WO2008155735A2 - Method for making an emulsified antiperspirant product - Google Patents

Method for making an emulsified antiperspirant product Download PDF

Info

Publication number
WO2008155735A2
WO2008155735A2 PCT/IB2008/052406 IB2008052406W WO2008155735A2 WO 2008155735 A2 WO2008155735 A2 WO 2008155735A2 IB 2008052406 W IB2008052406 W IB 2008052406W WO 2008155735 A2 WO2008155735 A2 WO 2008155735A2
Authority
WO
WIPO (PCT)
Prior art keywords
emulsion
structurant
minutes
antiperspirant
water
Prior art date
Application number
PCT/IB2008/052406
Other languages
French (fr)
Other versions
WO2008155735A3 (en
Inventor
David Frederick Swaile
Gary Paul Shrum
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to EP20080763377 priority Critical patent/EP2164618B1/en
Priority to CA 2687651 priority patent/CA2687651C/en
Priority to BRPI0812812 priority patent/BRPI0812812A2/en
Publication of WO2008155735A2 publication Critical patent/WO2008155735A2/en
Publication of WO2008155735A3 publication Critical patent/WO2008155735A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/064Water-in-oil emulsions, e.g. Water-in-silicone emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/58Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing atoms other than carbon, hydrogen, halogen, oxygen, nitrogen, sulfur or phosphorus
    • A61K8/585Organosilicon compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8105Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • A61K8/8111Homopolymers or copolymers of aliphatic olefines, e.g. polyethylene, polyisobutene; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • A61K8/922Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof of vegetable origin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q15/00Anti-perspirants or body deodorants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/20Chemical, physico-chemical or functional or structural properties of the composition as a whole
    • A61K2800/26Optical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/59Mixtures
    • A61K2800/591Mixtures of compounds not provided for by any of the codes A61K2800/592 - A61K2800/596
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/805Corresponding aspects not provided for by any of codes A61K2800/81 - A61K2800/95

Definitions

  • the present invention is directed to methods for making antiperspirant products that are in the form of emulsions comprising a continuous water-immiscible phase and a disperse aqueous phase.
  • Antiperspirant products can be considered drugs, and as such, their active level must be within 10% of the active weight indicated on the product packaging. Thus, the making process must assure that there is no loss of volatiles that would increase the active level. This is particularly difficult for multi-phase products having an interior (disperse) aqueous phase that can evaporate through the external (continuous) phase, such as a water-in silicone oil emulsion. Any evaporated water that condenses but is maintained with the product can find itself in the wrong phase of the product, which may break the emulsion or result in product syneresis. Accordingly, there is room in the art for improvement.
  • compositions/methods of the present invention can comprise, consist of, and consist essentially of the features and/or steps of the invention described herein, as well as any of the additional or optional ingredients, components, steps, or limitations described herein.
  • ambient conditions refers to surrounding conditions at about one atmosphere of pressure, about 50% relative humidity and about 25 0 C.
  • water-immiscible refers to materials or mixtures of materials with less than 1% water solubility at 25°C, and preferably less than 0.1% water solubility at 25°C. Most preferable are materials with less than 0.01% water solubility at 25°C.
  • volatile refers to those materials which have a measurable vapor pressure as measured at 25 0 C and 1 atmosphere.
  • moderately volatile material refers to those materials with a vapor pressure below about 2 mmHg at 25 0 C.
  • low volatile material refers to those materials with a vapor pressure below about 0.5 mmHg at 25°C.
  • nonvolatile material refers to those materials with a vapor pressure below about 0.002 mmHg at 25 0 C.
  • Vapor pressures can be measured in a variety of manners and are often available in a variety of chemical data bases that would be known to one skilled in the art. One such database is available from the Research Institute for Fragrance Materials.
  • the present invention is directed to methods for making emulsified antiperspirant products that comprise a continuous phase and a disperse aqueous phase.
  • the continuous phase includes one or more water-immiscible liquids and a structurant.
  • the disperse phase includes a solution of antiperspirant active in water.
  • the concentration of the water-immiscible liquid preferably ranges from about 10% to about 30%, by weight of the composition. Other concentrations however are also contemplated herein.
  • One preferred water-immiscible liquid that may be employed in exemplary antiperspirant compositions that can be made in accordance with the present invention comprises volatile silicones, non-volatile silicones, or mixtures of these materials.
  • volatile silicones Nonlimiting examples include those volatile silicones that are described in Todd et al., "Volatile Silicone Fluids for Cosmetics", Cosmetics and Toiletries, 91:27-32 (1976).
  • Suitable amongst these volatile silicones include the cyclic silicones having from about 3 or from about 4 to about 7 or to about 6, silicon atoms. Specifically are those which conform to the formula:
  • n is from about 3, from about 4 or about 5 to about 7 or to about 6.
  • These volatile cyclic silicones generally have a viscosity value of less than about 10 centistokes.
  • suitable water- immiscible liquids for use herein include those volatile and nonvolatile linear silicones which conform to the formula:
  • the volatile linear silicone materials will generally have viscosity values of less than 5 centistokes at 25 0 C.
  • the non- volatile linear silicone materials will generally have viscosity values of greater than 5 centistokes at 25°C.
  • suitable volatile silicones for use herein include, but are not limited to, hexamethyldisiloxane; Silicone Fluids SF-1202 and SF-1173 (commercially available from G.E. Silicones); Dow Corning 244, Dow Corning 245, Dow Corning 246, Dow Corning 344, and Dow Coming 345, (commercially available from Dow Corning Corp.); Silicone Fluids SWS- 03314, SWS-03400, F-222, F-223, F-250, and F-251 (commercially available from SWS Silicones Corp.); Volatile Silicones 7158, 7207, 7349 (available from Union Carbide); Masil SF- VTM (available from Mazer); and mixtures thereof.
  • preferred volatile silicones include cyclohexamethylsiloxane, hexyl methicone, capryl methicone and linear or branched poly dimethyl siloxanes containing 4 to 6 silicone atoms.
  • suitable non- volatile linear silicones include, but are not limited to, Rhodorsil Oils 70047 available from Rhone-Poulenc; Masil SF Fluid available from Mazer; Dow Coming 200 and Dow Coming 225 (available from Dow Corning Corp.); Silicone Fluid SF-96 (available from G.E. Silicones); VeIv asil and Viscasil (available from General Electric Co.); Silicone L-45, Silicone L-530, and Silicone L-531 (available from Union Carbide); and Siloxane F- 221 and Silicone Fluid SWS-101 (available from SWS Silicones).
  • non-volatile silicone materials that may be employed in antiperspirant compositions manufacturable by the present invention include, but are not limited to, non- volatile silicone emollients such as polyalkylarylsiloxanes, polyestersiloxanes, polyethersiloxane copolymers, polyfluorosiloxanes, polyaminosiloxanes, and combinations thereof.
  • nonvolatile silicone liquid carriers will generally have viscosity values of less than about 100,000 centistokes, less than about 500 centistokes, or from about 1 centistokes to about 200 centistokes or to about 50 centistokes, as measured under ambient conditions.
  • Silicon-free hydrophobic liquids can be employed alternatively or additionally to liquid silicones.
  • Examples of silicon-free hydrophobic liquids include aliphatic hydrocarbons such as mineral oils, hydrogenated polyisobutane, polydecene, paraffins, isoparaffins, and aliphatic ethers derived from at least one fatty alcohol (e.g., PPG-3 myristeyl ether and PPG- 14 butyl ether).
  • hydrophobic liquids include aliphatic or aromatic esters.
  • aliphatic esters contain at least one long chain alkyl group, such as ester derived from Cl to C20 alkanols esterified with a C8 to C22 alkanoic acid or C6 to ClO alkanedioic acid.
  • the alkanol and acid moieties or mixtures thereof are preferably selected such that they each have a melting point of below 20 0 C.
  • These esters include isopropyl myristate, lauryl myristate, isopropyl palmitate, diisopropyl sebacate and diisopropyl adipate.
  • Exemplary aromatic esters include fatty alkyl benzoates.
  • Water-immiscible liquids other than those disclosed above may also be employed by the present invention. Further, it is to be understood that the continuous phase may contain hydrophilic materials, so long as the continuous phase overall is water-immiscible.
  • Suitable structurants include polyethylene waxes, ozokerite waxes, carnumba waxes, and mixtures thereof.
  • Other suitable structurant materials include N-acyl amino acid amides and esters; for example, N-Lauroyl-L- glutamic acid di-n-butylamide. These materials are described in greater detail in U.S. Patent No. 3,969,087. 12-hydroxystearic acid and esters and amines of the same represent another class of useful structurants for the antiperspirant compositions of the present invention.
  • Fiber-forming structurants may also be employed. These materials create a network of fibers or strands that extend throughout the continuous phase to gel the liquids therein.
  • Such materials are generally non-polymeric, being monomers or dimmers that can have a molecular weight below about 10,000.
  • Exemplary fiber-forming structurant materials have been reviewed by Terech and Weiss in "Low Molecular Mass Gelators of Organic Liquids and the Properties of their Gels” Chem. Rev 97, 3133-3159 [1997] and by Terech in Chapter 8, “Low-molecular Weight Organogelators” of the book “Specialist Surfactants” edited by I. D. Robb, Blackie Academic Professional, 1997.
  • Another suitable structurant is a partially or fully esterified cellobiose according the following formula:
  • each Z is independently hydrogen or an acyl group of the formula:
  • R denotes a hydrocarbyl group containing from 4 to 22 carbon atoms. It one embodiment, not more than half of the Z groups are hydrogen.
  • Suitable thickening or structuring agents for use in the present invention include, but are not limited to, fatty acid gellants, salts of fatty acids, hydroxy fatty acid gellants, esters and amides of fatty acid or hydroxy fatty acid gellants, cholesterolic materials, dibenzylidene alditols, lanolinolic materials, fatty alcohols, and triglycerides.
  • Suitable thickening or structuring agents can include, but are not limited to, solid salts of fatty acids wherein the fatty acid moiety has from about 12, from about 16 or from about 18 carbon atoms to about 40, to about 22, or about 20 carbon atoms.
  • Suitable salt forming cations for use with these thickening or structuring agents include metal salts such as alkali metals (e.g. sodium and potassium), alkaline earth metals (e.g. magnesium), and aluminum. Preferred are sodium, potassium and aluminum salts.
  • suitable salt forming cations may be selected from the group consisting of sodium stearate, sodium palmitate, potassium stearate, potassium palmitate, sodium myristate, aluminum monostearate, and combinations thereof.
  • the disperse phase generally includes water and an aqueous solution of an antiperspirant active.
  • the antiperspirant active for use in compositions that may be made in accordance with the present invention may include any compound, composition or other material having antiperspirant activity.
  • the antiperspirant actives may include astringent metallic salts, especially inorganic and organic salts of aluminum, zirconium and zinc, as well as mixtures thereof.
  • Particular antiperspirant active examples include, but are not limited to, aluminum-containing and/or zirconium-containing salts or materials, such as aluminum halides, aluminum chlorohydrate, aluminum hydroxyhalides, zirconyl oxyhalides, zirconyl hydroxyhalides, and mixtures thereof.
  • Aluminum salts useful in the present invention include those that conform to the formula:
  • Processes for preparing aluminum salts are disclosed in U.S. Patent No. 3,887,692, issued to Gilman on June 3, 1975; U.S. Patent No.
  • Zirconium salts for use in the present invention include those which conform to the formula:
  • ZrO(OH) 2-a Cl a " x H 2 O wherein a is from about 0.5 to about 2; x is from about 1 to about 7; where a and x may both have non-integer values.
  • zirconium salts are described in Belgian Patent No. 825,146, issued to Schmitz on Aug. 4, 1975.
  • Useful to the present invention are zirconium salt complexes that additionally contain aluminum and glycine, commonly known as "ZAG complexes”. These complexes contain aluminum chlorohydroxide and zirconyl hydroxy chloride conforming to the above-described formulas.
  • ZAG complexes are described in U.S. Patent No. 4,331,609, issued to Orr on May 25, 1982 and U.S. Patent No. 4,120,948, issued to Shelton on Oct. 17, 1978.
  • compositions that can be manufactured by methods provided herein may additionally or alternatively employ a deodorant active; alternatively meaning that a deodorant active is substituted for an antiperspirant active.
  • Suitable deodorant actives may be selected from the group consisting of antimicrobial agents (e.g., bacteriocides, fungicides), malodor-absorbing material, and combinations thereof.
  • antimicrobial agents may comprise cetyl- trimethylammonium bromide, cetyl pyridinium chloride, benzethonium chloride, diisobutyl phenoxy ethoxy ethyl dimethyl benzyl ammonium chloride, sodium N-lauryl sarcosine, sodium N-palmethyl sarcosine, lauroyl sarcosine, N-myristoyl glycine, potassium N-lauryl sarcosine, trimethyl ammonium chloride, sodium aluminum chlorohydroxy lactate, triethyl citrate, tricetylmethyl ammonium chloride, 2,4,4'-trichloro-2'-hydroxy diphenyl ether (triclosan), 3,4,4'- trichlorocarbanilide (triclocarban), diaminoalkyl amides such as L-lysine hexadecyl amide, heavy metal salts of citrate, salicylate, and pi
  • the disperse phase may optionally contain other polar materials.
  • a representative, non- limiting list of optional polar materials includes Cl to C20 monohydric alcohols; C2 to C40 dihydric or polyhydric alcohols; alkyl ethers of all such alcohols, e.g., C1-C4 alkyl ethers; polyalkoxylated glycols, e.g., propylene glycols and polyethylene glycols having from 2 to 30 repeating alkoxylate (e.g., ethoxylate or propoxylate) groups and poly glycerols having from 2 to 16 repeating glycerol moieties; and mixtures thereof.
  • More particular exemplary polar materials include propylene glycol, hexylene glycol, dipropylene glycol, tripropylene glycol, glycerin, propylene glycol methyl ether, dipropylene glycol methyl ether, ethanol, n-propanol, n-butanol, t- butanol, 2- methoxyethanol, 2-ethoxyethanol, ethylene glycol, isopropanol, isobutanol, 1,4- butylene glycol, 2,3-butylene glycol, trimethylene glycol, 1,3- butanediol, 1,4,-butanediol, propylene glycol monoisostearate, PPG-3 myristyl ether, PEG-4 (also known as PEG-200), PEG- 8 (also known as PEG-400), 1,2, pentanediol, PPG-14 butylether, dimethyl isosorbide, 1,2 hexanediol and combinations thereof.
  • Emulsifying surfactants are employed in the antiperspirant compositions to facilitate the formation of a stable emulsion containing the above-described continuous phase and disperse phase.
  • the emulsifying surfactants may be anionic, cationic, zwitterionic and/or nonionic surfactants. Nonionic surfactants are preferred in the current invention.
  • the proportion of emulsifier in the composition is often selected in the range up to 10% by weight and in many instances from 0.1 or 0.25 up to 5% by weight of the composition. Most preferred is an amount from 0.1 or 0.25 up to 3% by weight.
  • Emulsifiers are frequently classified by HLB value. It is desirable, although not required, to use an emulsifier or a mixture of emulsifiers with an overall HLB value in a range from 2 to 10 preferably from 3 to 8.
  • emulsifiers of high HLB are nonionic ester or ether emulsifiers comprising a polyoxyalkylene moiety, especially a polyoxyethylene moiety, often containing from about 2 to 80, and especially 5 to 60 oxyethylene units, and/or contain a polyhydroxy compound such as glycerol or sorbitol or other alditol as hydrophilic moiety.
  • the hydrophilic moiety can contain polyoxypropylene.
  • the emulsifiers additionally contain a hydrophobic alkyl, alkenyl or aralkyl moiety, normally containing from about 8 to 50 carbons and particularly from 10 to 30 carbons.
  • the hydrophobic moiety can be either linear or branched and is often saturated, though it can be unsaturated, and is optionally fluorinated.
  • the hydrophobic moiety can comprise a mixture of chain lengths, for example those deriving from tallow, lard, palm oil, sunflower seed oil or soya bean oil.
  • Such nonionic surfactants can also be derived from a polyhydroxy compound such as glycerol or sorbitol or other alditols.
  • emulsifiers include ceteareth-10 to -25, ceteth- 10-25, steareth- 10-25 (i.e.
  • Other suitable examples include C10-C20 fatty acid mono, di or tri-glycerides.
  • Further examples include C18-C22 fatty alcohol ethers of polyethylene oxides (8 to 12 EO).
  • emulsifiers which typically have a low HLB value, often a value from 2 to 6 are fatty acid mono or possibly diesters of polyhydric alcohols such as glycerol, sorbitol, erythritol or trimethylolpropane.
  • the fatty acyl moiety is often from C 14 to C22 and is saturated in many instances, including cetyl, stearyl, arachidyl and behenyl.
  • Examples include monoglycerides of palmitic or stearic acid, sorbitol mono or diesters of myristic, palmitic or stearic acid, and trimethylolpropane monoesters of stearic acid.
  • a particularly desirable class of emulsifiers comprises dimethicone copolymers, namely polyoxyalkylene modified dimethylpolysiloxanes.
  • the polyoxyalkylene group is often a polyoxyethylene (POE) or polyoxypropylene (POP) or a copolymer of POE and POP.
  • POE polyoxyethylene
  • POP polyoxypropylene
  • the copolymers also include Cl to C12 alkyl groups as functional groups.
  • suitable surfactants include DC5225 and DC 5200 (from Dow Corning), Abil EM 90 and EM 97 (from Gold Schmidt) and KF 6026, KF 6028, KF 6038 (from Shinetsu Silicones).
  • the continuous phase, disperse phase, and emulsifying surfactant are combined and then mixed or otherwise agitated sufficiently to form an emulsion.
  • the disperse phase is added slowing to the continuous phase while the continuous phase is being vigorously agitated with a mixing system.
  • the skilled artisan should appreciate the degree of mixing needed based on the desired phase ratio of the emulsion, its resulting viscosity and the desired batch size.
  • the resulting emulsion can be further processed to create a consistent droplet size within the emulsion; for example, the emulsion may be processed by a mill to reduce droplet size and/or improve droplet size uniformity.
  • the emulsion is processed so that the entire batch experiences an equivalent amount of shear.
  • a single -phase inline mill is one preferred apparatus for the additional, optional processing.
  • Antiperspirant compositions of the present invention may include one or more fragrance/perfume materials.
  • the composition includes a fragrance material comprising a plurality of different perfume raw materials. Typical perfume levels in the present invention are 0.25 to 5%.
  • fragrance materials include any known fragrances in the art or any otherwise effective fragrance materials. Typical fragrances are described in Arctander, "Perfume and Flavour Chemicals (Aroma Chemicals)", Vol. I and II (1969) and Arctander, "Perfume and Flavour Materials of Natural Origin” (1960).
  • fragrance materials including, but not limited to, volatile phenolic substances (such as iso-amyl salicylate, benzyl salicylate, and thyme oil red), essence oils (such as geranium oil, patchouli oil, and petitgrain oil), citrus oils, extracts and resins (such as benzoin siam resinoid and opoponax resinoid), "synthetic" oils (such as BergamotTM 37 and BergamotTM 430, Geranium TM 76 and Pomeransol TM 314), aldehydes and ketones (such as B-methyl naphthyl ketone, p-t-butyl-A-methyl hydrocinnamic aldehyde and p-t-amyl cyclohexanone), polycyclic compounds (such as coumarin and beta-naphthyl methyl ether), esters (such as diethy
  • Suitable fragrance materials may also include esters and essential oils derived from floral materials and fruits, citrus oils, absolutes, aldehydes, resinoides, musk and other animal notes (e.g., natural isolates of civet, castoreum and musk), balsamic, and alcohols (such as dimyrcetol, phenylethyl alcohol and tetrahydromuguol).
  • the antiperspirant compositions may comprise fragrances selected from the group consisting of decyl aldehyde, undecyl aldehyde, undecylenic aldehyde, lauric aldehyde, amyl cinnamic aldehyde, ethyl methyl phenyl glycidate, methyl nonyl acetaldehyde, myristic aldehyde, nonalactone, nonyl aldehyde, octyl aldehyde, undecalactone, hexyl cinnamic aldehyde, benzaldehyde, vanillin, heliotropine, camphor, para- hydroxy phenolbutanone, 6-acetyl 1,1,3,4,4,6 hexamethyl tetrahydronaphthalene, alpha-methyl ionone, gamma-methyl ionone, amyl-cyclohexanone, and mixtures
  • the antiperspirant compositions can also include residue-masking agents to reduce the appearance of white residue arising from the antiperspirant active and structurant employed in the product. These masking agents can be incorporated into either the continuous or disperse phased depending on their water solublity.
  • residue-masking agents include isostearyl isostearate, glycereth-7-benzoate, C12-C15 alkyl benzoate, octyldodecyl benzoate, isostearyl lactate, isostearyl palmitate, benzyl laurate, laureth 4, laureth 7, oleth 2, PEG 4, PEG 12, isopropyl myristate isopropyl palmate, butyl stearate, polyethylene glycol methyl ethers, PPG 2 ceteareth 9, PPG 2 isodeceth 12, PPG 5 butyl ether, PPG 14 butyl ether, PPG 15 butyl ether, PPG 53 butyl ether, octyldodecanol, polydecene, mineral oil, petrolatum, phenyltrimethicone, dimethicone copolyol, and mixtures thereof.
  • One preferred concentration level of the optional residue-masking agent is
  • Antiperspirant compositions of the present invention may employ one or more additional ingredients.
  • optional ingredients include, but are not limited to, pH buffering agents, additional malodor controlling agents, emollients, humectants, soothing agents, dyes and pigments, medicaments, baking soda and related materials, preservatives, and soothing agents such as aloe vera, allantoin, D-panthenol, pantothenic acid derivatives (e.g., those disclosed in U.S. Patent No. 6,495,149), avocado oil and other vegetative oils, and lichen extract.
  • Antiperspirant products made in accordance with the present invention may be opaque, translucent, or transparent.
  • a 1 cm thick portion/sample of the antiperspirant product has at least 1% light transmission at 580 nm and 22°C.
  • the following test method can be used to determine light transmission exhibited by the antiperspirant products and/or portions thereof. While still mobile, pour a sample of an antiperspirant composition into a 4.5 ml cuvette made of polymethylmethacrylate and allow to cool to a temperature of 22°C. Such a cuvette gives a 1 cm thickness of the composition. Measurement is to be carried out at 580 nm, with an identical but empty cuvette in the reference beam of a dual -beam spectrophotometer, after the sample has been held for 24 hours.
  • a first exemplary method is shown wherein a disperse aqueous phase and a continuous water-immiscible phase are provided.
  • the disperse phase contains an antiperspirant active in an aqueous solution.
  • the continuous phase block includes an emulsifying surfactant, the structurant and at least a portion of the other ingredients that ultimately end up in the product continuous phase.
  • Each of the phases are heated, the continuous phase being heated to a temperature sufficient to at least partially dissolve the structurant, and the aqueous phase preferably being heated to a similar temperature (e.g., within 10 0 C) to that of the continuous phase. While mixing the heated continuous phase, the heated disperse phase is introduced into the continuous phase.
  • the speed of mixing can be increased if needed to form an acceptable emulsion.
  • the heated emulsion can be milled during or after the addition of the dispersed phase to assure formation of a uniform particle size.
  • the emulsion can then be transferred into a suitable container (e.g., a dispenser) while it is still in a mobile condition, which includes being at a similar temperature or a lower temperature than when the two phases were combined.
  • the emulsion may be cooled through an active step — that is, for example, via exposure to forced air, passage through a cooled environment or the like. Otherwise the emulsion is allowed to cool simply through radiation and/or conductive heat transfer away from the container.
  • the residence time of the aqueous phase and/or the emulsion at temperatures of greater than or equal to about 60 0 C are limited to less than about two hours, one and half hours, one hour, 30 minutes, or 15 minutes.
  • aqueous phase and/or emulsion include temperatures of greater than or equal to about 55 0 C for less than about two hours, greater than or equal to about 50 0 C for less than about two hours, and greater than or equal to about 80 0 C for less than about 15 minutes.
  • a second exemplary method is shown wherein a disperse aqueous phase and a continuous water-immiscible phase are provided.
  • the disperse phase contains an antiperspirant active in an aqueous solution.
  • the continuous phase contains one or more water- immiscible liquids and an emulsifying surfactant.
  • the two phases are combined under shear to form an emulsion.
  • the emulsion may be processed further, for example, via a mill to manipulate the emulsion droplet size or size distribution — this optional additional processing may apply to all of the method embodiments provided herein.
  • the emulsion is then heated.
  • a structurant material is heated in a separate container and then added to the heated emulsion to form an emulsified antiperspirant composition.
  • the structurant is preferably heated to a temperature sufficient to at least partially dissolve the structurant. More preferably the temperature is sufficient to completely melt the structurants.
  • the emulsion is preferably heated to a temperature similar to the temperature of the structurant. For example, the emulsion can be heated to a temperature within about 10 0 C of the heated structurants.
  • the emulsified antiperspirant composition may be actively cooled and/or simply allowed to cool, whereby the product hardens to the designed level of solid form.
  • the emulsified antiperspirant composition is transferred into a suitable temporary or final container (i.e., a dispensing package or portion thereof (e.g., a "barrel")).
  • the emulsified antiperspirant composition is transferred into the temporary or final container within a relatively short period of time — within 2 hours, 1 hour, 45 minutes, 30 minutes, 15 minutes, 10 minutes, or 5 minutes of initiating the step of heating the emulsion.
  • the emulsified antiperspirant composition is transitioned to a temperature below about 60 0 C (e.g., with active and/or passive cooling) within a relatively short period of time — within 2 hours, 1 hour, 45 minutes, 30 minutes, 15 minutes, 10 minutes, or 5 minutes of completing the step of heating the emulsion.
  • the antiperspirant composition during this transition time may already be located in a final container/package or portion thereof, may be being placed into its final container or portion thereof, or may not yet be transferred into the final package or portion thereof.
  • a third exemplary method is shown wherein a disperse aqueous phase and a continuous water-immiscible phase are provided.
  • the disperse phase contains an antiperspirant active in an aqueous solution.
  • the continuous phase contains one or more water- immiscible liquids and an emulsifying surfactant.
  • the two phases are combined under shear to form an emulsion.
  • a structurant material is added to the emulsion to form an emulsified antiperspirant composition.
  • the structurant material and/or emulsion may be unheated or heated; preferably, both the structurant material and emulsion are at room temperature when the two are combined.
  • the emulsified antiperspirant composition is subsequently heated to a temperature sufficient to at least partially dissolve the structurant.
  • the emulsified antiperspirant composition may be actively cooled and/or simply allowed to cool, whereby the product hardens to the designed level of solid form.
  • the emulsified antiperspirant composition is transferred into a suitable temporary or final container (i.e., a dispensing package or portion thereof (e.g., a "barrel")).
  • the emulsified antiperspirant composition is transferred into the temporary or final container within a relatively short period of time — within 2 hours, 1 hour, 45 minutes, 30 minutes, 15 minutes, 10 minutes, or 5 minutes of initiating the step of heating the emulsion.
  • the emulsified antiperspirant composition is transitioned to a temperature below about 60 0 C (e.g., with active and/or passive cooling) within a relatively short period of time — within 2 hours, 1 hour, 45 minutes, 30 minutes, 15 minutes, 10 minutes, or 5 minutes of completing the step of heating the emulsion.
  • the antiperspirant composition during this transition time may already be located in a final container/package or portion thereof, may be being placed into its final container or portion thereof, or may not yet be transferred into the final package or portion thereof.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Cosmetics (AREA)
  • Colloid Chemistry (AREA)

Abstract

Methods for making antiperspirant products that are in the form of emulsions comprising a continuous water-immiscible phase and a disperse aqueous phase.

Description

METHOD FOR MAKING AN EMULSIFIED ANTIPERSPIRANT PROD UCT
FIELD OF THE INVENTION
The present invention is directed to methods for making antiperspirant products that are in the form of emulsions comprising a continuous water-immiscible phase and a disperse aqueous phase.
BACKGROUND OF THE INVENTION
Antiperspirant products can be considered drugs, and as such, their active level must be within 10% of the active weight indicated on the product packaging. Thus, the making process must assure that there is no loss of volatiles that would increase the active level. This is particularly difficult for multi-phase products having an interior (disperse) aqueous phase that can evaporate through the external (continuous) phase, such as a water-in silicone oil emulsion. Any evaporated water that condenses but is maintained with the product can find itself in the wrong phase of the product, which may break the emulsion or result in product syneresis. Accordingly, there is room in the art for improvement.
DETAILED DESCRIPTION OF THE INVENTION
The present invention may be understood more readily by reference to the following detailed description of illustrative and preferred embodiments. It is to be understood that the scope of the claims is not limited to the specific ingredients, methods, conditions, devices, or parameters described herein, and that the terminology used herein is not intended to be limiting of the claimed invention. Also, as used in the specification, including the appended claims, the singular forms "a," "an," and "the" include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. When a range of values is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent basis "about," it will be understood that the particular values form another embodiment. All ranges are inclusive and combinable.
All percentages and ratios used herein are by weight of the total composition, and all measurements made are at 25°C, unless otherwise designated. The compositions/methods of the present invention can comprise, consist of, and consist essentially of the features and/or steps of the invention described herein, as well as any of the additional or optional ingredients, components, steps, or limitations described herein.
The term "ambient conditions" as used herein refers to surrounding conditions at about one atmosphere of pressure, about 50% relative humidity and about 250C.
The term "water-immiscible" as used herein refers to materials or mixtures of materials with less than 1% water solubility at 25°C, and preferably less than 0.1% water solubility at 25°C. Most preferable are materials with less than 0.01% water solubility at 25°C.
The term "volatile" as used herein refers to those materials which have a measurable vapor pressure as measured at 250C and 1 atmosphere. The term "moderately volatile material," as used herein, refers to those materials with a vapor pressure below about 2 mmHg at 250C. The term "low volatile material," as used herein, refers to those materials with a vapor pressure below about 0.5 mmHg at 25°C. The term "nonvolatile material," as used herein, refers to those materials with a vapor pressure below about 0.002 mmHg at 250C. Vapor pressures can be measured in a variety of manners and are often available in a variety of chemical data bases that would be known to one skilled in the art. One such database is available from the Research Institute for Fragrance Materials.
The present invention is directed to methods for making emulsified antiperspirant products that comprise a continuous phase and a disperse aqueous phase. The continuous phase includes one or more water-immiscible liquids and a structurant. And the disperse phase includes a solution of antiperspirant active in water. Compositional features of antiperspirant products that may be manufactured by methods according to the present invention will be discussed first, followed by a detailed discussion of exemplary method embodiments.
I. Continuous Phase
A. Water-Immiscible Liquid
The concentration of the water-immiscible liquid preferably ranges from about 10% to about 30%, by weight of the composition. Other concentrations however are also contemplated herein.
One preferred water-immiscible liquid that may be employed in exemplary antiperspirant compositions that can be made in accordance with the present invention comprises volatile silicones, non-volatile silicones, or mixtures of these materials. Nonlimiting examples include those volatile silicones that are described in Todd et al., "Volatile Silicone Fluids for Cosmetics", Cosmetics and Toiletries, 91:27-32 (1976). Suitable amongst these volatile silicones include the cyclic silicones having from about 3 or from about 4 to about 7 or to about 6, silicon atoms. Specifically are those which conform to the formula:
Figure imgf000005_0001
[
„ J wherein n is from about 3, from about 4 or about 5 to about 7 or to about 6. These volatile cyclic silicones generally have a viscosity value of less than about 10 centistokes. Other suitable water- immiscible liquids for use herein include those volatile and nonvolatile linear silicones which conform to the formula:
CH3 CH3 CH3
E I I CH3-Si-(O-Si)n-O-Si-CH3
E E I CH3 CH3 CH3 wherein n is greater than or equal to 0. The volatile linear silicone materials will generally have viscosity values of less than 5 centistokes at 250C. The non- volatile linear silicone materials will generally have viscosity values of greater than 5 centistokes at 25°C.
Specific examples of suitable volatile silicones for use herein include, but are not limited to, hexamethyldisiloxane; Silicone Fluids SF-1202 and SF-1173 (commercially available from G.E. Silicones); Dow Corning 244, Dow Corning 245, Dow Corning 246, Dow Corning 344, and Dow Coming 345, (commercially available from Dow Corning Corp.); Silicone Fluids SWS- 03314, SWS-03400, F-222, F-223, F-250, and F-251 (commercially available from SWS Silicones Corp.); Volatile Silicones 7158, 7207, 7349 (available from Union Carbide); Masil SF- V™ (available from Mazer); and mixtures thereof. Examples of preferred volatile silicones include cyclohexamethylsiloxane, hexyl methicone, capryl methicone and linear or branched poly dimethyl siloxanes containing 4 to 6 silicone atoms.
Specific examples of suitable non- volatile linear silicones for use herein include, but are not limited to, Rhodorsil Oils 70047 available from Rhone-Poulenc; Masil SF Fluid available from Mazer; Dow Coming 200 and Dow Coming 225 (available from Dow Corning Corp.); Silicone Fluid SF-96 (available from G.E. Silicones); VeIv asil and Viscasil (available from General Electric Co.); Silicone L-45, Silicone L-530, and Silicone L-531 (available from Union Carbide); and Siloxane F- 221 and Silicone Fluid SWS-101 (available from SWS Silicones).
Other suitable non-volatile silicone materials that may be employed in antiperspirant compositions manufacturable by the present invention include, but are not limited to, non- volatile silicone emollients such as polyalkylarylsiloxanes, polyestersiloxanes, polyethersiloxane copolymers, polyfluorosiloxanes, polyaminosiloxanes, and combinations thereof. These nonvolatile silicone liquid carriers will generally have viscosity values of less than about 100,000 centistokes, less than about 500 centistokes, or from about 1 centistokes to about 200 centistokes or to about 50 centistokes, as measured under ambient conditions.
Silicon-free hydrophobic liquids can be employed alternatively or additionally to liquid silicones. Examples of silicon-free hydrophobic liquids include aliphatic hydrocarbons such as mineral oils, hydrogenated polyisobutane, polydecene, paraffins, isoparaffins, and aliphatic ethers derived from at least one fatty alcohol (e.g., PPG-3 myristeyl ether and PPG- 14 butyl ether).
Other hydrophobic liquids include aliphatic or aromatic esters. Exemplary aliphatic esters contain at least one long chain alkyl group, such as ester derived from Cl to C20 alkanols esterified with a C8 to C22 alkanoic acid or C6 to ClO alkanedioic acid. The alkanol and acid moieties or mixtures thereof are preferably selected such that they each have a melting point of below 200C. These esters include isopropyl myristate, lauryl myristate, isopropyl palmitate, diisopropyl sebacate and diisopropyl adipate. Exemplary aromatic esters include fatty alkyl benzoates.
Water-immiscible liquids other than those disclosed above may also be employed by the present invention. Further, it is to be understood that the continuous phase may contain hydrophilic materials, so long as the continuous phase overall is water-immiscible.
B. Structurant
Suitable structurants include polyethylene waxes, ozokerite waxes, carnumba waxes, and mixtures thereof. Other suitable structurant materials include N-acyl amino acid amides and esters; for example, N-Lauroyl-L- glutamic acid di-n-butylamide. These materials are described in greater detail in U.S. Patent No. 3,969,087. 12-hydroxystearic acid and esters and amines of the same represent another class of useful structurants for the antiperspirant compositions of the present invention. Fiber-forming structurants may also be employed. These materials create a network of fibers or strands that extend throughout the continuous phase to gel the liquids therein. Such materials are generally non-polymeric, being monomers or dimmers that can have a molecular weight below about 10,000. Exemplary fiber-forming structurant materials have been reviewed by Terech and Weiss in "Low Molecular Mass Gelators of Organic Liquids and the Properties of their Gels" Chem. Rev 97, 3133-3159 [1997] and by Terech in Chapter 8, "Low-molecular Weight Organogelators" of the book "Specialist Surfactants" edited by I. D. Robb, Blackie Academic Professional, 1997.
Another suitable structurant is a partially or fully esterified cellobiose according the following formula:
Figure imgf000007_0001
wherein each Z is independently hydrogen or an acyl group of the formula:
O R C
where R denotes a hydrocarbyl group containing from 4 to 22 carbon atoms. It one embodiment, not more than half of the Z groups are hydrogen.
Other suitable thickening or structuring agents for use in the present invention include, but are not limited to, fatty acid gellants, salts of fatty acids, hydroxy fatty acid gellants, esters and amides of fatty acid or hydroxy fatty acid gellants, cholesterolic materials, dibenzylidene alditols, lanolinolic materials, fatty alcohols, and triglycerides.
Suitable thickening or structuring agents can include, but are not limited to, solid salts of fatty acids wherein the fatty acid moiety has from about 12, from about 16 or from about 18 carbon atoms to about 40, to about 22, or about 20 carbon atoms. Suitable salt forming cations for use with these thickening or structuring agents include metal salts such as alkali metals (e.g. sodium and potassium), alkaline earth metals (e.g. magnesium), and aluminum. Preferred are sodium, potassium and aluminum salts. For example, suitable salt forming cations may be selected from the group consisting of sodium stearate, sodium palmitate, potassium stearate, potassium palmitate, sodium myristate, aluminum monostearate, and combinations thereof.
II. Disperse Phase
The disperse phase generally includes water and an aqueous solution of an antiperspirant active. The antiperspirant active for use in compositions that may be made in accordance with the present invention may include any compound, composition or other material having antiperspirant activity. By way of example only, the antiperspirant actives may include astringent metallic salts, especially inorganic and organic salts of aluminum, zirconium and zinc, as well as mixtures thereof. Particular antiperspirant active examples include, but are not limited to, aluminum-containing and/or zirconium-containing salts or materials, such as aluminum halides, aluminum chlorohydrate, aluminum hydroxyhalides, zirconyl oxyhalides, zirconyl hydroxyhalides, and mixtures thereof.
Aluminum salts useful in the present invention include those that conform to the formula:
Al2(OH)aClb " x H2O wherein a is from about 0 to about 5; the sum of a and b is about 6; x is from about 1 to about 8; where a, b, and x may have non-integer values. For example, aluminum chlorohydroxides referred to as "3/4 basic chlorohydroxide," wherein a is about 4.5; "5/6 basic chlorohydroxide," wherein a=5; and "2/3 basic chlorohydroxide," wherein a=4 may be used. Processes for preparing aluminum salts are disclosed in U.S. Patent No. 3,887,692, issued to Gilman on June 3, 1975; U.S. Patent No. 3.904,741, issued to Jones et al. on Sept. 9, 1975; and U.S. Patent No. 4,359,456 issued to Gosling et al. on Nov. 16, 1982. A general description of these aluminum salts can also be found in "Antiperspirants and Deodorants, Cosmetic Science and Technology Series" Vol. 20, 2nd edition, edited by Karl Laden. Mixtures of aluminum salts are described in British Patent Specification No. 1,347,950, filed in the name of Shin et al. and published Feb. 24, 1974.
Zirconium salts for use in the present invention include those which conform to the formula:
ZrO(OH)2-aCla " x H2O wherein a is from about 0.5 to about 2; x is from about 1 to about 7; where a and x may both have non-integer values. These zirconium salts are described in Belgian Patent No. 825,146, issued to Schmitz on Aug. 4, 1975. Useful to the present invention are zirconium salt complexes that additionally contain aluminum and glycine, commonly known as "ZAG complexes". These complexes contain aluminum chlorohydroxide and zirconyl hydroxy chloride conforming to the above-described formulas. Such ZAG complexes are described in U.S. Patent No. 4,331,609, issued to Orr on May 25, 1982 and U.S. Patent No. 4,120,948, issued to Shelton on Oct. 17, 1978.
Compositions that can be manufactured by methods provided herein may additionally or alternatively employ a deodorant active; alternatively meaning that a deodorant active is substituted for an antiperspirant active. Suitable deodorant actives may be selected from the group consisting of antimicrobial agents (e.g., bacteriocides, fungicides), malodor-absorbing material, and combinations thereof. For example, antimicrobial agents may comprise cetyl- trimethylammonium bromide, cetyl pyridinium chloride, benzethonium chloride, diisobutyl phenoxy ethoxy ethyl dimethyl benzyl ammonium chloride, sodium N-lauryl sarcosine, sodium N-palmethyl sarcosine, lauroyl sarcosine, N-myristoyl glycine, potassium N-lauryl sarcosine, trimethyl ammonium chloride, sodium aluminum chlorohydroxy lactate, triethyl citrate, tricetylmethyl ammonium chloride, 2,4,4'-trichloro-2'-hydroxy diphenyl ether (triclosan), 3,4,4'- trichlorocarbanilide (triclocarban), diaminoalkyl amides such as L-lysine hexadecyl amide, heavy metal salts of citrate, salicylate, and piroctose, especially zinc salts, and acids thereof, heavy metal salts of pyrithione, especially zinc pyrithione, zinc phenolsulfate, farnesol, and combinations thereof.
The disperse phase may optionally contain other polar materials. A representative, non- limiting list of optional polar materials includes Cl to C20 monohydric alcohols; C2 to C40 dihydric or polyhydric alcohols; alkyl ethers of all such alcohols, e.g., C1-C4 alkyl ethers; polyalkoxylated glycols, e.g., propylene glycols and polyethylene glycols having from 2 to 30 repeating alkoxylate (e.g., ethoxylate or propoxylate) groups and poly glycerols having from 2 to 16 repeating glycerol moieties; and mixtures thereof. More particular exemplary polar materials include propylene glycol, hexylene glycol, dipropylene glycol, tripropylene glycol, glycerin, propylene glycol methyl ether, dipropylene glycol methyl ether, ethanol, n-propanol, n-butanol, t- butanol, 2- methoxyethanol, 2-ethoxyethanol, ethylene glycol, isopropanol, isobutanol, 1,4- butylene glycol, 2,3-butylene glycol, trimethylene glycol, 1,3- butanediol, 1,4,-butanediol, propylene glycol monoisostearate, PPG-3 myristyl ether, PEG-4 (also known as PEG-200), PEG- 8 (also known as PEG-400), 1,2, pentanediol, PPG-14 butylether, dimethyl isosorbide, 1,2 hexanediol and combinations thereof. It is to be understood that polar materials other than those listed above may also be employed in the antiperspirant compositions described herein. III. Surfactants
Emulsifying surfactants are employed in the antiperspirant compositions to facilitate the formation of a stable emulsion containing the above-described continuous phase and disperse phase. The emulsifying surfactants may be anionic, cationic, zwitterionic and/or nonionic surfactants. Nonionic surfactants are preferred in the current invention. The proportion of emulsifier in the composition is often selected in the range up to 10% by weight and in many instances from 0.1 or 0.25 up to 5% by weight of the composition. Most preferred is an amount from 0.1 or 0.25 up to 3% by weight. Emulsifiers are frequently classified by HLB value. It is desirable, although not required, to use an emulsifier or a mixture of emulsifiers with an overall HLB value in a range from 2 to 10 preferably from 3 to 8.
It may be convenient to use a combination of two or more emulsifiers which have different HLB values above and below the desired value. By employing the two emulsifiers together in appropriate ratio, it is readily feasible to attain a weighted average HLB value that promotes the formation of an emulsion.
Many suitable emulsifiers of high HLB are nonionic ester or ether emulsifiers comprising a polyoxyalkylene moiety, especially a polyoxyethylene moiety, often containing from about 2 to 80, and especially 5 to 60 oxyethylene units, and/or contain a polyhydroxy compound such as glycerol or sorbitol or other alditol as hydrophilic moiety. The hydrophilic moiety can contain polyoxypropylene. The emulsifiers additionally contain a hydrophobic alkyl, alkenyl or aralkyl moiety, normally containing from about 8 to 50 carbons and particularly from 10 to 30 carbons. The hydrophobic moiety can be either linear or branched and is often saturated, though it can be unsaturated, and is optionally fluorinated. The hydrophobic moiety can comprise a mixture of chain lengths, for example those deriving from tallow, lard, palm oil, sunflower seed oil or soya bean oil. Such nonionic surfactants can also be derived from a polyhydroxy compound such as glycerol or sorbitol or other alditols. Examples of emulsifiers include ceteareth-10 to -25, ceteth- 10-25, steareth- 10-25 (i.e. C16 to C18 alcohols ethoxylated with 10 to 25 ethylene oxide residues) and PEG- 15-25 stearate or distearate. Other suitable examples include C10-C20 fatty acid mono, di or tri-glycerides. Further examples include C18-C22 fatty alcohol ethers of polyethylene oxides (8 to 12 EO).
Examples of emulsifiers, which typically have a low HLB value, often a value from 2 to 6 are fatty acid mono or possibly diesters of polyhydric alcohols such as glycerol, sorbitol, erythritol or trimethylolpropane. The fatty acyl moiety is often from C 14 to C22 and is saturated in many instances, including cetyl, stearyl, arachidyl and behenyl. Examples include monoglycerides of palmitic or stearic acid, sorbitol mono or diesters of myristic, palmitic or stearic acid, and trimethylolpropane monoesters of stearic acid.
A particularly desirable class of emulsifiers comprises dimethicone copolymers, namely polyoxyalkylene modified dimethylpolysiloxanes. The polyoxyalkylene group is often a polyoxyethylene (POE) or polyoxypropylene (POP) or a copolymer of POE and POP. The copolymers also include Cl to C12 alkyl groups as functional groups. Examples of suitable surfactants include DC5225 and DC 5200 (from Dow Corning), Abil EM 90 and EM 97 (from Gold Schmidt) and KF 6026, KF 6028, KF 6038 (from Shinetsu Silicones).
The skilled artisan should appreciate that other emulsifying surfactants than those described above may also be used in antiperspirant compositions described herein.
IV. Formation of the Emulsion
The continuous phase, disperse phase, and emulsifying surfactant are combined and then mixed or otherwise agitated sufficiently to form an emulsion. Typically, the disperse phase is added slowing to the continuous phase while the continuous phase is being vigorously agitated with a mixing system. The skilled artisan should appreciate the degree of mixing needed based on the desired phase ratio of the emulsion, its resulting viscosity and the desired batch size. The resulting emulsion can be further processed to create a consistent droplet size within the emulsion; for example, the emulsion may be processed by a mill to reduce droplet size and/or improve droplet size uniformity. Preferably, the emulsion is processed so that the entire batch experiences an equivalent amount of shear. A single -phase inline mill is one preferred apparatus for the additional, optional processing.
V. Optional Ingredients
Antiperspirant compositions of the present invention may include one or more fragrance/perfume materials. In one preferred embodiment, the composition includes a fragrance material comprising a plurality of different perfume raw materials. Typical perfume levels in the present invention are 0.25 to 5%. Nonlimiting examples of fragrance materials include any known fragrances in the art or any otherwise effective fragrance materials. Typical fragrances are described in Arctander, "Perfume and Flavour Chemicals (Aroma Chemicals)", Vol. I and II (1969) and Arctander, "Perfume and Flavour Materials of Natural Origin" (1960). U.S. Patent No. 4, 322,308, issued to Hooper et al, March 30, 1982 and U.S. Patent No. 4,304,679, issued to Hooper et al., December 8, 1981 disclose suitable fragrance materials including, but not limited to, volatile phenolic substances (such as iso-amyl salicylate, benzyl salicylate, and thyme oil red), essence oils (such as geranium oil, patchouli oil, and petitgrain oil), citrus oils, extracts and resins (such as benzoin siam resinoid and opoponax resinoid), "synthetic" oils (such as Bergamot™ 37 and Bergamot™ 430, Geranium ™ 76 and Pomeransol ™ 314), aldehydes and ketones (such as B-methyl naphthyl ketone, p-t-butyl-A-methyl hydrocinnamic aldehyde and p-t-amyl cyclohexanone), polycyclic compounds (such as coumarin and beta-naphthyl methyl ether), esters (such as diethyl phthalate, phenylethyl phenylacetate, non-anolide 1:4).
Suitable fragrance materials may also include esters and essential oils derived from floral materials and fruits, citrus oils, absolutes, aldehydes, resinoides, musk and other animal notes (e.g., natural isolates of civet, castoreum and musk), balsamic, and alcohols (such as dimyrcetol, phenylethyl alcohol and tetrahydromuguol). For example, the antiperspirant compositions may comprise fragrances selected from the group consisting of decyl aldehyde, undecyl aldehyde, undecylenic aldehyde, lauric aldehyde, amyl cinnamic aldehyde, ethyl methyl phenyl glycidate, methyl nonyl acetaldehyde, myristic aldehyde, nonalactone, nonyl aldehyde, octyl aldehyde, undecalactone, hexyl cinnamic aldehyde, benzaldehyde, vanillin, heliotropine, camphor, para- hydroxy phenolbutanone, 6-acetyl 1,1,3,4,4,6 hexamethyl tetrahydronaphthalene, alpha-methyl ionone, gamma-methyl ionone, amyl-cyclohexanone, and mixtures thereof. Fragrance materials other than those listed above may also be employed.
The antiperspirant compositions can also include residue-masking agents to reduce the appearance of white residue arising from the antiperspirant active and structurant employed in the product. These masking agents can be incorporated into either the continuous or disperse phased depending on their water solublity. Exemplary residue-masking agents include isostearyl isostearate, glycereth-7-benzoate, C12-C15 alkyl benzoate, octyldodecyl benzoate, isostearyl lactate, isostearyl palmitate, benzyl laurate, laureth 4, laureth 7, oleth 2, PEG 4, PEG 12, isopropyl myristate isopropyl palmate, butyl stearate, polyethylene glycol methyl ethers, PPG 2 ceteareth 9, PPG 2 isodeceth 12, PPG 5 butyl ether, PPG 14 butyl ether, PPG 15 butyl ether, PPG 53 butyl ether, octyldodecanol, polydecene, mineral oil, petrolatum, phenyltrimethicone, dimethicone copolyol, and mixtures thereof. One preferred concentration level of the optional residue-masking agent is from about 3% to about 10%, by weight of the composition. But other concentration levels may also be used.
Antiperspirant compositions of the present invention may employ one or more additional ingredients. Nonlimiting examples of such optional ingredients include, but are not limited to, pH buffering agents, additional malodor controlling agents, emollients, humectants, soothing agents, dyes and pigments, medicaments, baking soda and related materials, preservatives, and soothing agents such as aloe vera, allantoin, D-panthenol, pantothenic acid derivatives (e.g., those disclosed in U.S. Patent No. 6,495,149), avocado oil and other vegetative oils, and lichen extract.
VI. Product Clarity
Antiperspirant products made in accordance with the present invention may be opaque, translucent, or transparent. In one preferred embodiment, a 1 cm thick portion/sample of the antiperspirant product has at least 1% light transmission at 580 nm and 22°C. The following test method can be used to determine light transmission exhibited by the antiperspirant products and/or portions thereof. While still mobile, pour a sample of an antiperspirant composition into a 4.5 ml cuvette made of polymethylmethacrylate and allow to cool to a temperature of 22°C. Such a cuvette gives a 1 cm thickness of the composition. Measurement is to be carried out at 580 nm, with an identical but empty cuvette in the reference beam of a dual -beam spectrophotometer, after the sample has been held for 24 hours.
VII. Methods For Manufacturing Antiperspirant Compositions
The description and appended claims include a listing of steps with either letter or numerical designations associated with the individual steps. It is to be understood that although they may, the methods and steps do not necessarily need to be performed in the order as shown in the figures, order of listing, or in accordance with their associated designations; for example, a step (d) may be performed before or after a step (b). Furthermore, although steps are listed individually, some steps may be performed simultaneously with other steps. Alternatively, the steps are all performed sequentially. Timing of the steps can vary. Also, there may or may not be delays between steps. And the methods described herein may include other steps than those explicitly listed and/or recited in the appended claims.
A. First Exemplary Embodiment
Referring to Figure 1, a first exemplary method is shown wherein a disperse aqueous phase and a continuous water-immiscible phase are provided. The disperse phase contains an antiperspirant active in an aqueous solution. The continuous phase block includes an emulsifying surfactant, the structurant and at least a portion of the other ingredients that ultimately end up in the product continuous phase. Each of the phases are heated, the continuous phase being heated to a temperature sufficient to at least partially dissolve the structurant, and the aqueous phase preferably being heated to a similar temperature (e.g., within 100C) to that of the continuous phase. While mixing the heated continuous phase, the heated disperse phase is introduced into the continuous phase. The speed of mixing can be increased if needed to form an acceptable emulsion. Moreover, the heated emulsion can be milled during or after the addition of the dispersed phase to assure formation of a uniform particle size. The emulsion can then be transferred into a suitable container (e.g., a dispenser) while it is still in a mobile condition, which includes being at a similar temperature or a lower temperature than when the two phases were combined. The emulsion may be cooled through an active step — that is, for example, via exposure to forced air, passage through a cooled environment or the like. Otherwise the emulsion is allowed to cool simply through radiation and/or conductive heat transfer away from the container.
A significant percentage of the volatile ingredients — for example, water and a volatile water-immiscible liquid — can be lost during manufacture due to the relatively high heat levels associated with the methods, particularly when the methods are used for commercial-scale manufacturing (e.g., batch weights of at least about 5 Kg, 10 Kg, 20Kg, or higher). Not only does the loss of these materials increase raw material costs, but special equipment may be required to recover volatilized materials so that worker and environment health are addressed. Thus, in accordance with preferred embodiments of the present invention, the residence time of the aqueous phase and/or the emulsion at temperatures of greater than or equal to about 600C are limited to less than about two hours, one and half hours, one hour, 30 minutes, or 15 minutes. Other high temperature residence time limitations of the aqueous phase and/or emulsion include temperatures of greater than or equal to about 550C for less than about two hours, greater than or equal to about 500C for less than about two hours, and greater than or equal to about 800C for less than about 15 minutes.
B. Second Exemplary Embodiment
Referring to Figure 2, a second exemplary method is shown wherein a disperse aqueous phase and a continuous water-immiscible phase are provided. The disperse phase contains an antiperspirant active in an aqueous solution. The continuous phase contains one or more water- immiscible liquids and an emulsifying surfactant. The two phases are combined under shear to form an emulsion. As shown in Figure 2, the emulsion may be processed further, for example, via a mill to manipulate the emulsion droplet size or size distribution — this optional additional processing may apply to all of the method embodiments provided herein. The emulsion is then heated. A structurant material is heated in a separate container and then added to the heated emulsion to form an emulsified antiperspirant composition. The structurant is preferably heated to a temperature sufficient to at least partially dissolve the structurant. More preferably the temperature is sufficient to completely melt the structurants. The emulsion is preferably heated to a temperature similar to the temperature of the structurant. For example, the emulsion can be heated to a temperature within about 10 0C of the heated structurants.
Other ingredients may be added to the emulsified antiperspirant composition. For example, fragrance materials, residue-masking agents, or other hydrophobic/hydrophilic materials can be added to define the final antiperspirant product. As with the first exemplary embodiment described above, the emulsified antiperspirant composition may be actively cooled and/or simply allowed to cool, whereby the product hardens to the designed level of solid form. The emulsified antiperspirant composition is transferred into a suitable temporary or final container (i.e., a dispensing package or portion thereof (e.g., a "barrel")).
In one preferred embodiment, the emulsified antiperspirant composition is transferred into the temporary or final container within a relatively short period of time — within 2 hours, 1 hour, 45 minutes, 30 minutes, 15 minutes, 10 minutes, or 5 minutes of initiating the step of heating the emulsion. In another preferred embodiment, the emulsified antiperspirant composition is transitioned to a temperature below about 600C (e.g., with active and/or passive cooling) within a relatively short period of time — within 2 hours, 1 hour, 45 minutes, 30 minutes, 15 minutes, 10 minutes, or 5 minutes of completing the step of heating the emulsion. The antiperspirant composition during this transition time may already be located in a final container/package or portion thereof, may be being placed into its final container or portion thereof, or may not yet be transferred into the final package or portion thereof.
C. Third Exemplary Embodiment
Referring to Figure 3, a third exemplary method is shown wherein a disperse aqueous phase and a continuous water-immiscible phase are provided. The disperse phase contains an antiperspirant active in an aqueous solution. The continuous phase contains one or more water- immiscible liquids and an emulsifying surfactant. The two phases are combined under shear to form an emulsion. A structurant material is added to the emulsion to form an emulsified antiperspirant composition. During this step, the structurant material and/or emulsion may be unheated or heated; preferably, both the structurant material and emulsion are at room temperature when the two are combined. The emulsified antiperspirant composition is subsequently heated to a temperature sufficient to at least partially dissolve the structurant.
Other ingredients may be added to the emulsified antiperspirant composition. For example, fragrance materials, residue-masking agents, or other hydrophobic/hydrophilic materials can be added to define the final antiperspirant product. As with the first and second exemplary embodiments described above, the emulsified antiperspirant composition may be actively cooled and/or simply allowed to cool, whereby the product hardens to the designed level of solid form. The emulsified antiperspirant composition is transferred into a suitable temporary or final container (i.e., a dispensing package or portion thereof (e.g., a "barrel")).
In one preferred embodiment, the emulsified antiperspirant composition is transferred into the temporary or final container within a relatively short period of time — within 2 hours, 1 hour, 45 minutes, 30 minutes, 15 minutes, 10 minutes, or 5 minutes of initiating the step of heating the emulsion. In another preferred embodiment, the emulsified antiperspirant composition is transitioned to a temperature below about 600C (e.g., with active and/or passive cooling) within a relatively short period of time — within 2 hours, 1 hour, 45 minutes, 30 minutes, 15 minutes, 10 minutes, or 5 minutes of completing the step of heating the emulsion. The antiperspirant composition during this transition time may already be located in a final container/package or portion thereof, may be being placed into its final container or portion thereof, or may not yet be transferred into the final package or portion thereof.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm."
All documents cited in the Detailed Description of the Invention are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention. To the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims

What is claimed is:
1) A method for making an emulsified antiperspirant product comprising a continuous phase that includes a water-immiscible liquid and a disperse aqueous phase comprising an antiperspirant active, the method comprising the steps of:
(a) providing a water-immiscible liquid;
(b) providing an aqueous solution comprising an antiperspirant active;
(c) preparing an emulsion comprising a continuous phase including the water-immiscible liquid and a disperse phase including the aqueous solution;
(d) heating the emulsion to a temperature between 600C and 1100C;
(e) providing a structurant that is at least partially dissolved;
(f) adding the heated emulsion to the at least partially dissolved structurant to form an emulsified antiperspirant composition; and
(g) transitioning the emulsified antiperspirant composition to a temperature below 600C within 2 hours of completing step (d).
2) The method of claim 1, wherein step (g) is accomplished within 1 hour of completing step (d).
3) The method of claim 1, wherein step (g) is accomplished within 45 minutes of completing step (d).
4) The method of claim 1, wherein step (g) is accomplished within 30 minutes of completing step (d).
5) The method of claim 1, wherein step (g) is accomplished within 15 minutes of completing step (d).
6) The method of claim 1, wherein step (g) is accomplished within 10 minutes of completing step (d). 7) The method of claim 1, wherein step (g) is accomplished within 5 minutes of completing step (d).
8) A method for making an emulsified antiperspirant product comprising a continuous phase that includes a water-immiscible liquid and a disperse aqueous phase comprising an antiperspirant active, the method comprising the steps of:
(a) providing a water-immiscible liquid;
(b) providing an aqueous solution comprising an antiperspirant active;
(c) preparing an emulsion comprising a continuous phase including the water-immiscible liquid and a disperse phase including the aqueous solution;
(d) adding a structurant to the emulsion to form an emulsified antiperspirant composition;
(e) heating the emulsified antiperspirant composition to a temperature between 600C and 1100C; and
(f) transitioning the emulsified antiperspirant composition to a temperature below about 600C within 2 hours of completing step (e).
9) The method of claim 8, wherein step (f) is accomplished within 1 hour of completing step (e).
10) The method of claim 8, wherein step (f) is accomplished within 45 minutes of completing step (e).
11) The method of claim 8, wherein step (f) is accomplished within 30 minutes of completing step (e).
12) The method of claim 8, wherein step (f) is accomplished within a 15 minutes of completing step (e).
13) The method of claim 8, wherein step (f) is accomplished within 10 minutes of completing step (e).
14) The method of claim 8, wherein step (f) is accomplished within 5 minutes of completing step (e). 15) A method for making an emulsified antiperspirant product comprising a continuous phase that includes a water-immiscible liquid and a disperse aqueous phase comprising an antiperspirant active, the method comprising the steps of:
(a) providing a water-immiscible liquid;
(b) providing an aqueous solution comprising an antiperspirant active;
(c) preparing an emulsion comprising a continuous phase including the water-immiscible liquid and a disperse phase including the aqueous solution;
(d) adding a structurant to the emulsion;
(e) transferring heat to the structurant so that the structurant at least partially dissolves;
(f) limiting residence time of the aqueous solution and/or emulsion at temperatures of greater than or equal to 600C to less than two hours; and
(g) cooling the emulsion, and/or allowing the emulsion to cool, to form an antiperspirant product.
16) The method of claim 15, wherein adding the structurant to the emulsion in step (d) is performed indirectly by adding the structurant to the water-immiscible liquid prior to preparing the emulsion in step (c).
17) The method of claim 15, wherein in step (d), the structurant and emulsion are both pre-heated prior to being combined.
18) The method of claim 15, wherein in step (d), the structurant is added to the emulsion and the emulsion is heated before and/or after the structurant is added, thereby transferring heat to the structurant so that the structurant is at least partially dissolved.
PCT/IB2008/052406 2007-06-18 2008-06-18 Method for making an emulsified antiperspirant product WO2008155735A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20080763377 EP2164618B1 (en) 2007-06-18 2008-06-18 Method for making an emulsified antiperspirant product
CA 2687651 CA2687651C (en) 2007-06-18 2008-06-18 Method for making an emulsified antiperspirant product
BRPI0812812 BRPI0812812A2 (en) 2007-06-18 2008-06-18 METHOD FOR THE PRODUCTION OF AN EMULSIONED ANTIPERSPIRANT PRODUCT.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US93610007P 2007-06-18 2007-06-18
US60/936,100 2007-06-18

Publications (2)

Publication Number Publication Date
WO2008155735A2 true WO2008155735A2 (en) 2008-12-24
WO2008155735A3 WO2008155735A3 (en) 2010-02-25

Family

ID=39968618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2008/052406 WO2008155735A2 (en) 2007-06-18 2008-06-18 Method for making an emulsified antiperspirant product

Country Status (5)

Country Link
US (2) US9149662B2 (en)
EP (1) EP2164618B1 (en)
BR (1) BRPI0812812A2 (en)
CA (2) CA2788007C (en)
WO (1) WO2008155735A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9149662B2 (en) * 2007-06-18 2015-10-06 The Procter & Gamble Company Method for making an emulsified antiperspirant product
US20090202599A1 (en) * 2007-10-04 2009-08-13 Songtao Zhou Solid antiperspirant composition and method for making same
WO2014165026A2 (en) 2013-03-12 2014-10-09 The Procter & Gamble Company Solid stick antiperspirant compositions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287544B1 (en) * 1999-04-12 2001-09-11 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Antiperspirant compositions
DE10210461A1 (en) * 2002-03-09 2003-09-18 Beiersdorf Ag W/O-based antiperspirant or deodorant compositions contain a W/O emulsifier, especially polyethyleneglycol-30-dipolyhydroxystearate
EP1374843A2 (en) * 2002-06-26 2004-01-02 Unilever Plc Cosmetic compositions
US20040167231A1 (en) * 2003-02-20 2004-08-26 Tetsuo Kawagoe Method for producing W/O-type suspension
US20040223994A1 (en) * 2003-05-10 2004-11-11 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Stick compositions

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948578A (en) 1987-05-15 1990-08-14 Lever Brothers Company Transparent antiperspirant stick compositions
EP0295071A3 (en) 1987-06-11 1989-05-10 The Procter & Gamble Company Low residue wax emulsion antiperspirant sticks
US5500209A (en) 1994-03-17 1996-03-19 The Mennen Company Deodorant and antiperspirant compositions containing polyamide gelling agent
US5603925A (en) 1995-04-21 1997-02-18 The Mennen Company Clear or translucent tack-free antiperspirant stick or gel composition and manufacturing method
DE19643238A1 (en) 1996-10-19 1998-04-23 Beiersdorf Ag Antiperspirant and deodorant sticks with high water content
US5891424A (en) 1996-10-29 1999-04-06 Procter & Gamble Antiperspirant cream compositions having improved rheology
US6187842B1 (en) 1996-11-28 2001-02-13 New Japan Chemical Co., Ltd. Sugar compounds, gelling agents, gelling agent compositions processes for the preparation of them, and gel compositions
GB9625070D0 (en) 1996-12-02 1997-01-22 Unilever Plc Cosmetic composition
FR2760634B1 (en) 1997-03-14 2002-10-11 Oreal SOLID TOPICAL AQUEOUS COMPOSITION HAVING THE APPEARANCE OF A GEL ALLOWING THE FORMATION OF A FILM DURING ITS APPLICATION
US5871720A (en) 1997-11-20 1999-02-16 Colgate-Palmolive Company Cosmetic compositions with DBS and functionalized silicones
FR2776183B1 (en) 1998-03-17 2004-05-28 Oreal USE OF A SILKONE SURFACTANT OF THE ALKYLDIMETHICONE COPOLYOL TYPE FOR THE PREPARATION OF SOLID WATER-IN-OIL COSMETIC EMULSIONS AND SOLID WATER-IN-OIL EMULSIONS THUS OBTAINED
EP1076551B1 (en) 1998-05-14 2002-07-31 Henkel Kommanditgesellschaft auf Aktien Cosmetic preparations in the form of a stick
US6033651A (en) 1998-06-10 2000-03-07 Revlon Consumer Products Corporation Gel cosmetic compositions
US6042816A (en) 1998-08-19 2000-03-28 The Gillette Company Enhanced antiperspirant salts stabilized with calcium and concentrated aqueous solutions of such salts
GB9821778D0 (en) 1998-10-06 1998-12-02 Unilever Plc Process and apparatus for the production of a deodorant or antiperspirant composition
US6171581B1 (en) 1998-12-18 2001-01-09 Revlon Consumer Products Corporation Water and oil emulsion solid antiperspirant/deodorant compositions
GB9908223D0 (en) 1999-04-12 1999-06-02 Unilever Plc Antiperspirant compositions
GB9908202D0 (en) 1999-04-12 1999-06-02 Unilever Plc Cosmetic compositions
GB9908208D0 (en) 1999-04-12 1999-06-02 Unilever Plc Antiperspirant composition
GB0011084D0 (en) 2000-05-08 2000-06-28 Unilever Plc Cosmetic compositions
GB9913954D0 (en) 1999-06-15 1999-08-18 Unilever Plc Cosmetic compositions
GB0008392D0 (en) 2000-04-05 2000-05-24 Unilever Plc Process for the production of a deodorant or antiperspirant product
US6451295B1 (en) 2000-08-31 2002-09-17 Colgate-Palmolive Company Clear antiperspirants and deodorants made with siloxane-based polyamides
GB2368011A (en) 2000-10-17 2002-04-24 Unilever Plc Fatty acid esters of maltose and uses thereof
GB0025438D0 (en) 2000-10-17 2000-11-29 Unilever Plc Esters
US6338841B1 (en) 2001-07-19 2002-01-15 Colgate-Palmolive Company Antiperspirant product with dibenzylidene sorbitol and elastomer in dimethicone
US6749841B2 (en) 2001-07-26 2004-06-15 Revlon Consumer Products Corporation Stabilized aqueous acidic antiperspirant compositions and related methods
GB0213999D0 (en) 2002-06-18 2002-07-31 Unilever Plc Antiperspirant emulsion compositions
US6942850B2 (en) 2003-08-15 2005-09-13 The Gillette Company Aqueous alcoholic antiperspirant composition containing calcium enhanced antiperspirant salt
CA2557188C (en) 2004-03-01 2010-09-21 The Procter & Gamble Company Direct contact quench crystallization process and cosmetic products produced thereby
GB0425945D0 (en) * 2004-11-26 2004-12-29 Unilever Plc Underarm cosmetic method and compositions
US8187578B2 (en) 2006-09-08 2012-05-29 The Procter & Gamble Company Antiperspirant compositions and methods for making same
US9149662B2 (en) 2007-06-18 2015-10-06 The Procter & Gamble Company Method for making an emulsified antiperspirant product
US20090142287A1 (en) 2007-06-18 2009-06-04 David Frederick Swaile Emulsified antiperspirant composition and method for making same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287544B1 (en) * 1999-04-12 2001-09-11 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Antiperspirant compositions
DE10210461A1 (en) * 2002-03-09 2003-09-18 Beiersdorf Ag W/O-based antiperspirant or deodorant compositions contain a W/O emulsifier, especially polyethyleneglycol-30-dipolyhydroxystearate
EP1374843A2 (en) * 2002-06-26 2004-01-02 Unilever Plc Cosmetic compositions
US20040167231A1 (en) * 2003-02-20 2004-08-26 Tetsuo Kawagoe Method for producing W/O-type suspension
US20040223994A1 (en) * 2003-05-10 2004-11-11 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Stick compositions

Also Published As

Publication number Publication date
CA2788007C (en) 2016-05-17
EP2164618A2 (en) 2010-03-24
BRPI0812812A2 (en) 2015-02-03
WO2008155735A3 (en) 2010-02-25
EP2164618B1 (en) 2015-04-01
US9700495B2 (en) 2017-07-11
US20150366765A1 (en) 2015-12-24
US9149662B2 (en) 2015-10-06
CA2788007A1 (en) 2008-12-24
US20090269292A1 (en) 2009-10-29
CA2687651A1 (en) 2008-12-24
CA2687651C (en) 2012-11-27

Similar Documents

Publication Publication Date Title
CA2700528C (en) Solid antiperspirant composition and method for making same
EP1073409B1 (en) Deodorant compositions containing 1,2-hexanediol
KR100412961B1 (en) Antiperspirant compositions containing 1,2-hexanediol
US20070224142A1 (en) Hydrogenated castor oil based compositions as a replacement for petrolatum
JP2002541176A (en) Antiperspirant composition
WO2011019481A2 (en) Antiperspirant emulsion products and processes for making the same
US9700495B2 (en) Method for making an emulsified antiperspirant product
EP3060193A1 (en) Antiperspirant emulsion sticks
US20120195843A1 (en) Emulsified Antiperspirant Composition And Method For Making Same
US20100112022A1 (en) Antiperspirant Products and Methods of Merchandising the Same
EP1199311B1 (en) Cellobiose octanonanoate
US20130230475A1 (en) Antiperspirant emulsion products and processes for making the same
EP3209272A1 (en) Heat activated antiperspirant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08763377

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2687651

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008763377

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/013973

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0812812

Country of ref document: BR

Free format text: APRESENTE DOCUMENTOS QUE COMPROVEM QUE O PROCURADOR INDICADO NAS PETICOES TEM PODERES PARA ATUAR EM NOME DO DEPOSITANTE, UMA VEZ QUE BASEADO NO ARTIGO 216 DA LEI 9.279/1996 DE 14/05/1996 (LPI) "OS ATOS PREVISTOS NESTA LEI SERAO PRATICADOS PELAS PARTES OU POR SEUS PROCURADORES, DEVIDAMENTE QUALIFICADOS."

ENP Entry into the national phase

Ref document number: PI0812812

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091218