche Ausführungsbei¬ spiele der erfindungsgemäßen Schicht mit mehreren Lagen und unterschiedlichen Lagefolgen mit und ohne Nanopartikel eines oder mehrerer bestimmter Farbstoffe im Schnitt.Further details of the invention are explained below with reference to the drawing. Identical or corresponding drawing elements are each provided with the same Bezugszei ¬ chen and are only explained several times as far as differences arise between the individual figures. In the drawings Figures 1 to 4 show different Ausführungsbei ¬ play of the layer according to the invention with several layers and different layer sequences with and without nanoparticles of one or more of certain dyes in section.
Alle mehrlagigen Schichten 11 sind auf einem angedeuteten Bauteil 12 hergestellt und bilden jeweils dessen Oberfläche 13. Gemäß Figur 1 sind drei Lagen 14a ohne Nanopartikel eines bestimmten Farbstoffes hergestellt. Eine Lage 14b ist mit Na- nopartikeln 15b eines bestimmten Farbstoffes dotiert, welche in die Gefügematrix dieser Lage eingebaut sind. Bei einem fortschreitenden Verschleiß der Oberfläche 13 wird die an die Oberfläche anschließende Lage 14a langsam verbraucht. Ist diese bis auf die Lage 14b abgetragen, kommt es zu einem Farbumschlag, wobei die Schichtdicke dann einen Grad er¬ reicht, der einen Austausch des Bauteils bzw. eine Wiederauf¬ bereitung der Schicht erforderlich macht. Bei der Schicht 11 könnte es sich beispielsweise um einen Temperaturschutz für einen Turbinenschaufel handeln.All multi-layer layers 11 are produced on an indicated component 12 and each form its surface 13. According to FIG. 1, three layers 14a are produced without nanoparticles of a particular dye. A layer 14b is doped with nanoparticles 15b of a particular dye, which are incorporated into the matrix of this layer. With a progressive wear of the surface 13, the subsequent to the surface layer 14a is slowly consumed. This is removed down to the position 14b, there is a color change, said layer thickness then a degree he ¬ ranges, which requires an exchange of the component or a retrieval ¬ preparation of the layer. The layer 11 could be, for example, a temperature protection for a turbine blade.
In Figur 2 ist eine Schicht 11 mit einer Lagenfolge darge¬ stellt, bei der sich Lagen 14a ohne einen Farbstoff mit Lagen 14b mit Nanopartikeln 15b eines einzigen bestimmten Farbstoffes einander abwechseln. Nicht dargestellt, jedoch auch mög- lieh sind Lagenfolgen mit einem anderen Wechselmuster, also z. B. jeweils zwei Lagen 14a ohne einen Farbstoff und darauf folgend immer eine Lage 14b mit Nanopartikeln eines bestimm¬ ten Farbstoffes.In Figure 2, a layer 11 with a layer sequence is Darge ¬ provides at which nanoparticle 15b of a single specific dye alternate layers 14a without a dye layers 14b to each other. Not shown, but also possible Lieh are layer sequences with another pattern change, so z. B. two layers 14a without a dye, and following it, always a layer 14b with nanoparticles of a limited hours ¬ th dye.
Anhand von Figur 2 soll weiterhin dargestellt werden, wie eine verschleißbedingte Abtragung der einzelnen Lagen unproblematisch visualisiert wird. Wird die Oberfläche 13 in Richtung des angedeuteten Pfeiles 16 betrachtet, so erschei- nen die Schnittflächen 17 einer strichpunktiert angedeuteten abrasiven Verschleißbeanspruchung 18 wie die Höhenlinien auf einer Landkarte. Ist die Verschleißbeanspruchung 18 beispielsweise grubenförmig, wie in Figur 2 dargestellt, so bil¬ den die Höhenlinien näherungsweise konzentrische Kreise aus, die im Übrigen eindeutig auf die Form der Beanspruchungs¬ stelle hinweisen. Unter Auswertung eines solchen Verschleißprofils kann auch bestimmt werden, in welchen Bereichen eines verschleißbeanspruchten Bauteils der Aufbau einer größeren Schichtdicke notwendig ist.With reference to Figure 2 will continue to be shown how a wear-related ablation of the individual layers is visualized without problems. If the surface 13 is viewed in the direction of the indicated arrow 16, then the cut surfaces 17 of an abrasive wear stress 18 indicated by dot-dash lines appear like the contour lines on a map. If the wear load 18, for example, pit-shaped, as shown in Figure 2, so bil ¬ which the contour lines approximately concentric circles, which, moreover, clearly the shape of the stress ¬ point to point. By evaluating such a wear profile it can also be determined in which areas of a component subject to wear the construction of a larger layer thickness is necessary.
Das Ausführungsbeispiel gemäß Figur 3 ist dem von Figur 2 sehr ähnlich. Anstelle der Lagen ohne einen Farbstoff sind hier jedoch im Wechsel mit den Lagen 14b mit Nanopartikeln eines bestimmten Werkstoffes Lagen 14c mit Nanopartikeln eines anderen bestimmten Farbstoffes vorgesehen.The embodiment according to FIG. 3 is very similar to that of FIG. Instead of the layers without a dye, however, layers 14c with nanoparticles of another specific dye are provided here in alternation with the layers 14b with nanoparticles of a specific material.
In Figur 4 ist ein anderes Ausführungsbeispiel der erfin¬ dungsgemäßen Schicht 11 dargestellt, in der jede der aufeinander folgenden Lagen 14b, 14c, 14d, 14e, 14f andere Nanopar- tikel eines bestimmten Farbstoffes 15b, 15c, 15d, 15e, 15f aufweist. Dies hat den Vorteil, dass je nach Farbgebung der aktuellen Schichtoberfläche direkt zu bestimmen ist, wieweit der Abtrag der Schicht bereits fortgeschritten ist. Hierzu ist lediglich die Kenntnis des Lagenaufbaus notwendig, damit die aktuelle Oberflächenfarbe der Schicht einer bestimmten Schichttiefe zugeordnet werden kann.4 shows another embodiment of the OF INVENTION ¬ to the invention layer 11 is shown, in which each of the successive layers 14b, 14c, 14d, 14e, 14f other nanoparticle Tikel a specific dye 15b, 15c, 15d, 15e, 15f. This has the advantage that, depending on the color of the current layer surface is to determine directly to what extent the removal of the layer is already advanced. For this purpose, only the knowledge of the layer structure is necessary so the current surface color of the layer can be assigned to a specific layer depth.
Mögliche Farbstoffe sind vorzugsweise keramische Verbindun- gen, wie sie in der eingangs bereits erwähnten DEPossible dyes are preferably ceramic compounds, as described in the already mentioned DE
10 2005 047 739 B3 aufgeführt sind. Für die Durchführung des Verfahrens werden im Folgenden zwei Beispiele mit ausgewählten Farbstoffen genannt, wobei die Beschichtungsstoffe hier als Precursor bezeichnet werden. Die Angaben in Prozent ver- stehen sich als Masse-Prozent.10 2005 047 739 B3. For the implementation of the method, two examples with selected dyes are mentioned below, wherein the coating materials are referred to herein as precursor. The percentages are understood as mass percentages.
Beispiel 1:Example 1:
1. Schritt: Herstellung eines Basisprecursors 1 bestehend aus 70% Zirkon (IV) -2-ethylhexanoat, 3% Yttrium (III) -2-ethylhexa- noat und 27% Propionsäure1st step: Preparation of a base precursor 1 consisting of 70% zirconium (IV) 2-ethylhexanoate, 3% yttrium (III) 2-ethylhexanoate and 27% propionic acid
2. Schritt: Herstellung eines Basisprecursors 2 bestehend aus dem Bindemittel (58% Zirkon (IV) -2-ethyl-hexanoat , 3% Yttrium ( III ) -2-ethylhexanoat und 39% Hexansäure) und 1% Eisen- (III) -oxid zur Erzeugung eine Rotfärbung2nd step: Preparation of a base precursor 2 consisting of the binder (58% zirconium (IV) 2-ethylhexanoate, 3% yttrium (III) 2-ethylhexanoate and 39% hexanoic acid) and 1% iron (III) oxide to produce a red color
3. Schritt: Herstellung eines Deckprecursors bestehend aus dem Bindemittel (58% Zirkon (IV) -2-ethyl-hexanoat, 3% Yttrium (III) -2-ethylhexanoat und 39% Hexansäure) und 2% Nano- Aluminiumoxid, sowie 1% CrAlCo-Oxid zur petrol-grünen Färbung der Deckschicht3rd step: Preparation of a cover precursor consisting of the binder (58% zirconium (IV) 2-ethylhexanoate, 3% yttrium (III) 2-ethylhexanoate and 39% hexanoic acid) and 2% nanoaluminum oxide, and 1% CrAlCo oxide for the petrol-green color of the topcoat
4. Schritt: Auftragen des Basisprecursors 1 und 2 auf die gereinigte Werkstückoberfläche4th step: Apply base precursors 1 and 2 to the cleaned workpiece surface
5. Schritt: Erhitzen und Abkühlen5th step: heating and cooling
6. Schritt: Auftragen des DeckprecursorsStep 6: Apply the deck precursor
7. Schritt: Erhitzen und Abkühlen Bei spiel 2 :7th step: heating and cooling At game 2:
1. Schritt: Herstellung eines Basisprecursors 1 bestehend aus 58% Zirkon (IV) -2-ethylhexanoat, 3% Yttrium (III) -2-ethylhexa- noat und 39% Essigsäure sowie 1% CrAlCo-Oxid zur petrol-grü- nen Färbung1st step: Preparation of a base precursor 1 consisting of 58% zirconium (IV) 2-ethylhexanoate, 3% yttrium (III) 2-ethylhexanoate and 39% acetic acid and 1% CrAlCo oxide for petrol-green dyeing
2. Schritt: Herstellung eines Deckprecursors bestehend aus dem Bindemittel (58% Zirkon (IV) -2-ethyl-hexanoat , 3%2nd step: Preparation of a cover precursor consisting of the binder (58% zirconium (IV) -2-ethylhexanoate, 3%
Yttrium (III) -2-ethylhexanoat und 39% Hexansäure) und mit 2% Nano-Aluminiumoxid sowie 2% mit Palladium gedoptem Silber als Nano- oder Mikroteilchen .Yttrium (III) 2-ethylhexanoate and 39% hexanoic acid) and 2% nano-alumina and 2% palladium-doped silver as nano- or microparticles.
4. Schritt: Auftragen des Basisprecursors 1 auf die gerei¬ nigte Werkstückoberfläche4th step: applying the Basisprecursors 1 to gerei ¬ nigte workpiece surface
5. Schritt: Erhitzen und Abkühlen5th step: heating and cooling
6. Schritt: Auftragen des DeckprecursorsStep 6: Apply the deck precursor
7. Schritt: Erhitzen und Abkühlen 7th step: heating and cooling

Claims

Patentansprüche claims
1. Bauteil mit einer die Oberfläche bildenden keramischen Schicht (11), wobei die Schicht (11) aus einer Vielzahl von Lagen (14a bis 14f) aufgebaut ist und in der Gefügematrix der Schicht Nanopartikel (15b) eines bestimmten Farbstoffes ein¬ gebaut sind, dadurch gekennzeichnet, dass die Nanopartikel (15b) in die Gefügematrix einer Lage (14b) eingebaut sind, an die Lagen (14a) angrenzen, die eine identische Gefügematrix ohne diesen Farbstoff aufweisen.1 component having a surface forming a ceramic layer (11), said layer (11) from a plurality of layers is built up (14a to 14f) and in the structural matrix of the layer nanoparticles (15b) of a particular dye a ¬ are built, characterized in that the nanoparticles (15b) are incorporated into the matrix of a layer (14b) adjacent to the layers (14a) having an identical matrix without said dye.
2. Bauteil nach Anspruch 1, dadurch gekennzeichnet, dass in zumindest einer der angrenzenden Lagen Nanopartikel (15c) eines anderen Farbstoffes eingebaut sind.2. Component according to claim 1, characterized in that in at least one of the adjacent layers of nanoparticles (15c) of another dye are incorporated.
3. Bauteil nach Anspruch 1, dadurch gekennzeichnet, dass in den aufeinanderfolgenden Lagen (14a bis 14f) mehrere unterschiedliche Farbstoffe in Form von Nanopartikeln (15a bis 15f) einander abwechseln.3. Component according to claim 1, characterized in that in the successive layers (14a to 14f) a plurality of different dyes in the form of nanoparticles (15a to 15f) alternate with each other.
4. Bauteil nach Anspruch 1 , dadurch gekennzeichnet, dass Lagen (14a bis 14f) mit und ohne Nanopartikel (15b) eines bestimmten Farbstoffes einander abwechselnd vorgesehen sind.4. Component according to claim 1, characterized in that layers (14a to 14f) are provided alternately with and without nanoparticles (15b) of a particular dye.
5. Verfahren zum Herstellen einer Schicht (11) auf einem Bauteil (12), bei dem eine Lage (14b) der Schicht erzeugt wird, indem - auf das Bauteil (12) ein Beschichtungsstoff, bestehend aus einem Lösungsmittel, den gelösten Vorstufen einer Keramik und dispergierten Nanopartikeln, aufgetragen wird und5. A method for producing a layer (11) on a component (12), in which a layer (14b) of the layer is produced by - On the component (12) a coating material, consisting of a solvent, the dissolved precursors of a ceramic and dispersed nanoparticles, is applied, and
- das mit dem Beschichtungsstoff versehene Bauteil (15a bis 15f) einer Wärmebehandlung unterworfen wird, bei der dasthe component (15a to 15f) provided with the coating material is subjected to a heat treatment in which the
Lösungsmittel verdampft und die Vorstufen der Keramik unter Einlagerung der Nanopartikel (14a bis 14f) in die keramische Lage (14b) umgewandelt werden, dadurch gekennzeichnet, dass Nanopartikel (14a bis 14f) eines Farbstoffes verwendet werden, wobei benachbarte Lagen (14a) der mit den Nanoparti¬ keln (14a bis 14f) versehenen Lage (14b) ohne diese Nanopartikel (14a bis 14f) hergestellt werden.Solvent evaporates and the precursors of the ceramic are incorporated with the incorporation of the nanoparticles (14a to 14f) in the ceramic layer (14b), characterized in that nanoparticles (14a to 14f) of a dye are used, wherein adjacent layers (14a) of the with the Nanoparti ¬ angle (14a to 14f) provided layer (14b) without these nanoparticles (14a to 14f) are produced.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die benachbarten Lagen (14a) ohne irgendwelche farbge- benden Nanopartikel hergestellt werden.6. Method according to claim 5, characterized in that the adjacent layers (14a) are produced without any colorant nanoparticles.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die benachbarten Lagen (14a) mit Nanopartikeln (15c) eines anderen Farbstoffes hergestellt werden. 7. The method according to claim 6, characterized in that the adjacent layers (14a) are prepared with nanoparticles (15c) of another dye.
PCT/EP2008/057339 2007-06-27 2008-06-12 Component comprising a ceramic layer containing a dye and method for the production thereof WO2009000657A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007030588A DE102007030588A1 (en) 2007-06-27 2007-06-27 Component with a dye-containing ceramic layer and method for their preparation
DE102007030588.7 2007-06-27

Publications (2)

Publication Number Publication Date
WO2009000657A2 true WO2009000657A2 (en) 2008-12-31
WO2009000657A3 WO2009000657A3 (en) 2009-08-06

Family

ID=40030261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/057339 WO2009000657A2 (en) 2007-06-27 2008-06-12 Component comprising a ceramic layer containing a dye and method for the production thereof

Country Status (2)

Country Link
DE (1) DE102007030588A1 (en)
WO (1) WO2009000657A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2011901A1 (en) 2007-06-28 2009-01-07 Siemens Aktiengesellschaft Component with a ceramic layer in which particles are dispersed, and method for producing same
WO2010136338A2 (en) * 2009-05-27 2010-12-02 Siemens Aktiengesellschaft Method for fabricating a layer with absorbing particles for an energy radiation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017216579B4 (en) * 2017-09-19 2019-06-19 Ford Global Technologies, Llc Method of manufacturing a manufacturing device
DE102018107998B4 (en) * 2018-04-05 2020-06-04 Bystronic Laser Ag Bending tool, machine table and stop element for a bending machine, bending machine and method for wear detection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774150A (en) * 1986-03-07 1988-09-27 Kabushiki Kaisha Toshiba Thermal barrier coating
US6620525B1 (en) * 2000-11-09 2003-09-16 General Electric Company Thermal barrier coating with improved erosion and impact resistance and process therefor
US6827969B1 (en) * 2003-12-12 2004-12-07 General Electric Company Field repairable high temperature smooth wear coating
EP1645538A1 (en) * 2004-10-05 2006-04-12 Siemens Aktiengesellschaft Material composition for the production of a coating of a metallic component and coated metallic component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020041928A1 (en) 1997-03-26 2002-04-11 Leonid V. Budaragin Method for coating substrate with metal oxide coating
US20020086111A1 (en) 2001-01-03 2002-07-04 Byun Jeong Soo Method of forming refractory metal nitride layers using chemisorption techniques
JP2005503982A (en) 2001-08-30 2005-02-10 アクティナ リミテッド Process for producing thin film porous ceramic-metal composites and composites obtained by this process
TR200401615T4 (en) 2002-07-31 2004-09-21 Itn Nanovation Gmbh Combustion boilers
DE102005047739B3 (en) 2005-09-29 2007-02-08 Siemens Ag Substrate with matrix layer for turbine systems and production process has multilayer of and or encapsulated nanoparticles that release a colored material above a threshold temperature

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774150A (en) * 1986-03-07 1988-09-27 Kabushiki Kaisha Toshiba Thermal barrier coating
US6620525B1 (en) * 2000-11-09 2003-09-16 General Electric Company Thermal barrier coating with improved erosion and impact resistance and process therefor
US6827969B1 (en) * 2003-12-12 2004-12-07 General Electric Company Field repairable high temperature smooth wear coating
EP1645538A1 (en) * 2004-10-05 2006-04-12 Siemens Aktiengesellschaft Material composition for the production of a coating of a metallic component and coated metallic component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2011901A1 (en) 2007-06-28 2009-01-07 Siemens Aktiengesellschaft Component with a ceramic layer in which particles are dispersed, and method for producing same
EP2011901B1 (en) * 2007-06-28 2017-10-18 Siemens Aktiengesellschaft Component with a ceramic layer in which particles are dispersed, and method for producing same
WO2010136338A2 (en) * 2009-05-27 2010-12-02 Siemens Aktiengesellschaft Method for fabricating a layer with absorbing particles for an energy radiation
WO2010136338A3 (en) * 2009-05-27 2011-01-27 Siemens Aktiengesellschaft Method for fabricating a layer with absorbing particles for an energy radiation
CN102449191A (en) * 2009-05-27 2012-05-09 西门子公司 Method for fabricating a layer with absorbing particles for an energy radiation
US9200370B2 (en) 2009-05-27 2015-12-01 Siemens Aktiengesellschaft Method for fabricating a layer with absorbing particles for an energy radiation

Also Published As

Publication number Publication date
WO2009000657A3 (en) 2009-08-06
DE102007030588A1 (en) 2009-01-02

Similar Documents

Publication Publication Date Title
EP2011901B1 (en) Component with a ceramic layer in which particles are dispersed, and method for producing same
DE102005047739B3 (en) Substrate with matrix layer for turbine systems and production process has multilayer of and or encapsulated nanoparticles that release a colored material above a threshold temperature
DE102011085801A1 (en) Component and turbomachine with a component
DE1500856B2 (en) Method for applying a layer with a liquid containing the microcapsules on a connecting element
WO2009000657A2 (en) Component comprising a ceramic layer containing a dye and method for the production thereof
DE69927822T2 (en) REINFORCED CERAMIC SHAPE SHAPE AND METHOD FOR THE PRODUCTION THEREOF
DE10215992A1 (en) Piezoelectric element
WO2014023523A1 (en) Microparticle, in particular microparticle for the anti-counterfeiting marking of products
DE3028314A1 (en) COLD FORMED CERAMIC FIBERS
DE10229833B3 (en) Process for the permanent marking of heat-treated glass panes, and thermally toughened glass pane with optical marking
DE1771216B1 (en) METHOD AND EQUIPMENT FOR THE PRODUCTION OF CERAMIC CLAY CAST LAYERS AND CLAY DECORATORS
DE102009013150A1 (en) Component for use in hot gas flows
DE19934418A1 (en) Process for coating a locally differently stressed component
WO2005052211A1 (en) Method for producing a corrosion-resistant and oxidation-resistant coating and component comprising a coating of this type
DE19815832B4 (en) Vane pump
DE102021105287A1 (en) Sealing element for a turbomachine, molded part for producing a sealing element, method for producing and arranging a sealing element and turbomachine with a sealing element
DE102007030047A1 (en) Component with a heavy, wettable ceramic layer and method for its production
WO2004071630A1 (en) Inorganic layer
DE4113177A1 (en) METHOD FOR PRODUCING A PENETRATOR
DE102015223949B4 (en) Sensor arrangement for a resistance thermometer, resistance thermometer and method for producing a sensor arrangement
DE102020105439A1 (en) Honeycomb structural body
DE112020000977T5 (en) COMB STRUCTURE AND MANUFACTURING PROCESS FOR IT
EP3222747A1 (en) Hot gas component
DE1551221A1 (en) Turbine blade and method of making the same
DE2744631B2 (en) Screen printing stencil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08760885

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08760885

Country of ref document: EP

Kind code of ref document: A2