WO2008153638A1 - Techniques for communicating data between a host device and an intermittently connected mobile device - Google Patents
Techniques for communicating data between a host device and an intermittently connected mobile device Download PDFInfo
- Publication number
- WO2008153638A1 WO2008153638A1 PCT/US2008/005807 US2008005807W WO2008153638A1 WO 2008153638 A1 WO2008153638 A1 WO 2008153638A1 US 2008005807 W US2008005807 W US 2008005807W WO 2008153638 A1 WO2008153638 A1 WO 2008153638A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- packet
- file
- client device
- field
- indication
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1095—Replication or mirroring of data, e.g. scheduling or transport for data synchronisation between network nodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
- H04J3/02—Details
- H04J3/06—Synchronising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/22—Parsing or analysis of headers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
Definitions
- Embodiments of the invention relate to communicating data between devices. More particularly, embodiments of the invention relate to techniques for efficiently communicating data between one or more host electronic devices and an intermittently connected client device.
- a reliable stream is established to provide a connection between the host device and the client device over a communications link.
- Data is synchronized between the host device and the client device by transmitting packets according to the reliable stream transport over the communications link.
- the packets include an indication of a packet type having a predetermined packet format corresponding to the packet type and a packet functionality associated with the packet type.
- the reliable stream transport connection is a Transmission Control Protocol (TCP) compliant connection.
- the communications link is a Universal Serial Bus (USB) compliant wired interface.
- the communications link is a BLUETOOTH compliant wireless interface.
- the communications link is an IEEE 802.11 compliant wireless interface.
- the client device is a smartphone.
- the client device is a media playback device.
- the host device is a desktop computer system.
- the host device is a laptop computer system.
- the host device is a palmtop or ultra-mobile computer system.
- Figure l is a block diagram of a host electronic device and client electronic device that may communicate utilizing the techniques described herein.
- Figure 2 is a block diagram of one embodiment of a data processing system, such as a host device.
- Figure 3 is a block diagram of one embodiment of a data processing system, such as a client device, a handheld computer or other type of data processing system.
- Figure 4 is a table of a packet header that may be used in communication between a host electronic device and a client electronic device.
- Figure 5 is a table of a packet types that may be used in communication between a host electronic device and a client electronic device.
- Figure 6 is a flow diagram of one embodiment of a technique to transfer data to a client device.
- Figure 7 is a flow diagram of one embodiment of a technique to synchronize data between a host device and a client device.
- the endpoints are a host electronic device and a client electronic device.
- the host electronic device may be, for example, a desktop computer system or a laptop computer system.
- the client electronic device may be for example, a laptop computer system, a personal digital assistant, a cellular-enabled device (e.g., a cellular telephone or smartphone).
- connection between the end points utilizes a reliable stream transport, for example, a Transmission Control Protocol (TCP) stream connection.
- TCP Transmission Control Protocol
- Other stream connections may also be supported.
- communication is accomplished utilizing packets that have a header and a body. Described herein in one embodiment of a standard minimum header, but a header may contain additional packet-specific structured data. The packet data may include unstructured data, or may be empty.
- Figure 1 is a block diagram of a host electronic device and client electronic device that may communicate utilizing the techniques described herein. The block diagram of Figure 1 provides a conceptual illustration of the components that may be utilized to communicate between host device 100 and client device 150.
- host device 100 is a computer system (e.g., a desktop or a laptop computer system) and client device 150 is a mobile device (e.g., a PDA or a smartphone).
- client device 150 may communicate via any type of communications technique known in the art.
- communications link 145 maybe a physical cable (e.g., a Universal Serial Bus compliant cable), or a wireless communications link (e.g., Bluetooth® compliant or IEEE 802.1 1 compliant).
- Bluetooth® is a registered trademark owned by Bluetooth SIG, Inc.
- Application 110 may be any type of application that may be executed by host device 100.
- application 1 10 may be iTunes available from Apple Inc of Cupertino, California.
- Application 110 may include functionality and/or data that may be communicated to and/or synchronized with client device 150.
- application 110 may store and/or play multimedia content that may be stored on or played by client device 150.
- client device 150 communicates with host device 100, application 110 may cause content to be transferred between host device 100 and client device 150.
- Other types of applications may also be supported.
- Gatekeeper client 115 interacts with application 110 to control access to communications link 145 by application 110. Gatekeeper client 115 may selectively limit access to communications link 145 based on one or more parameters. Gatekeeper client 115 may, for example, perform authentication and/or validation operations prior to allowing communications between host device 100 and client device 150. Gatekeeper client 115 may also select one of multiple communications link for communication between host device 100 and client device 150. While the example of Figure 1 is described with the gatekeeper functionality, alternate embodiments may be provided without the gatekeeper functionality.
- Gatekeeper client 115 may communicate with link driver 130 to access communications link 145 via link interface 140.
- link driver 130 interacts with structured sync services 120 to provide synchronization functionality between host device 100 and client device 150.
- structured sync services 120 may function utilizing the commands and protocols described in greater detail below.
- Link driver 130 may cause link interface 140 to cause signals (e.g., electrical, radio frequency, infrared, optical) representing data to be transmitted over communications link 145.
- link interface 160 is the counterpart to link interface 140.
- Link interface 160 may send and/or receive signals (e.g., electrical, radio frequency, infrared, optical) via communications link 145.
- Client device 150 also includes gatekeeper 180 that may perform authentication, validation and/or other authorization functions before allowing communication between application 110 on host device 100 and media sync services 190 on client device 150.
- media sync services 190 may support the messages and protocols described in greater detail below to allow access (e.g., read, write, modify, update) of data 195.
- Data 195 represents any type of data stored on client device 150.
- Data 195 may be one or more databases, tables and/or other storage elements.
- Data 195 may be, for example, media files (e.g., audio and/or video data files), metadata, contact information, historical information (e.g., call logs, software version information) and/or status information (e.g., battery capacity, serial number, total memory, available memory).
- Client device 150 may also include structured data services 185, which may maintain data on client device 150.
- structured data services 185 may include bookmarks, contact information, calendar information, etc.
- communication between host device 100 and client device 150 to allow application 110 to access data 190 may be accomplished through structured sync services 120 and media sync services 190 utilizing specific data packet formats described in greater detail below.
- communications link 145 may be a Universal Serial Bus (USB) compliant wired communications link between host device 100 and client device 150.
- USB Universal Serial Bus
- the connection between host device 100 and client device 150 utilizes a TCP stream connection over the USB compliant physical connection to transmit the packets described below.
- Figure 2 is a block diagram of one embodiment of a data processing system, such as a host device.
- a data processing system such as a host device.
- Figure 2 illustrates various components of a computer system, it is not intended to represent any particular architecture or manner of interconnecting the components as such details are not germane to the present inventions.
- PDAs personal digital assistants
- media players e.g. an iPod
- devices which combine aspects or functions of these devices (a media player combined with a PDA and a cellular telephone in one device)
- network computers an embedded processing device within another device
- other data processing systems which have fewer components or perhaps more components may also be used to implement one or more embodiments of the present inventions and may be one or more of the data processing systems described herein.
- the computer system shown in Figure 2 may, for example, be a Macintosh computer from Apple Inc. or a computer which runs the Windows operating software from Microsoft Corporation.
- Computer system 200 includes bus 205 which is coupled to one or more microprocessors which form processing system 210.
- Bus 205 is also coupled to memory 220 and to a non- volatile memory 230, which may be a magnetic hard drive in certain embodiments, or flash memory in other embodiments.
- Bus 205 is also coupled to display controller and display 240 and one or more input/output (I/O) devices 250.
- I/O input/output
- bus 205 may be coupled to optional dock 260 and to one or more wireless transceivers 270, which may be a Bluetooth® compliant transceiver or a WiFi compliant transceiver or an infrared transceiver. Wireless transceivers 270 are optional as shown in Figure 2.
- Processing system 210 may optionally be coupled to cache 215.
- Processing system 210 may include one or more microprocessors, such as a microprocessor from Intel or IBM.
- Bus 205 interconnects these various components together in a manner which is known in the art.
- the input/output devices 250 are coupled to the system through input/output controllers.
- Memory 220 may be implemented as dynamic RAM (DRAM) which provides fast access to data but requires power continually in order to refresh or maintain the data in memory 220.
- Non- volatile memory 230 may be a magnetic hard drive or other non-volatile memory which retains data even after power is removed from the system. While Figure 2 shows that non-volatile memory 230 is a local device coupled directly to the rest of the components in the data processing system, it will be appreciated that other embodiments may utilize a non-volatile memory which is remote from a system, such as a network storage device, which is coupled to the data processing system through a network interface, such as a modem or an Ethernet interface.
- Bus 205 may include one or more buses connected to each other through various bridges, controllers, and/or adapters as is known in the art.
- I/O controller 250 may include a USB compliant adapter for controlling USB compliant peripherals and an IEEE- 1394 controller for IEEE- 1394 compliant peripherals.
- aspects of the inventions described herein may be embodied, at least in part, in software. That is, the techniques may be carried out in a computer system or other data processing system in response to its processor or processing system executing sequences of instructions contained in a memory, such as memory 220 or non-volatile memory 230 or the memory 330 shown in Figure 3.
- a memory such as memory 220 or non-volatile memory 230 or the memory 330 shown in Figure 3.
- hardwired circuitry may be used in combination with the software instructions to implement the present inventions.
- the techniques are not limited to any specific combination of hardware circuitry and software or to any particular source for the instructions executed by the data processing system.
- various functions and operations are described as being performed by or caused by software code to simplify description.
- Dock 260 and/or wireless transceivers 270 provide a physical interface for coupling the data processing system shown in Figure 2 to another data processing system, such as the data processing system shown in Figure 3, or to another data processing system which resembles the system shown in Figure 2.
- Dock 260 may provide both a mechanical and electrical connection between one data processing system and another data processing system to allow a synchronization process to be performed between the two systems.
- wireless transceivers 270 may provide a radio frequency (RF) connection between the two systems for the purpose of a synchronization process without providing a mechanical connection between the two systems.
- RF radio frequency
- FIG. 3 is a block diagram of one embodiment of a data processing system, such as a client device, a handheld computer or other type of data processing system, such as the system shown in Figure 2 or a system which is similar to that shown in Figure 3.
- Data processing system 300 includes processing system 310, which may be one or more microprocessors, or which may be a system on a chip integrated circuit.
- System 300 also includes memory 330 for storing data and programs for execution by processing system 310.
- System 300 also includes audio input/output subsystem 340 which may include a microphone and a speaker for, for example, playing back music or providing telephone functionality through the speaker and microphone.
- Display controller and display device 350 provide a visual user interface for the user; this digital interface may include a graphical user interface which is similar to that shown on a Macintosh computer when running OS X operating system software.
- System 300 also includes one or more wireless transceivers, such as a WiFi transceiver, an infrared transceiver, a Bluetooth® compliant transceiver, and/or a wireless cellular telephony transceiver. Additional components, not shown, may also be part of system 300 in certain embodiments, and in certain embodiments fewer components than shown in Figure 3 may also be used in a data processing system.
- Data processing system 300 also includes one or more input devices 360 which are provided to allow a user to provide input to system 300. These input devices may be a keypad or a keyboard or a touch panel or a multi-touch panel. Data processing system 300 also includes optional input/output device 370 which may be a connector for a dock, such as dock 260 shown in Figure 2. [0037] One or more buses, not shown, may be used to interconnect the various components as is known in the art.
- Data processing system 300 may be a handheld computer or a personal digital assistant (PDA), or a cellular telephone with PDA-like functionality, or a handheld computer which includes a cellular telephone, or a media player, such as an iPod, or devices which combine aspects or functions of these devices, such as a media player combined with a PDA and a cellular telephone in one device.
- data processing system 300 may be a network computer or an embedded processing device within another device, or other types of data processing systems which have fewer components or perhaps more components than that shown in Figure 3.
- At least certain embodiments of the inventions described herein may be part of a digital media player, such as a portable music and/or video media player, which may include a media processing system to present the media, a storage device to store the media and may further include a radio frequency (RP) transceiver (e.g., an RF transceiver for a cellular telephone) coupled with an antenna system and the media processing system.
- RP radio frequency
- media stored on a remote storage device may be transmitted to the media player through the RF transceiver.
- the media may be, for example, one or more of music or other audio, still pictures, or motion pictures.
- the portable media player may include a media selection device, such as a click wheel input device on an iPod® or iPod Nano® media player from Apple Inc. of Cupertino, CA, a touch screen input device, pushbutton device, movable pointing input device or other input device.
- the media selection device may be used to select the media stored on the storage device and/or the remote storage device.
- the portable media player may, in at least certain embodiments, include a display device which is coupled to the media processing system to display titles or other indicators of media being selected through the input device and being presented, either through a speaker or earphone(s), or on the display device, or on both display device and a speaker or earphone(s). Examples of a portable media player are described in published U.S. patent application numbers 2003/0095096 and 2004/0224638, both of which are incorporated herein by reference. [0041] In certain embodiments, data processing system 300 may be implemented in a small form factor which resembles a handheld computer having a tablet-like input device which may be a multi-touch input panel device which is integrated with a liquid crystal display.
- packet data may be sent over the connection in either little-endian or big-endian format.
- either device may send data in either format.
- the receiving device is responsible for swapping the data ordering, if necessary.
- each packet must use a consistent endianness.
- a predetermined (e.g., fixed) signature value e.g., 0x4141504c36414643
- the signature may allow the receiving device to determine the endianness of the data transmitted from the transmitting device.
- the signature field is 8 bytes in length; however, other signature field sizes may also be supported.
- the packet header may also include a field that indicates the length of the entire packet including the header. In one embodiment, the packet length field may be 8 bytes; however, other packet length field sizes may be supported, for example, to support different maximum packet sizes.
- the packet header may also include a field that indicates a packet serial number. The packet serial number may be utilized to order packets transmitted between host device 100 and client device 150. In one embodiment, the packet serial number field may be 8 bytes; however, other packet serial number field sizes may be supported. [0047]
- the packet header also includes a field for packet type.
- the packet type field includes a numerical indicator of the type of message in the packet, which indicates the function of the packet.
- One example listing of packet types and packet type values is provided in Figure 5. Other packet labels, other packet functionality and/or other packet type values may also be supported.
- the packet type field may be 8 bytes; however, other packet type field sizes may be supported.
- the table in Figure 5 illustrates one embodiment of a set of packets that may be utilized to communicate between endpoints. Other and/or different packets may also be used. While specific packet type identifiers and packet names are described other packet type identifiers, packet names and/or descriptions may also be supported.
- each packet includes a standard packet header. This header may be formatted as illustrated in Figure 4.
- the Status packet may be utilized to provide status information in response to a request packet.
- the status packet may also be utilized to provide error information in the event of a failure or other error condition, hi one embodiment, the status packet is formatted according to the following table.
- the Data packet may be utilized to carry data between the host electronic device and the client electronic device.
- the data packet may be of any size. That is, the data packet may be the length of the header plus the data to be transmitted. In an alternate embodiment, the data packet may be a fixed length such that if the data to be transmitted exceeds the payload capacity of the data packet, one or more additional data packets may be utilized, hi one embodiment, the data packet is formatted according to the following table.
- the Read Directory packet may be utilized to read a directory on the target device.
- the Read Directory packet is formatted according to the following table.
- the path string may be a path string in the appropriate format for the target device.
- the path string may be a NULL-terminated Portable Operating System Interface for UNIX (POSIX) path string in UTF-8 format.
- POSIX Portable Operating System Interface for UNIX
- Other formats may also be supported.
- the family of POSIX standards is formally designated as IEEE Std. 1003 and the international standard name is ISO/IEC 9945.
- the Read File packet may be utilized to read a complete file on the target device.
- the result is provided in a Status packet or a Data packet.
- the Read File packet is formatted according to the following table.
- the Write File packet may be utilized to write a complete file to the target device.
- the Write File packet is formatted according to the following table.
- the Write Part packet may be utilized to write data to a portion of a file on the target device.
- the Write Part packet may be stateless in that when the data from the packet is written, state data associated with the data and/or the file is not maintained.
- the Write Part packet is formatted according to the following table.
- the Truncate (Trunc) File packet may be utilized to set the length of a file.
- the length may be shorter than the corresponding data in which case some of the data is dropped, or the length may be greater than the corresponding data in which case the excess may be filled with a predetermined data pattern (e.g., all "0").
- the Trunc File packet is formatted according to the following table.
- the Remove Path packet may be utilized to delete a file or directory on the target device.
- the Remove Path packet is formatted according to the following table.
- the Make Directory packet may be utilized to create a directory on the target device.
- the Remove Path packet is formatted according to the following table.
- the Get File Info packet may be utilized to retrieve information describing a file on the target device.
- the file information is provided as one or more key/value pairs transmitted in a Data packet.
- the information describing the file may be, for example, file size, last modification date, permissions. Additional and/or different file information may also be provided.
- the Get File Info packet is formatted according to the following table.
- the Get Device Info packet may be utilized to retrieve information describing the target device.
- the device information is provided as one or more key/value pairs transmitted in a Data packet.
- the information describing the device may be, for example, device name, serial number, operating system version, battery level, free space available. Additional and/or different device information may also be provided.
- the Get Device Info packet is formatted according to the following table.
- the Write File Atomic packet may be utilized to write a file on the target device.
- the Write File Atomic packet guarantees that the whole file is written or that none of the file is written.
- the Write File Atomic packet may be used, for example, to write a database file.
- the Write File Atomic packet is formatted according to the following table.
- the File Reference (Ref) Open packet may be utilized to obtain a token or other identifier to represent an open file on the target device.
- the Write File Atomic packet is formatted according to the following table.
- the Mode field includes a numeric indicator of a mode to use when opening the file.
- the Mode Name and Mode Value designations in Table 16 are examples for one embodiment. A different group of modes may be supported. Also, different mode values may be supported
- the file may be opened for reading only.
- Read- Write mode the file may be opened for reading and writing only.
- Write-Truncate mode the file may be opened for writing or truncation.
- Read- Write-Truncate mode the file may be opened for reading, writing or truncation.
- Write- Append mode the file may be opened for writing or appending.
- Read-Write- Append mode the file may be opened for reading, writing or appending.
- the File Ref Open Result packet may be utilized to return a file reference token that may be used in one or more of the packets described herein when accessing a file on the target device.
- the File Ref Open Result packet is formatted according to the following table.
- the File Ref Read packet may be utilized to read a file using the file reference resulting from the File Ref Open operation.
- the position within the file is automatically advanced in response to a File Ref Read operation.
- the File Ref Read packet is formatted according to the following table.
- the File Ref Write packet may be utilized to write to a file using the file reference resulting form the File Ref Open operation.
- the position within the file is automatically advanced in response to a File Ref Write operation.
- the File Ref Write packet is formatted according to the following table.
- the File Ref Seek packet may be utilized to determine a location within a file using the file reference resulting from the File Ref Open operation.
- the File Ref Seek packet is formatted according to the following table.
- values in the Whence field may be used to indicate how the seek is to be performed.
- Table 21 provides an example of Whence values that may be used in a File Ref Seek packet.
- the File Ref Tell packet may be utilized to determine a location within a file using the file reference resulting from the File Ref Open operation.
- the File Ref Tell packet is formatted according to the following table.
- the File Ref Tell Result packet may be utilized to return the result of a File Ref Tell operation, hi one embodiment, the File Ref Tell Result packet is formatted according to the following table.
- the File Ref Close packet may be utilized to close a file using the file reference resulting from the File Ref Open operation, hi one embodiment, the File Ref Close packet is formatted according to the following table.
- the File Ref Set Size packet may be utilized to set the size of a file corresponding to the reference resulting from the File Ref Open operation.
- the File Ref Set Size packet is formatted according to the following table.
- the File Ref Set Size packet may be utilized to set the length of a file.
- the length may be shorter than the corresponding data in which case some of the data is dropped, or the length may be greater than the corresponding data in which case the excess may be filled with a predetermined data pattern (e.g., all "0").
- the Rename Path packet may be utilized to rename a directory path on the target device.
- the Rename Path packet is formatted according to the following table.
- the path string may be a path string in the appropriate format for the target device.
- the source and destination path strings may be a NULL-terminated POSIX path strings in UTF-8 format. Other formats may also be supported.
- the destination path field immediately follows the source path field in the Rename Path packet.
- the Set FS Block Size packet may be utilized to set a block size for the file system on the target device.
- the Set FS Block Size packet is formatted according to the following table.
- the block size may be utilized on by the client device file system. For example, with a block size of 64 kb, when writing file data to the client device, 64 kb of data would be written at a time even if the host device sends data in larger or smaller blocks. In one embodiment, the client device does not guarantee that data is written according to block size, but may be utilized for performance. [0079]
- the Set Socket Block Size packet may be utilized to set a block size for the data connection between the target device and the host device. In one embodiment, the Set Socket Block Size packet is formatted according to the following table.
- the block size may be utilized by the client system to read and write data via the connection between the host device and the client device. For example, with a block size of 64 kb, when reading data from the connection, the client device may attempt to read data as 64 kb blocks. In one embodiment, the client device does not guarantee that data is processed according to block size, but may be utilized for performance.
- the File Ref Lock packet may be utilized to lock an open file reference identifier against use by a second application, hi one embodiment, the File Ref Lock packet is formatted according to the following table.
- the access to a file reference may be blocked so that only one application may have access to the opened file at a given time.
- a shared lock, an exclusive lock and a non-blocking lock are supported.
- additional and/or different locks are supported.
- the lock is advisory only and an application must query the file to determine whether the file is locked or not.
- multiple applications/processes may obtain a shared lock.
- Figure 6 is a flow diagram of one embodiment of a technique to transfer data to a client device.
- the host device may determine whether a client device has been connected to the host device, 610.
- the connection between the host device and the client device may be either wired or wireless.
- the host device may detect the presence of the client device utilizing any suitable technique. For example, if the client device is connected with the host device via a wired connection, the host device may be configured to detect the physical connection of the client device to the wired interface. If the client device is connected with the host device via a wireless connection, the host device may be configured to respond to the completion of a pairing or other type of wireless connection procedure.
- the host device may wait for a client device to be connected.
- the host device may respond only if a request is received via the interface.
- the wired interface may include a button to be pressed by a user to initiate communication between the client device and the host device.
- the client device may have a user interface that allows the user to request communications with the host device.
- the host device may gather information about the client device 620. Gathering of information about the client device may be accomplished by sending one or more of the packets discussed above. For example, the host device may send a Get Device Info packet and/or a Read Directory packet. The client device may respond to the packet(s) by providing the requested information to the host device. [0088] Upon gathering sufficient information from the client device, the host device may determine whether the client device is a new device, 630. That is, the host device may determine whether the client device has ever been connected to the host device before. If the client device is a new device, the host device may perform a registration procedure, 635.
- the registration procedure can allow the host device to retain information about the client device that may be used, for example, for authentication, to expedite connections and/or for backup purposes.
- the host device may authenticate the client device, 640. Authentication may be accomplished by, for example, exchange of keys or other identifiers between the host device and the client device. Other authentication techniques may also be used. In one embodiment, authentication is performed with corresponding sync services resident on the host device and the client device. [0090] After authentication the host device may transfer data to the client device, 650, using the packets described herein.
- Figure 7 is a flow diagram of one embodiment of a technique to synchronize data between a host device and a client device.
- the example of Figure 7 utilizes only a subset of the packet types discussed above. However, the example of Figure 7 is representative of a session that may occur between a host device and a client device utilizing the protocols and messages set forth herein.
- the host device may determine whether a client device has been connected to the host device, 710. As discussed above, the connection between the host device and the client device may be either wired or wireless.
- the host device may detect the presence of the client device utilizing any suitable technique. For example, if the client device is connected with the host device via a wired connection, the host device may be configured to detect the physical connection of the client device to the wired interface. If the client device is connected with the host device via a wireless connection, the host device may be configured to respond to the completion of a pairing or other type of wireless connection procedure.
- the host device may wait for a client device to be connected.
- the host device may respond only if a request is received via the interface.
- the wired interface may include a button to be pressed by a user to initiate communication between the client device and the host device.
- the client device may have a user interface that allows the user to request communications with the host device.
- the host device may gather information about the client device 720. Gathering of information about the client device may be accomplished by transmitting the Get Device Info packet from the host device to the client device and transmitting the Data packet from the client device to the host device. As discussed above, any type of information about the client device may be acquired by the host device in this manner. In the example of Figure 7, the client device provides at least a model identifier and a file system size to the host device. Additional and/or different data may also be provided.
- the host device may determine whether the client device is a new device, 730. If the client device is a new device, the host device may perform an optional registration procedure, 735. The host device may authenticate the client device, 740. Authentication may be accomplished by, for example, exchange of keys or other identifiers between the host device and the client device. Other authentication techniques may also be used. In one embodiment, authentication is performed with corresponding sync services resident on the host device and the client device.
- the host device may begin synchronization of data between the host device and the client device.
- the client device may request a File Ref value corresponding to a path on the client device and read data in the path, 750. This may be accomplished by using, for example, the File Ref Open, File Ref Open Result, File Ref Read, Data packets listed above. If the requested directory does not exist, the directory may be created, 750. When the requested data has been acquired, the File Ref may be closed. This may be accomplished by using the File Ref Close and Status packets listed above. [0099] A Make Directory packet may be utilized to determine whether a target path exists.
- a Make Directory packet with the target of '/media' may be used to determine whether the 'media' directory exists. If the 'media' directory does exist, that Status packet from the client device may indicate the presence of the 'media' directory with a 'PATH EXISTS' status.
- File information may be requested for a first file to be updated (e.g., Vmedia/filel .mp3 ').
- the Get File Info packet may be used to request information related to the first file to be updated, 770.
- the client device may use a Data packet to return data related to the first file to be updated.
- the host device may then request a File Ref value to use while updating the first file. This may be accomplished using the File Ref Open packet with a response from the client device in a File Ref Open Result packet.
- the Host device may use the File Ref value to write data to the file on the client device, 775. This may be accomplished using the File Ref Write packet with confirmations from the client device carried by Status packets.
- a Make Directory packet may be utilized to determine whether a target path for a second file to be updated exists. For example, using the packets listed above, a Get File Info packet with the target of 7media/file2.mp3' may be used to determine whether the 'file2.mp3' file exists and get information related to the file, 780. If, for example, the 'file2.mp3' file does not exist, the Status packet from the client device may return a 'PATH_DOES_NOT_EXIST' status.
- the host device may then request a File Ref value to use while updating the second file. This may be accomplished using the File Ref Open packet with a response from the client device in a File Ref Open Result packet.
- the Host device may use the File Ref value to write data to the file on the client device, 785. This may be accomplished using the File Ref Write packet with confirmations from the client device carried by Status packets.
- the host device may use a File Ref Close packet to release the File Ref, which can be confirmed by a Status packet from the client device.
- Any number of files may be updated in a similar manner. If the synchronization is not complete, 790, additional files may be updated as described above. If the synchronization is complete, 790, the synchronization session may be terminated.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Communication Control (AREA)
Abstract
A relatively simple protocol for transferring files and other data between endpoints. The endpoints are a host electronic device and a client electronic device. The connection between the end points can utilize a reliable stream transport connection. Communication is accomplished utilizing packets that have a header and a body with information to be used in transmitting data between the end points. Various packet types are utilized to achieve data transfer.
Description
TECHNIQUES FOR COMMUNICATING DATA BETWEEN A HOST DEVICE AND AN INTERMITTENTLY CONNECTED MOBILE DEVICE
TECHNICAL FIELD
[0001] Embodiments of the invention relate to communicating data between devices. More particularly, embodiments of the invention relate to techniques for efficiently communicating data between one or more host electronic devices and an intermittently connected client device.
BACKGROUND
[0002] With the increasing popularity of mobile devices (e.g., mobile phones, digital music players, digital personal assistants), the functionality provided by a single mobile device has increased. This increase in functionality has an associated motivation to provide synchronization services in order to, for example, mirror changes to data made on either the mobile device or the host device.
[0003] Various techniques have been developed to synchronize data between a mobile device and a host device. Current techniques are typically either full- function file system based techniques that may require more overhead than necessary or may be specific-purpose techniques that provide limited functionality. Either of these solutions is less than optimal.
SUMMARY
[0004] Techniques for communicating between a host device and a client device comprising are disclosed. A reliable stream is established to provide a connection between the host device and the client device over a communications link. Data is synchronized between the host device and the client device by transmitting packets according to the reliable stream transport over the communications link. The packets include an indication of a packet type having
a predetermined packet format corresponding to the packet type and a packet functionality associated with the packet type.
[0005] In one embodiment, the reliable stream transport connection is a Transmission Control Protocol (TCP) compliant connection. In another embodiment, the communications link is a Universal Serial Bus (USB) compliant wired interface. In another embodiment, the communications link is a BLUETOOTH compliant wireless interface. In another embodiment, the communications link is an IEEE 802.11 compliant wireless interface. [0006] In one embodiment, the client device is a smartphone. In another embodiment, the client device is a media playback device. In one embodiment, the host device is a desktop computer system. In another embodiment, the host device is a laptop computer system. In another embodiment, the host device is a palmtop or ultra-mobile computer system.
BRIEF DESCRIPTION OF THE DRAWINGS
[0007] The invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings in which like reference numerals refer to similar elements.
[0008] Figure l is a block diagram of a host electronic device and client electronic device that may communicate utilizing the techniques described herein.
[0009] Figure 2 is a block diagram of one embodiment of a data processing system, such as a host device.
[0010] Figure 3 is a block diagram of one embodiment of a data processing system, such as a client device, a handheld computer or other type of data processing system.
[0011] Figure 4 is a table of a packet header that may be used in communication between a host electronic device and a client electronic device.
[0012] Figure 5 is a table of a packet types that may be used in communication between a host electronic device and a client electronic device.
[0013] Figure 6 is a flow diagram of one embodiment of a technique to transfer data to a client device.
[0014] Figure 7 is a flow diagram of one embodiment of a technique to synchronize data between a host device and a client device.
DETAILED DESCRIPTION
[0015] In the following description, numerous specific details are set forth. However, embodiments of the invention may be practiced without these specific details. In other instances, well-known circuits, structures and techniques have not been shown in detail in order not to obscure the understanding of this description.
[0016] Described herein is a relatively simple protocol for transferring files and other data between endpoints. In one embodiment, the endpoints are a host electronic device and a client electronic device. The host electronic device may be, for example, a desktop computer system or a laptop computer system. The client electronic device may be for example, a laptop computer system, a personal digital assistant, a cellular-enabled device (e.g., a cellular telephone or smartphone).
[0017] In one embodiment, the connection between the end points utilizes a reliable stream transport, for example, a Transmission Control Protocol (TCP) stream connection. Other stream connections may also be supported. In one embodiment, communication is accomplished utilizing packets that have a header and a body. Described herein in one embodiment of a standard minimum header, but a header may contain additional packet-specific structured data. The packet data may include unstructured data, or may be empty. [0018] Figure 1 is a block diagram of a host electronic device and client electronic device that may communicate utilizing the techniques described herein. The block diagram of Figure 1 provides a conceptual illustration of the components that may be utilized to communicate between host device 100 and client device 150. In one example, host device 100 is a computer system (e.g., a desktop or a laptop computer system) and client device 150 is a mobile device (e.g., a PDA or a smartphone). Host device 100 and client device 150 may communicate via any type of communications technique known in the art. For
example, communications link 145 maybe a physical cable (e.g., a Universal Serial Bus compliant cable), or a wireless communications link (e.g., Bluetooth® compliant or IEEE 802.1 1 compliant). Bluetooth® is a registered trademark owned by Bluetooth SIG, Inc.
[0019] Application 110 may be any type of application that may be executed by host device 100. For example, application 1 10 may be iTunes available from Apple Inc of Cupertino, California. Application 110 may include functionality and/or data that may be communicated to and/or synchronized with client device 150. For example, application 110 may store and/or play multimedia content that may be stored on or played by client device 150. When client device 150 communicates with host device 100, application 110 may cause content to be transferred between host device 100 and client device 150. Other types of applications may also be supported.
[0020] Gatekeeper client 115 interacts with application 110 to control access to communications link 145 by application 110. Gatekeeper client 115 may selectively limit access to communications link 145 based on one or more parameters. Gatekeeper client 115 may, for example, perform authentication and/or validation operations prior to allowing communications between host device 100 and client device 150. Gatekeeper client 115 may also select one of multiple communications link for communication between host device 100 and client device 150. While the example of Figure 1 is described with the gatekeeper functionality, alternate embodiments may be provided without the gatekeeper functionality.
[0021] Gatekeeper client 115 may communicate with link driver 130 to access communications link 145 via link interface 140. In one embodiment, link driver 130 interacts with structured sync services 120 to provide synchronization functionality between host device 100 and client device 150. In one embodiment, structured sync services 120 may function utilizing the commands and protocols described in greater detail below. Link driver 130 may cause link interface 140 to cause signals (e.g., electrical, radio frequency, infrared, optical) representing data to be transmitted over communications link 145.
[0022] Within client device 150, link interface 160 is the counterpart to link interface 140. Link interface 160 may send and/or receive signals (e.g., electrical, radio frequency, infrared, optical) via communications link 145. Client device 150 also includes gatekeeper 180 that may perform authentication, validation and/or other authorization functions before allowing communication between application 110 on host device 100 and media sync services 190 on client device 150.
[0023] In one embodiment, media sync services 190 may support the messages and protocols described in greater detail below to allow access (e.g., read, write, modify, update) of data 195. Data 195 represents any type of data stored on client device 150. Data 195 may be one or more databases, tables and/or other storage elements. Data 195 may be, for example, media files (e.g., audio and/or video data files), metadata, contact information, historical information (e.g., call logs, software version information) and/or status information (e.g., battery capacity, serial number, total memory, available memory).
[0024] Client device 150 may also include structured data services 185, which may maintain data on client device 150. Examples of data that may be synchronized and/or maintained utilizing structured sync services 120 and structured data services 185 may include bookmarks, contact information, calendar information, etc.
[0025] In one embodiment, communication between host device 100 and client device 150 to allow application 110 to access data 190 may be accomplished through structured sync services 120 and media sync services 190 utilizing specific data packet formats described in greater detail below. In one embodiment, communications link 145 may be a Universal Serial Bus (USB) compliant wired communications link between host device 100 and client device 150. hi one embodiment, the connection between host device 100 and client device 150 utilizes a TCP stream connection over the USB compliant physical connection to transmit the packets described below.
[0026] Figure 2 is a block diagram of one embodiment of a data processing system, such as a host device. Note that while Figure 2 illustrates various
components of a computer system, it is not intended to represent any particular architecture or manner of interconnecting the components as such details are not germane to the present inventions. It will also be appreciated that personal digital assistants (PDAs), cellular telephones, media players (e.g. an iPod), devices which combine aspects or functions of these devices (a media player combined with a PDA and a cellular telephone in one device), network computers, an embedded processing device within another device, and other data processing systems which have fewer components or perhaps more components may also be used to implement one or more embodiments of the present inventions and may be one or more of the data processing systems described herein. The computer system shown in Figure 2 may, for example, be a Macintosh computer from Apple Inc. or a computer which runs the Windows operating software from Microsoft Corporation.
[0027] Computer system 200 includes bus 205 which is coupled to one or more microprocessors which form processing system 210. Bus 205 is also coupled to memory 220 and to a non- volatile memory 230, which may be a magnetic hard drive in certain embodiments, or flash memory in other embodiments. Bus 205 is also coupled to display controller and display 240 and one or more input/output (I/O) devices 250.
[0028] Further, bus 205 may be coupled to optional dock 260 and to one or more wireless transceivers 270, which may be a Bluetooth® compliant transceiver or a WiFi compliant transceiver or an infrared transceiver. Wireless transceivers 270 are optional as shown in Figure 2. [0029] Processing system 210 may optionally be coupled to cache 215. Processing system 210 may include one or more microprocessors, such as a microprocessor from Intel or IBM. Bus 205 interconnects these various components together in a manner which is known in the art. Typically, the input/output devices 250 are coupled to the system through input/output controllers.
[0030] Memory 220 may be implemented as dynamic RAM (DRAM) which provides fast access to data but requires power continually in order to refresh or
maintain the data in memory 220. Non- volatile memory 230 may be a magnetic hard drive or other non-volatile memory which retains data even after power is removed from the system. While Figure 2 shows that non-volatile memory 230 is a local device coupled directly to the rest of the components in the data processing system, it will be appreciated that other embodiments may utilize a non-volatile memory which is remote from a system, such as a network storage device, which is coupled to the data processing system through a network interface, such as a modem or an Ethernet interface.
[0031] Bus 205, as is well known in the art, may include one or more buses connected to each other through various bridges, controllers, and/or adapters as is known in the art. In one embodiment, I/O controller 250 may include a USB compliant adapter for controlling USB compliant peripherals and an IEEE- 1394 controller for IEEE- 1394 compliant peripherals.
[0032] Aspects of the inventions described herein may be embodied, at least in part, in software. That is, the techniques may be carried out in a computer system or other data processing system in response to its processor or processing system executing sequences of instructions contained in a memory, such as memory 220 or non-volatile memory 230 or the memory 330 shown in Figure 3. In various embodiments, hardwired circuitry may be used in combination with the software instructions to implement the present inventions. Thus, the techniques are not limited to any specific combination of hardware circuitry and software or to any particular source for the instructions executed by the data processing system. In addition, throughout this description, various functions and operations are described as being performed by or caused by software code to simplify description. However, what is meant by such expressions is that the functions result from execution of the code by a processing system. [0033] Dock 260 and/or wireless transceivers 270 provide a physical interface for coupling the data processing system shown in Figure 2 to another data processing system, such as the data processing system shown in Figure 3, or to another data processing system which resembles the system shown in Figure 2. Dock 260 may provide both a mechanical and electrical connection between
one data processing system and another data processing system to allow a synchronization process to be performed between the two systems. In other embodiments, wireless transceivers 270 may provide a radio frequency (RF) connection between the two systems for the purpose of a synchronization process without providing a mechanical connection between the two systems. [0034] Figure 3 is a block diagram of one embodiment of a data processing system, such as a client device, a handheld computer or other type of data processing system, such as the system shown in Figure 2 or a system which is similar to that shown in Figure 3. Data processing system 300 includes processing system 310, which may be one or more microprocessors, or which may be a system on a chip integrated circuit. System 300 also includes memory 330 for storing data and programs for execution by processing system 310. System 300 also includes audio input/output subsystem 340 which may include a microphone and a speaker for, for example, playing back music or providing telephone functionality through the speaker and microphone. [0035] Display controller and display device 350 provide a visual user interface for the user; this digital interface may include a graphical user interface which is similar to that shown on a Macintosh computer when running OS X operating system software. System 300 also includes one or more wireless transceivers, such as a WiFi transceiver, an infrared transceiver, a Bluetooth® compliant transceiver, and/or a wireless cellular telephony transceiver. Additional components, not shown, may also be part of system 300 in certain embodiments, and in certain embodiments fewer components than shown in Figure 3 may also be used in a data processing system.
[0036] Data processing system 300 also includes one or more input devices 360 which are provided to allow a user to provide input to system 300. These input devices may be a keypad or a keyboard or a touch panel or a multi-touch panel. Data processing system 300 also includes optional input/output device 370 which may be a connector for a dock, such as dock 260 shown in Figure 2. [0037] One or more buses, not shown, may be used to interconnect the various components as is known in the art. Data processing system 300 may be
a handheld computer or a personal digital assistant (PDA), or a cellular telephone with PDA-like functionality, or a handheld computer which includes a cellular telephone, or a media player, such as an iPod, or devices which combine aspects or functions of these devices, such as a media player combined with a PDA and a cellular telephone in one device. In other embodiments, data processing system 300 may be a network computer or an embedded processing device within another device, or other types of data processing systems which have fewer components or perhaps more components than that shown in Figure 3. [0038] At least certain embodiments of the inventions described herein may be part of a digital media player, such as a portable music and/or video media player, which may include a media processing system to present the media, a storage device to store the media and may further include a radio frequency (RP) transceiver (e.g., an RF transceiver for a cellular telephone) coupled with an antenna system and the media processing system. In certain embodiments, media stored on a remote storage device may be transmitted to the media player through the RF transceiver. The media may be, for example, one or more of music or other audio, still pictures, or motion pictures.
[0039] The portable media player may include a media selection device, such as a click wheel input device on an iPod® or iPod Nano® media player from Apple Inc. of Cupertino, CA, a touch screen input device, pushbutton device, movable pointing input device or other input device. The media selection device may be used to select the media stored on the storage device and/or the remote storage device.
[0040] The portable media player may, in at least certain embodiments, include a display device which is coupled to the media processing system to display titles or other indicators of media being selected through the input device and being presented, either through a speaker or earphone(s), or on the display device, or on both display device and a speaker or earphone(s). Examples of a portable media player are described in published U.S. patent application numbers 2003/0095096 and 2004/0224638, both of which are incorporated herein by reference.
[0041] In certain embodiments, data processing system 300 may be implemented in a small form factor which resembles a handheld computer having a tablet-like input device which may be a multi-touch input panel device which is integrated with a liquid crystal display. Examples of such devices are provided in U.S. Patent Application No. 11/586,862, filed October 24, 2006, and entitled "AUTOMATED RESPONSE TO AND SENSING OF USER ACTIVITY IN PORTABLE DEVICES," which is assigned to the same assignee as the instant application. This foregoing application is hereby incorporated herein by reference.
[0042] In the following description, various software components which are used for both synchronization and non-synchronization processing operations are described. It will be understood that in at least certain embodiments, these various software components may be stored in memory 220 and/or memory 230 shown in Figure 2 for one type of data processing system, and in the case of a system such as that shown in Figure 3, these various different software components may be stored in the memory 330 which may include volatile memory as well as non-volatile memory, such as flash memory or a magnetic hard drive. [0043] Having described a host device and a client device with example embodiments of each along with appropriate interconnections between devices, example packet formats, packet types, functionality and data flows are now described. As with the description above, the description that follows provides an example embodiment of a communications protocol. Variations on this protocol may also be supported.
[0044] The table in Figure 4 illustrates one embodiment of a packet header format. Other formats may also be used. While specific sizes and lengths are described other field names, lengths and/or descriptions may also be supported. [0045] In one embodiment, packet data may be sent over the connection in either little-endian or big-endian format. In one embodiment, either device may send data in either format. The receiving device is responsible for swapping the data ordering, if necessary. In one embodiment, each packet must use a consistent endianness. In one embodiment, a predetermined (e.g., fixed) signature value
(e.g., 0x4141504c36414643) may be used for all packet headers. The signature may allow the receiving device to determine the endianness of the data transmitted from the transmitting device. In one embodiment, the signature field is 8 bytes in length; however, other signature field sizes may also be supported. [0046] The packet header may also include a field that indicates the length of the entire packet including the header. In one embodiment, the packet length field may be 8 bytes; however, other packet length field sizes may be supported, for example, to support different maximum packet sizes. The packet header may also include a field that indicates a packet serial number. The packet serial number may be utilized to order packets transmitted between host device 100 and client device 150. In one embodiment, the packet serial number field may be 8 bytes; however, other packet serial number field sizes may be supported. [0047] The packet header also includes a field for packet type. The packet type field includes a numerical indicator of the type of message in the packet, which indicates the function of the packet. One example listing of packet types and packet type values is provided in Figure 5. Other packet labels, other packet functionality and/or other packet type values may also be supported. In one embodiment, the packet type field may be 8 bytes; however, other packet type field sizes may be supported.
[0048] The table in Figure 5 illustrates one embodiment of a set of packets that may be utilized to communicate between endpoints. Other and/or different packets may also be used. While specific packet type identifiers and packet names are described other packet type identifiers, packet names and/or descriptions may also be supported.
[0049] Various embodiments of the packets listed in Figure 5 are described in greater detail below. These packets descriptions provide examples of but one embodiment that may be provided. In one embodiment, each packet includes a standard packet header. This header may be formatted as illustrated in Figure 4. [0050] The Status packet may be utilized to provide status information in response to a request packet. The status packet may also be utilized to provide
error information in the event of a failure or other error condition, hi one embodiment, the status packet is formatted according to the following table.
Table 3: Status Packet
[0051] The Data packet may be utilized to carry data between the host electronic device and the client electronic device. In one embodiment, the data packet may be of any size. That is, the data packet may be the length of the header plus the data to be transmitted. In an alternate embodiment, the data packet may be a fixed length such that if the data to be transmitted exceeds the payload capacity of the data packet, one or more additional data packets may be utilized, hi one embodiment, the data packet is formatted according to the following table.
Table 4: Data Packet
[0052] The Read Directory packet may be utilized to read a directory on the target device. In one embodiment, the Read Directory packet is formatted according to the following table. The path string may be a path string in the appropriate format for the target device. For example, the path string may be a NULL-terminated Portable Operating System Interface for UNIX (POSIX) path string in UTF-8 format. Other formats may also be supported. The family of POSIX standards is formally designated as IEEE Std. 1003 and the international standard name is ISO/IEC 9945.
Table 5: Read Directory Packet
[0053] The Read File packet may be utilized to read a complete file on the target device. In one embodiment, the result is provided in a Status packet or a Data packet. In one embodiment, the Read File packet is formatted according to the following table.
Table 6: Read File Packet
[0054] The Write File packet may be utilized to write a complete file to the target device. In one embodiment, the Write File packet is formatted according to the following table.
Table 7: Write File Packet
[0055] The Write Part packet may be utilized to write data to a portion of a file on the target device. The Write Part packet may be stateless in that when the data from the packet is written, state data associated with the data and/or the file is not maintained. In one embodiment, the Write Part packet is formatted according to the following table.
Table 8: Write Part Packet
[0056] The Truncate (Trunc) File packet may be utilized to set the length of a file. The length may be shorter than the corresponding data in which case some of the data is dropped, or the length may be greater than the corresponding data
in which case the excess may be filled with a predetermined data pattern (e.g., all "0"). In one embodiment, the Trunc File packet is formatted according to the following table.
Table 9: Trunc File Packet
[0057] The Remove Path packet may be utilized to delete a file or directory on the target device. In one embodiment, the Remove Path packet is formatted according to the following table.
Table 10: Remove Path Packet
[0058] The Make Directory packet may be utilized to create a directory on the target device. In one embodiment, the Remove Path packet is formatted according to the following table.
Table 11 : Make Directory Packet
[0059] The Get File Info packet may be utilized to retrieve information describing a file on the target device. In one embodiment, the file information is provided as one or more key/value pairs transmitted in a Data packet. The information describing the file may be, for example, file size, last modification date, permissions. Additional and/or different file information may also be provided. In one embodiment, the Get File Info packet is formatted according to the following table.
Table 12: Get File Info Packet
[0060] The Get Device Info packet may be utilized to retrieve information describing the target device. In one embodiment, the device information is provided as one or more key/value pairs transmitted in a Data packet. The information describing the device may be, for example, device name, serial number, operating system version, battery level, free space available. Additional and/or different device information may also be provided. In one embodiment, the Get Device Info packet is formatted according to the following table.
Table 13: Get Device Info Packet
[0061] The Write File Atomic packet may be utilized to write a file on the target device. The Write File Atomic packet guarantees that the whole file is written or that none of the file is written. The Write File Atomic packet may be used, for example, to write a database file. In one embodiment, the Write File Atomic packet is formatted according to the following table.
Table 14: Write File Atomic Packet
[0062] The File Reference (Ref) Open packet may be utilized to obtain a token or other identifier to represent an open file on the target device. In one embodiment, the Write File Atomic packet is formatted according to the following table.
Table 15: File Ref Open Packet
[0063] In one embodiment, the Mode field includes a numeric indicator of a mode to use when opening the file. The Mode Name and Mode Value designations in Table 16 are examples for one embodiment. A different group of modes may be supported. Also, different mode values may be supported
Table 16: Modes
[0064] In Read Only mode, the file may be opened for reading only. In Read- Write mode, the file may be opened for reading and writing only. In Write-Truncate mode, the file may be opened for writing or truncation. In Read- Write-Truncate mode, the file may be opened for reading, writing or truncation. In Write- Append mode, the file may be opened for writing or appending. In Read-Write- Append mode, the file may be opened for reading, writing or appending.
[0065] The File Ref Open Result packet may be utilized to return a file reference token that may be used in one or more of the packets described herein when accessing a file on the target device. In one embodiment, the File Ref Open Result packet is formatted according to the following table.
Table 17: File Ref Open Result Packet
[0066] The File Ref Read packet may be utilized to read a file using the file reference resulting from the File Ref Open operation. In one embodiment, the position within the file is automatically advanced in response to a File Ref Read operation. In one embodiment, the File Ref Read packet is formatted according to the following table.
Table 18: File Ref Read Packet
[0067] The File Ref Write packet may be utilized to write to a file using the file reference resulting form the File Ref Open operation. In one embodiment, the position within the file is automatically advanced in response to a File Ref Write operation. In one embodiment, the File Ref Write packet is formatted according to the following table.
Table 19: File Ref Write Packet
[0068] The File Ref Seek packet may be utilized to determine a location within a file using the file reference resulting from the File Ref Open operation. In one embodiment, the File Ref Seek packet is formatted according to the following table.
Table 20: File Ref Seek Packet
[0069] In one embodiment, values in the Whence field may be used to indicate how the seek is to be performed. Table 21 provides an example of Whence values that may be used in a File Ref Seek packet.
Table 21 : Whence Values for use in File Ref Seek packet
[0070] The File Ref Tell packet may be utilized to determine a location within a file using the file reference resulting from the File Ref Open operation. In one embodiment, the File Ref Tell packet is formatted according to the following table.
Table 22: File Ref Tell Packet
[0071] The File Ref Tell Result packet may be utilized to return the result of a File Ref Tell operation, hi one embodiment, the File Ref Tell Result packet is formatted according to the following table.
Table 23: File Ref Tell Result Packet
[0072] The File Ref Close packet may be utilized to close a file using the file reference resulting from the File Ref Open operation, hi one embodiment, the File Ref Close packet is formatted according to the following table.
Table 24: File Ref Close Packet
[0073] The File Ref Set Size packet may be utilized to set the size of a file corresponding to the reference resulting from the File Ref Open operation. In one embodiment, the File Ref Set Size packet is formatted according to the following table.
Table 25: File Ref Set Size Packet
[0074] The File Ref Set Size packet may be utilized to set the length of a file. The length may be shorter than the corresponding data in which case some of the
data is dropped, or the length may be greater than the corresponding data in which case the excess may be filled with a predetermined data pattern (e.g., all "0"). [0075] The Rename Path packet may be utilized to rename a directory path on the target device. In one embodiment, the Rename Path packet is formatted according to the following table.
Table 26: Rename Path Packet
[0076] The path string may be a path string in the appropriate format for the target device. For example, the source and destination path strings may be a NULL-terminated POSIX path strings in UTF-8 format. Other formats may also be supported. In one embodiment, the destination path field immediately follows the source path field in the Rename Path packet.
[0077] The Set FS Block Size packet may be utilized to set a block size for the file system on the target device. In one embodiment, the Set FS Block Size packet is formatted according to the following table.
Table 27: Set File System Block Size Packet
[0078] The block size may be utilized on by the client device file system. For example, with a block size of 64 kb, when writing file data to the client device, 64 kb of data would be written at a time even if the host device sends data in larger or smaller blocks. In one embodiment, the client device does not guarantee that data is written according to block size, but may be utilized for performance.
[0079] The Set Socket Block Size packet may be utilized to set a block size for the data connection between the target device and the host device. In one embodiment, the Set Socket Block Size packet is formatted according to the following table.
Table 28: Set Socket Block Size Packet
[0080] The block size may be utilized by the client system to read and write data via the connection between the host device and the client device. For example, with a block size of 64 kb, when reading data from the connection, the client device may attempt to read data as 64 kb blocks. In one embodiment, the client device does not guarantee that data is processed according to block size, but may be utilized for performance.
[0081] The File Ref Lock packet may be utilized to lock an open file reference identifier against use by a second application, hi one embodiment, the File Ref Lock packet is formatted according to the following table.
Table 29: File Ref Lock Packet
[0082] The access to a file reference may be blocked so that only one application may have access to the opened file at a given time. In one embodiment, a shared lock, an exclusive lock and a non-blocking lock are supported. In alternate embodiments, additional and/or different locks are
supported. In one embodiment, the lock is advisory only and an application must query the file to determine whether the file is locked or not. In one embodiment, multiple applications/processes may obtain a shared lock.
[0083] The messages and formats described above may be utilized to support a full file communication protocol. In the examples that follow a subset of the packets are used to illustrate uses of the protocol. Many other operations may also be supported.
[0084] Figure 6 is a flow diagram of one embodiment of a technique to transfer data to a client device. In the example of Figure 6, the host device may determine whether a client device has been connected to the host device, 610. As discussed above, the connection between the host device and the client device may be either wired or wireless.
[0085] The host device may detect the presence of the client device utilizing any suitable technique. For example, if the client device is connected with the host device via a wired connection, the host device may be configured to detect the physical connection of the client device to the wired interface. If the client device is connected with the host device via a wireless connection, the host device may be configured to respond to the completion of a pairing or other type of wireless connection procedure.
[0086] In one embodiment, if no client device is connected, 610, the host device may wait for a client device to be connected. In another embodiment, the host device may respond only if a request is received via the interface. For example, the wired interface may include a button to be pressed by a user to initiate communication between the client device and the host device. As another example, the client device may have a user interface that allows the user to request communications with the host device.
[0087] In response to connection of the client device, 610, the host device may gather information about the client device 620. Gathering of information about the client device may be accomplished by sending one or more of the packets discussed above. For example, the host device may send a Get Device
Info packet and/or a Read Directory packet. The client device may respond to the packet(s) by providing the requested information to the host device. [0088] Upon gathering sufficient information from the client device, the host device may determine whether the client device is a new device, 630. That is, the host device may determine whether the client device has ever been connected to the host device before. If the client device is a new device, the host device may perform a registration procedure, 635. The registration procedure can allow the host device to retain information about the client device that may be used, for example, for authentication, to expedite connections and/or for backup purposes. [0089] The host device may authenticate the client device, 640. Authentication may be accomplished by, for example, exchange of keys or other identifiers between the host device and the client device. Other authentication techniques may also be used. In one embodiment, authentication is performed with corresponding sync services resident on the host device and the client device. [0090] After authentication the host device may transfer data to the client device, 650, using the packets described herein. For example, to add a new file to the client device (e.g., load a new media file on the client device), the host device may use a Write File packet to cause the data to be written to a file on the client device. Any number of data transfer packets may be used in a single session. [0091] Figure 7 is a flow diagram of one embodiment of a technique to synchronize data between a host device and a client device. The example of Figure 7 utilizes only a subset of the packet types discussed above. However, the example of Figure 7 is representative of a session that may occur between a host device and a client device utilizing the protocols and messages set forth herein. [0092] In the example that follows, "->" indicates that the corresponding packet is transmitted from the host device to the client device and "<-" indicates that the corresponding packet is transmitted from the client device to the host device. The packet type is listed first and one or more fields in the packet are listed with example values with "<...>" indicating that additional fields are not shown in the example of Figure 7. The data section of a packet, if any, is
indicated by "Data=..." A listing of packets is set forth first with an explanation of the session provided after the listing of packets.
-> Get Device Info
<- Data <Model=ABC123, Filesystem Size=1234, <...»
Perform Optional Registration and/or Authentication
-> File Ref Open <Path=7DeviceData.xml', Mode=Read>
<- File Ref Open Result <FileRef=408>
-> File Ref Read <FileRef=408, Length=8192>
<- Data <Data=<...»
-> File Ref Close <FileRef=408>
<- Status <Status=SUCCESS>
-> Make Directory <Path=7media'> <- Status <Status=PATH_EXISTS>
-> Get File Info <Path=7media/filel.mp3'>
<- Data <Data=<...»
-> File Ref Open <Path= '/media/file 1.mp3 ', mode=WriteTrucate>
<- File Ref Open Result <FileRef=831 >
-> File Ref Write <FileRef=831 , Data=<...»
<- Status <Status=SUCCESS>
-> File Ref Write <FileRef=831 , Data=<...»
<- Status <Status=SUCCESS>
-> File Ref Close <FileRef831>
<- Status <Status=SUCCESS>
-> Get File Info <Path=7media/file2.mp3'>
<- Status <Status=PATH_DOES_NOT_EXIST>
-> File Ref Open <Path=7media/file2.mp3', mode=WriteTrucate>
<- File Ref Open Result <FileRef=831>
-> File Ref Write <FileRef=831, Data=<...»
<- Status <Status=SUCCESS>
-> File Ref Write <FileRef=831 , Data=<...»
<- Status <Status=SUCCESS>
-> File Ref Close <FileRef831 >
<- Status <Status=SUCCESS>
[0093] In the example of Figure 7, the host device may determine whether a client device has been connected to the host device, 710. As discussed above,
the connection between the host device and the client device may be either wired or wireless.
[0094] The host device may detect the presence of the client device utilizing any suitable technique. For example, if the client device is connected with the host device via a wired connection, the host device may be configured to detect the physical connection of the client device to the wired interface. If the client device is connected with the host device via a wireless connection, the host device may be configured to respond to the completion of a pairing or other type of wireless connection procedure.
[0095] In one embodiment, if no client device is connected, 710, the host device may wait for a client device to be connected. In another embodiment, the host device may respond only if a request is received via the interface. For example, the wired interface may include a button to be pressed by a user to initiate communication between the client device and the host device. As another example, the client device may have a user interface that allows the user to request communications with the host device.
[0096] In response to connection of the client device, 710, the host device may gather information about the client device 720. Gathering of information about the client device may be accomplished by transmitting the Get Device Info packet from the host device to the client device and transmitting the Data packet from the client device to the host device. As discussed above, any type of information about the client device may be acquired by the host device in this manner. In the example of Figure 7, the client device provides at least a model identifier and a file system size to the host device. Additional and/or different data may also be provided.
[0097] Optionally, upon gathering sufficient information from the client device, the host device may determine whether the client device is a new device, 730. If the client device is a new device, the host device may perform an optional registration procedure, 735. The host device may authenticate the client device, 740. Authentication may be accomplished by, for example, exchange of keys or other identifiers between the host device and the client device. Other
authentication techniques may also be used. In one embodiment, authentication is performed with corresponding sync services resident on the host device and the client device.
[0098] After authentication, the host device may begin synchronization of data between the host device and the client device. The client device may request a File Ref value corresponding to a path on the client device and read data in the path, 750. This may be accomplished by using, for example, the File Ref Open, File Ref Open Result, File Ref Read, Data packets listed above. If the requested directory does not exist, the directory may be created, 750. When the requested data has been acquired, the File Ref may be closed. This may be accomplished by using the File Ref Close and Status packets listed above. [0099] A Make Directory packet may be utilized to determine whether a target path exists. For example, using the packets listed above, a Make Directory packet with the target of '/media' may be used to determine whether the 'media' directory exists. If the 'media' directory does exist, that Status packet from the client device may indicate the presence of the 'media' directory with a 'PATH EXISTS' status.
[00100] File information may be requested for a first file to be updated (e.g., Vmedia/filel .mp3 '). The Get File Info packet may be used to request information related to the first file to be updated, 770. The client device may use a Data packet to return data related to the first file to be updated. [00101] The host device may then request a File Ref value to use while updating the first file. This may be accomplished using the File Ref Open packet with a response from the client device in a File Ref Open Result packet. The Host device may use the File Ref value to write data to the file on the client device, 775. This may be accomplished using the File Ref Write packet with confirmations from the client device carried by Status packets. When writing to the file is complete, the host device may use a File Ref Close packet to release the File Ref, which can be confirmed by a Status packet from the client device. [00102] A Make Directory packet may be utilized to determine whether a target path for a second file to be updated exists. For example, using the packets
listed above, a Get File Info packet with the target of 7media/file2.mp3' may be used to determine whether the 'file2.mp3' file exists and get information related to the file, 780. If, for example, the 'file2.mp3' file does not exist, the Status packet from the client device may return a 'PATH_DOES_NOT_EXIST' status. [00103] The host device may then request a File Ref value to use while updating the second file. This may be accomplished using the File Ref Open packet with a response from the client device in a File Ref Open Result packet. The Host device may use the File Ref value to write data to the file on the client device, 785. This may be accomplished using the File Ref Write packet with confirmations from the client device carried by Status packets. When writing to the file is complete, the host device may use a File Ref Close packet to release the File Ref, which can be confirmed by a Status packet from the client device. [00104] Any number of files may be updated in a similar manner. If the synchronization is not complete, 790, additional files may be updated as described above. If the synchronization is complete, 790, the synchronization session may be terminated.
[00105] Reference in the specification to "one embodiment" or "an embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of the phrase "in one embodiment" in various places in the specification are not necessarily all referring to the same embodiment.
[00106] In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes can be made thereto without departing from the broader spirit and scope of the invention. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
Claims
1. A method for communicating between a host device and a client device comprising: establishing a reliable stream transport connection between the host device and the client device over a communications link; synchronizing data between the host device and the client device by transmitting packets according to the reliable stream transport over the communications link, wherein the packets include an indication of a packet type having a predetermined packet format corresponding to the packet type and a packet functionality associated with the packet type.
2. The method of claim 1 wherein the reliable stream transport connection comprises a Transmission Control Protocol (TCP) compliant connection.
3. The method of claim 2 wherein the communications link comprises a Universal Serial Bus (USB) compliant wired interface.
4. The method of claim 2 wherein the communications link comprises a BLUETOOTH compliant wireless interface.
5. The method of claim 2 wherein the communications link comprises an IEEE 802.11 compliant wireless interface.
6. The method of claim 1 wherein the client device comprises a smartphone.
7. The method of claim 1 wherein the client device comprises a media playback device.
8. The method of claim 1 wherein the packet comprises a header having a packet signature field, a packet length field, a header length field, a packet serial number field and a packet type field.
9. The method of claim 1 wherein the indication of the packet type indicates a status packet comprising a header and a status field to provide status information in response to a request packet or error information in the event of an error condition.
10. The method of claim 1 wherein the indication of the packet type indicates a data packet comprising a header and a data field to provide data to be transmitted between the host device and the client device.
11. The method of claim 1 wherein the indication of the packet type indicates a read directory packet comprising a header and a directory field to indicate a directory to be read on the client device.
12. The method of claim 1 wherein the indication of the packet type indicates a read file packet comprising a header, an offset field to indicate a offset corresponding to a memory location to read, a length field to indicate an amount of the file to read from the offset and a path field to indicate a file to be read on the client device.
13. The method of claim 1 wherein the indication of the packet type indicates a write file packet comprising a header a path field to indicate a file to be written and a data field to with data to be written to the file on the client device.
14. The method of claim 1 wherein the indication of the packet type indicates a write part packet comprising a header, an offset field to indicate a offset corresponding to a memory location to write and a path field to indicate a file to be written on the client device.
15. The method of claim 1 wherein the indication of the packet type indicates a file truncate packet comprising a header, a length field to indicate a file length corresponding to a target file and a path field to indicate the target file on the client device.
16. The method of claim 1 wherein the indication of the packet type indicates a remove path packet comprising a header and a path field to indicate a file to be removed from the client device.
17. The method of claim 1 wherein the indication of the packet type indicates a create directory packet comprising a header and a path field to indicate a directory to be created on the client device.
18. The method of claim 1 wherein the indication of the packet type indicates a get file information packet comprising a header and a path field to indicate a file on the client device for which information is to be gathered.
19. The method of claim 18 wherein the information comprises key/value pairs corresponding to characteristics of the file.
20. The method of claim 1 wherein the indication of the packet type indicates a get device information packet comprising a header.
21. The method of claim 1 wherein the indication of the packet type indicates a write file atomic packet comprising a header and a path field to indicate a file to be written on the client device, wherein either the complete file is written to the client device or none of the file is written to the client device.
22. The method of claim 1 wherein the indication of the packet type indicates a file reference open packet comprising a header, a mode field and a path field to indicate a location of a target file on the client device.
23. The method of claim 22 wherein the mode field stores an indication of a file access mode selected from the group of: read only mode, read-write mode, write-truncate mode, read-write-truncate mode, write-append mode, and read-write-append mode.
24. The method of claim 1 wherein the indication of the packet type indicates a file reference open result packet comprising a header, a file reference field to store a file reference value associated with a target file on the client device.
25. The method of claim 1 wherein the indication of the packet type indicates a file reference read packet comprising a header, a file reference field to store a file reference value associated with a target file on the client device and a length field to indicate a length of data to be read from the file.
26. The method of claim 1 wherein the indication of the packet type indicates a file reference write packet comprising a header, a file reference field to store a file reference value associated with a target file on the client device and a data field to store data to be written to the file.
27. The method of claim 1 wherein the indication of the packet type indicates a file reference seek packet comprising a header, a file reference field to store a file reference value associated with a target file on the client device, a whence field to indicate a location from which to seek and a offset field to indicate an offset from the beginning of the target file.
28. The method of claim 1 wherein the indication of the packet type indicates a file reference tell packet comprising a header, a file reference field to store a file reference value associated with a target file on the client device for which an indication of a position on the client device will be returned.
29. The method of claim 1 wherein the indication of the packet type indicates a file reference tell result packet comprising a header and an offset field to store an offset position.
30. The method of claim 1 wherein the indication of the packet type indicates a file reference close packet comprising a header, a file reference field to store a file reference value associated with a target file to be closed on the client device.
31. The method of claim 1 wherein the indication of the packet type indicates a file reference set size packet comprising a header, a file reference field to store a file reference value associated with a target file on the client device and a file size field to indicate a size of the target file.
32. The method of claim 1 wherein the indication of the packet type indicates a rename path packet comprising a header, a source path field to indicate the path on the client device to be renamed and a destination path field to indicate a new name for the path on the client device to be renamed.
33. The method of claim 1 wherein the indication of the packet type indicates a set file system block size packet comprising a header and a file system block size field to indicate the block size of data to be written to memory by the client device.
34. The method of claim 1 wherein the indication of the packet type indicates a set file reference lock packet comprising a header and a file reference lock type to be used.
35. The method of claim 1 wherein the indication of the packet type indicates a set socket block size packet comprising a header and a socket block size field to indicate the block size for data to be communicated between the host device and the client device.
36. An article comprising a tangible computer-readable medium having stored thereon instructions that, when executed, cause one or more processors to: establish a reliable stream transport connection between the host device and the client device over a communications link; synchronize data between the host device and the client device by transmitting packets according to the reliable stream transport over the communications link, wherein the packets include an indication of a packet type having a predetermined packet format corresponding to the packet type and a packet functionality associated with the packet type.
37. The article of claim 36 wherein the client device comprises a smartphone.
38. The article of claim 36 wherein the packet comprises a header having a packet signature field, a packet length field, a header length field, a packet serial number field and a packet type field.
39. The article of claim 36 wherein the indication of the packet type indicates a data packet comprising a header and a data field to provide data to be transmitted between the host device and the client device.
40. The article of claim 36 wherein the indication of the packet type indicates a read file packet comprising a header, an offset field to indicate a offset corresponding to a memory location to read, a length field to indicate an amount of the file to read from the offset and a path field to indicate a file to be read on the client device.
41. The article of claim 36 wherein the indication of the packet type indicates a write part packet comprising a header, an offset field to indicate a offset corresponding to a memory location to write and a path field to indicate a file to be written on the client device.
42. The article of claim 36 wherein the indication of the packet type indicates a remove path packet comprising a header and a path field to indicate a file to be removed from the client device.
43. The article of claim 36 wherein the indication of the packet type indicates a get file information packet comprising a header and a path field to indicate a file on the client device for which information is to be gathered.
44. The article of claim 36 wherein the indication of the packet type indicates a write file atomic packet comprising a header and a path field to indicate a file to be written on the client device, wherein either the complete file is written to the client device or none of the file is written to the client device.
45. The article of claim 36 wherein the mode field stores an indication of a file access mode selected from the group of: read only mode, read- write mode, write-truncate mode, read-write-truncate mode, write-append mode, and read-write-append mode.
46. The article of claim 36 wherein the indication of the packet type indicates a file reference read packet comprising a header, a file reference field to store a file reference value associated with a target file on the client device and a length field to indicate a length of data to be read from the file.
47. The article of claim 36 wherein the indication of the packet type indicates a file reference seek packet comprising a header, a file reference field to store a file reference value associated with a target file on the client device, a whence field to indicate a location from which to seek and a offset field to indicate an offset from the beginning of the target file.
48. The article of claim 36 wherein the indication of the packet type indicates a file reference tell result packet comprising a header and an offset field to store an offset position.
49. The article of claim 36 wherein the indication of the packet type indicates a file reference set size packet comprising a header, a file reference field to store a file reference value associated with a target file on the client device and a file size field to indicate a size of the target file.
50. The article of claim 36 wherein the indication of the packet type indicates a set file system block size packet comprising a header and a file system block size field to indicate the block size of data to be written to memory by the client device.
51. A system including a host device and a client device comprising: means for establishing a reliable stream transport connection between the host device and the client device over a communications link; means for synchronizing data between the host device and the client device by transmitting packets according to the reliable stream transport over the communications link, wherein the packets include an indication of a packet type having a predetermined packet format corresponding to the packet type and a packet functionality associated with the packet type.
52. The system of claim 51 wherein the client device comprises a smartphone.
53. The system of claim 51 wherein the client device comprises a media playback device.
54. A method for a host device to communicate with a client device comprising: establishing a reliable stream transport connection between the host device and the client device over a communications link in response to detecting the presence of the client device; transmitting data from the host device to the client device via packets according to the reliable stream transport over the communications link, wherein the packets include an indication of a packet type having a predetermined packet format corresponding to the packet type and a packet functionality associated with the packet type.
55. The method of claim 54 wherein the packet comprises a header having a packet signature field, a packet length field, a header length field, a packet serial number field and a packet type field.
56. The method of claim 54 wherein the indication of the packet type indicates a data packet comprising a header and a data field to provide data to be transmitted between the host device and the client device.
57. The method of claim 54 wherein the indication of the packet type indicates a read file packet comprising a header, an offset field to indicate a offset corresponding to a memory location to read, a length field to indicate an amount of the file to read from the offset and a path field to indicate a file to be read on the client device.
58. The method of claim 54 wherein the indication of the packet type indicates a write part packet comprising a header, an offset field to indicate a offset corresponding to a memory location to write and a path field to indicate a file to be written on the client device.
59. The method of claim 54 wherein the indication of the packet type indicates a remove path packet comprising a header and a path field to indicate a file to be removed from the client device.
60. The method of claim 54 wherein the indication of the packet type indicates a get file information packet comprising a header and a path field to indicate a file on the client device for which information is to be gathered.
61. The method of claim 54 wherein the indication of the packet type indicates a file reference open packet comprising a header, a mode field and a path field to indicate a location of a target file on the client device.
62. The method of claim 54 wherein the indication of the packet type indicates a file reference read packet comprising a header, a file reference field to store a file reference value associated with a target file on the client device and a length field to indicate a length of data to be read from the file.
63. The method of claim 54 wherein the indication of the packet type indicates a file reference tell packet comprising a header, a file reference field to store a file reference value associated with a target file on the client device for which an indication of a position on the client device will be returned.
64. The method of claim 54 wherein the indication of the packet type indicates a file reference set size packet comprising a header, a file reference field to store a file reference value associated with a target file on the client device and a file size field to indicate a size of the target file.
65. The method of claim 54 wherein the indication of the packet type indicates a set file reference lock packet comprising a header and a file reference lock type to be used.
66. An article comprising a tangible computer-readable medium having stored thereon instructions to cause a host device to communicate with a client device comprising instructions that, when executed, cause the host device to: establish a reliable stream transport connection between the host device and the client device over a communications link in response to detecting the presence of the client device; transmit data from the host device to the client device via packets according to the reliable stream transport over the communications link, wherein the packets include an indication of a packet type having a predetermined packet format corresponding to the packet type and a packet functionality associated with the packet type.
67. The article of claim 66 wherein the client device comprises a smartphone.
68. The article of claim 66 wherein the indication of the packet type indicates a read directory packet comprising a header and a directory field to indicate a directory to be read on the client device.
69. The article of claim 66 wherein the indication of the packet type indicates a write file packet comprising a header a path field to indicate a file to be written and a data field to with data to be written to the file on the client device.
70. The article of claim 66 wherein the indication of the packet type indicates a file truncate packet comprising a header, a length field to indicate a file length corresponding to a target file and a path field to indicate the target file on the client device.
71. The article of claim 66 wherein the indication of the packet type indicates a get file information packet comprising a header and a path field to indicate a file on the client device for which information is to be gathered.
72. The article of claim 66 wherein the indication of the packet type indicates a write file atomic packet comprising a header and a path field to indicate a file to be written on the client device, wherein either the complete file is written to the client device or none of the file is written to the client device.
73. The article of claim 66 wherein the indication of the packet type indicates a file reference read packet comprising a header, a file reference field to store a file reference value associated with a target file on the client device and a length field to indicate a length of data to be read from the file.
74. The article of claim 66 wherein the indication of the packet type indicates a file reference seek packet comprising a header, a file reference field to store a file reference value associated with a target file on the client device, a whence field to indicate a location from which to seek and a offset field to indicate an offset from the beginning of the target file.
75. The article of claim 66 wherein the indication of the packet type indicates a file reference set size packet comprising a header, a file reference field to store a file reference value associated with a target file on the client device and a file size field to indicate a size of the target file.
76. A method for a client device to communicate with a host device comprising: establishing a reliable stream transport connection between the host device and the client device over a communications link in response to detecting the presence of the client device; receiving data from the host device to the client device via packets according to the reliable stream transport over the communications link, wherein the packets include an indication of a packet type having a predetermined packet format corresponding to the packet type and a packet functionality associated with the packet type.
77. The method of claim 76 wherein the indication of the packet type indicates a status packet comprising a header and a status field to provide status information in response to a request packet or error information in the event of an error condition.
78. The method of claim 76 wherein the indication of the packet type indicates a file reference tell result packet comprising a header and an offset field to store an offset position.
79. An article comprising a tangible computer-readable medium having stored thereon instructions to cause a client device to communicate with a host device comprising instructions that, when executed, cause the client device to: establish a reliable stream transport connection between the host device and the client device over a communications link in response to detecting the presence of the client device; receive data from the host device to the client device via packets according to the reliable stream transport over the communications link, wherein the packets include an indication of a packet type having a predetermined packet format corresponding to the packet type and a packet functionality associated with the packet type.
80. The article of claim 79 wherein the packet comprises a header having a packet signature field, a packet length field, a header length field, a packet serial number field and a packet type field.
81. The article of claim 79 wherein the indication of the packet type indicates a file reference open result packet comprising a header, a file reference field to store a file reference value associated with a target file on the client device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08779613.2A EP2158743B1 (en) | 2007-06-08 | 2008-05-05 | Techniques for communicating data between a host device and an intermittently connected mobile device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/760,686 | 2007-06-08 | ||
US11/760,686 US20080307102A1 (en) | 2007-06-08 | 2007-06-08 | Techniques for communicating data between a host device and an intermittently attached mobile device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008153638A1 true WO2008153638A1 (en) | 2008-12-18 |
Family
ID=39870549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/005807 WO2008153638A1 (en) | 2007-06-08 | 2008-05-05 | Techniques for communicating data between a host device and an intermittently connected mobile device |
Country Status (3)
Country | Link |
---|---|
US (2) | US20080307102A1 (en) |
EP (1) | EP2158743B1 (en) |
WO (1) | WO2008153638A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080304486A1 (en) * | 2007-06-08 | 2008-12-11 | Joshua Verweyst Graessley | Multiplexed data stream protocol |
US20080307109A1 (en) * | 2007-06-08 | 2008-12-11 | Galloway Curtis C | File protocol for transaction based communication |
US8209540B2 (en) | 2007-06-28 | 2012-06-26 | Apple Inc. | Incremental secure backup and restore of user settings and data |
US10091345B2 (en) * | 2007-09-04 | 2018-10-02 | Apple Inc. | Media out interface |
US8250122B2 (en) * | 2009-11-24 | 2012-08-21 | International Business Machines Corporation | Systems and methods for simultaneous file transfer and copy actions |
CN103229126B (en) | 2010-09-17 | 2016-04-13 | 谷歌公司 | Mobile message between computing devices |
US20150264113A1 (en) * | 2014-03-13 | 2015-09-17 | Ebay Inc. | Dynamic Batching |
US9998555B2 (en) | 2014-04-08 | 2018-06-12 | Dropbox, Inc. | Displaying presence in an application accessing shared and synchronized content |
US10270871B2 (en) | 2014-04-08 | 2019-04-23 | Dropbox, Inc. | Browser display of native application presence and interaction data |
US10171579B2 (en) | 2014-04-08 | 2019-01-01 | Dropbox, Inc. | Managing presence among devices accessing shared and synchronized content |
US10091287B2 (en) | 2014-04-08 | 2018-10-02 | Dropbox, Inc. | Determining presence in an application accessing shared and synchronized content |
US9846528B2 (en) | 2015-03-02 | 2017-12-19 | Dropbox, Inc. | Native application collaboration |
US10248933B2 (en) | 2015-12-29 | 2019-04-02 | Dropbox, Inc. | Content item activity feed for presenting events associated with content items |
US10620811B2 (en) | 2015-12-30 | 2020-04-14 | Dropbox, Inc. | Native application collaboration |
US10382502B2 (en) | 2016-04-04 | 2019-08-13 | Dropbox, Inc. | Change comments for synchronized content items |
CN111917656B (en) * | 2017-07-27 | 2023-11-07 | 超聚变数字技术有限公司 | Method and device for transmitting data |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999039488A1 (en) * | 1998-01-29 | 1999-08-05 | British Telecommunications Public Limited Company | Communications system for mobile data transfer |
US20050102537A1 (en) * | 2003-11-07 | 2005-05-12 | Sony Corporation | File transfer protocol for mobile computer |
EP1569491A2 (en) * | 2004-02-24 | 2005-08-31 | Lg Electronics Inc. | Group network system using bluetooth and generating method thereof |
WO2006133764A2 (en) * | 2005-06-17 | 2006-12-21 | Fotonation Vision Limited | A method for establishing a paired connection between media devices |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5819020A (en) * | 1995-10-16 | 1998-10-06 | Network Specialists, Inc. | Real time backup system |
JP4616423B2 (en) * | 1996-06-18 | 2011-01-19 | クロール・オントラック・インコーポレーテッド | Apparatus and method for remote data recovery |
US6032191A (en) * | 1997-10-28 | 2000-02-29 | International Business Machines Corporation | Direct coupling for data transfers |
US6246683B1 (en) * | 1998-05-01 | 2001-06-12 | 3Com Corporation | Receive processing with network protocol bypass |
US6253274B1 (en) * | 1998-08-28 | 2001-06-26 | International Business Machines Corporation | Apparatus for a high performance locking facility |
US6609167B1 (en) * | 1999-03-17 | 2003-08-19 | Adaptec, Inc. | Host and device serial communication protocols and communication packet formats |
US8099758B2 (en) * | 1999-05-12 | 2012-01-17 | Microsoft Corporation | Policy based composite file system and method |
US6678246B1 (en) * | 1999-07-07 | 2004-01-13 | Nortel Networks Limited | Processing data packets |
US6678535B1 (en) * | 2000-06-30 | 2004-01-13 | International Business Machines Corporation | Pervasive dock and router with communication protocol converter |
US8302127B2 (en) * | 2000-09-25 | 2012-10-30 | Thomson Licensing | System and method for personalized TV |
JP2002141945A (en) * | 2000-11-06 | 2002-05-17 | Sony Corp | Data transmission system and data transmission method, and program storage medium |
US20030235206A1 (en) * | 2001-02-15 | 2003-12-25 | Tantivy Communications, Inc. | Dual proxy approach to TCP performance improvements over a wireless interface |
GB2372903A (en) * | 2001-02-28 | 2002-09-04 | Telepathix Ltd | Methods for registering and notifying wireless devices |
US6636789B2 (en) * | 2001-04-27 | 2003-10-21 | Spx Corporation | Method and system of remote delivery of engine analysis data |
US6934694B2 (en) * | 2001-06-21 | 2005-08-23 | Kevin Wade Jamieson | Collection content classifier |
US7103760B1 (en) * | 2001-07-16 | 2006-09-05 | Billington Corey A | Embedded electronic device connectivity system |
US8923688B2 (en) * | 2001-09-12 | 2014-12-30 | Broadcom Corporation | Performing personal video recording (PVR) functions on digital video streams |
US7345671B2 (en) * | 2001-10-22 | 2008-03-18 | Apple Inc. | Method and apparatus for use of rotational user inputs |
US20030212804A1 (en) * | 2002-05-09 | 2003-11-13 | Ardeshir Hashemi | Method and apparatus for media clip sharing over a network |
US7742473B2 (en) * | 2002-11-12 | 2010-06-22 | Mark Adams | Accelerator module |
US7627343B2 (en) * | 2003-04-25 | 2009-12-01 | Apple Inc. | Media player system |
US20050021680A1 (en) * | 2003-05-12 | 2005-01-27 | Pete Ekis | System and method for interfacing TCP offload engines using an interposed socket library |
US7506057B2 (en) * | 2005-06-17 | 2009-03-17 | Fotonation Vision Limited | Method for establishing a paired connection between media devices |
US7272606B2 (en) * | 2003-11-26 | 2007-09-18 | Veritas Operating Corporation | System and method for detecting and storing file content access information within a file system |
JP4343760B2 (en) * | 2004-04-28 | 2009-10-14 | 株式会社日立製作所 | Network protocol processor |
US9218588B2 (en) * | 2004-06-29 | 2015-12-22 | United Parcel Service Of America, Inc. | Offline processing systems and methods for a carrier management system |
US20060023731A1 (en) * | 2004-07-29 | 2006-02-02 | Eduardo Asbun | Method and apparatus for processing data in a communication system |
US7644211B2 (en) * | 2004-12-07 | 2010-01-05 | Cisco Technology, Inc. | Method and system for controlling transmission of USB messages over a data network between a USB device and a plurality of host computers |
US20060165108A1 (en) * | 2005-01-21 | 2006-07-27 | Mr. Sezen Uysal | Method and system for unidirectional packet processing at data link layer |
US20060190238A1 (en) * | 2005-02-24 | 2006-08-24 | Autor Jeffrey S | Methods and systems for managing a device |
GB2426897A (en) * | 2005-06-01 | 2006-12-06 | Agilent Technologies Inc | Transferring control and signalling data between protocol stack layers by inserting it into Destination Options Headers of IPv6 packets |
US7551618B2 (en) * | 2005-06-09 | 2009-06-23 | Digi International | Stack bypass application programming interface |
EP1798943A1 (en) * | 2005-12-13 | 2007-06-20 | Axalto SA | SIM messaging client |
US20080126653A1 (en) * | 2006-11-29 | 2008-05-29 | Icon Global, Ltd. | Portable web server with usb port |
US9270944B2 (en) * | 2007-02-14 | 2016-02-23 | Time Warner Cable Enterprises Llc | Methods and apparatus for content delivery notification and management |
US7840184B2 (en) * | 2007-06-14 | 2010-11-23 | Broadcom Corporation | Method and system for utilizing a 60 GHZ PHY layer for high speed data transmission between bluetooth devices |
-
2007
- 2007-06-08 US US11/760,686 patent/US20080307102A1/en not_active Abandoned
-
2008
- 2008-05-05 EP EP08779613.2A patent/EP2158743B1/en not_active Not-in-force
- 2008-05-05 WO PCT/US2008/005807 patent/WO2008153638A1/en active Application Filing
-
2013
- 2013-09-16 US US14/028,171 patent/US20140016633A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999039488A1 (en) * | 1998-01-29 | 1999-08-05 | British Telecommunications Public Limited Company | Communications system for mobile data transfer |
US20050102537A1 (en) * | 2003-11-07 | 2005-05-12 | Sony Corporation | File transfer protocol for mobile computer |
EP1569491A2 (en) * | 2004-02-24 | 2005-08-31 | Lg Electronics Inc. | Group network system using bluetooth and generating method thereof |
WO2006133764A2 (en) * | 2005-06-17 | 2006-12-21 | Fotonation Vision Limited | A method for establishing a paired connection between media devices |
Also Published As
Publication number | Publication date |
---|---|
US20140016633A1 (en) | 2014-01-16 |
EP2158743B1 (en) | 2017-06-21 |
EP2158743A1 (en) | 2010-03-03 |
US20080307102A1 (en) | 2008-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2158743B1 (en) | Techniques for communicating data between a host device and an intermittently connected mobile device | |
EP2001198B1 (en) | File protocol for transaction based communication | |
EP2001199B1 (en) | Multiplexed data stream protocol | |
KR101787185B1 (en) | Application launching in conjunction with an accessory | |
EP2317732B1 (en) | Data communication protocol | |
JP4829316B2 (en) | Method, apparatus, and system for synchronizing data in response to an interrupted synchronization process | |
EP1727056B1 (en) | Data communication protocol | |
JP4546801B2 (en) | Method for providing synchronization notification to client device | |
WO2021013242A1 (en) | Method for starting mini program, device and computer storage medium | |
US8832467B2 (en) | Digital rights management metafile, management protocol and applications thereof | |
WO2021169369A1 (en) | Data transmission method, apparatus and system | |
US8532136B1 (en) | Communication with a handset via a private network | |
JP2003087178A (en) | Method and system for managing data | |
Anacleto et al. | Creating and optimizing client-server applications on mobile devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08779613 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2008779613 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008779613 Country of ref document: EP |