WO2008121472A1 - Query generation using environment configuration - Google Patents
Query generation using environment configuration Download PDFInfo
- Publication number
- WO2008121472A1 WO2008121472A1 PCT/US2008/055317 US2008055317W WO2008121472A1 WO 2008121472 A1 WO2008121472 A1 WO 2008121472A1 US 2008055317 W US2008055317 W US 2008055317W WO 2008121472 A1 WO2008121472 A1 WO 2008121472A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- user
- data
- query
- configuration
- usage
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2457—Query processing with adaptation to user needs
- G06F16/24575—Query processing with adaptation to user needs using context
Definitions
- search engines When a query is sent to a search engine, many results may be returned. Many search engines may rank the results in order of relevance so that the most relevant information is presented to the user first. Some search engines are able to use detailed queries to filter and sort the results to better rank the relevant information.
- a query is generated that includes data about a user system and a task that the user is attempting.
- the query may be used by a search engine to generate relevant results to aid the user.
- the user system data may include configuration data about hardware and software.
- the task data may be derived from the current state of a device or from operational history that may be developed from a single user or a group of users.
- the query may have a mechanism to weight various keywords or components of the query and a feedback system may adjust the weights for future queries.
- FIGURE l is a diagram of an embodiment showing a query system.
- FIGURE 2 is a diagram of an embodiment showing a system with query generation.
- FIGURE 3 is a flowchart of an embodiment showing a method for generating a query.
- FIGURE 4 is a flowchart of an embodiment showing a query process.
- Help systems and other databases may be searched using a query that includes configuration parameters and usage data.
- Configuration parameters may include keywords or other data that describe a user's system or characteristics of a user's system, including parameters about the user himself or herself.
- Usage data may include the current task being attempted as well as various analyses of operational history of a system.
- a search engine may return results for a user to view. Based on user activity and using the results, a learning engine may provide adjustments to a weighting system used to weight various parameters in the query.
- the query generator may be used for context sensitive help systems with specialized help databases, but also may be used for general search engine queries, including those initiated by a user as well as those initiated by an automated system.
- An example of an automated system may be a 'tips of the day' list that is tailored to a particular user and system configuration.
- the subject matter may be embodied as devices, systems, methods, and/or computer program products. Accordingly, some or all of the subject matter may be embodied in hardware and/or in software (including firmware, resident software, micro-code, state machines, gate arrays, etc.) Furthermore, the subject matter may take the form of a computer program product on a computer-usable or computer- readable storage medium having computer-usable or computer-readable program code embodied in the medium for use by or in connection with an instruction execution system.
- a computer-usable or computer- readable medium may be any medium that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
- the computer-usable or computer-readable medium may be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium.
- computer readable media may comprise computer storage media and communication media.
- Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data.
- Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can accessed by an instruction execution system.
- the computer-usable or computer-readable medium could be paper or another suitable medium upon which the program is printed, as the program can be electronically captured, via, for instance, optical scanning of the paper or other medium, then compiled, interpreted, of otherwise processed in a suitable manner, if necessary, and then stored in a computer memory.
- Communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media.
- modulated data signal means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
- communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above should also be included within the scope of computer readable media.
- FIG. 1 is a diagram illustration of an embodiment 100 showing a query system.
- a query generator 102 uses output from a usage analyzer 104, a configuration analyzer 106, and a user analyzer 108 in building a query.
- the query is sent to a search engine 110 that references a database 112 to return results.
- the query may be used in a help system or in a general search for items relating to a task or operation being performed by a user.
- the query system may be used to supplement or replace a standard search engine query.
- the query generator 102 may be used to enhance a query by providing keywords or other data that may target results for a particular user's system.
- the keywords or data added by the query generator 102 may be added behind the scenes so that a user may not know about the function of the query generator 102.
- the results of the query generator 102 may be presented for a user to edit or change before a query is submitted to a search engine.
- the embodiment 100 takes into account a user's usage history, the configuration of hardware and software on the user's system, and certain characteristics about the user to enhance a search query. Such enhancements may return search results that are more relevant to a user's situation than if the enhancements were not used.
- the usage analyzer 104 receives history data 116 from a usage database 114 and from the current task 118 receives an error code 120 and any current task data 122.
- the usage analyzer 104 may add elements to a search query that address both the immediate action being attempted by a user as well as a history of actions the user has performed in the past.
- a user When a user is operating an application on a system, the user may initiate a query from the application by pressing a 'help' button. As part of the query that will be submitted to a help database or a general purpose search engine, usage data about the immediate task being performed by the user may be added to the query. Part of the immediate task data may include an error code 120 if one was encountered, a descriptor of the current task, and other data relevant to the immediate action. [0027] Additional data may be added to the query based on the usage history by the user. For example, if the particular task has been attempted and failed several times in the immediate past, relevant query results may focus on more detailed instructions for executing the current task or troubleshooting options.
- keywords such as "detailed instructions” or “troubleshooting” may be added to a query. If the particular task has not been performed at all or not in a long period of time, relevant query results may include overview descriptions of the task to orient the user, and keywords such as "overview” or keywords that reference a higher level task may be included.
- the usage analyzer 104 may add elements to a query in any manner. In some instances, the usage analyzer 104 may use a keyword catalog 138 to add keywords to a search query. Other embodiments may use syntax of a search language that is understandable by a search engine.
- the usage analyzer 104 may be able to define elements that add to the scope of the search as well as other elements that reduce or limit the scope of the search.
- the configuration analyzer 106 may generate query enhancements that use the current task 118 as well as hardware system information 126 and software system information 130.
- the current task 118 may provide current software configuration 124 that may define a current software application that the user is operating, a current user interface, settings for the software application, data entered by the user in the application, or any other information that may be used to refme search results for a query by a user.
- the current software configuration data 124 may be used when a user is soliciting help from within an application. Rather than using a built-in help system for an application, a user may use a general purpose search engine for searching for help with the application. The user may be given an option to ignore the current software configuration data 124 when building a search query. When the user chooses to include the information, the current software configuration data 124 may be used to build a query for the general purpose search engine. Otherwise, the user may choose to ignore the configuration data 124 for the query.
- the hardware system information 126 may be used to provide hardware parameters 128 to the configuration analyzer 106. Various embodiments may use different hardware parameters 128, including a system type or various hardware descriptors. When performing a search for information regarding a user's device, such as how to operate a specific application, how to upgrade the device, or how to perform a specific function on the device, the configuration analyzer 106 may add details about the device to a search query.
- a user's query for how to start a word processor program may return results from any type of word processor program on any type of device.
- the configuration analyzer 106 may add elements to the search query so that the results are limited or filtered for the particular device.
- the device type may be a general device type, such as a personal digital assistant, mobile telephone, or personal computer.
- the device type may be a specific model number for the device and may include information regarding accessories, processor speed, amount of physical memory, amount of available memory, or any other relevant parameter.
- the configuration analyzer 106 may also include software parameters 132 that may include information from operating system parameters to installed software applications, components, add-on features, or any other relevant information.
- any relevant information concerning the software configuration of a device may be added to a search query using the configuration analyzer 106.
- the various available query enhancement data such as usage data and configuration data may be culled to find enhancement data that are applicable to the specific search being performed.
- the configuration analyzer 106 may add software parameters 132 that indicate the user's operating system so that available word processing applications for other operating systems would be removed from any results.
- a query concerns the modification of a particular setting during installation of a particular suite of software applications, specific details of the operating system, software application suite, and other installed applications may be added.
- a user may be able to select specific keywords to be added for a query.
- the user may be presented with an option to select a level of detail or specificity for the query.
- the user may be presented with query results and may be able to select to broaden or narrow the results.
- groups of keywords may be added or removed from a query.
- weighting factors for one or more keywords may be adjusted based on the user's specificity selection.
- keywords are created to aid a query
- some embodiments may rank, tag, or group keywords for various situations.
- the groupings, tags, or rankings may be used to adjust the query without having to analyze individual keywords or query expressions.
- a user may adjust a variable slider or other indicator on a user interface to adjust between broad or narrow. By adjusting the slider, those keywords grouped as 'broad' or 'narrow' may be added or removed appropriately.
- a system may determine through usage information and other mechanisms that a narrow or broad query is desired. The determination may be through several factors, including the application that may call a query, through artificial intelligence analysis of a user's behavior, from usage history, or other factors.
- the query enhancements added by the configuration analyzer 106 may be several levels for a particular query.
- enhancements describing an operating system may include the general operating system class, a general model of the operating system, a specific version of the operating system, the latest patch installed in the operating system, specific settings within the operating system, and any non-standard changes to the operating system.
- the data describing the operating system may be provided in a manner that may be tailored for each query. In one query, the general operating system class of a 'server' may be included and other data discarded. In another query, all the data, including any non-standard changes to the operating system may be relevant to the search and thus included.
- Which data are included and discarded for a search query may be performed in an automated or manual manner.
- the various query terms or keywords may have a weight applied to each term. The weight may be set to zero, indicating that the term is to be ignored in one instance, while in another instance, the weight may be increased so that the term has greater importance.
- the user may be given a list of possible additional search terms generated by the usage analyzer 104, the configuration analyzer 106, or the user analyzer 108. The user may be able to check which terms to include and which to remove and may be able to set a priority for terms as a group or individually.
- the user analyzer 108 may provide query enhancement data or keywords that describe aspects of the user.
- the data may come from user specific data 134 or from user group data 136.
- the aspects of a user may include a user class, the authority or security permissions of a user, and the geographical location of the user.
- a user may have a security setting that does not permit the user to perform administrative tasks on a device.
- a search query performed by the user may exclude articles discussing a particular action that requires administrative privileges.
- the geographical location of a user may change the relevance of search results. For example, a person in one country may operate a software application that has certain features enabled for the specific country that are not available in another country. Thus, results that include the specific feature may be included for the user and excluded for a user in another country. In another example, a search for the phone number of a local pizza delivery company may be limited to the immediate geographic location of a user.
- the user specific data 134 may include data that the user enters to describe himself or herself. For example, a user may answer a series of questions, prioritize a list of topics, select items that describe the user's experience, or other input mechanisms that may be used to describe the user's characteristics or preferences for search materials.
- the user may request to block certain types of search results such as pornography or other types of results.
- the user data may be applied to a specific user by defining data that are common across groups of users.
- the user group data 136 may include group information such as access permissions or other user account information as well as any other group affiliation, including social networks, employer groups, sports team affiliations, club memberships, or any other affiliation or group that may have parameters that may be applied to the user.
- the usage analyzer 104, configuration analyzer 106, and user analyzer 108 may reference a keyword catalog 138 to generate keywords to be added to a query.
- a different keyword catalog 138 may be used for different search engines to which a query may be sent.
- a help system for a suite of software applications may have a distinct keyword catalog 138 that is used to cross reference various help topics.
- a general purpose search engine may use a different set of keywords or descriptors.
- a specialized search engine may have a special syntax that may be defined in a keyword catalog 138 adapted to the specialized search engine.
- keywords may be defined for various query enhancement parameters while in other cases, enhancement parameters may be defined in a specialized manner or syntax.
- the query generator 102 may use keywords to expand the scope of query in block 140, use other keywords to limit or reduce the scope of query in block 142, and apply weighting factors to keywords in block 144.
- the query generator 102 may apply Boolean operators to some keywords or parameters. For example, a search may be enhanced by expanding the scope to include searches for a particular set of attempted operations by a user from the usage database 114, but may be limited by restricting or filtering the results to those which match the user's authority to execute from the user specific data 134.
- the weighting factors applied in block 144 may come from a weighting database 150 and from analysis of the original query.
- the weighting database 150 may apply weights or other relevance factors to various terms in a search query.
- Factors with high relevance may have a high weight while factors with little or no relevance may have a low weight applied.
- the weights may be applied based on the context of a query. For example, a query that originates from a help button pressed in a specific user interface in a specific software application may have many weighted factors that may narrow results. A general purpose query originating in a web browser may have few factors that are weighted to broaden the results. In some embodiments, a user may be able to specify specific weights for different search term components or to include or remove portions of a query. [0048] After the search engine 110 returns results, a feedback system 146 may provide an update 148 to the weighting database 150.
- the feedback system 146 may have a user input device where the user rates the relevance of one or more results. In other embodiments, the feedback system 146 may monitor which results were chosen and deduce from the user actions which results were relevant. The feedback system 146 may follow a user's actions when the user uses a result to further determine if the result was useful. For example, if a user selects a result but abandons the result soon thereafter and selects a different result that the user reads for a long period of time, the first result may be assumed to be less relevant than the second. Many different technologies may be applied to track results and determine which results are preferred over another. [0049]
- Figure 2 is a diagram of embodiment 200 showing a system with query generation.
- a set of applications 204 interact with a user interface 206, while a usage monitor 208 may track various user actions and log a usage history 210 into a usage database 212.
- the applications 204 may create query calls 214 to a query generation system 216.
- the query generation system 216 may use output from the usage analysis system 218 in the form of history data 217 and task data 219.
- the usage analysis system 218 may get a current task and status 220 from the usage monitor 208 in order to generate the data.
- a configuration analysis system 222 may use an operating system status 224, application status 226, and hardware status 228 to provide relevant configuration data 227 for a query.
- a user data system 230 may use data from a user preferences database 232 to provide relevant user data 231 for a query.
- the query generation system 216 may make a query call to a search engine 234 that references a database 236 and return results 238 to the calling application.
- Feedback 240 from the application may be used by a feedback system 242 to update a weighting database 244 that is used by the query generation system 216.
- the embodiment 200 is a system that uses various relevant data to build a query for a search engine 234.
- the various components of the embodiment 200 may be operable on a standalone system or may be provided through network connections to various devices, including over the Internet.
- the search engine 234 and database 236 may be, in many instances, reached through the Internet and may be continually updated.
- the query calls 214 may be made by any type of application 204.
- a query call 214 may be generated as a context-sensitive help call from within an application.
- a query call 214 may be generated through a search application on a desktop, through a web browser, or other type of application.
- Some applications may initiate a query call 214 without a user prompt. For example, some applications may have a 'tip of the day' feature that uses a query call 214 to initiate a query that uses usage data, configuration data, and user data to generate a tip of the day that is relevant to the specific user, the user's system, and the user's history of actions. Other applications may generate a recommended reading list or topical list that may be presented on a sidebar or other area of an application that may assist a user at various times while working within an application. Such a list may be generated using the embodiment 200 so that the results pertain to the characteristics of the user and the user's situation. [0055]
- Figure 3 is a flowchart diagram of an embodiment 300 showing a method for generating a query.
- the action is stored in a usage database in block 304. This process may repeat many times.
- a query request is received in block 306 and an initial query is generated in block 307.
- the query request may be from a user action, such as creating a query in a prompt window, selecting a help button, requesting information on a topic, or any user action that may require searching a database.
- a query may be generated by an application without a user prompt.
- a flag, error message, or other problem indication may be used to initiate a query that may generate results that are presented to a user in response to the problem indication.
- An application may generate a query to provide context-sensitive information within the application, such as while a user is executing a complex task such as installing a software application or performing a specific action.
- an application may periodically update a list of topics that may be relevant reading for the user.
- the usage database is analyzed in block 310 to find related tasks and usage data keywords and Boolean logic are added to the query in block 312.
- Configuration data is generated in block 314 and configuration data is added to the query along with Boolean logic in block 316.
- user data is generated in block 318 and user data keywords and Boolean logic are added to the query in block 320.
- Weighting factors are applied to keywords in block 322 and the query is submitted to a search engine in block 324. Weighting factors may be applied in any useful manner.
- the embodiment 300 is a method by which a query is built using usage data, configuration data, and user data.
- a query request may include a specific topic that a user wishes to search.
- various keywords and appropriate Boolean logic may be added to the query.
- the keywords and Boolean logic may include any scripting language, query language, or other factors that may be interpreted and used by a search engine to find relevant results.
- a query may be a relatively short list of keywords while in other instances, a query may be a complex expression with many arguments.
- Figure 4 is a flowchart diagram of embodiment 400 showing a method for a query process.
- An initial query is created in block 402 and user-specific query enhancements are generated in block 404 from usage analysis, configuration analysis, and user analysis.
- the user-specific enhancements are presented to the user in block 406 for optional editing in block 406 and the query is submitted to a search engine in block 408.
- Embodiment 400 is a method by which user-specific query enhancements may be added to a search query and the user may review or edit the enhancements before a query is submitted.
- the user-specific enhancements may be particular keywords, terms, or search logic that may be created through analysis of user history, hardware and software system configuration, and user characteristics.
- a user may create a query then may be presented with a user interface that displays various user-specific query enhancements for the user to view and edit. In some cases, the user may use a tick mark to select or deselect a keyword.
- a user may be able to select amongst several options in some cases, edit a text box, or any other mechanism may be used by which a user may edit, change, or otherwise manipulate one or more keywords or other query enhancements.
- a user may be able to edit various logic elements, scripts, or expressions that may be interpreted by a search engine.
- groups of keywords or expressions may be selected or deselected by a user.
- One mechanism may be for a user to select a degree of specificity or adjust a broad or narrow indicator on a user interface. When such a mechanism is adjusted, groups of keywords may be added or removed, or keywords may have different weightings applied based on the selection.
- Such a mechanism may be applied to various portions of a search query. For example, a user may be able to select the relative importance of the user's system configuration, usage data, or user data in returning results. A user may choose to have the query narrowly focused on the user's system configuration but with little importance on the user's descriptive data in the user data category.
- the keywords or query expressions used to modify a query may be grouped or arranged in different manners so that user input or automatic analysis of a query may modify the application of the keywords appropriately.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Storage Device Security (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0808836-5A BRPI0808836A2 (en) | 2007-03-30 | 2008-02-28 | CONSULTATION GENERATION USING ENVIRONMENTAL CONFIGURATION |
EP08730980A EP2143024A4 (en) | 2007-03-30 | 2008-02-28 | Query generation using environment configuration |
CN2008800109685A CN101652777B (en) | 2007-03-30 | 2008-02-28 | Query generation using environment configuration |
JP2010502165A JP2010538337A (en) | 2007-03-30 | 2008-02-28 | Query generation using environment configuration |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/731,619 | 2007-03-30 | ||
US11/731,619 US8738606B2 (en) | 2007-03-30 | 2007-03-30 | Query generation using environment configuration |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008121472A1 true WO2008121472A1 (en) | 2008-10-09 |
Family
ID=39796078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/055317 WO2008121472A1 (en) | 2007-03-30 | 2008-02-28 | Query generation using environment configuration |
Country Status (8)
Country | Link |
---|---|
US (1) | US8738606B2 (en) |
EP (1) | EP2143024A4 (en) |
JP (1) | JP2010538337A (en) |
CN (1) | CN101652777B (en) |
BR (1) | BRPI0808836A2 (en) |
RU (1) | RU2454712C2 (en) |
TW (1) | TW200842631A (en) |
WO (1) | WO2008121472A1 (en) |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7302429B1 (en) * | 1999-04-11 | 2007-11-27 | William Paul Wanker | Customizable electronic commerce comparison system and method |
US8126779B2 (en) * | 1999-04-11 | 2012-02-28 | William Paul Wanker | Machine implemented methods of ranking merchants |
US9201939B2 (en) * | 2006-06-02 | 2015-12-01 | Salesforce.Com, Inc. | Method and system for pushing data to a plurality of devices in an on-demand service environment |
US20080294624A1 (en) * | 2007-05-25 | 2008-11-27 | Ontogenix, Inc. | Recommendation systems and methods using interest correlation |
US7945571B2 (en) * | 2007-11-26 | 2011-05-17 | Legit Services Corporation | Application of weights to online search request |
US20090138329A1 (en) * | 2007-11-26 | 2009-05-28 | William Paul Wanker | Application of query weights input to an electronic commerce information system to target advertising |
US8078632B1 (en) * | 2008-02-15 | 2011-12-13 | Google Inc. | Iterated related item discovery |
US8805774B2 (en) * | 2008-02-19 | 2014-08-12 | International Business Machines Corporation | Method and system for role based situation aware software |
US20090235167A1 (en) * | 2008-03-12 | 2009-09-17 | International Business Machines Corporation | Method and system for context aware collaborative tagging |
JP5116593B2 (en) * | 2008-07-25 | 2013-01-09 | インターナショナル・ビジネス・マシーンズ・コーポレーション | SEARCH DEVICE, SEARCH METHOD, AND SEARCH PROGRAM USING PUBLIC SEARCH ENGINE |
US9477672B2 (en) * | 2009-12-02 | 2016-10-25 | Gartner, Inc. | Implicit profile for use with recommendation engine and/or question router |
US8386483B2 (en) * | 2009-10-22 | 2013-02-26 | International Business Machines Corporation | Providing increased quality of content to a user over time |
US20110126192A1 (en) * | 2009-10-26 | 2011-05-26 | Simon Frost | Systems and methods for providing and updating a unified client |
US10102278B2 (en) | 2010-02-03 | 2018-10-16 | Gartner, Inc. | Methods and systems for modifying a user profile for a recommendation algorithm and making recommendations based on user interactions with items |
US8966036B1 (en) * | 2010-11-24 | 2015-02-24 | Google Inc. | Method and system for website user account management based on event transition matrixes |
US20140181652A1 (en) * | 2012-12-21 | 2014-06-26 | Timothy A. Stanke | Contextual and Personalized Help |
US10600011B2 (en) | 2013-03-05 | 2020-03-24 | Gartner, Inc. | Methods and systems for improving engagement with a recommendation engine that recommends items, peers, and services |
US20140280042A1 (en) * | 2013-03-13 | 2014-09-18 | Sap Ag | Query processing system including data classification |
US8996559B2 (en) | 2013-03-17 | 2015-03-31 | Alation, Inc. | Assisted query formation, validation, and result previewing in a database having a complex schema |
FR3006472B1 (en) * | 2013-05-31 | 2016-12-30 | Xilopix | METHOD OF SEARCHING IN A DATABASE |
US20150074101A1 (en) * | 2013-09-10 | 2015-03-12 | Microsoft Corporation | Smart search refinement |
AU2013404005A1 (en) * | 2013-10-31 | 2016-05-12 | Entit Software Llc | Data processing system including a search engine |
US20150242504A1 (en) * | 2014-02-26 | 2015-08-27 | Microsoft Corporation | Automatic context sensitive search for application assistance |
US10346438B2 (en) * | 2014-12-09 | 2019-07-09 | International Business Machines Corporation | Model navigation constrained by classification |
US20160162457A1 (en) * | 2014-12-09 | 2016-06-09 | Idibon, Inc. | Optimization techniques for artificial intelligence |
US20160246584A1 (en) * | 2015-02-19 | 2016-08-25 | Biju Balachandran | Automatic Selection and Customization of Landscape Guides |
US9940362B2 (en) * | 2015-05-26 | 2018-04-10 | Google Llc | Predicting user needs for a particular context |
US10896187B2 (en) | 2015-07-14 | 2021-01-19 | Conduent Business Services, Llc | Methods and systems for searching for users |
US10055500B2 (en) * | 2015-10-27 | 2018-08-21 | International Business Machines Corporation | Optimizing searches |
CN106874101B (en) * | 2015-12-14 | 2020-05-12 | 阿里巴巴集团控股有限公司 | Configuration implementation method and device of software system |
US20180047062A1 (en) * | 2016-08-10 | 2018-02-15 | Social Networking Technology, Inc. | Systems and methods for delivering relevant content |
RU2693328C2 (en) | 2017-07-27 | 2019-07-02 | Общество С Ограниченной Ответственностью "Яндекс" | Methods and systems for generating a replacement request for a user input request |
CN107404669B (en) * | 2017-08-11 | 2021-02-05 | 深圳Tcl新技术有限公司 | Television system interface display method, equipment and computer readable storage medium |
US11151131B2 (en) | 2019-07-19 | 2021-10-19 | Bank Of America Corporation | Query generation from a natural language input |
US11392279B2 (en) * | 2020-11-16 | 2022-07-19 | Microsoft Technology Licensing, Llc | Integration of personalized dynamic web feed experiences into operating system shell surfaces |
WO2024167433A1 (en) * | 2023-02-10 | 2024-08-15 | Общество С Ограниченной Ответственностью "Сэлвери" | Method for storing an additonal information element subordinate to a single information object |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020107843A1 (en) | 2001-02-07 | 2002-08-08 | International Business Corporation | Customer self service subsystem for classifying user contexts |
US6484161B1 (en) * | 1999-03-31 | 2002-11-19 | Verizon Laboratories Inc. | Method and system for performing online data queries in a distributed computer system |
US6519592B1 (en) * | 1999-03-31 | 2003-02-11 | Verizon Laboratories Inc. | Method for using data from a data query cache |
US6879979B2 (en) * | 2001-08-24 | 2005-04-12 | Bigfix, Inc. | Method to remotely query, safely measure, and securely communicate configuration information of a networked computational device |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5012409A (en) * | 1988-03-10 | 1991-04-30 | Fletcher Mitchell S | Operating system for a multi-tasking operating environment |
US5255386A (en) * | 1990-02-08 | 1993-10-19 | International Business Machines Corporation | Method and apparatus for intelligent help that matches the semantic similarity of the inferred intent of query or command to a best-fit predefined command intent |
US5103498A (en) * | 1990-08-02 | 1992-04-07 | Tandy Corporation | Intelligent help system |
US5390281A (en) * | 1992-05-27 | 1995-02-14 | Apple Computer, Inc. | Method and apparatus for deducing user intent and providing computer implemented services |
EP0712075A3 (en) * | 1994-11-08 | 1997-10-22 | Canon Kk | Information processing system which understands information and acts accordingly and method therefor |
US5867714A (en) * | 1996-10-31 | 1999-02-02 | Ncr Corporation | System and method for distributing configuration-dependent software revisions to a computer system |
US6038560A (en) * | 1997-05-21 | 2000-03-14 | Oracle Corporation | Concept knowledge base search and retrieval system |
JP3411246B2 (en) * | 1999-10-20 | 2003-05-26 | 株式会社ジャストシステム | Query output device, document search system, query output method, document search method, and recording medium |
US6578022B1 (en) * | 2000-04-18 | 2003-06-10 | Icplanet Corporation | Interactive intelligent searching with executable suggestions |
WO2003007166A2 (en) * | 2001-07-13 | 2003-01-23 | Cadessa, L.L.C. | System and method for providing help services |
RU2236699C1 (en) * | 2003-02-25 | 2004-09-20 | Открытое акционерное общество "Телепортал. Ру" | Method for searching and selecting information with increased relevance |
JP2004318321A (en) * | 2003-04-14 | 2004-11-11 | Nec Corp | Biological information retrieval system and its method |
FR2858437B1 (en) * | 2003-07-28 | 2005-10-14 | Emmanuel Berthod | METHOD FOR OPERATOR TO PERFORM INTERNET SEARCH WITH AUTOMATIC IDENTIFICATION |
CN1297924C (en) * | 2003-07-31 | 2007-01-31 | 联想(北京)有限公司 | Method for automatically mounting internal and external input-output apparatus to networks |
US7240049B2 (en) * | 2003-11-12 | 2007-07-03 | Yahoo! Inc. | Systems and methods for search query processing using trend analysis |
JP4870903B2 (en) * | 2003-11-19 | 2012-02-08 | 日本電信電話株式会社 | Content classification processing apparatus, directory listing method and processing program therefor |
CN100377556C (en) * | 2004-01-01 | 2008-03-26 | 浙江大学 | Structuralization realization method of communication protocol |
US7158966B2 (en) * | 2004-03-09 | 2007-01-02 | Microsoft Corporation | User intent discovery |
JP4730684B2 (en) * | 2004-03-16 | 2011-07-20 | イマジニアリング株式会社 | Database system with advanced user interface and web browser using the database system |
US7451152B2 (en) | 2004-07-29 | 2008-11-11 | Yahoo! Inc. | Systems and methods for contextual transaction proposals |
WO2006036781A2 (en) * | 2004-09-22 | 2006-04-06 | Perfect Market Technologies, Inc. | Search engine using user intent |
US7543232B2 (en) * | 2004-10-19 | 2009-06-02 | International Business Machines Corporation | Intelligent web based help system |
CN1713196B (en) * | 2005-07-14 | 2011-08-31 | 上海交通大学 | Product ordering system based on automatic design grid |
KR20070059510A (en) * | 2005-12-06 | 2007-06-12 | 삼성전자주식회사 | Digital multimedia broadcasting system for searching and playing scenes according to user's search information and method thereof |
US7925649B2 (en) * | 2005-12-30 | 2011-04-12 | Google Inc. | Method, system, and graphical user interface for alerting a computer user to new results for a prior search |
US20080059455A1 (en) * | 2006-08-31 | 2008-03-06 | Canoy Michael-David N | Method and apparatus of obtaining or providing search results using user-based biases |
-
2007
- 2007-03-30 US US11/731,619 patent/US8738606B2/en active Active
-
2008
- 2008-02-25 TW TW097106502A patent/TW200842631A/en unknown
- 2008-02-28 JP JP2010502165A patent/JP2010538337A/en not_active Withdrawn
- 2008-02-28 RU RU2009136173/08A patent/RU2454712C2/en active
- 2008-02-28 CN CN2008800109685A patent/CN101652777B/en active Active
- 2008-02-28 EP EP08730980A patent/EP2143024A4/en not_active Withdrawn
- 2008-02-28 WO PCT/US2008/055317 patent/WO2008121472A1/en active Application Filing
- 2008-02-28 BR BRPI0808836-5A patent/BRPI0808836A2/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6484161B1 (en) * | 1999-03-31 | 2002-11-19 | Verizon Laboratories Inc. | Method and system for performing online data queries in a distributed computer system |
US6519592B1 (en) * | 1999-03-31 | 2003-02-11 | Verizon Laboratories Inc. | Method for using data from a data query cache |
US20020107843A1 (en) | 2001-02-07 | 2002-08-08 | International Business Corporation | Customer self service subsystem for classifying user contexts |
US6879979B2 (en) * | 2001-08-24 | 2005-04-12 | Bigfix, Inc. | Method to remotely query, safely measure, and securely communicate configuration information of a networked computational device |
Non-Patent Citations (1)
Title |
---|
See also references of EP2143024A4 |
Also Published As
Publication number | Publication date |
---|---|
EP2143024A1 (en) | 2010-01-13 |
CN101652777B (en) | 2012-05-30 |
US20080243827A1 (en) | 2008-10-02 |
US8738606B2 (en) | 2014-05-27 |
BRPI0808836A2 (en) | 2014-08-26 |
CN101652777A (en) | 2010-02-17 |
RU2009136173A (en) | 2011-04-10 |
RU2454712C2 (en) | 2012-06-27 |
EP2143024A4 (en) | 2011-05-04 |
TW200842631A (en) | 2008-11-01 |
JP2010538337A (en) | 2010-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8738606B2 (en) | Query generation using environment configuration | |
US10289618B2 (en) | Third party search applications for a search system | |
RU2663478C2 (en) | Live tracking setting | |
JP5612731B2 (en) | Determining relevant information about the area of interest | |
KR101691243B1 (en) | Merging search results | |
US7937456B2 (en) | Configuration profiling for remote clients | |
US20120066216A1 (en) | System and method for quantifying visibility within search engines | |
US7720791B2 (en) | Intelligent job matching system and method including preference ranking | |
US6598046B1 (en) | System and method for retrieving documents responsive to a given user's role and scenario | |
US7822732B2 (en) | Method and system to enable domain specific search | |
US20120271805A1 (en) | Predictively suggesting websites | |
US10248732B2 (en) | Identifying related entities | |
US20090006369A1 (en) | Auto-summary generator and filter | |
US20110040751A1 (en) | Temporal ranking of search results | |
US20120269116A1 (en) | Context-aware mobile search based on user activities | |
KR20120015457A (en) | Search systems and methods using in-line contextual queries | |
US8655862B1 (en) | System and method for query re-issue in search engines | |
WO2022159196A1 (en) | Automated intelligent content generation | |
US20080140710A1 (en) | Systems and methods for providing enhanced job searching | |
Birukou et al. | Improving web service discovery with usage data | |
US20110238653A1 (en) | Parsing and indexing dynamic reports | |
CN107562966B (en) | Intelligent learning-based optimization system and method for webpage link retrieval sequencing | |
US20190147108A1 (en) | Computer-implemented platform for generating query-answer pairs | |
CN104965918B (en) | A kind of searching method and device based on searching keyword | |
EP3480706A1 (en) | Automatic search dictionary and user interfaces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880010968.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08730980 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 5382/CHENP/2009 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009136173 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: 2010502165 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008730980 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0808836 Country of ref document: BR Kind code of ref document: A2 Effective date: 20090915 |