WO2008116829A1 - Transgenic plant with increased stress tolerance and yield - Google Patents
Transgenic plant with increased stress tolerance and yield Download PDFInfo
- Publication number
- WO2008116829A1 WO2008116829A1 PCT/EP2008/053382 EP2008053382W WO2008116829A1 WO 2008116829 A1 WO2008116829 A1 WO 2008116829A1 EP 2008053382 W EP2008053382 W EP 2008053382W WO 2008116829 A1 WO2008116829 A1 WO 2008116829A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transgenic plant
- protein
- plant
- polynucleotide encoding
- expression cassette
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1205—Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
- C12N15/8205—Agrobacterium mediated transformation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8206—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by physical or chemical, i.e. non-biological, means, e.g. electroporation, PEG mediated
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8206—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by physical or chemical, i.e. non-biological, means, e.g. electroporation, PEG mediated
- C12N15/8207—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by physical or chemical, i.e. non-biological, means, e.g. electroporation, PEG mediated by mechanical means, e.g. microinjection, particle bombardment, silicon whiskers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/01—Phosphotransferases with an alcohol group as acceptor (2.7.1)
- C12Y207/01037—Protein kinase (2.7.1.37)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Definitions
- This invention relates generally to transgenic plants which overexpress nucleic acid sequences encoding polypeptides capable of conferring increased stress tolerance and consequently, increased plant growth and crop yield, under normal or abiotic stress conditions. Additionally, the invention relates to novel isolated nucleic acid sequences encoding polypeptides that confer upon a plant increased tolerance under abiotic stress conditions, and/or increased plant growth and/or increased yield under normal or abiotic stress conditions.
- Crop yield is defined herein as the number of bushels of relevant agricultural product (such as grain, forage, or seed) harvested per acre. Crop losses and crop yield losses of major crops such as soybean, rice, maize (corn), cotton, and wheat caused by these stresses represent a significant economic and political factor and contribute to food shortages in many underdeveloped countries.
- WUE has been defined and measured in multiple ways. One approach is to calculate the ratio of whole plant dry weight, to the weight of water consumed by the plant throughout its life. Another variation is to use a shorter time interval when biomass accumulation and water use are measured. Yet another approach is to use measurements from restricted parts of the plant, for example, measuring only aerial growth and water use. WUE also has been defined as the ratio of CO2 uptake to water vapor loss from a leaf or portion of a leaf, often measured over a very short time period (e.g. seconds/minutes). The ratio of 13 C/ 12 C fixed in plant tissue, and measured with an isotope ratio mass-spectrometer, also has been used to estimate WUE in plants using C3 photosynthesis.
- An increase in WUE is informative about the relatively improved efficiency of growth and water consumption, but this information taken alone does not indicate whether one of these two processes has changed or both have changed.
- an increase in WUE due to a decrease in water use, without a change in growth would have particular merit in an irrigated agricultural system where the water input costs were high.
- An increase in WUE driven mainly by an increase in growth without a corresponding jump in water use would have applicability to all agricultural systems.
- an increase in growth even if it came at the expense of an increase in water use (i.e. no change in WUE), could also increase yield. Therefore, new methods to increase both WUE and biomass accumulation are required to improve agricultural productivity.
- Concomitant with measurements of parameters that correlate with abiotic stress tolerance are measurements of parameters that indicate the potential impact of a transgene on crop yield.
- the plant biomass correlates with the total yield.
- other parameters have been used to estimate yield, such as plant size, as measured by total plant dry weight, above-ground dry weight, above-ground fresh weight, leaf area, stem volume, plant height, rosette diameter, leaf length, root length, root mass, tiller number, and leaf number.
- Plant size at an early developmental stage will typically correlate with plant size later in development. A larger plant with a greater leaf area can typically absorb more light and carbon dioxide than a smaller plant and therefore will likely gain a greater weight during the same period.
- the present inventors have discovered that transforming a plant with certain polynu- cleotides results in enhancement of the plant's growth and/or response to environmental stress, and accordingly the yield of the agricultural products of the plant is increased, when the polynucleotides are present in the plant as transgenes.
- the polynucleotides capable of mediating such enhancements have been isolated from Physcomitrella patens, Brassica napus, Zea mays, Linum usitatissimum, Oryza satvia, Glycine max, or Triticum aestivum and are listed in Table 1 , and the sequences thereof are set forth in the Sequence Listing as indicated in Table 1.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a tRNA 2'-phosphotrans- f erase.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a cell division control protein kinase.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a leucine-rich repeat protein.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a Ran-binding protein.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a plastid division protein.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a mitochondrial substrate carrier protein.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a MADS-box protein.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polunucleotide encoding an adenosine kinase-1 protein.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a zinc finger-6 protein.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a cyclin-dependent kinase regulatory subunit protein.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a zinc finger-7 protein.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a MAR-binding protein.
- the invention provides a transgenic plant transformed with an expression cassette comprising an polynucleotide encoding a leucine rich repeat receptor protein.
- the invention provides a transgenic plant transformed with an expression cassette comprising an polynucleotide encoding a phytochrome protein kinase protein.
- the invention provides a transgenic plant transformed with an expression cassette comprising an polynucleotide encoding a synaptobrevin protein.
- the invention provides a transgenic plant transformed with an expression cassette comprising an polynucleotide encoding a calcineurin B protein.
- the invention provides a transgenic plant transformed with an expression cassette comprising an polynucleotide encoding a caleosin protein.
- the invention provides a transgenic plant transformed with an expression cassette comprising an polynucleotide encoding a histone deacetylase protein.
- the invention concerns a seed produced by the transgenic plant of the invention, wherein the seed is true breeding for a transgene comprising the polynu- cleotide described above.
- Plants derived from the seed of the invention demonstrate increased tolerance to an environmental stress, and/or increased plant growth, and/or increased yield, under normal or stress conditions as compared to a wild type variety of the plant.
- the invention concerns products produced by or from the transgenic plants of the invention, their plant parts, or their seeds, such as a foodstuff, feedstuff, food supplement, feed supplement, cosmetic or pharmaceutical.
- the invention further provides the isolated polynucleotides identified in Table 1 or in Table 2 below, and polypeptides identified in Table 1.
- the invention is also embodied in recom- binant vector comprising an isolated polynucleotide of the invention.
- the invention concerns a method of producing the aforesaid transgenic plant, wherein the method comprises transforming a plant cell with an expression vector comprising an isolated polynucleotide of the invention, and generating from the plant cell a transgenic plant that expresses the polypeptide encoded by thepolynucleotide. Expression of the polypeptide in the plant results in increased tolerance to an environmental stress, and/or growth, and/or yield under normal and/or stress conditions as compared to a wild type variety of the plant.
- the invention provides a method of increasing a plant's tolerance to an environmental stress, and/or growth, and/or yield.
- the method comprises the steps of transforming a plant cell with an expression cassette comprising an isolated polynucleotide of the invention, and generating a transgenic plant from the plant cell, wherein the transgenic plant comprises the polynucleotide.
- Figure 1 is a diagram illustrating the phylogenetic relationship among the disclosed PpHD-1 (SEQ ID NO:36), BnHD-1 (SEQ ID NO:38), BnHD-2 (SEQ ID NO:40), ZmHD-1 (SEQ ID NO:42), LuHD-1 (SEQ ID NO:44), OsHD-1 (SEQ ID NO:46), GmHD-1 (SEQ ID NO:48), GmHD-2 (SEQ ID NO:50), GmHD-3 (SEQ ID NO:52), and TaHD-1 (SEQ ID NO:54) amino acid sequences.
- the diagram was generated using Align X of Vector NTI.
- Figure 2 shows an alignment of the disclosed amino acids sequences: PpHD-1 (SEQ ID NO:36), BnHD-1 (SEQ ID NO:38), BnHD-2 (SEQ ID NO:40), ZmHD-1 (SEQ ID NO:42), LuHD-1 (SEQ ID NO:44), OsHD-1 (SEQ ID NO:46), GmHD-1 (SEQ ID NO:48), GmHD-2 (SEQ ID NO:50), GmHD-3 (SEQ ID NO:52), and TaHD-1 (SEQ ID NO:54).
- the alignment was generated using Align X of Vector NTI.
- the invention provides a transgenic plant that overexpresses an isolated polynucleotide identified in Table 1 , or a homolog thereof.
- the transgenic plant of the invention demonstrates an increased tolerance to an environmental stress as compared to a wild type variety of the plant.
- the overexpression of such isolated nucleic acids in the plant may optionally result in an increase in plant growth or in yield of associated agricultural products, under normal or stress conditions, as compared to a wild type variety of the plant.
- the increased tolerance to an environmental stress, increased growth, and/or increased yield of a transgenic plant of the invention is believed to result from an increase in water use efficiency of the plant.
- a "transgenic plant” is a plant that has been altered using recombinant DNA technology to contain an isolated nucleic acid which would otherwise not be present in the plant.
- the term "plant” includes a whole plant, plant cells, and plant parts. Plant parts include, but are not limited to, stems, roots, ovules, stamens, leaves, embryos, mer- istematic regions, callus tissue, gametophytes, sporophytes, pollen, microspores, and the like.
- the transgenic plant of the invention may be male sterile or male fertile, and may further include transgenes other than those that comprise the isolated polynucleotides described herein.
- the term "variety" refers to a group of plants within a species that share constant characteristics that separate them from the typical form and from other possible varieties within that species. While possessing at least one distinctive trait, a variety is also characterized by some variation between individuals within the variety, based primarily on the Mendelian segregation of traits among the progeny of succeeding generations. A variety is considered "true breeding" for a particular trait if it is genetically homozygous for that trait to the extent that, when the true-breeding variety is self-pollinated, a significant amount of independ- ent segregation of the trait among the progeny is not observed.
- the trait arises from the transgenic expression of one or more isolated polynucleotides introduced into a plant variety.
- wild type variety refers to a group of plants that are analyzed for comparative purposes as a control plant, wherein the wild type variety plant is identical to the transgenic plant (plant transformed with an isolated polynucleotide in accor- dance with the invention) with the exception that the wild type variety plant has not been transformed to contain an isolated polynucleotide of the invention.
- nucleic acid and “polynucleotide” are interchangeable and refer to RNA or DNA that is linear or branched, single or double stranded, or a hybrid thereof. The term also encompasses RNA/DNA hybrids.
- An "isolated" nucleic acid molecule is one that is substantially separated from other nucleic acid molecules which are present in the natural source of the nucleic acid (i.e., sequences encoding other polypeptides). For example, a cloned nucleic acid is considered isolated.
- a nucleic acid is also considered isolated if it has been altered by human intervention, or placed in a locus or location that is not its natural site, or if it is introduced into a cell by transformation.
- an isolated nucleic acid molecule such as a cDNA molecule, can be free from some of the other cellular material with which it is naturally associated, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. While it may optionally encompass untranslated sequence located at both the 3' and 5' ends of the coding region of a gene, it may be preferable to remove the sequences which naturally flank the coding region in its naturally occurring replicon.
- the term “environmental stress” refers to a sub-optimal condition associated with salinity, drought, nitrogen, temperature, metal, chemical, pathogenic, or oxidative stresses, or any combination thereof.
- water use efficiency and “WUE” refer to the amount of organic matter produced by a plant divided by the amount of water used by the plant in producing it, i.e., the dry weight of a plant in relation to the plant's water use.
- dry weight refers to everything in the plant other than water, and includes, for example, carbohydrates, proteins, oils, and mineral nutrients.
- transgenic plant of the invention may be a dicotyledonous plant or a mono- cotyledonous plant.
- transgenic plants of the invention may be derived from any of the following diclotyledonous plant families: Leguminosae, including plants such as pea, alfalfa and soybean; Umbelliferae, including plants such as carrot and celery; Solanaceae, including the plants such as tomato, potato, aubergine, tobacco, and pepper; Cruciferae, particularly the genus Brassica, which includes plant such as oilseed rape, beet, cabbage, cauliflower and broccoli); and Arabidopsis thaliana; Compositae, which includes plants such as lettuce; Malvaceae, which includes cotton; Fabaceae, which includes plants such as peanut, and the like.
- Transgenic plants of the invention may be derived from monocotyle- donous plants, such as, for example, wheat, barley, sorghum, millet, rye, triticale, maize, rice, oats, switchgrass, miscanthus, and sugarcane.
- Transgenic plants of the invention are also em- bodied as trees such as apple, pear, quince, plum, cherry, peach, nectarine, apricot, papaya, mango, and other woody species including coniferous and deciduous trees such as poplar, pine, sequoia, cedar, oak, willow, and the like.
- Arabidopsis thaliana are also em- bodied as trees such as apple, pear, quince, plum, cherry, peach, nectarine, apricot, papaya, mango, and other woody species including coniferous and deciduous trees such as poplar, pine, sequoia, cedar, oak, willow, and
- one embodiment of the invention is a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a tRNA 2'- phosphotransferase polypeptide.
- yeast the RNA 2'-phosphotransferase Tpt1 protein is an essential protein that catalyzes the final step of tRNA splicing.
- this family of proteins is conserved in eukaryotes, bacteria, and archaea, its function has only been well characterized in yeast.
- tRNA splicing is conserved in all three major kingdoms, but the mechanisms and enzymes involved differ.
- RNA 2'-phoshotransferase proteins in plants unclear, although the enzymatic activity has been demonstrated in tobacco nuclear extracts.
- All of the RNA 2'phosphotransferase family members contain a conserved core domain, exemplified by amino acids 98 to 287 of SEQ ID NO:2, and members from Es- cherichia coli, Arabidopsis thaliana, Schizosaccharomyces pombe, and Homo sapiens are capable of complementing the Saccharomyces cerevisiae tpt1 mutant, indicating similarity of function.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a tRNA 2'-phosphotransferase.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a tRNA 2'-phosphotransferase having a sequence comprising amino acids 98 to 287 of SEQ ID NO:2.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a tRNA 2'-phosphotransferase having a sequence comprising amino acids 1 to 323 of SEQ ID NO:2.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a cell division control 2 (CDC2) protein kinase.
- CDC2 proteins belong to a specific family of cyclin-dependent kinases (CDKs) in plants commonly referred to as the CDKA family. All of the CDKA proteins contain a highly conserved core kinase domain with a PSTAIRE motif that is the principle site for cyclin interaction to form active CDK-cyclin complexes.
- An exemplary PSTAIRE motif is represented as amino acids 4 to 287 of SEQ ID NO:4.
- the CDKA proteins are also subject to post- translational modification.
- CDKA Phosphorylation of the conserved threonine 14 and tyrosine 15 positions inactivates the CDKA, and phosphorylation of the conserved threonine 161 position acti- vates the CDKA.
- yeast these CDKs are involved specifically in G1/S and G2/M controls.
- CDKA's are proposed to function in both S and M phase progression and to be involved in cell proliferation and maintenance of cell division competence in differentiating tissues.
- Arabidopsis thaliana for example, a mutation of the CDKA1 gene leads to male gametophytic lethality and impairs seed development by reducing seed size.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a CDC2 protein kinase.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a CDKA protein having a sequence comprising amino acids 4 to 287 of SEQ ID NO:4.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a CDKA protein having a sequence comprising amino acids 1 to 294 of SEQ ID NO:4.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a leucine-rich repeat (LRR) protein.
- LRRs are typically found in proteins as 20 to 29 amino acids repeats, each containing an 11 amino acid conserved region with the consensus sequence of LXXLXLXXN/CXL with X as any amino acid and L as valine, leucine, or phenylalanine.
- the LRR protein of the present invention contains an LRR represented by amino acids 422 to 441 of SEQ ID NO:6.
- the generally accepted major function of LLRs is to provide a structural scaffold for the formation of protein-protein interactions. LLR-containing proteins are known to be involved in hormone-receptor interactions, enzyme inhibition, cell adhesion, celluar trafficking, plant disease resistance, and bacterial virulence.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding an LRR protein having a sequence comprising amino acids 422 to 441 of SEQ ID NO:6. More preferably, the transgenic plant of this embodiment comprises a polynucleotide encoding a LRR protein having a sequence comprising amino acids 1 to 646 of SEQ ID NO:6.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a Ran-binding protein.
- Ran GTPase (RanGTP) proteins belong to a subfamily of small GTP-binding proteins that are involved in nucleocytoplasmic transport, and are involved in controlling nuclear functions through- out the cell cycle.
- the Ran binding proteins 1 (RanBPI s) are cytoplasmic proteins that form a complex with the GTP form of RanGTP.
- the binding domain of RanBPI s that interacts with RanGTP has been identified and is represented by amino acids 51 to 172 of SEQ ID NO:8. The formation of this RanGTP-RanBPI complex is key to promoting the initial dissociation of RanGTP from transport factors that are exported from the nucleus to the cytoplasm.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding RanBPI protein having a sequence comprising amino acids 51 to 172 of SEQ ID NO:8. More preferably, the transgenic plant of this embodiment comprises a polynucleotide encoding a RanBPI protein having a sequence comprising amino acids 1 to 213 of SEQ ID NO:8.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a plastid division protein.
- the FtsZ plastid division proteins are characterized by domains represented by amino acids 139 to 332 of SEQ ID NO:10.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a plastid division protein having a sequence comprising amino acids 139 to 332 of SEQ ID NO:10. More preferably, the transgenic plant of this embodiment comprises a polynucleotide encoding a plastid division protein having a sequence comprising amino acids 1 to 490 of SEQ ID NO:10.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a mitochondrial substrate carrier protein.
- the mitochondrial substrate carrier proteins are characterized by domains rep- resented by amino acids 1 to 98 of SEQ ID NO:12.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a mitochondrial substrate carrier protein having a sequence comprising amino acids 1 to 98 of SEQ ID NO:12. More preferably, the transgenic plant of this embodiment comprises a polynucleotide encoding a mitochondrial substrate carrier protein having a sequence comprising amino acids 1 to 297 of SEQ ID NO:12.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a MADS-box protein.
- the DNA binding and dimerization domains of SRF-type transcription factors comprise MADS-box domains represented by amino acids 9 to 59 of SEQ ID NO:14.
- the transgenic plant of this em- bodiment may comprise any polynucleotide encoding an SRF-type transcription factor protein comprising a MADS-box domain having a sequence comprising amino acids 9 to 59 of SEQ ID NO:14. More preferably, the transgenic plant of this embodiment comprises a polynucleotide encoding a MADS-box protein having a sequence comprising amino acids 1 to 187 of SEQ ID NO:14.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding an adenosine kinase-1 (ADK-1 ) protein.
- the pfkB family of carbohydrate kinases designated ADK-1 comprise domains represented by amino acids 23 to 339 of SEQ ID NO:16.
- the transgenic plant of this embodi- ment may comprise any polynucleotide encoding an ADK-1 protein comprising a domain having a sequence comprising amino acids 23 to 339 of SEQ ID NO:16. More preferably, the transgenic plant of this embodiment comprises a polynucleotide encoding an ADK-1 protein having a sequence comprising amino acids 1 to 343 of SEQ ID NO:16.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a zinc finger-6 (ZF-6) protein.
- ZF-6 zinc finger-6
- These proteins comprise an IBR domain represented by amino acids 210 to 272 of SEQ ID NO:18.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a ZF-6 protein comprising a domain having a sequence comprising amino acids 210 to 272 of SEQ ID NO: 18. More preferably, the transgenic plant of this embodiment comprises a polynucleotide encoding a ZF-6 protein having a sequence comprising amino acids 1 to 594 of SEQ ID NO:18.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a cyclin-dependent kinase regulatory subunit (CDK) protein.
- CDK cyclin-dependent kinase regulatory subunit
- These proteins comprise a domain represented by amino acids 1 to 72 of SEQ ID NO:20.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a CDK protein comprising a domain having a sequence comprising amino acids 1 to 72 of SEQ ID NO:20. More preferably, the transgenic plant of this embodiment comprises a polynucleotide encoding a CDK protein having a sequence comprising amino acids 1 to 91 of SEQ ID NO:20.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a zinc finger-7 (ZF-7) protein.
- ZF-7 zinc finger-7
- These proteins comprise a C3HC4-type domain represented by amino acids 20 to 60 of SEQ ID NO:22.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a ZF-7 protein comprising a domain having a sequence comprising amino acids 20 to 60 of SEQ ID NO:22. More preferably, the transgenic plant of this embodiment comprises a polynucleotide encoding a ZF-7 protein having a sequence comprising amino acids 1 to 347 of SEQ ID NO:22.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a MAR-binding protein.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a MAR-binding protein having a sequence comprising amino acids 1 to 814 of SEQ ID NO:24.
- the invention provides a transgenic plant transformed with an expression cassette comprising an polynucleotide encoding a leucine rich repeat receptor protein kinase.
- the LRP-2 protein of the present invention contains several LRRs, represented by amino acids 11 1 to 133 of SEQ ID NO:26, amino acids 135 to 158 of SEQ ID NO:26, amino acids 160 to 182 of SEQ ID NO:26, and amino acids 184 to 207 of SEQ ID NO:26.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding an LRP-2 protein having a sequence comprising amino acids 1 11 to 133 of SEQ ID NO:26, amino acids 135 to 158 of SEQ ID NO:26, amino acids 160 to 182 of SEQ ID NO:26, and amino acids 184 to 207 of SEQ ID NO:26. More preferably, the transgenic plant of this embodiment comprises a polynucleotide encoding a LRR protein having a sequence comprising amino acids 1 to 251 of SEQ ID NO:26.
- the invention provides a transgenic plant transformed with an expression cassette comprising an polynucleotide encoding a phytochrome protein kinase protein.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a phytochrome protein kinase protein having a sequence comprising amino acids 1 to 689 of SEQ ID NO:28.
- the invention provides a transgenic plant transformed with an expression cassette comprising an polynucleotide encoding a synaptobrevin-related protein.
- These proteins comprise a synaptobrevin domain represented by amino acids 127 to 215 of SEQ ID NO:30.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a synaptobrevin-related protein comprising a domain having a sequence comprising amino acids 127 to 215 of SEQ ID NO:30. More preferably, the transgenic plant of this embodi- ment comprises a polynucleotide encoding a synaptobrevin-related protein having a sequence comprising amino acids 1 to 222 of SEQ ID NO:30.
- the invention provides a transgenic plant transformed with an expression cassette comprising an polynucleotide encoding a calcineurin B protein.
- a family of proteins has been found that are calcium sensor proteins with similarity to both the regulatory B subunit of calcineurin and neuronal calcium sensors of animals. These proteins have been termed calcineurin B-like proteins (CBL). These CBL proteins contain EF hand motifs that are structurally important for calcium binding and interact specifically with a group of Ser/Thr protein kinases, designated as CBL-interacting protein kinases (CIPK). CIPKs most likely represent targets of calcium sensed and transduced by CBL proteins.
- CBL CBL-interacting protein kinases
- Each EF hand consists of a loop of 12 amino acids flanked by two alpha helices, which binds a single calcium ion via the loop domain. These proteins have also been found to bind magnesium ions. Proteins with four EF hand motifs usually have two structural domains, each formed by a pair of EF hand motifs separated by a flexible linker. Binding of the metal ion to the EF hand protein leads to a conformational change that exposes a hydrophobic surface, which binds to a target sequence. Many EF hand containing proteins also contain a myristoylation site at the N-terminus, with consensus sequence of MGXXXS/T, with X representing any amino acid.
- Myristoylation at this site promotes protein-protein or protein membrane interaction. This myristoylation site is not present in the EST321 (SEQ ID NO:32) sequence, potentially indicating that the EST321 protein could belong to a different class of EF hand domain containing proteins.
- the calcineurin B subunit protein of the present invention contains several EF hand motifs, represented by amino acids 37 to 65 of SEQ ID NO:32, amino acids 106 to 134 of SEQ ID NO:32, and amino acids 142 to 170 of SEQ ID NO:32.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a calcineurin B subunit protein having a sequence comprising amino acids 37 to 65 of SEQ ID NO:32, amino acids 106 to 134 of SEQ ID NO:32, and amino acids 142 to 170 of SEQ ID NO:32. More preferably, the transgenic plant of this embodiment comprises a polynucleotide encoding a calcineurin B subunit protein having a sequence comprising amino acids 1 to 182 of SEQ ID NO:32.
- the invention provides a transgenic plant transformed with an expression cassette comprising an polynucleotide encoding a caleosin-related protein.
- Caleo- sins are a family of proteins are presumably modulated by calcium-binding and phosphorylation state and are thought to be involved in fusion of membranes and oil bodies. These proteins contain several domains, an N-terminal region with a single calcium ion binding EF-hand motif, a central hydrophobic region with a potential membrane anchor, and a C-terminal region with conserved protein kinase phosphorylation sites. The presence of only a single EF hand motif is unusual for most EF hand containing proteins. It has been postulated that this single EF hand domain may interact with the membrane surface or another protein in order to form the coordinated double EF hand domain interaction found in most other EF hand proteins.
- the invention provides a transgenic plant transformed with an expression cassette comprising an polynucleotide encoding a caleosin-related protein.
- These proteins comprise a caleosin domain represented by amino acids 26 to 229 of SEQ ID NO:34.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a caleosin- related protein comprising a domain having a sequence comprising amino acids 26 to 229 of SEQ ID NO:34. More preferably, the transgenic plant of this embodiment comprises a polynucleotide encoding a caleosin-related protein having a sequence comprising amino acids 1 to 239 of SEQ ID NO:34.
- the invention provides a transgenic plant transformed with an expression cassette comprising an polynucleotide encoding a histone deacetylase protein.
- Nu- cleosomes consist of histones and DNA, which are essential for packaging DNA into chromosomes. Lysine at the N-terminal ends of core histones are the predominant sites for acetylation and methylation, and histone deacetylases catalyze the removal of the acetyl group from these lysine side chains.
- Active genes are preferentially associated with highly acetylated histones and inactive genes are associated with hypoacetylated histones. Acetylation results in charge neutralization of histones and weakens histone/DNA contacts. In plants, histone hyperacetyla- tion is correlated with gene activity.
- Histones are found to be associated with large multisubunit complexes.
- Three distinct families of histone deacytelases are found in plants, the RPD3/HDA family, SIR2 family, and the plant specific HD2 family.
- the RPD3/HDA1 family is found in all eukaryotic organisms, and members possess a complete histone deacetylase domain.
- Some histone deacetylase proteins possess unique regions outside the histone deacetylase domain that may be important for func- tion and/or specificity of these proteins.
- the histone deacetylases of the present invention are characterized by the following domains: from amino acids 6 to 318 of SEQ ID NO:36; from amino acids 6 to 318 of SEQ ID NO:38; from amino acids 20 to 332 of SEQ ID NO:40; from amino acids 8 to 322 of SEQ ID NO:42; from amino acids 6 to 318 of SEQ ID NO:44; from amino acids 23 to 333 of SEQ ID NO:46; from amino acids 8 to 321 of SEQ ID NO:48; from amino acids 6 to 318 of SEQ ID NO:50; from amino acids 56 to 382 of SEQ ID NO:52; and from amino acids 23 to 333 of SEQ ID NO:54.
- the invention provides a transgenic plant transformed with an expression cassette comprising an polynucleotide encoding a histone deacetylase protein.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a histone deacetylase protein comprising a domain having a sequence selected from the group consisting of amino acids 6 to 318 of SEQ ID NO:36; amino acids 6 to 318 of SEQ ID NO:38; amino acids 20 to 332 of SEQ ID NO:40; amino acids 8 to 322 of SEQ ID NO:42; amino acids 6 to 318 of SEQ ID NO:44; amino acids 23 to 333 of SEQ ID NO:46; amino acids 8 to 321 of SEQ ID NO:48; amino acids 6 to 318 of SEQ ID NO:50; amino acids 56 to 382 of SEQ ID NO:52; and amino acids 23 to 333 of SEQ ID NO:54.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a histone deacteylase protein selected from the group consisting of a protein having a sequence comprising amino acids 1 to 431 of SEQ ID NO:36; a protein having a sequence comprising amino acids 1 to 426 of SEQ ID NO:38; a protein having a sequence comprising amino acids 1 to 470 of SEQ ID NO:40; a protein having a sequence comprising amino acids 1 to 363 of SEQ ID NO:42; a protein having a sequence comprising amino acids 1 to 429 of SEQ ID NO:44; a protein having a sequence comprising amino acids 1 to 518 of SEQ ID NO:46; a protein having a sequence comprising amino acids 1 to 334 of SEQ ID NO:48; a protein having a sequence comprising amino acids 1 to 429 of SEQ ID NO:50; a protein having a sequence comprising amino acids 1 to 417 of SEQ ID NO:52; and a protein having a
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a leucine-rich repeat (LRR) protein.
- LRRs are typically found in proteins as 20 to 29 amino acids repeats, each containing an 11 amino acid conserved region with the consensus sequence of LXXLXLXXN/CXL with X as any amino acid and L as valine, leucine, or phenylalanine.
- the LRR protein of the present invention contains an LRR represented by amino acids 422 to 441 of SEQ ID NO:56.
- the generally accepted major function of LLRs is to provide a structural scaffold for the formation of protein-protein interactions. LLR-containing proteins are known to be involved in hormone-receptor interactions, enzyme inhibition, cell adhesion, celluar trafficking, plant disease resistance, and bacterial virulence.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding an LRR protein having a sequence comprising amino acids 422 to 441 of SEQ ID NO:56. More preferably, the transgenic plant of this embodiment comprises a polynucleotide encoding a LRR protein having a sequence comprising amino acids 1 to 698 of SEQ ID NO:56.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a leucine-rich repeat (LRR) protein.
- LRRs are typically found in proteins as 20 to 29 amino acids repeats, each containing an 1 1 amino acid conserved region with the consensus sequence of LXXLXLXXN/CXL with X as any amino acid and L as valine, leucine, or phenylalanine.
- the LRR protein of the present invention contains an LRR represented by amino acids 422 to 441 of SEQ ID NO:58.
- the generally accepted major function of LLRs is to provide a structural scaffold for the formation of pro- tein-protein interactions.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding an LRR protein having a sequence comprising amino acids 422 to 441 of SEQ ID NO:58. More preferably, the transgenic plant of this embodiment comprises a polynucleotide encoding a LRR protein having a sequence comprising amino acids 1 to 665 of SEQ ID NO:58.
- the invention further provides a seed produced by a transgenic plant expressing polynucleotide listed in Table 1 , wherein the seed contains the polynucleotide, and wherein the plant is true breeding for increased growth and/or yield under normal and/or stress conditions and/or increased tolerance to an environmental stress as compared to a wild type variety of the plant.
- the invention also provides a product produced by or from the transgenic plants expressing the polynucleotide, their plant parts, or their seeds.
- the product can be obtained using various methods well known in the art.
- the word "product” includes, but not limited to, a foodstuff, feedstuff, a food supplement, feed supplement, cosmetic or pharmaceutical.
- Foodstuffs are regarded as compositions used for nutrition or for supplementing nutrition.
- Animal feedstuffs and animal feed supplements, in particular, are regarded as foodstuffs.
- the invention further provides an agricultural product produced by any of the transgenic plants, plant parts, and plant seeds.
- Agricultural products include, but are not limited to, plant extracts, proteins, amino acids, carbohydrates, fats, oils, polymers, vitamins, and the like.
- an isolated polynucleotide of the invention comprises a polynucleotide having a sequence selected from the group consisting of the polynucleotide sequences listed in Table 1. These polynucleotides may comprise sequences of the coding region, as well as 5' untranslated sequences and 3' untranslated sequences. Table 2 describes potential start and end positions of the coding regions of the P. patens polynucleotides of the invention, and alternative open reading frames that may be present in the sense or antisense strands of these polynucleotides.
- the polynucleotides of the invention can comprise only the coding region of the nucleotide sequences listed in Table 1 , as indicated in Table 2, or the polynucleotides can contain whole genomic fragments isolated from genomic DNA.
- the invention is also embodied as an isolated polynucleotide having a sequence selected from the group consisting of the sequences listed in Table 1 or Table 2.
- a polynucleotide of the invention can be isolated using standard molecular biology techniques and the sequence information provided herein.
- P. patens cDNAs of the invention were isolated from a P. patens library using a portion of the sequence disclosed herein.
- Synthetic oligonucleotide primers for polymerase chain reaction amplification can be designed based upon the nucleotide sequence shown in Table 1.
- a nucleic acid molecule of the invention can be amplified using cDNA or, alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid molecule so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis.
- oligonucleotides corresponding to the nucleotide sequences listed in Table 1 can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.
- homologs are defined herein as two nucleic acids or polypeptides that have similar, or substantially identical, nucleotide or amino acid sequences, respectively. Homologs include allelic variants, analogs, and orthologs, as defined below.
- analogs refers to two nucleic acids that have the same or similar function, but that have evolved separately in unrelated organisms.
- orthologs refers to two nucleic acids from different species, but that have evolved from a common ancestral gene by speciation.
- homolog further encompasses nucleic acid molecules that differ from one of the nucleotide sequences shown in Table 1 due to degeneracy of the genetic code and thus encode the same polypeptide.
- a "naturally occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural polypeptide).
- the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of one polypeptide for optimal alignment with the other polypeptide or nucleic acid).
- the amino acid residues at corresponding amino acid positions are then compared. When a position in one sequence is occupied by the same amino acid residue as the corresponding position in the other sequence then the molecules are identical at that position. The same type of comparison can be made between two nucleic acid sequences.
- the isolated amino acid homologs, analogs, and orthologs of the polypeptides of the present invention are at least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-75%, 75-80%, 80-85%, 85-90%, or 90-95%, and most pref- erably at least about 96%, 97%, 98%, 99%, or more identical to an entire amino acid sequence identified in Table 1.
- an isolated nucleic acid homolog of the invention comprises a nucleotide sequence which is at least about 40-60%, preferably at least about 60-70%, more preferably at least about 70-75%, 75-80%, 80-85%, 85-90%, or 90-95%, and even more preferably at least about 95%, 96%, 97%, 98%, 99%, or more identical to a nu- cleotide sequence shown in Table 1 or Table 2.
- the percent sequence identity between two nucleic acid or polypeptide sequences is determined using the Vector NTI 9.0 (PC) software package (Invitrogen, 1600 Faraday Ave., Carlsbad, CA92008).
- a gap opening penalty of 15 and a gap extension penalty of 6.66 are used for determining the percent identity of two nucleic acids.
- a gap opening penalty of 10 and a gap extension penalty of 0.1 are used for determining the percent identity of two polypeptides. All other parameters are set at the default settings.
- the gap opening penalty is 10
- the gap extension penalty is 0.05 with blosum62 matrix. It is to be understood that for the purposes of determining sequence identity when comparing a DNA sequence to an RNA sequence, a thymidine nucleotide is equivalent to a uracil nucleotide.
- Nucleic acid molecules corresponding to homologs, analogs, and orthologs of the polypeptides listed in Table 1 can be isolated based on their identity to said polypeptides, using the polynucleotides encoding the respective polypeptides or primers based thereon, as hybridization probes according to standard hybridization techniques under stringent hybridization conditions.
- stringent conditions refers to hybridization overnight at 60°C in 10X Denhart's solution, 6X SSC, 0.5% SDS, and 100 ⁇ g/ml denatured salmon sperm DNA.
- Blots are washed sequentially at 62°C for 30 minutes each time in 3X SSC/0.1 % SDS, followed by 1 X SSC/0.1 % SDS, and finally 0.1X SSC/0.1 % SDS.
- stringent conditions refers to hybridization in a 6X SSC solution at 65 0 C.
- highly strin- gent conditions refers to hybridization overnight at 65 0 C in 1OX Denhart's solution, 6X SSC, 0.5% SDS and 100 ⁇ g/ml denatured salmon sperm DNA.
- Blots are washed sequentially at 65 0 C for 30 minutes each time in 3X SSC/0.1 % SDS, followed by 1X SSC/0.1 % SDS, and finally 0.1 X SSC/0.1 % SDS.
- Methods for nucleic acid hybridizations are described in Meinkoth and Wahl, 1984, Anal. Biochem. 138:267-284; well known in the art (see, for example, Current Protocols in Molecular Biology, Chapter 2, Ausubel et al., eds., Greene Publishing and Wiley-lnterscience, New York, 1995; and Tijssen, 1993, Laboratory Techniques in Biochemistry and Molecular Biology: Hybridization with Nucleic Acid Probes, Part I, Chapter 2, Elsevier, New York, 1993).
- an isolated nucleic acid molecule of the invention that hybridizes under stringent or highly stringent conditions to a nucleotide sequence listed in Table 1 corresponds to a naturally occurring nucleic acid molecule.
- an optimized nucleic acid encodes a polypeptide that has a function similar to those of the polypeptides listed in Table 1 and/or modulates a plant's growth and/or yield under normal and/or water-limited conditions and/or tolerance to an environmental stress, and more preferably increases a plant's growth and/or yield under normal and/or water-limited conditions and/or tolerance to an environmental stress upon its overexpression in the plant.
- “optimized” refers to a nucleic acid that is genetically engineered to increase its expression in a given plant or animal.
- the DNA sequence of the gene can be modified to: 1 ) comprise codons preferred by highly expressed plant genes; 2) comprise an A+T content in nucleotide base composition to that substantially found in plants; 3) form a plant initiation sequence; 4) to eliminate sequences that cause destabilization, inappropriate polyadenylation, degradation and termination of RNA, or that form secondary structure hairpins or RNA splice sites; or 5) elimination of antisense open reading frames.
- Increased expression of nucleic acids in plants can be achieved by utilizing the distribution frequency of codon usage in plants in gen- eral or in a particular plant.
- An isolated polynucleotide of the invention can be optimized such that its distribution frequency of codon usage deviates, preferably, no more than 25% from that of highly expressed plant genes and, more preferably, no more than about 10%.
- the invention further provides an isolated recombinant expression vector comprising a polynucleotide as described above, wherein expression of the vector in a host cell results in the plant's increased growth and/or yield under normal or water-limited conditions and/or increased tolerance to environmental stress as compared to a wild type variety of the host cell.
- the recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed.
- operatively linked is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence ⁇ ) in a manner which allows for expression of the nucleotide sequence (e.g., in a bacterial or plant host cell when the vector is introduced into the host cell).
- regulatory se- quence is intended to include promoters, enhancers, and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are well known in the art. Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cells and those that direct expression of the nucleotide sequence only in certain host cells or under certain conditions.
- the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of polypeptide desired, etc.
- the expression vectors of the invention can be introduced into host cells to thereby produce polypeptides encoded by nucleic acids as described herein.
- Plant gene expression should be operatively linked to an appropriate promoter conferring gene expression in a timely, cell specific, or tissue specific manner.
- Promoters useful in the expression cassettes of the invention include any promoter that is capable of initiating transcription in a plant cell. Such promoters include, but are not limited to, those that can be obtained from plants, plant viruses, and bacteria that contain genes that are expressed in plants, such as Agrobacterium and Rhizobium.
- the promoter may be constitutive, inducible, developmental stage-preferred, cell type- preferred, tissue-preferred, or organ-preferred. Constitutive promoters are active under most conditions. Examples of constitutive promoters include the CaMV 19S and 35S promoters (Odell et al., 1985, Nature 313:810-812), the sX CaMV 35S promoter (Kay et al., 1987, Science 236:1299-1302) the Sep1 promoter, the rice actin promoter (McElroy et al., 1990, Plant Cell 2:163-171 ), the Arabidopsis actin promoter, the ubiquitan promoter (Christensen et al., 1989, Plant Molec. Biol.
- promoters from the T-DNA of Agrobacterium such as mannopine synthase, nopaline synthase, and octopine synthase, the small subunit of ribulose biphosphate carboxylase (ssuRUBISCO) promoter, and the like.
- Inducible promoters are preferentially active under certain environmental conditions, such as the presence or absence of a nutrient or metabolite, heat or cold, light, pathogen attack, anaerobic conditions, and the like.
- the hsp80 promoter from Brassica is induced by heat shock
- the PPDK promoter is induced by light
- the PR-1 promoters from tobacco, Arabidopsis, and maize are inducible by infection with a pathogen
- the Adh1 promoter is induced by hypoxia and cold stress.
- Plant gene expression can also be facilitated via an inducible promoter (For a review, see Gatz, 1997, Annu. Rev. Plant Physiol. Plant MoI. Biol. 48:89-108).
- Chemically inducible promoters are especially suitable if gene expression is wanted to occur in a time specific manner. Examples of such promoters are a salicylic acid inducible promoter
- the inducible promoter is a stress-inducible promoter.
- stress-inducible promoters are preferentially active under one or more of the following stresses: sub-optimal conditions associated with salinity, drought, nitrogen, temperature, metal, chemical, pathogenic, and oxidative stresses.
- Stress inducible promoters include, but are not limited to, Cor78 (Chak et al., 2000, Planta 210:875-883; Hovath et al., 1993, Plant Physiol.
- CoM 5a (Artus et al., 1996, PNAS 93(23): 13404-09), Rci2A (Medina et al., 2001 , Plant Physiol. 125:1655-66; Nylander et al., 2001 , Plant MoI. Biol. 45:341-52; Navarre and Goffeau, 2000, EMBO J. 19:2515-24; Capel et al., 1997, Plant Physiol.
- KST1 Methyl-R ⁇ ber et al., 1995, EMBO 14:2409-16
- Rha1 Teryn et al., 1993, Plant Cell 5:1761-9; Terryn et al., 1992, FEBS Lett. 299(3):287-90
- ARSK1 Atkinson et al., 1997, GenBank Accession # L22302, and PCT Application No.
- tissue and organ preferred promoters include those that are preferentially expressed in certain tissues or organs, such as leaves, roots, seeds, or xylem.
- tissue-preferred and organ-preferred promoters include, but are not limited to fruit-preferred, ovule-preferred, male tissue-preferred, seed-preferred, integument-preferred, tuber-preferred, stalk-preferred, pericarp-preferred, leaf-preferred, stigma-preferred, pollen-preferred, anther- preferred, petal-preferred, sepal-preferred, pedicel-preferred, silique-preferred, stem-preferred, root-preferred promoters, and the like.
- Seed-preferred promoters are preferentially expressed during seed development and/or germination.
- seed-preferred promoters can be embryo-preferred, endosperm-preferred, and seed coat-preferred (See Thompson et al., 1989, BioEssays 10:108).
- seed-preferred promoters include, but are not limited to, cellu- lose synthase (celA), Cim1 , gamma-zein, globulin-1 , maize 19 kD zein (cZ19B1), and the like.
- tissue-preferred or organ-preferred promoters include the napin-gene promoter from rapeseed (U.S. Patent No. 5,608,152), the USP-promoter from Vicia faba (Bae- umlein et al., 1991 , MoI. Gen. Genet. 225(3): 459-67), the oleosin-promoter from Arabidopsis (PCT Application No. WO 98/45461), the phaseolin-promoter from Phaseolus vulgaris (U.S. Patent No. 5,504,200), the Bce4-promoter from Brassica (PCT Application No.
- WO 91/13980 or the legumin B4 promoter (LeB4; Baeumlein et al., 1992, Plant Journal, 2(2): 233-9), as well as promoters conferring seed specific expression in monocot plants like maize, barley, wheat, rye, rice, etc.
- Suitable promoters to note are the Ipt2 or Ipt1 -gene promoter from barley (PCT Application No. WO 95/15389 and PCT Application No. WO 95/23230) or those described in PCT Application No.
- WO 99/16890 promoters from the barley hordein-gene, rice glutelin gene, rice oryzin gene, rice prolamin gene, wheat gliadin gene, wheat glutelin gene, oat glutelin gene, Sorghum kasirin-gene, and rye secalin gene).
- promoters useful in the expression cassettes of the invention include, but are not limited to, the major chlorophyll a/b binding protein promoter, histone promoters, the Ap3 promoter, the ⁇ -conglycin promoter, the napin promoter, the soybean lectin promoter, the maize 15kD zein promoter, the 22kD zein promoter, the 27kD zein promoter, the g-zein promoter, the waxy, shrunken 1 , shrunken 2, and bronze promoters, the Zm13 promoter (U.S. Patent No. 5,086,169), the maize polygalacturonase promoters (PG) (U.S. Patent Nos. 5,412,085 and
- Additional flexibility in controlling heterologous gene expression in plants may be ob- tained by using DNA binding domains and response elements from heterologous sources (i.e., DNA binding domains from non-plant sources).
- heterologous DNA binding domain is the LexA DNA binding domain (Brent and Ptashne, 1985, Cell 43:729-736).
- the polynucleotides listed in Table 1 are expressed in plant cells from higher plants (e.g., the spermatophytes, such as crop plants).
- a polynucleotide may be "introduced" into a plant cell by any means, including transfec- tion, transformation or transduction, electroporation, particle bombardment, agroinfection, and the like. Suitable methods for transforming or transfecting plant cells are disclosed, for example, using particle bombardment as set forth in U.S. Pat. Nos. 4,945,050; 5,036,006; 5,100,792; 5,302,523; 5,464,765; 5,120,657; 6,084,154; and the like. More preferably, the transgenic corn seed of the invention may be made using Agrobacterium transformation, as described in U.S. Pat. Nos.
- Transformation of soybean can be performed using for example a technique described in European Patent No. EP 0424047, U.S. Patent No. 5,322,783, European Patent No.EP 0397 687, U.S. Patent No. 5,376,543, or U.S. Patent No. 5,169,770.
- European Patent No. EP 0424047 U.S. Patent No. 5,322,783, European Patent No.EP 0397 687, U.S. Patent No. 5,376,543, or U.S. Patent No. 5,169,770.
- a specific example of wheat transformation can be found in PCT Application No. WO 93/07256.
- Cotton may be transformed using methods disclosed in U.S. Pat. Nos.
- the introduced polynucleotide may be maintained in the plant cell stably if it is incorporated into a non-chromosomal autonomous replicon or integrated into the plant chromosomes.
- the introduced polynucleotide may be present on an extra-chromosomal non-replicating vector and may be transiently expressed or transiently active.
- Another aspect of the invention pertains to an isolated polypeptide having a sequence selected from the group consisting of the polypeptide sequences listed in Table 1.
- An "isolated” or “purified” polypeptide is free of some of the cellular material when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized.
- the language “substantially free of cellular material” includes preparations of a polypeptide in which the polypeptide is separated from some of the cellular components of the cells in which it is naturally or recombinantly produced.
- the language "substantially free of cellular material” includes preparations of a polypeptide of the invention having less than about 30% (by dry weight) of contaminating polypeptides, more preferably less than about 20% of contaminating polypeptides, still more preferably less than about 10% of contaminating polypeptides, and most preferably less than about 5% contaminating polypeptides.
- the invention is also embodied in a method of producing a transgenic plant comprising at least one polynucleotide listed in Table 1 or Table 2, wherein expression of the polynucleotide in the plant results in the plant's increased growth and/or yield under normal and/or water- limited conditions and/or increased tolerance to an environmental stress as compared to a wild type variety of the plant comprising the steps of: (a) introducing into a plant cell an expression vector comprising at least one polynucleotide listed in Table 1 or Table 2, and (b) generating from the plant cell a transgenic plant that expresses the polynucleotide, wherein expression of the polynucleotide in the transgenic plant results in the plant's increased growth and/or yield under normal or water-limited conditions and/or increased tolerance to environmental stress as compared to a wild type variety of the plant.
- the plant cell may be, but is not limited to, a protoplast, gamete producing cell, and a cell that regenerates into a whole plant.
- transgenic refers to any plant, plant cell, callus, plant tissue, or plant part, that contains at least one recombinant polynucleotide listed in Table 1 or Table 2.
- the recombinant polynucleotide is stably integrated into a chromosome or stable extra-chromosomal element, so that it is passed on to successive generations.
- the present invention also provides a method of increasing a plant's growth and/or yield under normal and/or water-limited conditions and/or increasing a plant's tolerance to an environmental stress comprising the steps of increasing the expression of at least one polynucleotide listed in Table 1 or Table 2 in the plant. Expression of a polynucleotide listed in Table 1 or Table 2 can be increased by any method known to those of skill in the art.
- the effect of the genetic modification on plant growth and/or yield and/or stress tolerance can be assessed by growing the modified plant under normal and/or less than suitable conditions and then analyzing the growth characteristics and/or metabolism of the plant.
- analysis techniques are well known to one skilled in the art, and include dry weight, wet weight, polypeptide synthesis, carbohydrate synthesis, lipid synthesis, evapotranspi ration rates, general plant and/or crop yield, flowering, reproduction, seed setting, root growth, respiration rates, photosynthesis rates, metabolite composition, etc., using methods known to those of skill in biotechnology.
- BLAST Very sensitive sequence database searches with estimates of statistical significance; Altschul et al., 1990, Journal of Molecular Biology 215:403-10); PREDATOR (High-accuracy secondary structure prediction from single and multiple sequences; Frishman and Argos, 1997, Proteins 27:329-335); CLUSTALW (Multiple sequence alignment; Thompson et al., 1994, Nucleic Acids Research 22:4673-4680); TMAP (Transmembrane region prediction from multiply aligned sequences; Persson and Argos, 1994, J. MoI. Biol. 237:182-192); ALOM2 (Transmembrane region prediction from single sequences; Klein et al., 1984, Biochim. Biophys.
- P. patens partial cDNAs were identified in the P. patens EST sequencing program using the program EST-MAX through BLAST analysis. The full-length nucleotide cDNA sequences were determined using known methods. The identity and similarity of the amino acid sequences of the disclosed polypeptide sequences to known protein sequences are shown in Tables 2-19 (Pairwise Comparison was used: gap penalty: 10; gap extension penalty: 0.1 ; score matrix: blosum 62).
- Canola, soybean, rice, maize, linseed, and wheat plants were grown under a variety of conditions and treatments, and different tissues were harvested at various developmental stages. Plant growth and harvesting were done in a strategic manner such that the probability of harvesting all expressable genes in at least one or more of the resulting libraries is maximized.
- the rmRNA was isolated from each of the collected samples, and cDNA libraries were constructed. No amplification steps were used in the library production process in order to minimize redundancy of genes within the sample and to retain expression information. All libraries were 3' generated from mRNA purified on oligo dT columns. Colonies from the transformation of the cDNA library into E. coli were randomly picked and placed into microtiter plates.
- Plasmid DNA was isolated from the E. coli colonies and then spotted on membranes. A battery of 288 33 P radiolabeled 7-mer oligonucleotides were sequentially hybridized to these membranes. To increase throughput, duplicate membranes were processed. After each hybridization, a blot image was captured during a phosphorimage scan to generate a hybridization profile for each oligonucleotide. This raw data image was automatically transferred to a computer. Absolute identity was maintained by barcoding for the image cassette, filter, and orienta- tion within the cassette. The filters were then treated using relatively mild conditions to strip the bound probes and returned to the hybridization chambers for another round of hybridization. The hybridization and imaging cycle was repeated until the set of 288 oligomers was completed.
- the clones were sorted into various clusters based on their having identical or similar hybridization signatures.
- a cluster should be indicative of the expression of an individual gene or gene family.
- a by-product of this analysis is an expression profile for the abundance of each gene in a particular library.
- One-path sequencing from the 5' end was used to predict the function of the particular clones by similarity and motif searches in sequence databases.
- Two homologs from canola (BnHD-1 , SEQ ID NO:38 and BnHD-2, SEQ ID NO:40), one homolog from maize (ZmHD-1 , SEQ ID NO:42), one ho- molog from linseed (LuHD-1 , SEQ ID NO:44), one sequence from rice (OsHD-1 , SEQ ID NO:46) three sequences from soybean (GmHD-1 , SEQ ID NO:48, GmHD-2, SEQ ID NO:50, and GmHD-3, SEQ ID NO:52) and one sequence from wheat (TaHD-1 , SEQ ID NO:54) were identified.
- the degree of amino acid identity and similarity of these sequences to the closest known public sequence is indicated in Table 21 (Pairwise Comparison was used: gap penalty: 10; gap extension penalty: 0.1 ; score matrix: blosum62).
- a fragment containing the P. patens polynucleotide was ligated into a binary vector containing a selectable marker gene.
- the resulting recombinant vector contained the corresponding polynucleotide listed in Table 1 in the sense orientation under the constitutive super promoter.
- the recombinant vectors were transformed into Agrobacterium tumefaciens C58C1 and PMP90 plants according to standard conditions.
- A. thaliana ecotype C24 plants were grown and transformed according to standard conditions. T1 plants were screened for resistance to the selection agent conferred by the selectable marker gene, and T1 seeds were collected.
- the P. patens polynucleotides were overexpressed in A. thaliana under the control of a constitutive promoter. T2 and/or T3 seeds were screened for resistance to the selection agent conferred by the selectable marker gene on plates, and positive plants were transplanted into soil and grown in a growth chamber for 3 weeks. Soil moisture was maintained throughout this time at approximately 50% of the maximum water-holding capacity of soil.
- A. thaliana lines overexpressing PpPD-1 (SEQ ID NO: 10)
- Canola cotyledonary petioles of 4 day-old young seedlings are used as explants for tissue culture and transformed according to EP1566443.
- the commercial cultivar Westar (Agri- culture Canada) is the standard variety used for transformation, but other varieties can be used.
- A. tumefaciens GV3101 :pMP90RK containing a binary vector is used for canola transformation.
- the standard binary vector used for transformation is pSUN (WO 02/00900), but many different binary vector systems have been described for plant transformation (e.g. An, G. in Agrobacte- rium Protocols, Methods in Molecular Biology vol 44, pp 47-62, Gartland KMA and MR Davey eds.
- a plant gene expression cassette comprising a selection marker gene and a plant promoter regulating the transcription of the cDNA encoding the polynucleotide is employed.
- selection marker genes can be used including the mutated acetohydroxy acid synthase (AHAS) gene disclosed in US Pat. Nos. 5,767,366 and 6,225,105.
- a suitable promoter is used to regulate the trait gene to provide constitutive, developmental, tissue or environmental regulation of gene transcription.
- Canola seeds are surface-sterilized in 70% ethanol for 2 min, incubated for 15 min in 55°C warm tap water and then in 1.5% sodium hypochlorite for 10 minutes, followed by three rinses with sterilized distilled water. Seeds are then placed on MS medium without hormones, containing Gamborg B5 vitamins, 3% sucrose, and 0.8% Oxoidagar. Seeds are germinated at 24 0 C for 4 days in low light ( ⁇ 50 ⁇ Mol/m 2 s, 16 hours light).
- the cotyledon petiole explants with the cotyledon attached are excised from the in vitro seedlings, and inoculated with Agrobacte- rium by dipping the cut end of the petiole explant into the bacterial suspension.
- the explants are then cultured for 3 days on MS medium including vitamins containing 3.75 mg/l BAP, 3% sucrose, 0.5 g/l MES, pH 5.2, 0.5 mg/l GA3, 0.8% Oxoidagar at 24°C, 16 hours of light.
- the petiole explants After three days of co-cultivation with Agrobacterium, the petiole explants are transferred to regeneration medium containing 3.75 mg/l BAP, 0.5 mg/l GA3, 0.5 g/l MES, pH 5.2, 300 mg/l timentin and selection agent until shoot regeneration. As soon as explants start to develop shoots, they are transferred to shoot elongation medium (A6, containing full strength MS medium including vitamins, 2% sucrose, 0.5% Oxoidagar, 100 mg/l myo-inositol, 40 mg/l adenine sulfate, 0.5 g/l MES, pH 5.8, 0.0025 mg/l BAP, 0.1 mg/l IBA, 300 mg/l timentin and selection agent).
- shoot elongation medium A6, containing full strength MS medium including vitamins, 2% sucrose, 0.5% Oxoidagar, 100 mg/l myo-inositol, 40 mg/l adenine sul
- Seed is produced from the primary transgenic plants by self-pollination.
- the second- generation plants are grown in greenhouse conditions and self-pollinated.
- the plants are ana- lyzed by qPCR using TaqMan probes to confirm the presence of T-DNA and to determine the number of T-DNA integrations.
- Homozygous transgenic, heterozygous transgenic and azygous (null transgenic) plants are compared for their stress tolerance, for example, in the assays described in Example 3, and for yield, both in the greenhouse and in field studies.
- Transgenic rice plants comprising a polynucleotide of the invention are generated using known methods. Approximately 15 to 20 independent transformants (TO) are generated. The primary transformants are transferred from tissue culture chambers to a greenhouse for growing and harvest of T1 seeds. Five events of the T1 progeny segregated 3:1 for presence/absence of the transgene are retained. For each of these events, 10 T1 seedlings containing the transgene (hetero- and homozygotes), and 10 T1 seedlings lacking the transgene (nullizygotes) are selected by visual marker screening. The selected T1 plants are transferred to a greenhouse.
- TO independent transformants
- Each plant receives a unique barcode label to link unambiguously the phenotyping data to the corresponding plant.
- Transgenic plants and the corresponding nullizygotes are grown side-by-side at random positions. From the stage of sowing until the stage of maturity, the plants are passed several times through a digital imaging cabinet. At each time point digital, images (2048x1536 pixels, 16 million colours) of each plant are taken from at least 6 different angles.
- Transgenic plants are screened for their improved growth and/or yield and/or stress tolerance, for example, using the assays described in Example 3, and for yield, both in the greenhouse and in field studies.
- the polynucleotides of Tables 1 and 2 are transformed into soybean using the methods described in commonly owned copending international application number WO 2005/121345, the contents of which are incorporated herein by reference.
- the transgenic plants are then screened for their improved growth under water-limited conditions and/or drought, salt, and/or cold tolerance, for example, using the assays described in Example 3, and for yield, both in the greenhouse and in field studies.
- Example 7 Stress-tolerant wheat plants
- Transformation of wheat is performed with the method described by lshida et al., 1996, Nature Biotech. 14745-50. Immature embryos are co-cultivated with Agrobacterium tumefaciens that carry "super binary" vectors, and transgenic plants are recovered through organogenesis. This procedure provides a transformation efficiency between 2.5% and 20%. The transgenic plants are then screened for their improved growth and/or yield under water-limited conditions and/or stress tolerance, for example, is the assays described in Example 3, and for yield, both in the greenhouse and in field studies.
- Example 8 Stress-tolerant corn plants
- Agrobacterium cells harboring the genes and the maize ahas gene on the same plas- mid are grown in YP medium supplemented with appropriate antibiotics for 1-3 days.
- a loop of Agrobacterium cells is collected and suspended in 1.5 ml M-LS-002 medium (LS-inf) and the tube containing Agrobacterium cells is kept on a shaker for 1-4 hours at 1 ,000 rpm.
- Corncobs [genotype J553x(HIIIAxA188)] are harvested at 7-12 days after pollina- tion. The cobs are sterilized in 20% Clorox solution for 15 minutes followed by thorough rinse with sterile water. Immature embryos with size 0.8-2.0 mm are dissected into the tube containing Agrobacterium cells in LS-inf solution.
- Agro-infection is carried out by keeping the tube horizontally in the laminar hood at room temperature for 30 minutes. Mixture of the agro infection is poured on to a plate containing the co-cultivation medium (M-LS-011 ). After the liquid agro-solution is piped out, the embryos transferred to the surface of a filter paper that is placed on the agar co-cultivation medium. The excess bacterial solution is removed with a pipette. The embryos are placed on the co- cultivation medium with scutellum side up and cultured in the dark at 22 0 C for 2-4 days.
- M-LS-011 co-cultivation medium
- Embryos are transferred to M-MS-101 medium without selection. Seven to ten days later, embryos are transferred to M-LS-401 medium containing 0.50 ⁇ M imazethapyr and grown for 4 weeks (two 2-week transfers) to select for transformed callus cells. Plant regeneration is initiated by transferring resistant calli to M-LS-504 medium supplemented with 0.75 ⁇ M imazethapyr and grown under light at 25-27°C for two to three weeks. Regenerated shoots are then transferred to rooting box with M-MS-618 medium (0.5 ⁇ M imazethapyr). Plantlets with roots are transferred to potting mixture in small pots in the greenhouse and after acclimatization are then transplanted to larger pots and maintained in greenhouse till maturity.
- each of these plants is uniquely labeled, sampled and analyzed for transgene copy number.
- Transgene positive and negative plants are marked and paired with similar sizes for transplanting together to large pots. This provides a uniform and competitive environment for the transgene positive and negative plants.
- the large pots are watered to a certain percentage of the field water capacity of the soil depending the severity of water-stress desired.
- the soil water level is maintained by watering every other day.
- Plant growth and physiology traits such as height, stem diameter, leaf rolling, plant wilting, leaf extension rate, leaf water status, chlorophyll content and photosynthesis rate are measured during the growth period. After a period of growth, the above ground portion of the plants is harvested, and the fresh weight and dry weight of each plant are taken. A comparison of the drought tolerance phenotype between the transgene positive and negative plants is then made.
- the pots are covered with caps that permit the seedlings to grow through but minimize water loss.
- Each pot is weighed periodically and water added to maintain the initial water content.
- the fresh and dry weight of each plant is measured, the water consumed by each plant is calculated and WUE of each plant is computed.
- Plant growth and physiology traits such as WUE, height, stem diameter, leaf rolling, plant wilting, leaf extension rate, leaf water status, chlorophyll content and photosynthesis rate are measured during the experiment. A comparison of WUE phenotype between the transgene positive and negative plants is then made.
- a Taqman transgene copy number assay is used on leaf samples to differentiate the transgenics from null-segregant control plants. Plants that have been genotyped in this manner are also scored for a range of phenotypes related to drought-tolerance, growth and yield.
- phenotypes include plant height, grain weight per plant, grain number per plant, ear number per plant, above ground dry-weight, leaf conductance to water vapor, leaf CO2 uptake, leaf chlorophyll content, photosynthesis-related chlorophyll fluorescence parameters, water use efficiency, leaf water potential, leaf relative water content, stem sap flow rate, stem hydraulic conductivity, leaf temperature, leaf reflectance, leaf light absorptance, leaf area, days to flowering, anthesis- silking interval, duration of grain fill, osmotic potential, osmotic adjustment, root size, leaf extension rate, leaf angle, leaf rolling and survival. All measurements are made with commercially available instrumentation for field physiology, using the standard protocols provided by the manufacturers. Individual plants are used as the replicate unit per event.
- a null segregant is progeny (or lines derived from the progeny) of a transgenic plant that does not contain the transgene due to Mendelian segregation. Additional replicated paired plots for a particular event are distributed around the trial. A range of phenotypes related to drought-tolerance, growth and yield are scored in the paired plots and estimated at the plot level. When the measurement technique could only be applied to individual plants, these are selected at random each time from within the plot.
- phenotypes include plant height, grain weight per plant, grain number per plant, ear number per plant, above ground dry-weight, leaf conductance to water vapor, leaf CO2 uptake, leaf chlorophyll content, photosynthesis-related chlorophyll fluorescence parameters, water use efficiency, leaf water potential, leaf relative water content, stem sap flow rate, stem hydraulic conductivity, leaf temperature, leaf reflectance, leaf light absorptance, leaf area, days to flowering, anthesis- silking interval, duration of grain fill, osmotic potential, osmotic adjustment, root size, leaf extension rate, leaf angle, leaf rolling and survival. All measurements are made with commercially available instrumentation for field physiology, using the standard protocols provided by the manufacturers. Individual plots are used as the replicate unit per event.
- phenotypes included plant height, grain weight per plant, grain number per plant, ear number per plant, above ground dry-weight, leaf conductance to water vapor, leaf CO2 uptake, leaf chlorophyll content, photosynthesis-related chlorophyll fluorescence parameters, water use efficiency, leaf water potential, leaf relative water content, stem sap flow rate, stem hydraulic conductivity, leaf temperature, leaf reflectance, leaf light absorptance, leaf area, days to flowering, anthesis-silking interval, duration of grain fill, osmotic potential, osmotic adjustment, root size, leaf extension rate, leaf angle, leaf rolling and survival. All measurements are made with commercially available instrumentation for field physiology, using the standard protocols provided by the manufacturers. Individual plots are used as the replicate unit per event.
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002681515A CA2681515A1 (en) | 2007-03-23 | 2008-03-20 | Transgenic plants with increased stress tolerance and yield expressing a lrp-2 protein |
MX2009009649A MX2009009649A (en) | 2007-03-23 | 2008-03-20 | Transgenic plant with increased stress tolerance and yield. |
DE112008000747T DE112008000747T5 (en) | 2007-03-23 | 2008-03-20 | Transgenic plants with increased stress tolerance and increased yield |
AU2008231785A AU2008231785A1 (en) | 2007-03-23 | 2008-03-20 | Transgenic plant with increased stress tolerance and yield |
EP08718097A EP2129783A1 (en) | 2007-03-23 | 2008-03-20 | Transgenic plant with increased stress tolerance and yield |
BRPI0809163-3A2A BRPI0809163A2 (en) | 2007-03-23 | 2008-03-20 | Transgenic plant cell or transgenic plant, insulated polynucleotide, insulated polypeptide, and methods of producing a transgenic plant, and of increasing the growth and / or yield of the plant under or under conditions or conditions AN ENVIRONMENTAL STRESS |
US12/531,310 US8329991B2 (en) | 2007-03-23 | 2008-03-20 | Transgenic plant with increased stress tolerance and yield |
US13/671,898 US20130191945A1 (en) | 2007-03-23 | 2012-11-08 | Transgenic Plant With Increased Stress Tolerance and Yield |
US14/561,245 US9328354B2 (en) | 2007-03-23 | 2014-12-05 | Transgenic plant with increased stress tolerance and yield |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US89650507P | 2007-03-23 | 2007-03-23 | |
US60/896,505 | 2007-03-23 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/531,310 A-371-Of-International US8329991B2 (en) | 2007-03-23 | 2008-03-20 | Transgenic plant with increased stress tolerance and yield |
US13/671,898 Division US20130191945A1 (en) | 2007-03-23 | 2012-11-08 | Transgenic Plant With Increased Stress Tolerance and Yield |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008116829A1 true WO2008116829A1 (en) | 2008-10-02 |
Family
ID=39535534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/053382 WO2008116829A1 (en) | 2007-03-23 | 2008-03-20 | Transgenic plant with increased stress tolerance and yield |
Country Status (10)
Country | Link |
---|---|
US (3) | US8329991B2 (en) |
EP (4) | EP2163636A1 (en) |
CN (2) | CN101652480A (en) |
AR (1) | AR066193A1 (en) |
AU (1) | AU2008231785A1 (en) |
BR (1) | BRPI0809163A2 (en) |
CA (1) | CA2681515A1 (en) |
DE (1) | DE112008000747T5 (en) |
MX (1) | MX2009009649A (en) |
WO (1) | WO2008116829A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011052169A1 (en) * | 2009-10-30 | 2011-05-05 | Toyota Jidosha Kabushiki Kaisha | Gene capable of imparting environmental stress resistance to plants and method for utilizing the same |
US8722072B2 (en) | 2010-01-22 | 2014-05-13 | Bayer Intellectual Property Gmbh | Acaricidal and/or insecticidal active ingredient combinations |
US8822758B2 (en) | 2008-09-25 | 2014-09-02 | Toyota Jidosha Kabushiki Kaisha | Gene capable of increasing the production of plant biomass and method for using the same |
US9265252B2 (en) | 2011-08-10 | 2016-02-23 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
US9297020B2 (en) | 2008-11-11 | 2016-03-29 | Toyota Jidosha Kabushiki Kaisha | Gene for increasing the production of plant biomass and method of use thereof |
WO2019085962A1 (en) * | 2017-11-02 | 2019-05-09 | Sinobioway Bio-Agriculture Group Co. Ltd. | Abiotic stress tolerant plants and polynucleotides to improve abiotic stress and methods |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105624157A (en) * | 2014-11-06 | 2016-06-01 | 复旦大学 | Drought-induced pollen specific promoter and use thereof |
CN106980776B (en) * | 2017-04-10 | 2019-05-24 | 重庆邮电大学 | Gene family affiliation calculation method between a kind of species |
CN109750046A (en) * | 2017-11-02 | 2019-05-14 | 未名生物农业集团有限公司 | The polynucleotide and method of plant and raising plant abiotic stress tolerance that abiotic stress tolerance improves |
US11421242B2 (en) | 2018-04-18 | 2022-08-23 | Pioneer Hi-Bred International, Inc. | Genes, constructs and maize event DP-202216-6 |
CN109852634B (en) * | 2019-01-03 | 2021-04-13 | 华中农业大学 | Method for cultivating high-nodulation nitrogen-fixing transgenic plant |
CN113201558B (en) * | 2021-05-19 | 2021-11-26 | 中国科学院华南植物园 | Soybean GmHDA12 gene and protein and application thereof |
CN117721123B (en) * | 2024-02-07 | 2024-05-14 | 中国农业科学院作物科学研究所 | OsHD3 gene and encoding protein and application thereof |
Citations (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4666844A (en) | 1984-09-07 | 1987-05-19 | Sungene Technologies Corporation | Process for regenerating cereals |
EP0359472A2 (en) | 1988-09-09 | 1990-03-21 | Mycogen Plant Science, Inc. | Synthetic insecticidal crystal protein gene |
EP0375091A1 (en) | 1988-12-21 | 1990-06-27 | Institut Für Genbiologische Forschung Berlin Gmbh | Wound-inducible and potato tuber-specific transcriptional regulation |
US4945050A (en) | 1984-11-13 | 1990-07-31 | Cornell Research Foundation, Inc. | Method for transporting substances into living cells and tissues and apparatus therefor |
EP0385962A1 (en) | 1989-02-24 | 1990-09-05 | Monsanto Company | Synthetic plant genes and method for preparation |
EP0397687A1 (en) | 1987-12-21 | 1990-11-22 | Upjohn Co | Agrobacterium mediated transformation of germinating plant seeds. |
US5004863A (en) | 1986-12-03 | 1991-04-02 | Agracetus | Genetic engineering of cotton plants and lines |
EP0424047A1 (en) | 1989-10-17 | 1991-04-24 | Pioneer Hi-Bred International, Inc. | Tissue culture method for transformation of plant cells |
US5036006A (en) | 1984-11-13 | 1991-07-30 | Cornell Research Foundation, Inc. | Method for transporting substances into living cells and tissues and apparatus therefor |
WO1991013980A1 (en) | 1990-03-16 | 1991-09-19 | Calgene, Inc. | Novel sequences preferentially expressed in early seed development and methods related thereto |
WO1991016432A1 (en) | 1990-04-18 | 1991-10-31 | Plant Genetic Systems N.V. | Modified bacillus thuringiensis insecticidal-crystal protein genes and their expression in plant cells |
US5086169A (en) | 1989-04-20 | 1992-02-04 | The Research Foundation Of State University Of New York | Isolated pollen-specific promoter of corn |
US5100792A (en) | 1984-11-13 | 1992-03-31 | Cornell Research Foundation, Inc. | Method for transporting substances into living cells and tissues |
US5120657A (en) | 1986-12-05 | 1992-06-09 | Agracetus, Inc. | Apparatus for genetic transformation |
US5187267A (en) | 1990-06-19 | 1993-02-16 | Calgene, Inc. | Plant proteins, promoters, coding sequences and use |
WO1993007256A1 (en) | 1991-10-07 | 1993-04-15 | Ciba-Geigy Ag | Particle gun for introducing dna into intact cells |
WO1993021334A1 (en) | 1992-04-13 | 1993-10-28 | Zeneca Limited | Dna constructs and plants incorporating them |
US5302523A (en) | 1989-06-21 | 1994-04-12 | Zeneca Limited | Transformation of plant cells |
US5350688A (en) | 1988-03-31 | 1994-09-27 | Kirin Beer Kabushiki Kaisha | Method for regeneration of rice plants |
US5380831A (en) | 1986-04-04 | 1995-01-10 | Mycogen Plant Science, Inc. | Synthetic insecticidal crystal protein gene |
US5412085A (en) | 1992-07-09 | 1995-05-02 | Pioneer Hi-Bred International Inc. | Pollen-specific promoter from maize |
WO1995015389A2 (en) | 1993-12-02 | 1995-06-08 | Olsen Odd Arne | Promoter |
WO1995019443A2 (en) | 1994-01-13 | 1995-07-20 | Ciba-Geigy Ag | Chemically regulatable and anti-pathogenic dna sequences and uses thereof |
US5436391A (en) | 1991-11-29 | 1995-07-25 | Mitsubishi Corporation | Synthetic insecticidal gene, plants of the genus oryza transformed with the gene, and production thereof |
WO1995023230A1 (en) | 1994-02-24 | 1995-08-31 | Olsen Odd Arne | Promoter from a lipid transfer protein gene |
US5470359A (en) | 1994-04-21 | 1995-11-28 | Pioneer Hi-Bred Internation, Inc. | Regulatory element conferring tapetum specificity |
US5504200A (en) | 1983-04-15 | 1996-04-02 | Mycogen Plant Science, Inc. | Plant gene expression |
WO1996012814A1 (en) | 1994-10-21 | 1996-05-02 | Danisco A/S | Promoter sequence from potato |
US5591616A (en) | 1992-07-07 | 1997-01-07 | Japan Tobacco, Inc. | Method for transforming monocotyledons |
US5608152A (en) | 1986-07-31 | 1997-03-04 | Calgene, Inc. | Seed-specific transcriptional regulation |
WO1997020057A1 (en) | 1995-11-29 | 1997-06-05 | University Of Leeds | Root specific promoters |
US5683439A (en) | 1993-10-20 | 1997-11-04 | Hollister Incorporated | Post-operative thermal blanket |
US5731179A (en) | 1993-12-08 | 1998-03-24 | Japan Tobacco Inc. | Method for introducing two T-DNAS into plants and vectors therefor |
US5767366A (en) | 1991-02-19 | 1998-06-16 | Louisiana State University Board Of Supervisors, A Governing Body Of Louisiana State University Agricultural And Mechanical College | Mutant acetolactate synthase gene from Ararbidopsis thaliana for conferring imidazolinone resistance to crop plants |
WO1998045461A1 (en) | 1997-04-09 | 1998-10-15 | Rhone-Poulenc Agro | An oleosin 5' regulatory region for the modification of plant seed lipid composition |
US5846797A (en) | 1995-10-04 | 1998-12-08 | Calgene, Inc. | Cotton transformation |
WO1999016890A2 (en) | 1997-09-30 | 1999-04-08 | The Regents Of The University Of California | Production of proteins in plant seeds |
US5932782A (en) | 1990-11-14 | 1999-08-03 | Pioneer Hi-Bred International, Inc. | Plant transformation method using agrobacterium species adhered to microprojectiles |
US5955646A (en) | 1993-11-19 | 1999-09-21 | Biotechnology Research And Development Corporation | Chimeric regulatory regions and gene cassettes for expression of genes in plants |
US5969213A (en) | 1990-04-17 | 1999-10-19 | Dekalb Genetics Corporation | Methods and compositions for the production of stably transformed fertile monocot plants and cells thereof |
US5981840A (en) | 1997-01-24 | 1999-11-09 | Pioneer Hi-Bred International, Inc. | Methods for agrobacterium-mediated transformation |
US5990387A (en) | 1988-06-10 | 1999-11-23 | Pioneer Hi-Bred International, Inc. | Stable transformation of plant cells |
US6020539A (en) | 1986-06-30 | 2000-02-01 | Goldman; Stephen L. | Process for transforming Gramineae and the products thereof |
US6140553A (en) | 1997-02-20 | 2000-10-31 | Plant Genetic Systems, N.V. | Transformation method for plants |
US6153813A (en) | 1997-12-11 | 2000-11-28 | Mississippi State University | Methods for genotype-independent nuclear and plastid transformation coupled with clonal regeneration utilizing mature zygotic embryos in rice (Oryza sativa) seeds |
US6153811A (en) | 1997-12-22 | 2000-11-28 | Dekalb Genetics Corporation | Method for reduction of transgene copy number |
US6162965A (en) | 1997-06-02 | 2000-12-19 | Novartis Ag | Plant transformation methods |
US6288312B1 (en) | 1991-05-15 | 2001-09-11 | Monsanto Company | Method of creating transformed rice plant |
US6329571B1 (en) | 1996-10-22 | 2001-12-11 | Japan Tobacco, Inc. | Method for transforming indica rice |
US6333449B1 (en) | 1998-11-03 | 2001-12-25 | Plant Genetic Systems, N.V. | Glufosinate tolerant rice |
WO2002000900A2 (en) | 2000-06-28 | 2002-01-03 | Sungene Gmbh & Co. Kgaa | Binary vectors for improved transformation of plant systems |
WO2002016655A2 (en) * | 2000-08-24 | 2002-02-28 | The Scripps Research Institute | Stress-regulated genes of plants, transgenic plants containing same, and methods of use |
US6420630B1 (en) | 1998-12-01 | 2002-07-16 | Stine Biotechnology | Methods for tissue culturing and transforming elite inbreds of Zea mays L. |
WO2003081988A2 (en) * | 2002-03-27 | 2003-10-09 | Agrinomics Llc | Generation of plants with improved drought tolerance |
US6670528B1 (en) * | 1998-10-14 | 2003-12-30 | Independent Administrative Institute, Japan International Research Center For Agricultural Sciences | Environmental stress-tolerant plants |
US20040031072A1 (en) * | 1999-05-06 | 2004-02-12 | La Rosa Thomas J. | Soy nucleic acid molecules and other molecules associated with transcription plants and uses thereof for plant improvement |
US20040216190A1 (en) * | 2003-04-28 | 2004-10-28 | Kovalic David K. | Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement |
WO2005060664A2 (en) * | 2003-12-10 | 2005-07-07 | Monsanto Technology Llc | Stress tolerant plants and methods thereof |
EP1566443A1 (en) | 2004-02-23 | 2005-08-24 | SunGene GmbH & Co.KgaA | Improved transformation of brassica species |
WO2005105836A2 (en) * | 2004-04-23 | 2005-11-10 | Ceres Inc. | Methods and materials for improving plant drought tolerance |
WO2005121345A1 (en) | 2004-06-07 | 2005-12-22 | Basf Plant Science Gmbh | Improved transformation of soybean |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6753167B2 (en) * | 1991-02-22 | 2004-06-22 | Sembiosys Genetics Inc. | Preparation of heterologous proteins on oil bodies |
US6465718B1 (en) * | 1997-03-14 | 2002-10-15 | Cropdesign N.V. | Method and means for modulating plant cell cycle proteins and their use in plant cell growth control |
US6356807B1 (en) | 1999-08-13 | 2002-03-12 | Fanuc Robotics North America, Inc. | Method of determining contact positions, calibration parameters, and reference frames for robot assemblies |
CN1856574A (en) * | 2003-07-28 | 2006-11-01 | 农业基因生物科学有限公司 | Plant cell cycle genes and methods of use |
EP1708558A4 (en) * | 2003-09-24 | 2008-03-19 | Avestha Gengraine Tech Pvt Ltd | Proteins which confer biotic and abiotic stress resistance in plants |
AR047574A1 (en) * | 2003-12-30 | 2006-01-25 | Arborgen Llc 2 Genesis Res 1 | CELL CYCLE GENES AND RELATED USE METHODS |
EP1819822B1 (en) * | 2004-12-01 | 2010-04-21 | CropDesign N.V. | Plants having improved growth characteristics and method for making the same |
AU2006204997B2 (en) * | 2005-01-12 | 2011-09-01 | Monsanto Technology, Llc | Genes and uses for plant improvement |
US20080301839A1 (en) | 2005-08-30 | 2008-12-04 | Ravanello Monica P | Transgenic plants with enhanced agronomic traits |
EP2392662A3 (en) * | 2007-04-23 | 2012-03-14 | Basf Se | Plant productivity enhancement by combining chemical agents with transgenic modifications |
-
2008
- 2008-03-20 EP EP09178040A patent/EP2163636A1/en not_active Withdrawn
- 2008-03-20 WO PCT/EP2008/053382 patent/WO2008116829A1/en active Application Filing
- 2008-03-20 DE DE112008000747T patent/DE112008000747T5/en not_active Withdrawn
- 2008-03-20 CA CA002681515A patent/CA2681515A1/en not_active Abandoned
- 2008-03-20 EP EP12173345.5A patent/EP2537938A3/en not_active Withdrawn
- 2008-03-20 MX MX2009009649A patent/MX2009009649A/en active IP Right Grant
- 2008-03-20 US US12/531,310 patent/US8329991B2/en not_active Expired - Fee Related
- 2008-03-20 BR BRPI0809163-3A2A patent/BRPI0809163A2/en not_active IP Right Cessation
- 2008-03-20 EP EP09178045A patent/EP2163637A1/en not_active Withdrawn
- 2008-03-20 AU AU2008231785A patent/AU2008231785A1/en not_active Abandoned
- 2008-03-20 CN CN200880009520A patent/CN101652480A/en active Pending
- 2008-03-20 CN CN201410646021.0A patent/CN104450640A/en active Pending
- 2008-03-20 EP EP08718097A patent/EP2129783A1/en not_active Withdrawn
- 2008-03-25 AR ARP080101199A patent/AR066193A1/en not_active Application Discontinuation
-
2012
- 2012-11-08 US US13/671,898 patent/US20130191945A1/en not_active Abandoned
-
2014
- 2014-12-05 US US14/561,245 patent/US9328354B2/en not_active Expired - Fee Related
Patent Citations (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5504200A (en) | 1983-04-15 | 1996-04-02 | Mycogen Plant Science, Inc. | Plant gene expression |
US4666844A (en) | 1984-09-07 | 1987-05-19 | Sungene Technologies Corporation | Process for regenerating cereals |
US5036006A (en) | 1984-11-13 | 1991-07-30 | Cornell Research Foundation, Inc. | Method for transporting substances into living cells and tissues and apparatus therefor |
US4945050A (en) | 1984-11-13 | 1990-07-31 | Cornell Research Foundation, Inc. | Method for transporting substances into living cells and tissues and apparatus therefor |
US5100792A (en) | 1984-11-13 | 1992-03-31 | Cornell Research Foundation, Inc. | Method for transporting substances into living cells and tissues |
US5380831A (en) | 1986-04-04 | 1995-01-10 | Mycogen Plant Science, Inc. | Synthetic insecticidal crystal protein gene |
US6020539A (en) | 1986-06-30 | 2000-02-01 | Goldman; Stephen L. | Process for transforming Gramineae and the products thereof |
US5608152A (en) | 1986-07-31 | 1997-03-04 | Calgene, Inc. | Seed-specific transcriptional regulation |
US5004863A (en) | 1986-12-03 | 1991-04-02 | Agracetus | Genetic engineering of cotton plants and lines |
US5159135A (en) | 1986-12-03 | 1992-10-27 | Agracetus | Genetic engineering of cotton plants and lines |
US5159135B1 (en) | 1986-12-03 | 2000-10-24 | Agracetus | Genetic engineering of cotton plants and lines |
US5004863B2 (en) | 1986-12-03 | 2000-10-17 | Agracetus | Genetic engineering of cotton plants and lines |
US5004863B1 (en) | 1986-12-03 | 1992-12-08 | Agracetus | |
US6084154A (en) | 1986-12-05 | 2000-07-04 | Powederject Vaccines, Inc. | Method for genetic transformation |
US5120657A (en) | 1986-12-05 | 1992-06-09 | Agracetus, Inc. | Apparatus for genetic transformation |
US5169770A (en) | 1987-12-21 | 1992-12-08 | The University Of Toledo | Agrobacterium mediated transformation of germinating plant seeds |
EP0397687A1 (en) | 1987-12-21 | 1990-11-22 | Upjohn Co | Agrobacterium mediated transformation of germinating plant seeds. |
US5376543A (en) | 1987-12-21 | 1994-12-27 | The University Of Toledo | Agrobacterium mediated transformation of germinating plant seeds |
US5350688A (en) | 1988-03-31 | 1994-09-27 | Kirin Beer Kabushiki Kaisha | Method for regeneration of rice plants |
US5990387A (en) | 1988-06-10 | 1999-11-23 | Pioneer Hi-Bred International, Inc. | Stable transformation of plant cells |
EP0359472A2 (en) | 1988-09-09 | 1990-03-21 | Mycogen Plant Science, Inc. | Synthetic insecticidal crystal protein gene |
EP0375091A1 (en) | 1988-12-21 | 1990-06-27 | Institut Für Genbiologische Forschung Berlin Gmbh | Wound-inducible and potato tuber-specific transcriptional regulation |
EP0385962A1 (en) | 1989-02-24 | 1990-09-05 | Monsanto Company | Synthetic plant genes and method for preparation |
US5086169A (en) | 1989-04-20 | 1992-02-04 | The Research Foundation Of State University Of New York | Isolated pollen-specific promoter of corn |
US5464765A (en) | 1989-06-21 | 1995-11-07 | Zeneca Limited | Transformation of plant cells |
US5302523A (en) | 1989-06-21 | 1994-04-12 | Zeneca Limited | Transformation of plant cells |
EP0424047A1 (en) | 1989-10-17 | 1991-04-24 | Pioneer Hi-Bred International, Inc. | Tissue culture method for transformation of plant cells |
US5322783A (en) | 1989-10-17 | 1994-06-21 | Pioneer Hi-Bred International, Inc. | Soybean transformation by microparticle bombardment |
WO1991013980A1 (en) | 1990-03-16 | 1991-09-19 | Calgene, Inc. | Novel sequences preferentially expressed in early seed development and methods related thereto |
US5969213A (en) | 1990-04-17 | 1999-10-19 | Dekalb Genetics Corporation | Methods and compositions for the production of stably transformed fertile monocot plants and cells thereof |
WO1991016432A1 (en) | 1990-04-18 | 1991-10-31 | Plant Genetic Systems N.V. | Modified bacillus thuringiensis insecticidal-crystal protein genes and their expression in plant cells |
US5187267A (en) | 1990-06-19 | 1993-02-16 | Calgene, Inc. | Plant proteins, promoters, coding sequences and use |
US5932782A (en) | 1990-11-14 | 1999-08-03 | Pioneer Hi-Bred International, Inc. | Plant transformation method using agrobacterium species adhered to microprojectiles |
US5767366A (en) | 1991-02-19 | 1998-06-16 | Louisiana State University Board Of Supervisors, A Governing Body Of Louisiana State University Agricultural And Mechanical College | Mutant acetolactate synthase gene from Ararbidopsis thaliana for conferring imidazolinone resistance to crop plants |
US6225105B1 (en) | 1991-02-19 | 2001-05-01 | Louisiana State University Board Of Supervisors A Governing Body Of Louisiana State University Agricultural And Mechancial College | Mutant acetolactate synthase gene from Arabidopsis thaliana for conferring imidazolinone resistance to crop plants |
US6365807B1 (en) | 1991-05-15 | 2002-04-02 | Monsanto Technology Llc | Method of creating a transformed rice plant |
US6288312B1 (en) | 1991-05-15 | 2001-09-11 | Monsanto Company | Method of creating transformed rice plant |
WO1993007256A1 (en) | 1991-10-07 | 1993-04-15 | Ciba-Geigy Ag | Particle gun for introducing dna into intact cells |
US5436391A (en) | 1991-11-29 | 1995-07-25 | Mitsubishi Corporation | Synthetic insecticidal gene, plants of the genus oryza transformed with the gene, and production thereof |
WO1993021334A1 (en) | 1992-04-13 | 1993-10-28 | Zeneca Limited | Dna constructs and plants incorporating them |
US5591616A (en) | 1992-07-07 | 1997-01-07 | Japan Tobacco, Inc. | Method for transforming monocotyledons |
US5545546A (en) | 1992-07-09 | 1996-08-13 | Pioneer Hi-Bred International, Inc. | Pollen-specific promoter from maize |
US5412085A (en) | 1992-07-09 | 1995-05-02 | Pioneer Hi-Bred International Inc. | Pollen-specific promoter from maize |
US5683439A (en) | 1993-10-20 | 1997-11-04 | Hollister Incorporated | Post-operative thermal blanket |
US5955646A (en) | 1993-11-19 | 1999-09-21 | Biotechnology Research And Development Corporation | Chimeric regulatory regions and gene cassettes for expression of genes in plants |
WO1995015389A2 (en) | 1993-12-02 | 1995-06-08 | Olsen Odd Arne | Promoter |
US5731179A (en) | 1993-12-08 | 1998-03-24 | Japan Tobacco Inc. | Method for introducing two T-DNAS into plants and vectors therefor |
WO1995019443A2 (en) | 1994-01-13 | 1995-07-20 | Ciba-Geigy Ag | Chemically regulatable and anti-pathogenic dna sequences and uses thereof |
WO1995023230A1 (en) | 1994-02-24 | 1995-08-31 | Olsen Odd Arne | Promoter from a lipid transfer protein gene |
US5470359A (en) | 1994-04-21 | 1995-11-28 | Pioneer Hi-Bred Internation, Inc. | Regulatory element conferring tapetum specificity |
WO1996012814A1 (en) | 1994-10-21 | 1996-05-02 | Danisco A/S | Promoter sequence from potato |
US5846797A (en) | 1995-10-04 | 1998-12-08 | Calgene, Inc. | Cotton transformation |
WO1997020057A1 (en) | 1995-11-29 | 1997-06-05 | University Of Leeds | Root specific promoters |
US6329571B1 (en) | 1996-10-22 | 2001-12-11 | Japan Tobacco, Inc. | Method for transforming indica rice |
US5981840A (en) | 1997-01-24 | 1999-11-09 | Pioneer Hi-Bred International, Inc. | Methods for agrobacterium-mediated transformation |
US6140553A (en) | 1997-02-20 | 2000-10-31 | Plant Genetic Systems, N.V. | Transformation method for plants |
WO1998045461A1 (en) | 1997-04-09 | 1998-10-15 | Rhone-Poulenc Agro | An oleosin 5' regulatory region for the modification of plant seed lipid composition |
US6162965A (en) | 1997-06-02 | 2000-12-19 | Novartis Ag | Plant transformation methods |
WO1999016890A2 (en) | 1997-09-30 | 1999-04-08 | The Regents Of The University Of California | Production of proteins in plant seeds |
US6153813A (en) | 1997-12-11 | 2000-11-28 | Mississippi State University | Methods for genotype-independent nuclear and plastid transformation coupled with clonal regeneration utilizing mature zygotic embryos in rice (Oryza sativa) seeds |
US6153811A (en) | 1997-12-22 | 2000-11-28 | Dekalb Genetics Corporation | Method for reduction of transgene copy number |
US6670528B1 (en) * | 1998-10-14 | 2003-12-30 | Independent Administrative Institute, Japan International Research Center For Agricultural Sciences | Environmental stress-tolerant plants |
US6333449B1 (en) | 1998-11-03 | 2001-12-25 | Plant Genetic Systems, N.V. | Glufosinate tolerant rice |
US6420630B1 (en) | 1998-12-01 | 2002-07-16 | Stine Biotechnology | Methods for tissue culturing and transforming elite inbreds of Zea mays L. |
US20020104132A1 (en) | 1998-12-01 | 2002-08-01 | Stine Biotechnology | Methods for tissue culturing and transforming elite inbreds of Zea mays L. |
US20040031072A1 (en) * | 1999-05-06 | 2004-02-12 | La Rosa Thomas J. | Soy nucleic acid molecules and other molecules associated with transcription plants and uses thereof for plant improvement |
WO2002000900A2 (en) | 2000-06-28 | 2002-01-03 | Sungene Gmbh & Co. Kgaa | Binary vectors for improved transformation of plant systems |
WO2002016655A2 (en) * | 2000-08-24 | 2002-02-28 | The Scripps Research Institute | Stress-regulated genes of plants, transgenic plants containing same, and methods of use |
WO2003081988A2 (en) * | 2002-03-27 | 2003-10-09 | Agrinomics Llc | Generation of plants with improved drought tolerance |
US20040216190A1 (en) * | 2003-04-28 | 2004-10-28 | Kovalic David K. | Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement |
WO2005060664A2 (en) * | 2003-12-10 | 2005-07-07 | Monsanto Technology Llc | Stress tolerant plants and methods thereof |
EP1566443A1 (en) | 2004-02-23 | 2005-08-24 | SunGene GmbH & Co.KgaA | Improved transformation of brassica species |
WO2005105836A2 (en) * | 2004-04-23 | 2005-11-10 | Ceres Inc. | Methods and materials for improving plant drought tolerance |
WO2005121345A1 (en) | 2004-06-07 | 2005-12-22 | Basf Plant Science Gmbh | Improved transformation of soybean |
Non-Patent Citations (58)
Title |
---|
ABE ET AL., PLANT CELL, vol. 9, 1997, pages 1859 - 68 |
AHN ET AL., PLANT CELL, vol. 8, 1996, pages 1477 - 90 |
ALTSCHUL ET AL., JOURNAL OF MOLECULAR BIOLOGY, vol. 215, 1990, pages 403 - 10 |
ALTSCHUL ET AL., NUCLEIC ACIDS RES., vol. 25, 1997, pages 3389 - 3402 |
AN, G.: "Methods in Molecular Biology", vol. 44, HUMANA PRESS, article "Agrobacterium Protocols", pages: 47 - 62 |
ARTUS ET AL., PNAS, vol. 93, no. 23, 1996, pages 13404 - 09 |
ATKINSON ET AL., GENBANK ACCESSION # L22302, 1997 |
AUSUBEL ET AL.: "Current Protocols in Molecular Biology", 1995, GREENE PUBLISHING AND WILEY-INTERSCIENCE, article "Chapter 2," |
BAEUMLEIN ET AL., MOL. GEN. GENET., vol. 225, no. 3, 1991, pages 459 - 67 |
BAEUMLEIN ET AL., PLANT JOURNAL, vol. 2, no. 2, 1992, pages 233 - 9 |
BILL ALFORD, CABIOS, vol. 8, pages 249 - 254 |
BRENT; PTASHNE, CELL, vol. 43, 1985, pages 729 - 736 |
CAPEL ET AL., PLANT PHYSIOL., vol. 115, 1997, pages 569 - 76 |
CHAK ET AL., PLANTA, vol. 210, 2000, pages 875 - 883 |
CHRISTENSEN ET AL., PLANT MOLEC. BIOL., vol. 18, 1989, pages 675 - 689 |
DATABASE EMBL 27 September 2002 (2002-09-27), HARPER ET AL., XP002487162, retrieved from EBI Database accession no. AX505714 * |
DATABASE EMBL 29 August 2002 (2002-08-29), QUATRANO ET AL., XP002487164, retrieved from EBI Database accession no. BU052518 * |
DATABASE UniProt 7 December 2004 (2004-12-07), SASAKI ET AL., XP002487163, retrieved from EBI Database accession no. Q5VNV8 * |
ENGEL, AM. J. BOT., vol. 55, 1968, pages 438 - 446 |
FRISHMAN; ARGOS, PROTEINS, vol. 27, 1997, pages 329 - 335 |
GATZ ET AL., PLANT J., vol. 2, 1992, pages 397 - 404 |
GATZ, ANNU. REV. PLANT PHYSIOL. PLANT MOL. BIOL., vol. 48, 1997, pages 89 - 108 |
HOEREN ET AL., GENETICS, vol. 149, 1998, pages 479 - 90 |
HOVATH ET AL., PLANT PHYSIOL., vol. 103, 1993, pages 1047 - 1053 |
IKE ET AL., NUCLEIC ACID RES., vol. 11, 1983, pages 477 |
ISHIDA ET AL., NATURE BIOTECH, 1996, pages 14745 - 50 |
ITAKURA ET AL., ANNU. REV. BIOCHEM., vol. 53, 1984, pages 323 |
ITAKURA ET AL., SCIENCE, vol. 198, 1984, pages 1056 |
IWASAKI ET AL., MOL. GEN. GENET., vol. 247, 1995, pages 391 - 8 |
KAY ET AL., SCIENCE, vol. 236, 1987, pages 1299 - 1302 |
KLEIN ET AL., BIOCHIM. BIOPHYS. ACTA, vol. 787, 1984, pages 221 - 226 |
KOLAKOWSKI ET AL., BIOTECHNIQUES, vol. 13, 1992, pages 919 - 921 |
LANG; PALVE, PLANT MOL. BIOL., vol. 20, 1992, pages 951 - 62 |
LAST ET AL., THEOR. APPL. GENET., vol. 81, 1991, pages 581 - 588 |
LIU ET AL., PLANT CELL, vol. 6, 1994, pages 645 - 57 |
MCELROY ET AL., PLANT CELL, vol. 2, 1990, pages 163 - 171 |
MEDINA ET AL., PLANT PHYSIOL., vol. 125, 2001, pages 1655 - 66 |
MEINKOTH; WAHL, ANAL. BIOCHEM., vol. 138, 1984, pages 267 - 284 |
MÜLLER-RÖBER ET AL., EM-BO, vol. 14, 1995, pages 2409 - 16 |
MURRAY ET AL., NUCLEIC ACIDS RES., vol. 17, 1989, pages 477 - 498 |
NAKAMURA ET AL., PLANT PHYSIOL., vol. 109, 1995, pages 371 - 4 |
NARANG, TETRAHEDRON, vol. 39, 1983, pages 3 |
NAVARRE; GOFFEAU, EMBO J., vol. 19, 2000, pages 2515 - 24 |
NYLANDER ET AL., PLANT MOL. BIOL., vol. 45, 2001, pages 341 - 52 |
ODELL ET AL., NATURE, vol. 313, 1985, pages 810 - 812 |
PEARSON, METHODS ENZYMOL., vol. 183, 1990, pages 63 - 98 |
PERLACK ET AL., PROC. NATL. ACAD. SCI. USA, vol. 88, 1991, pages 3324 - 3328 |
PERSSON; ARGOS, J. MOL. BIOL., vol. 237, 1994, pages 182 - 192 |
PLESCH ET AL., GENBANK ACCESSION # X67427 |
TERRYN ET AL., FEBS LETT., vol. 299, no. 3, 1992, pages 287 - 90 |
TERRYN ET AL., PLANT CELL, vol. 5, 1993, pages 1761 - 9 |
THOMPSON ET AL., NUCLEIC ACIDS RESEARCH, vol. 22, 1994, pages 4673 - 4680 |
TIJSSEN: "Laboratory Techniques in Biochemistry and Molecular Biology: Hybridization with Nucleic Acid Probes", 1993, ELSEVIER |
VELTEN ET AL., EMBO J, vol. 3, 1984, pages 2723 - 2730 |
WALLACE; HENIKOFF, COMPUT APPL BIOSCI., vol. 8, no. 3, 1992, pages 249 - 54 |
WARD ET AL., PLANT. MOL. BIOL., vol. 22, 1993, pages 361 - 366 |
XIONG ET AL., PLANT CELL, vol. 13, 2001, pages 2063 - 83 |
YAMAGUCHI-SHINOZALEI ET AL., MOL. GEN. GENET., vol. 236, 1993, pages 331 - 340 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8822758B2 (en) | 2008-09-25 | 2014-09-02 | Toyota Jidosha Kabushiki Kaisha | Gene capable of increasing the production of plant biomass and method for using the same |
US9297020B2 (en) | 2008-11-11 | 2016-03-29 | Toyota Jidosha Kabushiki Kaisha | Gene for increasing the production of plant biomass and method of use thereof |
WO2011052169A1 (en) * | 2009-10-30 | 2011-05-05 | Toyota Jidosha Kabushiki Kaisha | Gene capable of imparting environmental stress resistance to plants and method for utilizing the same |
CN102575262A (en) * | 2009-10-30 | 2012-07-11 | 丰田自动车株式会社 | Gene capable of imparting environmental stress resistance to plants and method for utilizing the same |
US9476059B2 (en) | 2009-10-30 | 2016-10-25 | Toyota Jidosha Kabushiki Kaisha | Gene capable of imparting environmental stress resistance to plants and method for utilizing the same |
CN102575262B (en) * | 2009-10-30 | 2017-03-29 | 丰田自动车株式会社 | The gene and the method using the gene of environmental stress tolerant to plant can be given |
US8722072B2 (en) | 2010-01-22 | 2014-05-13 | Bayer Intellectual Property Gmbh | Acaricidal and/or insecticidal active ingredient combinations |
US9265252B2 (en) | 2011-08-10 | 2016-02-23 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
WO2019085962A1 (en) * | 2017-11-02 | 2019-05-09 | Sinobioway Bio-Agriculture Group Co. Ltd. | Abiotic stress tolerant plants and polynucleotides to improve abiotic stress and methods |
US11365424B2 (en) | 2017-11-02 | 2022-06-21 | Sinobioway Bio-Agriculture Group Co Ltd | Abiotic stress tolerant plants and polynucleotides to improve abiotic stress and methods |
Also Published As
Publication number | Publication date |
---|---|
CA2681515A1 (en) | 2008-10-02 |
AU2008231785A1 (en) | 2008-10-02 |
EP2129783A1 (en) | 2009-12-09 |
DE112008000747T5 (en) | 2010-01-28 |
EP2163636A1 (en) | 2010-03-17 |
US9328354B2 (en) | 2016-05-03 |
AR066193A1 (en) | 2009-08-05 |
US20130191945A1 (en) | 2013-07-25 |
CN104450640A (en) | 2015-03-25 |
CN101652480A (en) | 2010-02-17 |
BRPI0809163A2 (en) | 2014-09-16 |
US20150376642A1 (en) | 2015-12-31 |
EP2537938A3 (en) | 2013-04-10 |
EP2537938A2 (en) | 2012-12-26 |
US8329991B2 (en) | 2012-12-11 |
MX2009009649A (en) | 2009-12-01 |
US20100257637A1 (en) | 2010-10-07 |
EP2163637A1 (en) | 2010-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9328354B2 (en) | Transgenic plant with increased stress tolerance and yield | |
US8338661B2 (en) | Transgenic plants with increased stress tolerance and yield | |
US20100199388A1 (en) | Transgenic Plants with Increased Stress Tolerance and Yield | |
US8637736B2 (en) | Stress-related polypeptides and methods of use in plants | |
US20130139281A1 (en) | Transgenic Plants with Increased Stress Tolerance and Yield | |
US7829761B2 (en) | Scarecrow-like stress-related polypeptides and methods of use in plants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880009520.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08718097 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2009/009649 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12531310 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2681515 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008231785 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120080007470 Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008718097 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6215/CHENP/2009 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2008231785 Country of ref document: AU Date of ref document: 20080320 Kind code of ref document: A |
|
RET | De translation (de og part 6b) |
Ref document number: 112008000747 Country of ref document: DE Date of ref document: 20100128 Kind code of ref document: P |
|
ENP | Entry into the national phase |
Ref document number: PI0809163 Country of ref document: BR Kind code of ref document: A2 Effective date: 20090921 |