WO2008139416A1 - 2-cyclopropyl-thiazole derivatives - Google Patents
2-cyclopropyl-thiazole derivatives Download PDFInfo
- Publication number
- WO2008139416A1 WO2008139416A1 PCT/IB2008/051883 IB2008051883W WO2008139416A1 WO 2008139416 A1 WO2008139416 A1 WO 2008139416A1 IB 2008051883 W IB2008051883 W IB 2008051883W WO 2008139416 A1 WO2008139416 A1 WO 2008139416A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thiazole
- cyclopropyl
- ylmethyl
- carbonyl
- piperidin
- Prior art date
Links
- 0 Bc1c(C(N2C(CNC(*)=O)C*CC2)=O)nc(C2CC2)[s]1 Chemical compound Bc1c(C(N2C(CNC(*)=O)C*CC2)=O)nc(C2CC2)[s]1 0.000 description 2
- IIPJWNFOLPDTEQ-UHFFFAOYSA-N NC(C1CC1)=S Chemical compound NC(C1CC1)=S IIPJWNFOLPDTEQ-UHFFFAOYSA-N 0.000 description 2
- YUOJOVAEYMMGIG-UHFFFAOYSA-N Bc([s]1)c(C(OC)=O)nc1Br Chemical compound Bc([s]1)c(C(OC)=O)nc1Br YUOJOVAEYMMGIG-UHFFFAOYSA-N 0.000 description 1
- GULSYBWKJVTLCA-UHFFFAOYSA-N Bc1c(C(O)=O)nc(C2CC2)[s]1 Chemical compound Bc1c(C(O)=O)nc(C2CC2)[s]1 GULSYBWKJVTLCA-UHFFFAOYSA-N 0.000 description 1
- DVENXGORJBTFNY-UHFFFAOYSA-N Bc1c(C(OC)=O)nc(C2CC2)[s]1 Chemical compound Bc1c(C(OC)=O)nc(C2CC2)[s]1 DVENXGORJBTFNY-UHFFFAOYSA-N 0.000 description 1
- JPGJUEIKVNLDFR-UHFFFAOYSA-N NCOCC1CC1 Chemical compound NCOCC1CC1 JPGJUEIKVNLDFR-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/06—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/08—Drugs for disorders of the alimentary tract or the digestive system for nausea, cinetosis or vertigo; Antiemetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/08—Drugs for disorders of the urinary system of the prostate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/10—Drugs for disorders of the urinary system of the bladder
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/08—Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/18—Feminine contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/10—Anti-acne agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/06—Antigout agents, e.g. antihyperuricemic or uricosuric agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/02—Muscle relaxants, e.g. for tetanus or cramps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/06—Antimigraine agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/08—Antiepileptics; Anticonvulsants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/22—Anxiolytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/30—Drugs for disorders of the nervous system for treating abuse or dependence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/30—Drugs for disorders of the nervous system for treating abuse or dependence
- A61P25/32—Alcohol-abuse
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/30—Drugs for disorders of the nervous system for treating abuse or dependence
- A61P25/36—Opioid-abuse
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/24—Drugs for disorders of the endocrine system of the sex hormones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/02—Non-specific cardiovascular stimulants, e.g. drugs for syncope, antihypotensives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/04—Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/06—Antiarrhythmics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
Definitions
- the present invention relates to selected 2-cyclopropyl-thiazole derivatives of formula (I), and their use as pharmaceuticals.
- the invention also concerns related aspects including processes for the preparation of the compounds, pharmaceutical compositions containing one or more compounds of formula (I), and especially their use as orexin receptor antagonists.
- Orexins are novel neuropeptides found in 1998 by two research groups, orexin A is a 33 amino acid peptide and orexin B is a 28 amino acid peptide (Sakurai T. et ah, Cell, 1998, 92, 573-585). Orexins are produced in discrete neurons of the lateral hypothalamus and bind to G-protein-coupled receptors (OXi and OX 2 receptors).
- the orexin- 1 receptor (OXi) is selective for OX-A
- the orexin-2 receptor (OX 2 ) is capable to bind OX-A as well as OX-B.
- Orexins are found to stimulate food consumption in rats suggesting a physiological role for these peptides as mediators in the central feedback mechanism that regulates feeding behaviour (Sakurai T. et ah, Cell, 1998, 92, 573-585). On the other hand, it was also observed that orexins regulate states of sleep and wakefulness opening potentially novel therapeutic approaches to narcolepsy as well as insomnia and other sleep disorders (Chemelli R.M. ⁇ ⁇ /., Cell, 1999, 98, 437-451). Orexin receptors are found in the mammalian brain and may have numerous implications in pathologies as known from the literature.
- the present invention provides 2-cyclopropyl-thiazole derivatives, which are non- peptide antagonists of human orexin receptors. These compounds are in particular of potential use in the treatment of e.g. eating disorders, drinking disorders, sleep disorders, or cognitive dysfunctions in psychiatric and neurologic disorders.
- a first aspect of the invention relates to compounds of formula (I)
- B represents phenyl, wherein the phenyl ring is unsubstituted or mono-, di- or tri- substituted, wherein the substituents are independently selected from the group consisting of (Ci_ 4 )alkyl, (Ci_ 4 )alkoxy, trifluoromethyl, and halogen; and R 1 represents aryl or heterocyclyl, wherein the aryl or heterocyclyl is independently unsubstituted or mono-, di-, or tri-substituted wherein the substituents are independently selected from the group consisting of (Ci_ 4 )alkyl, (d_ 4 )alkoxy, halogen, cyano, trifluoromethyl and -NH-CO-(C 1-4 )alkyl; or R 1 represents a 2,3-dihydro-benzofuranyl-, a benzo[l,3]dioxolyl-, a 2,3-dihydro- benzo[l,4]di
- a second embodiment of the invention relates to compounds of formula (I) according to embodiment i), wherein Y represents (CH 2 )D, wherein n represents 0 or 1 ;
- B represents phenyl, wherein the phenyl ring is unsubstituted or mono-, di- or tri- substituted, wherein the substituents are independently selected from the group consisting of (Ci_ 4 )alkyl, (Ci_ 4 )alkoxy, trifluoromethyl, and halogen; and
- R 1 represents aryl or heterocyclyl, wherein the aryl or heterocyclyl is independently unsubstituted or mono-, di-, or tri-substituted wherein the substituents are independently selected from the group consisting of (Ci_ 4 )alkyl, (Ci_ 4 )alkoxy, halogen, cyano and trifluoromethyl; or R 1 represents a 2,3-dihydro-benzofuranyl-, a benzo[l,3]dioxolyl-, a 2,3-dihydro- benzo[l,4]dioxinyl-, or a 4H-benzo[l,3]dioxinyl group which groups are unsubstituted or mono- or di-substituted wherein the substituents are independently selected from the group consisting of (Ci_ 4 )alkyl, (Ci_ 4 )alkoxy and halogen.
- a dotted line shows the point of attachment of the radical drawn.
- halogen means fluorine, chlorine, or bromine; preferably it means fluorine and chlorine, especially fluorine.
- (Ci_ 4 )alkyl alone or in combination, means a straight-chain or branched- chain alkyl group with 1 to 4 carbon atoms.
- Examples of (Ci_ 4 )alkyl groups are methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec. -butyl and tert.-butyl. Preferred are methyl and ethyl.
- the term "(Ci_ 4 )alkyl” has the above meaning; preferably it means methyl and ethyl, especially methyl.
- (Ci_4)alkoxy means a group of the formula (Ci_4)alkyl-O- in which the term "(Ci_4)alkyl” has the previously given significance, such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec.-butoxy and tert.-butoxy. Preferred are methoxy and ethoxy, especially methoxy.
- a -NH-CO-(C i_ 4 )alkyl group is -NH-CO-CH 3 .
- aryl alone or in combination, means a phenyl or a naphthyl group. Preferred is a phenyl group.
- the aryl group is unsubstituted or mono-, di-, or tri-substituted wherein the substituents are independently selected from the group consisting of (Ci_ 4 )alkyl, (Ci_ 4 )alkoxy, halogen, cyano, trifluoromethyl and -NH-CO-(C i_ 4 )alkyl.
- the aryl group is unsubstituted or mono-, di-, or tri-substituted wherein the substituents are independently selected from the group consisting of (Ci_ 4 )alkyl, (Ci_ 4 )alkoxy, trifluoromethyl, and halogen.
- R 1 represents "aryl” are phenyl, naphthyl (notably 1 -naphthyl), 2- methylphenyl, 3-methylphenyl, 4-methylphenyl, 2,3-dimethylphenyl, 2,4- dimethylphenyl, 3,4-dimethylphenyl, 3,5-dimethylphenyl, 4-methyl-3- trifluoromethylphenyl, 2-methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 2,5- dimethoxyphenyl, 3,4-dimethoxyphenyl, 3,5-dimethoxyphenyl, 2-fluorophenyl, 3- fluorophenyl, 4-fluorophenyl, 3,4-difluorophenyl, 3-fluoro-2-methylphenyl, 2- chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-dichlorophenyl, 3,4-dichlorophenyl, 3-chlor
- R 1 represents "aryl” are phenyl, naphthyl (notably 1 -naphthyl), 3- methylphenyl, 2,3-dimethylphenyl, 4-methyl-3-trifluoromethylphenyl, 3- methoxyphenyl, 2,5-dimethoxyphenyl, 3,4-dimethoxyphenyl, 3,5-dimethoxyphenyl, 3- fluoro-2-methylphenyl, 3-chlorophenyl, 3,4-dichlorophenyl, 3 -chloro-2 -methylphenyl, 2-chloro-3 -methylphenyl, 2-chloro-3 -fluorophenyl, 3-bromophenyl, 2-bromo-3- methylphenyl, and 3-trifluoromethylphenyl. Most preferred are 3-methylphenyl, 3- chlorophenyl and 3-bromophenyl.
- B represents "phenyl, wherein the phenyl ring is unsubstituted or mono-, di- or tri-substituted, wherein the substituents are independently selected from the group consisting of (Ci_ 4 )alkyl, (Ci_ 4 )alkoxy, trifluoromethyl, and halogen" are: phenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2,3-dimethylphenyl, 2,4- dimethylphenyl, 3,4-dimethylphenyl, 3,5-dimethylphenyl, 2-methoxyphenyl, 3- methoxyphenyl, 4-methoxyphenyl, 2-fluorophenyl, 3 -fluorophenyl, 4-fluorophenyl, 3,4- difluorophenyl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-dichlorophenyl, 3,4-dich
- heterocyclyl means a 5- to 10-membered monocyclic or bicyclic aromatic ring containing for example 1, 2 or 3 heteroatoms independently selected from oxygen, nitrogen and sulfur.
- heterocyclyl groups are furanyl, oxazolyl, isoxazolyl, oxadiazolyl, thienyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, indolyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzothiophenyl, indazolyl, benzimidazolyl, benzoxazolyl, benzisoxazolyl, benzothiazolyl, benzotriazolyl, benzoxadiazolyl
- further examples are benzoisothiazolyl, thienopyrazinyl, furopyrrolyl, and pyrrolo[2,l-b] thiazolyl.
- preferred examples are isoxazolyl, pyrazolyl, pyridyl, indolyl, benzofuranyl, indazolyl, benzisoxazolyl, quinolinyl, isoquinolinyl, imidazo [l,2-a]pyridyl, thienopyrazinyl, furopyrrolyl and (especially) imidazo[2,l-b]thiazolyl.
- indolyl benzofuranyl, indazolyl, benzisoxazolyl, quinolinyl and (especially) imidazo[2,l-b]thiazolyl.
- heterocyclyl groups are unsubstituted or mono-, di-, or tri-substituted wherein the substituents are independently selected from the group consisting of (Ci_4)alkyl, (Ci_4)alkoxy, halogen, cyano, trifluoromethyl and -NH-CO-(Ci_ 4 )alkyl.
- the above-mentioned heterocyclyl groups are unsubstituted, mono-, di-, or tri-substituted wherein the substituents are independently selected from the group consisting of (Ci_ 4 )alkyl, (Ci_ 4 )alkoxy, halogen, and trifluoromethyl.
- the above-mentioned heterocyclyl groups are unsubstituted, mono-, or di-substituted wherein the substituents are independently selected from the group consisting of (Ci_ 4 )alkyl and halogen.
- the above-mentioned groups are unsubstituted or mono-substituted wherein the substituent is selected from (Ci_ 4 )alkyl (especially the substituent is methyl).
- heterocyclyl groups are selected from the group consisting of isoxazol-5-yl, pyrazol-5-yl, pyridin-3-yl, indol-2-yl, indol- 3-yl, indol-4-yl, indol-5-yl, benzofuran-4-yl, indazol-3-yl, benzisoxazol-3-yl, quinoline- 8-yl, isoquinoline-1-yl, imidazo[l,2-a]pyridine-3-yl, imidazo[2,l-b]thiazol-5-yl; imidazo[2,l-b]thiazol-6-yl, thieno[2,3-b]pyrazin-6-yl, and 4H-furo[3,2-b]pyrrol-5-yl (especially imidazo[2,l-b]thiazol-5-yl); wherein the above-mentioned heterocyclyl groups are unsubsti
- heterocyclyl groups as used for the substituent "R 1 " are preferably substituted as follows: isoxazolyl groups are mono-substituted with (Ci_4)alkyl; pyrazolyl groups are di-substituted with (Ci_4)alkyl; pyridyl groups are mono-substituted with (Ci_4)alkyl; indolyl groups are unsubstituted, or independently mono- or di-substituted with (Ci_ 4 )alkyl or halogen (especially unsubstituted, or mono- or di-substituted with methyl); benzofuranyl groups are unsubstituted; indazolyl groups are unsubstituted, or mono-substituted with (Ci_ 4 )alkyl (especially methyl); benzisoxazolyl groups are unsubstituted; quinolinyl groups are unsubstituted; isoquinol
- R 1 is different from “aryl” and "heterocyclyl", it presents a 2,3-dihydro- benzofuranyl-, a benzo[l,3]dioxolyl-, a 2,3-dihydro-benzo[l,4]dioxinyl-, a 4H-benzo[l,3]dioxinyl-, a 2H-chromenyl, a chromanyl-, a 2,3-dihydro-thieno[3,4-b] [l,4]dioxinyl-, a 3,4-dihydro-2H-benzo[l,4]oxazinyl-, or an indenyl group.
- the above- mentioned groups as used for the substituent R 1 are unsubstituted or mono- or di- substituted wherein the substituents are independently selected from the group consisting of (Ci_4)alkyl, (Ci_4)alkoxy and halogen.
- the above-mentioned groups are unsubstituted or mono-substituted with (Ci_ 4 )alkyl.
- R 1 is different from “aryl” and "heterocyclyl”
- the above mentioned groups as used for the substituent "R 1 " carry attachment points to the rest of the molecule, and are preferably substituted as follows: 2,3-dihydro-benzofuranyl- groups (especially 2,3-dihydro-benzofuran-4-yl or 2,3-dihydro-benzofuran-7-yl), benzo[l,3]dioxolyl-groups (especially benzo[l,3]dioxol-4-yl), 2,3-dihydro- benzo[ 1 ,4]dioxinyl- (especially 2,3-dihydro-benzo[ 1 ,4]dioxin-5-yl),
- 2H-benzo[l,4]oxazinyl-groups (especially 3,4-dihydro-2H-benzo[l,4]oxazin-5-yl or 3,4-dihydro-2H-benzo[l,4]oxazin-8-yl) are preferably unsubstituted; indenyl-groups (especially l ⁇ -inden-2-yl) are preferably mono-substituted with methyl.
- R 1 is different from "aryl" and "heterocyclyl", it represents
- a further embodiment of the invention comprises compounds of formula (I) according to embodiments i) or ii), which are also compounds of formula (Ia), wherein the indicated stereogenic center is in the (S)-configuration
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to iii), wherein B represents phenyl, wherein the phenyl ring is unsubstituted or mono- or di-substituted, wherein the substituents are independently selected from the group consisting of (Ci_ 4 )alkyl, (Ci_ 4 )alkoxy, trifluoromethyl, and halogen.
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to iv), wherein B represents phenyl, wherein the phenyl ring is unsubstituted or mono-substituted, wherein the substituent is selected from the group consisting of methyl, chloro, fluoro, and trifluoromethyl.
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to v), wherein n represents 0.
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to v), wherein n represents 1.
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to vii), wherein
- R 1 represents phenyl, which is mono- (preferred) or di-substituted; wherein preferably one substituent is in position 3 and, if present, the other substituent in position 4; wherein the substituents are independently selected from methoxy, chloro, bromo and methyl (especially from chloro, bromo and methyl); or R 1 represents heterocyclyl, wherein the heterocyclyl is selected from the group consisting of indolyl, benzofuranyl, indazolyl, benzisoxazolyl, quinolinyl and (especially) imidazo[2,l-b]thiazolyl, wherein said heterocyclyl is unsubstituted or mono-substituted wherein the substituent is selected from (Ci_ 4 )alkyl; or R 1 represents a 2,3-dihydro-benzofuranyl-, or a 2,3-dihydro-benzo[l,4]dioxinyl- group, which groups are unsub
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to ix), wherein R 1 represents one of the following groups:
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to x), wherein R 1 represents
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to x), wherein R 1 represents
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to viii), wherein R 1 represents
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to x), wherein R 1 represents
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to ix), wherein R 1 represents
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to ix), wherein R 1 represents
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to x), wherein R 1 represents
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to viii), wherein R 1 represents
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to vii), wherein R 1 represents
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to x), wherein R 1 represents
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to x), wherein R 1 represents
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to x), wherein R 1 represents
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to viii), wherein R 1 represents phenyl which is mono-substituted (especially in position 3) wherein the substituent is selected from methoxy, chloro, bromo and methyl (especially chloro, bromo and methyl).
- R 1 represents phenyl which is mono-substituted (especially in position 3) wherein the substituent is selected from methoxy, chloro, bromo and methyl (especially chloro, bromo and methyl).
- R 1 represents 3-chloro-phenyl.
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to viii), wherein R 1 represents 3-bromo-phenyl.
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to viii), wherein R 1 represents 3-methyl-phenyl.
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to viii), wherein R 1 represents heterocyclyl, wherein the heterocyclyl is selected from the group consisting of indolyl, benzofuranyl, indazolyl, benzisoxazolyl, quinolinyl and (especially) imidazo[2,l-b]thiazolyl, wherein said heterocyclyl is unsubstituted or mono-substituted wherein the substituent is selected from (Ci_ 4 )alkyl; or R 1 represents a 2,3-dihydro-benzofuranyl-, or a 2,3-dihydro-benzo[l,4]dioxinyl- group, which groups are unsubstituted.
- R 1 represents heterocyclyl, wherein the heterocyclyl is selected from the group consisting of indolyl, benzofuranyl, indazolyl, benzisoxazolyl, quinolinyl and (especially) imidazo[2,l-b]thiazolyl, wherein said heterocyclyl is unsubstituted or mono-substituted wherein the substituent is selected from (Ci_ 4 )alkyl.
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to viii), wherein
- R 1 represents a 2,3-dihydro-benzofuranyl-, or a 2,3-dihydro-benzo[l,4]dioxinyl-group, which groups are unsubstituted.
- a further embodiment of the invention comprises compounds of formula (I) according to any one of embodiments i) to iii), wherein at least one, preferably all of the following characteristics are present:
- Y represents (CH 2 )D, wherein n represents 0 or 1 ;
- B represents phenyl, wherein the phenyl ring is mono-substituted with (Ci_ 4 )alkyl (such as especially methyl), trifluoromethyl, or halogen (such as especially fluoro or chloro); and
- R 1 represents phenyl which is mono-substituted with (Ci_ 4 )alkyl (such as especially methyl) or halogen (such as especially chloro or bromo); or unsubstituted naphthyl (such as especially 1 -naphthyl); or R 1 is selected from the following groups:
- the compounds of formula (I) may contain one or more stereogenic or asymmetric centers, such as one or more asymmetric carbon atoms.
- the compounds of formula (I) may thus be present as mixtures of stereoisomers or preferably as pure stereoisomers. Mixtures of stereoisomers may be separated in a manner known to a person skilled in the art.
- xxxi) Examples of compounds of formula (I) according to embodiment i) are selected from the group consisting of: (S)-4-Methyl-4H-furo[3,2-b]pyrrole-5-carboxylic acid ⁇ l-[2-cyclopropyl-5-(2-fluoro- phenyl)-thiazole-4-carbonyl]-piperidin-2-ylmethyl ⁇ -amide;
- any reference to a compound of formula (I) and/or (Ia) is to be understood as referring also to salts (especially pharmaceutically acceptable salts) of a compound of formula (I) and/or (Ia), respectively, as appropriate and expedient.
- pharmaceutically acceptable salts refers to non-toxic, inorganic or organic acid and/or base addition salts. Reference can be made to "Salt selection for basic drugs", Int. J. Pharm. (1986), 33, 201-217.
- the compounds of formula (I) and/or (Ia) and their pharmaceutically acceptable salts can be used as medicaments, e.g. in the form of pharmaceutical compositions for enteral or parenteral administration.
- the present invention also relates to the use of a compound of formula (I) for the preparation of a pharmaceutical composition for the prevention or treatment of the diseases and disorders mentioned herein.
- the present invention further also relates to pharmaceutical compositions comprising a compound of formula (I), or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- compositions can be effected in a manner which will be familiar to any person skilled in the art (see for example Remington, The Science and Practice of Pharmacy, 21st Edition (2005), Part 5, "Pharmaceutical Manufacturing” [published by Lippincott Williams & Wilkins]) by bringing the described compounds of formula (I) or their pharmaceutically acceptable salts, optionally in combination with other therapeutically valuable substances, into a galenical administration form together with suitable, non-toxic, inert, therapeutically compatible solid or liquid carrier materials and, if desired, usual pharmaceutical adjuvants.
- the compounds according to formula (I) and/or (Ia) may be used for the preparation of a medicament and are suitable for the prevention and/or treatment of diseases or disorders selected from the group consisting of dysthymic disorders including major depression and cyclothymia, affective neurosis, all types of manic depressive disorders, delirium, psychotic disorders, schizophrenia, catatonic schizophrenia, delusional paranoia, adjustment disorders and all clusters of personality disorders; schizoaffective disorders; anxiety disorders including generalized anxiety, obsessive compulsive disorder, posttraumatic stress disorder, panic attacks, all types of phobic anxiety and avoidance; separation anxiety; all psychoactive substance use, abuse, seeking and reinstatement; all types of psychological or physical addictions, dissociative disorders including multiple personality syndromes and psychogenic amnesias; sexual and reproductive dysfunction; psychosexual dysfunction and addiction; tolerance to narcotics or withdrawal from narcotics; increased anaesthetic risk, anaesthetic responsiveness; hypothalamic-adrenal dysfunctions;
- Compounds of formula (I) and/or (Ia) are particularly suitable for use in the treatment of diseases or disorders selected from the group consisting of all types of sleep disorders, of stress-related syndromes, of psychoactive substance use and abuse, of cognitive dysfunctions in the healthy population and in psychiatric and neurologic disorders, of eating or drinking disorders.
- Eating disorders may be defined as comprising metabolic dysfunction; dysregulated appetite control; compulsive obesities; emeto-bulimia or anorexia nervosa.
- Pathologically modified food intake may result from disturbed appetite (attraction or aversion for food); altered energy balance (intake vs. expenditure); disturbed perception of food quality (high fat or carbohydrates, high palatability); disturbed food availability (unrestricted diet or deprivation) or disrupted water balance.
- Drinking disorders include polydipsias in psychiatric disorders and all other types of excessive fluid intake.
- Sleep disorders include all types of parasomnias, insomnias, narcolepsy and other disorders of excessive sleepiness, sleep-related dystonias; restless leg syndrome; sleep apneas; jet- lag syndrome; shift-work syndrome, delayed or advanced sleep phase syndrome or insomnias related to psychiatric disorders.
- Insomnias are defined as comprising sleep disorders associated with aging; intermittent treatment of chronic insomnia; situational transient insomnia (new environment, noise) or short-term insomnia due to stress; grief; pain or illness.
- Insomnia also include stress-related syndromes including post-traumatic stress disorders as well as other types and subtypes of anxiety disorders such as generalized anxiety, obsessive compulsive disorder, panic attacks and all types of phobic anxiety and avoidance; psychoactive substance use, abuse, seeking and reinstatement are defined as all types of psychological or physical addictions and their related tolerance and dependence components.
- Cognitive dysfunctions include deficits in all types of attention, learning and memory functions occurring transiently or chronically in the normal, healthy, young, adult or aging population, and also occurring transiently or chronically in psychiatric, neurologic, cardiovascular and immune disorders.
- compounds of formula (I) and/or (Ia) are particularly suitable for use in the treatment of diseases or disorders selected from the group consisting of sleep disorders that comprises all types of insomnias, narcolepsy and other disorders of excessive sleepiness, sleep-related dystonias, restless leg syndrome, sleep apneas, jet-lag syndrome, shift-work syndrome, delayed or advanced sleep phase syndrome and insomnias related to psychiatric disorders.
- sleep disorders that comprises all types of insomnias, narcolepsy and other disorders of excessive sleepiness, sleep-related dystonias, restless leg syndrome, sleep apneas, jet-lag syndrome, shift-work syndrome, delayed or advanced sleep phase syndrome and insomnias related to psychiatric disorders.
- compounds of formula (I) and/or (Ia) are particularly suitable for use in the treatment of diseases or disorders selected from the group consisting of cognitive dysfunctions that comprise deficits in all types of attention, learning and memory functions occurring transiently or chronically in the normal, healthy, young, adult or aging population, and also occurring transiently or chronically in psychiatric, neurologic, cardiovascular and immune disorders.
- compounds of formula (I) and/or (Ia) are particularly suitable for use in the treatment of diseases or disorders selected from the group consisting of eating disorders that comprise metabolic dysfunction; dysregulated appetite control; compulsive obesities; emeto-bulimia or anorexia nervosa.
- compounds of formula (I) and/or (Ia) are particularly suitable for use in the treatment of diseases or disorders selected from the group consisting of psychoactive substance use and abuse that comprise all types of psychological or physical addictions and their related tolerance and dependence components.
- the present invention also relates to a method for the prevention or treatment of a disease or disorder mentioned herein comprising administering to a subject a pharmaceutically active amount of a compound of formula (I).
- the term "about” placed before a numerical value "X” refers in the current application to an interval extending from X minus 10% of X to X plus 10% of X, and preferably to an interval extending from X minus 5% of X to X plus 5% of X.
- the term “about” placed before a temperature “Y” refers in the current application to an interval extending from the temperature Y minus 1O 0 C to Y plus 1O 0 C, and preferably to an interval extending from Y minus 5 0 C to Y plus 5 0 C.
- a further aspect of the invention is a process for the preparation of compounds of formula (I).
- Compounds according to formula (I) of the present invention can be prepared according to the general sequence of reactions outlined in the schemes below wherein B, Y and R 1 are as defined in the description of formula (I).
- the compounds obtained may also be converted into pharmaceutically acceptable salts thereof in a manner known per se.
- all chemical transformations can be performed according to well-known standard methodologies as described in the literature or as described in the procedures or in the experimental part below.
- Pathway 1 The synthesis of the final compounds starts from N-Boc-protected-2- aminomethylazacycloalkane derivatives 1 (commercially available) which are coupled with carboxylic acid derivatives 2 (either commercially available or prepared as described in I-Chemistry, Section A.1.9.1 to A.1.9.4) under standard peptide coupling reaction conditions in the presence of an activating reagent (e.g. TBTU) and a base (e.g. DIPEA) to give the mono-amide intermediates 3.
- an activating reagent e.g. TBTU
- a base e.g. DIPEA
- Deprotection under standard conditions with a 4M solution of HCl in dioxane results in the amine intermediates 4 as hydrochloride salts.
- the bis-amide final compounds 6 are prepared by a second amide bond formation reaction under comparable conditions as described above by using the carboxylic acid derivatives 5 (prepared as described in Schemes 2 and 3 and in the experimental part, A.1.1
- Pathway 2 The sequence can be inverted by starting from the template 7 (commercially available), Boc-protected at the exocyclic N-atom by first introducing the substituent at the endocyclic N-atom in a standard peptide bond forming reaction with the carboxylic acid derivatives 5 (prepared as described in Schemes 2 and 3 and in I-Chemistry, Section A.1.1 to A.1.5) to give compound 8 which after deprotection to 9 leads in a final amide bond forming step with carboxylic acid derivatives 2 (either commercially available or prepared as described in the experimental part, A.1.9.1 to A.1.9.4) to the final compounds 6.
- Pathway 1 The sequence can be inverted by starting from the template 7 (commercially available), Boc-protected at the exocyclic N-atom by first introducing the substituent at the endocyclic N-atom in a standard peptide bond forming reaction with the carboxylic acid derivatives 5 (prepared as described in Schemes 2 and 3 and in I-Chemistry, Section A.1.1 to
- Scheme 1 Synthesis of compounds of formula (I) wherein A, B, Y and R 1 are as defined above.
- Carboxylic acid derivatives 16, if not commercially available, are for example synthesized according to scheme 2 and scheme 3.
- Scheme 3 Synthesis of thiazole-4-carboxylic acid derivatives, wherein B is as defined above and wherein the cyclopropyl residue is introduced by a iS ⁇ zY/e-reaction.
- the synthetic sequence starts from the ⁇ -oxo-ester derivatives 12 (obtained as described in Scheme 2) by a Hantzsch cyclization step with thiourea 17 to obtain the 2-amino- thiazole intermediates 18 which are transformed into the 2-bromo-thiazole compounds 19 by a classical Sandmeyer reaction.
- cyclopropyl unit is achieved by the Pd-catalyzed iSW//e-coupling with tributyl-cyclopropyl-stannane (prepared from cyclopropyl magnesium bromide and tributyl tin chloride according to well established procedures) to give 2-cyclopropyl-thiazole-derivative 15 which is transformed into the carboxylic acid compound 16 according to the method described in Scheme 2.
- tributyl-cyclopropyl-stannane prepared from cyclopropyl magnesium bromide and tributyl tin chloride according to well established procedures
- Carboxylic acids of formula R ⁇ -COOH are commercially available or well known in the field (Lit. e.g. WO2001/96302; T. Eicher, S. Hauptmann "The chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications", 2nd Edition 2003, Wiley, ISBN 978-3-527-30720-3).
- Carboxylic acid derivatives R ⁇ -COOH which represent an imidazo[2,l-b]thiazole- 2-carboxylic acid derivative are commercially available or can be synthesised according to scheme 4. Pathway A
- Pathway A By reaction of 2-chloro-3-oxo-butyric acid methyl ester (20) with thiourea the amino-thiazole (21) can be obtained. Transformation to ester (22) can be accomplished with bromoacetaldehyde which can be generated in-situ from bromoacetaldehyde diethylacetal under acidic conditions. After saponification with bases such as NaOH the desired acid (23) can be obtained.
- Pathway B By heating a compound of structure (24) with ⁇ /, ⁇ /-dimethylformamide dimethylacetal in a solvent such as toluene formamidine derivatives (25) can be obtained. They can be alkylated with ethyl bromoacetate yielding the respective thiazolium bromide (26) which can be cyclised with strong bases such as DBU to the ester (27). Saponification of the ester function using methods known in the field such as treatment with a base such as NaOH in a solvent such as ethanol/water provides the corresponding imidazo[2,l-b]thiazole-2-carboxylic acid derivatives (28).
- Carboxylic acid derivatives R ⁇ COOH which represent a pyrrolo[2,l- ⁇ ]thiazole- 7-carboxylic acid derivative can be synthesised according to scheme 5.
- 2-methylsulfanylthiazole (29) with trimethylsilylmethyl trifluoromethanesulfonate followed by cyclisation of the resulting thiazolinium salt by reaction with ethyl propiolate in the presence of caesium fluoride, the pyrrolo[2,l- ⁇ jthiazole (30) can be obtained.
- Carboxylic acid derivatives R ⁇ COOH which represent a 3,4-dihydro-2H- benzo[l,4]oxazinyl derivative can be synthesised according to the literature according to schemes 6 and 7.
- ⁇ ydrogenation of methyl 3-nitrosalicylate (42) in presence of a palladium catalyst provides the aniline derivative (43) which can be cyclized with chloroacetyl chloride as described before to the ester (44).
- Reduction of compounds of structure (44) with NaBH 4 in the presence of BF3-diethyl etherate leads to the corresponding 3,4-dihydro- 2H-benzo[l,4]oxazine derivative which can optionally be alkylated and/or saponified as described before to provide the corresponding acids (45) or (46) (Kuroita T. et al, Chemical Pharmaceutical Bulletin 1996, 44, 4, 756-764).
- Carboxylic acid derivatives R ⁇ -COO ⁇ which represent a benzooxazole-4-carboxylic acid derivative can be synthesised according to the literature according to schemes 8 and 9.
- ester (48) By cyclisation of ethyl 2-amino-3-hydroxybenzoate (47) with acetyl chloride in the presence of PPTS and TEA, the ester (48) can be obtained (Goldstein S. W. et al, Journal of Heterocyclic Chemistry, 1990, 27, 335-336). Saponification of the ester function using methods known in the art such as treatment with a base such as NaOH in a solvent such as EtOH / water provides the corresponding 2-methyl-benzooxazole-4- carboxylic acid derivative (49).
- Carboxylic acid derivatives Rl-COOH which represent a benzothiazole-7-carboxylic acid derivative can be synthesised according to the literature according to scheme 10.
- Carboxylic acid derivatives R ⁇ -COOH which represent a benzofuran-4-carboxylic acid derivative can be synthesised according to the literature according to schemes 11 and 12.
- the ester (59) By reaction of methyl 3-hydroxybenzoate (58) with 3-chloro-2-butanone, the ester (59) can be obtained. Cyclisation with sulfuric acid provides the 2,3-dimethyl-benzofurane derivative (60) (Kawase Y. et al, Bulletin of the Chemical Sociaty of Japan, 1967, 40, 5, 1224-1231). Saponification of the ester function using methods known in the art such as treatment with a base such as NaOH in a solvent such as MeOH / water provides the corresponding 2,3-dimethyl-benzofuran-4-carboxylic acid derivative (61).
- Carboxylic acid derivatives R ⁇ -COOH which represent a benzofuran-4-carboxylic acid derivative and R represents Cl, F or CF3 can be synthesised according to the literature or according to scheme 13.
- Carboxylic acid derivatives R ⁇ -COOH which represent a 2-fluorobenzofuran-4- carboxylic acid derivative can be synthesised according to the literature according to scheme 14.
- chroman-5-carboxylic acid derivatives starts with the alkylation of 3- hydroxy-benzoic acid methyl ester (80; commercially available) with propargyl bromide in the presence of K2CO3 to give phenylether (81) which is cyclised to the chromen derivative (82) by heating to reflux in N,N-diethylaniline.
- the carboxylic ester is saponified by treatment of (82) with NaOH in MeOH and water and the obtained chromen derivative (83) is hydrogenated to give the desired acid (84).
- chroman-8-carboxylic acid derivatives are synthesized by reduction of 4- chromanone (85; commercially available) with zinc in acetic acid and subsequent ortho- metalation of the intermediate chroman derivative (86) with n-BuLi and trapping with carbon dioxide to give the desired acid (87).
- R independently is methyl or ethyl, R a is hydrogen or methyl
- the imidazole derivative (88) may be transferred to the acetal (89) by alkylation with a bromoacetaldehyde dialkyl acetal derivative in the presence of a base like sodium ethoxide.
- Cyclization under acidic conditions e.g. aq. hydrochloric acid
- dehydration of the intermediate (90) with for instance phosphorus oxychloride leads to ester (91) which is transformed to the desired acid (92) by saponification with for instance NaOH in solvents like THF and MeOH.
- Pathway B starts with the alkylation of 2-amino-thiazole (93) with 3-bromo-l,l,l- trifluoroacetone to yield the trifluoromethyl-substituted imidazo[2,l-b]thiazole derivative (94) which is formylated to the aldehyde (95) by reaction with POCI3 in a solvent like DMF.
- the desired imidazo[2,l-b]thiazole-carboxylic acid (96) is obtained.
- the commercially available chlorinated aldehyde (95, being substituted with Cl instead of CF3) may be oxidized to the corresponding acid.
- the enantiomers can be separated using methods known to one skilled in the art: e.g. by formation and separation of diastereomeric salts or by HPLC over a chiral stationary phase such as a Regis Whelk-O1(R,R) (10 ⁇ m) column, a Daicel ChiralCel OD-H (5-10 ⁇ m) column, or a Daicel ChiralPak IA (10 ⁇ m) or AD-H (5 ⁇ m) column.
- a chiral stationary phase such as a Regis Whelk-O1(R,R) (10 ⁇ m) column, a Daicel ChiralCel OD-H (5-10 ⁇ m) column, or a Daicel ChiralPak IA (10 ⁇ m) or AD-H (5 ⁇ m) column.
- Typical conditions of chiral HPLC are an isocratic mixture of eluent A (EtOH, in presence or absence of an amine such as TEA, diethylamine) and eluent B (hexane), at a flow rate of 0.8 to 150 mL/min.
- EtOH eluent A
- eluent B hexane
- Compounds are purified by FC, TLC or by preparative HPLC using RP-Cig based columns with MeCN/water gradients and formic acid or ammonia additives.
- 3-Chloro-3-(2-fluoro-phenyl)-2-oxo-propionic acid methyl ester prepared by reaction of 2-fluoro-benzaldehyde with methyl dichloro-acetate.
- 3-Chloro-3-(3-chloro-phenyl)-2-oxo-propionic acid methyl ester prepared by reaction of 3-chloro-benzaldehyde with methyl dichloro-acetate.
- 3-Chloro-2-oxo-3-(3-trifluoromethyl-phenyl)-propionic acid methyl ester prepared by reaction of 3-trifluoromethyl-benzaldehyde with methyl dichloro-acetate.
- 3-Chloro-3-(3-methoxy-phenyl)-2-oxo-propionic acid methyl ester prepared by reaction of 3-methoxy-benzaldehyde with methyl dichloro-acetate.
- 3-Chloro-3-(phenyl)-2-oxo-propionic acid methyl ester prepared by reaction of benzaldehyde with methyl dichloro-acetate.
- Examples 2 to 15 were prepared according to the procedures described above by using the appropriate carboxylic acid in STEP 3.
- Examples 17 to 30 were prepared according to the procedures described above by using the appropriate carboxylic acid in STEP 3.
- STEP 2 (S)-(2-Aminomethyl-piperidin-l-yl)-(2-cyclopropyl-5-p-tolyl-thiazol-4-yl)- methanone hydrochloride
- Examples 32 to 39 were prepared according to the procedures described above by using the appropriate carboxylic acid in STEP 3.
- Examples 41 to 53 were prepared according to the procedures described above by using the appropriate carboxylic acid in STEP 3.
- Examples 55 to 68 were prepared according to the procedures described above by using the appropriate carboxylic acid in STEP 3.
- Examples 70 to 81 were prepared according to the procedures described above by using the appropriate carboxylic acid in STEP 3.
- Examples 83 to 95 were prepared according to the experimental procedure described above in C.1.1 STEP 5 by using the appropriate carboxylic acid.
- 6-Methyl-imidazo[2,l-b]thiazole-5-carboxylic acid (2.0 g, 10.975 mmol) was dissolved in MeCN (35 mL), TBTU (3.52 g, 10.975 mmol) was added followed by the addition of DIPEA (2.82 mL, 16.462 mmol) and a solution of (S)-2-aminomethyl-piperidine-l- carboxylic acid tert-butyl ester (2.35 g, 10.975 mmol) in MeCN (20 mL). Stirring at rt was continued for 20 h. The reaction mixture was concentrated under reduced pressure, again diluted with EtOAc and subsequently washed with a sat.
- Example 114 (S)-N-[l-(2-Cyclopropyl-5-m-tolyl-thiazole-4-carbonyl)-piperidin-2- ylmethyl]-3-fluoro-2-methyl-benzamide:
- Example 124 (SJ-Isoquinoline-l-carboxylic acid [l-(2-cyclopropyl-5-m-tolyl- thiazole-4-carbonyl)-piperidin-2-ylmethyl]-amide:
- Example 134 (S)-Imidazo[l,2-a]pyridine-3-carboxylic acid [l-(2-cyclopropyl-5-m- tolyl-thiazole-4-carbonyl)-piperidin-2-ylmethyl] -amide :
- Chinese hamster ovary (CHO) cells expressing the human orexin- 1 receptor and the human orexin-2 receptor, respectively, are grown in culture medium (Ham F- 12 with L- Glutamine) containing 300 ⁇ g/ml G418, 100 U/ml penicillin, 100 ⁇ g/ml streptomycin and 10 % heat inactivated fetal calf serum (FCS).
- the cells are seeded at 20O00 cells / well into 384-well black clear bottom sterile plates (Greiner). The seeded plates are incubated overnight at 37°C in 5% CO 2 .
- Human orexin- A as an agonist is prepared as 1 mM stock solution in MeOH: water (1 :1), diluted in HBSS containing 0.1 % bovine serum albumin (BSA), NaHCO 3 : 0.375g/l and 20 mM HEPES for use in the assay at a final concentration of 3 nM.
- BSA bovine serum albumin
- NaHCO 3 0.375g/l
- 20 mM HEPES for use in the assay at a final concentration of 3 nM.
- Antagonists are prepared as 10 mM stock solution in DMSO, then diluted in 384-well plates using DMSO followed by a transfer of the dilutions into in HBSS containing 0.1 % bovine serum albumin (BSA), NaHCO 3 : 0.375g/l and 20 mM HEPES.
- BSA bovine serum albumin
- 50 ⁇ l of staining buffer HBSS containing 1% FCS, 20 mM HEPES, NaHCO 3 : 0.375g/l, 5 mM probenecid (Sigma) and 3 ⁇ M of the fluorescent calcium indicator fluo-4 AM (1 mM stock solution in DMSO, containing 10% pluronic) is added to each well.
- the 384-well cell-plates are incubated for 50 min at 37° C in 5% CO 2 followed by equilibration at rt for 30 - 120 min before measurement.
- the IC 50 value (the concentration of compound needed to inhibit 50 % of the agonistic response) is determined.
- the calculated IC50 values of the compounds may fluctuate depending on the daily cellular assay performance. Fluctuations of this kind are known to those skilled in the art.
- Antagonistic activities (IC 50 values) of compounds of examples 1 to 95 are in the range of 1.5-1208 nM with an average of 76 nM with respect to the OXl receptor and in the range of 1.4-1367 nM with an average of 53 nM with respect to the OX2 receptor.
- Antagonistic activities (IC 50 values) of compounds of examples 96 to 145 are in the range of 3.6-820 nM with an average of 103 nM with respect to the OXl receptor and in the range of 4.5-1743 nM with an average of 136 nM with respect to the OX2 receptor. Antagonistic activities of selected compounds are displayed in Table 1.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Pain & Pain Management (AREA)
- Heart & Thoracic Surgery (AREA)
- Psychiatry (AREA)
- Diabetes (AREA)
- Addiction (AREA)
- Urology & Nephrology (AREA)
- Endocrinology (AREA)
- Physical Education & Sports Medicine (AREA)
- Reproductive Health (AREA)
- Pulmonology (AREA)
- Hospice & Palliative Care (AREA)
- Hematology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Rheumatology (AREA)
- Gynecology & Obstetrics (AREA)
- Dermatology (AREA)
- Obesity (AREA)
- Psychology (AREA)
- Emergency Medicine (AREA)
- Ophthalmology & Optometry (AREA)
- Immunology (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT08738121T ATE483707T1 (en) | 2007-05-14 | 2008-05-13 | 2-CYCLOPROPYLTHIAZOLE DERIVATIVES |
DE602008002934T DE602008002934D1 (en) | 2007-05-14 | 2008-05-13 | 2-CYCLOPROPYLTHIAZOLDERIVATE |
EP08738121A EP2155739B1 (en) | 2007-05-14 | 2008-05-13 | 2-cyclopropyl-thiazole derivatives |
US12/600,160 US20100222328A1 (en) | 2007-05-14 | 2008-05-13 | 2-cyclopropyl-thiazole derivatives |
CN200880015587A CN101711247A (en) | 2007-05-14 | 2008-05-13 | 2-cyclopropyl-thiazole derivatives |
CA002685743A CA2685743A1 (en) | 2007-05-14 | 2008-05-13 | 2-cyclopropyl-thiazole derivatives |
JP2010508018A JP2010526869A (en) | 2007-05-14 | 2008-05-13 | 2-cyclopropyl-thiazole derivatives |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IBPCT/IB2007/051808 | 2007-05-14 | ||
IB2007051808 | 2007-05-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008139416A1 true WO2008139416A1 (en) | 2008-11-20 |
Family
ID=39673407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2008/051883 WO2008139416A1 (en) | 2007-05-14 | 2008-05-13 | 2-cyclopropyl-thiazole derivatives |
Country Status (9)
Country | Link |
---|---|
US (1) | US20100222328A1 (en) |
EP (1) | EP2155739B1 (en) |
JP (1) | JP2010526869A (en) |
CN (1) | CN101711247A (en) |
AT (1) | ATE483707T1 (en) |
CA (1) | CA2685743A1 (en) |
DE (1) | DE602008002934D1 (en) |
ES (1) | ES2351079T3 (en) |
WO (1) | WO2008139416A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2275421A1 (en) * | 2009-07-15 | 2011-01-19 | Rottapharm S.p.A. | Spiro amino compounds suitable for the treatment of inter alia sleep disorders and drug addiction |
WO2013182972A1 (en) | 2012-06-04 | 2013-12-12 | Actelion Pharmaceuticals Ltd | Benzimidazole-proline derivatives |
WO2014057435A1 (en) | 2012-10-10 | 2014-04-17 | Actelion Pharmaceuticals Ltd | Orexin receptor antagonists which are [ortho bi (hetero )aryl]-[2-(meta bi (hetero )aryl)-pyrrolidin-1-yl]-methanone derivatives |
WO2014141065A1 (en) | 2013-03-12 | 2014-09-18 | Actelion Pharmaceuticals Ltd | Azetidine amide derivatives as orexin receptor antagonists |
WO2015083094A1 (en) | 2013-12-04 | 2015-06-11 | Actelion Pharmaceuticals Ltd | Use of benzimidazole-proline derivatives |
WO2015083071A1 (en) | 2013-12-03 | 2015-06-11 | Actelion Pharmaceuticals Ltd | Crystalline salt form of (s)-(2-(6-chloro-7-methyl-1 h-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1 -yl)(5-methoxy-2-(2h-1,2,3-triazol-2-yl)phenyl)methanone as orexin receptor antagonist |
WO2015083070A1 (en) | 2013-12-03 | 2015-06-11 | Actelion Pharmaceuticals Ltd | Crystalline form of (s)-(2-(6-chloro-7-methyl-1h-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1 -yl)(5-methoxy-2-(2h-1,2,3-triazol-2-yl)phenyl)methanone and its use as orexin receptor antagonists |
US9174977B2 (en) | 2012-03-19 | 2015-11-03 | Rottapharm Biotech S.R.L. | 2-azabicyclo[4.1.0]heptane derivatives as orexin receptor antagonists for the treatment of certain disorders |
US9440982B2 (en) | 2012-02-07 | 2016-09-13 | Eolas Therapeutics, Inc. | Substituted prolines/piperidines as orexin receptor antagonists |
US9499517B2 (en) | 2012-02-07 | 2016-11-22 | Eolas Therapeutics, Inc. | Substituted prolines / piperidines as orexin receptor antagonists |
WO2018202689A1 (en) | 2017-05-03 | 2018-11-08 | Idorsia Pharmaceuticals Ltd | Preparation of 2-([1,2,3]triazol-2-yl)-benzoic acid derivatives |
US10221170B2 (en) | 2014-08-13 | 2019-03-05 | Eolas Therapeutics, Inc. | Difluoropyrrolidines as orexin receptor modulators |
US10227336B2 (en) | 2014-10-30 | 2019-03-12 | Merck Sharp & Dohme Corp | Pyrazole orexin receptor antagonists |
WO2020007964A1 (en) | 2018-07-05 | 2020-01-09 | Idorsia Pharmaceuticals Ltd | 2-(2-azabicyclo[3.1.0]hexan-1-yl)-1h-benzimidazole derivatives |
WO2020007977A1 (en) | 2018-07-06 | 2020-01-09 | Idorsia Pharmaceuticals Ltd | 7-trifluoromethyl-[1,4]diazepan derivatives |
WO2020099511A1 (en) | 2018-11-14 | 2020-05-22 | Idorsia Pharmaceuticals Ltd | Benzimidazole-2-methyl-morpholine derivatives |
US10894789B2 (en) | 2016-02-12 | 2021-01-19 | Astrazeneca Ab | Halo-substituted piperidines as orexin receptor modulators |
WO2023218023A1 (en) | 2022-05-13 | 2023-11-16 | Idorsia Pharmaceuticals Ltd | Thiazoloaryl-methyl substituted cyclic hydrazine-n-carboxamide derivatives |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE481383T1 (en) * | 2006-09-29 | 2010-10-15 | Actelion Pharmaceuticals Ltd | 3-AZA-BICYCLOÄ3.1.0ÜHEXANE DERIVATIVES |
DE602007012142D1 (en) | 2006-12-01 | 2011-03-03 | Actelion Pharmaceuticals Ltd | 3-heteroaryl (amino bzw. amido)-1- (biphenyl bzw. phenylthiazolyl) carbonylpiperdinderivate als orexinrezeptor-inhibitoren |
CL2007003827A1 (en) * | 2006-12-28 | 2008-09-26 | Actelion Pharmaceuticals Ltd | COMPOUNDS DERIVED FROM N- (2-AZA-BICYCLE (3.1.0) HEX-3-ILMETIL) AMIDA; AND ITS USE TO PREVENT OR TREAT DEPRESSION, NEUROSIS, SCHIZOPHRENIA, ANXIETY, ADDICTIONS, EPILEPSY, PAIN, HEART DISEASES, AMONG OTHERS. |
CL2008000836A1 (en) * | 2007-03-26 | 2008-11-07 | Actelion Pharmaceuticals Ltd | Thiazolidine derivative compounds, orexin receptor antagonists; pharmaceutical composition that includes them; and its use in the treatment of emotional neurosis, severe depression, psychotic disorders, Alzheimer's, parkinson's, pain, among others. |
US8288429B2 (en) * | 2007-07-27 | 2012-10-16 | Actelion Pharmaceuticals Ltd. | 2-aza-bicyclo[3.3.0]octane derivatives |
WO2009040730A2 (en) * | 2007-09-24 | 2009-04-02 | Actelion Pharmaceuticals Ltd | Pyrrolidines and piperidines as orexin receptor antagonists |
MX2010008993A (en) * | 2008-02-21 | 2010-09-07 | Actelion Pharmaceuticals Ltd | 2-aza-bicyclo[2.2.1]heptane derivatives. |
WO2009133522A1 (en) * | 2008-04-30 | 2009-11-05 | Actelion Pharmaceuticals Ltd | Piperidine and pyrrolidine compounds |
KR20110071004A (en) * | 2008-10-14 | 2011-06-27 | 액테리온 파마슈티칼 리미티드 | Phenethylamide derivatives and their heterocyclic analogues |
CN106588900A (en) * | 2015-10-20 | 2017-04-26 | 北京康辰医药科技有限公司 | Benzo-bicyclic compound or its pharmaceutically acceptable salt, pharmaceutical composition and their application |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001096302A1 (en) * | 2000-06-16 | 2001-12-20 | Smithkline Beecham P.L.C. | Piperidines for use as orexin receptor antagonists |
WO2003051368A1 (en) * | 2001-12-19 | 2003-06-26 | Smithkline Beecham Plc | N-aroyl cyclic amine derivatives as orexin receptor antagonists |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1871752A4 (en) * | 2005-04-12 | 2009-09-30 | Merck & Co Inc | Amidopropoxyphenyl orexin receptor antagonists |
-
2008
- 2008-05-13 DE DE602008002934T patent/DE602008002934D1/en active Active
- 2008-05-13 EP EP08738121A patent/EP2155739B1/en not_active Not-in-force
- 2008-05-13 AT AT08738121T patent/ATE483707T1/en not_active IP Right Cessation
- 2008-05-13 US US12/600,160 patent/US20100222328A1/en not_active Abandoned
- 2008-05-13 ES ES08738121T patent/ES2351079T3/en active Active
- 2008-05-13 CA CA002685743A patent/CA2685743A1/en not_active Abandoned
- 2008-05-13 WO PCT/IB2008/051883 patent/WO2008139416A1/en active Application Filing
- 2008-05-13 CN CN200880015587A patent/CN101711247A/en active Pending
- 2008-05-13 JP JP2010508018A patent/JP2010526869A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001096302A1 (en) * | 2000-06-16 | 2001-12-20 | Smithkline Beecham P.L.C. | Piperidines for use as orexin receptor antagonists |
WO2003051368A1 (en) * | 2001-12-19 | 2003-06-26 | Smithkline Beecham Plc | N-aroyl cyclic amine derivatives as orexin receptor antagonists |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011006960A1 (en) * | 2009-07-15 | 2011-01-20 | Rottapharm S.P.A. | Spiro amino compounds suitable for the treatment of inter alia sleep disorders and drug addiction |
CN102471314A (en) * | 2009-07-15 | 2012-05-23 | 罗达制药股份公司 | Spiro amino compounds suitable for the treatment of inter alia sleep disorders and drug addiction |
KR101736424B1 (en) | 2009-07-15 | 2017-05-29 | 로타팜 바이오테크 에스.알.엘 | Spiro amino compounds suitable for the treatment of inter alia sleep disorders and drug addiction |
US8859608B2 (en) | 2009-07-15 | 2014-10-14 | Rottapharm Biotech S.R.L. | Spiro amino compounds suitable for the treatment of inter alia sleep disorders and drug addiction |
EP2275421A1 (en) * | 2009-07-15 | 2011-01-19 | Rottapharm S.p.A. | Spiro amino compounds suitable for the treatment of inter alia sleep disorders and drug addiction |
US9896452B2 (en) | 2012-02-07 | 2018-02-20 | Eolas Therapeutics, Inc. | Substituted prolines/piperidines as orexin receptor antagonists |
US9499517B2 (en) | 2012-02-07 | 2016-11-22 | Eolas Therapeutics, Inc. | Substituted prolines / piperidines as orexin receptor antagonists |
US9440982B2 (en) | 2012-02-07 | 2016-09-13 | Eolas Therapeutics, Inc. | Substituted prolines/piperidines as orexin receptor antagonists |
US9174977B2 (en) | 2012-03-19 | 2015-11-03 | Rottapharm Biotech S.R.L. | 2-azabicyclo[4.1.0]heptane derivatives as orexin receptor antagonists for the treatment of certain disorders |
WO2013182972A1 (en) | 2012-06-04 | 2013-12-12 | Actelion Pharmaceuticals Ltd | Benzimidazole-proline derivatives |
US10329287B2 (en) | 2012-06-04 | 2019-06-25 | Idorsia Pharmaceuticals Ltd | Benzimidazole-proline derivatives |
US11040966B2 (en) | 2012-06-04 | 2021-06-22 | Idorsia Pharmaceuticals Ltd | Benzimidazole-proline derivatives |
US9732075B2 (en) | 2012-06-04 | 2017-08-15 | Idorsia Pharmaceuticals Ltd | Benzimidazole-proline derivatives |
WO2014057435A1 (en) | 2012-10-10 | 2014-04-17 | Actelion Pharmaceuticals Ltd | Orexin receptor antagonists which are [ortho bi (hetero )aryl]-[2-(meta bi (hetero )aryl)-pyrrolidin-1-yl]-methanone derivatives |
WO2014141065A1 (en) | 2013-03-12 | 2014-09-18 | Actelion Pharmaceuticals Ltd | Azetidine amide derivatives as orexin receptor antagonists |
WO2015083071A1 (en) | 2013-12-03 | 2015-06-11 | Actelion Pharmaceuticals Ltd | Crystalline salt form of (s)-(2-(6-chloro-7-methyl-1 h-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1 -yl)(5-methoxy-2-(2h-1,2,3-triazol-2-yl)phenyl)methanone as orexin receptor antagonist |
US9914720B2 (en) | 2013-12-03 | 2018-03-13 | Idorsia Pharmaceuticals Ltd | Crystalline form of (S)-(2-(6-chloro-7-methyl-1H-benzo[D]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone and its use as orexin receptor antagonists |
US10023560B2 (en) | 2013-12-03 | 2018-07-17 | Idorsia Pharmaceuticals Ltd | Crystalline salt form of (S)-(2-(6 chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone as orexin receptor antagonist |
US9790208B2 (en) | 2013-12-03 | 2017-10-17 | Idorsia Pharmaceuticals Ltd | Crystalline salt form of (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone as orexin receptor antagonist |
WO2015083070A1 (en) | 2013-12-03 | 2015-06-11 | Actelion Pharmaceuticals Ltd | Crystalline form of (s)-(2-(6-chloro-7-methyl-1h-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1 -yl)(5-methoxy-2-(2h-1,2,3-triazol-2-yl)phenyl)methanone and its use as orexin receptor antagonists |
US9914721B2 (en) | 2013-12-04 | 2018-03-13 | Idorsia Pharmaceuticals Ltd | Use of benzimidazole-proline derivatives |
WO2015083094A1 (en) | 2013-12-04 | 2015-06-11 | Actelion Pharmaceuticals Ltd | Use of benzimidazole-proline derivatives |
US10221170B2 (en) | 2014-08-13 | 2019-03-05 | Eolas Therapeutics, Inc. | Difluoropyrrolidines as orexin receptor modulators |
US10227336B2 (en) | 2014-10-30 | 2019-03-12 | Merck Sharp & Dohme Corp | Pyrazole orexin receptor antagonists |
US10894789B2 (en) | 2016-02-12 | 2021-01-19 | Astrazeneca Ab | Halo-substituted piperidines as orexin receptor modulators |
US12084437B2 (en) | 2016-02-12 | 2024-09-10 | Astrazeneca Ab | Halo-substituted piperidines as orexin receptor modulators |
US11434236B2 (en) | 2016-02-12 | 2022-09-06 | Astrazeneca Ab | Halo-substituted piperidines as orexin receptor modulators |
WO2018202689A1 (en) | 2017-05-03 | 2018-11-08 | Idorsia Pharmaceuticals Ltd | Preparation of 2-([1,2,3]triazol-2-yl)-benzoic acid derivatives |
US11124488B2 (en) | 2017-05-03 | 2021-09-21 | Idorsia Pharmaceuticals Ltd | Preparation of 2-([1,2,3]triazol-2-yl)-benzoic acid derivatives |
WO2020007964A1 (en) | 2018-07-05 | 2020-01-09 | Idorsia Pharmaceuticals Ltd | 2-(2-azabicyclo[3.1.0]hexan-1-yl)-1h-benzimidazole derivatives |
WO2020007977A1 (en) | 2018-07-06 | 2020-01-09 | Idorsia Pharmaceuticals Ltd | 7-trifluoromethyl-[1,4]diazepan derivatives |
WO2020099511A1 (en) | 2018-11-14 | 2020-05-22 | Idorsia Pharmaceuticals Ltd | Benzimidazole-2-methyl-morpholine derivatives |
WO2023218023A1 (en) | 2022-05-13 | 2023-11-16 | Idorsia Pharmaceuticals Ltd | Thiazoloaryl-methyl substituted cyclic hydrazine-n-carboxamide derivatives |
Also Published As
Publication number | Publication date |
---|---|
DE602008002934D1 (en) | 2010-11-18 |
ATE483707T1 (en) | 2010-10-15 |
CA2685743A1 (en) | 2008-11-20 |
CN101711247A (en) | 2010-05-19 |
EP2155739B1 (en) | 2010-10-06 |
EP2155739A1 (en) | 2010-02-24 |
JP2010526869A (en) | 2010-08-05 |
ES2351079T3 (en) | 2011-01-31 |
US20100222328A1 (en) | 2010-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2155739B1 (en) | 2-cyclopropyl-thiazole derivatives | |
EP2185512B1 (en) | Trans-3-aza-bicyclo[3.1.0]hexane derivatives | |
EP2318367B1 (en) | Piperidine and pyrrolidine compounds | |
EP2164847B1 (en) | 3-aza-bicyclo[3.3.0]octane compounds | |
EP2247586B1 (en) | 2-aza-bicyclo[2.2.1]heptane derivatives | |
EP2069332B1 (en) | Azetidine compounds as orexin receptor antagonists | |
US8236964B2 (en) | Thiazolidine derivatives as orexin receptor antagonists | |
US8063099B2 (en) | Trans-3-aza-bicyclo[3.1.0]hexane derivatives | |
WO2008038251A2 (en) | 3-aza-bicyclo[3.1.0]hexane derivatives | |
CA2669821A1 (en) | 2-aza-bicyclo[3.1.0]hexane derivatives | |
CA2669060A1 (en) | Piperidine compounds | |
EP2207778A2 (en) | Pyrrolidines and piperidines as orexin receptor antagonists | |
WO2008087611A2 (en) | Pyrrolidine- and piperidine- bis-amide derivatives | |
WO2010038200A1 (en) | Oxazolidine compounds as orexin receptor antagonists |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880015587.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08738121 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008738121 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2685743 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010508018 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12600160 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |