WO2008115804A1 - Novel ido inhibitors and methods of use thereof - Google Patents

Novel ido inhibitors and methods of use thereof Download PDF

Info

Publication number
WO2008115804A1
WO2008115804A1 PCT/US2008/057032 US2008057032W WO2008115804A1 WO 2008115804 A1 WO2008115804 A1 WO 2008115804A1 US 2008057032 W US2008057032 W US 2008057032W WO 2008115804 A1 WO2008115804 A1 WO 2008115804A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
pharmaceutical composition
ido
compound
virus
Prior art date
Application number
PCT/US2008/057032
Other languages
French (fr)
Inventor
George C. Prendergast
William P. Malachowski
Alexander J. Muller
Original Assignee
Lankenau Institute For Medical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lankenau Institute For Medical Research filed Critical Lankenau Institute For Medical Research
Priority to EP08732234.3A priority Critical patent/EP2137168B1/en
Priority to US12/528,466 priority patent/US8389568B2/en
Publication of WO2008115804A1 publication Critical patent/WO2008115804A1/en
Priority to US13/777,383 priority patent/US20130183388A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/92Naphthopyrans; Hydrogenated naphthopyrans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/381Heterocyclic compounds having sulfur as a ring hetero atom having five-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/555Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/565Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/664Amides of phosphorus acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/36Arsenic; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • This invention relates to the field of oncology. Specifically, the invention provides novel chemotherapeutic agents and methods of using such agents for the treatment of cancer.
  • Tumors characteristically express atypical, potentially immunoreactive antigens that are collectively referred to as tumor antigens. Accumulating evidence suggests that the failure of the immune system to mount an effective response against progressively growing tumors is not attributable to a lack of recognizable tumor antigens. Immunosuppression by tumors is poorly understood and mechanisms by which tumors may escape immune surveillance have been poorly explored. Recently, it has been shown that cytotoxic T cells become tolerized by a reduction in local concentrations of tryptophan that are elicited by indoleamine 2, 3-dioxygenase (IDO; EC 1.13.11.42) activity. Furthermore, IDO has been implicated in tumor immunosuppression (Muller et al.(2005) Nat.
  • IDO is an extrahepatic oxidoreductase that catalyzes the initial and rate-limiting step in the degradation of tryptophan along the kynurenine pathway that leads to the biosynthesis of nicotinamide adenine dinucleotide (NAD + ) (Sono et al . (1996) Chem. Rev., 96:2841-87; Botting et al . (1995) Chem. Soc. Rev., 24:401-12; Sono et al . (1980) Biochem. Rev., 50:173-81).
  • NAD + nicotinamide adenine dinucleotide
  • IDO is a monomeric 45 kDa heme- containing oxidase that is active with the heme iron in the ferrous (Fe +2 ) form.
  • the ferric (Fe +3 ) form of IDO is inactive and substrate inhibition is believed to result from tryptophan (Trp) binding to ferric IDO (Sono et al. (1980) J. Biol. Chem., 255:1339-45; Kobayashi et al . (1989) J. Biol. Chem., 264:15280-3).
  • the primary catalytic cycle of IDO does not involve redox changes, nevertheless IDO is prone to autooxidation and therefore a reductant is necessary to reactivate the enzyme.
  • IDO purportedly relies on a flavin or tetrahydrobiopterin co-factor.
  • methylene blue and ascorbic acid are believed to substitute for the natural flavin or tetrahydrobiopterin co-factor.
  • Inhibition of IDO has previously been targeted for other therapies, most notably neurological disorders (Botting et al. (1995) Chem. Soc. Rev., 24:401-12).
  • Several metabolites of the kynurenine pathway are neurotoxic or are implicated in neurodegeneration, e.g. quinolinic acid, and therefore attention has focused on IDO.
  • a recent review summarizes the range of compounds that have been tested as IDO inhibitors (Muller et al. (2005) Expert. Opin. Ther. Targets., 9:831-49).
  • novel inhibitors of indoleamine 2, 3-dioxygenase (IDO) activity are provided.
  • the novel IDO inhibitor has the formula:
  • X 9 and Xi 0 are H or OH and wherein Xi, X 2 , X3, Xo X5, X ⁇ , X 7 , and Xg are independently selected from the group consisting of halide, H, OH, R, OR, NHR, and SR, and wherein R is an optionally substituted; saturated or unsaturated; linear, branched or cyclic alkyl group or an optionally substituted aryl group.
  • substitution of the R group may refer to the presence of substituents selected from the group consisting of aryl, ether, amino, hydroxyl, ester, thioether, thiol, nitrile, nitro, amide, carbonyl, carboxyl, carboxylate, and halide groups.
  • R is an aryl group, or is substituted by an aryl group
  • the aryl group may be optionally substituted with ether, amino, hydroxyl, ester, thioether, amide, nitro, carbonyl, carboxyl, carboxylate and halide groups.
  • the novel IDO inhibitor has the formula: wherein Xi, X 2 , X3, X4, Xn, X12, Xi3? and X14 are independently selected from the group consisting of halide, H, OH, R, OR, NHR, and SR, and wherein R is an optionally substituted; saturated or unsaturated; linear, branched or cyclic alkyl group or an optionally substituted aryl group.
  • substitution of the R group may refer to the presence of substituents selected from the group consisting of aryl, ether, amino, hydroxyl, ester, thioether, thiol, nitrile, nitro, amide, carbonyl, carboxyl, carboxylate, and halide groups.
  • R is an aryl group, or is substituted by an aryl group
  • the aryl group may be optionally substituted with ether, amino, hydroxyl, ester, thioether, amide, nitro, carbonyl, carboxyl, carboxylate and halide groups.
  • novel IDO inhibitor has the formula:
  • X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , and X 7 are independently selected from the group consisting of halide, H, OH, R, OR, NHR, and SR, and wherein R is an optionally substituted; saturated or unsaturated; linear, branched or cyclic alkyl group or an optionally substituted aryl group.
  • R is an optionally substituted; saturated or unsaturated; linear, branched or cyclic alkyl group or an optionally substituted aryl group.
  • the substitution of the R group may refer to the presence of substituents selected from the group consisting of aryl, ether, amino, hydroxyl, ester, thioether, thiol, nitrile, nitro, amide, carbonyl, carboxyl, carboxylate, and halide groups.
  • R is an aryl group, or is substituted by an aryl group
  • the aryl group may be optionally substituted with ether, amino, hydroxyl, ester, thioether, amide, nitro, carbonyl, carboxyl, carboxylate and halide groups.
  • the novel IDO inhibitor is selected from the group consisting of compounds 8-22 and 26-29.
  • the novel IDO inhibitor is the hydroquinone form of the above IDO inhibitors, e.g., the compounds of formula (I), (II), and (III).
  • methods for treating cancer in a patient.
  • the methods comprise administering an effective amount of a pharmaceutical composition comprising at least one IDO inhibitor in a pharmaceutically acceptable carrier medium, wherein at least one of the IDO inhibitors is selected from the group consisting of compounds of formula (I), (II), and (III).
  • the method further comprises administering to the patient, concurrently or sequentially, an effective amount of at least one signal transduction inhibitor (STI) which may be administered in a pharmaceutically acceptable carrier.
  • STI signal transduction inhibitor
  • the method further comprises administering to the patient, concurrently or sequentially, an effective amount of at least one chemotherapeutic agent which may be in a pharmaceutically acceptable carrier.
  • methods for treating a chronic viral infection in a patient in need thereof by administering to the patient, concurrently or sequentially, an effective amount of at least one indoleamine 2,3- dioxygenase (IDO) inhibitor and at least one chemotherapeutic agent.
  • IDO indoleamine 2,3- dioxygenase
  • compositions comprising the above-described compounds are provided for administration in carrying out the above methods .
  • Figure 1 provides a scheme for the synthesis of 2- hydroxy-1, 4-napthoquinones .
  • Figure 2 provides a scheme for the synthesis of 1- tetralone derivatives.
  • Figure 3 provides a scheme for the synthesis of the pyran ring of naphtha [2, 3-b] pyranoquinones A.
  • Figure 4 provides a scheme for the further derivitziation of a pyran ring.
  • Figure 5 provides a scheme for the synthesis of naptho [2 , 3-c] pyranoquinones .
  • IDO inhibitors of the instant invention may have the formula:
  • X 9 and Xi 0 are H or OH and wherein Xi, X 2 , X3, X4, X5, Xe, X 7 , and X 8 are independently selected from the group consisting of halide, H, OH, R, OR, NHR, and SR, and wherein R is an alkyl group or aryl group.
  • the aryl group may be substituted.
  • the alkyl group may be 1) substituted, 2) saturated or unsaturated, and/or 3) linear, branched or cyclic.
  • substitution of the R group may refer to the presence of substituents selected from the group consisting of aryl, ether, amino, hydroxyl, ester, thioether, thiol, nitrile, nitro, amide, carbonyl, carboxyl, carboxylate, and halide groups.
  • R is an aryl group, or is substituted by an aryl group
  • the aryl group may be optionally substituted with ether, amino, hydroxyl, ester, thioether, amide, nitro, carbonyl, carboxyl, carboxylate and halide groups.
  • novel IDO inhibitors of the instant invention may also have the formula:
  • Xi, X 2 , X 3 , X4, Xn, Xi2, Xi3, and Xi 4 are independently selected from the group consisting of halide, H, OH, R, OR, NHR, and SR, and wherein R is an alkyl group or aryl group.
  • the aryl group may be substituted.
  • the alkyl group may be 1) substituted, 2) saturated or unsaturated, and/or 3) linear, branched or cyclic.
  • substitution of the R group may refer to the presence of substituents selected from the group consisting of aryl, ether, amino, hydroxyl, ester, thioether, thiol, nitrile, nitro, amide, carbonyl, carboxyl, carboxylate, and halide groups.
  • R is an aryl group, or is substituted by an aryl group
  • the aryl group may be optionally substituted with ether, amino, hydroxyl, ester, thioether, amide, nitro, carbonyl, carboxyl, carboxylate and halide groups.
  • the dashed line indicates that the bond is either a single or double bond.
  • the novel IDO inhibitors of the instant invention may also have the formula:
  • X 1 , X 2 , X 3 , X 4 , X 5 , Xe, and X 7 are independently selected from the group consisting of halide, H, OH, R, OR, NHR, and SR, and wherein R is an alkyl group or aryl group.
  • the aryl group may be substituted.
  • the alkyl group may be 1) substituted, 2) saturated or unsaturated, and/or 3) linear, branched or cyclic.
  • substitution of the R group may refer to the presence of substituents selected from the group consisting of aryl, ether, amino, hydroxyl, ester, thioether, thiol, nitrile, nitro, amide, carbonyl, carboxyl, carboxylate, and halide groups.
  • R is an aryl group, or is substituted by an aryl group
  • the aryl group may be optionally substituted with ether, amino, hydroxyl, ester, thioether, amide, nitro, carbonyl, carboxyl, carboxylate and halide groups.
  • novel IDO inhibitors of the instant invention may also be the hydroquinone form of the above IDO inhibitors.
  • IDO inhibitor refers to an agent capable of inhibiting the activity of indoleamine 2, 3-dioxygenase (IDO) and thereby reversing IDO-mediated immunosuppression.
  • the IDO inhibitor may inhibit IDOl and/or ID02 (INDOLl) .
  • An IDO inhibitor may be a reversible or irreversible IDO inhibitor.
  • a reversible IDO inhibitor is a compound that reversibly inhibits IDO enzyme activity either at the catalytic site or at a non- catalytic site and "an irreversible IDO inhibitor” is a compound that irreversibly destroys IDO enzyme activity by forming a covalent bond with the enzyme.
  • IDO inhibitors may include, without limitation, i) previously established (known) IDO inhibitors, including, but not limited to: 1-methyl-DL-tryptophan (IMT; Sigma- Aldrich; St. Louis, MO), ⁇ - (3-benzofuranyl) -DL-alanine (Sigma-Aldrich) , beta- (3-benzo (b) thienyl) -DL-alanine (Sigma-Aldrich) , 6-nitro-L-tryptophan (Sigma-Aldrich), indole 3-carbinol (LKT Laboratories; St.
  • IMT 1-methyl-DL-tryptophan
  • Sigma- Aldrich Sigma- Aldrich
  • St. Louis, MO ⁇ - (3-benzofuranyl) -DL-alanine
  • beta- (3-benzo (b) thienyl) -DL-alanine Sigma-Aldrich
  • 6-nitro-L-tryptophan Sigma-Aldrich
  • the IDO inhibitors include the novel IDO inhibitors of the present invention.
  • a “signal transduction inhibitor” is an agent that selectively inhibits one or more vital steps in signaling pathways, in the normal function of cancer cells, thereby leading to apoptosis .
  • Signal transduction inhibitors include, but are not limited to, (i) bcr/abl kinase inhibitors such as, for example, STI 571 (Gleevec) ; (ii) epidermal growth factor (EGF) receptor inhibitors such as, for example, kinase inhibitors (Iressa, SSI-774) and antibodies (Imclone: C225
  • her-2/neu receptor inhibitors such as, for example, HerceptinTM (trastuzumab) , and farnesyl transferase inhibitors (FTI) such as, for example, L-744,832 (Kohl et al . (1995), Nat Med. 1 (8) -.192-191) ;
  • FTI farnesyl transferase inhibitors
  • Akt family kinases
  • Akt pathway inhibitors of Akt pathway, such as, for example, rapamycin (see, for example, Sekulic et al . (2000) Cancer Res.
  • cell cycle kinase inhibitors such as, for example, flavopiridol and UCN-Ol (see, for example, Sausville (2003) Curr. Med. Chem. Anti-Cane Agents 3:47- 56) ; and (vi) phosphatidyl inositol kinase inhibitors such as, for example, LY294002 (see, for example, Vlahos et al. (1994) J. Biol. Chem. 269:5241-5248).
  • the STI is selected from the group consisting of STI 571, SSI-774, C225, ABX-EGF, trastuzumab, L-744,832, rapamycin, LY294002, flavopiridal, and UNC-01.
  • the STI is L-744,832.
  • chemotherapeutic agent refers generally to any compound that exhibits anticancer activity.
  • Chemotherapeutic agents include, but are not limited to: alkylating agents (e.g., nitrogen mustards such as chlorambucil, cyclophosphamide, isofamide, mechlorethamine, melphalan, and uracil mustard; aziridines such as thiotepa; methanesulphonate esters such as busulfan; nitroso ureas such as carmustine, lomustine, and streptozocin; platinum complexes such as cisplatin and carboplatin; bioreductive alkylators such as mitomycin, procarbazine, dacarbazine and altretamine) ; DNA strand-breakage agents (e.g., bleomycin); topoisomerase II inhibitors (e.g., amsacrine, dactinomycin, daunorubicin, idarubicin, mito
  • the chemotheraputic agent is selected from the group consisting of: paclitaxel (Taxol®) , cisplatin, docetaxol, carboplatin, vincristine, vinblastine, methotrexate, cyclophosphamide, CPT-Il, 5-fluorouracil (5-FU) , gemcitabine, estramustine, carmustine, adriamycin (doxorubicin) , etoposide, arsenic trioxide, irinotecan, and epothilone derivatives.
  • paclitaxel Tixol®
  • cisplatin docetaxol
  • carboplatin carboplatin
  • vincristine vinblastine
  • methotrexate methotrexate
  • cyclophosphamide CPT-Il
  • 5-fluorouracil (5-FU) 5-fluorouracil
  • gemcitabine gemcitabine
  • estramustine car
  • a “therapeutically effective amount” of a compound or a pharmaceutical composition refers to an amount effective to prevent, inhibit, or treat the symptoms of a particular disorder or disease.
  • “therapeutically effective amount” may refer to an amount sufficient to modulate tumor growth or metastasis in an animal, especially a human, including without limitation decreasing tumor growth or size or preventing formation of tumor growth in an animal lacking any tumor formation prior to administration, i.e., prophylactic administration .
  • “Pharmaceutically acceptable” indicates approval by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
  • a “carrier” refers to, for example, a diluent, adjuvant, excipient, auxilliary agent or vehicle with which an active agent of the present invention is administered.
  • Pharmaceutically acceptable carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water or aqueous saline solutions and aqueous dextrose and glycerol solutions are preferably employed as carriers, particularly for injectable solutions. Suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E. W. Martin.
  • alkyl refers to the administration of one component of the method followed by administration of the other component. After administration of one component, the next component can be administered substantially immediately after the first component, or the next component can be administered after an effective time period after the first component; the effective time period is the amount of time given for realization of maximum benefit from the administration of the first component .
  • alkyl as employed herein, includes both straight and branched chain hydrocarbons containing 1 to 10 carbons, preferably 1 to 8 carbons, more preferably 1 to 4 carbons, in the normal chain.
  • the hydrocarbon chain of the alkyl groups may be interrupted with oxygen, nitrogen, or sulfur.
  • alkyl groups examples include methyl, ethyl, propyl, isopropyl, butyl, t-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4, 4-dimethylpentyl, octyl, 2 , 2, 4-trimethylpentyl, nonyl, decyl, the various branched chain isomers thereof, and the like.
  • Each alkyl group may optionally be substituted with 1 to 4 substituents which include, for example, halo, -OH, and alkyl.
  • cyclic alkyl or "cycloalkyl,” as employed herein, includes cyclic hydrocarbon groups containing 1 to 3 rings which may be fused or unfused. Cycloalkyl groups may contain a total of 3 to 20 carbons forming the ring(s), preferably 6 to 10 carbons forming the ring(s). Optionally, one of the rings may be an aromatic ring as described below for aryl . Cycloalkyl groups may contain one or more double bonds. The cycloalkyl groups may also optionally contain substituted rings that includes at least one, and preferably from 1 to about 4 sulfur, oxygen, or nitrogen heteroatom ring members.
  • substituents such as
  • alkenyl refers to an unsubstituted or substituted hydrocarbon moiety comprising one or more carbon to carbon double bonds (i.e., the alkenyl group is unsaturated) and containing from 1 to about 12 carbon atoms or from 1 to about 5 carbon atoms, which may be a straight, branched, or cyclic hydrocarbon group. When substituted, alkenyl groups may be substituted at any available point of attachment.
  • substituents may include, but are not limited to, alkyl, halo, haloalkyl, alkoxyl, alkylthio, hydroxyl, methoxy, carboxyl, oxo, epoxy, alkyloxycarbonyl, alkylcarbonyloxy, amino, carbamoyl, urea, alkylurea, and thiol.
  • the alkenyl group comprises alternating double and single bonds such that bonds are conjugated.
  • exemplary alkenyl groups include, without limitation, allyl and 1, 3-butadienyl .
  • aryl refers to monocyclic and bicyclic aromatic groups containing 6 to 10 carbons in the ring portion. Examples of aryl groups include, without limitation, phenyl, naphthyl, such as 1- naphthyl and 2-naphthyl, indolyl, and pyridyl, such as 3- pyridyl and 4-pyridyl.
  • Aryl groups may be optionally substituted through available carbon atoms with 1 to about 4 groups.
  • substituents may include, but are not limited to, alkyl, halo, haloalkyl, alkoxyl, alkylthio, hydroxyl, methoxy, carboxyl, carboxylate, oxo, ether, ester, epoxy, alkyloxycarbonyl, alkylcarbonyloxy, amino, carbamoyl, urea, alkylurea, thioester, amide, nitro, carbonyl, and thiol.
  • the aromatic groups may be heteroaryl .
  • Heteroaryl refers to an optionally substituted aromatic ring system that includes at least one, and preferably from 1 to about 4 sulfur, oxygen, or nitrogen heteroatom ring members.
  • novel compounds are provided which are capable of inhibiting IDO activity.
  • the novel IDO inhibitor has the formula :
  • X 9 and Xi 0 are H or OH and wherein Xi, X 2 , X 3 , X4, X 5 , X 6 , X 7 , and X 8 are independently selected from the group consisting of halide, H, OH, R, OR, NHR, and SR, and wherein R is an optionally substituted; saturated or unsaturated; linear, branched or cyclic alkyl group or an optionally substituted aryl group.
  • substitution of the R group may refer to the presence of substituents selected from the group consisting of aryl, ether, amino, hydroxyl, ester, thioether, thiol, nitrile, nitro, amide, carbonyl, carboxyl, carboxylate, and halide groups.
  • R is an aryl group, or is substituted by an aryl group
  • the aryl group may be optionally substituted with ether, amino, hydroxyl, ester, thioether, amide, nitro, carbonyl, carboxyl, carboxylate and halide groups.
  • the novel IDO inhibitor has the formula: wherein X 1 , X 2 , X 3 , X4, Xn, Xi 2 , X13, and Xi 4 are independently selected from the group consisting of halide, H, OH, R, OR, NHR, and SR, and wherein R is an optionally substituted; saturated or unsaturated; linear, branched or cyclic alkyl group or an optionally substituted aryl group.
  • substitution of the R group may refer to the presence of substituents selected from the group consisting of aryl, ether, amino, hydroxyl, ester, thioether, thiol, nitrile, nitro, amide, carbonyl, carboxyl, carboxylate, and halide groups.
  • R is an aryl group, or is substituted by an aryl group
  • the aryl group may be optionally substituted with ether, amino, hydroxyl, ester, thioether, amide, nitro, carbonyl, carboxyl, carboxylate and halide groups.
  • novel IDO inhibitor has the formula:
  • X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , and X 7 are independently selected from the group consisting of halide, H, OH, R, OR, NHR, and SR, and wherein R is an optionally substituted; saturated or unsaturated; linear, branched or cyclic alkyl group or an optionally substituted aryl group.
  • R is an optionally substituted; saturated or unsaturated; linear, branched or cyclic alkyl group or an optionally substituted aryl group.
  • the substitution of the R group may refer to the presence of substituents selected from the group consisting of aryl, ether, amino, hydroxyl, ester, thioether, thiol, nitrile, nitro, amide, carbonyl, carboxyl, carboxylate, and halide groups.
  • R is an aryl group, or is substituted by an aryl group
  • the aryl group may be optionally substituted with ether, amino, hydroxyl, ester, thioether, amide, nitro, carbonyl, carboxyl, carboxylate and halide groups.
  • the novel IDO inhibitor is selected from the group consisting of compounds 8-22 and 26-29.
  • the IDO inhibitor is the hydroquinone form of the above novel IDO inhibitors.
  • the present invention provides pharmaceutical compositions comprising at least one of the IDO inhibitors of the instant invention in a pharmaceutically acceptable carrier. Such a pharmaceutical composition may be administered, in a therapeutically effective amount, to a patient in need thereof for the treatment of cancer.
  • the pharmaceutical compositions may comprise at least one IDO inhibitor of the instant invention in addition to at least one established (known) IDO inhibitor.
  • at least one of the IDO inhibitors of the pharmaceutical composition is selected from the group consisting of compounds of formulas (I), (II), and (III).
  • the present invention provides a method for the treatment of cancer by administering to a patient, in need thereof, a therapeutically effective amount of the compounds of the instant invention, preferably in the form of a pharmaceutical composition.
  • a therapeutically effective amount of the compounds of the instant invention preferably in the form of a pharmaceutical composition.
  • at least one the IDO inhibitors administered in the method of treating cancer is selected from the group consisting of compounds of formulas (I), (II), and (III).
  • the pharmaceutical composition may further comprise at least one signal transduction inhibitor (STI) (see, e.g., PCT/US04/05155 and PCT/US04/05154 ) .
  • STI signal transduction inhibitor
  • Suitable STIs include, but are not limited to: (i) bcr/abl kinase inhibitors such as, for example, STI 571 (Gleevec) ; (ii) epidermal growth factor (EGF) receptor inhibitors such as, for example, kinase inhibitors (Iressa, SSI-774) and antibodies (Imclone:
  • her-2/neu receptor inhibitors such as, for example, HerceptinTM (trastuzumab) and farnesyl transferase inhibitors (FTI) such as, for example, L-744,832 (Kohl et al . (1995), Nat Med.
  • Akt family kinases or the Akt pathway such as, for example, rapamycin (see, for example, Sekulic et al. (2000) Cancer Res. 60:3504- 3513)
  • cell cycle kinase inhibitors such as, for example, flavopiridol and UCN-01 (see, for example,
  • At least one STI and at least one IDO inhibitor may be in separate pharmaceutical compositions.
  • at least one IDO inhibitor and at least one STI may be administered to the patient concurrently or sequentially.
  • At least one IDO inhibitor may be administered first, at least one STI may be administered first, or at least one IDO inhibitor and at least one STI may be administered at the same time. Additionally, when more than one IDO inhibitor and/or STI is used, the compounds may be administered in any order.
  • compositions of the invention may further comprise at least one chemotherapeutic agent.
  • chemotherapeutic agents are described hereinabove.
  • Preferred chemotherapeutic agents include, but are not limited to: paclitaxel (Taxol®) , cisplatin, docetaxol, carboplatin, vincristine, vinblastine, methotrexate, cyclophosphamide, CPT-Il, 5-fluorouracil (5-FU) , gemcitabine, estramustine, carmustine, adriamycin (doxorubicin) , etoposide, arsenic trioxide, irinotecan, and epothilone derivatives.
  • the chemotherapeutic agent is paclitaxel.
  • the at least one chemotherapeutic agent and the at least on IDO inhibitor may be in separate pharmaceutical compositions.
  • at least one IDO inhibitor and at least one chemotherapeutic agent may be administered to the patient concurrently or sequentially.
  • at least one IDO inhibitor may be administered first, at least one chemotherapeutic agent may be administered first, or at least one IDO inhibitor and at least one chemotherapeutic agent may be administered at the same time.
  • the compounds may be administered in any order.
  • Cancers that may be treated using the present protocol include, but are not limited to: cancers of the prostate, colorectum, pancreas, cervix, stomach, endometrium, brain, liver, bladder, ovary, testis, head, neck, skin (including melanoma and basal carcinoma) , mesothelial lining, white blood cell (including lymphoma and leukemia) esophagus, breast, muscle, connective tissue, lung (including small-cell lung carcinoma and non-small-cell carcinoma) , adrenal gland, thyroid, kidney, or bone; glioblastoma, mesothelioma, renal cell carcinoma, gastric carcinoma, sarcoma, choriocarcinoma, cutaneous basocellular carcinoma, and testicular seminoma.
  • the present invention further provides a pharmaceutical composition for the treatment of a chronic viral infection in a patient comprising at least one IDO inhibitor, optionally, at least one chemotherapeutic drug, and, optionally, at least one antiviral agent, in a pharmaceutically acceptable carrier.
  • the pharmaceutical compositions may comprise at least one IDO inhibitor of the instant invention in addition to at least one established (known) IDO inhibitor.
  • at least one of the IDO inhibitors of the pharmaceutical composition is selected from the group consisting of compounds of formulas (I), (II), and (III).
  • a method for treating a chronic viral infection in a patient by administering an effective amount of the above pharmaceutical composition.
  • at least one of the IDO inhibitors administered in the method of treating a viral infection is selected from the group consisting of compounds of formulas (I), (II), and (III).
  • Suitable antiviral agents include, without limitation: acyclovir; gangcyclovir; foscarnet; ribavirin; and antiretrovirals such as f for example, nucleoside analogue reverse transcriptase inhibitors (e.g., azidothymidine (AZT), ddl, ddC, 3TC, d4T) , non- nucleoside reverse transcriptase inhibitors (e.g., efavirenz, nevirapine) , nucleotide analogue reverse transcriptase inhibitors, and protease inhibitors.
  • nucleoside analogue reverse transcriptase inhibitors e.g., azidothymidine (AZT), ddl, ddC, 3TC, d4T
  • non- nucleoside reverse transcriptase inhibitors e.g., efavirenz, nevirapine
  • nucleotide analogue reverse transcriptase inhibitors
  • At least one IDO inhibitor and at least one chemotherapeutic agent may be administered to the patient concurrently or sequentially.
  • at least one IDO inhibitor may be administered first, at least one chemotherapeutic agent may be administered first, or at least one IDO inhibitor and the at least one STI may be administered at the same time.
  • the compounds may be administered in any order.
  • any antiviral agent or STI may also be administered at any point in comparison to the administration of an IDO inhibitor.
  • the compounds of this combination treatment may also be administered for localized infections.
  • at least one IDO inhibitor, optionally, at least one chemotherapeutic agent, and, optionally, at least one antiviral agent may be administered to treat skin infections such as shingles and warts .
  • the compounds may be administered in any pharmaceutically acceptable topical carrier including, without limitation: gels, creams, lotions, ointments, powders, aerosols and other conventional forms for applying medication to the skin.
  • Chronic viral infections that may be treated using the present combinatorial treatment include, but are not limited to, diseases caused by: hepatitis C virus (HCV), human papilloma virus (HPV) , cytomegalovirus (CMV) , herpes simplex virus (HSV) , Epstein-Barr virus (EBV) , varicella zoster virus, coxsackie virus, human immunodeficiency virus (HIV) .
  • HCV hepatitis C virus
  • HPV human papilloma virus
  • CMV cytomegalovirus
  • HSV herpes simplex virus
  • EBV Epstein-Barr virus
  • varicella zoster virus varicella zoster virus
  • coxsackie virus human immunodeficiency virus
  • HCV hepatitis C virus
  • HCV hepatitis C virus
  • HPV human papilloma virus
  • CMV cytomegalovirus
  • HSV herpes simple
  • the pharmaceutical compositions comprising at least one IDO inhibitor of the instant invention may be administered to a patient to prevent arterial restenosis, such as after balloon endoscopy or stent placement.
  • the pharmaceutical composition further comprises at least one taxane (e.g., paclitaxel (Taxol); see e.g., Scheller et al. (2004) Circulation, 110:810- 814) .
  • compositions of the present invention can be administered by any suitable route, for example, by injection, by oral, pulmonary, nasal or other modes of administration.
  • pharmaceutical compositions of the present invention comprise, among other things, pharmaceutically acceptable diluents, preservatives, solubilizers, emulsifiers, adjuvants and/or carriers .
  • compositions can include diluents of various buffer content (e.g., Tris-HCl, acetate, phosphate) , pH and ionic strength; and additives such as detergents and solubilizing agents (e.g., Tween 80, Polysorbate 80), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite) , preservatives (e.g., Thimersol, benzyl alcohol) and bulking substances (e.g., lactose, mannitol).
  • the compositions can be incorporated into particulate preparations of polymeric compounds such as polylactic acid, polyglycolic acid, etc., or into liposomes.
  • compositions may influence the physical state, stability, rate of in vivo release, and rate of in vivo clearance of components of a pharmaceutical composition of the present invention. See, e.g., Remington's Pharmaceutical Sciences, 18th Ed. (1990, Mack Publishing Co., Easton, PA 18042) pages 1435-1712 which are herein incorporated by reference.
  • the pharmaceutical composition of the present invention can be prepared, for example, in liquid form, or can be in dried powder form (e.g., lyophilized) .
  • the pharmaceutical compositions of the present invention can be delivered in a controlled release system, such as using an intravenous infusion, an implantable osmotic pump, a transdermal patch, liposomes, or other modes of administration.
  • a pump may be used (see Langer, supra; Sefton, CRC Crit. Ref. Biomed. Eng . (1987) 14:201; Buchwald et al . , Surgery (1980) 88:507; Saudek et al . , N. Engl. J. Med. (1989) 321:574).
  • polymeric materials may be employed (see Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Press: Boca Raton, Florida (1974);
  • a controlled release system can be placed in proximity of the target tissues of the animal, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical
  • a controlled release device can be introduced into an animal in proximity to the site of inappropriate immune activation or a tumor.
  • Other controlled release systems are discussed in the review by Langer (Science (1990) 249:1527-1533).
  • Compounds of formula I may by synthesized by the following three stages: 1) synthesizing substituted 2- hydroxy-1, 4-naphthoquinones 1 (Figure 1); 2) generating a pyran ring ( Figure 3) ; and 3) derivatizing the pyran ring ( Figure 4) .
  • Substituted 2-hydroxy-l, 4-naphthoquinones 1 may be synthesized from 1-tetralone derivatives 2 via the oxidation protocol described by Coombe, R. G. (Aust. J. Chem. (1974) 27:1327-30; Figure 1).
  • the 1-tetralone derivatives 2 may be synthesized as shown in Figure 2 using procedures described in Coombe, R. G. (Aust. J. Chem. (1974) 27:1327-30; El-Ferlay et al . (Can. J. Chem. (1985) 63:2232-2236; Andrew et al . (Tetrahedron (1985) 41:2933-2938; Srinivas et al . (Organ. Proc. Res. Dev. (2004) 8:291-292; and Ferraz et al. (Tetrahedron (2003) 59:5817-5821.
  • the pyran ring of the compounds of formula I may be synthesized as depicted in Figure 3, which shows the generation of formula III.
  • Figure 3 shows the generation of formula III.
  • a solution of 2- hydroxy-1, 4-naphthoquinone, 3-methyl-2-butenal (or related ⁇ , ⁇ -unsaturated aldehyde, 1.25 equiv.), ⁇ -alanine (0.15 equiv.), and acetic acid (0.375 mL/1 mmol napthoquinone) in benzene (15 mL/mmol naphthoquinone) is heated to reflux for 18 hours.
  • the reaction mixture is then concentrated in vacuo. Flash chromatography (5%
  • Derivatization i.e., adding substituents
  • derivatization techniques described in the literature. For example, compounds 11- 14 were synthesized following the procedure described by Lee et al. (Synthesis (2005) 18:3026-3034).
  • the enzyme assay monitored for formation of N-formylkynurenine by hydrolyzing the formyl group and spectrophotometrically analyzing for the conjugated imine generated from kynurenine and 4- (dimethylamino) benzaldehyde .
  • the inhibition assays were performed in a 96-well microtiter plate as previously described with a small modification (Littlejohn et al . (2000) Prot . Expr. Purif., 19:22-29).
  • the reaction mixture contained 50 mM potassium phosphate buffer (pH 6.5), 40 mM ascorbic acid, 400 ⁇ g/ml catalase, 20 ⁇ M methylene blue and purified recombinant IDO(I) optimized based on its activity.
  • the reaction mixture was added to the substrate, L-tryptophan (L-Trp) , and the inhibitor.
  • L-Trp was serially diluted from 200 to 25 ⁇ M and the inhibitors were tested at two concentrations, 200 and 400 ⁇ M.
  • the reaction was carried out at 37 "C for 60 minutes and stopped by adding 30% (w/v) trichloroacetic acid.
  • the plate was heated at 65 "C for 15 minutes to convert formylkynurenine to kynurenine and then was spun at 6000 g for 5 minutes. Finally 100 ⁇ l supernatant from each well was transferred to a new 96 well plate and mixed with 2% (w/v) p-dimethylamino-benzaldehyde in acetic acid. The yellow color generated from the reaction with kynurenine was measured at 490 nm using a Synergy HT microtiter plate reader (Bio-Tek, Winooski, VT) . The data was analyzed using Graph Pad Prism 4 software (Graph Pad Software Inc., San Diego, CA). The results of the IDO inhibition assay are presented in Table 1.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Novel indolearaine 2, 3-dioxygenase (IDO) inhibitors, compositions comprising the same, and methods of use thereof are disclosed.

Description

NOVEL IDO INHIBITORS AND METHODS OF USE THEREOF
By George C. Prendergast William P. Malachowski
Alexander J. Muller
This application claims priority under 35 U. S. C. §119 (e) to U.S. Provisional Patent Application No. 60/918,516, filed on March 16, 2007. The foregoing application is incorporated by reference herein. Pursuant to 35 U. S. C. Section 202 (c) , it is acknowledged that the United States Government has certain rights in the invention described herein, which was made in part with funds from the National Institutes of Health Grant No. R01-CA109542.
FIELD OF THE INVENTION
This invention relates to the field of oncology. Specifically, the invention provides novel chemotherapeutic agents and methods of using such agents for the treatment of cancer.
BACKGROUND OF THE INVENTION
Tumors characteristically express atypical, potentially immunoreactive antigens that are collectively referred to as tumor antigens. Accumulating evidence suggests that the failure of the immune system to mount an effective response against progressively growing tumors is not attributable to a lack of recognizable tumor antigens. Immunosuppression by tumors is poorly understood and mechanisms by which tumors may escape immune surveillance have been poorly explored. Recently, it has been shown that cytotoxic T cells become tolerized by a reduction in local concentrations of tryptophan that are elicited by indoleamine 2, 3-dioxygenase (IDO; EC 1.13.11.42) activity. Furthermore, IDO has been implicated in tumor immunosuppression (Muller et al.(2005) Nat. Med., 11:312-9; Munn et al. (2004) Trends MoI. Med., 10:15-18; Uyttenhove et al . (2003) Nat. Med., 9:1269-74; Friberg et al . (2002) Intl. J. Cancer, 101:151-155) .
Dietary catabolism of tryptophan is mediated by the structurally unrelated liver enzyme tryptophan dioxygenase (TDO2; 1.13.11.11). IDO is an extrahepatic oxidoreductase that catalyzes the initial and rate-limiting step in the degradation of tryptophan along the kynurenine pathway that leads to the biosynthesis of nicotinamide adenine dinucleotide (NAD+) (Sono et al . (1996) Chem. Rev., 96:2841-87; Botting et al . (1995) Chem. Soc. Rev., 24:401-12; Sono et al . (1980) Biochem. Rev., 50:173-81). IDO is a monomeric 45 kDa heme- containing oxidase that is active with the heme iron in the ferrous (Fe+2) form. The ferric (Fe+3) form of IDO is inactive and substrate inhibition is believed to result from tryptophan (Trp) binding to ferric IDO (Sono et al. (1980) J. Biol. Chem., 255:1339-45; Kobayashi et al . (1989) J. Biol. Chem., 264:15280-3). The primary catalytic cycle of IDO does not involve redox changes, nevertheless IDO is prone to autooxidation and therefore a reductant is necessary to reactivate the enzyme. In vivo, IDO purportedly relies on a flavin or tetrahydrobiopterin co-factor. In vitro, methylene blue and ascorbic acid are believed to substitute for the natural flavin or tetrahydrobiopterin co-factor. Inhibition of IDO has previously been targeted for other therapies, most notably neurological disorders (Botting et al. (1995) Chem. Soc. Rev., 24:401-12). Several metabolites of the kynurenine pathway are neurotoxic or are implicated in neurodegeneration, e.g. quinolinic acid, and therefore attention has focused on IDO. A recent review summarizes the range of compounds that have been tested as IDO inhibitors (Muller et al. (2005) Expert. Opin. Ther. Targets., 9:831-49). SUMMARY OF THE INVENTION
In accordance with one aspect of the invention, novel inhibitors of indoleamine 2, 3-dioxygenase (IDO) activity are provided.
In one embodiment, the novel IDO inhibitor has the formula:
Figure imgf000004_0001
wherein X9 and Xi0 are H or OH and wherein Xi, X2, X3, Xo X5, Xβ, X7, and Xg are independently selected from the group consisting of halide, H, OH, R, OR, NHR, and SR, and wherein R is an optionally substituted; saturated or unsaturated; linear, branched or cyclic alkyl group or an optionally substituted aryl group. The substitution of the R group may refer to the presence of substituents selected from the group consisting of aryl, ether, amino, hydroxyl, ester, thioether, thiol, nitrile, nitro, amide, carbonyl, carboxyl, carboxylate, and halide groups. Where R is an aryl group, or is substituted by an aryl group, the aryl group may be optionally substituted with ether, amino, hydroxyl, ester, thioether, amide, nitro, carbonyl, carboxyl, carboxylate and halide groups.
In another embodiment, the novel IDO inhibitor has the formula:
Figure imgf000005_0001
wherein Xi, X2, X3, X4, Xn, X12, Xi3? and X14 are independently selected from the group consisting of halide, H, OH, R, OR, NHR, and SR, and wherein R is an optionally substituted; saturated or unsaturated; linear, branched or cyclic alkyl group or an optionally substituted aryl group. The substitution of the R group may refer to the presence of substituents selected from the group consisting of aryl, ether, amino, hydroxyl, ester, thioether, thiol, nitrile, nitro, amide, carbonyl, carboxyl, carboxylate, and halide groups. Where R is an aryl group, or is substituted by an aryl group, the aryl group may be optionally substituted with ether, amino, hydroxyl, ester, thioether, amide, nitro, carbonyl, carboxyl, carboxylate and halide groups.
In still another embodiment, the novel IDO inhibitor has the formula:
Figure imgf000005_0002
wherein X1, X2, X3, X4, X5, X6, and X7, are independently selected from the group consisting of halide, H, OH, R, OR, NHR, and SR, and wherein R is an optionally substituted; saturated or unsaturated; linear, branched or cyclic alkyl group or an optionally substituted aryl group. The substitution of the R group may refer to the presence of substituents selected from the group consisting of aryl, ether, amino, hydroxyl, ester, thioether, thiol, nitrile, nitro, amide, carbonyl, carboxyl, carboxylate, and halide groups. Where R is an aryl group, or is substituted by an aryl group, the aryl group may be optionally substituted with ether, amino, hydroxyl, ester, thioether, amide, nitro, carbonyl, carboxyl, carboxylate and halide groups.
In yet another embodiment of the invention, the novel IDO inhibitor is selected from the group consisting of compounds 8-22 and 26-29. In still another embodiment, the novel IDO inhibitor is the hydroquinone form of the above IDO inhibitors, e.g., the compounds of formula (I), (II), and (III).
According to another aspect of the present invention, methods are provided for treating cancer in a patient. The methods comprise administering an effective amount of a pharmaceutical composition comprising at least one IDO inhibitor in a pharmaceutically acceptable carrier medium, wherein at least one of the IDO inhibitors is selected from the group consisting of compounds of formula (I), (II), and (III). In another embodiment, the method further comprises administering to the patient, concurrently or sequentially, an effective amount of at least one signal transduction inhibitor (STI) which may be administered in a pharmaceutically acceptable carrier. In still another embodiment of the invention, the method further comprises administering to the patient, concurrently or sequentially, an effective amount of at least one chemotherapeutic agent which may be in a pharmaceutically acceptable carrier. In yet another embodiment of the present invention, methods are provided for treating a chronic viral infection in a patient in need thereof by administering to the patient, concurrently or sequentially, an effective amount of at least one indoleamine 2,3- dioxygenase (IDO) inhibitor and at least one chemotherapeutic agent.
In accordance with another aspect of the instant invention, pharmaceutical compositions comprising the above-described compounds are provided for administration in carrying out the above methods .
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 provides a scheme for the synthesis of 2- hydroxy-1, 4-napthoquinones .
Figure 2 provides a scheme for the synthesis of 1- tetralone derivatives.
Figure 3 provides a scheme for the synthesis of the pyran ring of naphtha [2, 3-b] pyranoquinones A. Figure 4 provides a scheme for the further derivitziation of a pyran ring.
Figure 5 provides a scheme for the synthesis of naptho [2 , 3-c] pyranoquinones .
DETAILED DESCRIPTION OF THE INVENTION
In accordance with the instant invention, a series of napthoquinone derivatives were screened to determine their ability to inhibit IDO. IDO inhibitors of the instant invention may have the formula:
Figure imgf000007_0001
wherein X9 and Xi0 are H or OH and wherein Xi, X2, X3, X4, X5, Xe, X7, and X8 are independently selected from the group consisting of halide, H, OH, R, OR, NHR, and SR, and wherein R is an alkyl group or aryl group. The aryl group may be substituted. The alkyl group may be 1) substituted, 2) saturated or unsaturated, and/or 3) linear, branched or cyclic. The substitution of the R group may refer to the presence of substituents selected from the group consisting of aryl, ether, amino, hydroxyl, ester, thioether, thiol, nitrile, nitro, amide, carbonyl, carboxyl, carboxylate, and halide groups. Where R is an aryl group, or is substituted by an aryl group, the aryl group may be optionally substituted with ether, amino, hydroxyl, ester, thioether, amide, nitro, carbonyl, carboxyl, carboxylate and halide groups.
The novel IDO inhibitors of the instant invention may also have the formula:
Figure imgf000008_0001
wherein Xi, X2, X3, X4, Xn, Xi2, Xi3, and Xi4 are independently selected from the group consisting of halide, H, OH, R, OR, NHR, and SR, and wherein R is an alkyl group or aryl group. The aryl group may be substituted. The alkyl group may be 1) substituted, 2) saturated or unsaturated, and/or 3) linear, branched or cyclic. The substitution of the R group may refer to the presence of substituents selected from the group consisting of aryl, ether, amino, hydroxyl, ester, thioether, thiol, nitrile, nitro, amide, carbonyl, carboxyl, carboxylate, and halide groups. Where R is an aryl group, or is substituted by an aryl group, the aryl group may be optionally substituted with ether, amino, hydroxyl, ester, thioether, amide, nitro, carbonyl, carboxyl, carboxylate and halide groups. The dashed line indicates that the bond is either a single or double bond. The novel IDO inhibitors of the instant invention may also have the formula:
Figure imgf000009_0001
wherein X1, X2, X3, X4, X5, Xe, and X7 are independently selected from the group consisting of halide, H, OH, R, OR, NHR, and SR, and wherein R is an alkyl group or aryl group. The aryl group may be substituted. The alkyl group may be 1) substituted, 2) saturated or unsaturated, and/or 3) linear, branched or cyclic. The substitution of the R group may refer to the presence of substituents selected from the group consisting of aryl, ether, amino, hydroxyl, ester, thioether, thiol, nitrile, nitro, amide, carbonyl, carboxyl, carboxylate, and halide groups. Where R is an aryl group, or is substituted by an aryl group, the aryl group may be optionally substituted with ether, amino, hydroxyl, ester, thioether, amide, nitro, carbonyl, carboxyl, carboxylate and halide groups.
The novel IDO inhibitors of the instant invention may also be the hydroquinone form of the above IDO inhibitors.
I . Definitions
The term "IDO inhibitor" refers to an agent capable of inhibiting the activity of indoleamine 2, 3-dioxygenase (IDO) and thereby reversing IDO-mediated immunosuppression. The IDO inhibitor may inhibit IDOl and/or ID02 (INDOLl) . An IDO inhibitor may be a reversible or irreversible IDO inhibitor. "A reversible IDO inhibitor" is a compound that reversibly inhibits IDO enzyme activity either at the catalytic site or at a non- catalytic site and "an irreversible IDO inhibitor" is a compound that irreversibly destroys IDO enzyme activity by forming a covalent bond with the enzyme.
IDO inhibitors may include, without limitation, i) previously established (known) IDO inhibitors, including, but not limited to: 1-methyl-DL-tryptophan (IMT; Sigma- Aldrich; St. Louis, MO), β- (3-benzofuranyl) -DL-alanine (Sigma-Aldrich) , beta- (3-benzo (b) thienyl) -DL-alanine (Sigma-Aldrich) , 6-nitro-L-tryptophan (Sigma-Aldrich), indole 3-carbinol (LKT Laboratories; St. Paul, MN), 3,3'- diindolylmethane (LKT Laboratories), epigallocatechin gallate (LKT Laboratories), 5-Br-4-Cl-indoxyl 1,3- diacetate (Sigma-Aldrich) , 9-vinylcarbazole (Sigma- Aldrich) , acemetacin (Sigma-Aldrich) , 5-bromo-DL- tryptophan (Sigma-Aldrich), 5-bromoindoxyl diacetate (Sigma-Aldrich), and the IDO inhibitors provided in PCT/US04/05155, PCT/US04/05154 , PCT/US06/42137 , and U.S. Patent Application 11/589,024; and ii) the novel IDO inhibitors of the instant invention. In a preferred embodiment of the invention, the IDO inhibitors include the novel IDO inhibitors of the present invention.
A "signal transduction inhibitor" is an agent that selectively inhibits one or more vital steps in signaling pathways, in the normal function of cancer cells, thereby leading to apoptosis . Signal transduction inhibitors (STIs) include, but are not limited to, (i) bcr/abl kinase inhibitors such as, for example, STI 571 (Gleevec) ; (ii) epidermal growth factor (EGF) receptor inhibitors such as, for example, kinase inhibitors (Iressa, SSI-774) and antibodies (Imclone: C225
[Goldstein et al. (1995), Clin Cancer Res. 1:1311-1318], and Abgenix: ABX-EGF); (iii) her-2/neu receptor inhibitors such as, for example, Herceptin™ (trastuzumab) , and farnesyl transferase inhibitors (FTI) such as, for example, L-744,832 (Kohl et al . (1995), Nat Med. 1 (8) -.192-191) ; (iv) inhibitors of Akt family kinases or the Akt pathway, such as, for example, rapamycin (see, for example, Sekulic et al . (2000) Cancer Res. 60:3504- 3513); (v) cell cycle kinase inhibitors such as, for example, flavopiridol and UCN-Ol (see, for example, Sausville (2003) Curr. Med. Chem. Anti-Cane Agents 3:47- 56) ; and (vi) phosphatidyl inositol kinase inhibitors such as, for example, LY294002 (see, for example, Vlahos et al. (1994) J. Biol. Chem. 269:5241-5248). In a particular embodiment, the STI is selected from the group consisting of STI 571, SSI-774, C225, ABX-EGF, trastuzumab, L-744,832, rapamycin, LY294002, flavopiridal, and UNC-01. In yet another embodiment, the STI is L-744,832.
The term "chemotherapeutic agent" refers generally to any compound that exhibits anticancer activity. Chemotherapeutic agents include, but are not limited to: alkylating agents (e.g., nitrogen mustards such as chlorambucil, cyclophosphamide, isofamide, mechlorethamine, melphalan, and uracil mustard; aziridines such as thiotepa; methanesulphonate esters such as busulfan; nitroso ureas such as carmustine, lomustine, and streptozocin; platinum complexes such as cisplatin and carboplatin; bioreductive alkylators such as mitomycin, procarbazine, dacarbazine and altretamine) ; DNA strand-breakage agents (e.g., bleomycin); topoisomerase II inhibitors (e.g., amsacrine, dactinomycin, daunorubicin, idarubicin, mitoxantrone, doxorubicin, etoposide, and teniposide) ; DNA minor groove binding agents (e.g., plicamydin) ; antimetabolites (e.g., folate antagonists such as methotrexate and trimetrexate; pyrimidine antagonists such as fluorouracil, fluorodeoxyuridine, CB3717, azacitidine, cytarabine, and floxuridine; purine antagonists such as mercaptopurine, 6-thioguanine, fludarabine, pentostatin; asparginase; and ribonucleotide reductase inhibitors such as hydroxyurea) ; tubulin interactive agents (e.g., vincristine, vinblastine, and paclitaxel (Taxol) ) ; hormonal agents (e.g., estrogens; conjugated estrogens; ethinyl estradiol; diethylstilbesterol; chlortrianisen; idenestrol; progestins such as hydroxyprogesterone caproate, medroxyprogesterone, and megestrol; and androgens such as testosterone, testosterone propionate, fluoxymesterone, and methyltestosterone) ; adrenal corticosteroids (e.g., prednisone, dexamethasone, methylprednisolone, and prednisolone) ; leutinizing hormone releasing agents or gonadotropin-releasing hormone antagonists (e.g., leuprolide acetate and goserelin acetate); and antihormonal antigens (e.g., tamoxifen, antiandrogen agents such as flutamide; and antiadrenal agents such as mitotane and aminoglutethimide) . Preferably, the chemotheraputic agent is selected from the group consisting of: paclitaxel (Taxol®) , cisplatin, docetaxol, carboplatin, vincristine, vinblastine, methotrexate, cyclophosphamide, CPT-Il, 5-fluorouracil (5-FU) , gemcitabine, estramustine, carmustine, adriamycin (doxorubicin) , etoposide, arsenic trioxide, irinotecan, and epothilone derivatives.
A "therapeutically effective amount" of a compound or a pharmaceutical composition refers to an amount effective to prevent, inhibit, or treat the symptoms of a particular disorder or disease. For example, "therapeutically effective amount" may refer to an amount sufficient to modulate tumor growth or metastasis in an animal, especially a human, including without limitation decreasing tumor growth or size or preventing formation of tumor growth in an animal lacking any tumor formation prior to administration, i.e., prophylactic administration .
"Pharmaceutically acceptable" indicates approval by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
A "carrier" refers to, for example, a diluent, adjuvant, excipient, auxilliary agent or vehicle with which an active agent of the present invention is administered. Pharmaceutically acceptable carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water or aqueous saline solutions and aqueous dextrose and glycerol solutions are preferably employed as carriers, particularly for injectable solutions. Suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E. W. Martin.
"Concurrently" means (1) simultaneously in time, or (2) at different times during the course of a common treatment schedule.
"Sequentially" refers to the administration of one component of the method followed by administration of the other component. After administration of one component, the next component can be administered substantially immediately after the first component, or the next component can be administered after an effective time period after the first component; the effective time period is the amount of time given for realization of maximum benefit from the administration of the first component . The term "alkyl," as employed herein, includes both straight and branched chain hydrocarbons containing 1 to 10 carbons, preferably 1 to 8 carbons, more preferably 1 to 4 carbons, in the normal chain. The hydrocarbon chain of the alkyl groups may be interrupted with oxygen, nitrogen, or sulfur. Examples of suitable alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, t-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4, 4-dimethylpentyl, octyl, 2 , 2, 4-trimethylpentyl, nonyl, decyl, the various branched chain isomers thereof, and the like. Each alkyl group may optionally be substituted with 1 to 4 substituents which include, for example, halo, -OH, and alkyl.
The term "cyclic alkyl" or "cycloalkyl," as employed herein, includes cyclic hydrocarbon groups containing 1 to 3 rings which may be fused or unfused. Cycloalkyl groups may contain a total of 3 to 20 carbons forming the ring(s), preferably 6 to 10 carbons forming the ring(s). Optionally, one of the rings may be an aromatic ring as described below for aryl . Cycloalkyl groups may contain one or more double bonds. The cycloalkyl groups may also optionally contain substituted rings that includes at least one, and preferably from 1 to about 4 sulfur, oxygen, or nitrogen heteroatom ring members. Each cycloalkyl group may be optionally substituted with 1 to about 4 substituents such as alkyl (an optionally substituted straight, branched or cyclic hydrocarbon group, optionally saturated, having from about 1-10 carbons, particularly about 1-4 carbons), halo (such as F, Cl, Br, I), haloalkyl (e.g., CCl3 or CF3), alkoxyl, alkylthio, hydroxy, methoxy, carboxyl, oxo, epoxy, alkyloxycarbonyl, alkylcarbonyloxy, amino, carbamoyl (e.g., NH2C (=0) - or NHRC (=0)-, wherein R is an alkyl), urea (-NHCONH2) , alkylurea, aryl, ether, ester, thioester, nitrile, nitro, amide, carbonyl, carboxylate and thiol. Exemplary cycloalkyls include, without limitation, indanyl and adamantyl .
"Alkenyl" refers to an unsubstituted or substituted hydrocarbon moiety comprising one or more carbon to carbon double bonds (i.e., the alkenyl group is unsaturated) and containing from 1 to about 12 carbon atoms or from 1 to about 5 carbon atoms, which may be a straight, branched, or cyclic hydrocarbon group. When substituted, alkenyl groups may be substituted at any available point of attachment. Exemplary substituents may include, but are not limited to, alkyl, halo, haloalkyl, alkoxyl, alkylthio, hydroxyl, methoxy, carboxyl, oxo, epoxy, alkyloxycarbonyl, alkylcarbonyloxy, amino, carbamoyl, urea, alkylurea, and thiol.
Preferably, the alkenyl group comprises alternating double and single bonds such that bonds are conjugated. Exemplary alkenyl groups include, without limitation, allyl and 1, 3-butadienyl . The term "aryl," as employed herein, refers to monocyclic and bicyclic aromatic groups containing 6 to 10 carbons in the ring portion. Examples of aryl groups include, without limitation, phenyl, naphthyl, such as 1- naphthyl and 2-naphthyl, indolyl, and pyridyl, such as 3- pyridyl and 4-pyridyl. Aryl groups may be optionally substituted through available carbon atoms with 1 to about 4 groups. Exemplary substituents may include, but are not limited to, alkyl, halo, haloalkyl, alkoxyl, alkylthio, hydroxyl, methoxy, carboxyl, carboxylate, oxo, ether, ester, epoxy, alkyloxycarbonyl, alkylcarbonyloxy, amino, carbamoyl, urea, alkylurea, thioester, amide, nitro, carbonyl, and thiol. The aromatic groups may be heteroaryl . "Heteroaryl" refers to an optionally substituted aromatic ring system that includes at least one, and preferably from 1 to about 4 sulfur, oxygen, or nitrogen heteroatom ring members.
II. Novel Compounds Exhibiting IDO Inhibitory Activity
In accordance with the instant invention, novel compounds are provided which are capable of inhibiting IDO activity.
In one embodiment, the novel IDO inhibitor has the formula :
Figure imgf000016_0001
wherein X9 and Xi0 are H or OH and wherein Xi, X2, X3, X4, X5, X6, X7, and X8 are independently selected from the group consisting of halide, H, OH, R, OR, NHR, and SR, and wherein R is an optionally substituted; saturated or unsaturated; linear, branched or cyclic alkyl group or an optionally substituted aryl group. The substitution of the R group may refer to the presence of substituents selected from the group consisting of aryl, ether, amino, hydroxyl, ester, thioether, thiol, nitrile, nitro, amide, carbonyl, carboxyl, carboxylate, and halide groups.
Where R is an aryl group, or is substituted by an aryl group, the aryl group may be optionally substituted with ether, amino, hydroxyl, ester, thioether, amide, nitro, carbonyl, carboxyl, carboxylate and halide groups. In another embodiment, the novel IDO inhibitor has the formula:
Figure imgf000017_0001
wherein X1, X2, X3, X4, Xn, Xi2, X13, and Xi4 are independently selected from the group consisting of halide, H, OH, R, OR, NHR, and SR, and wherein R is an optionally substituted; saturated or unsaturated; linear, branched or cyclic alkyl group or an optionally substituted aryl group. The substitution of the R group may refer to the presence of substituents selected from the group consisting of aryl, ether, amino, hydroxyl, ester, thioether, thiol, nitrile, nitro, amide, carbonyl, carboxyl, carboxylate, and halide groups. Where R is an aryl group, or is substituted by an aryl group, the aryl group may be optionally substituted with ether, amino, hydroxyl, ester, thioether, amide, nitro, carbonyl, carboxyl, carboxylate and halide groups.
In still another embodiment, the novel IDO inhibitor has the formula:
Figure imgf000017_0002
(III), wherein X1, X2, X3, X4, X5, X6, and X7, are independently selected from the group consisting of halide, H, OH, R, OR, NHR, and SR, and wherein R is an optionally substituted; saturated or unsaturated; linear, branched or cyclic alkyl group or an optionally substituted aryl group. The substitution of the R group may refer to the presence of substituents selected from the group consisting of aryl, ether, amino, hydroxyl, ester, thioether, thiol, nitrile, nitro, amide, carbonyl, carboxyl, carboxylate, and halide groups. Where R is an aryl group, or is substituted by an aryl group, the aryl group may be optionally substituted with ether, amino, hydroxyl, ester, thioether, amide, nitro, carbonyl, carboxyl, carboxylate and halide groups.
In yet another embodiment of the invention, the novel IDO inhibitor is selected from the group consisting of compounds 8-22 and 26-29. In yet another embodiment of the invention, the IDO inhibitor is the hydroquinone form of the above novel IDO inhibitors.
Ill . Therapies and Compositions for the Treatment of Cancer and Viral Infections The present invention provides pharmaceutical compositions comprising at least one of the IDO inhibitors of the instant invention in a pharmaceutically acceptable carrier. Such a pharmaceutical composition may be administered, in a therapeutically effective amount, to a patient in need thereof for the treatment of cancer. The pharmaceutical compositions may comprise at least one IDO inhibitor of the instant invention in addition to at least one established (known) IDO inhibitor. In a specific embodiment, at least one of the IDO inhibitors of the pharmaceutical composition is selected from the group consisting of compounds of formulas (I), (II), and (III).
Moreover, the present invention provides a method for the treatment of cancer by administering to a patient, in need thereof, a therapeutically effective amount of the compounds of the instant invention, preferably in the form of a pharmaceutical composition. In a particular embodiment, at least one the IDO inhibitors administered in the method of treating cancer is selected from the group consisting of compounds of formulas (I), (II), and (III).
The pharmaceutical composition may further comprise at least one signal transduction inhibitor (STI) (see, e.g., PCT/US04/05155 and PCT/US04/05154 ) . Suitable STIs, as noted hereinabove, include, but are not limited to: (i) bcr/abl kinase inhibitors such as, for example, STI 571 (Gleevec) ; (ii) epidermal growth factor (EGF) receptor inhibitors such as, for example, kinase inhibitors (Iressa, SSI-774) and antibodies (Imclone:
C225 [Goldstein et al . (1995), Clin Cancer Res. 1:1311- 1318], and Abgenix: ABX-EGF); (iii) her-2/neu receptor inhibitors such as, for example, Herceptin™ (trastuzumab) and farnesyl transferase inhibitors (FTI) such as, for example, L-744,832 (Kohl et al . (1995), Nat Med.
1 (8) : 792-797) ; (iv) inhibitors of Akt family kinases or the Akt pathway, such as, for example, rapamycin (see, for example, Sekulic et al. (2000) Cancer Res. 60:3504- 3513) ; (v) cell cycle kinase inhibitors such as, for example, flavopiridol and UCN-01 (see, for example,
Sausville (2003) Curr. Med. Chem. Anti-Cane Agents 3:47- 56); and (vi) phosphatidyl inositol kinase inhibitors such as, for example, LY294002 (see, for example, Vlahos et al. (1994) J. Biol. Chem. 269:5241-5248). Alternatively, at least one STI and at least one IDO inhibitor may be in separate pharmaceutical compositions. In a specific embodiment of the present invention, at least one IDO inhibitor and at least one STI may be administered to the patient concurrently or sequentially. In other words, at least one IDO inhibitor may be administered first, at least one STI may be administered first, or at least one IDO inhibitor and at least one STI may be administered at the same time. Additionally, when more than one IDO inhibitor and/or STI is used, the compounds may be administered in any order.
The pharmaceutical compositions of the invention may further comprise at least one chemotherapeutic agent. Suitable chemotherapeutic agents are described hereinabove. Preferred chemotherapeutic agents include, but are not limited to: paclitaxel (Taxol®) , cisplatin, docetaxol, carboplatin, vincristine, vinblastine, methotrexate, cyclophosphamide, CPT-Il, 5-fluorouracil (5-FU) , gemcitabine, estramustine, carmustine, adriamycin (doxorubicin) , etoposide, arsenic trioxide, irinotecan, and epothilone derivatives. In a particular embodiment, the chemotherapeutic agent is paclitaxel. As an alternative, the at least one chemotherapeutic agent and the at least on IDO inhibitor may be in separate pharmaceutical compositions. In a particular embodiment of the present invention, at least one IDO inhibitor and at least one chemotherapeutic agent may be administered to the patient concurrently or sequentially. In other words, at least one IDO inhibitor may be administered first, at least one chemotherapeutic agent may be administered first, or at least one IDO inhibitor and at least one chemotherapeutic agent may be administered at the same time. Additionally, when more than one IDO inhibitor and/or chemotherapeutic agent and/or STI is used, the compounds may be administered in any order.
Cancers that may be treated using the present protocol include, but are not limited to: cancers of the prostate, colorectum, pancreas, cervix, stomach, endometrium, brain, liver, bladder, ovary, testis, head, neck, skin (including melanoma and basal carcinoma) , mesothelial lining, white blood cell (including lymphoma and leukemia) esophagus, breast, muscle, connective tissue, lung (including small-cell lung carcinoma and non-small-cell carcinoma) , adrenal gland, thyroid, kidney, or bone; glioblastoma, mesothelioma, renal cell carcinoma, gastric carcinoma, sarcoma, choriocarcinoma, cutaneous basocellular carcinoma, and testicular seminoma.
The present invention further provides a pharmaceutical composition for the treatment of a chronic viral infection in a patient comprising at least one IDO inhibitor, optionally, at least one chemotherapeutic drug, and, optionally, at least one antiviral agent, in a pharmaceutically acceptable carrier. The pharmaceutical compositions may comprise at least one IDO inhibitor of the instant invention in addition to at least one established (known) IDO inhibitor. In a specific embodiment, at least one of the IDO inhibitors of the pharmaceutical composition is selected from the group consisting of compounds of formulas (I), (II), and (III).
Also provided is a method for treating a chronic viral infection in a patient by administering an effective amount of the above pharmaceutical composition. In a particular embodiment, at least one of the IDO inhibitors administered in the method of treating a viral infection is selected from the group consisting of compounds of formulas (I), (II), and (III). Suitable antiviral agents include, without limitation: acyclovir; gangcyclovir; foscarnet; ribavirin; and antiretrovirals such asf for example, nucleoside analogue reverse transcriptase inhibitors (e.g., azidothymidine (AZT), ddl, ddC, 3TC, d4T) , non- nucleoside reverse transcriptase inhibitors (e.g., efavirenz, nevirapine) , nucleotide analogue reverse transcriptase inhibitors, and protease inhibitors.
In a specific embodiment of the present invention, at least one IDO inhibitor and at least one chemotherapeutic agent may be administered to the patient concurrently or sequentially. In other words, at least one IDO inhibitor may be administered first, at least one chemotherapeutic agent may be administered first, or at least one IDO inhibitor and the at least one STI may be administered at the same time. Additionally, when more than one IDO inhibitor and/or chemotherapeutic agent is used, the compounds may be administered in any order. Similarly, any antiviral agent or STI may also be administered at any point in comparison to the administration of an IDO inhibitor.
The compounds of this combination treatment may also be administered for localized infections. Specifically, at least one IDO inhibitor, optionally, at least one chemotherapeutic agent, and, optionally, at least one antiviral agent may be administered to treat skin infections such as shingles and warts . The compounds may be administered in any pharmaceutically acceptable topical carrier including, without limitation: gels, creams, lotions, ointments, powders, aerosols and other conventional forms for applying medication to the skin. Chronic viral infections that may be treated using the present combinatorial treatment include, but are not limited to, diseases caused by: hepatitis C virus (HCV), human papilloma virus (HPV) , cytomegalovirus (CMV) , herpes simplex virus (HSV) , Epstein-Barr virus (EBV) , varicella zoster virus, coxsackie virus, human immunodeficiency virus (HIV) . Notably, parasitic infections (e.g., malaria) may also be treated by the above methods wherein compounds known to treat the parasitic conditions are optionally added in place of the antiviral agents.
In yet another embodiment, the pharmaceutical compositions comprising at least one IDO inhibitor of the instant invention may be administered to a patient to prevent arterial restenosis, such as after balloon endoscopy or stent placement. In a particular embodiment, the pharmaceutical composition further comprises at least one taxane (e.g., paclitaxel (Taxol); see e.g., Scheller et al. (2004) Circulation, 110:810- 814) .
IV. Administration of Pharmaceutical Compositions and Compounds
The pharmaceutical compositions of the present invention can be administered by any suitable route, for example, by injection, by oral, pulmonary, nasal or other modes of administration. In general, pharmaceutical compositions of the present invention, comprise, among other things, pharmaceutically acceptable diluents, preservatives, solubilizers, emulsifiers, adjuvants and/or carriers . Such compositions can include diluents of various buffer content (e.g., Tris-HCl, acetate, phosphate) , pH and ionic strength; and additives such as detergents and solubilizing agents (e.g., Tween 80, Polysorbate 80), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite) , preservatives (e.g., Thimersol, benzyl alcohol) and bulking substances (e.g., lactose, mannitol). The compositions can be incorporated into particulate preparations of polymeric compounds such as polylactic acid, polyglycolic acid, etc., or into liposomes. Such compositions may influence the physical state, stability, rate of in vivo release, and rate of in vivo clearance of components of a pharmaceutical composition of the present invention. See, e.g., Remington's Pharmaceutical Sciences, 18th Ed. (1990, Mack Publishing Co., Easton, PA 18042) pages 1435-1712 which are herein incorporated by reference. The pharmaceutical composition of the present invention can be prepared, for example, in liquid form, or can be in dried powder form (e.g., lyophilized) .
In yet another embodiment, the pharmaceutical compositions of the present invention can be delivered in a controlled release system, such as using an intravenous infusion, an implantable osmotic pump, a transdermal patch, liposomes, or other modes of administration. In a particular embodiment, a pump may be used (see Langer, supra; Sefton, CRC Crit. Ref. Biomed. Eng . (1987) 14:201; Buchwald et al . , Surgery (1980) 88:507; Saudek et al . , N. Engl. J. Med. (1989) 321:574). In another embodiment, polymeric materials may be employed (see Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Press: Boca Raton, Florida (1974);
Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), Wiley: New York (1984); Ranger and Peppas, J. Macromol . Sci . Rev. Macromol. Chem. (1983) 23:61; see also Levy et al., Science (1985) 228:190; During et al . , Ann. Neurol. (1989) 25:351; Howard et al . , J. Neurosurg. (1989) 71:105) . In yet another embodiment, a controlled release system can be placed in proximity of the target tissues of the animal, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical
Applications of Controlled Release, supra, (1984) vol. 2, pp. 115-138). In particular, a controlled release device can be introduced into an animal in proximity to the site of inappropriate immune activation or a tumor. Other controlled release systems are discussed in the review by Langer (Science (1990) 249:1527-1533).
The following examples are provided to illustrate various embodiments of the present invention. These examples are not intended to limit the invention in any way.
EXAMPLE 1: Synthesis of Compounds of Formulas I and III
Compounds of formula I may by synthesized by the following three stages: 1) synthesizing substituted 2- hydroxy-1, 4-naphthoquinones 1 (Figure 1); 2) generating a pyran ring (Figure 3) ; and 3) derivatizing the pyran ring (Figure 4) .
Substituted 2-hydroxy-l, 4-naphthoquinones 1 may be synthesized from 1-tetralone derivatives 2 via the oxidation protocol described by Coombe, R. G. (Aust. J. Chem. (1974) 27:1327-30; Figure 1). The 1-tetralone derivatives 2 may be synthesized as shown in Figure 2 using procedures described in Coombe, R. G. (Aust. J. Chem. (1974) 27:1327-30; El-Ferlay et al . (Can. J. Chem. (1985) 63:2232-2236; Andrew et al . (Tetrahedron (1985) 41:2933-2938; Srinivas et al . (Organ. Proc. Res. Dev. (2004) 8:291-292; and Ferraz et al. (Tetrahedron (2003) 59:5817-5821.
The pyran ring of the compounds of formula I may be synthesized as depicted in Figure 3, which shows the generation of formula III. Generally, a solution of 2- hydroxy-1, 4-naphthoquinone, 3-methyl-2-butenal (or related α, β-unsaturated aldehyde, 1.25 equiv.), β-alanine (0.15 equiv.), and acetic acid (0.375 mL/1 mmol napthoquinone) in benzene (15 mL/mmol naphthoquinone) is heated to reflux for 18 hours. The reaction mixture is then concentrated in vacuo. Flash chromatography (5%
EtOAc: hexanes) affords the pyranonaphthoquinone product.
Three exemplary methods for the synthesis of three pyran rings are provided below. First, 2-hydroxy-l, 4-naphthoquinone was used with 3- methyl-2-butenal as the aldehyde to yield compound 8. The product spectra were identical to previously reported information for the same compound (see Lee et al . (Synthesis (2005) 18:3026-3034).
Figure imgf000026_0001
8
Second, 2-hydroxy-l, 4-naphthoquinone was used with (E) -methyl-4-oxobut-2-enoate as the aldehyde to provide compound 9. (E) -Methyl 4-oxobut-2-enoate was synthesized as described by Wolff et al . (Tetrahedron Lett. (2002) 43:2555-2559) .
Figure imgf000026_0002
9
Third, 2 , 5-Dihydroxy-l, 4-naphthoquinone was used with 3-methyl-2-butenal as the aldehyde to afford compound 10. The synthesis followed the procedure described by Oliveria et al . (Tetrahedron Lett. (1988) 29:155-158) .
Figure imgf000026_0003
10
Derivatization (i.e., adding substituents) of the pyran ring may be performed by derivatization techniques described in the literature. For example, compounds 11- 14 were synthesized following the procedure described by Lee et al. (Synthesis (2005) 18:3026-3034).
Figure imgf000027_0001
11
Figure imgf000027_0002
Further derivatization of the pyran ring may be performed in accordance with the general procedure shown in Figure 4 and described in Lee et al. (Synthesis (2005) 18:3026-3034). Specifically, compounds 15-22 and related structures were synthesized by treating compound 14 with various nucleophiles (Xe, e.g., benzyl amine, allyl amine, butyl amine, and methanol) and Lewis acid reagents.
Figure imgf000028_0001
15 16
Figure imgf000028_0002
17 18
Figure imgf000028_0003
10 19 20
Figure imgf000029_0001
EXAMPLE 2: Synthesis of Compounds of Formula II
Compounds of formula II may be synthesized in a single pot by reacting 1, 4-naphthoquinones with N-acetyl- pyridinium salts 23 as depicted in Figure 5 and described, in part, by Aldersley et al . (J. Chem. Soc. Perkin Trans. 1 (1990) 8:2163-2174) An exemplary compound obtained by this procedure is compound 26.
Figure imgf000029_0002
26
EXAMPLE 3 IDO Inhibitory Activity
Compounds of the instant invention were analyzed for inhibition of human IDO. The assay was conducted according to a literature protocol, with ascorbic acid and methylene blue serving the role of reductant
(Littlejohn et al . (2000) Protein Expression and Purification, 19:22-29; Sono et al . (1989) J. Biol. Chem., 264:1616-1622). Catalase was added to prevent IDO decomposition from peroxide side products (Ohnishi et al .
(1977) J. Biol. Chem., 252:4643-4647). The enzyme assay monitored for formation of N-formylkynurenine by hydrolyzing the formyl group and spectrophotometrically analyzing for the conjugated imine generated from kynurenine and 4- (dimethylamino) benzaldehyde . Specifically, the inhibition assays were performed in a 96-well microtiter plate as previously described with a small modification (Littlejohn et al . (2000) Prot . Expr. Purif., 19:22-29). Briefly, the reaction mixture contained 50 mM potassium phosphate buffer (pH 6.5), 40 mM ascorbic acid, 400 μg/ml catalase, 20 μM methylene blue and purified recombinant IDO(I) optimized based on its activity. The reaction mixture was added to the substrate, L-tryptophan (L-Trp) , and the inhibitor. The L-Trp was serially diluted from 200 to 25 μM and the inhibitors were tested at two concentrations, 200 and 400 μM. The reaction was carried out at 37 "C for 60 minutes and stopped by adding 30% (w/v) trichloroacetic acid. The plate was heated at 65 "C for 15 minutes to convert formylkynurenine to kynurenine and then was spun at 6000 g for 5 minutes. Finally 100 μl supernatant from each well was transferred to a new 96 well plate and mixed with 2% (w/v) p-dimethylamino-benzaldehyde in acetic acid. The yellow color generated from the reaction with kynurenine was measured at 490 nm using a Synergy HT microtiter plate reader (Bio-Tek, Winooski, VT) . The data was analyzed using Graph Pad Prism 4 software (Graph Pad Software Inc., San Diego, CA). The results of the IDO inhibition assay are presented in Table 1.
Figure imgf000031_0001
Figure imgf000032_0001
Figure imgf000033_0001
Several publications and patent documents are cited in the foregoing specification in order to more fully describe the state of the art to which this invention pertains . The disclosure of each of these citations is incorporated by reference herein.
While certain of the preferred embodiments of the present invention have been described and specifically exemplified above, it is not intended that the invention be limited to such embodiments. Various modifications may be made thereto without departing from the scope and spirit of the present invention, as set forth in the following claims.

Claims

WHAT IS CLAIMED IS:
1. A compound having indoleamine 2,3 dioxygenase (IDO) inhibitory activity, said compound having the formula of:
Figure imgf000034_0001
wherein X9 and Xio are H or OH and wherein Xi, X2, X3, X4, X5, X6, X7, and Xs are independently selected from the group consisting of halide, H, OH, R, OR, NHR, and SR, and wherein R is selected from the group consisting of an alkyl group, cyclic alkyl group, and aryl group.
2. A compound having indoleamine 2,3 dioxygenase (IDO) inhibitory activity, said compound having the formula of:
Figure imgf000034_0002
wherein Xi, X2, X3, X4, Xn, X12, X13, and Xi4 are independently selected from the group consisting of halide, H, OH, R, OR, NHR, and SR, and wherein R is selected from the group consisting of an alkyl group, cyclic alkyl group, and aryl group.
3. A compound having indoleamine 2,3 dioxygenase (IDO) inhibitory activity, said compound having the formula of:
Figure imgf000035_0001
wherein X1, X2, X3, X4, X5, Xε, and X7 are independently selected from the group consisting of halide, H, OH, R, OR, NHR, and SR, and wherein R is selected from the group consisting of an alkyl group, cyclic alkyl group, and aryl group.
4. A pharmaceutical composition for the treatment of cancer comprising a pharmaceutically acceptable carrier and an effective amount at least one indoleamine 2,3- dioxygenase (IDO) inhibitor, wherein at least one of said IDO inhibitors is the compound of claim 1.
5. A pharmaceutical composition for the treatment of cancer comprising a pharmaceutically acceptable carrier and an effective amount at least one indoleamine 2,3- dioxygenase (IDO) inhibitor, wherein at least one of said IDO inhibitors is the compound of claim 2.
6. A pharmaceutical composition for the treatment of cancer comprising a pharmaceutically acceptable carrier and an effective amount at least one indoleamine 2,3- dioxygenase (IDO) inhibitor, wherein at least one of said IDO inhibitors is the compound of claim 3.
7. A method for the treatment of cancer in a patient in need of such treatment comprising administering the pharmaceutical composition of claim 4.
8. A method for the treatment of cancer in a patient in need of such treatment comprising administering the pharmaceutical composition of claim 5.
9. A method for the treatment of cancer in a patient in need of such treatment comprising administering the pharmaceutical composition of claim 6.
10. The method of claim 7, wherein said cancer is selected from the group consisting of cancers of the prostate, colorectum, pancreas, cervix, stomach, endometrium, brain, liver, bladder, ovary, testis, head, neck, skin, melanoma, basal carcinoma, mesothelial lining, white blood cells, lymphoma, leukemia, esophagus, breast, muscle, connective tissue, lung, small-cell lung carcinoma, non-small-cell carcinoma, adrenal gland, thyroid, kidney, or bone; glioblastoma, mesothelioma, renal cell carcinoma, gastric carcinoma, sarcoma, choriocarcinoma, cutaneous basocellular carcinoma, and testicular seminoma.
11. The method of claim 8, wherein said cancer is selected from the group consisting of cancers of the prostate, colorectum, pancreas, cervix, stomach, endometrium, brain, liver, bladder, ovary, testis, head, neck, skin, melanoma, basal carcinoma, mesothelial lining, white blood cells, lymphoma, leukemia, esophagus, breast, muscle, connective tissue, lung, small-cell lung carcinoma, non-small-cell carcinoma, adrenal gland, thyroid, kidney, or bone; glioblastoma, mesothelioma, renal cell carcinoma, gastric carcinoma, sarcoma, choriocarcinoma, cutaneous basocellular carcinoma, and testicular seminoma.
12. The method of claim 9, wherein said cancer is selected from the group consisting of cancers of the prostate, colorectum, pancreas, cervix, stomach, endometrium, brain, liver, bladder, ovary, testis, head, neck, skin, melanoma, basal carcinoma, mesothelial lining, white blood cells, lymphoma, leukemia, esophagus, breast, muscle, connective tissue, lung, small-cell lung carcinoma, non-small-cell carcinoma, adrenal gland, thyroid, kidney, or bone; glioblastoma, mesothelioma, renal cell carcinoma, gastric carcinoma, sarcoma, choriocarcinoma, cutaneous basocellular carcinoma, and testicular seminoma.
13. The method of claim 7, further comprising administering to said patient, concurrently or sequentially, at least one signal transduction inhibitor (STI) .
14. The method of claim 8, further comprising administering to said patient, concurrently or sequentially, at least one signal transduction inhibitor (STI) .
15. The method of claim 9, further comprising administering to said patient, concurrently or sequentially, at least one signal transduction inhibitor (STI) .
16. The pharmaceutical composition of claim 4, further comprising at least one signal transduction inhibitor
(STI) .
17. The pharmaceutical composition of claim 5, further comprising at least one signal transduction inhibitor (STI) .
18. The pharmaceutical composition of claim 6, further comprising at least one signal transduction inhibitor (STI) .
19. The pharmaceutical composition of claim 4, further comprising at least one chemotherapeutic agent.
20. The pharmaceutical composition of claim 5, further comprising at least one chemotherapeutic agent.
21. The pharmaceutical composition of claim 6, further comprising at least one chemotherapeutic agent.
22. The pharmaceutical composition of claim 19, wherein said at least one chemotherapeutic agent is selected from the group consisting of paclitaxel (Taxol®) , cisplatin, docetaxol, carboplatin, vincristine, vinblastine, methotrexate, cyclophosphamide, CPT-Il, 5-fluorouracil (5-FU) , gemcitabine, estramustine, carmustine, adriamycin (doxorubicin) , etoposide, arsenic trioxide, irinotecan, and epothilone derivatives.
23. The pharmaceutical composition of claim 20, wherein said at least one chemotherapeutic agent is selected from the group consisting of paclitaxel (Taxol®) , cisplatin, docetaxol, carboplatin, vincristine, vinblastine, methotrexate, cyclophosphamide, CPT-Il, 5-fluorouracil (5-FU) , gemcitabine, estramustine, carmustine, adriamycin (doxorubicin) , etoposide, arsenic trioxide, irinotecan, and epothilone derivatives.
24. The pharmaceutical composition of claim 21, wherein said at least one chemotherapeutic agent is selected from the group consisting of paclitaxel (Taxol®) , cisplatin, docetaxol, carboplatin, vincristine, vinblastine, methotrexate, cyclophosphamide, CPT-Il, 5-fluorouracil
(5-FU) , gemcitabine, estramustine, carmustine, adriamycin (doxorubicin) , etoposide, arsenic trioxide, irinotecan, and epothilone derivatives.
25. A method for treating a viral infection in a patient in need thereof comprising administering to said patient the pharmaceutical composition of claim 4.
26. A method for treating a viral infection in a patient in need thereof comprising administering to said patient, the pharmaceutical composition of claim 5.
27. A method for treating a viral infection in a patient in need thereof comprising administering to said patient, the pharmaceutical composition of claim 6.
28. The method of claim 27, wherein said viral infection is selected from the group consisting of: hepatitis C virus (HCV) , human papilloma virus (HPV) , cytomegalovirus (CMV) , Epstein-Barr virus (EBV) , varicella zoster virus, coxsackie virus, human immunodeficiency virus (HIV) .
29. The method of claim 28, wherein said viral infection is selected from the group consisting of: hepatitis C virus (HCV) , human papilloma virus (HPV) , cytomegalovirus (CMV) , Epstein-Barr virus (EBV) , varicella zoster virus, coxsackie virus, human immunodeficiency virus (HIV) .
30. The method of claim 29, wherein said viral infection is selected from the group consisting of: hepatitis C virus (HCV) , human papilloma virus (HPV) , cytomegalovirus
(CMV) , Epstein-Barr virus (EBV) , varicella zoster virus, coxsackie virus, human immunodeficiency virus (HIV) .
31. The method of claim 25, further comprising the administration of at least one chemotherapeutic agent.
32. The method of claim 26, further comprising the administration of at least one chemotherapeutic agent.
33. The method of claim 27, further comprising the administration of at least one chemotherapeutic agent.
34. A compound which is the hydroquinone form of the compound of claim 1.
35. A compound which is the hydroquinone form of the compound of claim 2.
36. A compound which is the hydroquinone form of the compound of claim 3.
PCT/US2008/057032 2007-03-16 2008-03-14 Novel ido inhibitors and methods of use thereof WO2008115804A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08732234.3A EP2137168B1 (en) 2007-03-16 2008-03-14 Novel ido inhibitors and methods of use thereof
US12/528,466 US8389568B2 (en) 2007-03-16 2008-03-14 IDO inhibitors and methods of use thereof
US13/777,383 US20130183388A1 (en) 2007-03-16 2013-02-26 Novel IDO Inhibitors and Methods of Use Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US91851607P 2007-03-16 2007-03-16
US60/918,516 2007-03-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/777,383 Division US20130183388A1 (en) 2007-03-16 2013-02-26 Novel IDO Inhibitors and Methods of Use Thereof

Publications (1)

Publication Number Publication Date
WO2008115804A1 true WO2008115804A1 (en) 2008-09-25

Family

ID=39766366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/057032 WO2008115804A1 (en) 2007-03-16 2008-03-14 Novel ido inhibitors and methods of use thereof

Country Status (3)

Country Link
US (2) US8389568B2 (en)
EP (1) EP2137168B1 (en)
WO (1) WO2008115804A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011045341A1 (en) * 2009-10-13 2011-04-21 Ludwig Institute For Cancer Research Ltd Ido inhibitors and therapeutic uses thereof
WO2012130893A1 (en) 2011-03-28 2012-10-04 Centre National De La Recherche Scientifique (C.N.R.S) Use of epigallocatechin gallate as an antiviral agent against infections by the hepatitis c virus
WO2015140717A1 (en) * 2014-03-18 2015-09-24 Iteos Therapeutics Novel 3-indol substituted derivatives, pharmaceutical compositions and methods for use
US9260434B2 (en) 2011-04-15 2016-02-16 Newlink Genetics Corporation Fused imidazole derivatives useful as IDO inhibitors
WO2016147144A1 (en) * 2015-03-17 2016-09-22 Pfizer Inc. Novel 3-indol substituted derivatives, pharmaceutical compositions and methods for use
WO2017009842A2 (en) 2015-07-16 2017-01-19 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
WO2017019175A1 (en) 2015-07-24 2017-02-02 Newlink Genetics Corporation Salts and prodrugs of 1-methyl-d-tryptophan
US9603836B2 (en) 2014-05-15 2017-03-28 Iteos Therapeutics Pyrrolidine-2, 5-dione derivatives, pharmaceutical compositions and methods for use as IDO1 inhibitors
WO2017140835A1 (en) 2016-02-19 2017-08-24 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the treatment of obesity
US9758505B2 (en) 2014-02-12 2017-09-12 Iteos Therapeutics 3-(indol-3-yl)-pyridine derivatives, pharmaceutical compositions and methods for use
US10525035B2 (en) 2014-12-18 2020-01-07 Lankenau Institute For Medical Research Methods and compositions for the treatment of retinopathy and other ocular diseases
US10544095B2 (en) 2015-08-10 2020-01-28 Pfizer Inc. 3-indol substituted derivatives, pharmaceutical compositions and methods for use

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7714139B2 (en) * 2003-03-27 2010-05-11 Lankenau Institute For Medcial Research IDO inhibitors and methods of use
GB201311891D0 (en) 2013-07-03 2013-08-14 Glaxosmithkline Ip Dev Ltd Novel compound
GB201311888D0 (en) 2013-07-03 2013-08-14 Glaxosmithkline Ip Dev Ltd Novel compounds
CN106074491A (en) * 2016-06-13 2016-11-09 中山大学 Dehydrogenation α lapachol is as indoleamine 2, the purposes of 3 dioxygenase 1 inhibitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043166A (en) * 1987-01-09 1991-08-27 Hadasit Medical Research, Inc. Liposome/anthraquinone drug composition and method
US5606037A (en) * 1992-11-09 1997-02-25 Biochem Pharma Inc. Processes antineoplastic heteronaphthoquinones
US5736523A (en) * 1992-11-09 1998-04-07 Biochem Pharma Inc. Antineoplastic heteronapthoquinones
US20040234623A1 (en) * 2003-04-01 2004-11-25 Medical College Of Georgia Research Institute, Inc. Use of inhibitors of indoleamine-2,3-dioxygenase in combination with other therapeutic modalities
US20040266857A1 (en) * 2002-11-18 2004-12-30 Zhiwei Jiang Novel lapachone compounds and methods of use thereof
US20060258719A1 (en) * 2005-05-10 2006-11-16 Combs Andrew P Modulators of indoleamine 2,3-dioxygenase and methods of using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008162A1 (en) 1995-08-24 1997-03-06 Dana-Farber Cancer Institute Beta-lapachone derivatives as antitumor agents
WO2002076939A2 (en) * 2001-02-05 2002-10-03 Exegenics Inc. Cysteine protease inhibitors
AU2003228666A1 (en) 2002-04-23 2003-11-10 Case Western Reserve University Lapachone delivery systems, compositions and uses related thereto
CN101098877A (en) 2004-07-13 2008-01-02 不列颠哥伦比亚大学 Indoleamine 2,3-dioxygenase (ido) inhibitors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043166A (en) * 1987-01-09 1991-08-27 Hadasit Medical Research, Inc. Liposome/anthraquinone drug composition and method
US5606037A (en) * 1992-11-09 1997-02-25 Biochem Pharma Inc. Processes antineoplastic heteronaphthoquinones
US5736523A (en) * 1992-11-09 1998-04-07 Biochem Pharma Inc. Antineoplastic heteronapthoquinones
US20040266857A1 (en) * 2002-11-18 2004-12-30 Zhiwei Jiang Novel lapachone compounds and methods of use thereof
US20040234623A1 (en) * 2003-04-01 2004-11-25 Medical College Of Georgia Research Institute, Inc. Use of inhibitors of indoleamine-2,3-dioxygenase in combination with other therapeutic modalities
US20060258719A1 (en) * 2005-05-10 2006-11-16 Combs Andrew P Modulators of indoleamine 2,3-dioxygenase and methods of using the same

Non-Patent Citations (43)

* Cited by examiner, † Cited by third party
Title
"Controlled Drug Bioavailability, Drug Product Design and Performance", 1984, WILEY
"Medical Applications of Controlled Release", 1974, CRC PRESS
"Remington's Pharmaceutical Sciences", 1990, MACK PUBLISHING CO., pages: 1435 - 1712
ALDERSLEY ET AL., J. CHEM. SOC. PERKIN TRANS. 1, vol. 8, 1990, pages 2163 - 2174
ANDREW ET AL., TETRAHEDRON, vol. 41, 1985, pages 2933 - 2938
BOTTING ET AL., CHEM. SOC. REV., vol. 24, 1995, pages 401 - 412
BUCHWALD ET AL., SURGERY, vol. 88, 1980, pages 507
COOMBE, R.G, AUST. J. CHEM., vol. 27, 1974, pages 1327 - 1330
COOMBE, R.G., AUST. J. CHEM., vol. 27, 1974, pages 1327 - 1330
DURING ET AL., ANN. NEUROL, vol. 25, 1989, pages 351
EL-FERLAY ET AL., CAN. J. CHEM., vol. 63, 1985, pages 2232 - 2236
FERRAZ ET AL., TETRAHEDRON, vol. 59, 2003, pages 5817 - 5821
FRIBERG ET AL., INTL. J. CANCE, vol. 101, 2002, pages 151 - 155
GOLDSTEIN ET AL., CLIN CANCER RES., vol. 1, 1995, pages 1311 - 1318
GOODSON, MEDICAL APPLICATIONS OF CONTROLLED RELEASE, vol. 2, 1984, pages 115 - 138
HOWARD ET AL., J. NEUROSURG., vol. 71, 1989, pages 105
KOBAYASHI ET AL., J. BIOL. CHEM., vol. 264, 1989, pages 15280 - 15283
KOHL ET AL., NAT MED, vol. 1, no. 8, 1995, pages 792 - 797
KOHL ET AL., NAT MED., vol. 1, no. 8, 1995, pages 792 - 797
LANGER, SCIENCE, vol. 249, 1990, pages 1527 - 1533
LEE ET AL., SYNTHESIS, vol. 18, 2005, pages 3026 - 3034
LEVY ET AL., SCIENCE, vol. 228, 1985, pages 190
LITTLEJOHN ET AL., PROT. EXPR. PURIF., vol. 19, 2000, pages 22 - 29
LITTLEJOHN ET AL., PROTEIN EXPRESSION AND PURIFICATION, vol. 19, 2000, pages 22 - 29
MULLER ET AL., EXPERT. OPIN. THER. TARGETS., vol. 9, 2005, pages 831 - 849
MULLER ET AL., NAT. MED., vol. 11, 2005, pages 312 - 319
MUNN ET AL., TRENDS MOL. MED., vol. 10, 2004, pages 15 - 18
OHNISHI ET AL., J. BIOL. CHEM., vol. 252, 1977, pages 4643 - 4647
OLIVERIA ET AL., TETRAHEDRON LETT., vol. 29, 1988, pages 155 - 158
RANGER; PEPPAS, J. MACROMOL. SCI. REV. MACROMOL. CHEM., vol. 23, 1983, pages 61
SAUDEK ET AL., N. ENGL. J. MED., vol. 321, 1989, pages 574
SAUSVILLE, CURR. MED. CHEM. ANTI-CANC AGENTS, vol. 3, 2003, pages 47 - 56
See also references of EP2137168A4
SEFTON, CRC CRIT. REF. BIOMED. ENG., vol. 14, 1987, pages 201
SEKULIC ET AL., CANCER RES., vol. 60, 2000, pages 3504 - 3513
SONO ET AL., BIOCHEM. REV., vol. 50, 1980, pages 173 - 181
SONO ET AL., CHEM. REV., vol. 96, 1996, pages 2841 - 2887
SONO ET AL., J. BIOL. CHEM., vol. 255, 1980, pages 1339 - 1345
SONO ET AL., J. BIOL. CHEM., vol. 264, 1989, pages 1616 - 1622
SRINIVAS ET AL., ORGAN. PROC. RES. DEV., vol. 8, 2004, pages 291 - 292
UYTTENHOVE ET AL., NAT. MED., vol. 9, 2003, pages 1269 - 1274
VLAHOS ET AL., J. BIOL. CHEM., vol. 269, 1994, pages 5241 - 5248
WOLFF ET AL., TETRAHEDRON LETT., vol. 43, 2002, pages 2555 - 2559

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011045341A1 (en) * 2009-10-13 2011-04-21 Ludwig Institute For Cancer Research Ltd Ido inhibitors and therapeutic uses thereof
WO2012130893A1 (en) 2011-03-28 2012-10-04 Centre National De La Recherche Scientifique (C.N.R.S) Use of epigallocatechin gallate as an antiviral agent against infections by the hepatitis c virus
US9260434B2 (en) 2011-04-15 2016-02-16 Newlink Genetics Corporation Fused imidazole derivatives useful as IDO inhibitors
US10233190B2 (en) 2011-04-15 2019-03-19 Newlink Genetics Corporation IDO inhibitors
US9850248B2 (en) 2011-04-15 2017-12-26 Newlink Genetics Corporation IDO inhibitors
US9758505B2 (en) 2014-02-12 2017-09-12 Iteos Therapeutics 3-(indol-3-yl)-pyridine derivatives, pharmaceutical compositions and methods for use
WO2015140717A1 (en) * 2014-03-18 2015-09-24 Iteos Therapeutics Novel 3-indol substituted derivatives, pharmaceutical compositions and methods for use
US10398679B2 (en) 2014-05-15 2019-09-03 Iteos Therapeutics Treatment method utilizing pyrrolidine-2, 5-dione derivatives as IDO1 inhibitors
US9603836B2 (en) 2014-05-15 2017-03-28 Iteos Therapeutics Pyrrolidine-2, 5-dione derivatives, pharmaceutical compositions and methods for use as IDO1 inhibitors
US9949951B2 (en) 2014-05-15 2018-04-24 Iteos Therapeutics Pyrrolidine-2, 5-dione derivatives, pharmaceutical compositions and methods for use as IDO1 inhibitors
US10525035B2 (en) 2014-12-18 2020-01-07 Lankenau Institute For Medical Research Methods and compositions for the treatment of retinopathy and other ocular diseases
US11376236B2 (en) 2014-12-18 2022-07-05 Lankenau Institute For Medical Research Methods and compositions for the treatment of retinopathy and other ocular diseases
US11564907B2 (en) 2014-12-18 2023-01-31 Lankenau Institute For Medical Research Methods and compositions for the treatment of retinopathy and other ocular diseases
US11564906B2 (en) 2014-12-18 2023-01-31 Lankenau Institute For Medical Research Methods and compositions for the treatment of retinopathy and other ocular diseases
WO2016147144A1 (en) * 2015-03-17 2016-09-22 Pfizer Inc. Novel 3-indol substituted derivatives, pharmaceutical compositions and methods for use
CN107635990A (en) * 2015-03-17 2018-01-26 辉瑞公司 Derivative, pharmaceutical composition and the application method of new 3 indoles substitution
RU2672252C1 (en) * 2015-03-17 2018-11-13 Пфайзер Инк. New 3-indole substituted derivatives, pharmaceutical compositions and methods of application
US9873690B2 (en) 2015-03-17 2018-01-23 Pfizer Inc 3-indol substituted derivatives, pharmaceutical compositions and methods for use
KR20170132204A (en) * 2015-03-17 2017-12-01 화이자 인코포레이티드 New 3-indole-substituted derivatives, pharmaceutical compositions and methods of use
KR102013512B1 (en) 2015-03-17 2019-08-22 화이자 인코포레이티드 New 3-indole Substituted Derivatives, Pharmaceutical Compositions and Methods of Use
WO2017009842A2 (en) 2015-07-16 2017-01-19 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
EP3744340A2 (en) 2015-07-16 2020-12-02 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
EP3943098A2 (en) 2015-07-16 2022-01-26 Biokine Therapeutics Ltd. Compositions and methods for treating cancer
WO2017019175A1 (en) 2015-07-24 2017-02-02 Newlink Genetics Corporation Salts and prodrugs of 1-methyl-d-tryptophan
EP3613420A1 (en) 2015-07-24 2020-02-26 Newlink Genetics Corporation Salts and prodrugs of 1-methyl-d-tryptophan
EP3954369A1 (en) 2015-07-24 2022-02-16 Lumos Pharma, Inc. Salts and prodrugs of 1-methyl-d-tryptophan
US9732035B2 (en) 2015-07-24 2017-08-15 Newlink Genetics Corporation Salts and prodrugs of 1-methyl-D-tryptophan
US11485705B2 (en) 2015-07-24 2022-11-01 Lumos Pharma, Inc. Salts and prodrugs of 1-methyl-d-tryptophan
US10207990B2 (en) 2015-07-24 2019-02-19 Newlink Genetics Corporation Salts and prodrugs of 1-methyl-D-tryptophan
US10544095B2 (en) 2015-08-10 2020-01-28 Pfizer Inc. 3-indol substituted derivatives, pharmaceutical compositions and methods for use
WO2017140835A1 (en) 2016-02-19 2017-08-24 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the treatment of obesity

Also Published As

Publication number Publication date
EP2137168A1 (en) 2009-12-30
US20100076066A1 (en) 2010-03-25
US8389568B2 (en) 2013-03-05
EP2137168B1 (en) 2016-09-14
US20130183388A1 (en) 2013-07-18
EP2137168A4 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
US8389568B2 (en) IDO inhibitors and methods of use thereof
US7705022B2 (en) IDO inhibitors and methods of use thereof
US8008281B2 (en) Methods for the treatment of cancer
EP1940787A1 (en) Novel ido inhibitors and methods of use thereof
WO2012021692A1 (en) Curcumin analogs and methods of use thereof
US7700644B2 (en) Isoflavonoid dimers
EP3002285A1 (en) Tetrahydrocarboline derivative
JP2008505937A (en) Indoleamine 2,3-dioxygenase (IDO) inhibitor
KR20140051378A (en) Substituted 3-(biphenyl-3-yl)-4-hydroxy-8-methoxy-1-azaspiro[4.5]dec-3-en-2-one
CN101265259A (en) Novel IDO inhibitor and its usage method
EP2344462B1 (en) Pyrimidine derivatives and their pharmaceutical use
TW201542554A (en) Protein kinase inhibitors
CA2983313A1 (en) Mixed disulfide conjugates of thienopyridine compounds and uses thereof
WO2015077866A1 (en) Protein kinase inhibitors
WO2024106529A1 (en) Novel compound having anti-obesity activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08732234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2008732234

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008732234

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12528466

Country of ref document: US