WO2008122205A1 - Procédé pour accélérer des ions au moyen d'un laser et appareil pour générer des ions - Google Patents

Procédé pour accélérer des ions au moyen d'un laser et appareil pour générer des ions Download PDF

Info

Publication number
WO2008122205A1
WO2008122205A1 PCT/CN2008/000685 CN2008000685W WO2008122205A1 WO 2008122205 A1 WO2008122205 A1 WO 2008122205A1 CN 2008000685 W CN2008000685 W CN 2008000685W WO 2008122205 A1 WO2008122205 A1 WO 2008122205A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
accelerated
layer target
ion
target
Prior art date
Application number
PCT/CN2008/000685
Other languages
English (en)
French (fr)
Inventor
Xueqing Yan
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Publication of WO2008122205A1 publication Critical patent/WO2008122205A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/24Ion sources; Ion guns using photo-ionisation, e.g. using laser beam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H15/00Methods or devices for acceleration of charged particles not otherwise provided for, e.g. wakefield accelerators

Definitions

  • the present invention relates to the field of ion acceleration technology, and more particularly to a method for achieving ion acceleration using a laser and an ion generating device. Background technique
  • the organic adhesion layer of the element, the electrons emitted from the metal target can accelerate the hydrogen ions or other lighter elements in the second layer, wherein the energy of the laser will be mainly used for electron heating, and the resulting accelerated electric field strength is limited.
  • the ion energy thus obtained is limited, and the beam quality is poor.
  • the power level and technology of the existing super-strong laser the ion energy obtained by the acceleration is low, the beam energy is dispersed, and the beam flux is low. Summary of the invention
  • An object of the present invention is to provide a method of laser-accelerating ions and an ion generating apparatus, thereby reducing beam energy dispersion and improving the quality of the ion beam.
  • a method of laser accelerating ions comprising: bombarding a single layer target with a circularly polarized laser, the single layer target being a film containing ions to be accelerated.
  • the light intensity/range of the laser may be 10 18 ⁇ 10" w/cm 2 (corresponding to the normalized intensity vector)
  • the ions to be accelerated may be hydrogen elements, including strontium and strontium isotopes, and the single layer target may be an organic film containing hydrogen elements.
  • the ion to be accelerated may be a carbon element, and the single layer target may be a carbon film.
  • the ion to be accelerated may be a metal element, and the single layer target may be a metal film corresponding to the ion to be accelerated.
  • the present invention provides an ion generating apparatus.
  • the apparatus includes means for generating a circularly polarized laser; a single layer target that accelerates ions by bombarding the single layer target by a circularly polarized laser, thereby generating ions.
  • the single layer target is a film containing ions to be accelerated.
  • the invention adopts a circularly polarized laser, and the electron can effectively transfer the laser energy to the ions in the crucible or the gas, avoiding the laser energy being mainly converted into the thermal energy of the electron, but transmitting the energy to the ion more efficiently.
  • a circularly polarized laser strikes a single-layer target, the electrons in the target are pushed by the light pressure and compressed into a thin layer, at which point the electric field generated by the charge separation pulls and accelerates the ions in the target.
  • ions can be accelerated and bunched at the same time, resulting in very low energy dispersion.
  • the invention can utilize the kinetic optimization method in the radio frequency linear accelerator, which can greatly improve the acceleration gradient and the effective acceleration length of the ion, and at the same time, the obtained beam quality can be compared with the conventional RF accelerator. This will greatly reduce the cost and operation and maintenance costs of the ion acceleration equipment.
  • the laser directly interacts with the single-layer target, and when the laser normalized intensity vector is equal to the normalized thickness of the single-layer target, the acceleration can be effectively improved. Energy and reduced beam energy dissipation.
  • Figure 1 The electric field generated by the circular polar izat ion and the l inear polar izat ion in the plasma;
  • Fig. 2 The diagram on the left side of Fig. 2 is a schematic diagram of a prior art double layer target; the diagram on the right side of Fig. 2 is a schematic diagram of a single layer target; wherein, 1 is a heavy metal target, and 2 is a single layer target containing an element to be accelerated;
  • the apparatus includes means for generating a circularly polarized laser; a single layer target that accelerates ions by bombarding the single layer target by a circularly polarized laser, thereby generating ions.
  • the single layer target is a film containing ions to be accelerated.
  • a single layer target can be formed by removing a heavy metal target of a prior art bilayer target.
  • a single-layer target is a film containing an element to be accelerated, and electrons in the single-layer target can confine ions in the target while efficiently transmitting laser light pressure.
  • the ions are supplied to produce a low energy dispersion and a high quality high energy ion beam.
  • the target thickness is less than 10 microns as long as the film target containing hydrogen is used.
  • a method of laser-accelerating ions according to the present invention is described in detail below.
  • the method includes the steps of: bombarding a single layer target with a circularly polarized laser.
  • the single layer target is a film containing ions to be accelerated.
  • Example 1 of the present invention is a diagrammatic representation of Example 1 of the present invention.
  • the protons can be accelerated above 300 MeV and the beam energy dispersion is less than 10%. If the film thickness is between 0.01 and 2 micrometers, a proton beam current which is more dissipative than the above can be obtained. As shown in Figure 3.
  • the solid target is a metallic copper film, and the plasma density is taken as n. /n r 3 ⁇ 4 100, thickness 0.05 microns.
  • the optimal beam energy dispersion (less than 10%) can be obtained, and the copper ion with one charge can be accelerated to 133 MeV. As shown in Figure 4.
  • the thickness of the film is between 0.01 and 1 micron, a copper ion beam having a dispersive energy larger than that in the above case can be obtained. If the thickness is outside this range, the ions can also be accelerated, but the beam energy and beam quality will be reduced.
  • Embodiment 3 of the present invention is a diagrammatic representation of Embodiment 3 of the present invention.
  • the solid target is a carbon film (for example, a diamond film or graphite), and the plasma density is taken as n. /n r 300, when the carbon film thickness is 0.3 ⁇ m.
  • the optimal beam energy dispersion (less than 10%) can be obtained, and the six-charged carbon ions (C6+) are accelerated to 200 MeV per core (total energy is 1200 MeV). ).
  • the thickness of the film is between 0.01 and 1 micron, and it is also possible to obtain a beam of C6 + particles which can disperse the energy larger than the above. If the thickness is outside this range, the ions can also be accelerated, but the beam energy and beam quality will be reduced.
  • Embodiment 4 of the present invention is a diagrammatic representation of Embodiment 4 of the present invention.
  • the protons can be accelerated above 200 MeV and the beam energy dispersion is less than 10%.
  • the film thickness is between 0.05 and 5 microns, it is also possible to obtain a high-energy proton beam which is dissipatively larger than the above. If the thickness is outside this range, the ions can also be accelerated, but the beam energy and beam quality will be reduced.
  • Embodiment 5 of the present invention :
  • Single-layer target uses high-density hydrogen-containing elements
  • the proton can be accelerated to above 100 MeV, and the beam energy dispersion is less than 10%. If the target thickness is between 0.1 and 2 microns, a proton beam with a larger energy dispersion than the above can be obtained. If the thickness is outside this range, The sub-generator can also be accelerated, but the beam energy and beam quality will be reduced.
  • Embodiment 6 of the present invention :
  • PET polyethylene terephthalate
  • the protons can be accelerated to above 40 MeV and the beam energy dispersion is less than 10%.
  • the film thickness is between 0.01 and 2 micrometers, a proton beam current which is more dissipative than the above can be obtained. If the thickness is outside this range, the ions can also be accelerated, but the beam energy and beam quality will be reduced.
  • Embodiment 7 of the present invention :
  • the solid target is a metal aluminum film, and the plasma density is taken as n. /n r 300, thickness 0.05 microns.
  • the optimal beam energy dispersion (less than 10%) can be obtained, and the aluminum ion with three charges can be accelerated to above 50 MeV.
  • the thickness of the film is between 0.01 and 0.5 ⁇ m, a beam of aluminum ions capable of diffusing larger than the above can be obtained. If the thickness is outside this range, the ions can also be accelerated, but the beam energy and beam quality will be reduced.
  • the target may be a copper film or an aluminum film, and alternatively, another suitable metal film may be used as the target.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

激光加速离子的方法以及离子产生装置
技术领域
本发明涉及离子加速技术领域, 尤其涉及一种采用激光实现离子加速的方法以 及离子产生装置。 背景技术
现有采用激光实现加速离子的方法通常采用线偏振激光( E = E, ) , 且采用双层固体耙, 即第一层为几个微米厚的重金属靶, 第二层为含氢或者其他轻 元素的有机粘附层, 从金属靶中打出的电子可以加速第二层中的氢离子或其它较轻 元素, 其中, 激光的能量将主要用于电子加热, 由此产生的加速电场强度有限, 从 而得到的离子能量受到限制, 束流品质差。 而且以现有超强激光的功率水平和技术, 加速得到的离子能量低、 束流能散大, 束流通量低。 发明内容
本发明的目的在于提供一种激光加速离子的方法以及离子产生装置, 由此降低束 流能散, 提高离子束的品质。
本发明的上述目的是通过如下的技术方案予以实现的:
一种激光加速离子的方法, 其步骤包括: 采用圆偏振激光轰击单层靶, 所述单层 靶为含有待加速离子的薄膜。
所述激光的光强 / 范围可以为 1018 ~ 10"w/cm2 (对应归一化强度矢量
Figure imgf000002_0001
优选方式是, 所述单层靶的厚度 d 0. 001 微米 - 10微米, 厚度选取使得靶的 电子归一化面密度 σ与激光归一化强度矢量 α相当, 即满足 CT = ^^^ a , 电子密度 nr λ ne , 临界密度 /^ =1 * 102'个 / λ ¾ιΓ 3,激光在真空中的波长 λ (单位为微米), 此时单层 靶的厚度 ί/ « (0.1,10)^αΑ, 范围在 0. 001微米 ~ 10微米。 所述待加速离子可以为氢元素, 包括氘、 氚同位素, 所述单层靶可以为含有氢 元素的有机薄膜。
所述待加速离子可以为碳元素, 所述单层靶可以为碳薄膜。
所述待加速离子可以为金属元素, 所述单层靶可以为与待加速离子相应的金属 薄膜。
根据本发明的另一方面, 本发明提供了一种离子产生装置。 该装置包括用于产 生圆偏振激光的装置; 单层靶, 通过圆偏振激光轰击该单层靶而加速离子, 由此产 生离子。 其中所述单层靶为含有待加速离子的薄膜。
本发明有以下几个方面的优点:
本发明采用圆偏振激光, 电子可以有效地将激光能量传递给耙中或气体中的离 子, 避免激光能量主要转化为电子的热能, 而是把能量更有效地传递给离子。 当圆 偏振激光轰击单层靶时, 靶中的电子将被光压整体推动并压缩到一个薄层内, 此时 电荷分离产生的电场拉动和加速靶中的离子。 在此推拉加速过程中, 离子可以同时 得到加速和聚束, 从而具有很低的能散。 本发明可以运用射频直线加速器中的动力 学优化方法, 可以大大提高离子的加速梯度和有效加速长度, 同时加速得到的束流 品质可与常规射频加速器相比拟。 这将大大降低离子加速设备的成本和运行维护费 用。
此外, 通过将现有技术的双层靶的重金属靶去掉, 让激光直接和单层靶作用, 当激光归一化强度矢量和该单层靶归一化厚度相当的时候, 可以有效地提高加速能 量和降低束流能散。 附图说明
下面结合附图对本发明进一步详细地说明:
图 1 圆 偏振光 ( ci rcular polar izat ion) 和 线偏振光 ( l inear polar izat ion )在等离子体中产生的电场;
图 2 中左侧的图是现有技术双层靶的示意图; 图 2 中右侧的图是单层靶的示意 图; 其中, 1为重金属靶, 2为含待加速元素的单层靶;
图 3和图 4为本发明加速得到的离子能傳。 具体实施方式 替换页(细则第 26条) 下面参照本发明的附图, 更详细地描述本发明的实施例。
参 考 图 1 , 采 用 圆 偏 振 激 光 , 它 的 电 场 可 以 表 述 为 当圆偏振激光透射到高密度靶上时 (电子密度 大于 等离子体临界密度 nr) , 激光将不能透过靶体, 而是持续反射回来。 此时激光的光压 将整体压缩电子, 从而电子可以直接将激光的光压传递给靶中的离子。 如果采用线偏 振激光( £ = ίη(ί¾ ): ) , 激光一部分能量将主要用于电子加热, 用于加速离子 的电场要远远小于圆偏振激光产生的电场, 从而离子得到的能量有限, 而且束流品质 差。
下面将描述根据本发明的离子产生装置。 该装置包括用于产生圆偏振激光的装 置; 单层靶, 通过圆偏振激光轰击该单层靶而加速离子, 由此产生离子。 其中所述单 层靶为含有待加速离子的薄膜。
对于用于产生圆偏振激光的装置可以采用任何合适的现有的激光器。 单层靶可 以通过将现有技术的双层靶的重金属靶去掉而形成。
具体而言, 本发明采用激光轰击单层靶, 参考图 2, 单层靶为含待加速元素的薄 膜, 该单层靶中的电子可以约束靶中的离子, 同时把激光光压有效地传递给离子, 从 而产生低能散和高品质的高能离子束。
a)如果要加速氢离子, 只要采用含氢元素的薄膜靶,靶厚度小于 10微米。
b)如果要加速其它元素(如碳、 金属), 采用含碳元素, 金属元素的单层靶(靶 厚度小于 10个微米) 。
下面详细描述根据本发明的激光加速离子的方法。 该方法包括步骤: 采用圓偏 振激光轰击单层靶。 如上所述, 所述单层靶为含有待加速离子的薄膜。
本发明实例一: ,
超强圆偏振激光(激光波长 1微米, 光强 1=6.9*1015w/cm2, 对应归一化强度矢量 α = 5 ) , 激光脉沖长度为 330fs, 单层靶为含氢低密度薄膜靶(如聚乙烯等) , 等 离子体密度为 //^= 10, 靶厚度 ί为 0.2微米。 当激光直接入射到该单层靶上时, 质子可以被加速到 300MeV 以上, 束流能散小于 10%。 如果薄膜厚度为 0.01 - 2 微 米之间, 也可以得到能散比上述情况的能散大的质子束流。 如图 3 所示。 如果厚度 在此范围之外, 离子也可以得到加速, 但是束流能量和束流品质将降低。 本发明实施例二 超强圆偏振激光(激光波长 1微米, 光强 /=2.8*102° w/cm2,对应归一化强度矢 量 α= 10) , 激光脉沖长度为 330fs。 固体靶为金属铜膜, 等离子体密度取为 n。/nr ¾ 100, 厚度为 0.05微米时。 当激光直接入射到该单层靶上时, 可以得到最优的束 流能散(低于 10% ) , 带 1 个电荷的铜离子可以被加速到到 133 MeV。 如图 4 所 示。 如果薄膜厚度为 0.01 - 1 微米之间, 也可以得到能散比上述情况的能散大的铜 离子束流。 如果厚度在此范围之外, 离子也可以得到加速, 但是束流能量和束流品 质将降低。
本发明实施例三:
超强圆偏振激光(激光波长 1 微米, 光强 /=2.8* 1022 w/cm2,对应归一化强度矢 量 fl= 100) , 激光脉沖长度为 85fs。 固体靶选用碳膜(例如金刚石薄膜或石墨) , 等离子体密度取为 n。/nr 300, 碳膜厚度为 0.3微米时。 当激光直接入射到该单层 靶上时, 可以得到最优的束流能散(低于 10% ) , 带六个电荷的碳离子 (C6+)被 加速到到每核子 200MeV (总能量为 1200MeV) 。 薄膜厚度位于 0.01 - 1微米之间, 也可以得到能散比上述情况的能散大的 C6 +粒子束流。 如果厚度在此范围之外, 离 子也可以得到加速, 但是束流能量和束流品质将降低。
、 本发明实施例四:
超强圆偏振激光(激光波长 1微米, 光强 1=6.9*10 /cm2, 对应归一化强度矢量 α = 50 ) , 激光脉沖长度为 82fs, 单层靶为单层含氢薄膜靶, 如聚乙烯或者聚氯乙 烯等, 等离子体密度取为
Figure imgf000005_0001
靶厚度 ί 为 0.5微米。 当激光直接入射到该单 层靶上时, 质子可以被加速到 200MeV 以上, 束流能散小于 10%。 如果薄膜厚度为 0.05 - 5 微米之间, 也可以得到能散比上述情况的能散大的高能质子束流。 如果厚 度在此范围之外, 离子也可以得到加速, 但是束流能量和束流品质将降低。 本发明实施例五:
超强圆偏振激光(激光波长 1 微米, 光强 /=4.4*10" w/cm2, 归一化强度矢 量 α = 4 ) , 激光脉冲长度 λ为 330fs。 单层靶选用高密度含氢元素的气体靶, 等离 子体密度取为 n。/n,= 3,靶厚度 d 1微米。 当激光直接入射到该单层靶上时, 质子 可以被加速到 lOOMeV 以上, 束流能散小于 10%。 如果靶厚度介于 0.1 ~ 2 微米之 间, 也可以得到能散比上述情况的能散大的质子束流。 如果厚度在此范围之外, 离 子也可以得到加速, 但是束流能量和束流品质将降低。 本发明实施例六:
超强園偏振激光(激光波长 1微米, 光强 1=2.76*102°w/cm2, 对应归一化强度矢量 α = 10 ) , 激光脉冲长度为 120fs, 单层靶为含氢低密度薄膜靶, 如聚对苯二曱酸乙 二醇酯(PET) , 等离子体密度为
Figure imgf000006_0001
50, 靶厚度 ί/为 0.2微米。 当激光直接入 射到该单层靶上时, 质子可以被加速到 40MeV以上, 束流能散小于 10%。 如果薄膜 厚度为 0.01 - 2 微米之间, 也可以得到能散比上述情况的能散大的质子束流。 如果 厚度在此范围之外, 离子也可以得到加速, 但是束流能量和束流品质将降低。 本发明实施例七:
超强圆偏振激光(激光波长 1 微米, 光强 /=1.1*102' w/cm2,对应归一化强度矢 量 α= 20) , 激光脉冲长度为 90fs。 固体靶为金属铝膜, 等离子体密度取为 n。/nr 300, 厚度为 0.05 微米时。 当激光直接入射到该单层靶上时, 可以得到最优的束流 能散(低于 10% ) , 带 3 个电荷的铝离子可以被加速到 50 MeV 以上。 如图 4 所 示。 如果薄膜厚度为 0.01 - 0.5 微米之间, 也可以得到能散比上述情况的能散大的 铝离子束流。 如果厚度在此范围之外, 离子也可以得到加速, 但是束流能量和束流 品质将降低。
上述实施例只是本发明的举例, 尽管为说明目的公开了本发明的最佳实施例和附 图, 但是本领域的技术人员可以理解: 在不脱离本发明及所附的权利要求的精神和范 围内, 各种替换、 变化和修改都是可能的。 因此, 本发明不应局限于最佳实施例和附 图所公开的内容。
例如, 上述靶为铜膜或铝膜, 作为选择, 上述靶也可以采用其它合适的金属膜。

Claims

权 利 要 求
、 一种激光加速离子的方法, 包括步骤: 采用圓偏振激光轰击单层靶, 所述单层 靶为含有待加速离子的薄膜。
、 如权利要求 1 所述的激光加速离子的方法, 其特征在于: 所述激光的光强的 范围为 1018 w/cm2 ~ 1 023w/cm2
3、 如权利要求 1 所述的激光加速离子的方法, 其特征在于: 所述单层靶的厚度 (Ο.Ι,Ιθ αΑ , 范围在 0. 001微米〜 1 0微米。 、 如权利要求 1 或 3所述的激光加速离子的方法, 其特征在于: 所述待加速离 子为氢元素, 该氢元素包括氘、 氚同位素。
、 如权利要求 4 所述的激光加速离子的方法, 所述单层靶为含有所述氢元素的 有机薄膜。
、 如权利要求 1或 3所述的激光加速离子的方法, 其特征在于: 所述待加速离 子为碳元素, 所述单层靶为碳膜。
、 如权利要求 1或 3所述的激光加速离子的方法, 其特征在于: 所述待加速离 子为金属元素, 所述单层靶为与待加速离子相应的金属薄膜。
、 一种离子产生装置, 包括
用于产生圆偏振激光的装置;
单层靶, 通过所述圆偏振激光轰击该单层靶而加速离子, 由此产生离子, 其 中所述单层靶为含有待加速离子的薄膜。
、 如权利要求 8 所述的离子产生装置, 所述激光的光强的范围为 1 0'8 w/cm' ~ 10"w/cm2
1 0、 如权利要求 8 所述的离子产生装置, 所述单层靶的厚度 i « (0.1, 10) a i , 范围在 0. 001微米 ~ 10微米。
1 1、 如权利要求 8或 10所述的离子产生装置, 所述待加速离子为氢元素, 该氢 元素包括氘、 氚同位素。
12、 如权利要求 11 所述的离子产生装置, 所述单层靶为含有所述氢元素的有机 薄膜。
、 如权利要求 8或 10所述的离子产生装置 所述待加速离子为碳元素, 所述 单层靶为碳膜。
、 如权利要求 8或 10所述的离子产生装置 所述待加速离子为金属元素, 所 述单层靶为与待加速离子相应的金属薄膜。
PCT/CN2008/000685 2007-04-06 2008-04-03 Procédé pour accélérer des ions au moyen d'un laser et appareil pour générer des ions WO2008122205A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2007100903639A CN101282612A (zh) 2007-04-06 2007-04-06 一种激光加速离子的方法
CN200710090363.9 2007-04-06

Publications (1)

Publication Number Publication Date
WO2008122205A1 true WO2008122205A1 (fr) 2008-10-16

Family

ID=39830477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/000685 WO2008122205A1 (fr) 2007-04-06 2008-04-03 Procédé pour accélérer des ions au moyen d'un laser et appareil pour générer des ions

Country Status (2)

Country Link
CN (1) CN101282612A (zh)
WO (1) WO2008122205A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188860B (zh) * 2011-12-31 2016-05-11 上海交通大学 用于产生离子加速的激光靶
CN104349569B (zh) * 2014-10-30 2017-09-19 北京大学 一种基于等离子体透镜的激光离子加速系统及其加速方法
CN105789001B (zh) * 2016-03-18 2018-05-01 南京瑞派宁信息科技有限公司 一种离子束产生的方法与装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020350A (en) * 1975-06-23 1977-04-26 Massachusetts Institute Of Technology Isotope selective excitation and separation method and apparatus utilizing circularly polarized pulsed radiation
US5110562A (en) * 1989-08-04 1992-05-05 Doryokuro Kakunenryo Kaihatsu Jigyodan Laser isotope separation apparatus
JP2002107499A (ja) * 2000-09-27 2002-04-10 Central Res Inst Of Electric Power Ind 高エネルギー粒子の発生方法およびこれを利用した放射化分析方法と、高エネルギー粒子発生装置および放射化分析装置
US20060033417A1 (en) * 2004-08-13 2006-02-16 Triveni Srinivasan-Rao Secondary emission electron gun using external primaries
US7030398B2 (en) * 2000-08-09 2006-04-18 The Regents Of The University Of California Laser driven ion accelerator
US20060214103A1 (en) * 2005-03-25 2006-09-28 Pusan National University Industry-University Cooperation Foundation Of Pusan Single-particle mass spectrometer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020350A (en) * 1975-06-23 1977-04-26 Massachusetts Institute Of Technology Isotope selective excitation and separation method and apparatus utilizing circularly polarized pulsed radiation
US5110562A (en) * 1989-08-04 1992-05-05 Doryokuro Kakunenryo Kaihatsu Jigyodan Laser isotope separation apparatus
US7030398B2 (en) * 2000-08-09 2006-04-18 The Regents Of The University Of California Laser driven ion accelerator
JP2002107499A (ja) * 2000-09-27 2002-04-10 Central Res Inst Of Electric Power Ind 高エネルギー粒子の発生方法およびこれを利用した放射化分析方法と、高エネルギー粒子発生装置および放射化分析装置
US20060033417A1 (en) * 2004-08-13 2006-02-16 Triveni Srinivasan-Rao Secondary emission electron gun using external primaries
US20060214103A1 (en) * 2005-03-25 2006-09-28 Pusan National University Industry-University Cooperation Foundation Of Pusan Single-particle mass spectrometer

Also Published As

Publication number Publication date
CN101282612A (zh) 2008-10-08

Similar Documents

Publication Publication Date Title
Bin et al. Enhanced laser-driven ion acceleration by superponderomotive electrons generated from near-critical-density plasma
WO2017183693A1 (ja) ターゲット、ターゲットの製造方法、及び中性子発生装置
Dudnikov Forty years of surface plasma source development
CN102119584B (zh) 强流直流质子加速器
Ter-Avetisyan et al. MeV negative ion generation from ultra-intense laser interaction with a water spray
WO2008122205A1 (fr) Procédé pour accélérer des ions au moyen d'un laser et appareil pour générer des ions
Roy et al. Plasma expansion and fast gap closure in a high power electron beam diode
Zhang et al. Evolution of vacuum surface flashover for angled dielectric insulators with particle-in-cell simulation
Tummel et al. Impact of power flow on Z-pinch loads
JPH02148700A (ja) 高中性子束中性子管のイオン引き出し兼加速装置
Liu et al. BXERL photo-injector based on a 217 MHz normal conducting RF gun
Xu et al. Enhancement of ion generation in femtosecond ultraintense laser-foil interactions by defocusing
JP4821011B2 (ja) 荷電変換薄膜および粒子加速器
CN103188860B (zh) 用于产生离子加速的激光靶
Lindholm Reduction of Surface Charges in Ion Beam Apparatus
Peng et al. Improvements of PKU PMECRIS for continuous hundred hours CW proton beam operation
Ren et al. The deuteron injector progress of the Peking University Neutron Imaging Facility project
Imao et al. R&D of helium gas stripper for intense uranium beams
Sanin et al. Development of continuous wave high voltage negative ion beam injector for tandem accelerator
Zhang et al. Guiding and focusing of fast electron beams produced by ultra-intense laser pulse using a double cone funnel target
CN104465280A (zh) 一种用于ct成像的碳纳米射线管
Marti et al. Development of stripper options for FRIB
Bi-Cheng et al. Generating monoenergetic proton beam by using circularly polarized laser
Ren et al. Methods to obtain high intensity proton ion beams with low emittance from ECR ion source at Peking University
Keller High-intensity ion sources for accelerators with emphasis on H− beam formation and transport

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08733899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08733899

Country of ref document: EP

Kind code of ref document: A1