WO2008118454A2 - Derivatives of quinoline or benzopyrazine and their uses for the treatment of (inter alia) inflammatory diseases, autoimmune diseases or various kinds of cancer - Google Patents

Derivatives of quinoline or benzopyrazine and their uses for the treatment of (inter alia) inflammatory diseases, autoimmune diseases or various kinds of cancer Download PDF

Info

Publication number
WO2008118454A2
WO2008118454A2 PCT/US2008/003935 US2008003935W WO2008118454A2 WO 2008118454 A2 WO2008118454 A2 WO 2008118454A2 US 2008003935 W US2008003935 W US 2008003935W WO 2008118454 A2 WO2008118454 A2 WO 2008118454A2
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
phenyl
haloalkyl
substituted
alkylnr
Prior art date
Application number
PCT/US2008/003935
Other languages
French (fr)
Other versions
WO2008118454A3 (en
Inventor
Yi Chen
Timothy D. Cushing
Xiaolin Hao
Xiao He
Andreas Reichelt
Robert M. Rzasa
Jennifer Seganish
Youngsook Shin
Dawei Zhang
Original Assignee
Amgen Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amgen Inc. filed Critical Amgen Inc.
Priority to EP08742272A priority Critical patent/EP2132207A2/en
Priority to JP2009554598A priority patent/JP2010522177A/en
Priority to MX2009009913A priority patent/MX2009009913A/en
Priority to AU2008231384A priority patent/AU2008231384B2/en
Priority to CA2680783A priority patent/CA2680783C/en
Publication of WO2008118454A2 publication Critical patent/WO2008118454A2/en
Publication of WO2008118454A3 publication Critical patent/WO2008118454A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/10Drugs for disorders of the urinary system of the bladder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Definitions

  • the present invention relates generally to phosphatidylinositol 3 -kinase (PI3 K) enzymes, and more particularly to selective inhibitors of PI3K activity and to methods of using such materials.
  • PI3 K phosphatidylinositol 3 -kinase
  • PI 3-kinase The enzyme responsible for generating these phosphorylated signaling products, phosphatidylinositol 3-kinase (PI 3-kinase; PI3K), was originally identified as an activity associated with viral oncoproteins and growth factor receptor tyrosine kinases that phosphorylates phosphatidylinositol (PI) and its phosphorylated derivatives at the 3 '-hydroxyl of the inositol ring (Panayotou et al., Trends Cell Biol 2:358-60 (1992)).
  • PIP3 phosphatidylinositol-3,4,5-triphosphate
  • PI 3-kinase activation therefore, is involved in a wide range of cellular responses including cell growth, migration, differentiation, and apoptosis (Parker et al., Current Biology, 5:577-99 (1995); Yao et al., Science, 267:2003-05 (1995)).
  • PH-domain containing PDK effectors Two groups of PH-domain containing PDK effectors have been studied in the context of immune cell signaling, members of the tyrosine kinase TEC family and the serine/threonine kinases of te AGC family.
  • Members of the Tec family containing PH domains with apparent selectivity for Ptdlns (3,4,5)P 3 include Tec, Btk, Itk and Etk. Binding of PH to PIP 3 is critical for tyrsosine kinase activity of the Tec family members (Schaeffer and Schwartzberg, Curr.Opin.Immunol.
  • AGC family members that are regulated by POK include the phosphoinositide- dependent kinase (PDKl), AKT (also termed PKB) and certain isoforms of protein kinase C (PKC) and S6 kinase.
  • PDKl phosphoinositide- dependent kinase
  • AKT also termed PKB
  • PKC protein kinase C
  • S6 kinase S6 kinase.
  • Activation of AKT depends on phosphorylation by PDKl, which also has a 3-phosphoinositide-selective PH domain to recruit it to the membrane where it interacts with AKT.
  • PKC protein kinase C
  • Class I PDKs can phosphorylate phosphatidylinositol (PI), phosphatidylinositol-4-phosphate, and phosphatidyl- inositol-4,5-biphosphate (PIP2) to produce phosphatidylinositol-3-phosphate
  • PI phosphatidylinositol
  • PIP2 phosphatidyl- inositol-4,5-biphosphate
  • PEP phosphatidylinositol-3,4-biphosphate
  • phosphatidylinositol-3,4,5- triphosphate respectively.
  • Class II PDKs phosphorylate PI and phosphatidyl- inositol-4-phosphate
  • Class III PDKs can only phosphorylate PI.
  • PI 3 -kinase The initial purification and molecular cloning of PI 3 -kinase revealed that it was a heterodimer consisting of p85 and pi 10 subunits (Otsu et al., Cell, 65:91- 104 (1991); Hiles et al., Cell, 70:419-29 (1992)). Since then, four distinct Class I PDKs have been identified, designated PDK ⁇ , ⁇ , ⁇ , and ⁇ , each consisting of a distinct 110 kDa catalytic subunit and a regulatory subunit.
  • bovine pi 10a Cloning of bovine pi 10a has been described. This protein was identified as related to the Saccharomyces cerevisiae protein: Vps34p, a protein involved in vacuolar protein processing. The recombinant pi 1 Oa product was also shown to associate with p85 ⁇ , to yield a PI3K activity in transfected COS-I cells. See Hiles et al., Cell, 70, 419-29 (1992).
  • pi lO ⁇ The cloning of a second human pi 10 isoform, designated pi lO ⁇ , is described in Hu et al., MoI Cell Biol, 13:7677-88 (1993).
  • This isoform is said to associate with p85 in cells, and to be ubiquitously expressed, as pi lO ⁇ mRNA has been found in numerous human and mouse tissues as well as in human umbilical vein endothelial cells, Jurkat human leukemic T cells, 293 human embryonic kidney cells, mouse 3T3 fibroblasts, HeLa cells, and NBT2 rat bladder carcinoma cells. Such wide expression suggests that this isoform is broadly important in signaling pathways.
  • Pl lO ⁇ has also been shown to be expressed at lower levels in breast cells, melanocytes and endothelial cells (Vogt et al. Virology, 344: 131-138 (2006) and has since been implicated in conferring selective migratory properties to breast cancer cells (Sawyer et al. Cancer Res. 63 : 1667- 1675 (2003)). Details concerning the Pl 106 isoform also can be found in U.S. Pat. Nos. 5,858,753; 5,822,910; and 5,985,589. See also, Vanhaesebroeck et al., Proc Nat. Acad Sci USA, 94:4330-5 (1997), and international publication WO 97/46688.
  • the p85 subunit acts to localize PI 3 -kinase to the plasma membrane by the interaction of its SH2 domain with phosphorylated tyrosine residues (present in an appropriate sequence context) in target proteins (Rameh et al., Cell, 83:821-30 (1995)).
  • Five isoforms of p85 have been identified (p85 ⁇ , p85 ⁇ , p55 ⁇ , p55 ⁇ and p50 ⁇ ) encoded by three genes.
  • Alternative transcripts of Pik3rl gene encode the p85 ⁇ , p55 ⁇ and p50 ⁇ proteins (Deane and Fruman, Annu.Rev.Immunol.
  • p85 ⁇ is ubiquitously expressed while p85 ⁇ , is primarily found in the brain and lymphoid tissues (Volinia et al., Oncogene, 7:789-93 (1992)). Association of the p85 subunit to the PI 3 -kinase pi 10a, ⁇ , or ⁇ catalytic subunits appears to be required for the catalytic activity and stability of these enzymes. In addition, the binding of Ras proteins also upregulates PI 3 -kinase activity.
  • pi lO ⁇ The cloning of pi lO ⁇ revealed still further complexity within the PI3K family of enzymes (Stoyanov et al., Science, 269:690-93 (1995)).
  • the pi lO ⁇ isoform is closely related to pi 1 Oa and pi lO ⁇ (45-48% identity in the catalytic domain), but as noted does not make use of p85 as a targeting subunit.
  • pi lO ⁇ binds a pi 01 regulatory subunit that also binds to the ⁇ subunits of heterotrimeric G proteins.
  • the pi 01 regulatory subunit for PDKgamma was originally cloned in swine, and the human ortholog identified subsequently
  • p87 PIKAP is homologous to pi 01 in areas that bind pi lO ⁇ and G ⁇ and also mediates activation of pi lO ⁇ downstream of G-protein-coupled receptors. Unlike pi 01, pgy PiKAP - s jygjjy expressed in the heart and may be crucial to PI3K ⁇ cardiac function.
  • a constitutively active PI3K polypeptide is described in international publication WO 96/25488. This publication discloses preparation of a chimeric fusion protein in which a 102-residue fragment of p85 known as the inter-SH2 (iSH2) region is fused through a linker region to the N-terminus of murine pi 10.
  • PI 3 -kinases can be defined by their amino acid identity or by their activity. Additional members of this growing gene family include more distantly related lipid and protein kinases including Vps34 TORI, and TOR2 of Saccharo- myces cerevisiae (and their mammalian homologs such as FRAP and mTOR), the ataxia telangiectasia gene product (ATR) and the catalytic subunit of DNA- dependent protein kinase (DNA-PK). See generally, Hunter, Cell, 83:1-4 (1995).
  • PI 3 -kinase is also involved in a number of aspects of leukocyte activation.
  • a p85-associated PI 3-kinase activity has been shown to physically associate with the cytoplasmic domain of CD28, which is an important costimulatory molecule for the activation of T-cells in response to antigen (Pages et al., Nature, 369:327- 29 (1994); Rudd, Immunity, 4:527-34 (1996)).
  • Activation of T cells through CD28 lowers the threshold for activation by antigen and increases the magnitude and duration of the proliferative response.
  • interleukin-2 IL2
  • T cell growth factor an important T cell growth factor
  • PI 3-kinase inhibitors Two compounds, LY294002 and wortmannin, have been widely used as PI 3-kinase inhibitors. These compounds, however, are nonspecific PI3K inhibitors, as they do not distinguish among the four members of Class I PI 3 -kinases.
  • the IC 50 values of wortmannin against each of the various Class I PI 3 -kinases are in the range of 1-1OnM.
  • the IC 50 values for LY294002 against each of these PI 3-kinases is about l ⁇ M (Fruman et al., Ann Rev Biochem, 67:481-507 (1998)). Hence, the utility of these compounds in studying the roles of individual Class I PI 3-kinases is limited.
  • pi 10a kinase dead knock in mice were generated with a single point mutation in the DFG motif of the ATP binding pocket (pi 10ocD 933A ) that impairs kinase activity but preserves mutant pi 10a kinase expression.
  • the knockin approach preserves signaling complex stoichiometry, scaffold functions and mimics small molecule approaches more realistically than knock out mice.
  • pi 10 ⁇ D 933A homozygous mice are embryonic lethal.
  • heterozygous mice are viable and fertile but display severely blunted signaling via insulin-receptor substrate (IRS) proteins, key mediators of insulin, insulin-like growth factor- 1 and leptin action.
  • IFS insulin-receptor substrate
  • Pl lO ⁇ knock out and kinase-dead knock in mice have both been generated and overall show similar and mild phenotypes with primary defects in migration of cells of the innate immune system and a defect in thymic development of T cells (Li et al. Science, 287: 1046-1049 (2000), Sasaki et al. Science, 287: 1040-1046 (2000), Patrucco et al. Cell, 118: 375-387 (2004)).
  • mice Similar to pi lO ⁇ , PI3K delta knock out and kinase-dead knock-in mice have been made and are viable with mild and like phenotypes.
  • the pi 10 ⁇ D910A mutant knock in mice demonstrated an important role for delta in B cell development and function, with marginal zone B cells and CD5+ Bl cells nearly undetectable, and B- and T cell antigen receptor signaling (Clayton et al. J.Exp.Med. 196:753-763 (2002); Okkenhaug et al. Science, 297: 1031-1034 (2002)).
  • the pi 10 ⁇ D910A mice have been studied extensively and have elucidated the diverse role that delta plays in the immune system.
  • T cell dependent and T cell independent immune responses are severely attenuated in pi lO ⁇ 091 ⁇ and secretion of THl (INF- ⁇ ) and TH2 cytokine (IL-4, IL-5) are impaired (Okkenhaug et al. J.Immunol. 177: 5122-5128 (2006)).
  • a human patient with a mutation in pi lO ⁇ has also recently been described.
  • Isoform-selective small molecule compounds have been developed with varying success to all Class I PI3 kinase isoforms (Ito et al. J. Pharm. Exp. Therapeut., 321 : 1-8 (2007)).
  • Inhibitors to alpha are desirable because mutations in pi 10a have been identified in several solid tumors; for example, an amplification mutation of alpha is associated with 50% of ovarian, cervical, lung and breast cancer and an activation mutation has been described in more than 50% of bowel and 25% of breast cancers (Hennessy et al. Nature Reviews, 4: 988-1004 (2005)).
  • Yamanouchi has developed a compound YM-024 that inhibits alpha and delta equi-potently and is 8- and 28-fold selective over beta and gamma respectively (Ito et al. J.Pharm.Exp.Therapeut., 321:1-8 (2007)).
  • Pl lO ⁇ is involved in thrombus formation (Jackson et al. Nature Med. 11 : 507-514 (2005)) and small molecule inhibitors specific for this isoform are thought after for indication involving clotting disorders (TGX-221: 0.007uM on beta; 14-fold selective over delta, and more than 500-fold selective over gamma and alpha) (Ito et al. J.Pharm.Exp.Therapeut., 321 :1-8 (2007)).
  • IC87114 inhibits pi lO ⁇ in the high nanomolar range (triple digit) and has greater than 100-fold selectivity against pi 10a, is 52 fold selective against pi lO ⁇ but lacks selectivity against pi lO ⁇ (approx. 8-fold). It shows no activity against any protein kinases tested (Knight et al. Cell, 125: 733-747 (2006)).
  • delta-selective compounds or genetically manipulated mice pi 10 ⁇ D910A . It was shown that in addition to playing a key role in B and T cell activation, delta is also partially involved in neutrophil migration and primed neutrophil respiratory burst and leads to a partial block of antigen- IgE mediated mast cell degranulation (Condliffe et al. Blood, 106: 1432-1440 (2005); AIi et al. Nature, 431 : 1007-1011 (2002)).
  • pi lO ⁇ is emerging as an important mediator of many key inflammatory responses that are also known to participate in aberrant inflammatory conditions, including but not limited to autoimmune disease and allergy.
  • Another aspect of the invention is to provide compounds that inhibit PI3K ⁇ selectively while having relatively low inhibitory potency against the other PDK isoforms.
  • Another aspect of the invention is to provide methods of characterizing the function of human PI3K ⁇ .
  • Another aspect of the invention is to provide methods of selectively modulating human PBK ⁇ activity, and thereby promoting medical treatment of diseases mediated by PI3K ⁇ dysfunction.
  • One aspect of the invention relates to compounds having the structure:
  • X 1 is C(R 9 ) or N;
  • X 2 is C(R 10 ) or N;
  • n is O, 1, 2 or 3;
  • R 1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1 , 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R 2 substituents, and the ring is additionally substituted by 0, 1 , 2 or 3 substituents independently selected from halo, nitro, cyano, C ⁇ alkyl, OC M alkyl, OC 1-4
  • R 2 is selected from C ⁇ alkyl, phenyl, benzyl, heteroaryl, heterocycle, -(C ⁇ alky ⁇ heteroaryl, -(C ⁇ salky ⁇ heterocycle, -O(C].
  • Ci -6 alkyl, phenyl, benzyl, heteroaryl and heterocycle wherein the Ci- ⁇ alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from Cu ⁇ haloalkyl, Od. 6 alkyl, Br, Cl, F, I and Ci.
  • R 4 is, independently, in each instance, halo, nitro, cyano, Ci- 4 alkyl, OC M alkyl, Od ⁇ haloalkyl, NHC M alkyl, N(C M alkyl)C M alkyl or Ci- ⁇ ialoalkyl;
  • R 5 is, independently, in each instance, H, halo, or Ci- ⁇ alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC M alkyl, C M alkyl, C 1-3 haloalkyl, OC M alkyl, NH 2 , NHC M alkyl, N(C 1-4 alkyl)C M alkyl; or both R 5 groups together form a C 3-6 spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OC 1-4 alkyl, C M alkyl, Ci -3 haloalkyl, OC M alkyl, NH 2 , NHC M alkyl, NCC M alky ⁇ Cwalkyl;
  • R 6 is selected from H, C 1-6 haloalkyl, Br, Cl, F, I, OR a , NR a R a , d -6 alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C 1-6 alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C 1-6 haloalkyl, OC 1-6 alkyl, Br, Cl, F, I and Ci -6 alkyl;
  • R 7 is selected from H, Cu ⁇ haloalkyl, Br, Cl, F, I, OR a , NR a R a , Ci -6 alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the Ci- ⁇ alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from C 1-6 haloalkyl, OC ⁇ ealkyl, Br, Cl, F, I and C ⁇ alkyl;
  • R 8 is selected from H, d-ehaloalkyl, Br, Cl, F, I, OR a , NR a R a , C 1-6 alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C M alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from C 1-6 haloalkyl, OCi. 6 alkyl, Br, Cl, F, I and Ci -6 alkyl;
  • R a is independently, at each instance, H or R b ; and R b is independently, at each instance, phenyl, benzyl or C ⁇ alkyl, the phenyl, benzyl and C 1-6 alkyl being substituted by 0, 1, 2 or 3 substituents selected from halo, C M alkyl, C ⁇ haloalkyl, -OCi-4alkyl, -NH 2 , -NHC 1-4 alkyl, -N(C M alkyl)C 1-4 alkyl.
  • Another aspect of the invention relates to compounds having the structure:
  • X 1 is C(R 9 ) or N
  • X 2 is C(R 10 ) or N
  • n is O, 1, 2 or 3;
  • R 1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1 , 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R 2 substituents, and the ring is additionally substituted by 0, 1 , 2 or 3 substituents independently selected from halo, nitro, cyano, Ci ⁇ alkyl, OC 1-4 alkyl, OC 1-4 haloalkyl, NHCi ⁇ alkyl, N(C 1- 4 alkyl)C 1-4 alkyl and C ⁇ haloalkyl;
  • Ci ⁇ alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from OCi-ealkyl, Br, Cl, F, I and Ci- 6 alkyl;
  • R 4 is, independently, in each instance, halo, nitro, cyano, C ⁇ alkyl, OC M alkyl, OC M haloalkyl, NHCi- 4 alkyl, N(C 1-4 alkyl)C M alkyl or Ci ⁇ haloalkyl;
  • R 5 is, independently, in each instance, H, halo, Q ⁇ alkyl, C 1-4 haloalkyl, or
  • R 6 is selected from H, C 1-6 haloalkyl, Br, Cl, F, I, OR a , NR a R a , Ci -6 alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C]. 6 alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from d- ⁇ haloalkyl, OCi. 6 alkyl, Br, Cl, F, I and Cj.
  • R 7 is selected from H, C 1-6 haloalkyl, Br, Cl, F, I, OR a , NR a R a , d -6 alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C ⁇ alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from d- ⁇ haloalkyl, OC 1-6 alkyl, Br, Cl, F, I and d ⁇ alkyl;
  • R 8 is selected from H, Ci -6 haloalkyl, Br, Cl, F, I, OR a , NR a R a , C 1-6 alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C 1-6 alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from d- ⁇ haloalkyl, OCi- 6 alkyl, Br, Cl, F, I and d. 6 alkyl;
  • R a is independently, at each instance, H or R b ; and R b is independently, at each instance, phenyl, benzyl or d. 6 alkyl, the phenyl, benzyl and C 1-6 alkyl being substituted by 0, 1, 2 or 3 substituents selected from halo, C 1-4 alkyl, d.ahaloalkyl, -NH 2 , -NHC M alkyl, -NCC M alkyOC M alkyl.
  • Another aspect of the invention relates to compounds having the structure:
  • X 1 is C(R 9 ) or N
  • X 2 is C(R 10 ) or N
  • S n is O, 1, 2 or 3;
  • R 1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R 2 substituents, and the ring is additionally substituted by 0, 1 , 2 or 3 substituents independently selected from halo, nitro, cyano, C ⁇ alkyl, OC M alkyl, OC 1-4 haloalkyl, NHC 1-4 alkyl, N(C 1- -lalkyOC M alkyl and d ⁇ aloalkyl;
  • R 2 is selected from C 1-6 alkyl, phenyl, benzyl, heteroaryl, heterocycle, -(d-aalky ⁇ heteroaryl, -(C]. 3 alkyl)heterocycle, - ⁇ (d-salky ⁇ heteroaryl,
  • R 4 is, independently, in each instance, halo, nitro, cyano, Ci-4alkyl, OC M alkyl, OC M haloalkyl
  • R 5 is, independently, in each instance, H, halo, Ci -6 alkyl, C ⁇ haloalkyl, or
  • R 6 is selected from H, Q- ⁇ haloalkyl, Br, Cl, F, I, OR a , NR a R a , C ⁇ alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from R 7 is selected from H, C 1-6 haloalkyl, Br, Cl, F, I, OR a , NR a R a , C 1-6 alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C ⁇ alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from C 1-6 haloalkyl, OC 1-6 alkyl, Br, Cl, F, I and d. 6 alkyl;
  • R 8 is selected from H, C 1-6 haloalkyl, Br, Cl, F, I, OR a , NR a R a , Ci. 6 alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C ⁇ alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from Cj-ehaloalkyl, OC 1-6 alkyl, Br, Cl, F, I and C 1-6 alkyl;
  • R a is independently, at each instance, H or R b ; and R b is independently, at each instance, phenyl, benzyl or C 1-6 alkyl, the phenyl, benzyl and Cj. 6 alkyl being substituted by 0, 1, 2 or 3 substituents selected from halo, C 1-4 alkyl, C 1-3 haloalkyl, -OC ⁇ alkyl, -NH 2 , -NHC M alkyl, -N(C M alkyl)C M alkyl.
  • Another aspect of the invention relates to compounds having the structure:
  • X 1 is C(R 9 ) or N
  • X 2 is C(R 10 ) or N
  • S n is 0, 1, 2 or 3;
  • R 1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R 2 substituents, and the ring is additionally substituted by 0, 1 , 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC M alkyl, OC M haloalkyl, NHC 1-4 alkyl, N(C 1- 4 alkyl)C 1-4 alkyl and
  • R 2 is selected from C h alky!, phenyl, benzyl, heteroaryl, heterocycle, -(d-salkyOheteroaryl, -(C 1-3 alkyl)heterocycle,
  • R 4 is, independently, in each instance, halo, nitro, cyano, Ci- 4 alkyl, OC M alkyl, Od- 4 haloalkyl, NHC M alkyl, N(C M alkyl)C M alkyl or C 1-4 haloalkyl;
  • R 5 is, independently, in each instance, H, halo, C ⁇ alkyl, Q ⁇ haloalkyl, or d ⁇ alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC 1-4 alkyl, C M alkyl, C 1-3 haloalkyl, OC M alkyl, NH 2 , NHC M alkyl, N(C M alkyl)Ci- 4 alkyl; or both R 5 groups together form a C 3-6 spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OCi ⁇ alkyl, C M alkyl,
  • R 6 is selected from H, Ci- ⁇ haloalkyi, Br, Cl, F, I, OR a , NR a R a , d. 6 alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the d. 6 alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from Ci- 6 haloalkyl, Od ⁇ alkyl, Br, Cl, F, I and d ⁇ alkyl; R 7 is selected from H, C 1-6 haloalkyl, Br, Cl, F, I, OR a , NR a R a , C ⁇ .
  • R 8 is selected from H, C 1-6 haloalkyl, Br, Cl, F, I, OR a , NR a R a , C 1-6 alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C 1-6 alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from d -6 haloalkyl, OC 1-6 alkyl, Br, Cl, F, I and C 1-6 alkyl;
  • R a is independently, at each instance, H or R b ; and R b is independently, at each instance, phenyl, benzyl or C 1-6 alkyl, the phenyl, benzyl and Ci ⁇ alkyl being substituted by 0, 1, 2 or 3 substituents selected from halo, C M alkyl, C ⁇ haloalkyl, -OC 1-4 alkyl, -NH 2 , -NHC M alkyl, -N(C 1-4 alkyl)C 1-4 alkyl.
  • Another aspect of the invention relates to compounds having the structure:
  • X 1 is C(R 9 ) or N
  • X 2 is C(R 10 ) or N
  • n is O, 1, 2 or 3;
  • R 1 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R 2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, Ci ⁇ alkyl, OCi- 4 alkyl, OC M haloalkyl, NHC ⁇ alkyl, N(C 1-4 alkyl)C M alkyl and C M haloalkyl;
  • R 2 is selected from Ci ⁇ alkyl, phenyl, benzyl, heteroaryl and heterocycle, all of which are substituted by 0, 1, 2 or 3 substituents selected from C ⁇ haloalkyl, OC ⁇ alkyl, Br, Cl, F, I and C J-4 alkyl;
  • 6 alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from C i -6 haloalkyl, OC i ⁇ alkyl, Br, Cl, F, I and C i . 6 alkyl;
  • R 4 is, independently, in each instance, halo, nitro, cyano, Ci ⁇ alkyl, OC M alkyl, OC M haloalkyl, NHC M alkyl, N(C M alkyl)Ci- 4 alkyl or Ci ⁇ aloalkyl;
  • R 5 is, independently, in each instance, H, halo, d ⁇ alkyl, d- ⁇ aloalkyl, or Ci- 6 alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC M alkyl, d ⁇ alkyl, Ci -3 haloalkyl, OC ⁇ alkyl, NH 2 , NHC M alkyl, N(Ci- 4 alkyl)Cj.
  • R 5 groups together form a C 3 . 6 spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OC 1-4 alkyl, C 1-4 alkyl, Ci -3 haloalkyl, OC M alkyl, NH 2 , NHC M alkyl, N(C M alkyl)C M alkyl;
  • R 6 is selected from H, d. 6 haloalkyl, Br, Cl 5 F, I, 0R a , NR a R a , d-ealkyl, phenyl, ben ⁇ yl, heteroaryl and heterocycle, wherein the d ⁇ alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from d- 6 haloalkyl, OC 1-6 alkyl, Br, Cl, F, I and d. 6 alkyl;
  • R b is independently, at each instance, phenyl, benzyl or d ⁇ alkyl, the phenyl, benzyl and Ci -6 alkyl being substituted by 0, 1, 2 or 3 substituents selected from halo, C ⁇ alkyl, Ci- 3 haloalkyl, -OC M alkyl, -NH 2 , -NHC 1-4 alkyl, -N(C M alkyl)C 1-4 alkyl.
  • X 1 is C(R 9 ) and X 2 is N.
  • X 1 is C(R 9 ) and X 2 is C(R 10 ).
  • R 1 is phenyl substituted by 0 or 1 R 2 substituents, and the phenyl is additionally substituted by 0, 1 , 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, OC 1-4 haloalkyl, NHC M alkyl, N(C 1- ⁇ ky ⁇ d ⁇ alkyl and d ⁇ haloalkyl.
  • R 1 is phenyl
  • R 1 is phenyl substituted by R 2 , and the phenyl is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C M alkyl, OC M alkyl, OC M haloalkyl, NHC M alkyl, and C 1-4 haloalkyl.
  • R 1 is selected from 2-methylphenyl, 2-chlorophenyl, 2- trifluoromethylphenyl, 2 -fluorophenyl and 2-methoxyphenyl.
  • R 1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R 2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C M alkyl, OC ⁇ alkyl, OC 1-4 haloalkyl, NHC M alkyl, N(C 1 . 4 alkyl)C 1-4 alkyl and C M haloalkyl.
  • R 1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the ring is substituted by 0 or 1 R 2 substituents, and the ring is additionally substituted by 0, 1 , 2 or 3 substituents independently selected from halo, nitro, cyano, C 1-4 alkyl, OC 1-4 alkyl, OC ⁇ aloalkyl, NHC M alkyl, N(C 1 . 4 alkyl)C 1-4 alkyl and
  • R 1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the ring is substituted by 0 or 1 R 2 substituents, and the ring is additionally substituted by 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C M alkyl, OC ⁇ alkyl, OC ⁇ aloalkyl, NHC M alkyl, N(C 1- 4 alkyl)C M alkyl and C ⁇ haloalkyl.
  • R 1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S.
  • R 1 is selected from pyridyl and pyrimidinyl.
  • R 3 is H
  • R 3 is selected from F, Cl, Ci -6 alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the d. 6 alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from d- ⁇ haloalkyl, OC 1-6 alkyl, Br, Cl, F, I and Ci- 6 alkyl.
  • R 5 is, independently, in each instance, H, halo, C ⁇ alkyl, Q- 4 haloalkyl, or Ci -6 alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC ⁇ alkyl, C 1-4 alkyl, d -3 haloalkyl, OC ⁇ alkyl, NH 2 , NHCi-4alkyl, N(C M alkyl)C]- 4 alkyl; or both R 5 groups together form a C 3-6 spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OC ⁇ alkyl, C 1-4 alkyl, C 1-3 haloalkyl, OC M alkyl, NH 2 , NHC M alkyl, N(C M alkyl)C M alkyl.
  • Ci -6 alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH,
  • At least one R 5 is halo, substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC 1-4 alkyl, C M alkyl, C 1-3 haloalkyl, NH 2 , NHC M alkyl, N(Ci- 4 alkyl)C M alkyl.
  • R is H.
  • R 6 is NR b R a . In another embodiment, in conjunction with any of the above or below embodiments, R 6 is NH 2 . In another embodiment, in conjunction with any of the above or below embodiments, R 6 is NHCi- ⁇ alkyl.
  • R 7 is selected from d-ehaloalkyl, Br, Cl, F, I, OR a , NR a R a , C ⁇ alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the Ci ⁇ alkyl, phenyl, benzyl, heteroaryl and heterocycle are substituted by 0, 1 , 2 or 3 substituents selected from Ci- ⁇ haloalkyl, OC ⁇ - ⁇ alkyl, Br, Cl, F, I and Ci -6 alkyl.
  • R 7 is selected from C 1-6 haloalkyl, Br, Cl, F, I and Ci ⁇ alkyl. In another embodiment, in conjunction with any of the above or below embodiments, R 7 is H.
  • R is H
  • R 9 is H.
  • R 10 is H.
  • Another aspect of the invention relates to a method of treating PI3K- mediated conditions or disorders.
  • the PI3K-mediated condition or disorder is selected from rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases, and autoimmune diseases.
  • the PI3K-mediated condition or disorder is selected from cardiovascular diseases, atherosclerosis, hypertension, deep venous thrombosis, stroke, myocardial infarction, unstable angina, thromboembolism, pulmonary embolism, thrombolytic diseases, acute arterial ischemia, peripheral thrombotic occlusions, and coronary artery disease.
  • the PI3K- mediated condition or disorder is selected from cancer, colon cancer, glioblastoma, endometrial carcinoma, hepatocellular cancer, lung cancer, melanoma, renal cell carcinoma, thyroid carcinoma, cell lymphoma, lymphoproliferative disorders, small cell lung cancer, squamous cell lung carcinoma, glioma, breast cancer, prostate cancer, ovarian cancer, cervical cancer, and leukemia.
  • the PD K- mediated condition or disorder is selected from type II diabetes.
  • the PI3K- mediated condition or disorder is selected from respiratory diseases, bronchitis, asthma, and chronic obstructive pulmonary disease.
  • the subject is a human.
  • Another aspect of the invention relates to the treatment of rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases or autoimmune diseases comprising the step of administering a compound according to any of the above embodiments.
  • Another aspect of the invention relates to the treatment of rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases and autoimmune diseases, inflammatory bowel disorders, inflammatory eye disorders, inflammatory or unstable bladder disorders, skin complaints with inflammatory components, chronic inflammatory conditions, autoimmune diseases, systemic lupus erythematosis (SLE), myestenia gravis, rheumatoid arthritis, acute disseminated encephalomyelitis, idiopathic thrombocytopenic purpura, multiples sclerosis, Sjoegren's syndrome and autoimmune hemolytic anemia, allergic conditions and hypersensitivity, comprising the step of administering a compound according to any of the above or below embodiments.
  • Another aspect of the invention relates to the treatment of cancers that are mediated, dependent on or associated with pi lO ⁇ activity, comprising the step of administering a compound according to any of the above or below embodiments.
  • Another aspect of the invention relates to the treatment of cancers are selected from acute myeloid leukaemia, myelo-dysplastic syndrome, myeloproliferative diseases, chronic myeloid leukaemia, T-cell acute lymphoblastic leukaemia, B-cell acute lymphoblastic leukaemia, non-hodgkins lymphoma, B- cell lymphoma, solid tumors and breast cancer, comprising the step of administering a compound according to any of the above or below embodiments.
  • Another aspect of the invention relates to a pharmaceutical composition comprising a compound according to any of the above embodiments and a pharmaceutically-acceptable diluent or carrier.
  • Another aspect of the invention relates to the use of a compound according to any of the above embodiments as a medicament.
  • Another aspect of the invention relates to the use of a compound according to any of the above embodiments in the manufacture of a medicament for the treatment of rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases, and autoimmune diseases.
  • the compounds of this invention may have in general several asymmetric centers and are typically depicted in the form of racemic mixtures. This invention is intended to encompass racemic mixtures, partially racemic mixtures and separate enantiomers and diasteromers.
  • C ⁇ - ⁇ alkyl means an alkyl group comprising a minimum of ⁇ and a maximum of ⁇ carbon atoms in a branched, cyclical or linear relationship or any combination of the three, wherein ⁇ and ⁇ represent integers.
  • the alkyl groups described in this section may also contain one or two double or triple bonds. Examples Of C 1- 6 alkyl include, but are not limited to the following:
  • Halo or halogen means a halogen atoms selected from F, Cl, Br and I.
  • Cv-whaloalkyl means an alkyl group, as described above, wherein any number- at least one— of the hydrogen atoms attached to the alkyl chain are replaced by F, Cl 5 Br or I.
  • Heterocycle means a ring comprising at least one carbon atom and at least one other atom selected from N, O and S. Examples of heterocycles that may be found in the claims include, but are not limited to, the following:
  • Available nitrogen atoms are those nitrogen atoms that are part of a heterocycle and are joined by two single bonds (e.g. piperidine), leaving an external bond available for substitution by, for example, H or CH 3 .
  • “Pharmaceutically-acceptable salt” means a salt prepared by conventional means, and are well known by those skilled in the art.
  • the “pharmacologically acceptable salts” include basic salts of inorganic and organic acids, including but not limited to hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, malic acid, acetic acid, oxalic acid, tartaric acid, citric acid, lactic acid, fumaric acid, succinic acid, maleic acid, salicylic acid, benzoic acid, phenylacetic acid, mandelic acid and the like.
  • suitable pharmaceutically acceptable cation pairs for the carboxy group are well known to those skilled in the art and include alkaline, alkaline earth, ammonium, quaternary ammonium cations and the like.
  • pharmaceutically acceptable salts see infra and Berge et al., J. Pharm. Sci. 66:1 (1977).
  • “Saturated, partially saturated or unsaturated” includes substituents saturated with hydrogens, substituents completely unsaturated with hydrogens and substituents partially saturated with hydrogens.
  • "Leaving group” generally refers to groups readily displaceable by a nucleophile, such as an amine, a thiol or an alcohol nucleophile. Such leaving groups are well known in the art. Examples of such leaving groups include, but are not limited to, N-hydroxysuccinimide, N-hydroxybenzotriazole, halides, triflates, tosylates and the like. Preferred leaving groups are indicated herein where appropriate.
  • Protecting group generally refers to groups well known in the art which are used to prevent selected reactive groups, such as carboxy, amino, hydroxy, mercapto and the like, from undergoing undesired reactions, such as nucleophilic, electrophilic, oxidation, reduction and the, like. Preferred protecting groups are indicated herein where appropriate. Examples of amino protecting groups include, but are not limited to, aralkyl, substituted aralkyl, cycloalkenylalkyl and substituted cycloalkenyl alkyl, allyl, substituted allyl, acyl, alkoxycarbonyl, aralkoxycarbonyl, silyl and the like.
  • aralkyl examples include, but are not limited to, benzyl, ortho- methylbenzyl, trityl and benzhydryl, which can be optionally substituted with halogen, alkyl, alkoxy, hydroxy, nitro, acylamino, acyl and the like, and salts, such as phosphonium and ammonium salts.
  • aryl groups include phenyl, naphthyl, indanyl, anthracenyl, 9-(9-phenylfluorenyl), phenanthrenyl, durenyl and the like.
  • cycloalkenylalkyl or substituted cycloalkylenylalkyl radicals preferably have 6-10 carbon atoms, include, but are not limited to, cyclohexenyl methyl and the like.
  • Suitable acyl, alkoxycarbonyl and aralkoxycarbonyl groups include benzyloxycarbonyl, t-butoxycarbonyl, iso-butoxycarbonyl, benzoyl, substituted benzoyl, butyryl, acetyl, trifluoroacetyl, trichloro acetyl, phthaloyl and the like.
  • a mixture of protecting groups can be used to protect the same amino group, such as a primary amino group can be protected by both an aralkyl group and an aralkoxycarbonyl group.
  • Amino protecting groups can also form a heterocyclic ring with the nitrogen to which they are attached, for example, l,2-bis(methylene)benzene, phthalimidyl, succinimidyl, maleimidyl and the like and where these heterocyclic groups can further include adjoining aryl and cycloalkyl rings.
  • the heterocyclic groups can be mono-, di- or tri- substituted, such as nitrophthalimidyl.
  • Amino groups may also be protected against undesired reactions, such as oxidation, through the formation of an addition salt, such as hydrochloride, toluenesulfonic acid, trifluoroacetic acid and the like.
  • an addition salt such as hydrochloride, toluenesulfonic acid, trifluoroacetic acid and the like.
  • Many of the amino protecting groups are also suitable for protecting carboxy, hydroxy and mercapto groups.
  • aralkyl groups For example, aralkyl groups.
  • Alkyl groups are also suitable groups for protecting hydroxy and mercapto groups, such as tert-butyl.
  • Silyl protecting groups are silicon atoms optionally substituted by one or more alkyl, aryl and aralkyl groups.
  • Suitable silyl protecting groups include, but are not limited to, trimethylsilyl, triethylsilyl, triisopropylsilyl, tert- butyldimethylsilyl, dimethylphenylsilyl, l,2-bis(dimethylsilyl)benzene, 1 ,2-bis(dimethylsilyl)ethane and diphenylmethylsilyl.
  • Silylation of an amino groups provide mono- or di-silylamino groups. Silylation of aminoalcohol compounds can lead to a N,N,O-trisilyl derivative.
  • silyl function from a silyl ether function is readily accomplished by treatment with, for example, a metal hydroxide or ammonium fluoride reagent, either as a discrete reaction step or in situ during a reaction with the alcohol group.
  • Suitable silylating agents are, for example, trimethylsilyl chloride, tert-butyl-dimethylsilyl chloride, phenyldimethylsilyl chloride, diphenylmethyl silyl chloride or their combination products with imidazole or DMF.
  • Methods of preparation of these amine derivatives from corresponding amino acids, amino acid amides or amino acid esters are also well known to those skilled in the art of organic chemistry including amino acid/amino acid ester or aminoalcohol chemistry.
  • Protecting groups are removed under conditions which will not affect the remaining portion of the molecule. These methods are well known in the art and include acid hydrolysis, hydrogenolysis and the like.
  • a preferred method involves removal of a protecting group, such as removal of a benzyloxycarbonyl group by hydrogenolysis utilizing palladium on carbon in a suitable solvent system such as an alcohol, acetic acid, and the like or mixtures thereof.
  • a t- butoxycarbonyl protecting group can be removed utilizing an inorganic or organic acid, such as HCl or trifluoroacetic acid, in a suitable solvent system, such as dioxane or methylene chloride.
  • a suitable solvent system such as dioxane or methylene chloride.
  • the resulting amino salt can readily be neutralized to yield the free amine.
  • Carboxy protecting group such as methyl, ethyl, benzyl, tert-butyl, 4-methoxyphenylmethyl and the like, can be removed under hydrolysis and hydrogenolysis conditions well known to those skilled in the art.
  • Prodrugs of the compounds of this invention are also contemplated by this invention.
  • a prodrug is an active or inactive compound that is modified chemically through in vivo physiological action, such as hydrolysis, metabolism and the like, into a compound of this invention following administration of the prodrug to a patient.
  • prodrugs are well known by those skilled in the art.
  • Examples of a masked carboxylate anion include a variety of esters, such as alkyl (for example, methyl, ethyl), cycloalkyl (for example, cyclohexyl), aralkyl (for example, benzyl, p-methoxybenzyl), and alkylcarbonyloxyalkyl (for example, pivaloyloxymethyl).
  • Amines have been masked as arylcarbonyloxymethyl substituted derivatives which are cleaved by esterases in vivo releasing the free drug and formaldehyde (Bungaard J. Med. Chem. 2503 (1989)). Also, drugs containing an acidic NH group, such as imidazole, imide, indole and the like, have been masked with N- acyloxymethyl groups (Bundgaard Design of Prodrugs, Elsevier (1985)).
  • the crude product was purified by column chromatography on a 40 g of Redi-Sep column using 0 to 100% gradient of EtOAc in hexane over 14 min and then 100% isocratic of EtOAc for 10 min as eluent to provide 4-amino-8-((2-(2-chlorophenyl)-8-methyl- quinolin-3-yl)methyl)pyrido[2,3-d]pyrimidin-5(8H)-one as white solid.
  • Example 12 l-((8-MethyI-2-(2-(trifluoromethyl)phenyl)quinoIin-3-yl)- methyl)-3-(lH-pyrazol-4-yl)-lH-pyrazolo[3,4-d]pyrimidin-4-amine:
  • Example 14 4-(4-Amino-l-((8-methyl-2-(2-(trifluoromethyl)phenyl)quinolin- 3-yl)methyl)-lH-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methylbut-3-yn-2-ol:
  • Examples 15 and 16 l-((3-(2-Chlorophenyl)-8-methylquinoxalin-2-yl)- methyl)-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine and l-((3-(2- Chlorophenyl)-5-methylquinoxalin-2-yl)methyl)-3-iodo-lH-pyrazolo[3,4- d]pyrimidin-4-amine:
  • the yellow solid was purified by column chromatography on a 80 g of Redi-SepTM column using 9% isocratic of CH 2 Cl 2 IMeOHiNH 4 OH (89:9:1) in CH 2 Cl 2 for 20 min and then 9% to 100% gradient Of CH 2 Cl 2 MeOH ⁇ H 4 OH (89:9:1) in CH 2 Cl 2 over 20 min as eluent to provide a mixture of l-((3-(2-chlorophenyl)-8-methylquinoxalin-2-yl)methyl)-3- iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine and l-((3-(2-chlorophenyl)-5- methylquinoxalin-2-yl)methy l)-3 -iodo- 1 H-pyrazolo [3 ,4-d]pyrimidin-4-amine as yellow foamy solid.
  • Example 17 and 18 l-((3-(2-Chlorophenyl)-8-methylquinoxalin-2-yl)methyl)- 3-(lH-pyrazol-4-yl)-lH-pyrazolo[3,4-d]pyrimidin-4-amine and l-((3-(2- Chlorophenyty-S-methylquinoxalin ⁇ -ylJmethyty-S-ClH-pyrazoM-yty-lH- py razolo [3,4-d] pyrimidin-4-amine:
  • Example 21 Preparation of 4-Amino-8-((5-chloro-3-(2-methoxyphenyl)-4- oxo-3,4-dihydroquinazoIin-2-yl)methyl)pyrido[2,3-d]pyrimidin-5(8H)-one: 2-Amino-6-chloro-N-(2-methoxyphenyl)benzamide
  • the filtrate was concentrated under reduced pressure and purified by column chromatography on a 120 g of Redi-SepTM column using 0 to 100% gradient of EtOAc in hexane over 20 min as eluent to provide 2-amino-6-chloro-N-(2-methoxyphenyl)benzamide as yellow solid.
  • the crude product was purified by column chromatography on a 40 g of Redi-SepTM column using 0 to 100% gradient of :MeOH:NH 4 ⁇ H (89:9:1) in CH 2 Cl 2 over 14 min as eluent to provide 4-amino-8-((5-chloro-3-(2-methoxyphenyl)-4-oxo-3,4- dihydroquinazolin-2-yl)methyl)pyrido[2,3-d]pyrimidin-5(8H)-one as yellow solid (0.1707 g, 60%).
  • 1,3,5-Trichlorotriazine (94 mg, 510 ⁇ mol) was added to dimethylformamide (0.04 mL, 510 ⁇ mol) at 25 0 C. After the formation of a white solid (10 min), DCM (3 mL) was added, followed by l-(8-chloro-2-(3-fluorophenyl)quinolin-3-yl)ethanol (140.0 mg, 464 ⁇ mol), made from procedure K. After the addition, the mixture was stirred at room temperature for 4 h. Water (10 mL) was added, and then diluted with DCM (10 mL), the organic phase was washed with 15 mL of a saturated solution OfNaHCO 3 , followed by water and brine.
  • Example 27 Preparation of l-((8-chloro-3-(2-chIorophenyl)quinoxalin-2-yl)- methyl)-3-(lH-pyrazol-4-yl)-lH-pyrazolo [3,4-d] py rimidin-4-amine as a TFA salt and l-((5-chloro-3-(2-chlorophenyl)quinoxalin-2-yl)methyl)-3-(lH- py razol-4-yl)-lH-py razolo [3,4-d] py rimidin-4-amine as a TFA salt: l-((8-Chloro-3-(2-chlorophenyl)quinoxalin-2-yl)methyl)-3-iodo-lH- pyrazolo[3,4-d]pyrimidin-4-amine and l-((5-chloro-3-(2-chlorophenyl)- quinox
  • the yellow solid was purified by column chromatography on a 40 g of Redi-SepTM column using 0-100% gradient of EtOAc in hexane over 14 min and then 100% isocratic of EtOAc for 16 min as eluent to give a mixture of two regioisomers as yellow solid.
  • Example 28 Preparation of 4-Amino-l-((3-(2-chlorophenyl)-8-methyl- quinoxalin-2-yl)methyl)-lH-pyrazolo[3,4-d]pyrimidine-3-carbonitrile and 4- Amino-l-((3-(2-chlorophenyl)-5-methylquinoxaIin-2-yl)methyl)-lH- pyrazolo[3,4-d]pyrimidine-3-carbonitrile:
  • the mixture was purified (1.5 mL ( ⁇ 50 mg) x 4 injections) by semi-prep-HPLC on a GeminiTM 10 ⁇ Cl 8 column (250 x 21.2 mm, 10 ⁇ m) using 30-70% gradient Of CH 3 CN (0.1% of TFA) in water (0.1% of TFA) over 40 min as eluent to give two fractions: each fraction was treated with saturated NaHCO 3 (50 mL) and extracted with CH 2 Cl 2 (50 mL x 1).
  • Example 29 Preparation of l-((3-(2-chlorophenyl)-8-methylquinoxalin-2-yl)- methyl)-3-(l-methyl-lH-pyrazol-4-yl)-lH-pyrazolo[3,4-d]pyrimidin-4-amine and l-((3-(2-chlorophcnyl)-5-methylquinoxalin-2-yl)methyl)-3-(l-methyl-lH- pyrazol-4-yl)-lH-pyrazolo[3,4-d]pyrimidin-4-amine:
  • the borwn solid was purified by column chromatography on a 40 g of Redi-SepTM column using 0 to 100% gradient Of CH 2 Cl 2 MeOHiNH 4 OH (89:9:1) in CH 2 Cl 2 over 14 min and then 100% isocratic of CH 2 Cl 2 :MeOH:NH 4 OH (89:9:1) for 10 min as eluent to give a mixture of two regioisomers as a dark brown solid.
  • the dark brown solid was purified (1.5 mL ( ⁇ 53 mg) x 5 injections) by semi-prep-HPLC on a GeminiTM 10 ⁇ Cl 8 column (250 x 21.2 mm, 10 ⁇ m) using 20-60% gradient Of CH 3 CN (0.1% of TFA) in water (0.1% of TFA) over 40 min as eluent to give two fractions: each fraction was treated with saturated NaHCO 3 (50 mL) and extracted with CH 2 Cl 2 (50 mL x 2).
  • Example 32 Preparation of l-((3-(2-chlorophenyl)-8-fluoroquinoxalin-2-yl)- methyl)-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine and l-((3-(2- chlorophenyI)-5-fluoroquinoxalin-2-yl)methyI)-3-iodo-lH-pyrazolo[3,4- d] pyrimidin-4-amine:
  • the black syrup was purified by column chromatography on a 80 g of Redi-SepTM column using 0 to 50% gradient of EtOAc in hexane over 25 min and then 100% isocratic of EtOAc for 4 min as eluent to give a mixture of 3-(bromomethyl)-2-(2- chlorophenyl)-5-fluoroquinoxaline and 2-(bromomethyl)-3-(2-chlorophenyl)-5- fluoroquinoxaline as a red syrup: LC-MS (ESI) two peaks of m/z 351.0 [M+H ( 79 Br)J + and 352.9 [M+H ( 81 Br)J + .
  • the red syrup was carried on crude without further purification for the next step.
  • the yellow solid was purified by silica gel column chromatography on a 40 g of Redi-SepTM column using 0- 100% gradient of EtOAc in hexane over 14 min and then 100% isocratic of EtOAc for 16 min as eluent to give a mixture of l-((3-(2-chlorophenyl)-8-fluoroquinoxalin- 2-yl)memyl)-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine and l-((3-(2- chlorophenyl)-5-fluoroquinoxalin-2-yl)methyl)-3-iodo-lH-pyrazolo[3,4- d]pyrimidin-4-amine as a tan solid.
  • Assays were performed in 25 ⁇ L with the above final concentrations of components in white polyproplyene plates (Costar 3355).
  • the ATPase activity of the alpha and gamma isozymes was not greatly stimulated by PtdIns(4,5)P2 under these conditions and was therefore omitted from the assay of these isozymes.
  • Test compounds were dissolved in dimethyl sulfoxide and diluted with three-fold serial dilutions. The compound in DMSO (1 ⁇ L) was added per test well, and the inhibition relative to reactions containing no compound, with and without enzyme was determined.
  • Isolate PBMCs from Leukopac or from human fresh blood Isolate human B cells by using Miltenyi protocol and B cell isolation kit II. -human B cells were Purified by using AutoMacs.column. Activation of human B cells
  • B cell proliferation medium DMEM + 5% FCS, 10 mM Hepes, 50 ⁇ M 2-mercaptoethanol
  • 150 ⁇ L medium contain 250 ng/mL CD40L -LZ recombinant protein (Amgen) and 2 ⁇ g/mL anti-Human IgM antibody (Jackson ImmunoReseach Lab.#109- 006-129), mixed with 50 ⁇ L B cell medium containing PI3K inhibitors and incubate 72 h at 37 °C incubator. After 72h, pulse labeling B cells with 0.5-1 uCi
  • B cell proliferation medium DMEM + 5% FCS, 50 ⁇ M 2-mercaptoethanol, 1OmM
  • the medium (150 ⁇ L) contain 250 ng/mL CD40L -LZ recombinant protein (Amgen) and 10 ng/mL IL-4 ( R&D system # 204-IL-025), mixed with 50 150 ⁇ L B cell medium containing compounds and incubate 72 h at 37 0 C incubator. After 72 h, pulse labeling B cells with 0.5-1 uCi /well 3H thymidine for overnight ⁇ 18 h, and harvest cell using TOM harvester. Specific T antigen (Tetanus toxoid) induced human PBMC proliferation assays
  • Human PBMC are prepared from frozen stocks or they are purified from fresh human blood using a Ficoll gradient. Use 96 well round-bottom plate and plate 2xlO 5 PBMC/well with culture medium (RPMI1640 + 10% FCS, 5OuM 2- MercaptoethanoljlO mM Hepes). For IC 50 determinations, PI3K inhibitors was tested from 10 ⁇ M to 0.001 ⁇ M, in half log increments and in triplicate. Tetanus toxoid ,T cell specific antigen ( University of Massachusetts Lab) was added at 1 ⁇ g/mL and incubated 6 days at 37 °C incubator. Supernatants are collected after 6 days for IL2 ELISA assay , then cells are pulsed with 3 H-thymidine for ⁇ 18 h to measure proliferation.
  • GFP assays for detecting inhibition of Class Ia and Class III PI3K AKTl is regulated by Class Ia PI3K activated by mitogenic factors (IGF- 1, PDGF, insulin, thrombin, NGF, etc.).
  • mitogenic factors IGF- 1, PDGF, insulin, thrombin, NGF, etc.
  • AKTl translocates from the cytosol to the plasma membrane Forkhead (FKHRLl) is a substrate for AKTl . It is cytoplasmic when phosphorylated by AKT (survival/growth). Inhibition of AKT (stasis/apoptosis) - forkhead translocation to the nucleus
  • FYVE domains bind to PI(3)P. the majority is generated by constitutive action of PI3K Class III AKT membrane ruffling assay (CHO-IR-AKTl-EGFP cells/GE Healthcare)
  • Heparinized human whole blood was stimulated with 10 ⁇ g/mL anti-IgD (Southern Biotech, #9030-01). 90 ⁇ L of the stimulated blood was then aliquoted per well of a 96- well plate and treated with 10 ⁇ L of various concentrations of blocking compound (from 10-0.0003 ⁇ M) diluted in IMDM + 10% FBS (Gibco). Samples were incubated together for 4 h (for CD69 expression) to 6 h (for B7.2 expression) at 37 °C.
  • Treated blood 50 ⁇ L was transferred to a 96- well, deep well plate (Nunc) for antibody staining with 10 ⁇ L each of CD45-PerCP (BD Biosciences, #347464), CD 19-FITC (BD Biosciences, #340719), and CD69-PE (BD Biosciences, #341652).
  • the second 50 ⁇ L of the treated blood was transferred to a second 96-well, deep well plate for antibody staining with 10 ⁇ L each of CD19-FITC (BD Biosciences, #340719) and CD86-PeCy5 (BD Biosciences, #555666). All stains were performed for 15-30 minutes in the dark at room temperature.
  • a human monocyte cell line, THP-I was maintained in RPMI + 10% FBS (Gibco).
  • cells were counted using trypan blue exclusion on a hemocytometer and suspended at a concentration of 1 x 10 6 cells per mL of media. 100 ⁇ L of cells plus media (1 x 10 5 cells) was then aliquoted per well of 4-96-well, deep well dishes (Nunc) to test eight different compounds. Cells were rested overnight before treatment with various concentrations (from 10-0.0003 ⁇ M) of blocking compound. The compound diluted in media (12 ⁇ L) was added to the cells for 10 minutes at 37 0 C.
  • Human MCP-I (12 ⁇ L, R&D Diagnostics, #279-MC) was diluted in media and added to each well at a final concentration of 50 ng/mL. Stimulation lasted for 2 minutes at room temperature.
  • Pre-warmed FACS Phosflow Lyse/Fix buffer (1 mL of 37 °C) (BD Biosciences, #558049) was added to each well. Plates were then incubated at 37 °C for an additional 10-15 minutes. Plates were spun at 1500 rpm for 10 minutes, supernatant was aspirated off, and 1 mL of ice cold 90% MEOH was added to each well with vigorous shaking. Plates were then incubated either overnight at - 70 °C or on ice for 30 minutes before antibody staining.
  • Gamma Counterscreen Stimulation of monocytes for phospho-AKT expression in mouse bone marrow
  • Mouse femurs were dissected from five female BALB/c mice (Charles River Labs.) and collected into RPMI + 10% FBS media (Gibco).
  • Mouse bone marrow was removed by cutting the ends of the femur and by flushing with 1 mL of media using a 25 gauge needle. Bone marrow was then dispersed in media using a 21 gauge needle. Media volume was increased to 20 mL and cells were counted using trypan blue exclusion on a hemocytometer. The cell suspension was then increased to 7.5 x 10 6 cells per 1 mL of media and 100 ⁇ L (7.5 x 10 5 cells) was aliquoted per well into 4-96-well, deep well dishes (Nunc) to test eight different compounds.
  • mice (0.2 mL) by gavage (Oral Gavage Needles Popper & Sons, New Hyde Park, NY) to mice (Transgenic Line 3751 , female, 10-12 wks Amgen Inc, Thousand Oaks, CA) 15 min prior to the injection i.v (0.2 mLs) of anti-IgM FITC (50 ug/mouse) (Jackson Immuno Research, West Grove, PA). After 45 min the mice are sacrificed within a CO 2 chamber. Blood is drawn via cardiac puncture (0.3 mL) (Ice 25 g Syringes, Sherwood, St. Louis, MO) and transferred into a 15 mL conical vial (Nalge/Nunc International,
  • BD Phosflow Lyse/Fix Buffer (BD Bioscience, San Jose, CA), inverted 3X's and placed in 37 0 C water bath.
  • Half of the spleen is removed and transferred to an eppendorf tube containing 0.5 mL of PBS (Invitrogen Corp, Grand Island, NY).
  • the spleen is crushed using a tissue grinder (Pellet Pestle, Kimble/Kontes, Vineland, NJ) and immediately fixed with 6.0 mL of BD Phosflow Lyse/Fix buffer, inverted 3X's and placed in 37 0 C water bath. Once tissues have been collected the mouse is cervically-dislocated and carcass to disposed.
  • the 15 mL conical vials are removed from the 37 0 C water bath and placed on ice until tissues are further processed. Crushed spleens are filtered through a 70 ⁇ m cell strainer (BD Bioscience, Bedford, MA) into another 15 mL conical vial and washed with 9 mL of PBS. Splenocytes and blood are spun @ 2,000 rpms for 10 min (cold) and buffer is aspirated. Cells are resuspended in 2.0 mL of cold (-20 °C) 90% methyl alcohol (Mallinckrodt Chemicals, Phillipsburg, NJ). Methanol is slowly added while conical vial is rapidly vortexed. Tissues are then stored at -20 °C until cells can be stained for FACS analysis. Multi-dose TNP immunization
  • mice were then immunized with either 50 ⁇ g of TNP-LPS (Biosearch Tech., #T-5065), 50 ⁇ g of TNP-Ficoll (Biosearch Tech., #F-1300), or 100 ⁇ g of TNP-KLH (Biosearch Tech., #T-5060) plus 1% alum (Brenntag, #3501) in PBS.
  • TNP-KLH plus alum solution was prepared by gently inverting the mixture 3-5 times every 10 minutes for 1 hour before immunization.
  • mice were CO 2 sacrificed and cardiac punctured. Blood was allowed to clot for 30 minutes and spun at 10,000 rpm in serum microtainer tubes for 10 minutes.
  • TNP-specific IgGl, IgG2a, IgG3 and IgM levels in the sera were then measured via ELISA.
  • TNP-BSA Biosearch Tech., #T-5050
  • TNP-BSA (10 ⁇ g/mL) was used to coat 384- well ELISA plates (Corning Costar) overnight. Plates were then washed and blocked for 1 h using 10% BSA ELISA Block solution (KPL). After blocking, ELISA plates were washed and sera samples/standards were serially diluted and allowed to bind to the plates for 1 h.
  • Ig-HRP conjugated secondary antibodies (goat anti-mouse IgGl, Southern Biotech #1070-05, goat anti-mouse IgG2a, Southern Biotech #1080-05, goat anti-mouse IgM, Southern Biotech #1020-05, goat anti-mouse IgG3, Southern Biotech #1100-05) were diluted at 1 :5000 and incubated on the plates for 1 h.
  • TMB peroxidase solution (SureBlue Reserve TMB from KPL) was used to visualize the antibodies. Plates were washed and samples were allowed to develop in the TMB solution approximately 5-20 minutes depending on the Ig analyzed. The reaction was stopped with 2M sulfuric acid and plates were read at an OD of 450 nm.
  • the compounds of the present invention may be administered orally, parentally, by inhalation spray, rectally, or topically in dosage unit formulations containing conventional pharmaceutically acceptable carriers, adjuvants, and vehicles.
  • parenteral as used herein includes, subcutaneous, intravenous, intramuscular, intrasternal, infusion techniques or intraperitoneally.
  • Treatment of diseases and disorders herein is intended to also include the prophylactic administration of a compound of the invention, a pharmaceutical salt thereof, or a pharmaceutical composition of either to a subject (i.e., an animal, preferably a mammal, most preferably a human) believed to be in need of preventative treatment, such as, for example, rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases, and autoimmune diseases and the like.
  • a subject i.e., an animal, preferably a mammal, most preferably a human
  • preventative treatment such as, for example, rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases, and autoimmune diseases and the like.
  • the dosage regimen for treating PI3K ⁇ -mediated diseases, cancer, and/or hyperglycemia with the compounds of this invention and/or compositions of this invention is based on a variety of factors, including the type of disease, the age, weight, sex, medical condition of the patient, the severity of the condition, the route of administration, and the particular compound employed. Thus, the dosage regimen may vary widely, but can be determined routinely using standard methods. Dosage levels of the order from about 0.01 mg to 30 mg per kilogram of body weight per day, preferably from about 0.1 mg to 10 mg/kg, more preferably from about 0.25 mg to 1 mg/kg are useful for all methods of use disclosed herein.
  • the pharmaceutically active compounds of this invention can be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, including humans and other mammals.
  • the pharmaceutical composition may be in the form of, for example, a capsule, a tablet, a suspension, or liquid.
  • the pharmaceutical composition is preferably made in the form of a dosage unit containing a given amount of the active ingredient.
  • these may contain an amount of active ingredient from about 1 to 2000 mg, preferably from about 1 to 500 mg, more preferably from about 5 to 150 mg.
  • a suitable daily dose for a human or other mammal may vary widely depending on the condition of the patient and other factors, but, once again, can be determined using routine methods.
  • the active ingredient may also be administered by injection as a composition with suitable carriers including saline, dextrose, or water.
  • suitable carriers including saline, dextrose, or water.
  • the daily parenteral dosage regimen will be from about 0.1 to about 30 mg/kg of total body weight, preferably from about 0.1 to about 10 mg/kg, and more preferably from about 0.25 mg to 1 mg/kg.
  • Injectable preparations such as sterile injectable aqueous or oleaginous suspensions, may be formulated according to the known are using suitable dispersing or wetting agents and suspending agents.
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3- butanediol.
  • a non-toxic parenterally acceptable diluent or solvent for example as a solution in 1,3- butanediol.
  • the acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil may be employed, including synthetic mono- or diglycerides.
  • fatty acids such as oleic acid find use in the preparation of injectables.
  • Suppositories for rectal administration of the drug can be prepared by mixing the drug with a suitable non-irritating excipient such as cocoa butter and polyethylene glycols that are solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drug.
  • a suitable non-irritating excipient such as cocoa butter and polyethylene glycols that are solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drug.
  • a suitable topical dose of active ingredient of a compound of the invention is 0.1 mg to 150 mg administered one to four, preferably one or two times daily.
  • the active ingredient may comprise from 0.001% to 10% w/w, e.g., from 1% to 2% by weight of the formulation, although it may comprise as much as 10% w/w, but preferably not more than 5% w/w, and more preferably from 0.1% to 1% of the formulation.
  • Formulations suitable for topical administration include liquid or semi- liquid preparations suitable for penetration through the skin (e.g., liniments, lotions, ointments, creams, or pastes) and drops suitable for administration to the eye, ear, or nose.
  • liquid or semi- liquid preparations suitable for penetration through the skin e.g., liniments, lotions, ointments, creams, or pastes
  • drops suitable for administration to the eye, ear, or nose e.g., liniments, lotions, ointments, creams, or pastes
  • the compounds of this invention are ordinarily combined with one or more adjuvants appropriate for the indicated route of administration.
  • the compounds may be admixed with lactose, sucrose, starch powder, cellulose esters of alkanoic acids, stearic acid, talc, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, acacia, gelatin, sodium alginate, polyvinyl-pyrrolidine, and/or polyvinyl alcohol, and tableted or encapsulated for conventional administration.
  • the compounds of this invention may be dissolved in saline, water, polyethylene glycol, propylene glycol, ethanol, corn oil, peanut oil, cottonseed oil, sesame oil, tragacanth gum, and/or various buffers.
  • Other adjuvants and modes of administration are well known in the pharmaceutical art.
  • the carrier or diluent may include time delay material, such as glyceryl monostearate or glyceryl distearate alone or with a wax, or other materials well known in the art.
  • the pharmaceutical compositions may be made up in a solid form
  • compositions may be subjected to conventional pharmaceutical operations such as sterilization and/or may contain conventional adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers, buffers etc.
  • Solid dosage forms for oral administration may include capsules, tablets, pills, powders, and granules.
  • the active compound may be admixed with at least one inert diluent such as sucrose, lactose, or starch.
  • Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate.
  • the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings.
  • Liquid dosage forms for oral administration may include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water. Such compositions may also comprise adjuvants, such as wetting, sweetening, flavoring, and perfuming agents.
  • Compounds of the present invention can possess one or more asymmetric carbon atoms and are thus capable of existing in the form of optical isomers as well as in the form of racemic or non-racemic mixtures thereof.
  • the optical isomers can be obtained by resolution of the racemic mixtures according to conventional processes, e.g., by formation of diastereoisomeric salts, by treatment with an optically active acid or base.
  • Examples of appropriate acids are tartaric, diacetyltartaric, dibenzoyltartaric, ditoluoyltartaric, and camphorsulfonic acid and then separation of the mixture of diastereoisomers by crystallization followed by liberation of the optically active bases from these salts.
  • a different process for separation of optical isomers involves the use of a chiral chromatography column optimally chosen to maximize the separation of the enantiomers.
  • Still another available method involves synthesis of covalent diastereoisomeric molecules by reacting compounds of the invention with an optically pure acid in an activated form or an optically pure isocyanate.
  • the synthesized diastereoisomers can be separated by conventional means such as chromatography, distillation, crystallization or sublimation, and then hydrolyzed to deliver the enantiomerically pure compound.
  • the optically active compounds of the invention can likewise be obtained by using active starting materials. These isomers may be in the form of a free acid, a free base, an ester or a salt.
  • the compounds of this invention may exist as isomers, that is compounds of the same molecular formula but in which the atoms, relative to one another, are arranged differently.
  • the alkylene substituents of the compounds of this invention are normally and preferably arranged and inserted into the molecules as indicated in the definitions for each of these groups, being read from left to right.
  • substituents are reversed in orientation relative to the other atoms in the molecule. That is, the substituent to be inserted may be the same as that noted above except that it is inserted into the molecule in the reverse orientation.
  • these isomeric forms of the compounds of this invention are to be construed as encompassed within the scope of the present invention.
  • the compounds of the present invention can be used in the form of salts derived from inorganic or organic acids.
  • the salts include, but are not limited to, the following: acetate, adipate, alginate, citrate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, camphorate, camphorsulfonate, digluconate, cyclopentanepropionate, dodecylsulfate, ethanesulfonate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, fumarate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methansulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, palmoate, pectinate, persulfate, 2-
  • the basic nitrogen- containing groups can be quaternized with such agents as lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides, and others. Water or oil-soluble or dispersible products are thereby obtained.
  • lower alkyl halides such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides
  • dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates
  • long chain halides such as
  • organic acids such as oxalic acid, maleic acid, succinic acid and citric acid.
  • Other examples include salts with alkali metals or alkaline earth metals, such as sodium, potassium, calcium or magnesium or with organic bases.
  • esters of a carboxylic acid or hydroxyl containing group including a metabolically labile ester or a prodrug form of a compound of this invention.
  • a metabolically labile ester is one which may produce, for example, an increase in blood levels and prolong the efficacy of the corresponding non-esterified form of the compound.
  • a prodrug form is one which is not in an active form of the molecule as administered but which becomes therapeutically active after some in vivo activity or biotransformation, such as metabolism, for example, enzymatic or hydrolytic cleavage.
  • esters for example, methyl, ethyl
  • cycloalkyl for example, cyclohexyl
  • aralkyl for example, benzyl, p- methoxybenzyl
  • alkylcarbonyloxyalkyl for example, pivaloyloxymethyl
  • Amines have been masked as arylcarbonyloxymethyl substituted derivatives which are cleaved by esterases in vivo releasing the free drug and formaldehyde (Bungaard J. Med. Chem. 2503 (1989)). Also, drugs containing an acidic NH group, such as imidazole, imide, indole and the like, have been masked with N- acyloxymethyl groups (Bundgaard Design of Prodrugs, Elsevier (1985)).
  • Esters of a compound of this invention may include, for example, the methyl, ethyl, propyl, and butyl esters, as well as other suitable esters formed between an acidic moiety and a hydroxyl containing moiety.
  • Metabolically labile esters may include, for example, methoxymethyl, ethoxymethyl, iso-propoxymethyl, ⁇ -methoxyethyl, groups such as ⁇ -((C J -C 4 )- alkyloxy)ethyl, for example, methoxyethyl, ethoxyethyl, propoxyethyl, iso- propoxyethyl, etc.; 2-oxo-l,3-dioxolen-4-ylmethyl groups, such as 5-methyl-2- oxo-l,3,dioxolen-4-ylmethyl, etc.; C 1 -C 3 alkylthiomethyl groups, for example, methylthiomethyl, ethylthiomethyl, isopropylthiomethyl, etc.; acyloxymethyl groups, for example, pivaloyloxymethyl, ⁇ -acetoxymethyl, etc.; ethoxycarbonyl- 1 -methyl; or ⁇ -acy
  • the compounds of the invention may exist as crystalline solids which can be crystallized from common solvents such as ethanol, N,N-dimethyl- formamide, water, or the like.
  • crystalline forms of the compounds of the invention may exist as polymorphs, solvates and/or hydrates of the parent compounds or their pharmaceutically acceptable salts. All of such forms likewise are to be construed as falling within the scope of the invention.
  • the compounds of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more compounds of the invention or other agents.
  • the therapeutic agents can be formulated as separate compositions that are given at the same time or different times, or the therapeutic agents can be given as a single composition.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Rheumatology (AREA)
  • Diabetes (AREA)
  • Dermatology (AREA)
  • Hematology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Cardiology (AREA)
  • Pain & Pain Management (AREA)
  • Neurosurgery (AREA)
  • Urology & Nephrology (AREA)
  • Pulmonology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Transplantation (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

Substituted bicyclic heteroaryls and compositions containing them, for the treatment of general inflammation, arthritis, rheumatic diseases, osteoarthritis, inflammatory bowel disorders, inflammatory eye disorders, inflammatory or unstable bladder disorders, psoriasis, skin complaints with inflammatory components, chronic inflammatory conditions, including but not restricted to autoimmune diseases such as systemic lupus erythematosis (SLE), myestenia gravis, rheumatoid arthritis, acute disseminated encephalomyelitis, idiopathic thrombocytopenic purpura, multiples sclerosis, Sjoegren's syndrome and autoimmune hemolytic anemia, allergic conditions including all forms of hypersensitivity, The present invention also enables methods for treating cancers that are mediated, dependent on or associated with p110 activity, including but not restricted to leukemias, such as Acute Myeloid leukaemia (AML) Myelo-dysplastic syndrome (MDS) myelo-proliferative diseases (MPD) Chronic Myeloid Leukemia (CML) T-cell Acute Lymphoblastic leukaemia ( T-ALL) B-cell Acute Lymphoblastic leukaemia (B-ALL) Non Hodgkins Lymphoma (NHL) B-cell lymphoma and solid tumors, such as breast cancer.

Description

HETEROCYCLIC COMPOUNDS AND THEIR USES This application claims the benefit of U.S. Provisional Application No. 60/919,565, filed March 23, 2007, which is hereby incorporated by reference.
The present invention relates generally to phosphatidylinositol 3 -kinase (PI3 K) enzymes, and more particularly to selective inhibitors of PI3K activity and to methods of using such materials. BACKGROUND OF THE INVENTION
Cell signaling via 3'-phosphorylatedphosphoinositides has been implicated in a variety of cellular processes, e.g., malignant transformation, growth factor signaling, inflammation, and immunity (see Rameh et al., J. Biol Chem, 274:8347-8350 (1999) for a review). The enzyme responsible for generating these phosphorylated signaling products, phosphatidylinositol 3-kinase (PI 3-kinase; PI3K), was originally identified as an activity associated with viral oncoproteins and growth factor receptor tyrosine kinases that phosphorylates phosphatidylinositol (PI) and its phosphorylated derivatives at the 3 '-hydroxyl of the inositol ring (Panayotou et al., Trends Cell Biol 2:358-60 (1992)).
The levels of phosphatidylinositol-3,4,5-triphosphate (PIP3), the primary product of PI 3-kinase activation, increase upon treatment of cells with a variety of stimuli. This includes signaling through receptors for the majority of growth factors and many inflammatory stimuli, hormones, neurotransmitters and antigens, and thus the activation of PBKs represents one, if not the most prevalent, signal transduction events associated with mammalian cell surface receptor activation (Cantley, Science 296:1655-1657 (2002); Vanhaesebroeck et al. Annu.Rev.Biochem, 70: 535-602 (2001)). PI 3-kinase activation, therefore, is involved in a wide range of cellular responses including cell growth, migration, differentiation, and apoptosis (Parker et al., Current Biology, 5:577-99 (1995); Yao et al., Science, 267:2003-05 (1995)). Though the downstream targets of phosphorylated lipids generated following PI 3-kinase activation have not been fully characterized, it is known that pleckstrin-homology (PH) domain- and F YVE- finger domain-containing proteins are activated when binding to various phosphatidylinositol lipids (Sternmark et al., J Cell Sci, 112:4175-83 (1999); .Lemmon et al., Trends Cell Biol, 7:237-42 (1997)). Two groups of PH-domain containing PDK effectors have been studied in the context of immune cell signaling, members of the tyrosine kinase TEC family and the serine/threonine kinases of te AGC family. Members of the Tec family containing PH domains with apparent selectivity for Ptdlns (3,4,5)P3 include Tec, Btk, Itk and Etk. Binding of PH to PIP3 is critical for tyrsosine kinase activity of the Tec family members (Schaeffer and Schwartzberg, Curr.Opin.Immunol. 12: 282-288 (2000)) AGC family members that are regulated by POK include the phosphoinositide- dependent kinase (PDKl), AKT (also termed PKB) and certain isoforms of protein kinase C (PKC) and S6 kinase. There are three isoforms of AKT and activation of AKT is strongly associated with PD K- dependent proliferation and survival signals. Activation of AKT depends on phosphorylation by PDKl, which also has a 3-phosphoinositide-selective PH domain to recruit it to the membrane where it interacts with AKT. Other important PDKl substrates are PKC and S6 kinase (Deane and Fruman, Annu.Rev.Immunol. 22_563-598 (2004)). In vitro, some isoforms of protein kinase C (PKC) are directly activated by PIP3. (Burgering et al., Nature, 376:599-602 (1995)).
Presently, the PI 3 -kinase enzyme family has been divided into three classes based on their substrate specificities. Class I PDKs can phosphorylate phosphatidylinositol (PI), phosphatidylinositol-4-phosphate, and phosphatidyl- inositol-4,5-biphosphate (PIP2) to produce phosphatidylinositol-3-phosphate
(PEP), phosphatidylinositol-3,4-biphosphate, and phosphatidylinositol-3,4,5- triphosphate, respectively. Class II PDKs phosphorylate PI and phosphatidyl- inositol-4-phosphate, whereas Class III PDKs can only phosphorylate PI.
The initial purification and molecular cloning of PI 3 -kinase revealed that it was a heterodimer consisting of p85 and pi 10 subunits (Otsu et al., Cell, 65:91- 104 (1991); Hiles et al., Cell, 70:419-29 (1992)). Since then, four distinct Class I PDKs have been identified, designated PDK α, β, δ, and γ, each consisting of a distinct 110 kDa catalytic subunit and a regulatory subunit. More specifically, three of the catalytic subunits, i.e., pi 10a, pi lOβ and pi lOδ, each interact with the same regulatory subunit, p85; whereas pi lOγ interacts with a distinct regulatory subunit, pi 01. As described below, the patterns of expression of each of these PDKs in human cells and tissues are also distinct. Though a wealth of information has been accumulated in recent past on the cellular functions of PI 3 -kinases in general, the roles played by the individual isoforms are not fully understood.
Cloning of bovine pi 10a has been described. This protein was identified as related to the Saccharomyces cerevisiae protein: Vps34p, a protein involved in vacuolar protein processing. The recombinant pi 1 Oa product was also shown to associate with p85α, to yield a PI3K activity in transfected COS-I cells. See Hiles et al., Cell, 70, 419-29 (1992).
The cloning of a second human pi 10 isoform, designated pi lOβ, is described in Hu et al., MoI Cell Biol, 13:7677-88 (1993). This isoform is said to associate with p85 in cells, and to be ubiquitously expressed, as pi lOβ mRNA has been found in numerous human and mouse tissues as well as in human umbilical vein endothelial cells, Jurkat human leukemic T cells, 293 human embryonic kidney cells, mouse 3T3 fibroblasts, HeLa cells, and NBT2 rat bladder carcinoma cells. Such wide expression suggests that this isoform is broadly important in signaling pathways.
Identification of the pi lOδ isoform of PI 3 -kinase is described in Chantry et al., J Biol Chem, 272:19236-41 (1997). It was observed that the human pi lOδ isoform is expressed in a tissue-restricted fashion. It is expressed at high levels in lymphocytes and lymphoid tissues and has been shown to play a key role in PI 3- kinase-mediated signaling in the immune system (Al-Alwan etl al. JI 178: 2328-
2335 (2007); Okkenhaug et al JI, 177: 5122-5128 (2006); Lee et al. PNAS, 103: 1289-1294 (2006)). Pl lOδ has also been shown to be expressed at lower levels in breast cells, melanocytes and endothelial cells (Vogt et al. Virology, 344: 131-138 (2006) and has since been implicated in conferring selective migratory properties to breast cancer cells (Sawyer et al. Cancer Res. 63 : 1667- 1675 (2003)). Details concerning the Pl 106 isoform also can be found in U.S. Pat. Nos. 5,858,753; 5,822,910; and 5,985,589. See also, Vanhaesebroeck et al., Proc Nat. Acad Sci USA, 94:4330-5 (1997), and international publication WO 97/46688.
In each of the PI3Kα, β, and δ subtypes, the p85 subunit acts to localize PI 3 -kinase to the plasma membrane by the interaction of its SH2 domain with phosphorylated tyrosine residues (present in an appropriate sequence context) in target proteins (Rameh et al., Cell, 83:821-30 (1995)). Five isoforms of p85 have been identified (p85α, p85β, p55γ, p55α and p50α) encoded by three genes. Alternative transcripts of Pik3rl gene encode the p85 α, p55 α and p50α proteins (Deane and Fruman, Annu.Rev.Immunol. 22: 563-598 (2004)). p85α is ubiquitously expressed while p85β, is primarily found in the brain and lymphoid tissues (Volinia et al., Oncogene, 7:789-93 (1992)). Association of the p85 subunit to the PI 3 -kinase pi 10a, β, or δ catalytic subunits appears to be required for the catalytic activity and stability of these enzymes. In addition, the binding of Ras proteins also upregulates PI 3 -kinase activity.
The cloning of pi lOγ revealed still further complexity within the PI3K family of enzymes (Stoyanov et al., Science, 269:690-93 (1995)). The pi lOγ isoform is closely related to pi 1 Oa and pi lOβ (45-48% identity in the catalytic domain), but as noted does not make use of p85 as a targeting subunit. Instead, pi lOγ binds a pi 01 regulatory subunit that also binds to the βγ subunits of heterotrimeric G proteins. The pi 01 regulatory subunit for PDKgamma was originally cloned in swine, and the human ortholog identified subsequently
(Krugmann et al., J Biol Chem, 274:17152-8 (1999)). Interaction between the N- terminal region of pi 01 with the N-terminal region of pi lOγ is known to activate PI3Kγ through Gβγ. Recently, a plOl-homologue has been identified, p84 or pgyPiKAP (PI3Ky adapter protein of 87 kDa) that binds pi 1Oy (Voigt et al. JBC, 281 : 9977-9986 (2006), Suire et al. Curr.Biol. 15: 566-570 (2005)). p87PIKAP is homologous to pi 01 in areas that bind pi lOγ and Gβγ and also mediates activation of pi lOγ downstream of G-protein-coupled receptors. Unlike pi 01, pgyPiKAP -s jygjjy expressed in the heart and may be crucial to PI3Kγ cardiac function. A constitutively active PI3K polypeptide is described in international publication WO 96/25488. This publication discloses preparation of a chimeric fusion protein in which a 102-residue fragment of p85 known as the inter-SH2 (iSH2) region is fused through a linker region to the N-terminus of murine pi 10. The p85 iSH2 domain apparently is able to activate PI3K activity in a manner comparable to intact p85 (Klippel et al., MoI Cell Biol, 14:2675-85 (1994)). Thus, PI 3 -kinases can be defined by their amino acid identity or by their activity. Additional members of this growing gene family include more distantly related lipid and protein kinases including Vps34 TORI, and TOR2 of Saccharo- myces cerevisiae (and their mammalian homologs such as FRAP and mTOR), the ataxia telangiectasia gene product (ATR) and the catalytic subunit of DNA- dependent protein kinase (DNA-PK). See generally, Hunter, Cell, 83:1-4 (1995).
PI 3 -kinase is also involved in a number of aspects of leukocyte activation. A p85-associated PI 3-kinase activity has been shown to physically associate with the cytoplasmic domain of CD28, which is an important costimulatory molecule for the activation of T-cells in response to antigen (Pages et al., Nature, 369:327- 29 (1994); Rudd, Immunity, 4:527-34 (1996)). Activation of T cells through CD28 lowers the threshold for activation by antigen and increases the magnitude and duration of the proliferative response. These effects are linked to increases in the transcription of a number of genes including interleukin-2 (IL2), an important T cell growth factor (Fraser et al., Science, 251:313-16 (1991)). Mutation of CD28 such that it can no longer interact with PI 3-kinase leads to a failure to initiate IL2 production, suggesting a critical role for PI 3-kinase in T cell activation.
Specific inhibitors against individual members of a family of enzymes provide invaluable tools for deciphering functions of each enzyme. Two compounds, LY294002 and wortmannin, have been widely used as PI 3-kinase inhibitors. These compounds, however, are nonspecific PI3K inhibitors, as they do not distinguish among the four members of Class I PI 3 -kinases. For example, the IC50 values of wortmannin against each of the various Class I PI 3 -kinases are in the range of 1-1OnM. Similarly, the IC50 values for LY294002 against each of these PI 3-kinases is about lμM (Fruman et al., Ann Rev Biochem, 67:481-507 (1998)). Hence, the utility of these compounds in studying the roles of individual Class I PI 3-kinases is limited.
Based on studies using wortmannin, there is evidence that PI 3-kinase function also is required for some aspects of leukocyte signaling through G- protein coupled receptors (Thelen et al., Proc Natl Acad Sci USA, 91:4960-64 (1994)). Moreover, it has been shown that wortmannin and LY294002 block neutrophil migration and superoxide release. However, inasmuch as these compounds do not distinguish among the various isoforms of PI3K, it remains unclear from these studies which particular PBK isoform or isoforms are involved in these phenomena and what functions the different Class I PI3K enzymes perform in both normal and diseased tissues in general. The co-expression of several PDK isoforms in most tissues has confounded efforts to segregate the activities of each enzyme until recently.
The separation of the activities of the various PDK isozymes has been advanced recently with the development of genetically manipulated mice that allowed the study of isoform-specific knock-out and kinase dead knock-in mice and the development of more selective inhibitors for some of the different isoforms. Pl 10a and pi lOβ knockout mice have been generated and are both embryonic lethal and little information can be obtained from these mice regarding the expression and function of pi 10 alpha and beta (Bi et al. Mamm.Genome, 13:169-172 (2002); Bi et al. J.Biol.Chem. 274:10963-10968 (1999)). More recently, pi 10a kinase dead knock in mice were generated with a single point mutation in the DFG motif of the ATP binding pocket (pi 10ocD933A) that impairs kinase activity but preserves mutant pi 10a kinase expression. In contrast to knock out mice, the knockin approach preserves signaling complex stoichiometry, scaffold functions and mimics small molecule approaches more realistically than knock out mice. Similar to the pi 10a KO mice, pi 10αD933A homozygous mice are embryonic lethal. However, heterozygous mice are viable and fertile but display severely blunted signaling via insulin-receptor substrate (IRS) proteins, key mediators of insulin, insulin-like growth factor- 1 and leptin action. Defective responsiveness to these hormones leads to hyperinsulinaemia, glucose intolerance, hyperphagia, increase adiposity and reduced overall growth in heterozygotes (Foukas, et al. Nature, 441 : 366-370 (2006)). These studies revealed a defined, non-redundant role for pi 1 Oa as an intermediate in IGF-I, insulin and leptin signaling that is not substituted for by other isoforms. We will have to await the description of the p 11 Oβ kinase-dead knock in mice to further understand the function of this isoform (mice have been made but not yet published; Vanhaesebroeck).
Pl lOγ knock out and kinase-dead knock in mice have both been generated and overall show similar and mild phenotypes with primary defects in migration of cells of the innate immune system and a defect in thymic development of T cells (Li et al. Science, 287: 1046-1049 (2000), Sasaki et al. Science, 287: 1040-1046 (2000), Patrucco et al. Cell, 118: 375-387 (2004)).
Similar to pi lOγ, PI3K delta knock out and kinase-dead knock-in mice have been made and are viable with mild and like phenotypes. The pi 10δD910A mutant knock in mice demonstrated an important role for delta in B cell development and function, with marginal zone B cells and CD5+ Bl cells nearly undetectable, and B- and T cell antigen receptor signaling (Clayton et al. J.Exp.Med. 196:753-763 (2002); Okkenhaug et al. Science, 297: 1031-1034 (2002)). The pi 10δD910A mice have been studied extensively and have elucidated the diverse role that delta plays in the immune system. T cell dependent and T cell independent immune responses are severely attenuated in pi lOδ091^ and secretion of THl (INF-γ) and TH2 cytokine (IL-4, IL-5) are impaired (Okkenhaug et al. J.Immunol. 177: 5122-5128 (2006)). A human patient with a mutation in pi lOδ has also recently been described. A taiwanese boy with a primary B cell immunodeficiency and a gamma-hypoglobulinemia of previously unkown aetiology presented with a single base-pair substitution, m.3256G to A in codon 1021 in exon 24 of pi lOδ. This mutation resulted in a mis-sense amino acid substitution (E to K) at codon 1021, which is located in the highly conserved catalytic domain of pi lOδ protein. The patient has no other identified mutations and his phenotype is consistent with pi 1 Oδ deficiency in mice as far as studied. (Jou et al. IntJ.Immunogenet. 33: 361-369 (2006)).
Isoform-selective small molecule compounds have been developed with varying success to all Class I PI3 kinase isoforms (Ito et al. J. Pharm. Exp. Therapeut., 321 : 1-8 (2007)). Inhibitors to alpha are desirable because mutations in pi 10a have been identified in several solid tumors; for example, an amplification mutation of alpha is associated with 50% of ovarian, cervical, lung and breast cancer and an activation mutation has been described in more than 50% of bowel and 25% of breast cancers (Hennessy et al. Nature Reviews, 4: 988-1004 (2005)). Yamanouchi has developed a compound YM-024 that inhibits alpha and delta equi-potently and is 8- and 28-fold selective over beta and gamma respectively (Ito et al. J.Pharm.Exp.Therapeut., 321:1-8 (2007)).
Pl lOβ is involved in thrombus formation (Jackson et al. Nature Med. 11 : 507-514 (2005)) and small molecule inhibitors specific for this isoform are thought after for indication involving clotting disorders (TGX-221: 0.007uM on beta; 14-fold selective over delta, and more than 500-fold selective over gamma and alpha) (Ito et al. J.Pharm.Exp.Therapeut., 321 :1-8 (2007)).
Selective compounds to pi lOγ are being developed by several groups as immunosuppressive agents for autoimmune disease (Rueckle et al. Nature Reviews, 5: 903-918 (2006)). Of note, AS 605240 has been shown to be efficacious in a mouse model of rheumatoid arthritis (Camps et al. Nature Medicine, 11 : 936-943 (2005)) and to delay onset of disease in a model of systemic lupus erythematosis (Barber et al. Nature Medicine, 11 : 933-935 (205)).
Delta-selective inhibitors have also been described recently. The most selective compounds include the quinazolinone purine inhibitors (PIK39 and IC87114). IC87114 inhibits pi lOδ in the high nanomolar range (triple digit) and has greater than 100-fold selectivity against pi 10a, is 52 fold selective against pi lOβ but lacks selectivity against pi lOγ (approx. 8-fold). It shows no activity against any protein kinases tested (Knight et al. Cell, 125: 733-747 (2006)). Using delta-selective compounds or genetically manipulated mice (pi 10δD910A) it was shown that in addition to playing a key role in B and T cell activation, delta is also partially involved in neutrophil migration and primed neutrophil respiratory burst and leads to a partial block of antigen- IgE mediated mast cell degranulation (Condliffe et al. Blood, 106: 1432-1440 (2005); AIi et al. Nature, 431 : 1007-1011 (2002)). Hence pi lOδ is emerging as an important mediator of many key inflammatory responses that are also known to participate in aberrant inflammatory conditions, including but not limited to autoimmune disease and allergy. To support this notion, there is a growing body of pi lOδ target validation data derived from studies using both genetic tools and pharmacologic agents. Thus, using the delta-selective compound IC 87114 and the pi 10δD910A mice, AIi et al. (Nature, 431: 1007-1011 (2002)) have demonstrated that delta plays a critical role in a murine model of allergic disease. In the absence of functional delta, passive cutaneous anaphylaxis (PCA) is significantly reduced and can be attributed to a reduction in allergen-IgE induced mast cell activation and degranulation. In addition, inhibition of delta with IC 87114 has been shown to significantly ameliorate inflammation and disease in a murine model of asthma using ovalbumin-induced airway inflammation (Lee et al. FASEB, 20: 455-465 (2006). These data utilizing compound were corroborated in pi 10δD910A mutant mice using the same model of allergic airway inflammation by a different group (Nashed et al. Eur.J.Immunol. 37:416-424 (2007)).
There exists a need for further characterization of PDKδ function in inflammatory and auto-immune settings. Furthermore, our understanding of PDKδ requires further elaboration of the structural interactions of pi lOδ, both with its regulatory subunit and with other proteins in the cell. There also remains a need for more potent and selective or specific inhibitors of PI3K delta, in order to avoid potential toxicology associated with activity on isozymes pi 10 alpha (insulin signaling) and beta (platelet activation). In particular, selective or specific inhibitors of PDKδ are desirable for exploring the role of this isozyme further and for development of superior pharmaceuticals to modulate the activity of the isozyme.
Summary The present invention comprises a new class of compounds having the general formula
Figure imgf000011_0001
which are useful to inhibit the biological activity of human PI3Kδ. Another aspect of the invention is to provide compounds that inhibit PI3Kδ selectively while having relatively low inhibitory potency against the other PDK isoforms. Another aspect of the invention is to provide methods of characterizing the function of human PI3Kδ. Another aspect of the invention is to provide methods of selectively modulating human PBKδ activity, and thereby promoting medical treatment of diseases mediated by PI3Kδ dysfunction. Other aspects and advantages of the invention will be readily apparent to the artisan having ordinary skill in the art. Detailed Description
One aspect of the invention relates to compounds having the structure:
Figure imgf000011_0002
or any pharmaceutically-acceptable salt thereof, wherein:
X1 is C(R9) or N;
X2 is C(R10) or N;
Z is -CR1^CR11-, -CR1 '=N-, -N=CR11-, -CRπ=CRπ-C(=O)- and -Ct=O)-CR1 '=CRπ-; n is O, 1, 2 or 3; R1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1 , 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R2 substituents, and the ring is additionally substituted by 0, 1 , 2 or 3 substituents independently selected from halo, nitro, cyano, C^alkyl, OCMalkyl, OC1-4haloalkyl, NHC1-4alkyl, N(Ci- 4alkyl)C!.4alkyl and
Figure imgf000012_0001
R2 is selected from halo,
Figure imgf000012_0002
cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2.6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2.6alkylNRaRa and -NRaC2-6alkyl0Ra; or R2 is selected from C^alkyl, phenyl, benzyl, heteroaryl, heterocycle, -(C^alky^heteroaryl, -(C^salky^heterocycle, -O(C].3alkyl)heteroaryl, -OCCLsalkyOheterocycle, -NRa(C1-3alkyl)heteroaryl, -NRa(C1-3alkyl)heterocycle, -(d-salky^phenyl, -O(C1-3alkyl)phenyl and -NRa(C1-3alkyl)phenyl all of which are substituted by 0, 1, 2 or 3 substituents selected from
Figure imgf000012_0003
OCMalkyl, Br, Cl, F, I and C1-4alkyl;
R3 is selected from H, halo, C1-4haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2.6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2.6alkylNRaRa, -NRaC2-6alkyl0Ra, Ci-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the Ci-βalkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from Cuβhaloalkyl, Od.6alkyl, Br, Cl, F, I and Ci.6alkyl; R4 is, independently, in each instance, halo, nitro, cyano, Ci-4alkyl, OCMalkyl, Od^haloalkyl, NHCMalkyl, N(CMalkyl)CMalkyl or Ci-^ialoalkyl;
R5 is, independently, in each instance, H, halo,
Figure imgf000013_0001
or Ci-βalkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OCMalkyl, CMalkyl, C1-3haloalkyl, OCMalkyl, NH2, NHCMalkyl, N(C1-4alkyl)CMalkyl; or both R5 groups together form a C3-6spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, CMalkyl, Ci-3haloalkyl, OCMalkyl, NH2, NHCMalkyl, NCCMalky^Cwalkyl;
R6 is selected from H, C1-6haloalkyl, Br, Cl, F, I, ORa, NRaRa, d-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C1-6haloalkyl, OC1-6alkyl, Br, Cl, F, I and Ci-6alkyl;
R7 is selected from H, Cuβhaloalkyl, Br, Cl, F, I, ORa, NRaRa, Ci-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the Ci-βalkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from C1-6haloalkyl, OC^ealkyl, Br, Cl, F, I and C^alkyl;
R8 is selected from H, d-ehaloalkyl, Br, Cl, F, I, ORa, NRaRa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the CMalkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from C1-6haloalkyl, OCi.6alkyl, Br, Cl, F, I and Ci-6alkyl;
R9 is selected from H, halo, C^haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2.6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaR\ -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa,
-N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2^alkylNRaRa, -NRaC2-6alkylORa, Ci-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the Ci.6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from halo,
Figure imgf000013_0002
-C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2^alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2.6alkylNRaRa, -NRaC2-6alkyl0Ra; or R9 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo,
Figure imgf000014_0001
cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa and -NRaC2-6alkyl0Ra;
R10 is H, Ci.3alkyl, Ci.3haloalkyl, cyano, nitro, CO2R3, C(=O)NRaRa, -C(=NRa)NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, S(=O)Rb, S(=O)2Rb or S(=O)2NRaRa;
R11 is selected from H, halo, C^haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2^alkylNRaRa and -NRaC2^alkylORa; or R1 ! is
Ci^alkyl or C i^alkyl (phenyl) wherein either is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, C^haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa,
-S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2.6alkylNRaRa and -NRaC2-6alkyl0Ra; and additionally substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from Br, Cl, F and I; or Rn is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, C1-4haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2^alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(-O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa and -NRaC2^alkylORa;
Ra is independently, at each instance, H or Rb; and Rb is independently, at each instance, phenyl, benzyl or C^alkyl, the phenyl, benzyl and C1-6alkyl being substituted by 0, 1, 2 or 3 substituents selected from halo, CMalkyl, C^haloalkyl, -OCi-4alkyl, -NH2, -NHC1-4alkyl, -N(CMalkyl)C1-4alkyl.
Another aspect of the invention relates to compounds having the structure:
Figure imgf000015_0001
or any pharmaceutically-acceptable salt thereof, wherein: X1 is C(R9) or N; X2 is C(R10) or N; Z is -CRπ=CRn-, -CRn=N-, -N=CR11-, -CR1 ^CR1 '-Q=O)- and -Q=O)-CR1 ^CR11-; n is O, 1, 2 or 3;
R1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1 , 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R2 substituents, and the ring is additionally substituted by 0, 1 , 2 or 3 substituents independently selected from halo, nitro, cyano, Ci^alkyl, OC1-4alkyl, OC1-4haloalkyl, NHCi^alkyl, N(C1- 4alkyl)C1-4alkyl and C^haloalkyl;
R2 is selected from halo, Ci-4haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC^alkylOR8, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa and -NRaC2-6alkylORa; or R2 is selected from C^alkyl, phenyl, benzyl, heteroaryl, heterocycle, -(C1-3alkyl)heteroaryl, -(Ci-salkytyheterocycle, -O(Ci-3alkyl)heteroaryl,
-0(C i -3alkyl)heterocycle, -NRa(C i .3alkyl)heteroaryl, -NRa(C i.3alkyl)heterocycle, -(C1-3alkyl)phenyl, -O(C1-3alkyl)phenyl and -NRa(Ci-3alkyl)phenyl all of which are substituted by 0, 1, 2 or 3 substituents selected from CMhaloalkyl,
Figure imgf000016_0001
Br, Cl, F, I and C1-4alkyl; R3 is selected from H, halo, C^haloalkyl, cyano, nitro, -C(=O)Ra,
-C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaR\ -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra,
-N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa, -NRaC2-6alkyl0Ra, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the Ci^alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from
Figure imgf000017_0001
OCi-ealkyl, Br, Cl, F, I and Ci-6alkyl;
R4 is, independently, in each instance, halo, nitro, cyano, C^alkyl, OCMalkyl, OCMhaloalkyl, NHCi-4alkyl, N(C1-4alkyl)CMalkyl or Ci^haloalkyl; R5 is, independently, in each instance, H, halo, Q^alkyl, C1-4haloalkyl, or
Ci-6alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OCMalkyl, CMalkyl, Ci.shaloalkyl, OCMalkyl, NH2, NHC1-4alkyl, N(Ci-4alkyl)CMalkyl; or both R5 groups together form a C3-6spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OCi^alkyl, CMalkyl, Ci-3haloalkyl, OC1-4alkyl, NH2, NHCMalkyl, N(CMalkyl)CMalkyl;
R6 is selected from H, C1-6haloalkyl, Br, Cl, F, I, ORa, NRaRa, Ci-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C].6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from d-όhaloalkyl, OCi.6alkyl, Br, Cl, F, I and Cj.6alkyl; R7 is selected from H, C1-6haloalkyl, Br, Cl, F, I, ORa, NRaRa, d-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C^alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from d-βhaloalkyl, OC1-6alkyl, Br, Cl, F, I and d^alkyl;
R8 is selected from H, Ci-6haloalkyl, Br, Cl, F, I, ORa, NRaRa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from d-βhaloalkyl, OCi-6alkyl, Br, Cl, F, I and d.6alkyl;
R9 is selected from H, halo, C^haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2.6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa, -NRaC2-6alkyl0Ra, Ci-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the Ci^alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from halo, Ci-4haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra,
-N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa, -NRaC2-6alkyl0Ra; or R9 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, C1-4haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2.6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa and -NRaC2-6alkyl0Ra;
R10 is H, C1-3alkyl, C1-3haloalkyl, cyano, nitro, CO2R3, C(=O)NRaRa, -C(=NRa)NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, S(=O)Rb, S(=O)2Rb or S(=O)2NRaRa;
R11 is selected from H, halo,
Figure imgf000018_0001
cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(-O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(-O)Ra, -N(Ra)C(=O)ORa,
-N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2^alkylNRaRa and -NRaC2.6alkyl0Ra; or R11 is Ci-9alkyl or
Figure imgf000018_0002
wherein either is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, Ci-^ialoalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa,
-OC(=O)N(Ra)S(=O)2Ra, -OC2.6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa and -NRaC2.6alkyl0Ra; and additionally substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from Br, Cl, F and I; or R11 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, d^haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(-O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2^alkylNRaRa and -NRaC2-6alkyl0Ra;
Ra is independently, at each instance, H or Rb; and Rb is independently, at each instance, phenyl, benzyl or d.6alkyl, the phenyl, benzyl and C1-6alkyl being substituted by 0, 1, 2 or 3 substituents selected from halo, C1-4alkyl, d.ahaloalkyl,
Figure imgf000019_0001
-NH2, -NHCMalkyl, -NCCMalkyOCMalkyl.
Another aspect of the invention relates to compounds having the structure:
Figure imgf000019_0002
or any pharmaceutically-acceptable salt thereof, wherein: X1 is C(R9) or N; X2 is C(R10) or N; Z is -CRn=CRn-, -CRn=N-, -N=CR11-, -CR11=CR* '-CC=O)- and -CC=O)-CR1 ^CR11S n is O, 1, 2 or 3;
R1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R2 substituents, and the ring is additionally substituted by 0, 1 , 2 or 3 substituents independently selected from halo, nitro, cyano, C^alkyl, OCMalkyl, OC1-4haloalkyl, NHC1-4alkyl, N(C1- -lalkyOCMalkyl and d^aloalkyl;
R2 is selected from halo, C^haloalkyl, cyano, nitro, -CC=O)R8, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -0Ra, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2.6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)OR3, -S(=O)2N(R3)C(=O)NRaRa, -NR3R3, -N(Ra)C(=O)R3, -N(R3)C(=0)0Ra, -N(Ra)C(=0)NR3R3, -N(Ra)C(=NR3)NR3R3, -N(R3)S(=O)2Ra, -N(Ra)S(=O)2NR3Ra, -NRaC2.6alkylNRaRa and -NRaC2-6alkyl0Ra; or R2 is selected from C1-6alkyl, phenyl, benzyl, heteroaryl, heterocycle, -(d-aalky^heteroaryl, -(C].3alkyl)heterocycle, -©(d-salky^heteroaryl,
-0(C 1-3alkyl)heterocycle, -NRa(C j -3alkyl)heteroaryl, -NRa(C i .3alkyl)heterocycle, -(C1-3alkyl)phenyl, -O(Ci.3alkyl)phenyl and -NRa(d -3alkyl)phenyl all of which are substituted by 0, 1, 2 or 3 substituents selected from C^aloalkyl, OC1-4alkyl, Br, Cl, F, I and CMalkyl; R3 is selected from H, halo, Ci ^aloalkyl, cyano, nitro, -C(=O)Ra,
-C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NR3R3, -OR3, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaR3, -OC^alkylOR3, -SR3, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaR3, -S(=O)2N(Ra)C(=O)R3, -S(=O)2N(R3)C(=O)OR3, -S(=O)2N(R3)C(=O)NRaR3, -NR3R3, -N(Ra)C(=O)R3, -N(Ra)C(=O)OR3, -N(Ra)C(=0)NR3R3, -N(R3)C(=NRa)NR3R3, -N(Ra)S(=O)2R3,
-N(R3)S(=O)2NR3R3, -NRaC2-6alkylNR3Ra, -NR3C2-6alkyl0Ra, Ci.6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the CMalkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from
Figure imgf000021_0001
R4 is, independently, in each instance, halo, nitro, cyano, Ci-4alkyl, OCMalkyl, OCMhaloalkyl,
Figure imgf000021_0002
R5 is, independently, in each instance, H, halo, Ci-6alkyl, C^haloalkyl, or
CMalkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OCMalkyl, CMalkyl, C1-3haloalkyl, OCMalkyl, NH2, NHC^alkyl, N(Ci-4alkyl)C1-4alkyl; or both R5 groups together form a C3-6spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OCi-4alkyl, CMalkyl, d-3haloalkyl, OC1-4alkyl, NH2, NHC1-4alkyl, N(CMalkyl)CMalkyl;
R6 is selected from H, Q-βhaloalkyl, Br, Cl, F, I, ORa, NRaRa, C^alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the
Figure imgf000021_0003
phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from
Figure imgf000021_0004
R7 is selected from H, C1-6haloalkyl, Br, Cl, F, I, ORa, NRaRa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C^alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from C1-6haloalkyl, OC1-6alkyl, Br, Cl, F, I and d.6alkyl;
R8 is selected from H, C1-6haloalkyl, Br, Cl, F, I, ORa, NRaRa, Ci.6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C^alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from Cj-ehaloalkyl, OC1-6alkyl, Br, Cl, F, I and C1-6alkyl;
R9 is selected from H, halo, d-^aloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2.6alkylNRaRa, -OC^alkylOR3, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa, -NRaC2.6alkyl0Ra, CMalkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the CMalkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from halo, CMhaloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2.6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra,
-N(Ra)S(=O)2NRaRa, -NRaC2.6alkylNRaRa, -NRaC2-6alkyl0Ra; or R9 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, Ci^haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2.6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa and -NRaC2-6alkyl0Ra;
R10 is H, C1-3alkyl, C1-3haloalkyl, cyano, nitro, CO2R3, C(=O)NRaRa, -C(=NRa)NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, S(=O)Rb, S(=O)2Rb or S(=O)2NRaRa;
R11 is selected from H, halo, C^haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2.6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(-O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa,
-N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2.6alkylNRaRa and -NRaC2-6alkyl0Ra; or R11 is
Figure imgf000022_0001
wherein either is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, Ci^haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa,
-OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa and -NRaC2-6alkyl0Ra; and additionally substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from Br, Cl, F and I; or R11 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, d-^aloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2^alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa and -NRaC2^alkylORa;
Ra is independently, at each instance, H or Rb; and Rb is independently, at each instance, phenyl, benzyl or C1-6alkyl, the phenyl, benzyl and Cj.6alkyl being substituted by 0, 1, 2 or 3 substituents selected from halo, C1-4alkyl, C1-3haloalkyl, -OC^alkyl, -NH2, -NHCMalkyl, -N(CMalkyl)CMalkyl.
Another aspect of the invention relates to compounds having the structure:
Figure imgf000023_0001
or any pharmaceutically-acceptable salt thereof, wherein: X1 is C(R9) or N; X2 is C(R10) or N; Z is -CRπ=CR"-, -CRn=N-, -N-CR11-, -CR11^CR11 -C(O)- and -CC=O)-CR1 ^CR11S n is 0, 1, 2 or 3;
R1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R2 substituents, and the ring is additionally substituted by 0, 1 , 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OCMalkyl, OCMhaloalkyl, NHC1-4alkyl, N(C1- 4alkyl)C1-4alkyl and
Figure imgf000024_0001
R2 is selected from halo, C^haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa 5 -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2.6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2.6alkylNRaRa and -NRaC2-6alkyl0Ra; or R2 is selected from Chalky!, phenyl, benzyl, heteroaryl, heterocycle, -(d-salkyOheteroaryl, -(C1-3alkyl)heterocycle,
Figure imgf000024_0002
-O(C1-3alkyl)heterocycle, -NRa(C1-3alkyl)heteroaryl, -NR8CC1.3alkyl)heterocycle, -(Ci-3alkyl)phenyl, -O(C1-3alkyl)phenyl and -NRa(C1-3alkyl)phenyl all of which are substituted by 0, 1, 2 or 3 substituents selected from d^haloalkyl, OCi^alkyl, Br, Cl, F, I and C1-4alkyl; R3 is selected from H, halo, C^haloalkyl, cyano, nitro, -C(=O)Ra,
-C(=O)ORa, -C(=O)NRaRa, -C(-NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2.6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra,
-N(Ra)S(=O)2NRaRa, -NRaC2^alkylNRaRa, -NRaC2.6alkyl0Ra, d^alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the
Figure imgf000024_0003
phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from Ci.6haloalkyl,
Figure imgf000025_0001
Br, Cl, F, I and
Figure imgf000025_0002
R4 is, independently, in each instance, halo, nitro, cyano, Ci-4alkyl, OCMalkyl, Od-4haloalkyl, NHCMalkyl, N(CMalkyl)CMalkyl or C1-4haloalkyl; R5 is, independently, in each instance, H, halo, C^alkyl, Q^haloalkyl, or d^alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, CMalkyl, C1-3haloalkyl, OCMalkyl, NH2, NHCMalkyl, N(CMalkyl)Ci-4alkyl; or both R5 groups together form a C3-6spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OCi^alkyl, CMalkyl, C1-3haloalkyl, OC1-4alkyl, NH2, NHCMalkyl, NCCMalky^d^alkyl;
R6 is selected from H, Ci-όhaloalkyi, Br, Cl, F, I, ORa, NRaRa, d.6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the d.6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from Ci-6haloalkyl, Od^alkyl, Br, Cl, F, I and d^alkyl; R7 is selected from H, C1-6haloalkyl, Br, Cl, F, I, ORa, NRaRa, Cϊ.6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the
Figure imgf000025_0003
phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from d-ehaloalkyl, OCi-6alkyl, Br, Cl, F, I and C!-6alkyl;
R8 is selected from H, C1-6haloalkyl, Br, Cl, F, I, ORa, NRaRa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from d-6haloalkyl, OC1-6alkyl, Br, Cl, F, I and C1-6alkyl;
R9 is selected from H, halo, d^haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa, -NRaC2-6alkyl0Ra, C,.6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the Ci-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from halo,
Figure imgf000025_0004
cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2^alkylNRaRa, -OC^alkylOR8, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra,
-N(Ra)S(=O)2NRaRa, -NRaC2.6alkylNRaRa, -NRaC2.6alkyl0Ra; or R9 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo,
Figure imgf000026_0001
cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa and -NRaC2.6alkyl0Ra;
R10 is H, Ci.3alkyl, C1-3haloalkyl, cyano, nitro, CO2Ra, C(=O)NRaRa, -C(=NRa)NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, S(=O)Rb, S(=O)2Rb or S(=O)2NRaRa;
R11 is selected from H, halo, C1-4haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(-O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa,
-N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa and -NRaC2-6alkyl0Ra; or R11 is Ci-9alkyl or CMalkyl(phenyl) wherein either is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, Ci-4haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa,
-OC(=O)N(Ra)S(=O)2Ra, -OC2.6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2.6alkylNRaRa and -NRaC2-6alkyl0Ra; and additionally substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from Br, Cl, F and I; or R11 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo,
Figure imgf000027_0001
cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa and -NRaC2-6alkyl0Ra;
Ra is independently, at each instance, H or Rb; and Rb is independently, at each instance, phenyl, benzyl or C1-6alkyl, the phenyl, benzyl and Ci^alkyl being substituted by 0, 1, 2 or 3 substituents selected from halo, CMalkyl, C^haloalkyl, -OC1-4alkyl, -NH2, -NHCMalkyl, -N(C1-4alkyl)C1-4alkyl.
Another aspect of the invention relates to compounds having the structure:
Figure imgf000027_0002
or any pharmaceutically-acceptable salt or hydrate thereof, wherein: X1 is C(R9) or N; X2 is C(R10) or N; Z is -CR1 ^CR11-, -CR11^=N-, -N=CR11-, -CRπ=CRπ-C(=O)- and -CC=O)-CR1 ^CR11-; n is O, 1, 2 or 3;
R1 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, Ci^alkyl, OCi-4alkyl, OCMhaloalkyl, NHC^alkyl, N(C1-4alkyl)CMalkyl and CMhaloalkyl;
R2 is selected from halo, C^haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2-6alkylORa 5 -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2.6alkylNRaRa and -NRaC2-6alkyl0Ra; or R2 is selected from Ci^alkyl, phenyl, benzyl, heteroaryl and heterocycle, all of which are substituted by 0, 1, 2 or 3 substituents selected from C^haloalkyl, OC^alkyl, Br, Cl, F, I and CJ-4alkyl;
R3 is selected from H, halo, C1-4haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2^alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa,
-N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa, -NRaC2-6alkyl0Ra, C,.6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C].6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from C i -6haloalkyl, OC i ^alkyl, Br, Cl, F, I and C i .6alkyl;
R4 is, independently, in each instance, halo, nitro, cyano, Ci^alkyl, OCMalkyl, OCMhaloalkyl, NHCMalkyl, N(CMalkyl)Ci-4alkyl or Ci^aloalkyl; R5 is, independently, in each instance, H, halo, d^alkyl, d-^aloalkyl, or Ci-6alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OCMalkyl, d^alkyl, Ci-3haloalkyl, OC^alkyl, NH2, NHCMalkyl, N(Ci-4alkyl)Cj.4alkyl; or both R5 groups together form a C3.6spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, C1-4alkyl, Ci-3haloalkyl, OCMalkyl, NH2, NHCMalkyl, N(CMalkyl)CMalkyl;
R6 is selected from H, d.6haloalkyl, Br, Cl5 F, I, 0Ra, NRaRa, d-ealkyl, phenyl, ben∑yl, heteroaryl and heterocycle, wherein the d^alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from d-6haloalkyl, OC1-6alkyl, Br, Cl, F, I and d.6alkyl;
R7 is selected from H, Ci-6haloalkyl, Br, Cl, F, I, ORa, NRaRa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the d.6alkyl, phenyl, benzyl, heteroaryl and heterocycle are substituted by 0, 1, 2 or 3 substituents selected from Ci-6haloalkyl, Od.6alkyl, Br, Cl, F, I and C1-6alkyl; R8 is selected from H, halo, d^haloalkyl, cyano, nitro, -C(=O)Ra,
-C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra,
-N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa and -NRaC2-6alkyl0Ra; or R8 is d.palkyl or d-4alkyl(phenyl) wherein either is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, C^aloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2.6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2.6alkylNRaRa and -NRaC2-6alkyl0Ra; and additionally substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from Br, Cl, F and I; or R8 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, Ci-4haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2^alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2^alkylNRaRa and -NRaC2-6alkyl0Ra;
R9 is selected from H, halo,
Figure imgf000030_0001
cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa, -NRaC2-6alkyl0Ra, Ci^alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from halo, CMhaloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra,
-N(Ra)S(-O)2NRaRa, -NRaC2.6alkylNRaRa, -NRaC2-6alkyl0Ra; or R9 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1 , 2, 3 or 4 substituents selected from halo, Ci-4haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa and -NRaC2-6alkyl0Ra;
R10 is H, C1-3alkyl, Ci-3haloalkyl, cyano, nitro, CO2R3, C(=O)NRaRa, -C(=NRa)NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, S(=O)Rb, S(=O)2Rb or S(=O)2NRaRa;
R11 is selected from H, halo, Ci^haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2^alkylNRaRa and -NRaC2-6alkyl0Ra; or R11 is C^alkyl or CMalkyl(phenyl) wherein either is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, C^haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2.6alkylNRaRa, -OC2_6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2.6alkylNRaRa and -NRaC2.6alkyl0Ra; and additionally substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from Br, Cl, F and I; or R11 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, CMhaloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa,
-OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2^alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra 5 -S(=O)2N(Ra)C(=O)ORa 5 -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa and -NRaC2-6alkyl0Ra; Ra is independently, at each instance, H or Rb; and
Rb is independently, at each instance, phenyl, benzyl or d^alkyl, the phenyl, benzyl and Ci-6alkyl being substituted by 0, 1, 2 or 3 substituents selected from halo, C^alkyl, Ci-3haloalkyl, -OCMalkyl, -NH2, -NHC1-4alkyl, -N(CMalkyl)C1-4alkyl. In another embodiment, in conjunction with any of the above or below embodiments, X1 is C(R9) and X2 is N.
In another embodiment, in conjunction with any of the above or below embodiments, X1 is C(R9) and X2 is C(R10).
In another embodiment, in conjunction with any of the above or below embodiments, R1 is phenyl substituted by 0 or 1 R2 substituents, and the phenyl is additionally substituted by 0, 1 , 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC1-4haloalkyl, NHCMalkyl, N(C1- ^ky^d^alkyl and d^haloalkyl.
In another embodiment, in conjunction with any of the above or below embodiments, R1 is phenyl.
In another embodiment, in conjunction with any of the above or below embodiments, R1 is phenyl substituted by R2, and the phenyl is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, CMalkyl, OCMalkyl, OCMhaloalkyl, NHCMalkyl,
Figure imgf000032_0001
and C1-4haloalkyl.
In another embodiment, in conjunction with any of the above or below embodiments, R1 is selected from 2-methylphenyl, 2-chlorophenyl, 2- trifluoromethylphenyl, 2 -fluorophenyl and 2-methoxyphenyl.
In another embodiment, in conjunction with any of the above or below embodiments, R1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, CMalkyl, OC^alkyl, OC1-4haloalkyl, NHCMalkyl, N(C1. 4alkyl)C1-4alkyl and CMhaloalkyl.
In another embodiment, in conjunction with any of the above or below embodiments, R1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the ring is substituted by 0 or 1 R2 substituents, and the ring is additionally substituted by 0, 1 , 2 or 3 substituents independently selected from halo, nitro, cyano, C1-4alkyl, OC1-4alkyl, OC^aloalkyl, NHCMalkyl, N(C1. 4alkyl)C1-4alkyl and
Figure imgf000033_0001
In another embodiment, in conjunction with any of the above or below embodiments, R1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the ring is substituted by 0 or 1 R2 substituents, and the ring is additionally substituted by 1, 2 or 3 substituents independently selected from halo, nitro, cyano, CMalkyl, OC^alkyl, OC^aloalkyl, NHCMalkyl, N(C1- 4alkyl)CMalkyl and C^haloalkyl. In another embodiment, in conjunction with any of the above or below embodiments, R1 is an unsaturated 5- or 6-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S.
In another embodiment, in conjunction with any of the above or below embodiments, R1 is selected from pyridyl and pyrimidinyl. In another embodiment, in conjunction with any of the above or below embodiments, R3 is selected from halo, d^haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2.6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2^alkylNRaRa, -NRaC2.6alkyl0Ra, Ci.6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C^alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from d-ehaloalkyl, OC1-6alkyl, Br, Cl, F, I and C^alkyl.
In another embodiment, in conjunction with any of the above or below embodiments, R3 is H.
In another embodiment, in conjunction with any of the above or below embodiments, R3 is selected from F, Cl, Ci-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the d.6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from d-δhaloalkyl, OC1-6alkyl, Br, Cl, F, I and Ci-6alkyl.
In another embodiment, in conjunction with any of the above or below embodiments, R5 is, independently, in each instance, H, halo, C^alkyl, Q- 4haloalkyl, or Ci-6alkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC^alkyl, C1-4alkyl, d-3haloalkyl, OC^alkyl, NH2, NHCi-4alkyl, N(CMalkyl)C]-4alkyl; or both R5 groups together form a C3-6spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH, OC^alkyl, C1-4alkyl, C1-3haloalkyl, OCMalkyl, NH2, NHCMalkyl, N(CMalkyl)CMalkyl. In another embodiment, in conjunction with any of the above or below embodiments, R5 is H. In another embodiment, in conjunction with any of the above or below embodiments, one R5 is S-methyl, the other is H.
In another embodiment, in conjunction with any of the above or below embodiments, at least one R5 is halo,
Figure imgf000034_0001
substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, CMalkyl, C1-3haloalkyl,
Figure imgf000034_0002
NH2, NHCMalkyl, N(Ci-4alkyl)CMalkyl. In another embodiment, in conjunction with any of the above or below embodiments, R is H.
In another embodiment, in conjunction with any of the above or below embodiments, R6 is NRbRa. In another embodiment, in conjunction with any of the above or below embodiments, R6 is NH2. In another embodiment, in conjunction with any of the above or below embodiments, R6 is NHCi-βalkyl.
In another embodiment, in conjunction with any of the above or below embodiments, R7 is selected from d-ehaloalkyl, Br, Cl, F, I, ORa, NRaRa, C^alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the Ci^alkyl, phenyl, benzyl, heteroaryl and heterocycle are substituted by 0, 1 , 2 or 3 substituents selected from Ci-όhaloalkyl, OCϊ-όalkyl, Br, Cl, F, I and Ci-6alkyl.
In another embodiment, in conjunction with any of the above or below embodiments, R7 is selected from C1-6haloalkyl, Br, Cl, F, I and Ci^alkyl. In another embodiment, in conjunction with any of the above or below embodiments, R7 is H.
In another embodiment, in conjunction with any of the above or below embodiments, R is H.
In another embodiment, in conjunction with any of the above or below embodiments, R8 is selected from halo, Ci-4haloalkyl, cyano, nitro, -C(=O)Ra,
-C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra,
-N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa and -NRaC2-6alkyl0Ra.
In another embodiment, in conjunction with any of the above or below embodiments, R8 is Cj.galkyl or Ci--ιalkyl(phenyl) wherein either is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, Ci-4haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra,
-OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2.6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa and -NRaC2-6alkyl0Ra; and additionally substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from Br, Cl, F and I. In another embodiment, in conjunction with any of the above or below embodiments, R8 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1 , 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, Ci-4-ialoalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa and -NRaC2^alkylORa.
In another embodiment, in conjunction with any of the above or below embodiments, R9 is H.
In another embodiment, in conjunction with any of the above or below embodiments, R9 is selected from halo, d^haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa, -NRaC2-6alkyl0Ra, C1-6alkyl, phenyl, ben2yl, heteroaryl and heterocycle, wherein the Ci-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from halo, Ci^haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa,
-N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa, -NRaC2-6alkyl0Ra. In another embodiment, in conjunction with any of the above or below embodiments, R is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1 , 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, C1-4haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2^alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaR\ -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2^alkylNRaRa and -NRaC2-6alkyl0Ra.
In another embodiment, in conjunction with any of the above or below embodiments, R10 is H.
In another embodiment, in conjunction with any of the above or below embodiments, R10 is cyano, nitro, CO2R3, C(=O)NRaRa, -C(=NRa)NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, S(=O)Rb, S(=O)2Rb or S(=O)2NRaRa. Another aspect of the invention relates to a method of treating PI3K- mediated conditions or disorders.
In certain embodiments, the PI3K-mediated condition or disorder is selected from rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases, and autoimmune diseases. In other embodiments, the PI3K- mediated condition or disorder is selected from cardiovascular diseases, atherosclerosis, hypertension, deep venous thrombosis, stroke, myocardial infarction, unstable angina, thromboembolism, pulmonary embolism, thrombolytic diseases, acute arterial ischemia, peripheral thrombotic occlusions, and coronary artery disease. In still other embodiments, the PI3K- mediated condition or disorder is selected from cancer, colon cancer, glioblastoma, endometrial carcinoma, hepatocellular cancer, lung cancer, melanoma, renal cell carcinoma, thyroid carcinoma, cell lymphoma, lymphoproliferative disorders, small cell lung cancer, squamous cell lung carcinoma, glioma, breast cancer, prostate cancer, ovarian cancer, cervical cancer, and leukemia. In yet another embodiment, the PD K- mediated condition or disorder is selected from type II diabetes. In still other embodiments, the PI3K- mediated condition or disorder is selected from respiratory diseases, bronchitis, asthma, and chronic obstructive pulmonary disease. In certain embodiments, the subject is a human.
Another aspect of the invention relates to the treatment of rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases or autoimmune diseases comprising the step of administering a compound according to any of the above embodiments.
Another aspect of the invention relates to the treatment of rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases and autoimmune diseases, inflammatory bowel disorders, inflammatory eye disorders, inflammatory or unstable bladder disorders, skin complaints with inflammatory components, chronic inflammatory conditions, autoimmune diseases, systemic lupus erythematosis (SLE), myestenia gravis, rheumatoid arthritis, acute disseminated encephalomyelitis, idiopathic thrombocytopenic purpura, multiples sclerosis, Sjoegren's syndrome and autoimmune hemolytic anemia, allergic conditions and hypersensitivity, comprising the step of administering a compound according to any of the above or below embodiments.
Another aspect of the invention relates to the treatment of cancers that are mediated, dependent on or associated with pi lOδ activity, comprising the step of administering a compound according to any of the above or below embodiments.
Another aspect of the invention relates to the treatment of cancers are selected from acute myeloid leukaemia, myelo-dysplastic syndrome, myeloproliferative diseases, chronic myeloid leukaemia, T-cell acute lymphoblastic leukaemia, B-cell acute lymphoblastic leukaemia, non-hodgkins lymphoma, B- cell lymphoma, solid tumors and breast cancer, comprising the step of administering a compound according to any of the above or below embodiments. Another aspect of the invention relates to a pharmaceutical composition comprising a compound according to any of the above embodiments and a pharmaceutically-acceptable diluent or carrier.
Another aspect of the invention relates to the use of a compound according to any of the above embodiments as a medicament.
Another aspect of the invention relates to the use of a compound according to any of the above embodiments in the manufacture of a medicament for the treatment of rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases, and autoimmune diseases. The compounds of this invention may have in general several asymmetric centers and are typically depicted in the form of racemic mixtures. This invention is intended to encompass racemic mixtures, partially racemic mixtures and separate enantiomers and diasteromers.
Unless otherwise specified, the following definitions apply to terms found in the specification and claims:
"Cα-βalkyl" means an alkyl group comprising a minimum of α and a maximum of β carbon atoms in a branched, cyclical or linear relationship or any combination of the three, wherein α and β represent integers. The alkyl groups described in this section may also contain one or two double or triple bonds. Examples Of C1- 6alkyl include, but are not limited to the following:
Figure imgf000039_0001
"Benzo group", alone or in combination, means the divalent radical C4H4=, one representation of which is -CH=CH-CH=CH-, that when vicinally attached to another ring forms a benzene-like ring— for example tetrahydronaphthylene, indole and the like.
The terms "oxo" and "thioxo" represent the groups =0 (as in carbonyl) and =S (as in thiocarbonyl), respectively.
"Halo" or "halogen" means a halogen atoms selected from F, Cl, Br and I. "Cv-whaloalkyl" means an alkyl group, as described above, wherein any number- at least one— of the hydrogen atoms attached to the alkyl chain are replaced by F, Cl5 Br or I.
"Heterocycle" means a ring comprising at least one carbon atom and at least one other atom selected from N, O and S. Examples of heterocycles that may be found in the claims include, but are not limited to, the following:
Figure imgf000040_0001
Figure imgf000040_0002
and ^N . " Available nitrogen atoms" are those nitrogen atoms that are part of a heterocycle and are joined by two single bonds (e.g. piperidine), leaving an external bond available for substitution by, for example, H or CH3.
"Pharmaceutically-acceptable salt" means a salt prepared by conventional means, and are well known by those skilled in the art. The "pharmacologically acceptable salts" include basic salts of inorganic and organic acids, including but not limited to hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, malic acid, acetic acid, oxalic acid, tartaric acid, citric acid, lactic acid, fumaric acid, succinic acid, maleic acid, salicylic acid, benzoic acid, phenylacetic acid, mandelic acid and the like. When compounds of the invention include an acidic function such as a carboxy group, then suitable pharmaceutically acceptable cation pairs for the carboxy group are well known to those skilled in the art and include alkaline, alkaline earth, ammonium, quaternary ammonium cations and the like. For additional examples of "pharmacologically acceptable salts," see infra and Berge et al., J. Pharm. Sci. 66:1 (1977).
"Saturated, partially saturated or unsaturated" includes substituents saturated with hydrogens, substituents completely unsaturated with hydrogens and substituents partially saturated with hydrogens. . "Leaving group" generally refers to groups readily displaceable by a nucleophile, such as an amine, a thiol or an alcohol nucleophile. Such leaving groups are well known in the art. Examples of such leaving groups include, but are not limited to, N-hydroxysuccinimide, N-hydroxybenzotriazole, halides, triflates, tosylates and the like. Preferred leaving groups are indicated herein where appropriate. "Protecting group" generally refers to groups well known in the art which are used to prevent selected reactive groups, such as carboxy, amino, hydroxy, mercapto and the like, from undergoing undesired reactions, such as nucleophilic, electrophilic, oxidation, reduction and the, like. Preferred protecting groups are indicated herein where appropriate. Examples of amino protecting groups include, but are not limited to, aralkyl, substituted aralkyl, cycloalkenylalkyl and substituted cycloalkenyl alkyl, allyl, substituted allyl, acyl, alkoxycarbonyl, aralkoxycarbonyl, silyl and the like. Examples of aralkyl include, but are not limited to, benzyl, ortho- methylbenzyl, trityl and benzhydryl, which can be optionally substituted with halogen, alkyl, alkoxy, hydroxy, nitro, acylamino, acyl and the like, and salts, such as phosphonium and ammonium salts. Examples of aryl groups include phenyl, naphthyl, indanyl, anthracenyl, 9-(9-phenylfluorenyl), phenanthrenyl, durenyl and the like. Examples of cycloalkenylalkyl or substituted cycloalkylenylalkyl radicals, preferably have 6-10 carbon atoms, include, but are not limited to, cyclohexenyl methyl and the like. Suitable acyl, alkoxycarbonyl and aralkoxycarbonyl groups include benzyloxycarbonyl, t-butoxycarbonyl, iso-butoxycarbonyl, benzoyl, substituted benzoyl, butyryl, acetyl, trifluoroacetyl, trichloro acetyl, phthaloyl and the like. A mixture of protecting groups can be used to protect the same amino group, such as a primary amino group can be protected by both an aralkyl group and an aralkoxycarbonyl group. Amino protecting groups can also form a heterocyclic ring with the nitrogen to which they are attached, for example, l,2-bis(methylene)benzene, phthalimidyl, succinimidyl, maleimidyl and the like and where these heterocyclic groups can further include adjoining aryl and cycloalkyl rings. In addition, the heterocyclic groups can be mono-, di- or tri- substituted, such as nitrophthalimidyl. Amino groups may also be protected against undesired reactions, such as oxidation, through the formation of an addition salt, such as hydrochloride, toluenesulfonic acid, trifluoroacetic acid and the like. Many of the amino protecting groups are also suitable for protecting carboxy, hydroxy and mercapto groups. For example, aralkyl groups. Alkyl groups are also suitable groups for protecting hydroxy and mercapto groups, such as tert-butyl. Silyl protecting groups are silicon atoms optionally substituted by one or more alkyl, aryl and aralkyl groups. Suitable silyl protecting groups include, but are not limited to, trimethylsilyl, triethylsilyl, triisopropylsilyl, tert- butyldimethylsilyl, dimethylphenylsilyl, l,2-bis(dimethylsilyl)benzene, 1 ,2-bis(dimethylsilyl)ethane and diphenylmethylsilyl. Silylation of an amino groups provide mono- or di-silylamino groups. Silylation of aminoalcohol compounds can lead to a N,N,O-trisilyl derivative. Removal of the silyl function from a silyl ether function is readily accomplished by treatment with, for example, a metal hydroxide or ammonium fluoride reagent, either as a discrete reaction step or in situ during a reaction with the alcohol group. Suitable silylating agents are, for example, trimethylsilyl chloride, tert-butyl-dimethylsilyl chloride, phenyldimethylsilyl chloride, diphenylmethyl silyl chloride or their combination products with imidazole or DMF. Methods for silylation of amines and removal of silyl protecting groups are well known to those skilled in the art. Methods of preparation of these amine derivatives from corresponding amino acids, amino acid amides or amino acid esters are also well known to those skilled in the art of organic chemistry including amino acid/amino acid ester or aminoalcohol chemistry. Protecting groups are removed under conditions which will not affect the remaining portion of the molecule. These methods are well known in the art and include acid hydrolysis, hydrogenolysis and the like. A preferred method involves removal of a protecting group, such as removal of a benzyloxycarbonyl group by hydrogenolysis utilizing palladium on carbon in a suitable solvent system such as an alcohol, acetic acid, and the like or mixtures thereof. A t- butoxycarbonyl protecting group can be removed utilizing an inorganic or organic acid, such as HCl or trifluoroacetic acid, in a suitable solvent system, such as dioxane or methylene chloride. The resulting amino salt can readily be neutralized to yield the free amine. Carboxy protecting group, such as methyl, ethyl, benzyl, tert-butyl, 4-methoxyphenylmethyl and the like, can be removed under hydrolysis and hydrogenolysis conditions well known to those skilled in the art.
It should be noted that compounds of the invention may contain groups that may exist in tautomeric forms, such as cyclic and acyclic amidine and guanidine groups, heteroatom substituted heteroaryl groups (Y' = O, S, NR), and the like, which are illustrated in the following examples:
Figure imgf000044_0001
and though one form is named, described, displayed and/or claimed herein, all the tautomeric forms are intended to be inherently included in such name, description, display and/or claim. Prodrugs of the compounds of this invention are also contemplated by this invention. A prodrug is an active or inactive compound that is modified chemically through in vivo physiological action, such as hydrolysis, metabolism and the like, into a compound of this invention following administration of the prodrug to a patient. The suitability and techniques involved in making and using prodrugs are well known by those skilled in the art. For a general discussion of prodrugs involving esters see Svensson and Tunek Drug Metabolism Reviews 165 (1988) and Bundgaard Design of Prodrugs, Elsevier (1985). Examples of a masked carboxylate anion include a variety of esters, such as alkyl (for example, methyl, ethyl), cycloalkyl (for example, cyclohexyl), aralkyl (for example, benzyl, p-methoxybenzyl), and alkylcarbonyloxyalkyl (for example, pivaloyloxymethyl). Amines have been masked as arylcarbonyloxymethyl substituted derivatives which are cleaved by esterases in vivo releasing the free drug and formaldehyde (Bungaard J. Med. Chem. 2503 (1989)). Also, drugs containing an acidic NH group, such as imidazole, imide, indole and the like, have been masked with N- acyloxymethyl groups (Bundgaard Design of Prodrugs, Elsevier (1985)).
Hydroxy groups have been masked as esters and ethers. EP 039,051 (Sloan and Little, 4/11/81) discloses Mannich-base hydroxamic acid prodrugs, their preparation and use.
The specification and claims contain listing of species using the language "selected from . . . and . . ." and "is . . . or . . ." (sometimes referred to as Markush groups). When this language is used in this application, unless otherwise stated it is meant to include the group as a whole, or any single members thereof, or any subgroups thereof. The use of this language is merely for shorthand purposes and is not meant in any way to limit the removal of individual elements or subgroups as needed.
Experimental
The following abbreviations are used: aq. - aqueous
BINAP - 2,2'-bis(diphenylphosphino)-l , 1 '-binaphthyl cond - concentrated
DCM dichloromethane
DMF - N, iV-dimethylformamide
Et2O - diethyl ether
EtOAc - ethyl acetate
EtOH - ethyl alcohol h - hour(s) min - minutes
MeOH - methyl alcohol rt room temperature satd - saturated
THF - tetrahydrofuran
General
Reagents and solvents used below can be obtained from commercial sources. 1H- NMR spectra were recorded on a Bruker 400 MHz and 500 MHz NMR spectrometer. Significant peaks are tabulated in the order: multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br s, broad singlet) , coupling constant(s) in Hertz (Hz) and number of protons. Mass spectrometry results are reported as the ratio of mass over charge, followed by the relative abundance of each ion (in parentheses Electrospray ionization (ESI) mass spectrometry analysis was conducted on a Agilent 1100 series LC/MSD electrospray mass spectrometer. All compounds could be analyzed in the positive ESI mode using acetonitrile: water with 0.1% formic acid as the delivery solvent. Reverse phase analytical HPLC was carried out using a Agilent 1200 series on Agilent Eclipse XDB-C 18 5μm column (4.6 x 150 mm) as the stationary phase and eluting with acetonitrile:H2θ with 0.1% TFA. Reverse phase Semi-Prep HPLC was carried out using a Agilent 1100 Series on a Phenomenex Gemini™ lOμm Cl 8 column (250 x 21.20 mm) as the stationary phase and eluting with acetonitrile:H2O with 0.1% TFA. Procedure A
Figure imgf000047_0001
A mixture of 2-chloro-quinoline-3-carbaldehyde (1 eq), arylboronic acid (1.1 eq), tetrakis(triphenylphosphine)palladium (5 mol %), and sodium carbonate (2M aq. Sol., 5.0 eq) in CH3CN-water (3:1, 0.1 M) was heated at 100 °C under N2 for several hours. The mixture was partitioned between EtOAc and H2O, the organic layer was separated, and the aqueous layer was extracted with EtOAc . The combined organic layers were dried over Na2SO4, filtered, concentrated under reduced pressure, and purified by column chromatography on silica gel using 0% to 25% gradient of EtOAc in hexane to provide 2-arylquinoline-3-carbaldehydes. Procedure B
Figure imgf000047_0002
Solid sodium borohydride (1.5 eq) was added to a solution of 2-arylquinoline-3- carbaldehyde (1 eq) in THF (0.5M) at 0 0C and the mixture was stirred at 0 °C for 2 h. The reaction was quenched by addition of water. The aqueous layer was extracted with EtOAc (3 times). The combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using 50% of EtOAc in hexane to provide (2-arylquinolin-3-yl)methanols. Procedure C
Figure imgf000048_0001
(2-Arylquinolin-3-yl)methanol (1 eq) in CHCl3 (0.25M) was treated with SOCl2 (5 eq) at rt for 2 h. Solvents were removed under reduced pressure and the residue was partitioned between EtOAc and saturated aq. NaHCO3 solution. The organic layer was separated, washed with water and brine, dried over Na2SO4, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on a Redi-Sep™ column using O to 100% gradient of EtOAc in hexane to provide 3-(chloromethyl)-2-arylquinolines. Procedure D
Wt) ' (R2)n
Figure imgf000048_0002
Figure imgf000048_0003
To a solution of 3-(chlorornethyl)-2-arylquinoline (1 eq) in DMSO (0.25 M) was added NaN3 (3 eq) at rt and the mixture was stirred for 4 h at rt. The mixture was diluted with water, extracted with EtOAc (2 times) and the combined organic layers were washed with water (2 times), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was dissolved in MeOH and treated with 10% Pd-C (5 wt %) and the mixture was then stirred under H2 balloon over night. The mixture was filtered through a celite pad followed by removal of solvents to give (2-arylquinolin-3-yl)methanamines. Procedure E
eq) M) (R2)n
Figure imgf000048_0005
Figure imgf000048_0004
To a stirring solution of 3-(chloromethyl)-2-arylquinoline (1 eq) in 16 mL of DMF was added NaN3 (2 eq) at rt. The mixture was stirred at rt for 1 h. The mixture was partitioned between EtOAc and H2O. The organic layer was dried over MgSO4, filtered, and concentrated under reduced pressure to provide 3- (azidomethyl)-2-arylquinolines. The crude product was carried on without purification for the next step. To a stirring solution of 3-(azidomethyl)-2- arylquinoline in THF-H2O (4:1, 0.21 M) was added dropwise PMe3 (1.0 M solution in THF, 1.2 eq) at it and the mixture was stirred at rt for 1 h. To the mixture was added EtOAc and the mixture was extracted with IN HCl (2 times). The combined extracts were neutralized with solid sodium bicarbonate, and extracted with EtOAc (2 times). The combined organic extracts were dried over MgSO4, filtered, and concentrated under reduced pressure to give dark syrup. The crude product was purified by column chromatography on a Redi-Sep™ column using O to 100% gradient Of CH2Cl2MeOHtNH4OH (89:9:1) in CH2Cl2 as eluent to provide (2-arylquinolin-3-yl)methanamines. Procedure F
J) PMBNH2 (1.5 eqv.)
'
Figure imgf000049_0001
Figure imgf000049_0002
A mixture of 2-arylquinoline-3-carbaldehyde (1 eq), DCE (0.2 M), and PMBNH2 (1.5 eq) was stirred at rt. After 1 h, to the mixture was added NaBH(O Ac)3 (3 eq) and the mixture was stirred at 50 0C for 2 h. To the mixture was added saturated aq. NaHCO3 and the mixture was stirred for 15 min. The organic layer was separated and the aqueous layer was extracted with CH2Cl2 (2 times). The combined organic layers were washed with brine, dried over MgSO4, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on a Redi-Sep™ column using 0 to 100% gradient of EtOAc in hexane to provide N-(4-methoxybenzyl)(2-arylquinolin-3-yl)methanamines. Procedures G
Figure imgf000049_0003
A mixture of N-(4-methoxybenzyl)(2-arylquinolin-3-yl)methanamine (1 eq) and ammonium cerium(iv) nitrate (3.5 eq) in CH3CN-H2O (2:1, 0.22M) was stirred at rt for 24 h. To the mixture wad added 0.5M HCl (12 eq) and the mixture was washed with CH2Cl2 (3 times) to remove 4-methoxybenzaldehyde produced. The organic fraction was then extracted with 0.5M HCl (2 times). The combined acidic aqueous layer was basified to pH 9.0 with 2N HaOH. The resulting precipitate was collected by filtration. The crude product was purified by column chromatography on a Redi-Sep™ column using 0 to 100% gradient of CH2Cl2IMeOHrNH4OH (89:9:1) in CH2Cl2 as eluent to provide provide (2- arylquinolin-3 -yl)methanamines. Procedure I
Figure imgf000050_0001
(1.0 eqv) from Procedure C r.t., 8 hr
A solution of 3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine (1 eq) in DMF (0.3M) at 0 0C was treated with NaH (60%, 2.2 eq) for 30 min before addition of a solution of 3-(chloromethyl)-2-arylquinolines (1 eq) in DMF (0.5M). The mixture was stirred at room temperature overnight. The mixture was poured onto ice- water. The resulting precipitate was collected by suction filtration, washed with water, and air-dried. The crude product was purified by column chromatography on a Redi-Sep™ column using 0 to 100% gradient of EtOAc in hexane and then 100% isocratic of EtOAc as eluent to provide 3-iodo-l-((2-arylquinolin-3-yl)- methyl)-lH-pyrazolo[3,4-d]pyrimidin-4-amines. Procedure J
eqv.) hr
Figure imgf000051_0002
Figure imgf000051_0001
A mixture of 3-iodo-l-((2-arylquinolin-3-yl)methyl)-lH-pyrazolo[3,4- d]pyrimidin-4-amine (1 eq), boronic acid (2.0 eq), tetrakis(triphenylphosphine)- palladium (10 mol %), and sodium carbonate (2M aq. Sol., 6 eq) in DMF (0.2M) was heated at 100 °C under N2 for several hours. To the mixture was added water. The resulting precipitate was collected by suction filtration, washed with water, and air-dried. The crude product was purified by column chromatography on a Redi-Sep™ column using using 0 to 100% gradient of CH2Cl2IMeOHiNH4OH (89:9:1) in CH2Cl2 over 14 min as eluent to provide 3-substituted-l-((2- phenylquinolin-3 -yl)methyl)- 1 H-pyrazolo[3 ,4-d]pyrimidin-4-arnines. Procedure K
Figure imgf000051_0003
To a mixture of 2-phenylquinoline-3-carbaldehyde ( l.Oeq) in THF (0.28M) at 0 0C was added dropwise a solution of a Grignard reagent (3 M, 2eq) and the reaction was stirred overnight before being quenched with NH4Cl saturated solution. The mixture was extracted with EtOAc (2 x 10 mL) and the combined organic layers were dried (Na2SO4) and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: EtOAc/hexane, 1/1) to providel-(2-phenylquinolin-3-yl)alcohols. Procedure L: Preparation of N-((5-Chloro-3-(2-chIorophenyl)quinoxalin-2- yl)methyl)-9H-purin-6-amine
3-Chlorobenzene-l ,2-diamine
Figure imgf000052_0001
To s aolution of 3-chloro-2-nitroaniline (10.00 g, 57.95 mmol), 3 N aq. HCl (96.58 mL, 289.7 mmol), and ethyl alcohol (148.6 mL, 57.95 mmol) was added Tin(II) chloride dihydrate (65.96 g, 289.7 mmol) and the mixture was heated under reflux with stirring. After 3 h, the mixture was cooled to room temperature and concentrated under reduced pressure to give a brown syrup. The mixture was cautiously treated with an excess of 10 M KOH (115.9 mL, 1159 mmol, 20 eqv.). The mixture was diluted with EtOAc (200 mL), filtered through Celite™ pad, and washed the pad well with EtOAc (100 mL x 2). The filtrate was extracted with EtOAc (100 mL x 2). The combined organic layers were washed with water (100 mL xl), dried over MgSO4, filtered, and concentrated under reduced pressure to give 3-chlorobenzene-l,2-diamine as a red oil: 1H NMR (400 MHz, DMSO-d6) δ ppm 6.43 - 6.53 (2 H, m), 6.38 (1 H, t, J=7.8 Hz), 4.80 (2 H, s), 4.60 (2 H, s); LC- MS (ESI) m/z 142.9 [M+H]+. The crude product was carried on crude without purification for the next step. l-(2-Chlorophenyl)propane-l,2-dione
Figure imgf000052_0002
7.8%
To a solution of 2-chlorophenylacetone (10.800 g, 64.049 mmol) in 279 mL of CH2Cl2, pyridinium chlorochromate (41.418 g, 192.15 mmol), and pyidine (16 mL) in three portions were added over 2.5 hours and the mixture was refluxed under vigorous stirring. After 22 h, he mixture was removed from heat. The mixture was concentrated in vacuo to give a dark red syrup. The crude mixture was purified by column chromatography on a 120 g of Redi-Sep™ column using 0-10% gradient of EtOAc in hexane over 28 min as eluent to give l-(2- chlorophenyl)propane-l,2-dione as yellow liquid: 1H NMR (400 MHz, choroform-d) δ ppm 7.66 (1 H, dd, J=7.6, 1.8 Hz), 7.49 - 7.54 (1 H, m), 7.38 - 7.45 (2 H, m), 2.58 (3 H, s); LC-MS: m/z 182.9 [M+H]+. 3-Bromo-l-(2-chlorophenyl)propane-l,2-dione
Figure imgf000053_0001
carried on crude
A mixture of l-(2-chlorophenyl)propane-l,2-dione (4.2379 g, 23.208 mmol), bromine (1.1891 mL, 23.208 mmol), and glacial acetic acid (0.67005 mL, 11.604 mmol) in chloroform (58.020 mL, 23.208 mmol) was heated at 60 0C. After 17 h of stirring at 60 0C, the mixture was removed from heat and concentrated under reduced pressure to give 3-bromo-l-(2-chlorophenyl)propane-l,2-dione as an orange liquid: LC-MS: a peak of m/z 261.0 [M+H(79Br)]+ and 262.9 [M+H (81Br)- ]+. The orange liquid was carried on crude without purification for the next step. Example 1 : 9-((2-(2-Chlorophenyl)-8-methylquinolin-3-yl)methyl)-9H-purin- 6-amine
Figure imgf000053_0002
9-((2-(2-Chlorophenyl)-8-methylquinolin-3-yl)methyl)-9H-purin-6-amine. A mixture of 3-(bromomethyl)-2-(2-chlorophenyl)-8-methylquinoline (66 mg, 0.19 mmol), {prepared in a similar way as 3-(bromomethyl)-8-methyl-2-o-tolyl- quinoline, example 9} adenine (39 mg, 0.29 mmol), and cesium carbonate (124 mg, 0.38 mmol) in DMF (0.7 mL) was stirred at rt for 2 h. The crude mixture was evaporated onto silica gel and purified by flash chromatography (Biotage Si 25+M) eluting with MeOH/CH2Cl2 (5% to 10%). The resulting white solid was further purified by HPLC (Berger SFC) eluting with i-PrOH/CO2/DEA to provide a white solid [PDKδ IC50 = 213OnM]. MS (ESI+) m/z = 401.1 (M+l). Example 2: Preparation of 4-Amino-8-((2-(2-chlorophenyl)-8-methyl- quinolin-3-yl)methyl)py rido [2,3-d] pyrimidin-5(8H)-one
Figure imgf000054_0001
To a mixture of 4-aminopyrido[2,3-d]pyrimidin-5(8H)-one (0.1 g, 0.616 mmol), Cs2CO3 (0.3013 g, 0.925 mmol, 1.5 eq), and KI (0.0102 g, 0.0616 mmol, 0.1 eq) in DMF (2 mL) was added 3-(chloromethyl)-2-(2-chlorophenyl)-8-methyl- quinoline (0.2049 g, 0.678 mmol, 1.1 eq) and the mixture was stirred at 140 0C for 2.5 h. The mixture was concentrated under reduced pressure. The crude product was purified by column chromatography on a 40 g of Redi-Sep column using 0 to 100% gradient of EtOAc in hexane over 14 min and then 100% isocratic of EtOAc for 10 min as eluent to provide 4-amino-8-((2-(2-chlorophenyl)-8-methyl- quinolin-3-yl)methyl)pyrido[2,3-d]pyrimidin-5(8H)-one as white solid. The white solid was triturated with EtOAc-Hexane (1:1) and filtered to provide 4-amino-8- ((2-(2-chlorophenyl)-8-methylquinolin-3-yl)methyl)pyrido[2,3-d]pyrimidin- 5(8H)-one [PDKδ IC50 = 58nM] as white solid. 1H NMR (DMSO-de) δ ppm 9.53 (1 H, d, J=4.7 Hz), 8.13 (1 H, s), 8.04 - 8.11 (2 H, m), 7.84 (1 H, d, J=7.8 Hz), 7.78 (1 H, d, J=7.8 Hz), 7.64 (1 H, d, J=7.0 Hz), 7.38 - 7.59 (5 H, m), 6.12 (1 H, d, J=7.8 Hz), 5.40 (2 H, d, J=6.3 Hz), 2.64 (3 H, s). Mass Spectrum (ESI) m/e = 428.0 (M + l). Example 3 : 3-Iodo-l -((8-methy l-2-(2-(trifluoromethyl)phenyl)quinoIin-3-yl)- methy l)-lH-py razolo [3,4-d] py rimidin-4-amine: 3-(Chloromethyl)-8-methyl-2-(2-(trifluoromethyl)phenyl)quinoline
Figure imgf000055_0001
Prepared according to Procedure B using 8-methyl-2-(2-(trifluoromethyl)phenyl)- quinoline-3-carbaldehyde (1.6541 g, 5.25 mmol) and solid NaBH4 (0.2977 g, 7.87 mmol, 1.5 eq) in THF (26 mL) followed by Procedure C using the crude (8- methyl-2-(2-(trifluoromethyl)phenyl)quinolin-3-yl)methanol and SOCl2 (1.9 mL, 26.23 mmol, 5 eq) in CHCl3 (26 mL). After purification, 3-(chloromethyl)-8- methyl-2-(2-(trifluoromethyl)phenyl)quinoline was obtained as as yellow syrup. 1H NMR (DMSO-de) δ ppm 8.60 (1 H, s), 7.92 (2 H, dd, J=I 1.5, 8.0 Hz), 7.72 - 7.85 (2 H, m), 7.67 (2 H, dd, J=14.3, 7.2 Hz), 7.54 - 7.62 (1 H, m), 4.71 (2 H, dd, J=89.8, 11.9 Hz), 2.62 (3 H, s). Mass Spectrum (ESI) m/e = 336.1 (M + 1). 3-Iodo-l-((8-methyl-2-(2-(trifluoromethyI)phenyl)quinoIin-3-yl)methyl)-lH- py razolo [3,4-d] py rimidin-4-amine
Figure imgf000055_0002
Prepared according to Procedure I using 3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4- amine (0.41 g, 1.6 mmol, 1 eq) in DMF (5 mL), NaH (60%, 0.138 g, 3.5 mmol, 2.2 eq), and 3-(chloromethyl)-8-methyl-2-(2-(trifluoromethyl)phenyl)quinoline (0.58 g, 1.7 mmol, 1 eq) in DMF (3 mL). After purification, 3-iodo-l-((8-methyl- 2-(2-(trifluoromethyl)phenyl)quinolin-3-yl)methyl)-lH-pyrazolo[3,4-d]pyrimidin- 4-amine was obtained as white solid. 1H NMR (DMSOd6) δ ppm 8.27 (1 H, s), 7.99 (1 H, s), 7.88 (1 H, d, J=7.8 Hz), 7.73 - 7.79 (1 H, m), 7.65 (1 H, d, J=6.7 Hz), 7.51 - 7.61 (3 H, m), 7.28 - 7.35 (1 H, m), 5.41 - 5.54 (2 H, m), 2.60 (3 H, s).
Mass Spectrum (ESI) m/e = 561.0 (M + 1).
Example 4: 3-Iodo-l-((8-methyl-2-o-tolylquinolin-3-yl)methyl)-lH- pyrazoIo[3,4-d]pyrimidin-4-amine
Figure imgf000056_0001
Prepared according to Procedure I. A solution of 3-iodo-lH-pyrazolo[3,4-d]pyr- imidin-4-amine (400 mg, 1.5 mmol) in DMF (5 mL) at 0 °C was treated with NaH (60%, 67.4 mg, 1.1 eq) for 30 min before addition of a solution of 3-(chloro- methyl)-8-methyl-2-o-tolylquinoline (435 mg, 1 eq) in DMF (2 mL). The mixture was stirred at room temperature over night. The reaction mixture was partitioned between DCM (50 mL) and water (50 mL). The insoluble was filtered and washed with DCM and water. The organic layer from the filtrate was separated, dried over Na2SO4, concentrated and purified by column chromatography on silica gel (eluent: DCM/MeOH, 25/1) to provide a white solid [PDKδ IC50 = 6nM]. 1H- NMR (DMSO-d6) δ 7.96 (s, IH), 7.85 (s, IH), 7.63 (d, J = 8.2 Hz, IH), 7.44 (d, J = 7.0 Hz, IH), 7.31 (t, J = 7.1 Hz, IH), 6.94-6.99 (m, 4H), 5.26(s, 2H), 2.45 (s, 3H), 1.79 (s, 3H). Mass Spectrum (ESI) m/e = 507 (M + 1). Example 5: Preparation of l-((8-Chloro-2-(2-chlorophenyl)quinolin-3-yl)- methyI)-3-iodo-lH-pyrazolo [3,4-d] py rimidin-4-amine
Figure imgf000056_0002
Prepared according to Procedure I using 8-chloro-3-(chloromethyl)-2-(2-chloro- phenyl)quinoline (0.235 g, 0.73 mmol), NaH (0.047 g 60 % in oil, 1.17 mmol, 1.6 eq) and 3-iodo-lH-pyrazolo{3,4-d}pyrimidin-4-amine (0.209 g, 0.8 mmol, 1.1 eq) in DMF. l-((8-cMoro-2-(2-chlorophenyl)quinolin-3-yl)methyl)-3-iodo-lH- pyrazolo[3,4-d]pyrimidin-4-amine was obtained after purification as a white solid [PI3Kδ IC50 = 14nM]. IH NMR (400 MHz, DMSO-(I6) δ ppm 8.42 (1 H, s), 8.09 (1 H, dd, J=8.6, 1.2 Hz), 7.98 - 8.05 (2 H, m), 7.66 (1 H, t), 7.48 (1 H, dd, J=8.2, 0.8 Hz), 7.36 (1 H, dt, J=7.8, 1.6 Hz), 7.25 (1 H, dt, J=IA, 1.2 Hz), 7.13 (1 H, dd, J=7.4, 1.6 Hz), 5.53 (2 H, s) Mass Spectrum (ESI) m/e = 547.0 and 549.0 (M+l) Example 6: Preparation of l-((8-Chloro-2-(2-(trifluoromethyl)phenyl)- quinolin-3-yl)methyl)-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine 8-Chloro-2-(2-(trifluoromethyl)phenyl)quinoline-3-carbaIdehyde
Figure imgf000057_0001
Prepared according to Procedure A using 2,8-dichloroquinoline 3-carbaldehyde (1.0 g, 4.42 mmol), 2-trifluoromethylphenyl boronic acid (0.924 g, 4.87 mmol, 1.1 eq), tetrakis(triphenylphosphine)palladium (0.256 g, 0.221 mmol, 0.05 eq), and sodium carbonate (2.34 g, 22.1 mmol, 5 eq) in acetonitrile (30 mL) and water(10 mL). After purification, 2-(2-trifluoromethylphenyl)-8-chloroquinoline-3-carb- aldehyde was obtained as a yellow solid. IH NMR (500 MHz, DMSOd6) δ ppm 9.95 (1 H, s), 9.19 (1 H, s), 8.33 (1 H, dd, J=8.5, 1.2 Hz), 8.20 (1 H, dd, J=7.3, 1.2 Hz), 7.95 (1 H, d, J=7.3 Hz), 7.74 - 7.87 (2 H, m), 7.63 (1 H, d, J=7.3 Hz) Mass Spectrum (ESI) m/e = 336.1 and 338.0 (M+l) (8-Chloro-2-(2-(trifluoromethyl)phenyl)quinolin-3-yl)methanol
Figure imgf000057_0002
Prepared according to Procedure B using 8-chloro-2-(2-trifluoromethylphenyl) quinoline-3-carbaldehyde (1.10 g, 3.28 mmol) and sodium borohydride (0.186 g, 4.91 mmol, 1.5 eq) in THF (15 mL). (8-chloro-2-(2-trifluoromethylphenyl)- quinolin-3-yl)methanol was obtained as a white solid. IH NMR (500 MHz, DMSO-d6) δ ppm 8.57 (1 H, s), 8.10 (1 H, dd, J=7.9, 1.2 Hz), 7.94 (2 H, t, J-6.4 Hz), 7.82 (1 H, t, J=7.6 Hz), 7.76 (1 H, t, J=7.6 Hz), 7.50 - 7.68 (4 H, m), 5.54 (1 H, t, J=5.2 Hz), 4.45 (1 H, br d), 4.28 (1 H, br d) Mass Spectrum (ESI) m/e = 338.0 and 340.0 (M+l)
8-Chloro-3-(chloromethyl)-2-(2-(trifluoromethyl)phenyl)quinoline
Figure imgf000058_0001
Prepared according to Procedure C using (8-chloro-2-(2-trifluoromethylphenyl)- quinolin-3-yl)methanol (1.10 g, 3.26 mmol) and SOCl2 (1.19 mL, 16.3 mmol, 5 eq) in dichloromethane (5 mL). 8-chloro-3-(chloromethyl)-2-(2-trifluoromethyl- phenyl)quinoline was obtained as a yellow syrup. IH NMR (400 MHz, DMSO- d6) δ ppm 8.75 (1 H, s), 8.10 (1 H, d, J=8.2 Hz), 8.02 (1 H, d, J=6.3 Hz), 7.95 (1 H, d, J=7.4 Hz), 7.72 - 7.87 (2 H, m), 7.58 - 7.71 (2 H, m), 4.71 (2 H, dd, J=82.2, 12.1 Hz) Mass Spectrum (ESI) m/e = 356.0 and 358.0 (M+l). l-((8-Chloro-2-(2-(trifluoromethyl)phenyl)quinolin-3-yl)methyI)-3-iodo-lH- py razolo [3,4-d] pyrimidin-4-amine
Figure imgf000058_0002
Prepared according to Procedure I using 8-chloro-3-(chloromethyl)-2-(2-trifluoro- methylphenyl)quinoline (0.356 g, 1.0 mmol), NaH (0.044g 60% in oil, 1.1 mmol, 1.1 eq) and 3-iodo-lH-pyrazolo{3,4-d}pyrimidin-4-amine (0.287 g, 1.1 mmol, 1.1 eq) in 5 mL DMF. l-((8-Chloro-2-(2-trifluoromethylphenyl)quinolin-3-yl)- methyl)-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine [PI3Kδ IC5O = 7nM] was obtained after purification as a white solid. IH NMR (400 MHz, DMSOd6) δ ppm 8.40 (1 H, s), 8.08 (1 H, d, J=8.2 Hz), 7.96 - 8.03 (2 H, m), 7.74 - 7.84 (1 H5 m), 7.56 - 7.70 (3 H, m), 7.26 - 7.37 (1 H, m), 5.47 (2 H, s) Mass Spectrum (ESI) m/e = 580.9 and 583.0 (M+l)
Example 7 Preparation of l-((2-(2-FluorophenyI)-8-methylquinolin-3-yl)- methyl)-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine: 2-(2-FluorophenyI)-8-methylquinoline-3-carbaldehyde
Figure imgf000059_0001
Prepared according to Procedure A using 2-chloro-8-methylquinoline 3- carbaldehyde (1.0 g, 4.86 mmol), 2-fluorophenyl boronic acid (0.749 g, 5.35 mmol, 1.1 eq), tetrakis(triphenylphosphine)palladium (0.281 g, 0.24 mmol, 0.05 eq), and sodium carbonate (2.58 g, 24 mmol, 5 eq) in acetonitrile (36 mL) and water (12 mL). After purification, 2-(2-fluorophenyl)-8-methylquinoline-3- carbaldehyde was obtained as a yellow solid. IH NMR (400 MHz, DMSO-d6) δ ppm 10.03 (1 H, d, J=3.5 Hz), 8.99 (1 H, s), 8.12 (1 H, d, J=7.8 Hz), 7.85 (1 H, d, J=7.0 Hz), 7.76 (1 H, td, J=7.5, 1.8 Hz), 7.58 - 7.70 (2 H, m), 7.45 (2 H, td, J=7.5, 1.0 Hz), 7.38 (2 H, td, J=9.4, 1.2 Hz), 2.75 (3 H, s) Mass Spectrum (ESI) m/e = 266.0 (M+l)
(2-(2-Fluorophenyl)-8-methylquinoIin-3-yl)methanol
Figure imgf000059_0002
Prepared according to Procedure B using 2-(2-fluorophenyl)-8-methylquinoline-3- carbaldehyde (0.725 g, 2.73 mmol), and sodium borohydride (0.155 g, 4.1 mmol, 1.5 eq) in THF (15 mL). (2-(2-fluorophenyl)-8-methylquinolin-3-yl)methanol was obtained as a yellow solid. 1 H NMR (500 MHz, DMSO-Cl6) δ ppm 8.46 (1 H, s), 7.90 (1 H, d, J=7.9 Hz), 7.63 (1 H, d, J=6.7 Hz), 7.50 - 7.60 (3 H, m), 7.38 (1 H5 d, J=7.9 Hz)5 7.35 - 7.37 (1 H5 m), 5.42 (1 H5 1, J=5.5 Hz)5 4.50 (2 H, d, J=5.5 Hz), 2.69 (3 H5 s) Mass Spectrum (ESI) m/e = 268.1 (M+l) 3-(Chloromethyl)-2-(2-fluorophenyl)-8-methylquinoline
Figure imgf000060_0001
Prepared according to Procedure C using (2-(2-fluorophenyl)-8-methylquinolin-3- yl)methanol (0.70Og5 2.62 mmol) in SOCl2 (2 mL, 27.4 mmol, 10.5 eq). 3- (chloromethyl)-2-(2-fluorophenyl)-8-methyl-quinoline (0.665g, 89%) was obtained after purification as a brown foam. IH NMR (500 MHz5 DMSOd6) δ ppm 8.61 (1 H5 s), 7.92 (1 H5 d, J=7.9 Hz)5 7.71 (1 H5 d, J=6.7 Hz), 7.53 - 7.66 (3 H, m), 7.40 (2 H, t, J=7.9 Hz), 4.81 (2 H5 s), 2.69 (3 H5 s) Mass Spectrum (ESI) m/e = 286.1 and 288.1 (M+l) l-((2-(2-FluorophenyI)-8-methylquinolin-3-yl)methyl)-3-iodo-lH- pyrazolo[3,4-d]pyrimidin-4-amine
Figure imgf000060_0002
Prepared according to Procedure I using (2-(2-fluorophenyl)-8-methylquinolin-3- yl)methanamine (0.20Og5 0.7 mmol), NaH (0.03 Ig, 60% in oil, 0.77 mmol, 1.1 eq) and 3-iodo-lH-pyrazolo{3,4-d}pyrimidin-4-amine (0.201g, 0.77 mmol, 1.1 eq) in DMF. l-((2-(2-fluorophenyl)-8-methylquinolin-3-yl)methyl)-3-iodo-lH-pyr- azolo[3,4-d]pyrimidin-4-amine [PI3Kδ IC50 = 4nM] was obtained after purification as a white solid. IH NMR (500 MHz, DMSOd6) δ ppm 8.09 (1 H, s), 8.00 (1 H, s), 7.96 (1 H, s), 7.80 (1 H, d, J=7.9 Hz), 7.63 (1 H, d, J=7.3 Hz), 7.46 - 7.53 (1 H, m), 7.30 (1 H, dt), 7.08 (1 H, dd, J=7.6, 1.5 Hz), 7.02 (1 H, d, J=7.9 Hz), 6.91 (1 H, t, J=7.3 Hz), 5.46 - 5.54 (2 H, m), 2.90 (3 H, s) Mass Spectrum
(ESI) m/e = 511.0 (M+l)
Example 8: 3-(4-Amino-l-((8-methyl-2-(2-(trifluoromethyl)phenyl)quinolin-
3-yl)methyl)-lH-pyrazolo[3,4-d]pyrimidin-3-yl)phenol:
Figure imgf000061_0001
Prepared according to Procedure J using 3-iodo-l-((8-methyl-2-(2-(trifluoro- methyl)phenyl)quinolin-3 -yl)methyl)- 1 H-pyrazolo [3 ,4-d]pyrimidin-4-amine (0.1 g, 0.1785 mmol, 1 eq), 3-hydroxyphenylboronic aicd (0.0492 g, 0.357 mmol, 2.0 eq), tetrakis(triphenylphosphine)palladium (0.0206 g, 0.0178 mmol, 10 mol %), and sodium carbonate (2M aq. sol, 0.535 mL, 1.07 mmol., 6 eq) in DMF (1 mL). After purification, 3-(4-amino-l-((8-methyl-2-(2-(trifluoromethyl)phenyl)- quinolin-3-yl)methyl)-lH-pyrazolo[3,4-d]pyrimidin-3-yl)phenol was obtained as light gray solid. The gray solid was suspended in CH2Cl2 and filtered to provide 3 -(4-amino- 1 -((8-methyl-2-(2-(trifluoromethyl)phenyl)quinolin-3 -yl)methyl)- 1 H- pyrazolo[3,4-d]pyrimidin-3-yl)phenol [PI3Kδ IC50 = 8nM] as off-white solid. 1H NMR (DMSO-d6) δ ppm 9.65 (1 H, s), 8.28 (1 H, s), 8.04 (1 H, s), 7.87 (1 H, d, J=7.8 Hz), 7.74 - 7.80 (1 H, m), 7.64 (1 H, d, J=7.0 Hz), 7.56 - 7.61 (2 H, m), 7.50 - 7.56 (1 H, m), 7.34 - 7.38 (1 H, m), 7.30 (1 H, t, J=7.8 Hz), 6.94 - 7.02 (2 H, m), 6.80 - 6.87 (1 H, m), 5.53 (2 H, s), 2.60 (3 H, s). Mass Spectrum (ESI) m/e = 527.2 (M + l).
Example 9: 3-(4-Amino-l-((8-methyl-2-o-to.ylquinoIin-3-yl)methyl)-lH- pyrazolo[3,4-d]pyrimidin-3-yl)phenol
Figure imgf000062_0001
Prepared according to Procedure J. A mixture of 3-iodo-l-((8-methyl-2-o- tolylquinolin-3-yl)methyl)-lH-pyrazolo[3,4-d]pyrimidin-4-amine (51 mg, 0.1 mmol), 3-hydroxyphenylboronic acid (15.2 mg, 1.1 eq), sodium carbonate (55 mg, 5 eq), tetrakis(triphenylphosphine)palladium (6 mg, 5% mmol) in DMF (1 mL) and water (0.3 mL) was heated to 100 0C under N2 for 4 h. The reaction mixture was cooled to room temperature, filtered and purified by reverse HPLC (MeCN/H2O/0.1%TFA) on Cl 8 to give a white solid [PI3Kδ IC50 = 7nM]. 1H- NMR (DMSO-d6) δ 8.37 (s, IH), 8.35 (s, IH), 7.86 (d, J = 8.2 Hz, IH), 7.65 (d, J = 7.0 Hz, IH), 7.53 (t, J = 7.4 Hz, IH), 7.31 (t, J = 7.8 Hz, IH), 7.14-7.17 (m,
4H), 6.87-6.97 (m, 4H), 5.63(s, br, 2H), 2.63 (s, 3H), 1.91 (s, 3H). Mass Spectrum
(ESI) m/e = 473 (M + 1).
Example 10: Preparation of 3-(4-Amino-l-((8-chloro-2-(2-chlorophenyl)- quinolin-3-yl)methyl)-lH-pyrazolo[3,4-d]pyrimidin-3-yl)phenol:
Figure imgf000062_0002
Prepared according to Procedure J using l-((8-chloro-2-(2-chlorophenyl)quinolin- 3-yl)methyl)-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine (0.100 g, 0.18 mmol), 3-(hydroxyphenyl)boronic acid (0.050 g, 0.37 mmol, 2 eq), tetrakis(triphenyl- phosphine)palladium (0.021 g, 0.018 mmol, 0.1 eq) and 2M aq sodium carbonate (0.54 mL, 1.08 mmol, 6 eq) in DMF (1 mL). 3-(4-Amino-l-((8-chloro-2-(2- chlorophenyl)quinolin-3 -yl)methyl)- 1 H-pyrazolo [3 ,4-d]pyrimidin-3 -yl)phenol [PI3Kδ IC5O = 14nM] was obtained after purification as a white solid. IH NMR (400 MHz, DMSO-(I6) δ ppm 9.52 (1 H, s), 8.31 (1 H, s), 7.91 - 8.00 (2 H, m), 7.86 (1 H, dd, 3=7 Λ, 1.2 Hz), 7.52 (1 H, t, J=7.8 Hz), 7.35 (1 H, d, J=8.2 Hz), 7.07 - 7.28 (3 H, m), 6.97 - 7.05 (1 H, m), 6.78 - 6.93 (2 H5 m), 6.70 (1 H, dd, J=8.2, 1.6 Hz), 5.36 - 5.57 (2 H, m) Mass Spectrum (ESI) m/e = 513.1 and 515.0 (M+l). Example 11 : l-((2-(2-Chlorophenyl)-8-methylquinolin-3-yl)methyl)-3-methyl- lH-pyrazolo[3,4-d]pyrimidin-4-amine
Figure imgf000063_0001
To a stirred solution of 3 -methyl- 1 H-pyrazole [3 ,4-d]pyrimidin-4-amine l (59 mg, 0.397 mmol) in DMF (1.65 mL) at room temperature was added sodium hydride (26.5 mg, 0.662 mmol) at once. After 25 minutes, 3-(chloromethyl)-2-(2-chloro- phenyl)-8-methylquinoline (100 mg, 0.331 mmol) was added, the mixture was stirred for several days. The reaction mixture was poured into H2O and extracted with Et2O washed with brine and dried over MgSO4 [PBKδ IC50 = 137nM] .
Chromatography: Gradient 89:9:1/DCM. 1H NMR (DMSO-de) δ ppm 8.07 (1 H, s), 7.96 (1 H, s), 7.82 (1 H, d, J=7.8 Hz), 7.64 (1 H, d, J=7.0 Hz), 7.48-7.55 (2 H, d, m), 7.34-7.40 (1 H, m), 7.24-7.30 (1 H, m), 7.16-7.21 (1 H, m), 5.40 (2 H, s), 2.64 (3 H, s ), 2,44 (3 H, s), 7.36 - 7.40 (2 H, m), 7.30 - 7.36 (1 H, m), 6.12 (1 H, d, J=5.5 Hz), 4.41 (2 H, d, J=4.7 Hz), 2.67 (3 H, s), 2.14 (3 H, s). Mass Spectrum (ESI) m/e = 415.1 (M + l).
Example 12: l-((8-MethyI-2-(2-(trifluoromethyl)phenyl)quinoIin-3-yl)- methyl)-3-(lH-pyrazol-4-yl)-lH-pyrazolo[3,4-d]pyrimidin-4-amine:
Figure imgf000064_0001
Prepared according to Procedure J using 3-iodo-l-((8-methyl-2-(2-(tri- fluoromethyl)phenyl)qumolin-3-yl)methyl)-lH-pyrazolo[3,4-d]pyrimidin-4-amine (0.1000 g, 0.178 mmol, 1 eq), pyrazole-4-boronic acid pinacol ester (0.0693 g, 0.357 mmol, 2.0 eq), tetrakis(triphenylphosphine)palladium(0) (0.0206 g, 0.0178 mmol, 10 mol %), and sodium carbonate (2M aq. sol, 0.535 mL, 1.07 mmol., 6 eq) in DMF (1 mL). After purification, l-((8-methyl-2-(2-(trifluoromethyl)- phenyl)quinolin-3 -yl)methyl)-3 -(I H-pyrazol-4-yl)- 1 H-pyrazolo [3 ,4-d]pyrimidin- 4-amine was obtained as white solid. The white solid was suspended in CH2Cl2 and filtered to give the desired product as white solid [PI3 Kδ IC50 = 8nM]. 1H NMR (DMSO-Cl6) δ ppm 13.17 (1 H, s), 8.22 (1 H, s), 7.97 - 8.08 (2 H, m), 7.71 - 7.90 (3 H, m), 7.56 - 7.66 (3 H, m), 7.52 (1 H, dd, J=7.8, 7.0 Hz), 7.35 - 7.44 (1 H, m), 6.82 (2 H, br. s.), 5.42 - 5.55 (2 H, m), 2.60 (3 H, s). Mass Spectrum (ESI) m/e = 501.1 (M + 1).
Example 13 : 3-Cyclopropyl-l-((8-methyl-2-(2-(trifluoromethyl)phenyl)- quinolin-3-yl)methyl)-lH-pyrazolo[3,4-d]pyrimidin-4-amine:
Figure imgf000064_0002
To a solution of 3-iodo-l-((8-methyl-2-(2-(trifluoromethyl)phenyl)quinolin-3-yl)- methyl)-lH-pyrazolo[3,4-d]pyrimidin-4-amine (0.1000 g, 0.18 mmol), cyclo- propylboronic acid (0.020 g, 0.23 mmol, 1.3 eq), tripotassium phosphate (0.13 g, 0.62 mmol, 3.5 eq), and tricyclohexylphosphine (0.0050 g, 0.018 mmol, 0.1 eq) in toluene (2 mL) and water (0.1 mL) under nitrogen atmosphere was added palladium acetate (0.0020 g, 0.0089 mmol, 5 mol %). The mixture was heated at 900C for 62 h. To the mixture was added water (30 mL). The mixture was extracted with EtOAc (30 mL x 2). The combined organic layers were washed with brine (50 mL x 1), dried over MgSO4, filtered, and concentrated under reduced pressure to provide a yellow syrup. The yellow syrup was purified by column chromatography on a 40 g of Redi-Sep™ column using 50 to 100% gradient of EtOAc in hexane over 9 min, 100% isocratic of EtOAc for 8 min, and then 0 to 100% gradient OfCH2Cl2IMeOH=NH4OH (89:9:1) in CH2Cl2 over 14 min as eluent to provide 3-cyclopropyl-l-((8-methyl-2-(2-(trifluoromethyl)- phenyl)quinolin-3-yl)methyl)-l H-pyrazolo[3,4-d]pyrimidin-4-amine [PI3 Kδ IC50 = 149nM] as yellow solid. 1H NMR (DMSO-d6) δ ppm 8.08 (1 H, s), 7.98 (1 H, s), 7.77 - 7.85 (2 H, m), 7.59 - 7.68 (3 H, m), 7.51 (1 H, dd, J=7.8, 7.0 Hz), 7.37 - 7.44 (1 H, m), 5.34 (2 H, s), 2.59 (3 H, s), 2.31 - 2.42 (1 H, m), 0.84 - 0.93 (2 H, m), 0.70 - 0.78 (2 H, m). Mass Spectrum (ESI) m/e = 475.1 (M + 1). Example 14: 4-(4-Amino-l-((8-methyl-2-(2-(trifluoromethyl)phenyl)quinolin- 3-yl)methyl)-lH-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methylbut-3-yn-2-ol:
Figure imgf000065_0001
A suspension of 3-iodo- 1 -((8-methyl-2-(2-(trifluoromethyl)phenyl)quinolin-3-yl)- methyl)-lH-pyrazolo[3,4-d]pyrimidin-4-amine (0.0569 g, 0.102 mmol) and copper(i) iodide (0.00387 g, 0.0203 mmol, 0.2 eq) in DMF (2 mL) was treated with 2-methyl-3-butyn-2-ol (0.0984 mL, 1.02 mmol, 10 eq), triethylamine (0.0282 mL, 0.203 mmol, 2 eq) and tetrakis(triphenylphosphine)palladium(0) (0.0117 g, 0.0102 mmol, 10 mol %) under Ar. The mixture was stirred under Ar at rt for 45 min. The mixture was concentrated under reduced pressure. The residue was purified by column chromatography on a 40 g of Redi-Sep™ column using 0 to 100% gradient OfCH2Cl2IMeOHiNH4OH (89:9:1) in CH2Cl2 over 14 min as eluent to provide 4-(4-amino-l-((8-methyl-2-(2-(trifluoromethyl)phenyl)quinolin- 3-yl)methyl)-lH-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methylbut-3-yn-2-ol [PI3Kδ IC50 = 116nM] as a tan solid. 1H NMR (DMSO-d6) δ ppm 8.21 (1 H, s), 8.02 (1 H, s), 7.87 (1 H, d, J=7.8 Hz), 7.77 - 7.82 (1 H5 m), 7.65 (1 H, d, J=6.7 Hz), 7.57 - 7.62 (2 H, m), 7.51 - 7.57 (1 H, m), 7.26 - 7.32 (1 H, m), 5.76 (1 H, s), 5.44 (2 H, s), 2.60 (3 H, s), 1.46 (6 H, s). Mass Spectrum (ESI) m/e = 517.2 (M + 1). Examples 15 and 16: l-((3-(2-Chlorophenyl)-8-methylquinoxalin-2-yl)- methyl)-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine and l-((3-(2- Chlorophenyl)-5-methylquinoxalin-2-yl)methyl)-3-iodo-lH-pyrazolo[3,4- d]pyrimidin-4-amine:
Figure imgf000066_0001
To a solution of 3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine (0.8909 g, 3.41 mmol, 1 eq) 10 mL of DMF (10 mL) was added sodium hydride, 60% dispersion in mineral oil (0.2730 g, 6.83 mmol, 2 eq) at 0 0C and the mixture was stirred at rt. After 10 min at rt, to the mixture was added a solution of 3-(bromomethyl)-2-(2- chlorophenyl)-5-methylquinoxaline and 2-(bromomethyl)-3-(2-chlorophenyl)-5- methylquinoxaline (prepared according to procedures shown in Example 15 and 16, 1.2458 g, 3.58 mmol) in DMF (5 mL) and the mixture was stirred at rt for 1 h. The mixture was poured into ice-water (100 mL). The resulting precipitate was collected by filtration to provide yellow solid. The yellow solid was purified by column chromatography on a 80 g of Redi-Sep™ column using 9% isocratic of CH2Cl2IMeOHiNH4OH (89:9:1) in CH2Cl2 for 20 min and then 9% to 100% gradient Of CH2Cl2MeOH^H4OH (89:9:1) in CH2Cl2 over 20 min as eluent to provide a mixture of l-((3-(2-chlorophenyl)-8-methylquinoxalin-2-yl)methyl)-3- iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine and l-((3-(2-chlorophenyl)-5- methylquinoxalin-2-yl)methy l)-3 -iodo- 1 H-pyrazolo [3 ,4-d]pyrimidin-4-amine as yellow foamy solid. The yellow foamy solid (0.1 g) was dissolved in 5 mL of MeOH-CH3CN (0.1% of TFA) and purified by semi-prep-HPLC on Cl 8 column using 30-90% gradient Of CH3CN (0.1% of TFA) in water (0.1% of TFA) over 40 min as eluent to provide l-((3-(2-chlorophenyl)-8-methylquinoxalin-2-yl)methyl)- 3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine [PI3Kδ IC50 = 38nM] as white solid and l-((3-(2-chlorophenyl)-5-methylquinoxalin-2-yl)methyl)-3-iodo-lH- pyrazolo[3,4-d]pyrimidin-4-amine [PI3Kδ IC50 = 2InM] as a TFA salt. 1H NMR (DMSO-de) δ ppm 8.05 (1 H, s), 7.93 (1 H, dd, J=8.0, 1.0 Hz), 7.77 - 7.82 (1 H, m), 7.72 - 7.77 (1 H, m), 7.48 (1 H, d, J=7.8 Hz), 7.33 - 7.39 (1 H, m), 7.27 - 7.32 (2 H, m), 5.74 (2 H, s), 2.54 (3 H, s); Mass Spectrum (ESI) m/e = 528.0 (M+l); HPLC: a peak at 7.834 min. 1H NMR (DMSO-d6) δ ppm 8.02 (1 H, s), 7.93 (1 H, d, J=8.5 Hz), 7.82 (1 H, t, J=7.6 Hz), 7.75 - 7.79 (1 H, m), 7.43 (1 H, d, J=7.9 Hz), 7.28 - 7.34 (1 H, m), 7.19 - 7.26 (2 H, m), 5.75 (2 H, br. s.), 2.68 (3 H, s); Mass Spectrum (ESI) m/e = 528.0 (M+l); HPLC: a peak at 8.039 min.
Example 17 and 18: l-((3-(2-Chlorophenyl)-8-methylquinoxalin-2-yl)methyl)- 3-(lH-pyrazol-4-yl)-lH-pyrazolo[3,4-d]pyrimidin-4-amine and l-((3-(2- Chlorophenyty-S-methylquinoxalin^-ylJmethyty-S-ClH-pyrazoM-yty-lH- py razolo [3,4-d] pyrimidin-4-amine:
Figure imgf000068_0001
Prepared according to Procedure J using a mixture of l-((3-(2-chlorophenyl)-8- methylquinoxalin-2-yl)methyl)-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine and 1 -((3 -(2-chloropheny l)-5 -methylquinoxalin-2-yl)methyl)-3 -iodo- 1 H-pyrazolo [3 ,4- d]pyrimidin-4-amine (0.2737 g, 0.52 mmol, 1 eq), 4-pyrazoleboronic acid pinacol ester (0.20 g, 1.0 mmol, 2.0 eq), tetrakis(triphenylphosphine)palladium(0) (0.060 g, 0.052 mmol, 10 mol %), and sodium carbonate (2M aq. sol, 1.6 mL, 3.1 mmol, 6 eq) in DMF (3.1 mL). After purification, a mixture of l-((3-(2-chlorophenyl)-8- methylquinoxalin-2-yl)methyl)-3-( 1 H-pyrazol-4-yl)- 1 H-pyrazolo[3 ,4-d]pyr- imidin-4-amine and 1 -((3-(2-chlorophenyl)-5-methylquinoxalin-2-yl)methyl)-3- (1 H-pyrazol-4-yl)- 1 H-pyrazolo [3 ,4-d]pyrimidin-4-amine was obtained as tan solid. The tan solid (0.1566 g) was dissolved in DMSO (8 mL) and purified by semi-prep-HPLC on Cl 8 column using 20-70% gradient Of CH3CN (0.1% of TFA) in water (0.1% of TFA) over 40 min as eluent to provide l-((3-(2- chlorophenyl)-8-methylquinoxalin-2-yl)methyl)-3-( 1 H-pyrazol-4-yl)- 1 H- pyrazolo[3,4-d]pyrimidin-4-amine [PI3Kδ IC5O = 18nM] as white solid as a TFA salt and l-((3-(2-cωorophenyl)-5-memylquinoxalin-2-yl)methyl)-3-(lH-pyrazol- 4-yl)-lH-pyrazolo[3,4-d]pyrimidin-4-amine [PBKδ IC50 = 3OnM] as white solid as a TFA salt. 1H NMR (DMSOd6) δ ppm 8.18 (1 H, s), 7.88 - 7.96 (3 H, m), 7.77 - 7.82 (1 H, m), 7.72 - 7.77 (1 H, m), 7.49 (1 H, d, J=7.8 Hz), 7.27 - 7.38 (3 H, m), 5.82 (2 H, d, J=18.4 Hz), 2.54 (3 H, s); Mass Spectrum (ESI) m/e = 468.1 (M+l); HPLC: a peak at 6.522 min. 1H NMR (DMSOd6) δ ppm 8.15 (1 H, s), 7.91 - 7.96 (1 H, m), 7.89 (2 H, s), 7.78 - 7.84 (1 H, m), 7.74 - 7.78 (1 H, m), 7.40 - 7.49 (1 H, m), 7.18 - 7.34 (3 H, m), 5.82 (2 H, d, J=27.4 Hz), 2.66 (3 H, s); Mass Spectrum (ESI) m/e = 468.1 (M+l); HPLC: a peak at 6.700 min. Example 19: 7-((2-(2-Chlorophenyl)-8-methylquinolin-3-yl)methyl)-7H- pyrrolo[2,3-d]pyrimidin-4-amine
Figure imgf000069_0001
A solution of 4-chloro-7H-pyrrolo[2,3-d]pyrimidine (280 mg, 1.1 eq) in DMF (3 mL) was treated with NaH (1.2 eq, 80 mg, 60%) and the reaction mixture was stirred at rt for 30 min before addition of 3-(chloromethyl)-2-(2-chlorophenyl)-8- methylquinoline (500 mg, 1.7 mmol) in DMF (2 mL). After 2 h at rt, the mixture was partitioned between EtOAc (50 mL) and H2O (30 mL), the layers were separated, and the aqueous layer was extracted with EtOAc (2 x 30 mL). The combined organic layers were dried (Na2SO4) , concentrated and purified by flash chromatography (0% to 25% EtOAc/hexane) to provide 3-((4-chloro-7H- pyrrolo[2,3-d]pyrimidin-7-yl)methyl)-2-(2-chlorophenyl)-8-methylquinoline as a white foam. This material (60 mg, 0.14 mmol) was dissolved in EtOH (4 mL) and treated with NH3 gas for 3 min. The sealed tube was heated at 80 0C for 4 days. The reaction mixture was concentrated and purified by column chromatography on silica gel (eluent: DCM/MeOH, 20/1) to provide a white solid [PBKδ IC50 = 1968nM]. 1H-NMR (DMSO-d6) δ 7.94 (s, IH), 7.89 (s, IH), 7.75 (t, J = 7.8 Hz, IH), 7.37-7.62 (m, 6H), 6.96 (s, 2H), 6.86 (d, J = 3.6 Hz, IH), 6.54 (d, J = 3.5 Hz, IH), 5.30 (d, J = 5.9 Hz, 2H), 2.64 (s, 3H). Mass Spectrum (ESI) m/e = 400 (M +
I)-
Example 20: 5-Chloro-7-((2-(2-chlorophenyl)-8-methyIquinolin-3-yl)methyl)-
7H-py rrolo [23-d] pyrimidin-4-amine
Figure imgf000070_0001
5-Chloro-7-((2-(2-chlorophenyl)-8-methylquinolin-3-yl)methyl)-7H-pyrrolo[2,3- d]pyrimidin-4-amine was prepared from 4,5-dichloro-7H-pyrrolo[2,3-d]pyrimi- dine according to the above procedure (example 44) as a white solid [PI3 Kδ IC50 - 2OnM]. 1H-NMR (CDCl3) δ 8.04 (s, IH), 7.90 (s, IH), 7.60 (d, J = 8.3 Hz, IH), 7.54 (d, J = 7.0 Hz, IH), 7.15-7.43 (m, 6H), 5.23-5.45 (m, 4H), 2.69 (s, 3H). Mass Spectrum (ESI) m/e = 434 (M + 1).
Example 21: Preparation of 4-Amino-8-((5-chloro-3-(2-methoxyphenyl)-4- oxo-3,4-dihydroquinazoIin-2-yl)methyl)pyrido[2,3-d]pyrimidin-5(8H)-one: 2-Amino-6-chloro-N-(2-methoxyphenyl)benzamide
Figure imgf000070_0002
(2.0 eqv.)
CHCI3 (0.2 M) reflux, 2 h
SO2Cl2 (5.4 mL, 74 mmol, 2.5 eq) was added to a rapidly stirring solution of 2- amino-6-chlorobenzoic acid (5 g, 29.14 mmol) in benzene (146 mL) and the mixture was stirred at reflux for 24 h. The mixture was concentrated under reduced pressure, and stripped down twice with benzene to give brown oil. The result- ing oil was dissolved in CHCl3 (146 mL) and to that solution was added o-anisi- dine and the mixture was stirred at 65 0C for 2 h. The mixture was cooled to rt and the resulting precipitate was removed by filtration. The filtrate was concentrated under reduced pressure and purified by column chromatography on a 120 g of Redi-Sep™ column using 0 to 100% gradient of EtOAc in hexane over 20 min as eluent to provide 2-amino-6-chloro-N-(2-methoxyphenyl)benzamide as yellow solid. 1H NMR (DMSOd6) δ ppm 9.44 (1 H, s), 7.86 (1 H, dd, J=7.9, 1.3 Hz), 7.13 - 7.21 (1 H, m), 7.04 - 7.11 (2 H, m), 6.97 (1 H, t, J=7.6 Hz), 6.66 (2 H, dd, J=28.0, 7.9 Hz), 5.37 (2 H, s), 3.81 (3 H, s). Mass Spectrum (ESI) m/e = 277.0 (M + 1).
5-Chloro-2-(chloromethyl)-3-(2-methoxyphenyl)quinazolin-4(3H)-one
Figure imgf000071_0001
To a solution of 2-amino-6-chloro-N-(2-methoxyphenyl)benzamide (4.0813 g, 14.75 mmol) in AcOH (39 mL) was added dropwise chloroacetyl chloride (3.6 mL, 45.2 mmol, 3 eq), and then the mixture was stirred at 110 0C for 3 h. The mixture was cooled to rt and concentrated under reduce pressure. The residue was dissolved in H2O and neutralized with K2CO3. The oily product was extracted with CH2Cl2 (3 times). The combined organic layers were dried with K2CO3, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on a 120 g of Redi-Sep™ column using 0 to 100% gradient of EtOAc in hexane over 20 min as eluent to provide 5-chloro-2- (chloromethyl)-3-(2-methoxyphenyl)quinazolin-4(3H)-one as off-white solid. 1H NMR (DMSO-d6) δ ppm 7.83 (1 H, t, J=7.9 Hz), 7.69 - 7.74 (1 H, m), 7.64 (1 H, dd, J=7.9, 0.9 Hz), 7.51 - 7.58 (1 H, m), 7.47 (1 H, dd, J=7.7, 1.6 Hz), 7.26 (1 H, d, J=8.3 Hz), 7.09 - 7.17 (1 H, m), 4.28 (2 H, dd, J=51.8, 12.5 Hz), 3.77 (3 H, s). Mass Spectrum (ESI) m/e = 335.0 and 337.0 (M + 1). 4-Amino-8-((5-chloro-3-(2-methoxypheny])-4-oxo-3,4-dihydroquinazolin-2- yl)methyl)pyrido[2,3-d]pyrimidin-5(8H)-one
Figure imgf000072_0001
To a mixture of 4-aminopyrido[2,3-d]pyrimidin-5(8H)-one (0.1 g, 0.616 mmol), Cs2CO3 (0.3013 g, 0.925 mmol, 1.5 eq), and KI (0.0102 g, 0.0616 mmol, 0.1 eq) in DMF (2 mL) was added 5-chloro-2-(chloromethyl)-3-(2-methoxyphenyl)- quinazolin-4(3H)-one (0.2273 g, 0.678 mmol, 1.1 eq) and the mixture was stirred at 100 0C for 1 h. The mixture was concentrated under reduced pressure. The crude product was purified by column chromatography on a 40 g of Redi-Sep™ column using 0 to 100% gradient of :MeOH:NH4θH (89:9:1) in CH2Cl2 over 14 min as eluent to provide 4-amino-8-((5-chloro-3-(2-methoxyphenyl)-4-oxo-3,4- dihydroquinazolin-2-yl)methyl)pyrido[2,3-d]pyrimidin-5(8H)-one as yellow solid (0.1707 g, 60%). The yellow solid was triturated with MeOH and filtered to provide 4-amino-8-((5-chloro-3-(2-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin- 2-yl)methyl)pyrido[2,3-d]pyrimidin-5(8H)-one [PI3Kδ IC50 = 13nM] as yellow solid. 1H NMR (DMSO-d6) d ppm 9.53 (1 H5 d, J=4.7 Hz), 8.20 (1 H, s), 8.14 (1 H, d, J=4.7 Hz), 7.88 (1 H, d, J=7.8 Hz), 7.65 - 7.72 (1 H, m), 7.49 - 7.59 (3 H, m), 7.37 (1 H, dd, J=8.2, 1.2 Hz), 7.31 (1 H, dd, J=8.6, 1.2 Hz), 7.15 - 7.21 (1 H, m), 6.20 (1 H, d, J=8.2 Hz), 4.91 - 5.13 (2 H, m), 3.85 (3 H, s). Mass Spectrum (ESI) m/e = 461.0 (M + 1). Example 22: Preparation of 4-Amino-8-((8-chloro-2-(2-chlorophenyl)- quinolin-3-yl)methyl)pyrido[2^-d]pyrimidin-5(8H)-one:
Figure imgf000073_0001
To a mixture of 4-aminopyrido[2,3-d]pyrimidin-5(8H)-one (0.05 g, 0.308 mmol), Cs2CO3 (0.1515 g, 0.46 mmol5 1.5 eq), and KI (0.0051 g, 0.0309 mmol, 0.1 eq) in DMF (1 mL) was added 8-chloro-3-(chloromethyl)-2-(2-chlorophenyl)quinoline (0.1 g, 0.309 mmol, 1.0 eq) and the mixture was stirred at 140 0C for 1 h. The mixture was concentrated under reduced pressure. The crude product was purified by column chromatography on a 40 g of Redi-Sep™ column using 0 to 100% gradient of EtOAc in hexane over 14 min and then 100% isocratic of EtOAc for 14 min as eluent to provide 4-amino-8-((8-chloro-2-(2-chlorophenyl)- quinolin-3-yl)methyl)pyrido[2,3-d]pyrimidin-5(8H)-one [PBKδ IC50 = 33nM] as white solid. 1H NMR (DMSO-d6) δ ppm 9.52 (1 H, d, J=4.7 Hz), 8.25 (1 H, s), 8.11 (1 H, d, J=4.7 Hz), 8.09 (1 H, s), 8.04 (1 H, dd, J=8.4, 1.4 Hz), 7.97 (1 H, dd, J=7.6, 1.4 Hz), 7.81 (1 H, d, J=7.8 Hz), 7.63 (1 H, d, J=7.8 Hz), 7.57 - 7.61 (1 H, m), 7.42 - 7.53 (3 H, m), 6.14 (1 H, d, J=7.8 Hz), 5.40 (2 H, s). Mass Spectrum (ESI) m/e = 448.0 and 450.1 (M + 1). Example 23:
Figure imgf000073_0002
1,3,5-Trichlorotriazine (94 mg, 510 μmol) was added to dimethylformamide (0.04 mL, 510 μmol) at 25 0C. After the formation of a white solid (10 min), DCM (3 mL) was added, followed by l-(8-chloro-2-(3-fluorophenyl)quinolin-3-yl)ethanol (140.0 mg, 464 μmol), made from procedure K. After the addition, the mixture was stirred at room temperature for 4 h. Water (10 mL) was added, and then diluted with DCM (10 mL), the organic phase was washed with 15 mL of a saturated solution OfNaHCO3, followed by water and brine. The organic layers were dried and concentrated. Purification of the residue by flash chromatography over silica gel, using 10% hexane in EtOAc, gave 8-chloro-3-(l-chloroethyl)-2-(3- fluorophenyl)quinoline, Mass Spectrum (ESI) m/e = 320.0 (M + 1).
Figure imgf000074_0001
To a solution of S-methyl-lH-pyrazoloP^-dtøyrimidin^-amine1 (28 mg, 187 μmol) in DMF( 2 mL) was added sodium hydride, 60% dispersion in mineral oil (15 mg, 375 μmol) at 0 0C and the mixture was stirred at rt for 10 min. To the mixture was added a solution of 8-chloro-3-(l-chloroethyl)-2-(3-fiuorophenyl)- quinoline (60.0 mg, 187 μmol) in DMF (1 mL) and the mixture was stirred at rt for 24 hrs. The mixture was poured into ice-water and extracted with Et2O. The organic layer was washed with brine, dried, and concentrated. The residue was purified by flash chromatography over silica gel, using DCM and MeOH (95:5), then Chiral HPLC (Chiralpak IA column, 0.46 x 250mm, 5 mm), using 15% isopropanol in hexane as eluent, gave 1 -((S)-I -(8-chloro-2-(3-fluorophenyl)- quinolin-3 -yl)ethy l)-3 -methyl- 1 H-pyrazolo [3 ,4-d]pyrimidin-4-amine, a fraction collected at 17 min, 99 %ee at 254 nm, 1H NMR (DMSO-d6) δ ppm 8.62 (1 H, s), 8.09 (1 H, d, J=8.2 Hz), 7.97 (1 H, d, J=8.2 Hz), 7.96 (1 H, s), 7.63 (1 H, t, J=8.0 Hz), 7.35-7.41 (1 H, m), 7.13-7.22 (3 H, m), 6.22-6.27 (1 H, m), 2.47 (3 H, s ), 1.79 (3 H, d, J=6.8 Hz). Mass Spectrum (ESI) m/e = 433.1 (M + 1). Example 24: Using the same or analogous synthetic techniques and substituting with appropriate reagents as in Example 1, the following compound was prepared:
Figure imgf000075_0001
1 -((8-chloro-3-(4-fluorophenyl)quinoxalin-2-yl)methyl)-3-methyl- 1 H-pyrazolo- [3,4-d]pyrimidin-4-amine, 1H NMR (DMSO-d6) δ ppm 8.08 (1 H, dd, J=8.0, 1.2 Hz), 8.02 (1 H, dd, J=8.0, 1.2 Hz), 8.01 (1 H, s), 7.85 (1 H, t, J=8.0 Hz), 7.58-7.64 (2 H, m), 7.11-7.18 (3 H5 m), 2.38 (3 H, s ). Mass Spectrum (ESI) m/e = 420.1 (M + 1). Example 25: l-((5-Chloro-2-(2-chlorophenyl)quinolin-3-yl)methyl)-3-iodo-lH-pyrazolo- [3,4-d] pyrimidin-4-amine
Figure imgf000075_0002
Prepared according to Procedure I using 5-chloro-3-(chloromethyl)-2-(2-chloro- phenyl)quinoline (0.700 g, 2.17 mmol), 3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4- amine (0.623 g, 2.39 mmol, 1.1 eq) and NaH (0.078 g, 3.26 mmol, 1.5 eq) in DMF (15 mL). N-((8-chloro-2-(3-fluorophenyl)quinolin-3-yl)methyl)-9H-purin- 6-amine [PI3Kδ IC50 = 35 nM] was obtained after purification as a white solid. IH-NMR (MeOD) δ ppm 8.62 (s, IH), 8.00 (s, IH), 7.89-7.91 (m, IH), 7.82-7.85 (m, IH), 7.43 (d, IH, J=5.0 Hz), 7.29-7.32 (t, IH), 7.18-7.22 (t, IH), 7.06 (d, IH, J=5.0 Hz), 5.63 (s, 2H), Mass Spectrum (ESI) m/e = 548 (M + 1). Example 26 l-((5-chloro-2-(2-chlorophenyl)quinolin-3-yl)methyl)-3-(l-methyl-lH- py razol-4-yl)-lH-py razolo [3,4-d] py rimidin-4-amine
Figure imgf000076_0001
Prepared according to Procedure J using l-((5-chloro-2-(2-chlorophenyl)quinolin- 3-yl)methyl)-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine (0.060 g, 0.110 mmol), l-methyl-4-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)-lH-pyrazole (0.032 g, 0.164 mmol, 1.5 eq), tetrakis(triphenylphosphine)palladium (0.006 g, 10 mol %), and sodium carbonate (2M aq. Sol., 6 eq) in DMF (0.2M)). l-((5- chloro-2-(2 -chlorophenyl)quinolin-3 -yl)methyl)-3 -(I -methyl- 1 H-pyrazol-4-yl)- lH-pyrazolo[3,4-d]pyrimidin-4-amine was obtained after purification as a white solid. IH-NMR (MeOD) δ ppm 8.56 (s, IH), 8.01-8.05 (m, 3H), 7.87 (d, IH, J=5.0), 7.80-7.83 (m, IH), 7.65 (s, IH), 7.47 (d, IH, J=5.0), 7.34 (t, IH, J=5.0), 7.24 (t, IH, J=5.0 Hz), 7.15 (d, IH), 5.63 (s, 2H), 3.89 (s, 3H), Mass Spectrum (ESI) m/e = 502 (M + 1).
Example 27: Preparation of l-((8-chloro-3-(2-chIorophenyl)quinoxalin-2-yl)- methyl)-3-(lH-pyrazol-4-yl)-lH-pyrazolo [3,4-d] py rimidin-4-amine as a TFA salt and l-((5-chloro-3-(2-chlorophenyl)quinoxalin-2-yl)methyl)-3-(lH- py razol-4-yl)-lH-py razolo [3,4-d] py rimidin-4-amine as a TFA salt: l-((8-Chloro-3-(2-chlorophenyl)quinoxalin-2-yl)methyl)-3-iodo-lH- pyrazolo[3,4-d]pyrimidin-4-amine and l-((5-chloro-3-(2-chlorophenyl)- quinoxaIin-2-yI)methyI)-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine
Figure imgf000077_0001
To a solution of 3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-arnine (0.7168 g, 2.746 mmol) in 6 mL of DMF was added sodium hydride, 60% dispersion in mineral oil (0.2197 g, 5.492 mmol) at 0 0C and the mixture was stirred at room temperature. After 10 min, to the mixture was added a solution of a mixture of 3- (bromomethyl)-5-chloro-2-(2-chlorophenyl)quinoxaline and 2-(bromomethyl)-5- chloro-3-(2-chlorophenyl)quinoxaline (1.061 g, 2.883 mmol) in 6 mL of DMF and the mixture was stirred at room temperature. After 1 hr, the mixture was poured into ice-water (100 mL). The resulting precipitate was colloected by filtration to give yellow solid (1.2805 g). The yellow solid was purified by column chromatography on a 40 g of Redi-Sep™ column using 0-100% gradient of EtOAc in hexane over 14 min and then 100% isocratic of EtOAc for 16 min as eluent to give a mixture of two regioisomers as yellow solid. The yellow solid was suspended in EtOAc and filtered to give l-((8-chloro-3-(2-chlorophenyl)- quinoxalin-2-yl)methyl)-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine and l-((5- chloro-3-(2-chlorophenyl)quinoxalin-2-yl)methyl)-3-iodo-lH-pyrazolo[3,4- d]pyrimidin-4-arnine as tan solid: LC-MS (ESI) m/z 547.9 [M+H]+. l-((8-Chloro-3-(2-chlorophenyl)quinoxalin-2-yl)methyl)-3-(lH-pyrazol-4-yl)- lH-pyrazolo[3,4-d]pyrimidiii-4-amine as a TFA salt and l-((5-Chloro-3-(2- chlorophenyI)quinoxalin-2-yl)methyl)-3-(lH-pyrazol-4-yl)-lH-pyrazolo[3,4- d]pyrimidin-4-amine as a TFA salt
Figure imgf000078_0001
of two regioisomers
Figure imgf000078_0002
A solution of a mixture of l-((8-chloro-3-(2-chlorophenyl)quinoxalin-2-yl)- methyl)-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine and l-((5-chloro-3-(2- chlorophenyl)quinoxalin-2-yl)methyl)-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4- amine in 3.2 mL of DMF was treated with 4-pyrazoleboronic acid pinacol ester (0.2124 g, 1.095 mmol), tetrakis(triphenylphosphine)palladium(0) (0.06324 g, 0.05473 mmol), and 2 M aq. sodium carbonate sol. (1.642 mL, 3.284 mmol). The mixture was heated at 100 0C. After 3.5 hr, the mixture was removed from the heat and poured onto ice-water (100 mL). The resulting precipitate was collected by suction filtration, washed with water, and air-dried to give tan solid. The tan solid was purified by column chromatography on a 40 g of Redi-Sep™ column using 0 to 100% gradient Of CH2Cl2IMeOHiNH4OH (89:9:1) in CH2Cl2 over 14 min and then 100% isocratic OfCH2Cl2=MeOH=NH4OH (89:9:1) for 8 min as eluent to give a product mixture of two regioisomers as off-white solid. The off- white solid was dissolved purified by semi-prep-HPLC on Cl 8 column using 30- 60% gradient of CH3CN (0.1% of TFA) in water (0.1% of TFA) over 40 min as eluent to give two separated regioisomers: l-((8-chloro-3-(2-chlorophenyl)- quinoxalin-2-yl)methyI)-3-(lH-pyrazol-4-yl)-lH-pyrazolo[3,4-d]pyrimidin-4- amine as a TFA salt as white solid: 1H NMR (400 MHz, DMSOd6) δ ppm 8.14 (1 H, s), 8.12 - 8.13 (1 H, m), 8.11 (1 H, q, J=1.4 Hz), 7.85 - 7.94 (3 H, m), 7.44 (1 H, d, J=7.8 Hz), 7.22 - 7.33 (3 H, m), 5.89 (1 H, s), 5.85 (1 H, s); LC-MS: m/z 488.0 and 490.0 [M+l], (Exact Mass: 487.08) and l-((5-chloro-3-(2- chlorophenyl)quinoxalin-2-yl)methyl)-3-(lH-pyrazol-4-yl)-lH-pyrazolo[3,4- d]pyrimidin-4-amine as a TFA salt as white solid: 1H NMR (400 MHz, DMSO- d6) δ ppm 8.16 (1 H, s), 8.12 (1 H, s), 8.10 (1 H, s), 7.87 - 7.95 (3 H, m), 7.44 - 7.50 (1 H, m), 7.25 - 7.37 (3 H, m), 5.87 (1 H, s), 5.83 (1 H, s); LC-MS: m/z 488.0 and 490.0 [M+l], (Exact Mass: 487.08).
Example 28: Preparation of 4-Amino-l-((3-(2-chlorophenyl)-8-methyl- quinoxalin-2-yl)methyl)-lH-pyrazolo[3,4-d]pyrimidine-3-carbonitrile and 4- Amino-l-((3-(2-chlorophenyl)-5-methylquinoxaIin-2-yl)methyl)-lH- pyrazolo[3,4-d]pyrimidine-3-carbonitrile:
Figure imgf000079_0001
A suspension of a mixture of l-((3-(2-chlorophenyl)-8-methylquinoxalin-2-yl)- methyl)-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine and l-((3-(2-chloro- phenyl)-5-methylquinoxalin-2-yl)methyl)-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4- amine (Prepared in Example 15, 0.30000 g, 0.568 mmol) and copper(i) cyanide (0.305 g, 3.41 mmol) in 5 mL of pyridine was stirred at 100 0C. After 8 hr, the mixture was cooled to room temperature. The mixture was concentrated under reduced pressure. The crude mixture was purified by column chromatography on a 40 g of Redi-Sep™ column using 0-100% gradient of EtOAc in hexane over 14 min and then 100% isocratic of EtOAc for 10 min as eluent to give a mixture of two regioisomers. The mixture was purified (1.5 mL (~50 mg) x 4 injections) by semi-prep-HPLC on a Gemini™ 10 μ Cl 8 column (250 x 21.2 mm, 10 μm) using 30-70% gradient Of CH3CN (0.1% of TFA) in water (0.1% of TFA) over 40 min as eluent to give two fractions: each fraction was treated with saturated NaHCO3 (50 mL) and extracted with CH2Cl2 (50 mL x 1). The each organic layer was washed with H2O (30 mL x 2), dried over Na2SO4, filtered, concentrated under reduced pressure to give two separated regioisomers: 4-amino-l-((3-(2- chIorophenyl)-8-methylquinoxalin-2-yI)methyl)-lH-pyrazolo[3,4- d]pyrimidine-3-carbonitrile as an off-white solid: 1H NMR (500 MHz5 DMF) δ ppm 8.16 (1 H, s), 7.95 (1 H, d, J=8.1 Hz), 7.78 - 7.83 (1 H, m), 7.73 - 7.78 (1 H, m), 7.50 - 7.56 (1 H, m), 7.39 - 7.45 (2 H, m), 7.32 - 7.38 (1 H, m), 5.86 (2 H, s), 2.50 (3 H, s); LC-MS (ESI) m/z 427.0 [M+H]+ and 4-amino-l-((3-(2- chlorophenyl)-5-methylquinoxaIin-2-yI)methyl)-lH-pyrazolo[3,4- d]pyrimidine-3-carbonitrile as a white solid: 1H NMR (500 MHz, DMSO-d6) δ ppm 8.13 (1 H, s), 7.91 (1 H, dd, J=8.2, 0.9 Hz), 7.79 - 7.84 (1 H, m), 7.76 - 7.80 (1 H, m), 7.46 - 7.51 (1 H, m), 7.33 - 7.40 (2 H, m), 7.26 - 7.32 (1 H, m), 5.87 (2 H, s), 2.68 (3 H, s); LC-MS (ESI) m/z 427.1 [M+H]+.
Example 29: Preparation of l-((3-(2-chlorophenyl)-8-methylquinoxalin-2-yl)- methyl)-3-(l-methyl-lH-pyrazol-4-yl)-lH-pyrazolo[3,4-d]pyrimidin-4-amine and l-((3-(2-chlorophcnyl)-5-methylquinoxalin-2-yl)methyl)-3-(l-methyl-lH- pyrazol-4-yl)-lH-pyrazolo[3,4-d]pyrimidin-4-amine:
eqv.)
Figure imgf000080_0001
Figure imgf000081_0001
A solution of a mixture of l-((3-(2-chlorophenyl)-8-methylquinoxalin-2-yl)- methyl)-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine and l-((3-(2-chloro- phenyl)-5-methylquinoxalin-2-yl)methyl)-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4- amine (Prepared in Example 15, 0.3000 g, 0.5685 mmol) in 3.3 mL of DMF was treated with l-methylpyrazole-4-boronic acid pinacol ester (0.2366 g, 1.137 mmol), tetrakis(triphenylphosphine)palladium(0) (0.06569 g, 0.05685 mmol), and 2 M aq. sodium carbonate sol. (1.705 mL, 3.411 mmol). The mixture was stirred at 100 0C. After 50min, The mixture was cooled to room temperature. To the mixture was added water (50 mL) and the resulting precipitate was collected by filtration to give the products as a brown solid. The borwn solid was purified by column chromatography on a 40 g of Redi-Sep™ column using 0 to 100% gradient Of CH2Cl2MeOHiNH4OH (89:9:1) in CH2Cl2 over 14 min and then 100% isocratic of CH2Cl2:MeOH:NH4OH (89:9:1) for 10 min as eluent to give a mixture of two regioisomers as a dark brown solid. The dark brown solid was purified (1.5 mL (~53 mg) x 5 injections) by semi-prep-HPLC on a Gemini™ 10 μ Cl 8 column (250 x 21.2 mm, 10 μm) using 20-60% gradient Of CH3CN (0.1% of TFA) in water (0.1% of TFA) over 40 min as eluent to give two fractions: each fraction was treated with saturated NaHCO3 (50 mL) and extracted with CH2Cl2 (50 mL x 2). The combined organic layers were respectively washed with H2O (30 mL x 2), dried over Na2SO4, filtered, concentrated under reduced pressure to give two separated regioisomers: l-((3-(2-chlorophenyl)-8-methylquinoxalin-2- yl)methyl)-3-(l-methyl-lH-pyrazoI-4-yl)-lH-pyrazolo[3,4-d]pyrimidin-4- amine as an -off-white solid: 1H NMR (400 MHz, DMSO-d6) δ ppm 8.04 (1 H, s), 7.99 (1 H, s), 7.90 - 7.95 (1 H, m), 7.76 - 7.81 (1 H, m), 7.72 - 7.76 (1 H, m), 7.63 (1 H, d, J=0.8 Hz), 7.45 (1 H, dd, J=7.4, 0.8 Hz), 7.28 - 7.33 (1 H, m), 7.20 - 7.27 (2 H, m), 6.83 (2 H, br. s.), 5.62 - 5.93 (2 H, m), 3.87 (3 H, s), 2.57 (3 H, s); LC-MS (ESI) m/z 482.0 [M+H]+ and l-((3-(2-chlorophenyl)-5- methylquinoxalin-2-yl)methyl)-3-(l-methyMH-pyrazol-4-yl)-lH- pyrazolo[3,4-d]pyrimidin-4-amine as a white solid: 1H NMR (400 MHz, DMSO-Cl6) δ ppm 8.01 (1 H, s), 7.97 (1 H, s), 7.94 (1 H, dd, J=8.4, 1.0 Hz), 7.78 - 7.84 (1 H, m), 7.74 - 7.78 (1 H, m), 7.61 (1 H, d, J=0.8 Hz), 7.38 - 7.43 (1 H, m), 7.22 - 7.28 (1 H, m), 7.14 - 7.22 (2 H, m), 6.81 (2 H, br. s.), 5.59 - 5.95 (2 H, m), 3.86 (3 H, s), 2.66 (3 H, s); LC-MS (ESI) m/z 482.0 [M+H]+. Example 30: Preparation of l-((8-chloro-2-(2-(trifluoromethyI)phenyl)- quinolin-3-yI)methyl)-3-methyl-lH-pyrazolo[3,4-d]pyrimidin-4-amine:
Figure imgf000082_0001
To a solution of 3-methyl-lH-pyrazolo[3,4-d]pyrimidin-4-amine (0.07385 g, 0.4951 mmol) in 1 mL of DMF was added Sodium hydride, 60% dispersion in mineral oil (0.03960 g, 0.9902 mmol) at 0 0C and the mixture was stirred at room temperature. After 10 min at room temperature, to the mixture was added a solution of 8-chloro-3-(chloromethyl)-2-(2-(trifluoromethyl)phenyl)quinoline hydrochloride (Prepared in Example 6, 0.1944 g, 0.4951 mmol) in 2 mL of DMF and the mixture was stirred at room temperature. After 50 min, the mixture was poured into ice- water (100 mL). The resulting precipitate was colloected by filtration to give a brown solid (0.2185 g). The aq. filtrate also contained the desired product. The aq. filtrate was extracted with CH2Cl2 (50 mL x 3). The combined organis layers were washed with brine (50 mL x 1), dried over Na2SO4, filtered, and concentrated under reduced pressure to give a colorless syrup (0.0346 g). The brown solid and the colorless syrup were combined and purified by column chromatography on a 40 g of Redi-Sep™ column using 0-100% gradient of EtOAc in hexane over 14 min, then 100% isocratic of EtOAc for 10 min, and then 0% to 100% gradient Of CH2Cl2=MeOH=NH4OH (89:9:1) in CH2Cl2 over 14 min as eluent to give l-((8-ctøoro-2-(2-(trifluoromethyl)phenyl)quinolin-3-yl)- methyl)-3 -methyl- lH-pyrazolo [3 ,4-d]pyrimidin-4-amine as an off-white solid: 1H NMR (400 MHz, DMSO-(I6) δ ppm 8.24 (1 H, s), 8.03 (1 H, dd, J=8.3, 1.3 Hz), 7.97 (1 H, dd, J=7.5, 1.3 Hz), 7.95 (1 H, s), 7.79 - 7.85 (1 H, m), 7.57 - 7.67 (3 H, m), 7.32 - 7.37 (1 H, m), 7.24 (2 H, br. s.), 5.30 - 5.42 (2 H, m), 2.46 (3 H, s); LC- MS (ESI) m/z 469.1 [M+H]+.
Example 31: Preparation of l-((5-chloro-2-(2-(trifluoromethyI)phenyl)- quinolin-3-yl)methyl)-3-methyl-lH-pyrazolo[3,4-d]pyrimidin-4-amine: 5-Chloro-2-(2-(trifluoromethyl)phenyl)quinoline-3-carbaldehyde
Figure imgf000083_0001
73.7%
A mixture of 2,5-dichloroquinoline-3-carbaldehyde (1.9948 g, 8.8243 mmol), 2- (trifluoromethyl)phenylboronic acid (1.8436 g, 9.7067 mmol), tetrakis(triphenyl- phosphine)palladium (0.50985 g, 0.44121 mmol), and sodium carbonate anhydrous (4.6763 g, 44.121 mmol) in 88 mL Of CH3CN-H2O (3:1) was stirred at 100 0C. After 5 hr, the mixture was cooled to room temperature and partitioned between EtOAc (100 mL) and water (100 mL). The organic layer was washed with brine (50 mL x 2), dried over MgSO4, filtered, and concentrated under reduced pressure to give a red syrup. The red syrup was purified by silica gel column chromatography on a 80 g of Redi-Sep™ column using 0 to 50% gradient of EtOAc in hexane over 25 min and then 50% isocratic of EtOAc for 30 min as eluent to give 5-chloro-2-(2-(trifluoromethyl)phenyl)quinoline-3-carbaldehyde as a light-yellow solid: 1H NMR (400 MHz, DMSO-d6) δ ppm 10.01 (1 H, s), 9.19 (1 H, d, J=LO Hz), 8.08 - 8.14 (1 H, m), 7.97 - 8.03 (2 H, m), 7.89 - 7.95 (1 H, m), 7.73 - 7.84 (2 H, m), 7.55 - 7.61 (1 H, m); LC-MS (ESI) m/z 336.1 [M+H]+. 5-Chloro-3-(chloromethyl)-2-(2-(trifluoromethyl)phenyl)quinoIine hydrochloride
Figure imgf000084_0001
No purification
To a solution of 5-chloro-2-(2-(trifluoromethyl)phenyl)quinoline-3-carbaldehyde (2.1673 g, 6.456 mmol) in 32 mL of THF at 00C was added sodium borohydride (0.3664 g, 9.684 mmol) and the mixture was stirred at 0 0C. After 1 hr at 0 0C, the mixture was partitioned between EtOAc (100 mL) and H2O (100 mL), and the organic layer was washed with brine (50 mL x 3), dried over Na2SO4, filtered, and concentrated under reduced pressure to give (5-chloro-2-(2-(trifluoromethyl)- phenyl)quinolin-3-yl)methanol as a yellow syrup: 1H NMR (400 MHz, DMSO-d6) δ ppm 8.68 - 8.73 (1 H, m), 7.96 - 8.02 (1 H, m), 7.90 - 7.95 (1 H, m), 7.83 - 7.87 (1 H, m), 7.68 - 7.83 (3 H, m), 7.50 - 7.58 (1 H, m), 5.63 (1 H, t, J=5.3 Hz), 4.36 (2 H, br. s.); LC-MS (ESI) m/z 338.0 [M+H]+. The product was carried on crude without purification for the next step. A solution of (5-chloro-2-(2-(trifluoromethyl)phenyl)quinolin-3-yl)methanol (2.180 g, 6.455 mmol) in 22 mL Of CHCl3 was treated with thionyl chloride (2.348 mL, 32.27 mmol) dropwise, and the reaction mixture was stirred at room temperature. After 1.5 hr, the mixture was concentrated under reduced pressure and co-evaporated three times with CH2Cl2 to give 5-chloro-3-(chloromethyl)-2- (2-(trifluoromethyl)phenyl)quinoline hydrochloride as a yellow solid: 1H NMR (400 MHz, DMSO-Cl6) δ ppm 8.86 (1 H, d, J=0.6 Hz), 7.99 - 8.05 (1 H, m), 7.94 (1 H, dd, 3=7 A, 1.0 Hz), 7.88 - 7.92 (1 H, m), 7.81 - 7.87 (2 H, m), 7.74 - 7.81 (1 H, m), 7.61 - 7.66 (1 H, m), 4.77 (2 H, d, J=79.0 Hz); LC-MS (ESI) m/z 356.0 and 358.0 [M+H]+ (Exact Mass of neutal form: 355.014). The yellow solid was carried on crude without purification for the next step. l-((5-Chloro-2-(2-(trifluoromethyl)phenyl)quinolin-3-yl)methyl)-3-methyl- lH-py razolo [3,4-d] pyrimidin-4-amine
Figure imgf000085_0001
To a solution of 3-methyl-lH-pyrazolo[3,4-d]pyrimidin-4-amine (0.0956 g, 0.641 mmol) in 1 mL of DMF was added sodium hydride, 60% dispersion in mineral oil (0.0513 g, 1.28 mmol) at 0 0C and the mixture was stirred at room temperature. After 5 min at room temperature, to the mixture was added a solution of 5-chloro- 3-(chloromethyl)-2-(2-(trifluoromethyl)phenyl)quinoline hydrochloride (0.2767 g, 0.705 mmol) in 3 mL of DMF and the mixture was stirred at room temperature. After 1.5 hr, the mixture was poured into ice-water (100 mL). The resulting precipitate was collected by filtration to give an off-white solid. The off white solid was purified by column chromatography on a 40 g of Redi-Sep™ column using 0-100% gradient of EtOAc in hexane over 14 min and then 0% to 100% gradient OfCH2Cl2MeOH^H4OH (89:9:1) in CH2Cl2 over 14 min as eluent to give an off-white solid. The off-white solid was suspended in C^Cb-hexane
(1:1) and filtered to give l-((5-chloro-2-(2-(trifluoromethyl)phenyl)quinolin-3-yl)- methyl)-3 -methyl- lH-pyrazolo [3 ,4-d]pyrimidin-4-amine as a white solid: 1H NMR (400 MHz, DMSO-(I6) δ ppm 8.44 (1 H, d, J=0.8 Hz), 7.96 - 8.02 (1 H, m), 7.94 (1 H, s), 7.84 - 7.88 (1 H, m), 7.75 - 7.83 (2 H, m), 7.52 - 7.64 (2 H, m), 7.05 - 7.49 (3 H, m, J=6.7 Hz), 5.42 (2 H, s), 2.45 (3 H, s); LC-MS (ESI) m/z 469.1 [M+H]+. Example 32: Preparation of l-((3-(2-chlorophenyl)-8-fluoroquinoxalin-2-yl)- methyl)-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine and l-((3-(2- chlorophenyI)-5-fluoroquinoxalin-2-yl)methyI)-3-iodo-lH-pyrazolo[3,4- d] pyrimidin-4-amine:
3-(Bromomethyl)-2-(2-chlorophenyl)-5-fluoroquinoxaline and 2-(Bromo- methyl)-3-(2-chlorophenyl)-5-fluoroquinoxaline
Figure imgf000086_0001
as a mixture over two steps
To a solution of 3-bromo-l-(2-chlorophenyl)propane-l,2-dione (Prepared in Procedure L, 2.3832 g, 9.114 mmol) in 61 mL of EtOAc was added a solution of 3 -fluorobenzene- 1 ,2-diamine (1.150 g, 9.114 mmol) at room temperature and the resulting red mixture was stirred at room temperature. After 3 hr, the mixture was concentrated in vacuo to give a mixture of two regioisomers as a black syrup. The black syrup was purified by column chromatography on a 80 g of Redi-Sep™ column using 0 to 50% gradient of EtOAc in hexane over 25 min and then 100% isocratic of EtOAc for 4 min as eluent to give a mixture of 3-(bromomethyl)-2-(2- chlorophenyl)-5-fluoroquinoxaline and 2-(bromomethyl)-3-(2-chlorophenyl)-5- fluoroquinoxaline as a red syrup: LC-MS (ESI) two peaks of m/z 351.0 [M+H (79Br)J+ and 352.9 [M+H (81Br)J+. The red syrup was carried on crude without further purification for the next step.
l-((3-(2-ChIorophenyl)-8-fluoroquinoxalin-2-yl)methyl)-3-iodo-lH- pyrazolo[3,4-d]pyrimidin-4-amine and l-((3-(2-Chlorophenyl)-5-fluoro- quinoxaIin-2-yl)methyl)-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine
Figure imgf000087_0001
45.7% as a mixture (1 :2)
Figure imgf000087_0002
To a solution of 3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine (0.6330 g, 2.425 mmol) 5 mL of DMF was added Sodium hydride, 60% dispersion in mineral oil (0.1940 g, 4.850 mmol) at 0 0C and the mixture was stirred at room temperature. After 10 min at room temperature, to the mixture was added a solution of a mixture of 3-(bromomethyl)-2-(2-chlorophenyl)-5-fluoroquinoxaline and 2-
(bromomethyl)-3-(2-chlorophenyl)-5-fluoroquinoxaline (0.9379 g, 2.668 mmol) in 5 mL of DMF and the mixture was stirred at room temperature. After 50 min, the mixture was poured into ice- water (100 mL). The resulting precipitate was collected by filtration to give a yellow solid. The yellow solid was purified by silica gel column chromatography on a 40 g of Redi-Sep™ column using 0- 100% gradient of EtOAc in hexane over 14 min and then 100% isocratic of EtOAc for 16 min as eluent to give a mixture of l-((3-(2-chlorophenyl)-8-fluoroquinoxalin- 2-yl)memyl)-3-iodo-lH-pyrazolo[3,4-d]pyrimidin-4-amine and l-((3-(2- chlorophenyl)-5-fluoroquinoxalin-2-yl)methyl)-3-iodo-lH-pyrazolo[3,4- d]pyrimidin-4-amine as a tan solid. The tan solid was separated by supercritical fluid chromatography (SFC) to give two separated regioisomers: l-((3-(2- chlorophenyl)-8-fluoroquinoxalin-2-yl)methyl)-3-iodo-lH-pyrazolo[3,4- d]pyrimidin-4-amine as a white solid: 1H NMR (400 MHz3 chloroform-d) δ ppm 8.18 (1 H, s), 7.92 - 7.98 (1 H, m), 7.72 - 7.80 (1 H, m), 7.46 - 7.55 (1 H, m), 7.36 (1 H, dd, J=8.0, 1.0 Hz), 7.19 - 7.24 (1 H, m), 7.12 - 7.17 (1 H, m), 7.05 - 7.10 (1 H, m), 5.75 - 6.14 (4 H, m); LC-MS (ESI) m/z 532.0 [M+H]+ and l-((3-(2- chlorophenyl)-5-fluoroquinoxalin-2-yl)methyl)-3-iodo-lH-pyrazolo[3,4- d]pyrimidin-4-amine as a white solid: 1H NMR (400 MHz, chloroform-d) δ ppm 8.20 (1 H, s), 7.86 - 7.92 (1 H, m), 7.70 - 7.78 (1 H, m), 7.45 - 7.53 (1 H, m), 7.37 - 7.42 (1 H, m), 7.24 - 7.30 (1 H, m), 7.16 - 7.23 (2 H, m), 5.76 - 6.04 (4 H, m); LC-MS (ESI) m/z 532.0 [M+H]+. Biological Assays Recombinant expression of PI3Ks
Full length pi 10 subunits of PI3k α, β and δ, N-terminally labeled with polyHis tag, were coexpressed with p85 with Baculo virus expression vectors in sf9 insect cells. Pl 10/p85 heterodimers were purified by sequential Ni-NTA, Q-HP,
Superdex-100 chromatography. Purified α, β and δ isozymes were stored at -20 0C in 2OmM Tris, pH 8, 0.2M NaCl, 50% glycerol, 5mM DTT, 2mM Na cholate. Truncated PI3Kγ, residues 114-1102, N-terminally labeled with polyHis tag, was expessed with Baculo virus in Hi5 insect cells. The γ isozyme was purified by sequential Ni-NTA, Superdex-200, Q-HP chromatography. The γ isozyme was stored frozen at -80 °C in NaH2PO4, pH 8, 0.2M NaCl, 1% ethylene glycol, 2mM β-mercaptoethanol.
Figure imgf000088_0001
In vitro enzyme assays.
Assays were performed in 25 μL with the above final concentrations of components in white polyproplyene plates (Costar 3355). Phospatidyl inositol phosphoacceptor, PtdIns(4,5)P2 P4508, was from Echelon Biosciences. The ATPase activity of the alpha and gamma isozymes was not greatly stimulated by PtdIns(4,5)P2 under these conditions and was therefore omitted from the assay of these isozymes. Test compounds were dissolved in dimethyl sulfoxide and diluted with three-fold serial dilutions. The compound in DMSO (1 μL) was added per test well, and the inhibition relative to reactions containing no compound, with and without enzyme was determined. After assay incubation at room temperature, the reaction was stopped and residual ATP determined by addition of an equal volume of a commercial ATP bioluminescence kit (Perkin Elmer Easy Lite) according to the manufacturer's instructions, and detected using a AnalystGT luminometer. Human B Cells Proliferation stimulate by anti-IgM Isolate human B Cells:
Isolate PBMCs from Leukopac or from human fresh blood. Isolate human B cells by using Miltenyi protocol and B cell isolation kit II. -human B cells were Purified by using AutoMacs.column. Activation of human B cells
Use 96 well Flat bottom plate, plate 50000/well purified B cells in B cell proliferation medium (DMEM + 5% FCS, 10 mM Hepes, 50 μM 2-mercaptoethanol); 150 μL medium contain 250 ng/mL CD40L -LZ recombinant protein (Amgen) and 2 μg/mL anti-Human IgM antibody (Jackson ImmunoReseach Lab.#109- 006-129), mixed with 50 μL B cell medium containing PI3K inhibitors and incubate 72 h at 37 °C incubator. After 72h, pulse labeling B cells with 0.5-1 uCi
/well 3H thymidine for overnight -18 h, and harvest cell using TOM harvester.
Compound IC50 l-((8-chloro-2-(2-fluorophenyl)-3-quinolinyl)methyl)-3-(lH- pyrazol-4-y I)- 1 H-pyrazolo [3 ,4-d]pyrimidin-4-amine
4-amino- 1 -((3 -(2-chlorophenyl)-8-methyl-2-quinoxalinyl)methyl)- lH-pyrazolo[3,4-d]pyrimidine-3-carbonitrile 4-amino-l-((3-(2-chlorophenyl)-5-methyl-2-quinoxalinyl)methyl)-
0.001989 lH-pyrazolo[3,4-d]pyrimidine-3-carbonitrile
1 -((3 -(2-chlorophenyl)-8-methyl-2-quinoxalinyl)methyl)-3 -( 1 -
0.01979 methyl- 1 H-pyrazol-4-yl)- 1 H-pyrazolo [3 ,4-d]pyrimidin-4-amine l-((3-(2-chlorophenyl)-5-methyl-2-quinoxalinyl)methyl)-3-(l-
0.037023 methyl- 1 H-pyrazol-4-yl)- 1 H-pyrazolo[3 ,4-d]pyrimidin-4-amine
1 -((5-chloro-2-(2-chlorophenyl)-3-quinolinyl)methyl)-3-iodo- 1 H-
0.093431 pyrazolo [3 ,4-d]pyrimidin-4-amine l-((8-chloro-2-(2-(trifluoromethyl)phenyl)-3-quinolinyl)methyl)-3-
0.044789 methyl- 1 H-pyrazolo [3 ,4-d]pyrimidin-4-amine l-((5-chloro-2-(2-(trifluoromethyl)phenyl)-3-quinolinyl)methyl)-3-
0.135691 methyl-lH-pyrazolo[3,4-d]pyrimidin-4-amine l-((3-(2-chlorophenyl)-8-fluoro-2-quinoxalinyl)methyl)-3-iodo-
0.817616
1 H-pyrazolo [3 ,4-d]pyrimidin-4-amine l-((3-(2-chlorophenyl)-5-fluoro-2-quinoxalinyl)methyl)-3-iodo-
0.55443 lH-pyrazolo[3,4-d]pyrimidin-4-amine
1 -((5-chloro-2-(2-chlorophenyl)-3-quinolinyl)methyl)-3-(l -methyl-
0.046745
1 H-pyrazol-4-yl)- 1 H-pyrazolo [3 ,4-d]pyrimidin-4-amine l-((lS)-l-(8-chloro-2-(3-fluorophenyl)-3-quinolinyl)ethyl)-3-
0.00157 methyl-lH-pyrazolo[3,4-d]pyrimidin-4-amine
2-((4-amino-3-iodo- 1 H-pyrazolo [3, 4-d]pyrimidin- 1 -yl)methyl)-3-
0.512429
(3 -fluorophenyl)-6-methyl-4H-pyrido [ 1 ,2-a]pyrimidin-4-one
Human B Cells Proliferation stimulate by IL-4
Isolate human B Cells:
Isolate human PBMCs from Leukopac or from human fresh blood. Isolate human
B cells using Miltenyi protocol - B cell isolation kit. Human B cells were Purified by AutoMacs.column.
Activation of human B cells
Use 96-well flat bottom plate, plate 50000/well purified B cells in B cell proliferation medium (DMEM + 5% FCS, 50 μM 2-mercaptoethanol, 1OmM
Hepes). The medium (150 μL) contain 250 ng/mL CD40L -LZ recombinant protein (Amgen) and 10 ng/mL IL-4 ( R&D system # 204-IL-025), mixed with 50 150 μL B cell medium containing compounds and incubate 72 h at 37 0C incubator. After 72 h, pulse labeling B cells with 0.5-1 uCi /well 3H thymidine for overnight ~18 h, and harvest cell using TOM harvester. Specific T antigen (Tetanus toxoid) induced human PBMC proliferation assays
Human PBMC are prepared from frozen stocks or they are purified from fresh human blood using a Ficoll gradient. Use 96 well round-bottom plate and plate 2xlO5 PBMC/well with culture medium (RPMI1640 + 10% FCS, 5OuM 2- MercaptoethanoljlO mM Hepes). For IC50 determinations, PI3K inhibitors was tested from 10 μM to 0.001 μM, in half log increments and in triplicate. Tetanus toxoid ,T cell specific antigen ( University of Massachusetts Lab) was added at 1 μg/mL and incubated 6 days at 37 °C incubator. Supernatants are collected after 6 days for IL2 ELISA assay , then cells are pulsed with 3H-thymidine for ~18 h to measure proliferation.
GFP assays for detecting inhibition of Class Ia and Class III PI3K AKTl (PKBa) is regulated by Class Ia PI3K activated by mitogenic factors (IGF- 1, PDGF, insulin, thrombin, NGF, etc.). hi response to mitogenic stimuli, AKTl translocates from the cytosol to the plasma membrane Forkhead (FKHRLl) is a substrate for AKTl . It is cytoplasmic when phosphorylated by AKT (survival/growth). Inhibition of AKT (stasis/apoptosis) - forkhead translocation to the nucleus
FYVE domains bind to PI(3)P. the majority is generated by constitutive action of PI3K Class III AKT membrane ruffling assay (CHO-IR-AKTl-EGFP cells/GE Healthcare)
Wash cells with assay buffer. Treat with compounds in assay buffer 1 h. Add 10 ng/mL insulin. Fix after 10 min at room temp and image Forkhead translocation assay (MDA MB468 Forkhead-DiversaGFP cells) Treat cells with compound in growth medium 1 h. Fix and image. Class III PI(3)P assay (U2OS EGFP-2XFYVE cells/GE Healthcare)
Wash cells with assay buffer. Treat with compounds in assay buffer 1 h. Fix and image. Controlfor all 3 assays is lOuM Wortmannin: AKT is cytoplasmic Forkhead is nuclear PI(3)P depleted from endosomes Biomarker assay: B-cell receptor stimulation of CD69 or B7.2 (CD86) expression
Heparinized human whole blood was stimulated with 10 μg/mL anti-IgD (Southern Biotech, #9030-01). 90 μL of the stimulated blood was then aliquoted per well of a 96- well plate and treated with 10 μL of various concentrations of blocking compound (from 10-0.0003 μM) diluted in IMDM + 10% FBS (Gibco). Samples were incubated together for 4 h (for CD69 expression) to 6 h (for B7.2 expression) at 37 °C. Treated blood (50 μL) was transferred to a 96- well, deep well plate (Nunc) for antibody staining with 10 μL each of CD45-PerCP (BD Biosciences, #347464), CD 19-FITC (BD Biosciences, #340719), and CD69-PE (BD Biosciences, #341652). The second 50 μL of the treated blood was transferred to a second 96-well, deep well plate for antibody staining with 10 μL each of CD19-FITC (BD Biosciences, #340719) and CD86-PeCy5 (BD Biosciences, #555666). All stains were performed for 15-30 minutes in the dark at room temperature. The blood was then lysed and fixed using 450 μL of FACS lysing solution (BD Biosciences, #349202) for 15 minutes at room temperature. Samples were then washed 2X in PBS + 2% FBS before FACS analysis. Samples were gated on either CD45/CD19 double positive cells for CD69 staining, or CD 19 positive cells for CD86 staining. Gamma Counterscreen: Stimulation of human monocytes for phospho-AKT expression
A human monocyte cell line, THP-I, was maintained in RPMI + 10% FBS (Gibco). One day before stimulation, cells were counted using trypan blue exclusion on a hemocytometer and suspended at a concentration of 1 x 106 cells per mL of media. 100 μL of cells plus media (1 x 105 cells) was then aliquoted per well of 4-96-well, deep well dishes (Nunc) to test eight different compounds. Cells were rested overnight before treatment with various concentrations (from 10-0.0003 μM) of blocking compound. The compound diluted in media (12 μL) was added to the cells for 10 minutes at 37 0C. Human MCP-I (12 μL, R&D Diagnostics, #279-MC) was diluted in media and added to each well at a final concentration of 50 ng/mL. Stimulation lasted for 2 minutes at room temperature. Pre-warmed FACS Phosflow Lyse/Fix buffer (1 mL of 37 °C) (BD Biosciences, #558049) was added to each well. Plates were then incubated at 37 °C for an additional 10-15 minutes. Plates were spun at 1500 rpm for 10 minutes, supernatant was aspirated off, and 1 mL of ice cold 90% MEOH was added to each well with vigorous shaking. Plates were then incubated either overnight at - 70 °C or on ice for 30 minutes before antibody staining. Plates were spun and washed 2X in PBS + 2% FBS (Gibco). Wash was aspirated and cells were suspended in remaining buffer. Rabbit pAKT (50 μL, Cell Signaling, #4058L) at 1 :100, was added to each sample for 1 h at rt with shaking. Cells were washed and spun at 1500 rpm for 10 minutes. Supernatant was aspirated and cells were suspended in remaining buffer. Secondary antibody, goat anti-rabbit Alexa 647 (50 μL, Invitrogen, #A21245) at 1:500, was added for 30 minutes at rt with shaking. Cells were then washed IX in buffer and suspended in 150 μL of buffer for FACS analysis. Cells need to be dispersed very well by pipetting before running on flow cytometer. Cells were run on an LSR II (Becton Dickinson) and gated on forward and side scatter to determine expression levels of p AKT in the monocyte population.
Gamma Counterscreen: Stimulation of monocytes for phospho-AKT expression in mouse bone marrow
Mouse femurs were dissected from five female BALB/c mice (Charles River Labs.) and collected into RPMI + 10% FBS media (Gibco). Mouse bone marrow was removed by cutting the ends of the femur and by flushing with 1 mL of media using a 25 gauge needle. Bone marrow was then dispersed in media using a 21 gauge needle. Media volume was increased to 20 mL and cells were counted using trypan blue exclusion on a hemocytometer. The cell suspension was then increased to 7.5 x 106 cells per 1 mL of media and 100 μL (7.5 x 105 cells) was aliquoted per well into 4-96-well, deep well dishes (Nunc) to test eight different compounds. Cells were rested at 37 0C for 2 h before treatment with various concentrations (from 10-0.0003μM) of blocking compound. Compound diluted in media (12 μL) was added to bone marrow cells for 10 minutes at 37 0C. Mouse MCP-I (12 μL, R&D Diagnostics, #479- JE) was diluted in media and added to each well at a final concentration of 50 ng/mL. Stimulation lasted for 2 minutes at room temperature. 1 mL of 37 °C pre-warmed FACS Phosflow Lyse/Fix buffer (BD Biosciences, #558049) was added to each well. Plates were then incubated at 37°C for an additional 10-15 minutes. Plates were spun at 1500 rpm for 10 minutes. Supernatant was aspirated off and 1 mL of ice cold 90% MEOH was added to each well with vigorous shaking. Plates were then incubated either overnight at -70 °C or on ice for 30 minutes before antibody staining. Plates were spun and washed 2X in PBS + 2% FBS (Gibco). Wash was aspirated and cells were suspended in remaining buffer. Fc block (2 μL, BD Pharmingen, #553140) was then added per well for 10 minutes at room temperature. After block, 50 μL of primary antibodies diluted in buffer; CDl Ib-Alexa488 (BD Biosciences, #557672) at 1 :50, CD64-PE (BD Biosciences, #558455) at 1 :50, and rabbit pAKT (Cell Signaling, #4058L) at 1 : 100, were added to each sample for 1 h at RT with shaking. Wash buffer was added to cells and spun at 1500 rpm for 10 minutes. Supernatant was aspirated and cells were suspended in remaining buffer. Secondary antibody; goat anti-rabbit Alexa 647 (50 μL, Invitrogen, #A21245) at 1 :500, was added for 30 minutes at rt with shaking. Cells were then washed IX in buffer and suspended in 100 μL of buffer for FACS analysis. Cells were run on an LSR II (Becton Dickinson) and gated on CDl lb/CD64 double positive cells to determine expression levels of pAKT in the monocyte population. pAKT in vivo Assay Vehicle and compounds are administered p.o. (0.2 mL) by gavage (Oral Gavage Needles Popper & Sons, New Hyde Park, NY) to mice (Transgenic Line 3751 , female, 10-12 wks Amgen Inc, Thousand Oaks, CA) 15 min prior to the injection i.v (0.2 mLs) of anti-IgM FITC (50 ug/mouse) (Jackson Immuno Research, West Grove, PA). After 45 min the mice are sacrificed within a CO2 chamber. Blood is drawn via cardiac puncture (0.3 mL) (Ice 25 g Syringes, Sherwood, St. Louis, MO) and transferred into a 15 mL conical vial (Nalge/Nunc International,
Denmark). Blood is immediately fixed with 6.0 mL of BD Phosflow Lyse/Fix Buffer (BD Bioscience, San Jose, CA), inverted 3X's and placed in 37 0C water bath. Half of the spleen is removed and transferred to an eppendorf tube containing 0.5 mL of PBS (Invitrogen Corp, Grand Island, NY). The spleen is crushed using a tissue grinder (Pellet Pestle, Kimble/Kontes, Vineland, NJ) and immediately fixed with 6.0 mL of BD Phosflow Lyse/Fix buffer, inverted 3X's and placed in 37 0C water bath. Once tissues have been collected the mouse is cervically-dislocated and carcass to disposed. After 15 min, the 15 mL conical vials are removed from the 37 0C water bath and placed on ice until tissues are further processed. Crushed spleens are filtered through a 70 μm cell strainer (BD Bioscience, Bedford, MA) into another 15 mL conical vial and washed with 9 mL of PBS. Splenocytes and blood are spun @ 2,000 rpms for 10 min (cold) and buffer is aspirated. Cells are resuspended in 2.0 mL of cold (-20 °C) 90% methyl alcohol (Mallinckrodt Chemicals, Phillipsburg, NJ). Methanol is slowly added while conical vial is rapidly vortexed. Tissues are then stored at -20 °C until cells can be stained for FACS analysis. Multi-dose TNP immunization
Blood was collected by retro-orbital eye bleeds from 7-8 week old BALB/c female mice (Charles River Labs.) at day 0 before immunization. Blood was allowed to clot for 30 minutes and spun at 10,000 rpm in serum microtainer tubes (Becton Dickinson) for 10 minutes. Sera were collected, aliquoted in Matrix tubes (Matrix Tech. Corp.) and stored at -70 0C until ELISA was performed. Mice were given compound orally before immunization and at subsequent time periods based on the life of the molecule. Mice were then immunized with either 50 μg of TNP-LPS (Biosearch Tech., #T-5065), 50 μg of TNP-Ficoll (Biosearch Tech., #F-1300), or 100 μg of TNP-KLH (Biosearch Tech., #T-5060) plus 1% alum (Brenntag, #3501) in PBS. TNP-KLH plus alum solution was prepared by gently inverting the mixture 3-5 times every 10 minutes for 1 hour before immunization. On day 5, post-last treatment, mice were CO2 sacrificed and cardiac punctured. Blood was allowed to clot for 30 minutes and spun at 10,000 rpm in serum microtainer tubes for 10 minutes. Sera were collected, aliquoted in Matrix tubes, and stored at -70 0C until further analysis was performed. TNP- specific IgGl, IgG2a, IgG3 and IgM levels in the sera were then measured via ELISA. TNP-BSA (Biosearch Tech., #T-5050) was used to capture the TNP- specific antibodies. TNP-BSA (10 μg/mL) was used to coat 384- well ELISA plates (Corning Costar) overnight. Plates were then washed and blocked for 1 h using 10% BSA ELISA Block solution (KPL). After blocking, ELISA plates were washed and sera samples/standards were serially diluted and allowed to bind to the plates for 1 h. Plates were washed and Ig-HRP conjugated secondary antibodies (goat anti-mouse IgGl, Southern Biotech #1070-05, goat anti-mouse IgG2a, Southern Biotech #1080-05, goat anti-mouse IgM, Southern Biotech #1020-05, goat anti-mouse IgG3, Southern Biotech #1100-05) were diluted at 1 :5000 and incubated on the plates for 1 h. TMB peroxidase solution (SureBlue Reserve TMB from KPL) was used to visualize the antibodies. Plates were washed and samples were allowed to develop in the TMB solution approximately 5-20 minutes depending on the Ig analyzed. The reaction was stopped with 2M sulfuric acid and plates were read at an OD of 450 nm.
For the treatment of PI3Kδ-mediated-diseases, such as rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases, and autoimmune diseases, the compounds of the present invention may be administered orally, parentally, by inhalation spray, rectally, or topically in dosage unit formulations containing conventional pharmaceutically acceptable carriers, adjuvants, and vehicles. The term parenteral as used herein includes, subcutaneous, intravenous, intramuscular, intrasternal, infusion techniques or intraperitoneally.
Treatment of diseases and disorders herein is intended to also include the prophylactic administration of a compound of the invention, a pharmaceutical salt thereof, or a pharmaceutical composition of either to a subject (i.e., an animal, preferably a mammal, most preferably a human) believed to be in need of preventative treatment, such as, for example, rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases, and autoimmune diseases and the like.
The dosage regimen for treating PI3Kδ-mediated diseases, cancer, and/or hyperglycemia with the compounds of this invention and/or compositions of this invention is based on a variety of factors, including the type of disease, the age, weight, sex, medical condition of the patient, the severity of the condition, the route of administration, and the particular compound employed. Thus, the dosage regimen may vary widely, but can be determined routinely using standard methods. Dosage levels of the order from about 0.01 mg to 30 mg per kilogram of body weight per day, preferably from about 0.1 mg to 10 mg/kg, more preferably from about 0.25 mg to 1 mg/kg are useful for all methods of use disclosed herein.
The pharmaceutically active compounds of this invention can be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, including humans and other mammals. For oral administration, the pharmaceutical composition may be in the form of, for example, a capsule, a tablet, a suspension, or liquid. The pharmaceutical composition is preferably made in the form of a dosage unit containing a given amount of the active ingredient. For example, these may contain an amount of active ingredient from about 1 to 2000 mg, preferably from about 1 to 500 mg, more preferably from about 5 to 150 mg. A suitable daily dose for a human or other mammal may vary widely depending on the condition of the patient and other factors, but, once again, can be determined using routine methods.
The active ingredient may also be administered by injection as a composition with suitable carriers including saline, dextrose, or water. The daily parenteral dosage regimen will be from about 0.1 to about 30 mg/kg of total body weight, preferably from about 0.1 to about 10 mg/kg, and more preferably from about 0.25 mg to 1 mg/kg.
Injectable preparations, such as sterile injectable aqueous or oleaginous suspensions, may be formulated according to the known are using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3- butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed, including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.
Suppositories for rectal administration of the drug can be prepared by mixing the drug with a suitable non-irritating excipient such as cocoa butter and polyethylene glycols that are solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drug.
A suitable topical dose of active ingredient of a compound of the invention is 0.1 mg to 150 mg administered one to four, preferably one or two times daily. For topical administration, the active ingredient may comprise from 0.001% to 10% w/w, e.g., from 1% to 2% by weight of the formulation, although it may comprise as much as 10% w/w, but preferably not more than 5% w/w, and more preferably from 0.1% to 1% of the formulation.
Formulations suitable for topical administration include liquid or semi- liquid preparations suitable for penetration through the skin (e.g., liniments, lotions, ointments, creams, or pastes) and drops suitable for administration to the eye, ear, or nose.
For administration, the compounds of this invention are ordinarily combined with one or more adjuvants appropriate for the indicated route of administration. The compounds may be admixed with lactose, sucrose, starch powder, cellulose esters of alkanoic acids, stearic acid, talc, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, acacia, gelatin, sodium alginate, polyvinyl-pyrrolidine, and/or polyvinyl alcohol, and tableted or encapsulated for conventional administration. Alternatively, the compounds of this invention may be dissolved in saline, water, polyethylene glycol, propylene glycol, ethanol, corn oil, peanut oil, cottonseed oil, sesame oil, tragacanth gum, and/or various buffers. Other adjuvants and modes of administration are well known in the pharmaceutical art. The carrier or diluent may include time delay material, such as glyceryl monostearate or glyceryl distearate alone or with a wax, or other materials well known in the art. The pharmaceutical compositions may be made up in a solid form
(including granules, powders or suppositories) or in a liquid form (e.g., solutions, suspensions, or emulsions). The pharmaceutical compositions may be subjected to conventional pharmaceutical operations such as sterilization and/or may contain conventional adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers, buffers etc.
Solid dosage forms for oral administration may include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound may be admixed with at least one inert diluent such as sucrose, lactose, or starch. Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate. In the case of capsules, tablets, and pills, the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings.
Liquid dosage forms for oral administration may include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water. Such compositions may also comprise adjuvants, such as wetting, sweetening, flavoring, and perfuming agents. Compounds of the present invention can possess one or more asymmetric carbon atoms and are thus capable of existing in the form of optical isomers as well as in the form of racemic or non-racemic mixtures thereof. The optical isomers can be obtained by resolution of the racemic mixtures according to conventional processes, e.g., by formation of diastereoisomeric salts, by treatment with an optically active acid or base. Examples of appropriate acids are tartaric, diacetyltartaric, dibenzoyltartaric, ditoluoyltartaric, and camphorsulfonic acid and then separation of the mixture of diastereoisomers by crystallization followed by liberation of the optically active bases from these salts. A different process for separation of optical isomers involves the use of a chiral chromatography column optimally chosen to maximize the separation of the enantiomers. Still another available method involves synthesis of covalent diastereoisomeric molecules by reacting compounds of the invention with an optically pure acid in an activated form or an optically pure isocyanate. The synthesized diastereoisomers can be separated by conventional means such as chromatography, distillation, crystallization or sublimation, and then hydrolyzed to deliver the enantiomerically pure compound. The optically active compounds of the invention can likewise be obtained by using active starting materials. These isomers may be in the form of a free acid, a free base, an ester or a salt.
Likewise, the compounds of this invention may exist as isomers, that is compounds of the same molecular formula but in which the atoms, relative to one another, are arranged differently. In particular, the alkylene substituents of the compounds of this invention, are normally and preferably arranged and inserted into the molecules as indicated in the definitions for each of these groups, being read from left to right. However, in certain cases, one skilled in the art will appreciate that it is possible to prepare compounds of this invention in which these substituents are reversed in orientation relative to the other atoms in the molecule. That is, the substituent to be inserted may be the same as that noted above except that it is inserted into the molecule in the reverse orientation. One skilled in the art will appreciate that these isomeric forms of the compounds of this invention are to be construed as encompassed within the scope of the present invention.
The compounds of the present invention can be used in the form of salts derived from inorganic or organic acids. The salts include, but are not limited to, the following: acetate, adipate, alginate, citrate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, camphorate, camphorsulfonate, digluconate, cyclopentanepropionate, dodecylsulfate, ethanesulfonate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, fumarate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methansulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, palmoate, pectinate, persulfate, 2-phenylpropionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, tosylate, mesylate, and undecanoate. Also, the basic nitrogen- containing groups can be quaternized with such agents as lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides, and others. Water or oil-soluble or dispersible products are thereby obtained. Examples of acids that may be employed to from pharmaceutically acceptable acid addition salts include such inorganic acids as hydrochloric acid, sulfuric acid and phosphoric acid and such organic acids as oxalic acid, maleic acid, succinic acid and citric acid. Other examples include salts with alkali metals or alkaline earth metals, such as sodium, potassium, calcium or magnesium or with organic bases.
Also encompassed in the scope of the present invention are pharmaceutically acceptable esters of a carboxylic acid or hydroxyl containing group, including a metabolically labile ester or a prodrug form of a compound of this invention. A metabolically labile ester is one which may produce, for example, an increase in blood levels and prolong the efficacy of the corresponding non-esterified form of the compound. A prodrug form is one which is not in an active form of the molecule as administered but which becomes therapeutically active after some in vivo activity or biotransformation, such as metabolism, for example, enzymatic or hydrolytic cleavage. For a general discussion of prodrugs involving esters see Svensson and Tunek Drug Metabolism Reviews 165 (1988) and Bundgaard Design of Prodrugs, Elsevier (1985). Examples of a masked carboxylate anion include a variety of esters, such as alkyl (for example, methyl, ethyl), cycloalkyl (for example, cyclohexyl), aralkyl (for example, benzyl, p- methoxybenzyl), and alkylcarbonyloxyalkyl (for example, pivaloyloxymethyl). Amines have been masked as arylcarbonyloxymethyl substituted derivatives which are cleaved by esterases in vivo releasing the free drug and formaldehyde (Bungaard J. Med. Chem. 2503 (1989)). Also, drugs containing an acidic NH group, such as imidazole, imide, indole and the like, have been masked with N- acyloxymethyl groups (Bundgaard Design of Prodrugs, Elsevier (1985)).
Hydroxy groups have been masked as esters and ethers. EP 039,051 (Sloan and Little, 4/11/81) discloses Mannich-base hydroxamic acid prodrugs, their preparation and use. Esters of a compound of this invention, may include, for example, the methyl, ethyl, propyl, and butyl esters, as well as other suitable esters formed between an acidic moiety and a hydroxyl containing moiety. Metabolically labile esters, may include, for example, methoxymethyl, ethoxymethyl, iso-propoxymethyl, α-methoxyethyl, groups such as α-((C J-C4)- alkyloxy)ethyl, for example, methoxyethyl, ethoxyethyl, propoxyethyl, iso- propoxyethyl, etc.; 2-oxo-l,3-dioxolen-4-ylmethyl groups, such as 5-methyl-2- oxo-l,3,dioxolen-4-ylmethyl, etc.; C1-C3 alkylthiomethyl groups, for example, methylthiomethyl, ethylthiomethyl, isopropylthiomethyl, etc.; acyloxymethyl groups, for example, pivaloyloxymethyl, α-acetoxymethyl, etc.; ethoxycarbonyl- 1 -methyl; or α-acyloxy-ctrsubstituted methyl groups, for example α-acetoxyethyl.
Further, the compounds of the invention may exist as crystalline solids which can be crystallized from common solvents such as ethanol, N,N-dimethyl- formamide, water, or the like. Thus, crystalline forms of the compounds of the invention may exist as polymorphs, solvates and/or hydrates of the parent compounds or their pharmaceutically acceptable salts. All of such forms likewise are to be construed as falling within the scope of the invention.
While the compounds of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more compounds of the invention or other agents. When administered as a combination, the therapeutic agents can be formulated as separate compositions that are given at the same time or different times, or the therapeutic agents can be given as a single composition.
The foregoing is merely illustrative of the invention and is not intended to limit the invention to the disclosed compounds. Variations and changes which are obvious to one skilled in the art are intended to be within the scope and nature of the invention which are defined in the appended claims.
From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.

Claims

We Claim:
1. A compound having the structure:
Figure imgf000103_0001
or any pharmaceutically-acceptable salt thereof, wherein: X1 is C(R9) or N; X2 is C(R10) or N;
Z is -CRπ=CRπ-, -CRn=N-, -N=CR11-, -CRn=CRn-C(=O)- and -C(O)-CR1 ^CR11S n is 0, 1, 2 or 3;
R1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R2 substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C^alkyl, OCi^alkyl, OC1-4haloalkyl, NHCi^alkyl, N(C1.
Figure imgf000103_0003
and
Figure imgf000103_0002
R2 is selected from halo, Ci^haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2.6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=0)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2.6alkylNRaRa and -NRaC2-6alkyl0Ra; or R2 is selected from
Figure imgf000103_0004
phenyl, benzyl, heteroaryl, heterocycle, -(C i -3alkyl)heteroaryl, -(C1.3alkyl)heterocycle, -0(C j .3alkyl)heteroaryl, -0(C i -3alkyl)heterocycle, -NRa(C i .3alkyl)heteroaryl, -NRa(C i-3alkyl)heterocycle, -(C1-3alkyl)phenyl, -O(C1-3alkyl)phenyl and -NRa(C1-3alkyl)phenyl all of which are substituted by 0, 1, 2 or 3 substituents selected from C1-4haloalkyl, Od-4alkyl, Br, Cl, F, I and C1-4alkyl;
R3 is selected from H, halo, d^haloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa 5 -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa, -NRaC2-6alkyl0Ra, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the d.6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from d-όhaloalkyl, OCi-6alkyl, Br, Cl, F, I and d.6alkyl;
R4 is, independently, in each instance, halo, nitro, cyano,
Figure imgf000104_0001
OC^alkyl, Od^aloalkyl, NHCwalkyl, N(C 1-4alky I)C1 ^alkyl or C1-4haloalkyl; R5 is, independently, in each instance, H, halo, d^alkyl, Ct^haloalkyl, or Ci-όalkyl substituted by 1, 2 or 3 substituents selected from halo, cyano, OH, OC1-4alkyl, d^alkyl, Ci-3haloalkyl, OCMalkyl, NH2, NHC^alkyl,
N(C1-4alkyl)C1^alkyl; or both R5 groups together form a C3.6spiroalkyl substituted by 0, 1, 2 or 3 substituents selected from halo, cyano, OH,
Figure imgf000104_0002
CMalkyl, Ci-3haloalkyl, OC^alkyl, NH2, NHC^alkyl, N(CMalkyl)CMalkyl;
R6 is selected from H, C1-6haloalkyl, Br, Cl, F, I, ORa, NRaRa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the Ci-βalkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from d-6haloalkyl, OCi.6alkyl, Br, Cl, F, I and d.6alkyl;
R7 is selected from H, C,.6haloalkyl, Br, Cl, F, I, ORa, NRaRa, d.6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the Cι-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1 , 2 or 3 substituents selected from Ci-6haloalkyl, OC^aUcy!, Br, Cl, F, I and Chalky!; R8 is selected from H, Ci-6haloalkyl, Br, Cl, F, I, 0Ra, NRaRa, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the d^alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from C1-6haloalkyl, OC1-6alkyl, Br, Cl, F5 1 and d-6alkyl; R9 is selected from H, halo,
Figure imgf000105_0001
cyano, nitro, -C(=O)Ra,
-C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2-6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra,
-N(Ra)S(=O)2NRaRa, -NRaC2.6alkylNRaRa, -NRaC2.6alkyl0Ra, C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle, wherein the C1-6alkyl, phenyl, benzyl, heteroaryl and heterocycle are additionally substituted by 0, 1, 2 or 3 substituents selected from halo, CMhaloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)R\ -OC(=O)NRaRa,
-OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=0)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa, -NRaC2-6alkyl0Ra; or R9 is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo, Ci^haloalkyl, cyano, nitro, -C(=O)Ra,
-C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra,
-N(Ra)S(=O)2NRaRa, -NRaC2^alkylNRaRa and -NRaC2.6alkyl0Ra; R10 is H5 Ci.3alkyl, C1-3haloalkyl, cyano, nitro, CO2R3, C(=O)NRaRa, -C(=NRa)NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, S(=O)Rb, S(=O)2Rb or S(=O)2NRaRa;
R11 is selected from H, halo, C^aloalkyl, cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa and -NRaC2.6alkyl0Ra, or R1 ' is Ci^alkyl or Ci.4alkyl(phenyl) wherein either is substituted by 0, 1, 2, 3 or 4 substituents selected from halo,
Figure imgf000106_0001
cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa, -OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa, -NRaC2-6alkylNRaRa and -NRaC2-6alkyl0Ra; and additionally substituted by 0, 1, 2, 3, 4 or 5 substituents independently selected from Br, Cl, F and I; or R1 ' is a saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 0, 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0, 1, 2, 3 or 4 substituents selected from halo,
Figure imgf000106_0002
cyano, nitro, -C(=O)Ra, -C(=O)ORa, -C(=O)NRaRa, -C(=NRa)NRaRa, -ORa,
-OC(=O)Ra, -OC(=O)NRaRa, -OC(=O)N(Ra)S(=O)2Ra, -OC2-6alkylNRaRa, -OC2.6alkylORa, -SRa, -S(=O)Ra, -S(=O)2Ra, -S(=O)2NRaRa, -S(=O)2N(Ra)C(=O)Ra, -S(=O)2N(Ra)C(=O)ORa, -S(=O)2N(Ra)C(=O)NRaRa, -NRaRa, -N(Ra)C(=O)Ra, -N(Ra)C(=O)ORa, -N(Ra)C(=O)NRaRa, -N(Ra)C(=NRa)NRaRa, -N(Ra)S(=O)2Ra, -N(Ra)S(=O)2NRaRa,
-NRaC2-6alkylNRaRa and -NRaC2^alkylORa;
Ra is independently, at each instance, H or Rb; and Rb is independently, at each instance, phenyl, benzyl or Ci-βalkyl, the phenyl, benzyl and C^alkyl being substituted by 0, 1, 2 or 3 substituents selected from halo,
Figure imgf000107_0001
Ci-3haloalkyl, -OCMalkyl, -NH2, -NHCMalkyl, -N(CMalkyl)CMalkyl.
2. A compound according to Claim 1, having the structure:
Figure imgf000107_0002
3. A compound according to Claim 1, having the structure:
Figure imgf000107_0003
4. A compound according to Claim 1 , having the structure:
Figure imgf000108_0001
5. A compound according to Claim 1 , wherein R3 is F, Cl or Br; and n is O.
6. A compound according to Claim 1, wherein R1 is phenyl substituted by 0 or 1 R2 substituents, and the phenyl is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C^alkyl, OCi_4alkyl, OC1-4haloalkyl, NHCMalkyl, N(CMalkyl)C1-4alkyl and d^haloalkyl.
7. A compound according to Claim 1, wherein R1 is a direct-bonded or oxygen-linked saturated, partially-saturated or unsaturated 5-, 6- or 7-membered monocyclic ring containing 1, 2, 3 or 4 atoms selected from N, O and S, but containing no more than one O or S, wherein the available carbon atoms of the ring are substituted by 0, 1 or 2 oxo or thioxo groups, wherein the ring is substituted by 0 or 1 R substituents, and the ring is additionally substituted by 0, 1, 2 or 3 substituents independently selected from halo, nitro, cyano, C1- 4alkyl, OCMalkyl, OC^haloalkyl, NHCMalkyl, N(CMalkyl)CMalkyl and Ci- 4ialoalkyl.
8. The manufacture of a medicament for the treatment of rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, psoriatic arthritis, psoriasis, inflammatory diseases and autoimmune diseases, inflammatory bowel disorders, inflammatory eye disorders, inflammatory or unstable bladder disorders, skin complaints with inflammatory components, chronic inflammatory conditions, autoimmune diseases, systemic lupus erythematosis (SLE), myestenia gravis, rheumatoid arthritis, acute disseminated encephalomyelitis, idiopathic thrombocytopenic purpura, multiples sclerosis, Sjoegren's syndrome and autoimmune hemolytic anemia, allergic conditions and hypersensitivity, comprising a compound according to Claim 1.
9. The manufacture of a medicament for treating cancers, which are mediated, dependent on or associated with pi lOδ activity, comprising a compound according to Claim 1.
10. A pharmaceutical composition comprising a compound according to Claim 1 and a pharmaceutically-acceptable diluent or carrier.
PCT/US2008/003935 2007-03-23 2008-03-24 Derivatives of quinoline or benzopyrazine and their uses for the treatment of (inter alia) inflammatory diseases, autoimmune diseases or various kinds of cancer WO2008118454A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP08742272A EP2132207A2 (en) 2007-03-23 2008-03-24 Heterocyclic compounds and their uses
JP2009554598A JP2010522177A (en) 2007-03-23 2008-03-24 Heterocyclic compounds and uses thereof
MX2009009913A MX2009009913A (en) 2007-03-23 2008-03-24 Derivatives of quinoline or benzopyrazine and their uses for the treatment of (inter alia) inflammatory diseases, autoimmune diseases or various kinds of cancer.
AU2008231384A AU2008231384B2 (en) 2007-03-23 2008-03-24 Heterocyclic compounds and their use
CA2680783A CA2680783C (en) 2007-03-23 2008-03-24 Heterocyclic compounds and their uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US91956507P 2007-03-23 2007-03-23
US60/919,565 2007-03-23

Publications (2)

Publication Number Publication Date
WO2008118454A2 true WO2008118454A2 (en) 2008-10-02
WO2008118454A3 WO2008118454A3 (en) 2008-11-13

Family

ID=39712323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/003935 WO2008118454A2 (en) 2007-03-23 2008-03-24 Derivatives of quinoline or benzopyrazine and their uses for the treatment of (inter alia) inflammatory diseases, autoimmune diseases or various kinds of cancer

Country Status (7)

Country Link
US (2) US7919498B2 (en)
EP (1) EP2132207A2 (en)
JP (1) JP2010522177A (en)
AU (1) AU2008231384B2 (en)
CA (1) CA2680783C (en)
MX (1) MX2009009913A (en)
WO (1) WO2008118454A2 (en)

Cited By (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081105A2 (en) 2007-12-21 2009-07-02 Ucb Pharma S.A. Quinoxaline and quinoline derivatives as kinase inhibitors
WO2010046639A1 (en) 2008-10-24 2010-04-29 Ucb Pharma S.A. Fused pyridine derivatives as kinase inhibitors
WO2010092340A1 (en) 2009-02-13 2010-08-19 Ucb Pharma S.A. Fused pyridine and pyrazine derivatives as kinase inhibitors
EP2220089A2 (en) * 2007-11-13 2010-08-25 Icos Corporation Inhibitors of human phosphatidyl-inositol 3-kinase delta
WO2010100405A1 (en) 2009-03-06 2010-09-10 Ucb Pharma S.A. Triazine derivatives as kinase inhibitors
WO2011008487A1 (en) * 2009-06-29 2011-01-20 Incyte Corporation Pyrimidinones as pi3k inhibitors
WO2010151735A3 (en) * 2009-06-25 2011-05-12 Amgen Inc. 4h - pyrido [ 1, 2 - a] pyrimidin - 4 - one derivatives as pi3 k inhibitors
WO2011058111A1 (en) 2009-11-12 2011-05-19 Ucb Pharma S.A. Aminopurine derivatives as kinase inhibitors
WO2011058113A1 (en) 2009-11-12 2011-05-19 Ucb Pharma S.A. Fused bicyclic pyridine and pyrazine derivatives as kinase inhibitors
WO2011058108A1 (en) 2009-11-12 2011-05-19 Ucb Pharma S.A. Quinoline and quinoxaline derivatives as kinase inhibitors
WO2011058112A1 (en) 2009-11-12 2011-05-19 Ucb Pharma S.A. Fused bicyclic pyrazole derivatives as kinase inhibitors
WO2011058110A1 (en) 2009-11-12 2011-05-19 Ucb Pharma S.A. Quinoline and quinoxaline derivatives as kinase inhibitors
WO2011058109A1 (en) 2009-11-12 2011-05-19 Ucb Pharma S.A. Fused bicyclic pyrrole and imidazole derivatives as kinase inhibitors
WO2011075628A1 (en) * 2009-12-18 2011-06-23 Amgen Inc. Heterocyclic compounds and their uses
EP2346508A1 (en) * 2008-09-26 2011-07-27 Intellikine, Inc. Heterocyclic kinase inhibitors
WO2011093365A1 (en) * 2010-01-27 2011-08-04 協和発酵キリン株式会社 Nitrogenated heterocyclic compound
WO2011153509A1 (en) 2010-06-04 2011-12-08 Amgen Inc. Piperidinone derivatives as mdm2 inhibitors for the treatment of cancer
WO2012032334A1 (en) 2010-09-08 2012-03-15 Ucb Pharma S.A. Quinoline and quinoxaline derivatives as kinase inhibitors
WO2012037204A1 (en) * 2010-09-14 2012-03-22 Exelixis, Inc. Inhibitors of pi3k-delta and methods of their use and manufacture
WO2012061696A1 (en) * 2010-11-04 2012-05-10 Amgen Inc. 5 -cyano-4, 6 -diaminopyrimidine or 6 -aminopurine derivatives as pi3k- delta inhibitors
JP2012517448A (en) * 2009-02-11 2012-08-02 リアクション バイオロジー コープ. Selective kinase inhibitor
WO2013049250A1 (en) 2011-09-27 2013-04-04 Amgen Inc. Heterocyclic compounds as mdm2 inhibitors for the treatment of cancer
US8415376B2 (en) 2008-05-30 2013-04-09 Amgen Inc. Inhibitors of PI3 kinase
WO2013090725A1 (en) * 2011-12-15 2013-06-20 Philadelphia Health & Education Corporation NOVEL PI3K p110 INHIBITORS AND METHODS OF USE THEREOF
WO2013088404A1 (en) 2011-12-15 2013-06-20 Novartis Ag Use of inhibitors of the activity or function of PI3K
US8476431B2 (en) 2008-11-03 2013-07-02 Itellikine LLC Benzoxazole kinase inhibitors and methods of use
US8569323B2 (en) 2009-07-15 2013-10-29 Intellikine, Llc Substituted isoquinolin-1(2H)-one compounds, compositions, and methods thereof
US8604032B2 (en) 2010-05-21 2013-12-10 Infinity Pharmaceuticals, Inc. Chemical compounds, compositions and methods for kinase modulation
US8637542B2 (en) 2008-03-14 2014-01-28 Intellikine, Inc. Kinase inhibitors and methods of use
US8642604B2 (en) 2006-04-04 2014-02-04 The Regents Of The University Of California Substituted pyrazolo[3,2-d]pyrimidines as anti-cancer agents
US8697709B2 (en) 2008-10-16 2014-04-15 The Regents Of The University Of California Fused ring heteroaryl kinase inhibitors
US8703777B2 (en) 2008-01-04 2014-04-22 Intellikine Llc Certain chemical entities, compositions and methods
WO2014072937A1 (en) 2012-11-08 2014-05-15 Rhizen Pharmaceuticals Sa Pharmaceutical compositions containing a pde4 inhibitor and a pi3 delta or dual pi3 delta-gamma kinase inhibitor
US8785470B2 (en) 2011-08-29 2014-07-22 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US8785454B2 (en) 2009-05-07 2014-07-22 Intellikine Llc Heterocyclic compounds and uses thereof
US8809349B2 (en) 2011-01-10 2014-08-19 Infinity Pharmaceuticals, Inc. Processes for preparing isoquinolinones and solid forms of isoquinolinones
US20140235643A1 (en) * 2011-10-04 2014-08-21 Gilead Calistoga Llc Novel quinoxaline inhibitors of pi3k
WO2014130470A1 (en) 2013-02-19 2014-08-28 Amgen Inc. Cis-morpholinone and other compounds as mdm2 inhibitors for the treatment of cancer
US8828998B2 (en) 2012-06-25 2014-09-09 Infinity Pharmaceuticals, Inc. Treatment of lupus, fibrotic conditions, and inflammatory myopathies and other disorders using PI3 kinase inhibitors
WO2014151863A1 (en) 2013-03-14 2014-09-25 Amgen Inc. Heteroaryl acid morpholinone compounds as mdm2 inhibitors for the treatment of cancer
US8901133B2 (en) 2010-11-10 2014-12-02 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US8927559B2 (en) 2010-10-11 2015-01-06 Merck Sharp & Dohme Corp. Quinazolinone-type compounds as CRTH2 antagonists
US8940742B2 (en) 2012-04-10 2015-01-27 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US8969363B2 (en) 2011-07-19 2015-03-03 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US8980899B2 (en) 2009-10-16 2015-03-17 The Regents Of The University Of California Methods of inhibiting Ire1
US8993580B2 (en) 2008-03-14 2015-03-31 Intellikine Llc Benzothiazole kinase inhibitors and methods of use
US9056877B2 (en) 2011-07-19 2015-06-16 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9062055B2 (en) 2010-06-21 2015-06-23 Incyte Corporation Fused pyrrole derivatives as PI3K inhibitors
US9096611B2 (en) 2008-07-08 2015-08-04 Intellikine Llc Kinase inhibitors and methods of use
US9193721B2 (en) 2010-04-14 2015-11-24 Incyte Holdings Corporation Fused derivatives as PI3Kδ inhibitors
US9199982B2 (en) 2011-09-02 2015-12-01 Incyte Holdings Corporation Heterocyclylamines as PI3K inhibitors
US9295673B2 (en) 2011-02-23 2016-03-29 Intellikine Llc Combination of mTOR inhibitors and P13-kinase inhibitors, and uses thereof
US9321772B2 (en) 2011-09-02 2016-04-26 The Regents Of The University Of California Substituted pyrazolo[3,4-D]pyrimidines and uses thereof
US9359349B2 (en) 2007-10-04 2016-06-07 Intellikine Llc Substituted quinazolines as kinase inhibitors
US9359365B2 (en) 2013-10-04 2016-06-07 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9481667B2 (en) 2013-03-15 2016-11-01 Infinity Pharmaceuticals, Inc. Salts and solid forms of isoquinolinones and composition comprising and methods of using the same
US9512125B2 (en) 2004-11-19 2016-12-06 The Regents Of The University Of California Substituted pyrazolo[3.4-D] pyrimidines as anti-inflammatory agents
US9527848B2 (en) 2010-12-20 2016-12-27 Incyte Holdings Corporation N-(1-(substituted-phenyl)ethyl)-9H-purin-6-amines as PI3K inhibitors
KR20170005868A (en) 2014-05-23 2017-01-16 액티브 바이오테크 에이비 Novel compounds useful as s100-inhibitors
US9611267B2 (en) 2012-06-13 2017-04-04 Incyte Holdings Corporation Substituted tricyclic compounds as FGFR inhibitors
US9629843B2 (en) 2008-07-08 2017-04-25 The Regents Of The University Of California MTOR modulators and uses thereof
US9637488B2 (en) 2015-01-29 2017-05-02 Fuqiang Ruan Heterocyclic compounds as inhibitors of class I PI3KS
US9708348B2 (en) 2014-10-03 2017-07-18 Infinity Pharmaceuticals, Inc. Trisubstituted bicyclic heterocyclic compounds with kinase activities and uses thereof
US9708318B2 (en) 2015-02-20 2017-07-18 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9732097B2 (en) 2015-05-11 2017-08-15 Incyte Corporation Process for the synthesis of a phosphoinositide 3-kinase inhibitor
US9745311B2 (en) 2012-08-10 2017-08-29 Incyte Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9751888B2 (en) 2013-10-04 2017-09-05 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9775844B2 (en) 2014-03-19 2017-10-03 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9775841B2 (en) 2011-05-04 2017-10-03 Rhizen Pharmaceuticals Sa Compounds as modulators of protein kinases
US9801889B2 (en) 2015-02-20 2017-10-31 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9890156B2 (en) 2015-02-20 2018-02-13 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9944639B2 (en) 2014-07-04 2018-04-17 Lupin Limited Quinolizinone derivatives as PI3K inhibitors
US9944646B2 (en) 2012-04-02 2018-04-17 Incyte Holdings Corporation Bicyclic azaheterocyclobenzylamines as PI3K inhibitors
US9988401B2 (en) 2015-05-11 2018-06-05 Incyte Corporation Crystalline forms of a PI3K inhibitor
US10040790B2 (en) 2013-04-19 2018-08-07 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10045981B2 (en) 2015-11-24 2018-08-14 Jakpharm, Llc Selective kinase inhibitors
US10077277B2 (en) 2014-06-11 2018-09-18 Incyte Corporation Bicyclic heteroarylaminoalkyl phenyl derivatives as PI3K inhibitors
US10131668B2 (en) 2012-09-26 2018-11-20 The Regents Of The University Of California Substituted imidazo[1,5-a]pYRAZINES for modulation of IRE1
US10160761B2 (en) 2015-09-14 2018-12-25 Infinity Pharmaceuticals, Inc. Solid forms of isoquinolinones, and process of making, composition comprising, and methods of using the same
US10214519B2 (en) 2016-09-23 2019-02-26 Gilead Sciences, Inc. Phosphatidylinositol 3-kinase inhibitors
US10213427B2 (en) 2010-12-22 2019-02-26 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US10227350B2 (en) 2016-09-23 2019-03-12 Gilead Sciences, Inc. Phosphatidylinositol 3-kinase inhibitors
US10336759B2 (en) 2015-02-27 2019-07-02 Incyte Corporation Salts and processes of preparing a PI3K inhibitor
US10442799B1 (en) 2018-04-07 2019-10-15 Fuqiang Ruan Heterocyclic compounds and uses thereof
US10479770B2 (en) 2016-09-23 2019-11-19 Gilead Sciences, Inc. Phosphatidylinositol 3-kinase inhibitors
WO2020038394A1 (en) * 2018-08-21 2020-02-27 南京明德新药研发有限公司 Pyrazolopyrimidine derivative and use thereof as pi3k inhibitor
US10611762B2 (en) 2017-05-26 2020-04-07 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
WO2020106647A2 (en) 2018-11-19 2020-05-28 Amgen Inc. Combination therapy including a krasg12c inhibitor and one or more additional pharmaceutically active agents for the treatment of cancers
US10759806B2 (en) 2016-03-17 2020-09-01 Infinity Pharmaceuticals, Inc. Isotopologues of isoquinolinone and quinazolinone compounds and uses thereof as PI3K kinase inhibitors
EP3738593A1 (en) 2019-05-14 2020-11-18 Amgen, Inc Dosing of kras inhibitor for treatment of cancers
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10919914B2 (en) 2016-06-08 2021-02-16 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
EP3805232A1 (en) 2013-06-10 2021-04-14 Amgen Inc. Crystalline synthetic intermediate useful in processes for making a mdm2 inhibitor
WO2021076655A1 (en) 2019-10-15 2021-04-22 Amgen Inc. Combination therapy of kras inhibitor and shp2 inhibitor for treatment of cancers
WO2021126816A1 (en) 2019-12-16 2021-06-24 Amgen Inc. Dosing regimen of a kras g12c inhibitor
US11110096B2 (en) 2014-04-16 2021-09-07 Infinity Pharmaceuticals, Inc. Combination therapies
US11147818B2 (en) 2016-06-24 2021-10-19 Infinity Pharmaceuticals, Inc. Combination therapies
US11174257B2 (en) 2018-05-04 2021-11-16 Incyte Corporation Salts of an FGFR inhibitor
US11407750B2 (en) 2019-12-04 2022-08-09 Incyte Corporation Derivatives of an FGFR inhibitor
EP4039256A1 (en) 2013-11-11 2022-08-10 Amgen Inc. Combination therapy including an mdm2 inhibitor and dasatinib or nilotinib for the treatment of chronic myeloid leukemia
US11466004B2 (en) 2018-05-04 2022-10-11 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
US11607416B2 (en) 2019-10-14 2023-03-21 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
US11697648B2 (en) 2019-11-26 2023-07-11 Theravance Biopharma R&D Ip, Llc Fused pyrimidine pyridinone compounds as JAK inhibitors
US11766436B2 (en) 2018-05-04 2023-09-26 Amgen Inc. KRAS G12C inhibitors and methods of using the same
US11827635B2 (en) 2019-05-21 2023-11-28 Amgen Inc. Solid state forms
US11897891B2 (en) 2019-12-04 2024-02-13 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US11905281B2 (en) 2017-05-22 2024-02-20 Amgen Inc. KRAS G12C inhibitors and methods of using the same
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US11993597B2 (en) 2017-09-08 2024-05-28 Amgen Inc. Inhibitors of KRAS G12C and methods of using the same
US11999751B2 (en) 2021-08-24 2024-06-04 Incyte Corporation Bicyclic heteroarylaminoalkyl phenyl derivatives as PI3K inhibitors

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528013A (en) * 2008-07-14 2011-11-10 ノバルティス アーゲー Hydroxamic acid-based selective MMP-12 and MMP-13 inhibitors
US8759359B2 (en) 2009-12-18 2014-06-24 Incyte Corporation Substituted heteroaryl fused derivatives as PI3K inhibitors
US9108984B2 (en) 2011-03-14 2015-08-18 Incyte Corporation Substituted diamino-pyrimidine and diamino-pyridine derivatives as PI3K inhibitors
WO2012135009A1 (en) 2011-03-25 2012-10-04 Incyte Corporation Pyrimidine-4,6-diamine derivatives as pi3k inhibitors
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
US10095873B2 (en) * 2013-09-30 2018-10-09 Fasetto, Inc. Paperless application
AU2016356694B2 (en) 2015-11-20 2021-07-29 Forma Therapeutics, Inc. Purinones as ubiquitin-specific protease 1 inhibitors
US11554120B2 (en) 2018-08-03 2023-01-17 Bristol-Myers Squibb Company 1H-pyrazolo[4,3-d]pyrimidine compounds as toll-like receptor 7 (TLR7) agonists and methods and uses therefor
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US20230041738A1 (en) 2020-01-27 2023-02-09 Bristol-Myers Squibb Company 1H-PYRAZOLO[4,3-d]PYRIMIDINE COMPOUNDS AS TOLL-LIKE RECEPTOR 7 (TLR7) AGONISTS
US20230130516A1 (en) 2020-01-27 2023-04-27 Bristol-Myers Squibb Company 1H-PYRAZOLO[4,3-d]PYRIMIDINE COMPOUNDS AS TOLL-LIKE RECEPTOR 7 (TLR7) AGONISTS
KR20220132593A (en) 2020-01-27 2022-09-30 브리스톨-마이어스 스큅 컴퍼니 1H-pyrazolo[4,3-d]pyrimidine compounds as toll-like receptor 7 (TLR7) agonists
US20230118688A1 (en) 2020-01-27 2023-04-20 Bristol-Myers Squibb Company 1H-PYRAZOLO[4,3-d]PYRIMIDINE COMPOUNDS AS TOLL-LIKE RECEPTOR 7 (TLR7) AGONISTS
US20230131192A1 (en) 2020-01-27 2023-04-27 Bristol-Myers Squibb Company 1H-PYRAZOLO[4,3-d]PYRIMIDINE COMPOUNDS AS TOLL-LIKE RECEPTOR 7 (TLR7) AGONISTS
WO2021154667A1 (en) 2020-01-27 2021-08-05 Bristol-Myers Squibb Company C3-SUBSTITUTED 1H-PYRAZOLO[4,3-d]PYRIMIDINE COMPOUNDS AS TOLL-LIKE RECEPTOR 7 (TLR7) AGONISTS
CN115279765A (en) 2020-01-27 2022-11-01 百时美施贵宝公司 1H-pyrazolo [4,3-d ] pyrimidine compounds as Toll-like receptor 7 (TLR 7) agonists
EP4097104A1 (en) 2020-01-27 2022-12-07 Bristol-Myers Squibb Company 1h-pyrazolo[4,3-d]pyrimidine compounds as toll-like receptor 7 (tlr7) agonists
WO2021154662A1 (en) 2020-01-27 2021-08-05 Bristol-Myers Squibb Company 1H-PYRAZOLO[4,3-d]PYRIMIDINE COMPOUNDS AS TOLL-LIKE RECEPTOR 7 (TLR7) AGONISTS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083663A1 (en) * 2001-04-11 2002-10-24 Glaxosmithkline S.P.A. Quinoline-4-carboxamide derivatives as nk-3 and nk-2 receptor antagonists
WO2006060318A2 (en) * 2004-11-30 2006-06-08 Amgen Inc. Quinolines and quinazoline analogs and their use as medicaments for treating cancer
WO2007024680A1 (en) * 2005-08-22 2007-03-01 Amgen Inc. Pyrazolopyridine and pyrazolopyrimidine compounds useful as kinase enzymes modulators

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083663A1 (en) * 2001-04-11 2002-10-24 Glaxosmithkline S.P.A. Quinoline-4-carboxamide derivatives as nk-3 and nk-2 receptor antagonists
WO2006060318A2 (en) * 2004-11-30 2006-06-08 Amgen Inc. Quinolines and quinazoline analogs and their use as medicaments for treating cancer
WO2007024680A1 (en) * 2005-08-22 2007-03-01 Amgen Inc. Pyrazolopyridine and pyrazolopyrimidine compounds useful as kinase enzymes modulators

Cited By (218)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9512125B2 (en) 2004-11-19 2016-12-06 The Regents Of The University Of California Substituted pyrazolo[3.4-D] pyrimidines as anti-inflammatory agents
US8642604B2 (en) 2006-04-04 2014-02-04 The Regents Of The University Of California Substituted pyrazolo[3,2-d]pyrimidines as anti-cancer agents
US9493467B2 (en) 2006-04-04 2016-11-15 The Regents Of The University Of California PI3 kinase antagonists
US9359349B2 (en) 2007-10-04 2016-06-07 Intellikine Llc Substituted quinazolines as kinase inhibitors
EP2220089A4 (en) * 2007-11-13 2011-10-26 Icos Corp Inhibitors of human phosphatidyl-inositol 3-kinase delta
EP2220089A2 (en) * 2007-11-13 2010-08-25 Icos Corporation Inhibitors of human phosphatidyl-inositol 3-kinase delta
WO2009081105A2 (en) 2007-12-21 2009-07-02 Ucb Pharma S.A. Quinoxaline and quinoline derivatives as kinase inhibitors
EP2231641B1 (en) * 2007-12-21 2016-06-01 UCB Biopharma SPRL Quinoxaline and quinoline derivatives as kinase inhibitors
US9216982B2 (en) 2008-01-04 2015-12-22 Intellikine Llc Certain chemical entities, compositions and methods
US8785456B2 (en) 2008-01-04 2014-07-22 Intellikine Llc Substituted isoquinolin-1(2H)-ones, and methods of use thereof
US8703777B2 (en) 2008-01-04 2014-04-22 Intellikine Llc Certain chemical entities, compositions and methods
US9655892B2 (en) 2008-01-04 2017-05-23 Intellikine Llc Certain chemical entities, compositions and methods
US9822131B2 (en) 2008-01-04 2017-11-21 Intellikine Llc Certain chemical entities, compositions and methods
US11433065B2 (en) 2008-01-04 2022-09-06 Intellikine Llc Certain chemical entities, compositions and methods
US9637492B2 (en) 2008-03-14 2017-05-02 Intellikine Llc Benzothiazole kinase inhibitors and methods of use
US8993580B2 (en) 2008-03-14 2015-03-31 Intellikine Llc Benzothiazole kinase inhibitors and methods of use
US8637542B2 (en) 2008-03-14 2014-01-28 Intellikine, Inc. Kinase inhibitors and methods of use
US8415376B2 (en) 2008-05-30 2013-04-09 Amgen Inc. Inhibitors of PI3 kinase
US9629843B2 (en) 2008-07-08 2017-04-25 The Regents Of The University Of California MTOR modulators and uses thereof
US9096611B2 (en) 2008-07-08 2015-08-04 Intellikine Llc Kinase inhibitors and methods of use
US9828378B2 (en) 2008-07-08 2017-11-28 Intellikine Llc Kinase inhibitors and methods of use
EP2346508A1 (en) * 2008-09-26 2011-07-27 Intellikine, Inc. Heterocyclic kinase inhibitors
US8703778B2 (en) * 2008-09-26 2014-04-22 Intellikine Llc Heterocyclic kinase inhibitors
US9790228B2 (en) 2008-09-26 2017-10-17 Intellikine Llc Heterocyclic kinase inhibitors
EP2346508A4 (en) * 2008-09-26 2012-04-18 Intellikine Inc Heterocyclic kinase inhibitors
US9296742B2 (en) 2008-09-26 2016-03-29 Intellikine Llc Heterocyclic kinase inhibitors
US20110281866A1 (en) * 2008-09-26 2011-11-17 Intellikine, Inc. Heterocyclic kinase inhibitors
JP2012503655A (en) * 2008-09-26 2012-02-09 インテリカイン, インコーポレイテッド Heterocyclic kinase inhibitor
US8697709B2 (en) 2008-10-16 2014-04-15 The Regents Of The University Of California Fused ring heteroaryl kinase inhibitors
WO2010046639A1 (en) 2008-10-24 2010-04-29 Ucb Pharma S.A. Fused pyridine derivatives as kinase inhibitors
US8476431B2 (en) 2008-11-03 2013-07-02 Itellikine LLC Benzoxazole kinase inhibitors and methods of use
US8476282B2 (en) 2008-11-03 2013-07-02 Intellikine Llc Benzoxazole kinase inhibitors and methods of use
JP2012517448A (en) * 2009-02-11 2012-08-02 リアクション バイオロジー コープ. Selective kinase inhibitor
WO2010092340A1 (en) 2009-02-13 2010-08-19 Ucb Pharma S.A. Fused pyridine and pyrazine derivatives as kinase inhibitors
US8513284B2 (en) 2009-02-13 2013-08-20 Ucb Pharma, S.A. Fused pyridine and pyrazine derivatives as kinase inhibitors
WO2010100405A1 (en) 2009-03-06 2010-09-10 Ucb Pharma S.A. Triazine derivatives as kinase inhibitors
US8785454B2 (en) 2009-05-07 2014-07-22 Intellikine Llc Heterocyclic compounds and uses thereof
US9315505B2 (en) 2009-05-07 2016-04-19 Intellikine Llc Heterocyclic compounds and uses thereof
JP2012531435A (en) * 2009-06-25 2012-12-10 アムジエン・インコーポレーテツド 4H-pyrido [1,2-a] pyrimidin-4-one derivatives as PI3K inhibitors
WO2010151735A3 (en) * 2009-06-25 2011-05-12 Amgen Inc. 4h - pyrido [ 1, 2 - a] pyrimidin - 4 - one derivatives as pi3 k inhibitors
US10428087B2 (en) 2009-06-29 2019-10-01 Incyte Corporation Pyrimidinones as PI3K inhibitors
CN104945420A (en) * 2009-06-29 2015-09-30 因塞特公司 Pyrimidinones as PI3K inhibitors
US9975907B2 (en) 2009-06-29 2018-05-22 Incyte Holdings Corporation Pyrimidinones as PI3K inhibitors
WO2011008487A1 (en) * 2009-06-29 2011-01-20 Incyte Corporation Pyrimidinones as pi3k inhibitors
KR101763656B1 (en) 2009-06-29 2017-08-01 인사이트 홀딩스 코포레이션 Pyrimidinones as pi3k inhibitors
EA021595B1 (en) * 2009-06-29 2015-07-30 Инсайт Корпорейшн Pyrimidinones as pi3k inhibitors
US11401280B2 (en) 2009-06-29 2022-08-02 Incyte Holdings Corporation Pyrimidinones as PI3K inhibitors
JP2012532131A (en) * 2009-06-29 2012-12-13 インサイト・コーポレイション Pyrimidinone as a PI3K inhibitor
US10829502B2 (en) 2009-06-29 2020-11-10 Incyte Corporation Pyrimidinones as PI3K inhibitors
US9206182B2 (en) 2009-07-15 2015-12-08 Intellikine Llc Substituted isoquinolin-1(2H)-one compounds, compositions, and methods thereof
US8569323B2 (en) 2009-07-15 2013-10-29 Intellikine, Llc Substituted isoquinolin-1(2H)-one compounds, compositions, and methods thereof
US9522146B2 (en) 2009-07-15 2016-12-20 Intellikine Llc Substituted Isoquinolin-1(2H)-one compounds, compositions, and methods thereof
US8980899B2 (en) 2009-10-16 2015-03-17 The Regents Of The University Of California Methods of inhibiting Ire1
US8637543B2 (en) * 2009-11-12 2014-01-28 Ucb Pharma S.A. Quinoline derivatives as kinase inhibitors
WO2011058111A1 (en) 2009-11-12 2011-05-19 Ucb Pharma S.A. Aminopurine derivatives as kinase inhibitors
WO2011058113A1 (en) 2009-11-12 2011-05-19 Ucb Pharma S.A. Fused bicyclic pyridine and pyrazine derivatives as kinase inhibitors
WO2011058108A1 (en) 2009-11-12 2011-05-19 Ucb Pharma S.A. Quinoline and quinoxaline derivatives as kinase inhibitors
WO2011058112A1 (en) 2009-11-12 2011-05-19 Ucb Pharma S.A. Fused bicyclic pyrazole derivatives as kinase inhibitors
WO2011058110A1 (en) 2009-11-12 2011-05-19 Ucb Pharma S.A. Quinoline and quinoxaline derivatives as kinase inhibitors
WO2011058109A1 (en) 2009-11-12 2011-05-19 Ucb Pharma S.A. Fused bicyclic pyrrole and imidazole derivatives as kinase inhibitors
WO2011075628A1 (en) * 2009-12-18 2011-06-23 Amgen Inc. Heterocyclic compounds and their uses
AU2010330875B2 (en) * 2009-12-18 2013-08-01 Amgen Inc. Heterocyclic compounds and their uses
WO2011093365A1 (en) * 2010-01-27 2011-08-04 協和発酵キリン株式会社 Nitrogenated heterocyclic compound
US9193721B2 (en) 2010-04-14 2015-11-24 Incyte Holdings Corporation Fused derivatives as PI3Kδ inhibitors
US8604032B2 (en) 2010-05-21 2013-12-10 Infinity Pharmaceuticals, Inc. Chemical compounds, compositions and methods for kinase modulation
US9181221B2 (en) 2010-05-21 2015-11-10 Infinity Pharmaceuticals, Inc. Chemical compounds, compositions and methods for kinase modulation
US9738644B2 (en) 2010-05-21 2017-08-22 Infinity Pharmaceuticals, Inc. Chemical compounds, compositions and methods for kinase modulation
WO2011153509A1 (en) 2010-06-04 2011-12-08 Amgen Inc. Piperidinone derivatives as mdm2 inhibitors for the treatment of cancer
EP2927213A1 (en) 2010-06-04 2015-10-07 Amgen Inc. Piperidinone derivatives as MDM2 inhibitors for the treatment of cancer
EP4092012A1 (en) 2010-06-04 2022-11-23 Amgen Inc. Piperidinone derivatives as mdm2 inhibitors for the treatment of cancer
EP3483143A1 (en) 2010-06-04 2019-05-15 Amgen, Inc Piperidinone derivatives as mdm2 inhibitors for the treatment of cancer
US9062055B2 (en) 2010-06-21 2015-06-23 Incyte Corporation Fused pyrrole derivatives as PI3K inhibitors
AU2011300521B2 (en) * 2010-09-08 2017-05-25 UCB Biopharma SRL Quinoline and quinoxaline derivatives as kinase inhibitors
WO2012032334A1 (en) 2010-09-08 2012-03-15 Ucb Pharma S.A. Quinoline and quinoxaline derivatives as kinase inhibitors
TWI510489B (en) * 2010-09-08 2015-12-01 Ucb Pharma Sa Quinoline and quinoxaline derivatives as kinase inhibitors
US9029392B2 (en) 2010-09-08 2015-05-12 Ucb Pharma S.A. Quinoline derivatives as kinase inhibitors
EA024162B1 (en) * 2010-09-08 2016-08-31 Юсб Фарма С.А. Quinoline derivatives as kinase inhibitors
CN103153996A (en) * 2010-09-08 2013-06-12 Ucb医药有限公司 Quinoline and quinoxaline derivatives as kinase inhibitors
KR101880280B1 (en) * 2010-09-08 2018-07-20 유씨비 파마, 에스.에이. Quinoline and quinoxaline derivatives as kinase inhibitors
KR20130139909A (en) * 2010-09-08 2013-12-23 유씨비 파마, 에스.에이. Quinoline and quinoxaline derivatives as kinase inhibitors
AU2011302196B2 (en) * 2010-09-14 2016-04-28 Exelixis, Inc. Inhibitors of PI3K-delta and methods of their use and manufacture
US10053470B2 (en) 2010-09-14 2018-08-21 Exelixis, Inc. Inhibitors of PI3K-delta and methods of their use and manufacture
WO2012037204A1 (en) * 2010-09-14 2012-03-22 Exelixis, Inc. Inhibitors of pi3k-delta and methods of their use and manufacture
US20140303151A9 (en) * 2010-09-14 2014-10-09 Exelixis, Inc. Inhibitors of PI3K-Delta and Methods of Their Use and Manufacture
US9670212B2 (en) 2010-09-14 2017-06-06 Exelixis, Inc. Inhibitors of PI3K-delta and methods of their use and manufacture
US8927559B2 (en) 2010-10-11 2015-01-06 Merck Sharp & Dohme Corp. Quinazolinone-type compounds as CRTH2 antagonists
WO2012061696A1 (en) * 2010-11-04 2012-05-10 Amgen Inc. 5 -cyano-4, 6 -diaminopyrimidine or 6 -aminopurine derivatives as pi3k- delta inhibitors
US9388183B2 (en) 2010-11-10 2016-07-12 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US8901133B2 (en) 2010-11-10 2014-12-02 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9815839B2 (en) 2010-12-20 2017-11-14 Incyte Corporation N-(1-(substituted-phenyl)ethyl)-9H-purin-6-amines as PI3K inhibitors
US9527848B2 (en) 2010-12-20 2016-12-27 Incyte Holdings Corporation N-(1-(substituted-phenyl)ethyl)-9H-purin-6-amines as PI3K inhibitors
US10213427B2 (en) 2010-12-22 2019-02-26 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US10813930B2 (en) 2010-12-22 2020-10-27 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US9290497B2 (en) 2011-01-10 2016-03-22 Infinity Pharmaceuticals, Inc. Processes for preparing isoquinolinones and solid forms of isoquinolinones
US11312718B2 (en) 2011-01-10 2022-04-26 Infinity Pharmaceuticals, Inc. Formulations of (S)-3-(1-(9H-purin-6-ylamino)ethyl)-8-chloro-2-phenylisoquinolin-1(2H)-one
US8809349B2 (en) 2011-01-10 2014-08-19 Infinity Pharmaceuticals, Inc. Processes for preparing isoquinolinones and solid forms of isoquinolinones
US10550122B2 (en) 2011-01-10 2020-02-04 Infinity Pharmaceuticals, Inc. Solid forms of (S)-3-(1-(9H-purin-6-ylamino)ethyl)-8-chloro-2-phenylisoquinolin-1(2H)-one and methods of use thereof
US9840505B2 (en) 2011-01-10 2017-12-12 Infinity Pharmaceuticals, Inc. Solid forms of (S)-3-(1-(9H-purin-6-ylamino)ethyl)-8-chloro-2-phenylisoquinolin-1 (2H)-one and methods of use thereof
USRE46621E1 (en) 2011-01-10 2017-12-05 Infinity Pharmaceuticals, Inc. Processes for preparing isoquinolinones and solid forms of isoquinolinones
US9295673B2 (en) 2011-02-23 2016-03-29 Intellikine Llc Combination of mTOR inhibitors and P13-kinase inhibitors, and uses thereof
US10322130B2 (en) 2011-05-04 2019-06-18 Rhizen Pharmaceuticals Sa Substituted chromenones as modulators of protein kinases
US11020399B2 (en) 2011-05-04 2021-06-01 Rhizen Pharmaceuticals Sa Intermediates useful in the synthesis of compounds as modulators of protein kinases
US9775841B2 (en) 2011-05-04 2017-10-03 Rhizen Pharmaceuticals Sa Compounds as modulators of protein kinases
US10220035B2 (en) 2011-05-04 2019-03-05 Rhizen Pharmaceuticals Sa Compounds as modulators of protein kinases
US9605003B2 (en) 2011-07-19 2017-03-28 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US8969363B2 (en) 2011-07-19 2015-03-03 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9056877B2 (en) 2011-07-19 2015-06-16 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9718815B2 (en) 2011-07-19 2017-08-01 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9546180B2 (en) 2011-08-29 2017-01-17 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US8785470B2 (en) 2011-08-29 2014-07-22 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9115141B2 (en) 2011-08-29 2015-08-25 Infinity Pharmaceuticals, Inc. Substituted isoquinolinones and methods of treatment thereof
US9730939B2 (en) 2011-09-02 2017-08-15 Incyte Holdings Corporation Heterocyclylamines as PI3K inhibitors
US9895373B2 (en) 2011-09-02 2018-02-20 The Regents Of The University Of California Substituted pyrazolo[3,4-D]pyrimidines and uses thereof
US9321772B2 (en) 2011-09-02 2016-04-26 The Regents Of The University Of California Substituted pyrazolo[3,4-D]pyrimidines and uses thereof
US11819505B2 (en) 2011-09-02 2023-11-21 Incyte Corporation Heterocyclylamines as PI3K inhibitors
US10092570B2 (en) 2011-09-02 2018-10-09 Incyte Holdings Corporation Heterocyclylamines as PI3K inhibitors
US9199982B2 (en) 2011-09-02 2015-12-01 Incyte Holdings Corporation Heterocyclylamines as PI3K inhibitors
US9707233B2 (en) 2011-09-02 2017-07-18 Incyte Holdings Corporation Heterocyclylamines as PI3K inhibitors
US10376513B2 (en) 2011-09-02 2019-08-13 Incyte Holdings Corporation Heterocyclylamines as PI3K inhibitors
US11433071B2 (en) 2011-09-02 2022-09-06 Incyte Corporation Heterocyclylamines as PI3K inhibitors
US10646492B2 (en) 2011-09-02 2020-05-12 Incyte Corporation Heterocyclylamines as PI3K inhibitors
WO2013049250A1 (en) 2011-09-27 2013-04-04 Amgen Inc. Heterocyclic compounds as mdm2 inhibitors for the treatment of cancer
US20140235643A1 (en) * 2011-10-04 2014-08-21 Gilead Calistoga Llc Novel quinoxaline inhibitors of pi3k
WO2013088404A1 (en) 2011-12-15 2013-06-20 Novartis Ag Use of inhibitors of the activity or function of PI3K
WO2013090725A1 (en) * 2011-12-15 2013-06-20 Philadelphia Health & Education Corporation NOVEL PI3K p110 INHIBITORS AND METHODS OF USE THEREOF
US10259818B2 (en) 2012-04-02 2019-04-16 Incyte Corporation Bicyclic azaheterocyclobenzylamines as PI3K inhibitors
US9944646B2 (en) 2012-04-02 2018-04-17 Incyte Holdings Corporation Bicyclic azaheterocyclobenzylamines as PI3K inhibitors
US8940742B2 (en) 2012-04-10 2015-01-27 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9255108B2 (en) 2012-04-10 2016-02-09 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US10131667B2 (en) 2012-06-13 2018-11-20 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US11053246B2 (en) 2012-06-13 2021-07-06 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US9611267B2 (en) 2012-06-13 2017-04-04 Incyte Holdings Corporation Substituted tricyclic compounds as FGFR inhibitors
US11840534B2 (en) 2012-06-13 2023-12-12 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US9527847B2 (en) 2012-06-25 2016-12-27 Infinity Pharmaceuticals, Inc. Treatment of lupus, fibrotic conditions, and inflammatory myopathies and other disorders using PI3 kinase inhibitors
US8828998B2 (en) 2012-06-25 2014-09-09 Infinity Pharmaceuticals, Inc. Treatment of lupus, fibrotic conditions, and inflammatory myopathies and other disorders using PI3 kinase inhibitors
US9745311B2 (en) 2012-08-10 2017-08-29 Incyte Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US10822340B2 (en) 2012-09-26 2020-11-03 The Regents Of The University Of California Substituted imidazolopyrazine compounds and methods of using same
US11613544B2 (en) 2012-09-26 2023-03-28 The Regents Of The University Of California Substituted imidazo[1,5-a]pyrazines for modulation of IRE1
US10131668B2 (en) 2012-09-26 2018-11-20 The Regents Of The University Of California Substituted imidazo[1,5-a]pYRAZINES for modulation of IRE1
WO2014072937A1 (en) 2012-11-08 2014-05-15 Rhizen Pharmaceuticals Sa Pharmaceutical compositions containing a pde4 inhibitor and a pi3 delta or dual pi3 delta-gamma kinase inhibitor
WO2014130470A1 (en) 2013-02-19 2014-08-28 Amgen Inc. Cis-morpholinone and other compounds as mdm2 inhibitors for the treatment of cancer
WO2014151863A1 (en) 2013-03-14 2014-09-25 Amgen Inc. Heteroaryl acid morpholinone compounds as mdm2 inhibitors for the treatment of cancer
US9481667B2 (en) 2013-03-15 2016-11-01 Infinity Pharmaceuticals, Inc. Salts and solid forms of isoquinolinones and composition comprising and methods of using the same
US10040790B2 (en) 2013-04-19 2018-08-07 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10947230B2 (en) 2013-04-19 2021-03-16 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11530214B2 (en) 2013-04-19 2022-12-20 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10450313B2 (en) 2013-04-19 2019-10-22 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
EP3805232A1 (en) 2013-06-10 2021-04-14 Amgen Inc. Crystalline synthetic intermediate useful in processes for making a mdm2 inhibitor
US9359365B2 (en) 2013-10-04 2016-06-07 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9751888B2 (en) 2013-10-04 2017-09-05 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9828377B2 (en) 2013-10-04 2017-11-28 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US10329299B2 (en) 2013-10-04 2019-06-25 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
EP4039256A1 (en) 2013-11-11 2022-08-10 Amgen Inc. Combination therapy including an mdm2 inhibitor and dasatinib or nilotinib for the treatment of chronic myeloid leukemia
US10675286B2 (en) 2014-03-19 2020-06-09 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US11541059B2 (en) 2014-03-19 2023-01-03 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9775844B2 (en) 2014-03-19 2017-10-03 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US11110096B2 (en) 2014-04-16 2021-09-07 Infinity Pharmaceuticals, Inc. Combination therapies
US11944631B2 (en) 2014-04-16 2024-04-02 Infinity Pharmaceuticals, Inc. Combination therapies
KR20170005868A (en) 2014-05-23 2017-01-16 액티브 바이오테크 에이비 Novel compounds useful as s100-inhibitors
US9771372B2 (en) 2014-05-23 2017-09-26 Active Biotech Ab Compounds useful as S100-inhibitors
US10077277B2 (en) 2014-06-11 2018-09-18 Incyte Corporation Bicyclic heteroarylaminoalkyl phenyl derivatives as PI3K inhibitors
US11130767B2 (en) 2014-06-11 2021-09-28 Incyte Corporation Bicyclic heteroarylaminoalkyl phenyl derivatives as PI3K inhibitors
US10479803B2 (en) 2014-06-11 2019-11-19 Incyte Corporation Bicyclic heteroarylaminoalkyl phenyl derivatives as PI3K inhibitors
US9944639B2 (en) 2014-07-04 2018-04-17 Lupin Limited Quinolizinone derivatives as PI3K inhibitors
US9708348B2 (en) 2014-10-03 2017-07-18 Infinity Pharmaceuticals, Inc. Trisubstituted bicyclic heterocyclic compounds with kinase activities and uses thereof
US10941162B2 (en) 2014-10-03 2021-03-09 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US10253047B2 (en) 2014-10-03 2019-04-09 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9637488B2 (en) 2015-01-29 2017-05-02 Fuqiang Ruan Heterocyclic compounds as inhibitors of class I PI3KS
US11014923B2 (en) 2015-02-20 2021-05-25 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9708318B2 (en) 2015-02-20 2017-07-18 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10738048B2 (en) 2015-02-20 2020-08-11 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10251892B2 (en) 2015-02-20 2019-04-09 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10016438B2 (en) 2015-02-20 2018-07-10 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9801889B2 (en) 2015-02-20 2017-10-31 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10632126B2 (en) 2015-02-20 2020-04-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10214528B2 (en) 2015-02-20 2019-02-26 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11173162B2 (en) 2015-02-20 2021-11-16 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9890156B2 (en) 2015-02-20 2018-02-13 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11667635B2 (en) 2015-02-20 2023-06-06 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11084822B2 (en) 2015-02-27 2021-08-10 Incyte Corporation Salts and processes of preparing a PI3K inhibitor
US10336759B2 (en) 2015-02-27 2019-07-02 Incyte Corporation Salts and processes of preparing a PI3K inhibitor
US9732097B2 (en) 2015-05-11 2017-08-15 Incyte Corporation Process for the synthesis of a phosphoinositide 3-kinase inhibitor
US10125150B2 (en) 2015-05-11 2018-11-13 Incyte Corporation Crystalline forms of a PI3K inhibitor
US9988401B2 (en) 2015-05-11 2018-06-05 Incyte Corporation Crystalline forms of a PI3K inhibitor
US11939333B2 (en) 2015-09-14 2024-03-26 Infinity Pharmaceuticals, Inc. Solid forms of isoquinolinones, and process of making, composition comprising, and methods of using the same
US10160761B2 (en) 2015-09-14 2018-12-25 Infinity Pharmaceuticals, Inc. Solid forms of isoquinolinones, and process of making, composition comprising, and methods of using the same
US11247995B2 (en) 2015-09-14 2022-02-15 Infinity Pharmaceuticals, Inc. Solid forms of isoquinolinones, and process of making, composition comprising, and methods of using the same
US10045981B2 (en) 2015-11-24 2018-08-14 Jakpharm, Llc Selective kinase inhibitors
US10759806B2 (en) 2016-03-17 2020-09-01 Infinity Pharmaceuticals, Inc. Isotopologues of isoquinolinone and quinazolinone compounds and uses thereof as PI3K kinase inhibitors
US10919914B2 (en) 2016-06-08 2021-02-16 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US11147818B2 (en) 2016-06-24 2021-10-19 Infinity Pharmaceuticals, Inc. Combination therapies
US10227350B2 (en) 2016-09-23 2019-03-12 Gilead Sciences, Inc. Phosphatidylinositol 3-kinase inhibitors
US10479770B2 (en) 2016-09-23 2019-11-19 Gilead Sciences, Inc. Phosphatidylinositol 3-kinase inhibitors
US10214519B2 (en) 2016-09-23 2019-02-26 Gilead Sciences, Inc. Phosphatidylinositol 3-kinase inhibitors
US11905281B2 (en) 2017-05-22 2024-02-20 Amgen Inc. KRAS G12C inhibitors and methods of using the same
US10611762B2 (en) 2017-05-26 2020-04-07 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US11472801B2 (en) 2017-05-26 2022-10-18 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US11993597B2 (en) 2017-09-08 2024-05-28 Amgen Inc. Inhibitors of KRAS G12C and methods of using the same
US10442799B1 (en) 2018-04-07 2019-10-15 Fuqiang Ruan Heterocyclic compounds and uses thereof
US11466004B2 (en) 2018-05-04 2022-10-11 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
US11174257B2 (en) 2018-05-04 2021-11-16 Incyte Corporation Salts of an FGFR inhibitor
US11766436B2 (en) 2018-05-04 2023-09-26 Amgen Inc. KRAS G12C inhibitors and methods of using the same
WO2020038394A1 (en) * 2018-08-21 2020-02-27 南京明德新药研发有限公司 Pyrazolopyrimidine derivative and use thereof as pi3k inhibitor
US11918584B2 (en) 2018-11-19 2024-03-05 Amgen Inc. Combination therapy including a KRASG12C inhibitor and one or more additional pharmaceutically active agents for the treatment of cancers
WO2020106647A2 (en) 2018-11-19 2020-05-28 Amgen Inc. Combination therapy including a krasg12c inhibitor and one or more additional pharmaceutically active agents for the treatment of cancers
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
EP3738593A1 (en) 2019-05-14 2020-11-18 Amgen, Inc Dosing of kras inhibitor for treatment of cancers
WO2020232130A1 (en) 2019-05-14 2020-11-19 Amgen Inc. Dosing of kras inhibitor for treatment of cancers
US11827635B2 (en) 2019-05-21 2023-11-28 Amgen Inc. Solid state forms
US11607416B2 (en) 2019-10-14 2023-03-21 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
WO2021076655A1 (en) 2019-10-15 2021-04-22 Amgen Inc. Combination therapy of kras inhibitor and shp2 inhibitor for treatment of cancers
US11697648B2 (en) 2019-11-26 2023-07-11 Theravance Biopharma R&D Ip, Llc Fused pyrimidine pyridinone compounds as JAK inhibitors
US11897891B2 (en) 2019-12-04 2024-02-13 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US11407750B2 (en) 2019-12-04 2022-08-09 Incyte Corporation Derivatives of an FGFR inhibitor
WO2021126816A1 (en) 2019-12-16 2021-06-24 Amgen Inc. Dosing regimen of a kras g12c inhibitor
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US11999751B2 (en) 2021-08-24 2024-06-04 Incyte Corporation Bicyclic heteroarylaminoalkyl phenyl derivatives as PI3K inhibitors

Also Published As

Publication number Publication date
CA2680783C (en) 2012-04-24
US7919498B2 (en) 2011-04-05
EP2132207A2 (en) 2009-12-16
AU2008231384A1 (en) 2008-10-02
MX2009009913A (en) 2009-10-16
CA2680783A1 (en) 2008-10-02
WO2008118454A3 (en) 2008-11-13
US20110152277A1 (en) 2011-06-23
US20090030002A1 (en) 2009-01-29
JP2010522177A (en) 2010-07-01
AU2008231384B2 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
CA2680783C (en) Heterocyclic compounds and their uses
US8754089B2 (en) Heterocyclic compounds and their uses
US9873701B2 (en) Heterocyclic compounds and their uses
AU2010330875B2 (en) Heterocyclic compounds and their uses
AU2008231385B2 (en) Delta3- substituted quinoline or quinoxaline derivatives and their use as phosphatidylinositol 3-kinase ( PI3K) inhibitors
WO2012087784A1 (en) Heterocyclic compounds and their uses
EP2640715A1 (en) Quinoline derivatives as pik3 inhibitors
WO2012003262A1 (en) Heterocyclic compounds and their use as inhibitors of pi3k activity
US20130079342A1 (en) Heterocyclic compounds and their uses
EP2588477A1 (en) Quinolines as pi3k inhibitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08742272

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008231384

Country of ref document: AU

ENP Entry into the national phase in:

Ref document number: 2680783

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/009913

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2009554598

Country of ref document: JP

NENP Non-entry into the national phase in:

Ref country code: DE

ENP Entry into the national phase in:

Ref document number: 2008231384

Country of ref document: AU

Date of ref document: 20080324

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008742272

Country of ref document: EP