WO2008115672A1 - Method for treating cb2 receptor mediated pain - Google Patents

Method for treating cb2 receptor mediated pain Download PDF

Info

Publication number
WO2008115672A1
WO2008115672A1 PCT/US2008/055102 US2008055102W WO2008115672A1 WO 2008115672 A1 WO2008115672 A1 WO 2008115672A1 US 2008055102 W US2008055102 W US 2008055102W WO 2008115672 A1 WO2008115672 A1 WO 2008115672A1
Authority
WO
WIPO (PCT)
Prior art keywords
optionally substituted
halogen
alkyl
absent
hydroxy
Prior art date
Application number
PCT/US2008/055102
Other languages
English (en)
French (fr)
Inventor
Mingde Xia
Christopher M. Flores
Mark J. Macielag
Kevin Paul Pavlick
Original Assignee
Janssen Pharmaceutica N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39766330&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008115672(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Janssen Pharmaceutica N.V. filed Critical Janssen Pharmaceutica N.V.
Priority to CA002681384A priority Critical patent/CA2681384A1/en
Priority to EP08730822A priority patent/EP2139327A4/en
Priority to AU2008229265A priority patent/AU2008229265A1/en
Priority to JP2009554623A priority patent/JP2010522182A/ja
Priority to CN200880016252A priority patent/CN101677555A/zh
Priority to MX2009010164A priority patent/MX2009010164A/es
Publication of WO2008115672A1 publication Critical patent/WO2008115672A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • A61K31/4161,2-Diazoles condensed with carbocyclic ring systems, e.g. indazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/02Drugs for genital or sexual disorders; Contraceptives for disorders of the vagina
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • This invention is directed to a method for treating, ameliorating or preventing CB2 receptor mediated pain in a subject in need thereof. More particularly, said method comprises administering to the subject an effective amount of a hexahydro- cyclooctapyrazole CB2 agonist compound of the present invention.
  • CB2-selective agonists have been shown to be effective in the carrageenan paw model of inflammatory pain and therefore may be effective in the treatment of acute and chronic inflammatory pain (Gutierrez T, Farthing JN, Zvonok AM, Makriyannis A and Hohmann AG, Activation of peripheral cannabinoid CBl and CB2 receptors suppresses the maintenance of inflammatory nociception: A comparative analysis, British Journal of Pharmacology, (2007), 150(2), 153-163; Quartilho A, Mata HP,
  • CB2-selective agonists have also been shown to be effective inhibitors of thermal nociception in transgenic mice and potentially useful for the treatment of acute pain (Ibrahim MM, Rude ML, Stagg NJ, Mata HP, Lai J, Vanderah TW, Porreca F, Buckley NE, Makriyannis A and Malan TP, Jr., CB2 cannabinoid receptor mediation of antinociception, Pain, (2006), 122(1-2), 36-42).
  • peripheral cannabinoid CB2 receptors are sufficient to normalize nociceptive thresholds and produce antinociception in persistent pain states (Hohmann AG, Farthing IN, Zvonok AM and Makriyannis A, Selective activation of cannabinoid CB2 receptors suppresses hyperalgesia evoked by intradermal capsaicin, Journal of Pharmacology and Experimental Therapeutics, (2004), 308(2), 446-453).
  • Cannabinoid analgesia as a potential new therapeutic option in the treatment of chronic pain, Annals of Pharmacotherapy, (2006), 40(2), 251-260).
  • the CB2 receptor-selective agonist AM 1241 produces antinociception to thermal stimuli (Malan TP, Jr., (2004) MM, Deng H, Liu Q, Mata HP, Vanderah T, Porreca F and Makriyannis A, CB2 cannabinoid receptor-mediated peripheral antinociception, Pain, (2001), 93(3), 239-245).
  • the present invention is directed to a method for treating, ameliorating or preventing CB2 receptor mediated pain in a subject in need thereof comprising administering to the subject an effective amount of a compound of formula (I):
  • Xi is absent or lower alkylene
  • X 2 is absent or lower alkylene
  • X3 is absent, lower alkylene, lower alkylidene or -NH-;
  • X5 is absent or lower alkylene
  • Ri is selected from hydrogen, alkyl (optionally substituted at one or more positions by halogen, hydroxy or lower alkoxy), lower alkyl-sulfonyl, aryl, C 3 -C 12 cycloalkyl or heterocyclyl, wherein aryl, C3-C 12 cycloalkyl or heterocyclyl are each optionally substituted at one or more positions by halogen, aminosulfonyl, lower alkyl-aminosulfonyl, alkyl (optionally substituted at one or more positions by halogen, hydroxy or lower alkoxy), hydroxy or alkoxy (optionally substituted at one or more positions by halogen or hydroxy);
  • R 2 is selected from hydrogen, alkyl (optionally substituted at one or more positions by halogen, hydroxy or lower alkoxy), lower alkyl-sulfonyl, aryl, C3-C 12 cycloalkyl or heterocyclyl, wherein aryl, C3-C12 cycloalkyl or heterocyclyl are each optionally substituted at one or more positions by halogen, aminosulfonyl, lower alkyl-aminosulfonyl, alkyl (optionally substituted at one or more positions by halogen, hydroxy or lower alkoxy), hydroxy or alkoxy (optionally substituted at one or more positions by halogen or hydroxy);
  • R 3 is -C(O)-Z 1 (R 6 ), -SO 2 -NR 7 -Z 2 (R 8 ) or -C(O)-NR 9 -Z 3 (Ri 0 );
  • R 4 when the dashed line between position 9 and X 4 R 4 is absent, X 4 is absent or lower alkylene and R 4 is hydrogen, hydroxy, lower alkyl, lower alkoxy, halogen, aryl,
  • C 3 -Ci 2 cycloalkyl or heterocyclyl wherein aryl, C 3 -Ci 2 cycloalkyl or heterocyclyl are each optionally substituted at one or more positions by hydroxy, oxo, lower alkyl (optionally substituted at one or more positions by halogen, hydroxy or lower alkoxy), lower alkoxy (optionally substituted at one or more positions by halogen or hydroxy) or halogen;
  • R 4 when the dashed line between position 9 and X 4 R 4 is present, X 4 is absent and R 4 is CH-aryl or CH-heterocyclyl, wherein aryl or heterocyclyl are each optionally substituted at one or more positions by hydroxy, oxo, lower alkyl, lower alkoxy or halogen;
  • R 5 is absent, hydroxy, halogen, amino, aminoalkyl, alkyl (optionally substituted at one or more positions by halogen, hydroxy or lower alkoxy), alkoxy (optionally substituted at one or more positions by halogen or hydroxy), carboxy, carbonylalkoxy, carbamoyl, carbamoylalkyl, aryl, aryloxy, arylalkoxy or heterocyclyl;
  • R 6 is aryl, C 3 -Ci 2 cycloalkyl or heterocyclyl, wherein aryl, C 3 -Ci 2 cycloalkyl or heterocyclyl are each optionally substituted by one or more hydroxy, oxo, halogen, amino, aminoalkyl, alkyl (optionally substituted at one or more positions by halogen, hydroxy or lower alkoxy), alkoxy (optionally substituted at one or more positions by halogen or hydroxy), carboxy, carbonylalkoxy, carbamoyl, carbamoylalkyl, aryl, aryloxy, arylalkoxy or heterocyclyl;
  • R 7 is hydrogen or lower alkyl
  • Rs is aryl, C 3 -Ci 2 cycloalkyl or heterocyclyl, wherein aryl, C 3 -Ci 2 cycloalkyl or heterocyclyl are each optionally substituted by one or more hydroxy, oxo, halogen, amino, aminoalkyl, alkyl (optionally substituted at one or more positions by halogen, hydroxy or lower alkoxy), alkoxy (optionally substituted at one or more positions by halogen or hydroxy), carboxy, carbonylalkoxy, carbamoyl, carbamoylalkyl, aryl, aryloxy, arylalkoxy or heterocyclyl;
  • Rg is hydrogen or lower alkyl
  • R 1O is aryl, C 3 -C 12 cycloalkyl or heterocyclyl, wherein aryl, C 3 -C 12 cycloalkyl or heterocyclyl are each optionally substituted by one or more hydroxy, oxo, halogen, amino, aminoalkyl, alkyl (optionally substituted at one or more positions by halogen, hydroxy or lower alkoxy), alkoxy (optionally substituted at one or more positions by halogen or hydroxy), carboxy, carbonylalkoxy, carbamoyl, carbamoylalkyl, aminosulfonyl, lower alkyl-aminosulfonyl, aryl, aryloxy, arylalkoxy or heterocyclyl;
  • Z 1 and Z 2 are each absent or alkyl
  • Z 3 is absent, -NH-, -SO 2 - or alkyl (wherein alkyl is optionally substituted at one or more positions by halogen, hydroxy, lower alkyl, lower alkoxy, carboxy or carbonylalkoxy).
  • An example of the present invention is a compound of formula (I) or a salt, isomer, prodrug, metabolite or polymorph thereof wherein X 1 is absent or lower alkylene; and, R 1 is selected from hydrogen, alkyl (optionally substituted at one or more positions by halogen, hydroxy or lower alkoxy), aryl, C 3 -Cn cycloalkyl or heterocyclyl, wherein aryl, C 3 -C 12 cycloalkyl or heterocyclyl are each optionally substituted at one or more positions by halogen, alkyl (optionally substituted at one or more positions by halogen, hydroxy or lower alkoxy), hydroxy or alkoxy (optionally substituted at one or more positions by halogen or hydroxy).
  • An example of the present invention is a compound of formula (I) or a salt, isomer, prodrug, metabolite or polymorph thereof wherein X 1 is absent; and, R 1 is selected from aryl or C 3 -C 12 cycloalkyl, wherein aryl is optionally substituted at one or more positions by halogen.
  • An example of the present invention is a compound of formula (I) or a salt, isomer, prodrug, metabolite or polymorph thereof wherein X 1 is absent; and, R 1 is hydrogen.
  • An example of the present invention is a compound of formula (I) or a salt, isomer, prodrug, metabolite or polymorph thereof wherein R 3 is -C(O)-Zi(Re), -SO 2 -NH-Z 2 (R 8 ) or -C(O)-NH-Z 3 (Ri 0 ).
  • An example of the present invention is a compound of formula (I) or a salt, isomer, prodrug, metabolite or polymorph thereof wherein R 3 is -C(O)-Zi(R 6 ); X 3 is absent, lower alkylene, lower alkylidene or -NH-; Zi is absent or alkyl; and, R 6 is aryl, C 3 -Ci 2 cycloalkyl or heterocyclyl, wherein aryl, C 3 -Ci 2 cycloalkyl or heterocyclyl are each optionally substituted by one or more hydroxy, oxo, halogen, amino, aminoalkyl, alkyl (optionally substituted at one or more positions by halogen, hydroxy or lower alkoxy), alkoxy (optionally substituted at one or more positions by halogen or hydroxy), carboxy, carbonylalkoxy, carbamoyl, carbamoylalkyl, aryl, aryloxy, arylalkoxy
  • An example of the present invention is a compound of formula (I) or a salt, isomer, prodrug, metabolite or polymorph thereof wherein R 3 is -C(O)-Zi(R 6 ); X 3 is absent; Zi is absent; and, Re is heterocyclyl.
  • An example of the present invention is a compound of formula (I) or a salt, isomer, prodrug, metabolite or polymorph thereof wherein R 3 is -SO 2 -NR7-Z 2 (R 8 ); X 3 is absent or lower alkylidene; R 7 is hydrogen or lower alkyl; Z 2 is absent or alkyl; and, R 8 is aryl optionally substituted at one or more positions by alkoxy.
  • An example of the present invention is a compound of formula (I) or a salt, isomer, prodrug, metabolite or polymorph thereof wherein R 3 is -SO 2 -NH-Z 2 (R 8 ); X 3 is absent or lower alkylidene; Z 2 is absent or alkyl; and, R 8 is aryl optionally substituted at one or more positions by alkoxy.
  • An example of the present invention is a compound of formula (I) or a salt, isomer, prodrug, metabolite or polymorph thereof wherein R 3 is -C(O)-NRg-Z 3 (Ri 0 ); X 3 is absent, lower alkylene, lower alkylidene or -NH-; R 9 is hydrogen or lower alkyl; Z 3 is absent, -NH-, -SO 2 - or alkyl (wherein alkyl is optionally substituted at one or more positions by halogen, hydroxy, lower alkyl, lower alkoxy, carboxy or carbonylalkoxy); and, Ri 0 is aryl, C 3 -Ci 2 cycloalkyl or heterocyclyl each optionally substituted by one or more hydroxy, oxo, halogen, amino, aminoalkyl, alkyl (optionally substituted at one or more positions by halogen, hydroxy or lower alkoxy), alkoxy (optionally substituted at one or more positions by
  • An example of the present invention is a compound of formula (I) or a salt, isomer, prodrug, metabolite or polymorph thereof wherein R 3 is -C(O)-NH-Zs(Ri 0 ); X 3 is absent; Z 3 is absent, -NH- or alkyl (wherein alkyl is optionally substituted at one or more positions by halogen, hydroxy, lower alkyl, lower alkoxy, carboxy or carbonylalkoxy); and, Rio is aryl, C3-C 12 cycloalkyl or heterocyclyl each optionally substituted by one or more hydroxy, oxo, halogen, amino, aminoalkyl, alkyl (optionally substituted at one or more positions by halogen, hydroxy or lower alkoxy), alkoxy, carboxy, carbonylalkoxy, aryl or heterocyclyl.
  • An example of the present invention is a compound of formula (I) or a salt, isomer, prodrug, metabolite or polymorph thereof wherein R 3 is -C(O)-NH-Z 3 (Ri 0 ); X 3 is absent; Z 3 is absent or alkyl; and, Rio is C 3 -Cn cycloalkyl optionally substituted by one or more hydroxy, oxo, halogen, amino, aminoalkyl, alkyl (optionally substituted at one or more positions by halogen, hydroxy or lower alkoxy), alkoxy, carboxy, carbonylalkoxy, aryl or heterocyclyl.
  • An example of the present invention is a compound of formula (I) or a salt, isomer, prodrug, metabolite or polymorph thereof wherein R 3 is -C(O)-NH-Z 3 (R 10 ); X 3 is absent; Z 3 is absent or alkyl; and, Rio is C 3 -Cn cycloalkyl optionally substituted by one or more alkyl or carbonylalkoxy.
  • An example of the present invention is a compound of formula (I) or a salt, isomer, prodrug, metabolite or polymorph thereof wherein R 3 is -C(O)-NH-Z 3 (RiO); X 3 is absent; Z 3 is absent, -NH- or alkyl (wherein alkyl is optionally substituted at one or more positions by halogen, hydroxy, lower alkyl, lower alkoxy, carboxy or carbonylalkoxy); and, Rio is aryl optionally substituted by one or more hydroxy, oxo, halogen, amino, aminoalkyl, alkyl (optionally substituted at one or more positions by halogen, hydroxy or lower alkoxy), alkoxy, carboxy, carbonylalkoxy, aryl or heterocyclyl.
  • An example of the present invention is a compound of formula (I) or a salt, isomer, prodrug, metabolite or polymorph thereof wherein R 3 is -C(O)-NH-Z 3 (R 10 ); X 3 is absent; Z 3 is absent, -NH- or alkyl (wherein alkyl is optionally substituted at one or more positions by halogen, hydroxy or lower alkoxy); and, Rio is aryl optionally substituted by one or more halogen.
  • An example of the present invention is a compound of formula (I) or a salt, isomer, prodrug, metabolite or polymorph thereof wherein R 3 is -C(O)-NH-Z 3 (Ri 0 ); X3 is absent; Z 3 is absent or alkyl (wherein alkyl is optionally substituted at one or more positions by halogen, hydroxy, lower alkyl, lower alkoxy, carboxy or carbonylalkoxy); and, Rio is heterocyclyl optionally substituted by one or more alkyl.
  • An example of the present invention is a compound of formula (I) or a salt, isomer, prodrug, metabolite or polymorph thereof wherein the dashed line between position 9 and X 4 R 4 is absent; X 4 is absent or is lower alkylene; and, R 4 is hydrogen or aryl optionally substituted at one or more positions by halogen.
  • An example of the present invention is a compound of formula (I) or a salt, isomer, prodrug, metabolite or polymorph thereof wherein the dashed line between position 9 and X 4 R 4 is present, X 4 is absent and R 4 is CH-aryl optionally substituted on aryl at one or more positions by halogen.
  • An example of the present invention is a compound of formula (I) or a salt, isomer, prodrug, metabolite or polymorph thereof wherein X 5 is absent and R 5 is absent.
  • An example of the present invention is a compound of formula (Ia):
  • An example of the present invention is a compound of formula (Ia) or a salt, isomer, prodrug, metabolite or polymorph thereof wherein Xi is absent; X 3 is absent or lower alkylidene; when the dashed line between position 9 and X 4 Ri is absent, X 4 is absent or is lower alkylene and R 4 is hydrogen or aryl optionally substituted at one or more positions by halogen; when the dashed line between position 9 and X 4 R 4 is present, X 4 is absent and R 4 is CH-aryl, wherein aryl is optionally substituted at one or more positions by halogen; Ri is selected from hydrogen, aryl or C 3 -Ci 2 cycloalkyl, wherein aryl is optionally substituted at one or more positions by halogen; R 3 is -SO 2 -NH-Z 2 (R 8 ) or -C(0)-NH-Z 3 (Rio); R 8 is aryl optionally substituted at one or more positions by
  • An example of the present invention includes a compound of Formula (I) and pharmaceutically acceptable forms thereof selected from:
  • alkyl means a saturated branched or straight chain monovalent hydrocarbon radical of up to 10 carbon atoms.
  • Alkyl typically includes, but is not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, pentyl, hexyl, heptyl and the like.
  • lower alkyl means an alkyl radical of up to 4 carbon atoms.
  • the point of attachment may be on any alkyl or lower alkyl carbon atom and, when further substituted, substituent variables may be placed on any carbon atom.
  • alkylene means a saturated branched or straight chain monovalent hydrocarbon linking group of up to 10 carbon atoms, whereby the linking group is derived by the removal of one hydrogen atom each from two carbon atoms.
  • Alkylene typically includes, but is not limited to, methylene, ethylene, propylene, isopropylene, n-butylene, t-butylene, pentylene, hexylene, heptylene and the like.
  • lower alkylene means an alkylene linking group of up to 4 carbon atoms. The point of attachment may be on any alkylene or lower alkylene carbon atom and, when further substituted, substituent variables may be placed on any carbon atom.
  • alkylidene means an alkylene linking group of from 1 to 10 carbon atoms having at least one double bond formed between two adjacent carbon atoms, wherein the double bond is derived by the removal of one hydrogen atom each from the two carbon atoms. Atoms may be oriented about the double bond in either the cis (E) or trans (Z) conformation.
  • Alkylidene typically includes, but is not limited to, methylidene, vinylidene, propylidene, iso-propylidene, methallylene, allylidene (2- propenylidene), crotylene (2-butenylene), prenylene (3-methyl-2-butenylene) and the like.
  • lower alkylidene means a radical or linking group of from 1 to 4 carbon atoms. The point of attachment may be on any alkylidene or lower alkylidene carbon atom and, when further substituted, substituent variables may be placed on any carbon atom.
  • alkoxy means an alkyl, alkylene or alkylidene radical of up to 10 carbon atoms attached via an oxygen atom, whereby the point of attachment is formed by the removal of the hydrogen atom from a hydroxide substituent on a parent radical.
  • lower alkoxy means an alkyl, alkylene or alkylidene radical of up to 4 carbon atoms. Lower alkoxy typically includes, but is not limited to, methoxy, ethoxy, propoxy, butoxy and the like. When further substituted, substituent variables may be placed on any alkoxy carbon atom.
  • cycloalkyl means a saturated or partially unsaturated monocyclic, polycyclic or bridged hydrocarbon ring system radical or linking group.
  • a ring of 3 to 20 carbon atoms may be designated by C3- 2 0 cycloalkyl; a ring of 3 to 12 carbon atoms may be designated by C 3-12 cycloalkyl, a ring of 3 to 8 carbon atoms may be designated by C3-8 cycloalkyl and the like.
  • Cycloalkyl typically includes, but is not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, cycloheptyl, cyclooctyl, indanyl, indenyl, 1,2,3,4-tetrahydro-naphthalenyl, 5,6,7,8-tetrahydro-naphthalenyl, 6,7,8,9-tetrahydro-5H-benzocycloheptenyl, 5,6,7,8,9, lO-hexahydro-benzocyclooctenyl, fluorenyl, bicyclo[2.2.
  • heterocyclyl means a saturated, partially unsaturated or unsaturated monocyclic, polycyclic or bridged hydrocarbon ring system radical or linking group, wherein at least one ring carbon atom has been replaced with one or more heteroatoms independently selected from N, O or S.
  • a heterocyclyl ring system further includes a ring system having up to 4 nitrogen atom ring members or a ring system having from O to 3 nitrogen atom ring members and 1 oxygen or sulfur atom ring member. When allowed by available valences, up to two adjacent ring members may be a heteroatom, wherein one heteroatom is nitrogen and the other is selected from N, O or S.
  • a heterocyclyl radical is derived by the removal of one hydrogen atom from a single carbon or nitrogen ring atom.
  • a heterocyclyl linking group is derived by the removal of two hydrogen atoms each from either carbon or nitrogen ring atoms.
  • Heterocyclyl typically includes, but is not limited to, furyl, thienyl, 2/f-pyrrole, 2-pyrrolinyl, 3-pyrrolinyl, pyrrolidinyl, pyrrolyl, 1,3-dioxolanyl, oxazolyl, thiazolyl, imidazolyl, 2-imidazolinyl (also referred to as 4,5-dihydro-lH-imidazolyl), imidazolidinyl, 2-pyrazolinyl, pyrazolidinyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, tetrazolyl, 2/f-pyran, 4H-pyran, pyridinyl, piperidinyl, 1,4-dioxanyl, morpholinyl, 1,4-dithianyl, thiomorpholinyl,
  • aryl means an unsaturated, conjugated ⁇ electron monocyclic or polycyclic hydrocarbon ring system radical or linking group of 6, 9, 10 or 14 carbon atoms.
  • An aryl radical is derived by the removal of one hydrogen atom from a single carbon ring atom.
  • An arylene linking group is derived by the removal of two hydrogen atoms each of two carbon ring atoms.
  • Aryl typically includes, but is not limited to, phenyl, naphthalenyl, azulenyl, anthracenyl and the like.
  • amino' ' means a radical of the formula or -NH 2 .
  • aminoalkyl means a radical of the formula -NH-alkyl or -N(alkyl) 2 .
  • aminonosulfonyl means a radical of the formula or -SO 2 NH 2 .
  • arylalkoxy means a radical of the formula -O-alkyl-aryl.
  • aryloxy means a radical of the formula -O-aryl.
  • carbbamoyl means a radical of the formula or -C(O)NH 2 .
  • carbamoylalkyl means a radical of the formula -C(O)NH-alkyl or -C(O)N(alkyl) 2 .
  • carbonylalkoxy means a radical of the formula -C(O)O-alkyl.
  • carboxy means a radical of the formula -COOH or -CO 2 H.
  • halo or halogen means fluoro, chloro, bromo or iodo.
  • lower alkyl-amino means a radical of the formula -NH-alkyl or
  • lower alkyl-aminosulfonyl means a radical of the formula -SO 2 NH-alkyl or -SO 2 N(alkyl) 2 .
  • lower alkyl-sulfonyl means a radical of the formula -S ⁇ 2 -alkyl or
  • substituted means one or more hydrogen atoms on a core molecule have been replaced with one or more radicals or linking groups, wherein the linking group, by definition is also further substituted.
  • the ability of a particular radical or linking group to replace a hydrogen atom is optimally expected by one skilled to art to result in a chemically stable core molecule.
  • the compounds of the present invention may be present in the form of pharmaceutically acceptable salts.
  • pharmaceutically acceptable salts for use in medicines, refer to non-toxic acidic/anionic or basic/cationic salt forms.
  • Suitable pharmaceutically acceptable salts of the compounds of this invention include acid addition salts which may, for example, be formed by mixing a solution of the compound according to the invention with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, sulfuric acid, fumaric acid, maleic acid, succinic acid, acetic acid, benzoic acid, citric acid, tartaric acid, carbonic acid or phosphoric acid.
  • a pharmaceutically acceptable acid such as hydrochloric acid, sulfuric acid, fumaric acid, maleic acid, succinic acid, acetic acid, benzoic acid, citric acid, tartaric acid, carbonic acid or phosphoric acid.
  • suitable pharmaceutically acceptable salts thereof may include alkali metal salts, e.g. sodium or potassium salts; alkaline earth metal salts, e.g. calcium or magnesium salts; and salts formed with suitable organic ligands, e.g. quaternary ammonium salts.
  • representative pharmaceutically acceptable salts include the following: acetate, benzenesulfonate, benzoate, bicarbonate, bisulfate, bitartrate, borate, bromide, calcium, camsylate (or camphosulphonate), carbonate, chloride, clavulanate, citrate, dihydrochloride, edetate, fumarate, gluconate, glutamate, hydrabamine, hydrobromine, hydrochloride, iodide, isothionate, lactate, malate, maleate, mandelate, mesylate, nitrate, oleate, pamoate, palmitate, phosphate/diphosphate, salicylate, stearate, sulfate, succinate, tartrate, tosylate.
  • the present invention includes within its scope prodrugs and metabolites of the compounds of this invention. In general, such prodrugs and metabolites will be functional derivatives of the compounds that are readily convertible in vivo into an active compound.
  • prodrug means a pharmaceutically acceptable form of a functional derivative of a compound of the invention (or a salt thereof), wherein the prodrug may be: 1) a relatively active precursor which converts in vivo to an active prodrug component; 2) a relatively inactive precursor which converts in vivo to an active prodrug component; or 3) a relatively less active component of the compound that contributes to therapeutic biological activity after becoming available in vivo (i.e., as a metabolite).
  • Conventional procedures for the selection and preparation of suitable prodrug derivatives are described in, for example, ''Design of Prodrugs ' ", ed. H. Bundgaard, Elsevier, 1985.
  • metabolic means a pharmaceutically acceptable form of a metabolic derivative of a compound of the invention(or a salt thereof), wherein the derivative is a relatively less active component of the compound that contributes to therapeutic biological activity after becoming available in vivo.
  • the present invention contemplates compounds of various isomers and mixtures thereof.
  • the term "isomer” refers to compounds that have the same composition and molecular weight but differ in physical and/or chemical properties. Such substances have the same number and kind of atoms but differ in structure. The structural difference may be in constitution (geometric isomers) or in an ability to rotate the plane of polarized light (stereoisomers).
  • stereoisomer refers to isomers of identical constitution that differ in the arrangement of their atoms in space.
  • Enantiomers and diastereomers are stereoisomers wherein an asymmetrically substituted carbon atom acts as a chiral center.
  • chiral refers to a molecule that is not superposable on its mirror image, implying the absence of an axis and a plane or center of symmetry.
  • enantiomer refers to one of a pair of molecular species that are mirror images of each other and are not superposable.
  • diastereomer refers to stereoisomers that are not related as mirror images.
  • R and S represent the configuration of substituents around a chiral carbon atom(s).
  • R* and S 1 * denote the relative configurations of substituents around a chiral carbon atom(s). .
  • racemate or “racemic mixture” refers to a compound of equimolar quantities of two enantiomeric species, wherein the compound is devoid of optical activity.
  • optical activity refers to the degree to which a chiral molecule or nonracemic mixture of chiral molecules rotates the plane of polarized light.
  • geometric isomer refers to isomers that differ in the orientation of substituent atoms in relationship to a carbon-carbon double bond, to a cycloalkyl ring or to a bridged bicyclic system.
  • Substituent atoms (other than H) on each side of a carbon-carbon double bond may be in an E or Z configuration.
  • the substituents are on opposite sides in relationship to the carbon- carbon double bond; in the “Z” (same sided) or “boat” configuration, the substituents are oriented on the same side in relationship to the carbon-carbon double bond.
  • Substituent atoms (other than H) attached to a carbocyclic ring may be in a cis or trans configuration. In the "cis” configuration, the substituents are on the same side in relationship to the plane of the ring; in the “trans” configuration, the substituents are on opposite sides in relationship to the plane of the ring. Compounds having a mixture of "cis” and “trans” species are designated “cis/trans”. Substituent atoms (other than H) attached to a bridged bicyclic system may be in an "endo" or "exo" configuration.
  • the CB2 receptor belongs to the G-protein-coupled receptor (GCPR) family and appears to be primarily expressed peripherally in lymphoid tissue (cell mediated and innate immunity), peripheral nerve terminals (peripheral nervous system), spleen immune cells (immune system modulation) and retina (intraocular pressure).
  • GCPR G-protein-coupled receptor
  • CB2 mRNA is found in the CNS in cerebellar granule cells (coordinating motor function).
  • the present invention is directed to a method for treating, ameliorating or preventing CB2 receptor mediated pain in a subject in need thereof comprising administering to the subject an effective amount of a compound of formula (I) or formula (Ia) or a form thereof.
  • CB2 receptor mediated pain refers to pain states that are chronic or acute, that are postoperative, inflammatory or neuropathic or the result of injury or age and include, without limitation, central and peripheral pathway mediated pain states that otherwise defy characterization and would benefit from treatment with a CB2 receptor agonist.
  • the scope of the present method is intended to include inflammatory related pain states selected from the group consisting of osteoarthritis, rheumatoid arthritis, headache, migraine, odontaligia, labor, dysmenorrhea, interstitial cystitis, peripheral neuritis, mucositis, surgery pain, sports injury pain, trauma, cancer pain, fibromyalgia, pancreatitis, enteritis, cellulitis, bony fractures, post-operative ileus, irritable bowel syndrome, pain due to inflammatory bowel diseases, Crohn's Disease, ulcerative colitis, cholecystitis, burn, sunburn, pain due to venomous snake bite, spider bite or insect sting and pain due to nonvenomous snake bite, spider bite or insect sting.
  • inflammatory related pain states selected from the group consisting of osteoarthritis, rheumatoid arthritis, headache, migraine, odontaligia, labor, dysmenorrhea, interstitial cystitis, peripheral neu
  • neuropathic related pain states selected from the group consisting of chemotherapeutic neuropathy, AIDS-related neuropathy, diabetic neuropathy and post herpetic neuralgia.
  • An example of the present invention includes use of a compound of formula (I) or formula (Ia) or a form thereof in the manufacture of a medicament for treating, ameliorating or preventing CB2 receptor mediated pain in a subject in need thereof.
  • An example of the present invention includes a method for treating, ameliorating or preventing CB2 receptor mediated pain in a subject in need thereof comprising administering to the subject a combination product and/or therapy comprising an effective amount of a compound of formula (I) or formula (Ia) or a form thereof and a therapeutic agent.
  • Compounds of formula (I) or formula (Ia) are CB2 agonists useful in the method of the present in the invention, having a CB2 agonist binding activity IC 50 value of between about 50 ⁇ M to about 0.01 nM; between about 25 ⁇ M to about 0.01 nM; between about 15 ⁇ M to about 0.01 nM; between about 10 ⁇ M to about 0.01 nM; between about 1 ⁇ M to about 0.01 nM; between about 800 nM to about 0.01 nM; between about 200 nM to about 0.01 nM; between about 100 nM to about 0.01 nM; between about 80 nM to about 0.01 nM; between about 20 nM to about 0.01 nM; between about 10 nM to about 0.1 nM; or about 0.1 nM.
  • IC 50 value of between about 50 ⁇ M to about 0.01 nM; between about 25 ⁇ M to about 0.01 nM; between about 15 ⁇ M to about 0.01
  • subject refers to a patient, which may be an animal, preferably a mammal, most preferably a human, which has been the object of treatment, observation or experiment and is at risk of (or susceptible to) developing a CB receptor mediated syndrome, disorder or disease.
  • administering is to be interpreted in accordance with the methods of the present invention. Such methods include therapeutically or prophylactically administering an effective amount of a compound of formula (I) or formula (Ia) at different times during the course of a therapy or concurrently as a product in a combination form.
  • the term shall encompass the means for treating, ameliorating or preventing the CB2 receptor mediated pain described herein with a compound specifically disclosed or a prodrug or metabolite thereof, which would obviously be included within the scope of the invention albeit not specifically disclosed for certain of the instant compounds.
  • Prophylactic administration can occur prior to the manifestation of symptoms characteristic of CB2 receptor mediated pain such that the pain is treated, ameliorated, prevented or otherwise delayed in its progression.
  • the methods of the present invention are further to be understood as embracing all therapeutic or prophylactic treatment regimens used by those skilled in the art.
  • the term "effective amount” refers to that amount of an instant compound that elicits the biological or medicinal response in a tissue system, animal or human, that is being sought by a researcher, veterinarian, medical doctor, or other clinician, which includes alleviation of the symptoms of the syndrome, disorder or disease being treated.
  • the effective amount of such a compound for use in the present invention is from about 0.001 mg/kg/day to about 300 mg/kg/day.
  • the term “medicament” refers to a product for use in treating, ameliorating or preventing a cannabinoid receptor mediated syndrome, disorder or disease.
  • combination product and/or therapy means a pharmaceutical composition comprising a compound of formula (I) or formula (Ia) in combination with one or more therapeutic agents.
  • the dosages of the compound of formula (I) or formula (Ia) and the one or more therapeutic agents are adjusted when combined to achieve an effective amount.
  • the term "effective amount" means that amount of the combination of agents taken together so that the combined effect elicits the desired biological or medicinal response.
  • the effective amounts of the components comprising the combination product may be independently optimized and combined to achieve a synergistic result whereby the pathology is reduced more than it would be if the components of the combination product were used alone.
  • an instant compound and the agent may be co-administered by any suitable means, simultaneously, sequentially, alternately or in a single or divided form, at the same or different times during the course of therapy.
  • the number of dosages of an instant compound given per day may not necessarily be the same, e.g. where one compound may have a greater duration of activity, and will therefore, be administered less frequently.
  • Suitable examples of methods of administration are orally, intravenous (iv), intramuscular (im), subcutaneous (sc), transdermal and topical.
  • Compounds may also be administrated directly to the nervous system including, but not limited to the intracerebral, intraventricular, intracerebroventricular, intrathecal, intracisternal, intraspinal and/or peri-spinal routes of administration by delivery via intracranial or intravertebral needles and/or catheters with or without pump devices.
  • Optimal dosages to be administered may be readily determined by those skilled in the art, and will vary with the particular compound used, the mode of administration, the strength of the preparation and the advancement of the disease condition. In addition, factors associated with the particular patient being treated, including patient's sex, age, weight, diet, time of administration and concomitant diseases, will result in the need to adjust dosages.
  • the present invention includes administration of a pharmaceutical composition or medicament comprising an admixture of a compound of the present invention and an optional pharmaceutically acceptable carrier.
  • composition refers to a product comprising the specified ingredients in the specified amounts, as well as any product that results, directly or indirectly, from combinations of the specified ingredients in the specified amounts.
  • compositions of the invention may, alternatively or in addition to a compound of formula (I) or formula (Ia), comprise a pharmaceutically acceptable salt of a compound of formula (I) or formula (Ia) or a prodrug or pharmaceutically active metabolite of such a compound or salt in admixture with a pharmaceutically acceptable carrier.
  • “Pharmaceutically acceptable carrier” means molecular entities and compositions that are of sufficient purity and quality for use in the formulation of a composition of the invention and that, when appropriately administered to an animal or a human, do not produce an adverse, allergic, or other untoward reaction.
  • a pharmaceutically acceptable formulation would include a composition or medicament formulation for either clinical or veterinary use.
  • the composition or medicament may be administered in a wide variety of dosage unit forms depending on the method of administration; wherein such methods include (without limitation) oral, sublingual, nasal (inhaled or insufflated), transdermal, rectal, vaginal, topical (with or without occlusion), intravenous (bolus or infusion) or for injection (intraperitoneally, subcutaneously, intramuscularly, intratumorally or parenterally) using a suitable dosage form well known to those of ordinary skill in the area of pharmaceutical administration.
  • the term "dosage unit” or “dosage form” is alternatively used to refer to (without limitation) a tablet, pill, capsule, solution, syrup, elixir, emulsion, suspension, suppository, powder, granule or sterile solution, emulsion or suspension (for injection from an ampoule or using a device such as an auto-injector or for use as an aerosol, spray or drop).
  • the composition may be provided in a form suitable for weekly or monthly administration (e.g. as an insoluble salt of the active compound (such as the decanoate salt) adapted to provide a depot preparation for intramuscular injection).
  • the present invention includes a composition of an instant compound or prodrug thereof present in a prophylactically or therapeutically effective amount necessary for symptomatic relief to a subject in need thereof.
  • a prophylactically or therapeutically effective amount of an instant compound or prodrug thereof may range from about 0.001 mg to about 1 g and may be constituted into any form suitable for the administration method and regimen selected for the subject.
  • the prophylactically or therapeutically effective amount for a person of average body weight of about 70 kg per day may range from about 0.001 mg/kg to about 300 mg/kg; from about 0.01 mg/kg to about 200 mg/kg; from about 0.05 mg/kg to about 100 mg/kg; or, from about 0.1 mg/kg to about 50 mg/kg.
  • An optimal prophylactically or therapeutically effective amount and administration method and regimen may be readily determined by those skilled in the art, and will vary depending on factors associated with the particular patient being treated (age, weight, diet and time of administration), the severity of the condition being treated, the compound and dosage unit being employed, the mode of administration and the strength of the preparation.
  • Dosage unit(s) may be administered to achieve the therapeutically or prophylactically effective amount in a regimen of from about once per day to about 5 times per day.
  • the preferred dosage unit for oral administration is a tablet containing 0.01, 0.05, 0.1, 0.5, 1.0, 2.5, 5.0, 10.0, 15.0, 25.0, 50.0, 100, 150, 200, 250 or 500 mg of the active ingredient.
  • the weight of each animal was recorded on the day of the experiment. Each animal was placed on a warm (approx. body temperature, 3O 0 C) glass surface and allowed to acclimate to the test chamber for approximately 10-15 minutes. A radiant thermal stimulus (beam of light) was then focused on the sole of each hind paw in turn, and an initial (baseline) response time to thermal stimuli was recorded for each animal. The stimulus intensity (radiant heat at a setting of 5 Amps) that produced 10-15 sec baseline withdrawal latencies was used and a maximum cutoff of 20 sec was imposed. The light stimulus was automatically shut off by a photoelectric relay when the foot moved or when the cut-off time limit was reached.
  • One treatment group (8 animals each) was injected Lp. with vehicle (5% DMSO and 5% Tween-80 in sterile saline).
  • the other treatment groups (8 animals each) were injected Lp. with 3, 10 or 30 mg/kg Compound 2.
  • withdrawal latencies for the animals administered vehicle were recorded.
  • all animals were administered 1% carrageenan (200 ⁇ L in sterile saline) subcutaneously into the sub-plantar tissue of the left hind paw to stimulate an acute inflammatory reaction.
  • the response time of the animals to the thermal stimulus was evaluated. The results are shown in Table 1 as seconds ⁇ SEM.
  • Example 2 The experiment of Example 1 is repeated with the exception that animals are first administered 1% carrageenan (200 ⁇ L in sterile saline) subcutaneously into the sub-plantar tissue of the left hind paw to stimulate an acute inflammatory reaction.
  • carrageenan 200 ⁇ L in sterile saline
  • the hot plate analgesia meter used for these studies is produced by Columbus Instruments International (Columbus, OH).
  • mice Male CD-I mice (30-35 g) are weighed, placed in a plastic box with wood chips and allowed to acclimate before testing. An individual mouse is placed on a 48 0 C heated surface and locomotion on the plate is constrained by a glass cylinder. The time interval between placement and a shaking, licking or tucking of either hind-paw (nociceptive response) is recorded as the Baseline measurement. Animals are removed from the heated plate immediately after responding or after a maximum of 40 sec to prevent tissue damage. Each mouse is tested only once. One treatment group is then injected Lp. with vehicle (5% DMSO and 5%
  • Tween-80 in sterile saline Tween-80 in sterile saline.
  • the other treatment groups are injected Lp. with 10 or 30 mg/kg of a test compound. Thirty minutes after test compound administration, each animal is assessed for a response with a maximum cut-off of 90 sec.
  • the reaction time for a vehicle or test compound treated animal is compared to the respective baseline reaction time corresponding to each animal.
  • the percent maximal effect (%MPE) is obtained by subtracting the baseline response time from the post-treatment response time and dividing the result by the difference of the baseline response time subtracted from the cut-off response time (90 sec).
  • This protocol uses barostat-controlled, isobaric colorectal distensions (CRD) in rats to evaluate the potency and efficacy of test compounds in treating visceral hyperalgesia.
  • CCD barostat-controlled, isobaric colorectal distensions
  • Rats Male Sprague Dawley (275 - 350 g; CD(SD); Charles River Labs) are housed 2 to 4 animals per cage in a temperature and humidity controlled room with a 12 hr/12hr light/dark cycle, with ad libitum access to food and water.
  • the balloon is positioned such that the aboral end is 1 cm from the anus and is secured in place by taping the balloon catheter to the base of the tail.
  • the catheter is connected to a computerized barostat that controls the inflation of the balloon and the resulting colorectal distension.
  • the balloon pressure representing intracolonic pressure, is continuously recorded.
  • CRD in conscious animals elicits a reflex visceromotor response consisting of contraction of the anterior abdominal wall muscles (Ness TJ and Gebhart GF, Colorectal distension as a noxious visceral stimulus: physiologic and pharmacologic characterization of pseudaffective reflexes in the rat, Brain Res., (1988), 450: 153-169). Contraction of these muscles increases intraabdominal pressure and subsequently increases intracolonic pressure. Changes in intracolonic pressure are transduced through the same balloon used to deliver the CRD.
  • the manometric endpoint has recently been reported to mimic electromyographic responses recorded from anterior abdominal wall muscles in rats (Tammpere A, Brusberg M, Axenborg J, Hirsch I, Larsson H and Lindstrom E, Evaluation of pseudo-affective responses to noxious colorectal distension in rats by manometric recordings, Pain, (2005), 116: 220-226).
  • Stimulus-response data are obtained by delivering two series of 20 sec ramp (15, 30, 45, 60, 75 mmHg) distensions at four-minute intervals and recording the manometric response as follows: the intracolonic pressure signal is passed through a digital 1 Hz highpass filter, rectified and the integral of the initial 15 seconds of the CRD subjected to baseline subtraction (the 15 sec immediately preceding balloon distension); the responses at each distending pressure are averaged to obtain a control stimulus/response curve for each animal. The colorectal balloons are then removed and the animals are returned to their home cages.
  • one treatment group is injected Lp. with 10 mg/kg of a test compound (solubilized in 5% DMSO and 5% Tween-80 in sterile saline).
  • mice in one treatment group are then subcutaneously (s.c.) dosed with 1 mg/kg morphine.
  • animals in another treatment group are dosed s.c. with 3 mg/kg morphine 4 hrs after colitis initiation and 30 min prior to CRD.
  • Data are excluded from experiments in which animals in the vehicle treatment group do not exhibit a hyperalgesic response following zymosan administration. Data are expressed as a percent (% ⁇ SEM) of the initial (control) manometric responses, with each animal serving as its own control.

Landscapes

  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Endocrinology (AREA)
  • Reproductive Health (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Gynecology & Obstetrics (AREA)
  • Immunology (AREA)
  • Dermatology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
PCT/US2008/055102 2007-03-21 2008-02-27 Method for treating cb2 receptor mediated pain WO2008115672A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002681384A CA2681384A1 (en) 2007-03-21 2008-02-27 Method for treating cb2 receptor mediated pain
EP08730822A EP2139327A4 (en) 2007-03-21 2008-02-27 METHOD OF TREATING PAIN INDUCED BY A CB2 RECEPTOR
AU2008229265A AU2008229265A1 (en) 2007-03-21 2008-02-27 Method for treating CB2 receptor mediated pain
JP2009554623A JP2010522182A (ja) 2007-03-21 2008-02-27 Cb2受容体介在疼痛を処置する方法
CN200880016252A CN101677555A (zh) 2007-03-21 2008-02-27 治疗cb2受体介导的疼痛的方法
MX2009010164A MX2009010164A (es) 2007-03-21 2008-02-27 Metodo para tratar dolor mediado por el receptor cb2.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US89601707P 2007-03-21 2007-03-21
US60/896,017 2007-03-21

Publications (1)

Publication Number Publication Date
WO2008115672A1 true WO2008115672A1 (en) 2008-09-25

Family

ID=39766330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/055102 WO2008115672A1 (en) 2007-03-21 2008-02-27 Method for treating cb2 receptor mediated pain

Country Status (13)

Country Link
EP (1) EP2139327A4 (nl)
JP (1) JP2010522182A (nl)
KR (1) KR20090120500A (nl)
CN (1) CN101677555A (nl)
AR (1) AR065801A1 (nl)
AU (1) AU2008229265A1 (nl)
CA (1) CA2681384A1 (nl)
CL (1) CL2008000817A1 (nl)
MX (1) MX2009010164A (nl)
PE (1) PE20090551A1 (nl)
TW (1) TW200904414A (nl)
UY (1) UY30974A1 (nl)
WO (1) WO2008115672A1 (nl)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090179A2 (en) 2010-12-30 2012-07-05 Lupin Limited Isoquinoline derivatives as cannabinoid receptor modulators
WO2012090177A2 (en) 2010-12-30 2012-07-05 Lupin Limited Cannabinoid receptor modulators
WO2013005168A2 (en) 2011-07-05 2013-01-10 Lupin Limited Cannabinoid receptor modulators

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050228034A1 (en) * 2004-03-24 2005-10-13 Bharat Lagu Tetrahydro-indazole cannabinoid modulators

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060128976A (ko) * 2003-12-29 2006-12-14 세프라코 아이엔시. 피롤 및 피라졸 디에이에이오 억제제
FR2875230A1 (fr) * 2004-09-13 2006-03-17 Sanofi Aventis Sa Derives de pyrazole condense, leur preparation et leur application en therapeutique
US7825151B2 (en) * 2005-09-23 2010-11-02 Janssen Pharmaceutica Nv Hexahydro-cyclooctyl pyrazole cannabinoid modulators
DE602006012514D1 (de) * 2005-09-23 2010-04-08 Janssen Pharmaceutica Nv Hexahydro-cyclooctyl-pyrazol-cannabinoid-modulatoren

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050228034A1 (en) * 2004-03-24 2005-10-13 Bharat Lagu Tetrahydro-indazole cannabinoid modulators

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HURST ET AL.: "N-(Piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716A) Interaction with LYS 3.28(192) is Crucial for its Inverse Agonism at the Cannabinoid CB1 Receptor", MOL. PHARMACOL., vol. 62, no. 6, 2002, pages 1274 - 1287, XP008119347 *
See also references of EP2139327A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090179A2 (en) 2010-12-30 2012-07-05 Lupin Limited Isoquinoline derivatives as cannabinoid receptor modulators
WO2012090177A2 (en) 2010-12-30 2012-07-05 Lupin Limited Cannabinoid receptor modulators
WO2013005168A2 (en) 2011-07-05 2013-01-10 Lupin Limited Cannabinoid receptor modulators
US9006442B2 (en) 2011-07-05 2015-04-14 Lupin Limited Cannabinoid receptor modulators

Also Published As

Publication number Publication date
UY30974A1 (es) 2008-09-30
CN101677555A (zh) 2010-03-24
MX2009010164A (es) 2009-10-12
CA2681384A1 (en) 2008-09-25
EP2139327A4 (en) 2011-06-15
CL2008000817A1 (es) 2008-09-26
TW200904414A (en) 2009-02-01
PE20090551A1 (es) 2009-05-16
AR065801A1 (es) 2009-07-01
EP2139327A1 (en) 2010-01-06
JP2010522182A (ja) 2010-07-01
KR20090120500A (ko) 2009-11-24
AU2008229265A1 (en) 2008-09-25

Similar Documents

Publication Publication Date Title
TWI585083B (zh) 用於預防及/或治療手術後疼痛的σ配子
ES2378071T3 (es) Moduladores de cannabinoides de tetrahidro-indazol
CN102282147B (zh) 二环吡唑并-杂环
ES2340201T3 (es) Moduladores de hexahidro-ciclooctilpirazol cannabinoides.
US20070155723A1 (en) Tetrahydro-pyranopyrazole cannabinoid modulators
MX2007005071A (es) Moduladores de canabinoide de tetrahidro-piridinilpirazol.
KR20130135881A (ko) 골암통증에서의 시그마 리간드의 용도
JPS63215627A (ja) 新規な治療用医薬組成物
BRPI0616404A2 (pt) moduladores de canabinóide de 3-amido-tetraidro-indazolila substituìdo e uso dos mesmos
PT1764468E (pt) Mecanismo para um painel em vidro deslizante
US20160058771A1 (en) Alpha-2 adrenoceptor and sigma receptor ligand combinations
JP2017503765A (ja) ガバペンチノイドおよびシグマ受容体の組み合わせ
MX2008006739A (es) Moduladores de canabinoide de 5-heteroaril-1-fenil-pirazol sustituido.
WO2007112402A1 (en) Tetrahydro-1h-1,2,6-triaza-azulene cannabinoid modulators
EP2139327A1 (en) Method for treating cb2 receptor mediated pain
US20090215850A1 (en) Method for treating cb2 receptor mediated pain
US20080234347A1 (en) Method for treating cb2 receptor mediated pain
BRPI0809037A2 (pt) Moduladores de canabinoide de hexa-hidro-cicloeptapirazol.
WO2007095513A1 (en) Tetrahydr0-2h-indaz0le derivatives for use as cannabinoid modulators
ES2375213T3 (es) Moduladores de cannabinoides de hexadhidro-cicloheptapirazol.
EP2989104A1 (en) PYRAZINO[1,2-a]INDOLE COMPOUNDS, THEIR PREPARATION AND USE IN MEDICAMENTS

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880016252.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08730822

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008229265

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2681384

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009554623

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/010164

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3349/KOLNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020097020430

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2008229265

Country of ref document: AU

Date of ref document: 20080227

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008730822

Country of ref document: EP